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Abstract: It will soon be twenty years since the last chelating agent was clinically approved to be used against
toxic metals. Even though metal poisoning has been known to humankind for centuries, only about a dozen
compounds, all of which are small molecules, compose the pharmaceutical toolbox to expel intrinsically toxic
or essential but misregulated metals. These compounds widely suffer from various drawbacks, most critically,
poor metal selectivity. Can medicinal inorganic chemistry offer modern solutions to these old challenges? In this
perspective, the opportunities and advantages of harnessing short peptides for chelation therapy are described.
While broadly aiming to address various toxic metals, achievements in targeting lead (Pb) with peptides reveal
the unexplored potential hidden in this chemical space and raise the possibility that peptides may reform chela-
tion therapy.
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1. Toxic Metals
Four metals appear in the list of the top ten chemicals of public

health concern by theWorld Health Organization (WHO); arsenic
(As), cadmium (Cd), lead (Pb), and mercury (Hg).[1] Apart from
arsenic, for which essentiality to humans is debatable,[2,3] these
metals are nonessential elements that interfere with numerous
biochemical processes of life by replacing native metal ions in
metalloenzymes, deactivating proteins by their undesired bind-
ing, hampering metal-mediated signal transduction, shifting the
oxidative state of cells or organelles, etc.[4,5]

In addition to these intrinsically poisonous metals, es-
sential ones can become toxic should their body burden be
uncontrolled.[6,7] Within the list of nutritious metals that require
tight regulation, the most dominant are copper (Cu), iron (Fe),
zinc (Zn), and manganese (Mn). While being crucial structural
and enzymatic cofactors, thesemetals are subjected to sophisticat-
ed cascades to control their cellular levels[8] to avoid participating
in undesired chemistries, for example, the Fenton reaction, which
is catalyzed by redox-active metals such as Fe[9] and Cu[10] to form
radicals from hydrogen peroxide.

Genetic mutations in these natural mechanisms responsible
for the steady homeostasis of metallic nutrients are the core causes
of several chronic disorders such as Wilson’s disease (for Cu),[11]
primary hemochromatosis,[12] and β thalassemia (for Fe),[13] and
hypermanganesemia (for Mn).[14] Furthermore, an unbalanced
diet or food and water contaminations can also lead to uptake of
essential metals above their healthy amounts.

2. Chelation Therapy
Being intrinsically toxic or essential yet misregulated, metal

ions may negatively affect human health due to their undesired
accumulation. Chelation therapy is the primary treatment modal-
ity against such poisonous metals.[15] It requires administering a
chelating agent (CA), mostly a small organic molecule, that should
remove the toxic metal of interest from the body through the uri-
nary or the fecal systems (Fig. 1, Table 1).[15]

An ideal CA should fulfill several requirements:[4,16] (i) high
aqueous solubility of both the apo and holo forms, (ii) high metal-
binding affinity, (iii) high metal selectivity, (iii) ability to cross
tissues and cellular membranes, (iv) low toxicity of both the apo
and holo forms, (v) ability to be eliminated, and (vi) defined com-
plex speciation with the desired metal ion in a preferably 1:1 ratio.

While the current CAs achieve several of these criteria, failing
in the other parameters significantly reduces their efficacy and
translates into their own toxicity.[17]As a result, in the vast major-
ity of cases, the decision of whether to treat metal poisoning and
from which level is often a compromise between the toxicity of
the metal and that of the CA itself.

Themost critical drawback of these compounds is their inability
to distinguish between the toxic metal of interest and essential and
physiologically relevant ones, which causes poor metal selectivity
(Table 1).[4,5,15,18,19] As a result, essential ions are depleted during
treatment, also requiring a high dose to achieve the desired out-
come.

Nature approaches the challenges related to metal selectivity
with peptides and proteins.[20–24] Furthermore, nature also utilizes
peptides and short proteins to solve metal poisoning issues.[25–31]
The increase in molecular complexity compared to small mole-
cules enables prioritizing one metal ion over others. This is thanks
to a tailored binding pocket that addresses various features affect-
ing metal preferences, such as cavity size and preferred binding
moieties, coordination number (CN), and binding geometry.
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3. Pb Poisoning
Pb is a nonessential, toxic metal widely spread in the envi-

ronment and affects vast populations worldwide.[37] No blood Pb
level (BLL) is deemed safe,[38] and Pb at even very low concentra-
tions shows destructive effects on various organs. Nevertheless,
health authorities determine threshold values at which environ-
mental and medicinal interventions should occur. Most countries
adopt the WHO recommendation of 5 µg/dL as this value.[38] In
the USA, the CDC recently reduced this value to 3.5 µg/dL, ac-
knowledging the devastating influence of Pb at such levels.[39]

Based on these values, 16% of US children,[40,41] every third
child globally,[42] and every second adult in the USA[43] are poi-
soned with Pb. While at high acute poisoning, Pb kills, lower lev-
els cause various symptoms, mainly kidney impairment, anemia
and high blood pressure, fertility issues for both genders, andmost
critically, cognitive and neurological damages (Fig. 2). The brain
and the central nervous system are susceptible to Pb poisoning
since Pb(ii) ions resemble Ca(ii) ions, which are essential in these
organs.As a result, Pb as a neurotoxicant easily crosses the blood–
brain barrier, resulting in amplified damage to the brain.

The FDA and other authorities approved five small molecules
to treat Pb poisoning asCAs (Table 1).Three of the five compounds
are no longer used due to severe side effects and poor performance.
Only two drugs are still in practice: DMSA and EDTA (calcium
disodium salt). These drugs maintain some ability to clear Pb(ii)
ions but suffer from several disadvantages; most critically, (i) their
binding affinity to Pb(ii) ions is not as high as to other essential
metal ions such as Ca(ii), Fe(iii), and Zn(ii), which results in poor
metal selectivity and (ii) they have high intrinsic toxicity due to
nonspecific and undesired metal interactions, which cause vari-
ous side effects, including anemia, headache, vomiting, nausea,
muscle and joint pain, fever, diarrhea, and more.

Due to the above, the two drugs are given only in severe cases of
Pb poisoning: DMSA is administered at BLL of at least 45 µg/dL and
EDTA at values higher than 70 µg/dL. These values are 12 and 20
times higher than the reference value of the CDC, respectively, and
9 and 14 times higher than theWHO one. Notably, people of all ages
who suffer from Pb poisoning of up to 45 µg/dL cannot be treated
medicinally, leaving them without an effective solution against Pb.

3.1 Pb-detoxifying Short Peptides
To design novel peptides that strongly and selectively bind Pb(ii)

ions, we first analyzed the differences between the toxic ion and
other physiologically relevant metal ions. These include mainly
Cu(i/ii), Ca(ii), and Zn(ii). While Cu(i/ii) ions are relatively rare,
the concentrations of Ca(ii) and Zn(ii) in the blood and cells are
relatively high, range 2–4 mM and 150–350 µM, respectively.

Fig. 2. Primary symptoms of Pb poisoning in children and adults and the
typical BLL from which they appear.

Short peptides are located within the two chemical spaces
of small molecules on the one hand and proteins on the other
hand. Hence, peptides provide the advantages of each class with-
out their most critical drawbacks.[32,33] For example, peptides are
still relatively small compared to proteins, which enable tissue
and cellular uptake in addition to their relatively simple synthe-
sis. Furthermore, tuning peptide sequence and structure to allow
selective metal binding similar to proteins is easier than in small
molecules. We thus anticipate that by overcoming these disad-
vantages of the two classes by bridging them, peptides can obtain
attractive characteristics as next-generation CAs against toxic
metals.

Our primary goals are to develop novel peptides as selec-
tive metal binders for various purposes, including in medi-
cine, such as modern CAs, radio-based therapy and diagnos-
tics, and in environmental applications. So far, we have mainly
focused on Pb, the most harmful metal to humans due to
its wide abundance. Herein is a summary of our latest achieve-
ments[34–36] in rationally designing short peptides as CAs
for Pb.
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Fig. 1. Most common CAs used in the clinic and their FDA approval year.
All compounds except TTM are small organic molecules.

Table 1. Common CAs

Name MW
(gr/mol)

Treated
metalsa

Undesired
metalsb

CNc

BAL 124.2 As, Hg,
Pb, Cu, Cd

Cu, Zn 2

EDTA 292.2 Pb,Mn,
Cd, Hg, Pu

Ca, Fe, Mn 4 or 6

DMPS 188.3 As, Hg,
Pb, Cd

Cu, Zn 2

Deferoxamine 560.7 Fe Fe, Zn, Ca,
Mn

6

Penicillamine 149.2 Cu, Au,
As, Pb

Cu, Zn 1 or 2

TETA 146.2 Cu Cu, Zn, Co 4
DMSA 182.2 Pb, As,

Hg, Cd
Cu, Zn 2

Deferiprone 139.2 Fe Fe, Zn, Ca,
Mn

2

Deferasirox 373.4 Fe Fe, Zn, Ca,
Mn

3

TTM 225.8 Cu Cu, Zn 2
aMetals in bold are the most dominant to be treated. bEssential metals that can
be depleted upon treatment. cCoordination number
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These lead peptides were examined for their ability to re-
cover Pb-poisoned human cells (Fig. 3B), Pb-binding affinity,
metal selectivity, and toxicity. All indicate the superiority of these
peptides in the performed tests compared to the current drugs.
Their complexes with Pb(ii) ions were also characterized by vari-
ous techniques, revealing, in most cases, the desired 1:1 binding
modes.[34–36]

4. Conclusions
The results acquired so far reveal the great potential of pep-

tides in overcoming the obstacles chelation therapy faces. As a
chemical space that bridges small molecules and proteins, pep-
tides benefit from both worlds, if appropriately designed, and en-
able tailored activities that can then be translated to medicinal
applications. Beyond further developing our peptides as next-gen-
eration CAs against Pb, we aim to harness our platform towards
other toxic metals, showing that, indeed, short peptides can revo-
lutionize chelation therapy.
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