2014

УДК 538.911: 537.6/.8

МОДЕЛИРОВАНИЕ ЭЛЕКТРОННЫХ И МАГНИТНЫХ СВОЙСТВ НИЗКОРАЗМЕРНЫХ МАТЕРИАЛОВ С ИСПОЛЬЗОВАНИЕМ ПЕРВОПРИНЦИПНЫХ МЕТОДОВ

М.С. ЗЕЛЕНИНА, О.А. КОЗЛОВА

Белорусский государственный университет информатики и радиоэлектроники П. Бровки, 6, Минск, 220013, Беларусь

Поступила в редакцию 22 июля 2014

В рамках квантово-механического подхода исследованы электронные и магнитные свойства зернистых пленок ZnO и квазидвухмерных структур TiS₂ и TiSe₂. В качестве среды моделирования использован программный пакет VASP, в частности метод присоединенных плоских волн (PAW-метод). Рассчитаны значения плотности электронных состояний соединений, приведено распределение магнитной плотности зернистых пленок ZnO.

Ключевые слова: ab initio моделирование, теория плотности функционала, низкоразмерные структуры, электронные свойства.

Введение

Фундаментальные и прикладные исследования последних лет продемонстрировали широкие возможности применения наноструктурированных материалов в различных областях науки и техники. Эффективным инструментом в дальнейшем прогрессе понимания и объяснения физических явлений, происходящих в наноразмерных объектах, принадлежит использованию *ab initio*, первопринципных методов моделирования.

Особое внимание с настоящее время привлекает оксид цинка (ZnO). В частности, экспериментальные исследования показали, что наноструктурированный ZnO при определенных условиях приобретает ферромагнитные свойства, обладая при этом высокой температурой фазового перехода второго рода [1]. За последние десять лет было проведено огромное число экспериментальных исследований с целью выявления ферромагнетизма у ZnO и уже не раз удавалось получить соединения на основе оксида цинка с температурой Кюри выше комнатной [2]. Это открывает возможности использования оксида цинка в качестве материала структурных элементов запоминающих устройств, функционирующих на спиновых эффектах. Однако результаты, полученные исследователями, не сводятся к единому выводу, а именно. если одна группа коллективов экспериментаторов получила ланные. свидетельствующие о наличии ферромагнетизма в ZnO, то другая группа не смогла выявить его [2-5].

Еще одной группой перспективных наноструктурированных материалов являются ультратонкие квази-двухмерные структуры слоистых дихалькогенидов переходных металлов (ХПМ). Материалы данного типа технологически просты в производстве, эффективны в использовании и обладают более широким диапазоном электро-химических свойств [6, 7]. В частности, структуры, состоящие из одного или нескольких слоев ХПМ, полученные посредством отслаивания объемных материалов или СVD-методом, являются прямозонными полупроводниками, значение запрещенной зоны и тип носителя заряда которых колеблется в зависимости от кристаллографической конфигурации, химического состава и размерности соединений. Таким образом, возможность модификации электронной структуры ХПМ делает их привлекательными для различных приложений микро- и наноэлектроники.

№ 8 (86)

В дополнение к составу и кристаллографической конфигурации атомов в соединениях XПМ, размерность играет решающую роль в определении их основных электронных свойств. Наиболее ярким примером проявления аналогичного поведения является графен, уникальные свойства которого отсутствуют в объемном графите [8–10]. Высокие исследования электронных свойств графена и разработанных методологий подготовки и получения сверхтонких слоев привело к освоению других двухмерных материалов [6]. В частности, монослои XПМ структур, подобные структуре графита, получили значительное внимание, так как некоторые из них являются полупроводниками со значительной шириной запрещенной зоны и широко распространены в природе.

В слоистых структурах ХПМ IV группы каждый слой имеет толщину 6 ~ 7 А, который состоит из гексагонально упакованного слоя атомов металла между двумя слоями атомов халькогена. Связи М - Х внутри слоя преимущественно ковалентные, слои соединены слабыми ван-дер-ваальсовыми силами, таким образом, возможно легко расщепить кристалл вдоль поверхности слоя. Соединения ХПМ IV группы являются узкозонными полупроводниками или полуметаллами, характеризуются низким значением удельного электрического сопротивления (~ 10 – 6 Ом см) и периодическим перераспределением в пространстве электронного, ионного и суммарного зарядов (волна зарядовой плотности) [7]. Длина связи М – М в структурах ХПМ IV группы изменяется в диапазоне от 3,15 до 4,03 Å, в зависимости от размера ионов металла и халькогена. Эти величины на 15–25 % больше, чем длины связей, в соединениях переходных металлов твердых веществ, что указывает на ограниченное энергетическое и пространственное перекрытие орбиталей в соединениях ХПМ. Кристаллографическая конфигурация металлов М в структуре ХПМ может быть как тригонально призматической, так и октаэдрической [11].

Методология

Для анализа магнитного состояния наноструктуры традиционно используются современные методы зонных расчетов, основанные на теории функционала электронной плотности (density-functional theory – DFT) [12]. Наиболее популярными среди них являются полнопотенциальные методы, такие как линеаризированный метод присоединенных плоских волн (lineariazed augmented plane wave – LAPW), метод линейных muffin-tin-opбиталей (linear muffin-tin orbital – LMTO), первопринципный (*ab initio*) метод псевдопотенциалов, реализованный в программном пакете VASP (Vienna Ab initio Simulation Package), методы не эмпирического псевдопотенциала, Корринги – Кона – Ростокера (ККR) в приближении когерентного потенциала (cohernt potential approximation) (ККR-СРА) и ряд других [13–15]. Получаемые результаты касаются распределения энергетических зон, плотностей состояний и характера их спинового расщепления, величин магнитных состояний системы используется для обоснования типа спинового упорядочения. Еще одним важным расчетным параметром, который привлекаемыми при изучении типа коллективного магнетизма, являются параметры обменных взаимодействий.

Особое внимание при расчетах в рамках DFT метода следует уделить обменнокорреляционному потенциалу, поскольку при описании сильно коррелированных систем, при оценках величины запрещенной зоны и в других случаях могут возникнуть несоответсвия модели с реальной системой. Преодолеть эти затруднения возможно различными способами учета электронных корреляций, в частности приближения локальной спиновой плотности (local spin-density approximation) с учетом кулоновских корреляций (LSDA+U) и ряда сходных схем. Другим важным моментом, определяющим степень достоверности результатов, является учет эффектов структурной релаксации системы с дефектом. Дело в том, что энергетическая неустойчивость обсуждаемых далее примесных или нестехиометрических систем связана с высокой плотностью состояний на уровне Ферми и переход в устойчивое состояние может протекать как вследствие спинового расщепления прифермиевских зон (т.е. при переходе системы в магнитное состояние), так и за счет структурного фактора – отклонения атомов, соседствующих с дефектом, от их равновесных позиций в «идеальном» кристалле.

Наконец, при рассмотрении излагаемых результатов теоретических прогнозов следует учитывать тот факт, что получаемые результаты часто носят сугубо модельный характер, т.е.

относятся к гипотетическим системам с составами, реальный синтез которых в обычных условиях вряд ли может быть осуществлен.

Подобная ситуация отчетливо проявилась при попытках получения разбавленных ферромагнитных полупроводников с содержанием магнитных *d*-примесей, которые согласно прогнозам должны иметь высокие (превосходящие комнатную температуру) точки Кюри. При этом требуемые (достаточно большие) концентрации примесей приводили к изменению фазового состава и структуры исходного материала. Эти трудности в полной мере будут присутствовать при реализации теоретических прогнозов для рассматриваемого материала. Поэтому сам по себе факт обнаружения в рамках зонной теории спиновой поляризации примесных (или вакансионных) состояний в немагнитных *sp*-матрицах отнюдь не гарантирует возможности экспериментального наблюдения этого явления и тем более создания магнитного материала с высокой T_c , а может служить лишь предварительным ориентиром для продвижения в этом направлении [2].

Моделирование проводилось в программном комплексе VASP, который реализует первопринципные методы расчетов фундаметальных электронных, оптических и магнитных свойств материалов. Данная программа для квантово-механических расчетов применяет метод псевдопотенциала и разложения волновых функций в базисе плоских волн.

Расчеты проводились с учетом периодических условий, поэтому для того, чтобы исключить взаимное влияние границ зерен ZnO друг на друга использовалась супер-ячейка, размером 4x8x1 элементарных ячеек ZnO. Для того, чтобы исключить взаимодействие между слоями в структурах TiS₂ и TiSe₂, между ними закладывался вакуумный промежуток, равный 15 Å. Энергия обрезания плоских волн в расчетах составляла 500 эВ. Разбиение обратного пространства выполнялось методом Monckhorst Pack размером $4\times4\times1$ для ZnO и $8\times8\times6$ для TiS₂ и TiSe₂. Критерий энергии сходимости геометрии структур был равен $1\cdot10^{-6}$ эВ. Расчеты структур TiS₂ и TiSe₂ выполнялись с использование гибридного функционала PBE0, который является комбинацией обменных вкладов, определяемых методом Хартри-Фока и при помощи функционалов DFT. Гибридный функционал PBE0 содержит 25 % хартри-фоковской (HF)

обменной энергии (E_x^{HF}) , $E_{xc} = E_{xc}^{LDA} + \frac{1}{4}(E_x^{HF} - E_{xc}^{PBE})$, где в верхнем индексе (LDA, HF, и

РВЕ) указан метод расчета обменно-корреляционной энергии. Вклад E_x^{HF} – эмпирически подобранный параметр [16].

Кристалло-химические параметры для TiS₂ и TiSe₂ представлены в табл. 1 [17].

Материал		Парамерты элементарной	Уайкоф (Wyckoff)	Радиус Вигнера-	Координаты
		ячейки, a, c, соотв. (Å)	позиции	Зейтца R _{ws} (Å)	_
ZnO	Zn	3,350; 5,220;	2b	1,270	0,(3) 0,(6) 0,0
	0		2b	0,820	0,(3) 0,(6) 0,375
TiS ₂	Ti	3,407; 5,695	1a	1,2067	0,0 0,0 0,0
	S		2d	1,7209	0,(3) 0,(6) 0,2501
TiSe ₂	Ti	3,540; 6,008	1a	1,2067	0,0 0,0 0,0
	Se		2d	1,7209	0,(3) 0,(6) 0,2501

Таблица 1. Кристалло-химические параметры для TiS2 и TiSe2

Результаты и их обсуждение

Межзеренную границу пленок оксида цинка можно рассматривать как область, в которой осуществляется контакт двух кристаллов, различающихся только ориентацией. Граница зерен – атомный слой толщиной 1–2 атомных диаметра, по обе стороны от которого кристаллические решетки различаются только пространственной разориентацией.

По такому принципу была воспроизведена структура межзеренной границы с углом разориентации 10 градусов (рис. 1). Расчеты проводили с учетом периодических условий, поэтому для того, чтобы исключить влияние дефектов границ друг на друга, использовалась супер-ячейка, которая имела размерность 16×4×1 элементарных ячейки ZnO, что соответствует 5,024×1,256 нм.

Рис. 1. Модель границы зерна ZnO после процесса релаксации

Проведено исследование ферромагнитного состояния системы. Установлено, что структура имеет стабильную ферромагнитную фазу. Магнитный момент равен 2,51 µВ (магнетон Бора). Получено распределение эффективной спиновой магнитной плотности в структуре (рис. 2).

Рис. 2. Распределение магнитной плотности в дефектной структуре ZnO

Из рис. 2 видно, что распределение магнитной плотности в дефектной структуре ZnO носит анизотропный характер: значение магнитной плотности достигает максимального значения в области межзеренной границы и равно нулю в областях, отдаленных от нее. Эта особенность позволяет сделать предположение о наличии зависимости ферромагнетизма ZnO от размера и разориентации зерен в его структуре. Такое предположение позволяет объяснить различия в результатах измерений ферромагнетизма в образцах ZnO и дает возможность использования данной структуры в приборах сенсорики.

Рассчитано распределение электронной плотности и зонная диаграмма для объемной и квазидвухмерной структуры TiS_2 и $TiSe_2$. На рис. 3 представлено распределение электронной плотности для объемной и квазидвухмерной структуры структуры TiS_2 .

Рис. 3. Полное и поорбитальное распределение плотности электронных состояний (DOS): *a* – для объемной структуры TiS₂; *б* – для квазидвухмерной структуры TiS₂

 δ – для квазидвухмерной структуры TiS₂

В диапазоне от -15 до -10 эВ TiS₂ состоят в основном из энергетических состояний S Зs-орбиталей. В диапазоне от -5 до до 5 эВ зоны заполнены состояниями S Зр-орбиталей, находящимися в гибридизации с Ti 3d орбиталями. (Максимум и минимум этого участка находится в Г-точке). Зоны, расположенные над уровнем Ферми заполнены преимущественно состояниями Ti 3d – орбиталей.

Распределение электронной плотности и зонная диаграмма объемного $TiSe_2$ незначительно отличается от структуры TiS_2 . Энергетические зоны $TiSe_2$, расположенные в диапазоне энергий от -14 эВ и до -12,5 зВ, образованы из состояний Se 3s-орбиталей. В диапазоне от -5 зВ до 4,5 зВ зоны заполнены состояниями Se 3p-орбиталей, находящимися в гибридизации с Ti 3d орбиталями. Зоны, расположенные над уровнем Ферми заполнены преимущественно состояниями Ti 3d – орбиталей.

Распределение плотности электронных состояний квазидвухмерной структуры TiS_2 аналогично результатам, полученным для объемной структуры. Это связано с тем, что соединение имеет сильные ковалентные внутрислоевые взаимосвязи. Однако необходимо отметить ключевое отличие в свойствах объемной и квазидвухмерной структуры. Объемный TiS_2 является полуметаллом, а его квазидвухмерный аналог TiS_2 является полупроводником с шириной запрещенной зоны 1,1 эВ (рис. 4). Полученные результаты согласуются с теоретическими и прикладными результатами, описанными в работе [18]. Обнаружено, что при переходе от объемной к двумерной структуре $TiSe_2$ электронные свойства меняются. Квазидвухмерная структура $TiSe_2$ является полупроводником с шириной запрещенной зоны 0,7 эВ.

Таким образом, анализ результатов моделирования свидетельствует о многоообразии физико-химический свойств указанных объемных и квазидвухмерных структур на основе XПМ, что, в свою очередь, предоставляет множество возможностей для использования электронных и магнитных свойств указанных соединений для широкого круга приложений микро- и наноэлектроники, в частности для устройств хранения энергии, каталитически активных элементов в оптоэлектронике, и в структурных компонентах микроэлектронных приборов. Однако остаются нерешенными ключевые проблемы, связанные с увеличением электрической проводимости и повышением стабильности квазидвухмерных структур, решение которых требует интеграции экспериментальных и теоретических исследований.

Заключение

Таким образом, в рамках квантово-механического подхода исследованы электронные и магнитные свойства зернистых пленок ZnO и квазидвухмерных структур TiS₂ и TiSe₂. Установлено, что зернистая структура ZnO имеет стабильную ферромагнитную фазу. Магнитный момент равен 2,51 μ B (магнетон Бора). Получено распределение эффективной спиновой магнитной плотности в структуре. Обнаружено, что объемный TiS₂ является полуметаллом, а его квазидвухмерный аналог TiS₂ является полупроводником с шириной запрещенной зоны 1,1 эВ. Электронные свойства TiSe₂ также изменяются при уменьшении размерности структуры. Квазидвухмерная структура TiSe₂ является полупроводником с

шириной запрещенной зоны 0,7 эВ. Магнитные свойства в исследованных структурах TiS_2 и $TiSe_2$ не обнаружены.

SIMULATION OF ELECTRONIC AND MAGNETIC PROPERTIES OF LOW-DIMENSIONAL MATERIALS WITH USE OF FIRST PRINCIPLES METHODS

M.S. ZELENINA, O.A. KOZLOVA

Abstract

The result of electronic and magnetic properties investigation of ZnO granular films and quasi-two-dimensional structures of TiS_2 and $TiSe_2$ were presented. Quantum-mechanical approach in software package VASP was used during the calculation procedure, in particular the method of augmented plane wave (PAW-method). The values of the electronic states' density of the compounds were presented, the distribution of the magnetic density of ZnO granular films were shown.

Список литературы

- 1. Страумал Б. Б., Протасова С. Г. // Письма в ЖЭТФ. 2013. Т. 97. С. 415–426.
- 2. Ивановский А.Л. // УФН. 2007. Т. 177, № 10, С. 1083–1104.
- 3. Byung-Sub Kang, Kwang-Pyo Chae. // J. Mag. 2012. № 17 (3). P. 163–167.
- 4. Bin Shao, Hong Liu, Jian Wu et al. // J. Appl. Phys. 2012. № 111. 07C301-07C301-3.
- 5. Bin Shao, Min Feng, Hong Liu et al. // J. Appl. Phys. 2013. 17C728-17C725-3.
- 6. Li H. // Small. 2012. Vol. 8. P. 63–67.
- 7. Castro Neto A.H. // Phys. Rev. Lett. 2001. Vol. 86. P. 4382-4385.
- 8. Novoselov K.S. // Science. 2011. Vol. 306. P. 666–669.
- 9. Castro Neto A. H., Guinea F., Peres N.M.R. et. al. // Rev. Mod. Phys. 2009. Vol. 81. P.109–162.
- 10. Geim A.K. // Science Vol. 2009. Vol. 324. P. 1530–1534.
- 11. Van de Walle C.G. First-principles calculations of hyperfine parameters // Physical Review. 1993. B 47. P. 4244 4248.
- 12. Chhowalla M., Shin H.S., Eda G. et. al. // Nature chemistry. 2013. Vol. 5. P. 263-275.
- 13. Kresse G. // Comput. Mat. Sci. 1996. № 6. P. 15–19.
- 14. Kresse G., Marsman M., Furthmüller J. VASP the guide: tutorial. Vienna, 2003.
- 15. Skriver H.L., Rosengaard N.M. // Phys. Rev. 1991. B 43, 12. 9538.
- 16. Perdew J., Ernzerhof M. Burke K. // J. Chem. Phys. 1996. № 105. 9982.
- 17. Bilbao. [Электронный ресурс]. Режим доступа: http://cryst.ehu.es/. Дата доступа: 22.07.2014.
- 18. Fang C.M., de Groot R.A., Haas C. // Phys. Rev. 1997. B 56, 4455.