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Abstract. The work is devoted to the systematic study ofgolic and chaotic forced oscillations. Recently tla basis of
method of complete bifurcation groups new nonlineffects were found in driven damped systems widnious
nonlinearities of elastic restoring forces. Condinn of complete bifurcation groups is based anrtethod of stable and
unstable periodic regimes continuation on paramdien of the work — to study new nonlinear effettduced by varying
linear dissipation in following dynamical systemishatypical nonlinear restoring forces: symmetritinear and quadratic,
bilinear, cubic with asymmetry, Duffing, penduluithe work presents new qualitative and quantitatdsilts of nonlinear
dynamics in the systems with increasing lineariplagon.

Keywords: forced nonlinear oscillations, linear damping, tabte periodic infinitiums, rare attractors, chadiitractors,
complete bifurcation analysis.

Introduction where m is a mass of the systen(xJis a restoring force
with nonlinear characteristic, ,fX)=bX is a linear
In recent years much attention has been paid tlyisty =~ damping force and H(t)= ihcos@t+e) is an external
new nonlinear effects which can be used in vibtutéxs. — periodic force with period T. In this paper we hsemonic
However the nonlinear effects in dynamical systavitt  force with amplitude fj frequencyw and phase (¢=0).
linear dissipation haven't been studied sufficigmtven for

the simplest nonlinear systems [5-13]. Hit
At present the investigation of various dynamical —)P
natural and technical phenomena is closely condegith Fi=)
studying general regularities and nonlinear phemame A
characterising the behaviour of dynamical systelise m
basic approach to research of nonlinear effecasnethod _E = =
of complete bifurcation groups [1-4]. The work isvdted EE 7
to the research of the forced oscillations and ystgd of
nonlinear effects in dynamical systems with nordine Fig. 1. Model of dynamical system

restoring force and linear dissipation.
The analysis of system (1) is based on the mettiod o
Dynamical model and resear ch methods complete bifurcation groups including the method of
Poincaré points mapping, a method of parameten\firig
These models describing many important technicadf stable and unstable periodic regimes, of biftioca

applications have the following form (Fig. 1): diagrams construction with the analysis stabilitperiodic
mx +F,(x) + F, (X) = H(t) L regimes, a contour mapping and constructing ofopl@ri
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and chaotic regimes attraction domains. All reshhisve
been received by direct numerical
software NLO [14] and SPRING [6].

coefficient. Earlier existence of several nonlinedfiects

simulation usindias been shown, for example, for piecewise linear

dynamical systems with linear damping [9-11, 15]. A

phenomenon has been discovered — the birth of gierio
regimes of 1T and 3T different bifurcation groupsotigh
the unstable periodic infinitiums (UPI-1 and UPI{38]
under increasing dissipation (Fig. 2-3). There saeeral

We show that changing linear dissipation may gemeraimportant but insufficiently learned elementary and
nonlinear effects in the driven systems with nardin complex typical bifurcation groups. Among them there
restoring forces. These phenomena can be seenafteen Unstable periodic infinitiums (UPI), rare attractoiRA),
increasing the level of linear dissipation. The tmospProtuberances, bifurcation groups with splittingscades
unexpected fact is birth of additional stable regnafter and chains of subharmonic isles. In the work these
damping increasing. Some newly born regimes hagatgr ~ conclusions are generalised on systems with diffetsges
amplitude for the region with large linear dampingof nonlinear restoring forces characteristics.

Nonlinear effects at the forced oscillationsin dynamical
systemswith nonlinear elastic restoring force
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Fig. 2. Bifurcation diagrams of four bifurcation groupd, &nd three 3T with rare attractors and unstabl®gie infinitiums (UPI-1
and UPIs-3), for symmetric system with trilineastaging force F1(x), linear dissipation and harnecoexcitation. @©ordinatex of
periodic regime fixed point and amplitude of ostitbtns Am vs linear dissipation coefficient b. ®ystparameters: m =1, c¢1 =1,
c2 =9A=1,w=1,hl=7, b=var.
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Fig. 3. Phase portrait of periodic regimes (d, e, hdjerattractors (b, g) and a chaotic orbits (a) of LT and 3T bifurcation groups
of the symmetric trilinear system (Fig. 2). Paraamet c1=1,c2=7A=1,w=1, h1=7, b=var.

The results obtained in the trilinear symmetrideyswith linear damping and external harmonic fogcare used in
studying regular and chaotic forced oscillationsnonlinear systems with different types of nonlineastoring forces
characteristicsDuffing forced system (Fig. 4-7), driven symmettisgstem with quadratitestoring forcegFig. 8)and pendulum
with a horizontal harmonic excitation of the suspen point(Fig. 9-11)
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Fig. 4. Bifurcation diagrams of two bifurcation groups bdth with its own period-doubling cascades and WR&r the Duffing
system with linear dissipation and harmonic excitat Qoordinatesx, v of periodic regime fixed point and amplitude otitlations
Am vs linear dissipation coefficient b. System paeters: m =1, w=1, hl =34, b =var.
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Fig. 5. Domains of attraction of two regimes, ChA-1 of; Bifurcation group and P1 twin RA of 1 Bifurcation group, for the Duffing
system with linear dissipation and harmonic exicita{Fig. 4). System parameters: m =1, w = 1, BZphl = 34
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Fig. 6. Coexistence of three chaotic attractors, ChA-1, Chaa@ ChA-9 RA, in the symmetric system with cub&teeing force, linear

dissipation and external harmonic excitation. (a)nParé map, 25000 periods are shown;

periods are shown. System parameters: w = 0.5).8,-h1 = 6.05151

(b-d) plragectories projections, 25
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Fig 7. Bifurcation diagrams of three bifurcations grous 6ne symmetric and two asymmetric, with tip rareactors for the Duffing
system with large linear dissipation and harmomigitation. @ordinatex of periodic regime fixed point and amplitude otitlations
Am vs linear dissipation coefficient b. System paeters: w = 1, hl = 47, b =var.

1,400

F,(x)= x ki

0,800 e - 1T

il b

Fig. 8. Bifurcation diagrams of four bifurcation groups,,Xbmplex 3T and 6T peninsula with tip rare atwestand 6T island with
rare tip and dumb-bell attractors, for symmetrisgstem with quadratic restoring force, linear ¢iaibn and harmonic excitation.
Coordinate x of periodic regime fixed point vs linééssipation coefficient b. System parameters= iph1 =89, w=1, b = var.

534

© VIBROMECHANIKA. JOURNAL OF VIBROENGINEERING 2008 DECEMBER, VOLUME 10, SSUE4, ISSN1392-8716



412.PARADOXES OF INCREASING LINEAR DAMPING IN THE NONLIEAR DRIVEN OSCILLATORS R. S. SMIRNOVA™*, M.V. ZAKRZHEVSKY?'?, V. YU. YEVSTIGNEJEV, |. T. SCHUKIN®

2.000
= P3
T — —_— P1 asym.
e e T,
. — — > .
12':":'3 - _'__._—:—____:;- ___‘)
n.4nn—-_:__—:_—-——= —
N :_ e
e e — P1 asym
—— P2tip RA
=1.200+
=== PS5 hilltop . P2tipRA
=Z. 000 -
0. 000 0200 D -H00 D00 O.a00 i.l;‘:ll:ll:l
2,000
A
- _ X+bx+asm(rx)=hcos(wt)cos(m x)
= 5T hilltop
ECaig bifurcation group
1.2004
- 2T twin bifurcation group
0, 200
3T bifurcation grou - .
— group 2T twin bifurcation group
0. 400 ——
1T bifurcation group
0.000
0. 000 0200 D -H00 D00 O.a00 1.000

Fig. 9. Bifurcation diagram of five bifurcation groups, 1fivo 2T, 3T and 5T hilltop with large amplitudesy the pendulum with a
horizontal harmonic excitation of the suspensiomp&oordinate x of periodic regime fixed point aemaplitude of oscillations Am vs
linear dissipation coefficient b. System parametets= -1, h=1, w= 1.8, b = var.
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Fig. 10. Time histories and phase portraits of twin atwexct1 in the potential wells (fixed points: x =563285, v = -0.057056 and
x = 1.436715, v = -0.057056) and P5 hilltop atwwact(fixed points: x = 0.712925, v = 1.335634) foendulum with a horizontal
harmonic excitation of the suspension point athG8 (Fig. 9). System parameters: al=-1, b=0.08, h=1.8
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Fig. 11. Bifurcation diagram of three bifurcation groups, yfis 1Tasym and 1Tsym hilltop,

for the pendulumhwét horizontal

harmonic excitation of the suspension point. Coattirx of periodic regime fixed point and amplitunfeoscillations Am vs linear
dissipation coefficient b. System parameters: al,h =7, w=1.8, b = var

A nonlinear
different types of nonlinear characteristics of toeiag
forces and linear damping has typical nonlineaecf at
dissipation changing. There are rare attractordtjpliaity;
periodic 1T, 2T, 3T, 5T ,...
bifurcation cascades, unstable periodic infinitiufd®l) of
different bifurcation groups and chaotic attractors

Paradoxes of linear dissipation in bilinear system

New nonlinear effects in the simplest bilinear eyst
with linear damping were discovered.
influence of increasing dissipation: the amplituoe P1
oscillations decreases approximately in 1.5 timdwernw
coefficient b of linear dissipation goes through the
region 0.0958 < b < 0.098. A bifurcation diagransti®wn
in Fig. 12.
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Fig. 12. Bifurcation diagram of bifurcation group 1T for Iloiar
system. Amplitude of oscillations Am vs linear disgion
coefficient b. Parameters: c1 =1, ¢2 =16,d A0 1, w= 0.9,
b = var.
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Unusual bifurcations groups at linear damping

periodically driven oscillators with coefficient varying

The research reveals, that the use of linear ditgse
driven oscillators leads to the whole spectrumaflimear

islands; period doublingeffects formation, paradoxical influence of inciegsand

decreasing dissipation and unusual bifurcation ggdt/e
illustrate in Fig. 13 the unusual bifurcation greup the
nonlinear driven oscillatory with different typesf o
nonlinear restoring forces characteristics underdhange
of linear dissipation coefficient b.

ParadoxicalConclusion

The work presents bifurcation analysis of stabld an
unstable periodic regimes of different types ofiliiation
groups in the nonlinear dynamical system with linea
dissipative characteristic.

The analysis of nonlinear system with linear dagpm
based on the method of complete bifurcation grotipe
work presents a systematic study of the mechanisim
birth of typical nonlinear effects at the forcectitiations
in nonlinear system under the change of linearighsi®n
coefficient: loss of stability (birth of a basic gime);
subharmonic oscillations; rare attractors; periodinT
(n=1,2,3,...) islands; period doubling bifurcation dan
unstable periodic infinitium UPI; unstable periodi
infinitum of different bifurcation groups; chaotic
oscillations; multiplicity (complex structure of abe
space); unusual bifurcations groups; paradoxeshahge
coefficients of linear dissipation.

The typical nonlinear effects allow to predict noois
and unexpected transitions (catastrophes) of nesulin
systems with linear damping.
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