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We study theoretically the optical properties of quantum tubes, one-dimensional semiconductor nanostruc-
tures where electrons and holes are confined to a cylindrical shell. In these structures, which bridge between
two-dimensional and one-dimensional systems, the electron-hole interaction may be modulated by a dielectric
substance outside the quantum tube and possibly inside its core. We use the exact Green’s function for the
appropriate dielectric configuration and exact diagonalization of the electron-hole interaction within an
effective-mass description to predict the evolution of the exciton binding energy and oscillator strength.
Contrary to the homogeneous case, in dielectrically modulated tubes, the exciton binding is a function of the
tube diameter and can be tuned to a large extent by structure design and proper choice of the dielectric media.
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I. INTRODUCTION

Cylindrical semiconductor nanostructures bridge between
quasi-one-dimensional (1D) systems at small diameters and
quasi-two-dimensional (2D) systems in the opposite limit,
thus extending the wealth of physics and applications of low-
dimensional solid-state systems. The controlled growth of
semiconductor quantum tubes (QTs) with diameters in the
10-100 nm range has been recently demonstrated through
several techniques, including multilayer overgrowth of
nanowires' and strain-induced bending of a planar
heterostructure.*> In addition to QTs with a solid semicon-
ductor core, it is possible to grow hollow QTs, where the
charge carriers are confined in a thin semiconductor shell,
encompassed by a barrier material which is only a few nm
thick.®® Large surface-to-volume ratios and the possibility
of various functionalizations on both the internal and exter-
nal surfaces make the latter systems particularly interesting
for applications.’

Although experiments concerning the optical properties of
these systems are still limited, advancements in the optical
quality of the samples point to a rapid increase of these
investigations.>!%!2 The excitonic properties of semiconduc-
tor QTs are particularly interesting with respect to conven-
tional semiconductor quantum wires, where excitons are
confined in the core of the nanostructure.'*2° On the one
hand, due to the combined effect of the QT curvature and of
the quasi-2D confinement of carriers in the cylindrical shell,
excitonic binding energies might be substantially stronger
than in bulk even for large diameter QTs. On the other hand,
a dielectric medium outside the shell of the QT may result in
a dielectric confinement of the electric field felt by the opti-
cally excited electron-hole pairs, in most cases enhancing
their excitonic binding energy. Since the dielectric interface
is spatially separated from the carriers, which are confined
deep inside the shell, excitonic binding and sensitivity to the
medium might be strongly enhanced without spoiling the
optical properties of the electronic system,?' analogously to
core-shell nanowires.!? The screening provided by the di-
electric environment can be varied in a broad range.?” The
tunability of the dielectric constant in the core of the QT,
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obtained, e.g., by oxidation,?? can further increase such ef-
fects.

Present work on QTs theoretically considered magnetic
states,?*?> reported experimental evidence of the Aharonov-
Bohm effect,?® and treated optical properties,?’ but the influ-
ence of the dielectric mismatch between the nanostructure
and the environment has been studied so far only for con-
ventional quantum wires>' and freestanding nanowires.?"
Here we will consider also a dielectric mismatch between the
core and the shell, which will lead to a considerable change
in the electron-hole interaction as shown in Fig. 2.

Hereafter, we investigate the excitonic binding and oscil-
lator strength in hollow and filled QTs for different geom-
etries and dielectric configurations. Besides increasing due to
the reduced screening, the excitonic binding strongly de-
pends on the QT diameter and on the dielectric medium. The
paper is organized as follows. In Sec. II, we outline the the-
oretical model, which includes the exact solution of the Pois-
son equation and the diagonalization of the electron-hole
Hamiltonian within the envelope-function approximation. In
Secs. III and 1V, we report our results and draw the conclu-
sions, respectively.

II. MODEL

The system we consider consists of an infinite tube with
cylindrical symmetry?® (see Fig. 1). For simplicity, we as-
sume that the motion in the radial direction is frozen and that
charge carriers are radially confined in a &-like well at a
distance R from the tube axis. This electronic layer is buried
in the middle of a coaxial cylindrical shell of thickness 28
with dielectric constant €g, while the core and the environ-
ment have in general different dielectric constants, €. and e,
respectively. Since the shell is a semiconductor material,
typically ;= ec, €2

The invariance under translations along and rotations
around the tube axis warrant the separation of the center of
mass and relative coordinates. The motion of the Wannier
exciton® in the relative degrees of freedom is determined by
the envelope-function Hamiltonian

©2010 The American Physical Society
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s
_2:|_V(x,)’), (1)

1| &
H(x,y)=- _{E*— 3

2
expressed in units of the effective Hartree Ha"=(u/ e_%)Ha,
with w=m,m,/(m,+m,) the reduced electron-hole mass. The
relative coordinates around the circumference (x=R¢) and
along the tube axis (y, see Fig. 1) are in units of the effective
Bohr radius, ay=(eg/ w)ag.

The effective Coulomb interaction potential V(x,y) be-
tween the confined electron and hole depends parametrically
on the dielectric constants (eq, €5, €) and on the tube geom-
etry through 6 and R. In cylindrical coordinates, the potential
(scaled with Ha") generated by a charge at r'=(p’,¢’,z")
reads

n__Ss (')
vV (rr)=—=
(=253 o

m=—0

XJ dk cos[k(z—z")]gm.olk.p.p"). (2)
0

where a=C,S,E indicates whether the position of the test
charge r=(p, ¢,z) is in the core, shell, or environment re-
gion, respectively, and g, ,(k,p,p’) is the solution of the
radial Poisson equation in that region (see the Appendix for
further details). The interaction V in Eq. (1) coincides with
Vs, with p=p’=R. As shown in the Appendix,

4ar ~ -~
Zms(R.R) = —[B + C2IBS + 2, (KR)K, (kR),
€s

3)
where ,,, K,, are the Bessel functions of the first and second

kinds; the coefficients E; , 6; E; s CZ are given in Eqgs.
(A10) and (A12) in terms of /,,, K,, and their derivatives.
To illustrate how the electron-hole interaction is influ-
enced by the dielectric environment, we show in Fig. 2 the
potential V for (i) a filled QT, with a core of the same mate-
rial as the shell, immersed in a substance with a low-
dielectric constant (e.=eg=10€g), and (ii) a hollow QT, with
the same low-dielectric constant substance inside and outside
the shell (eg=10€x=10€.). For comparison, we also show

FIG. 2. Electrostatic interaction V(x,y) between an electron-
hole pair confined to a cylindrical surface with diameter D=0.8 a;,
buried in a shell with thickness 26=0.1 a; with dielectric mismatch,
as follows. Homogeneous case: e€-=e€g=¢€g. Filled case: e-=¢€g
=10eg. Hollow case: eg=10e-=10¢. (a) Interaction along the QT,
V(x=0,y). (b) Interaction around the QT, V(x,y=0). Inset in (a):
V(x=0,y) in a larger range of y.

the dielectrically homogeneous case (e-=€eg=€5), where the
V reduces to the wusual Coulomb potential V(x,y)=
—1/€g\[2R sin(x/2R)*+y?. Figure 2(a) shows the interac-
tion along the QT V(x=0,y), while Fig. 2(b) shows the in-
teraction around the cylinder V(x,y=0). The Coulomb inter-
action for the hollow and filled cases is for all distances
stronger than in the homogeneous case, since the average
dielectric constant of the system is smaller and the electric
field is not screened outside and, for the hollow case, also
inside the QT. The interaction in the filled and hollow cases
is substantially different only for distances smaller or com-
parable to the Bohr radius, with the interaction in the hollow
case being stronger. For larger distances [inset of Fig. 2(a)],
on the other hand, the nontrivial influence of the dielectric
mismatch between the core and the shell leads to crossing of
the potentials for hollow and filled QTs before both converge
to the same value.

A convenient basis set to represent the exciton wave func-
tion is obtained by multiplying eigenfunctions of the linear
momentum operator along y (e’*”) and of the angular-
momentum operator along the tube axis (e"™®). Imposing
periodic Born—-von Karman boundary conditions along y,
with period L sufficiently larger than the effective Bohr ra-
dius of the material, results in k=pAk, with Ak=27/L. The
wave function thus reads

1 Ak S &
l//j(x,y)=;T EE > O e mRerAhy (4)

n=—N p=—P

where p,n €7 and j indicates the jth exciton state. The co-
efficients C{l’p are obtained from the Schrodinger equation in
the above basis
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TABLE 1. Parameters of materials under consideration. The mass, energy, and length are in units of bare
electron mass, eV, and nm, respectively. Values are taken from Refs. 31, 40, and 41.

M

Material m, my, € Ha* ay E,
InAs 0.026 0.33 14.6 0.0031 32.05 0.35
GaAs 0.067 0.35 12.5 0.0098 11.76 1.43
InP 0.08 0.33 12.4 0.0123 9.23 1.34
1 (n)? : : |46(0,0)]
Bl I 2 n.p Jo_ _ ¢ [T
> {2[<R> +(p' Ak) ]5n,n,5p’p/—Un,,p,}Cn,,p,—EjC{l,p. =58, £ _p e (8)
n,,p, g b

(5)

The diagonal term in the first line represents the kinetic en-
ergy, whereas the matrix elements of the electron-hole Cou-
lomb interaction term are given by

Un D

P = ——q . d|p-p'|AKR.R).
n'.p (277)2g‘ |,S(|p )4 | )

(6)
In order to reduce the dimension of the Hamiltonian matrix,
we introduce a cutoff energy E, set the maximum number
of plane waves P=\2E./Ak, and choose the maximum
number of orbital modes N in Eq. (4) as the nearest integer to
n(p)=R\2E .~ (pAk)>. The Hamiltonian matrix is block di-
agonalized using a symmetrized basis set. In particular, we
consider linear combinations of the above basis functions
that are even or odd with respect to the inversion of the
relative coordinates x and y, which is the equivalent of in-
verting the absolute coordinates, since the corresponding in-
version operators II,, II, commute with the relative motion
Hamiltonian '

[H.11,]=0, (7)

The resulting energy E; is obtained with respect to the energy
minimum of the conduction band. Therefore, the binding en-
ergy of the exciton ground state is E;=—E. In the presence
of a photon gauge field, the electron-hole pair recombines
emitting a photon of energy E,—E,. The recombination rate
is related to the dimensionless oscillator strength f, which in
the dipole approximation reads*

[H,11,]=0.

Here, |,(0,0)|* is the envelope function of the exciton
ground state given by Eq. (4), Q is the momentum of the
center of mass, E, is the energy gap between valence and
conduction bands, and Sy=FE,/ €5, where E, is the energy
associated with Kane’s matrix elements.!

III. RESULTS

In the following, we investigate the excitonic properties
of QTs made of the direct-gap materials, InAs, GaAs, and
InP, and two different dielectric configurations: filled QTs,
with a core of the same material of the shell (e.-=¢€g# €),
and hollow QTs, with the core of the same material as the
environment (€= €z # €5). We consider QTs with diameters
in the 20—100 nm range and a constant shell thickness 26
=10 nm, comparable to state-of-the-art samples.!"”-3> Mate-
rial parameters used in the calculations are listed in Table 1.

In Fig. 3, we plot the energy of the exciton for hollow and
filled QTs in vacuum (ez=1) and compare it to the 2D limit
R — o0; this, in the case of excitons confined to a strictly 2D
layer, is 4 times the bulk value.3*3 The exciton binding
energy shows a strong increase with respect to the 2D limit
and a marked diameter dependence, which is different for
hollow and filled QTs: while in the former case the exciton
binding energy becomes weakly dependent of the diameter
for QTs larger than ~60 nm, the latter one shows a strong
dependence even for the larger QTs.

It is instructive to contrast these results with the exciton
energies of QTs which are dielectrically homogeneous, that
is, buried in a material with the same bulk dielectric constant
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FIG. 3. (Color online) Ground state energy of the exciton for InAs, GaAs, and InP tubes. Different symbols correspond to a homogeneous
dielectric constant (e-=eg=€g, crosses), a filled tube (e-=¢€5, ex=1, filled circles), and a hollow tube (e-=e€g=1, empty circles). Shaded
region marks the analytical 2D limit for the homogenous case. The exciton energy for hollow and filled QTs increases as ~—10/D and

~—10/D?, respectively.
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FIG. 4. (Color online) Ground state energy of the exciton for different values of the diameter D as a function of the dielectric contrast
€p/ €g, with €-=€ (€c=¢€;) for hollow (filled) QTs. Shaded area indicates the limit of excitons in a 2D quantum well. Color and size of the
symbols (filled and empty circles for the respective QTs) are proportional to the relative oscillator strength, normalized to the maximum

value for each material (marked with an arrow).

of the semiconductor shell (eg=€-=¢€5). In this case, exciton
energies do not show any dependence on the diameter and
are pinned to the 2D value (see Fig. 3). This is due to the
small value of the Bohr radius with respect to the tube diam-
eters shown here, so that the curvature of the surface plays
only a minor role.’® Clearly, for smaller diameters (not
shown here), the exciton binding energy increases and the
exciton energy redshifts, since the binding energy is infinite
in the strictly 1D limit.3”-3 In Fig. 3, this can only be recog-
nized in the tiny redshift for InAs at the smallest diameter.
The large binding energy of dielectrically modulated QTs
with respect to homogeneous ones is an obvious conse-
quence of the smaller screening of the electron-hole interac-
tion in regions where the dielectric constant is 1. Accord-
ingly, exciton energies of filled and hollow QTs are similar
for the smaller diameters because their dielectric configura-
tion differs only in the core, which is a small fraction of the
volume if 26=10 nm. Increasing the diameter while leaving
the shell thickness constant corresponds to increasing the
core region with respect to the shell, thus enhancing the dif-
ference between filled and hollow QTs. In both cases, ener-
gies are increasing with diameter due to the larger area oc-
cupied by the cross section of semiconductor shell, but faster

for filled than for hollow QTs. This is consistent with the
following argument: the cross section of the tube with € is a
ring of area 2Ddm for hollow QTs and a circle of area
(D/2+ ) for filled ones. Thus, the screening area is grow-
ing faster for filled QTs. In fact, the exciton energy for hol-
low and filled QTs increases as ~—10/D and ~-10/D?, re-
spectively.

All in all, excitons in QTs can be from twice (filled GaAs
QTs, D=100 nm) up to 7 times (hollow InAs QTs at D
=20 nm) more strongly bound with respect to the respective
2D bulk exciton. Moreover, in all investigated cases, they
have a binding energy which is much larger than thermal
energy at room temperature.

In Fig. 3, we used the permittivity of vacuum, which leads
to the largest possible dielectric confinement effects in a
given configuration. Next, we show how the binding energy
depends on the dielectric constant of the medium by which
the QTs are surrounded.??3%3 Figure 4 shows the binding
energy as a function of the ratio €g/ €g. The leftmost point on
the horizontal axis corresponds to the case e;=1, while the
ratio €;/€g=1 corresponds to the homogeneous case, with
the same dielectric constant e filling all spaces. The general
behavior is the same for the three materials. The difference in
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FIG. 5. (Color online) Wave function of the exciton ground state in InAs for tubes of diameter D=20 nm and three different values of
€. Top row (empty circle): hollow QTSs, €-=€z. Bottom row (filled circle): filled QTs, €-= €. For each panel, an inset on the left (bottom)
shows the cut of the total wave function at y=0 (x=0). The x axis extends from —R to R.

energies between hollow and filled tubes is largest in vacuum
for large diameters. Increasing the screening of the surround-
ing leads to less strongly bound excitons, since the Coulomb
interaction is more and more inhibited and the two cases of
hollow and filled tubes are becoming increasingly similar to
each other and obviously coincide at €z/ eg=1. We also note
that the exciton binding energy is very sensitive to the envi-
ronment (and core) in the low-dielectric-constant range. The
exciton binding energy with respect to the 2D case is halved,
increasing €; from 0.leg to ~0.2€5, which suggests that
small changes of the dielectric environment might be re-
vealed by optical means in this type of system, which is due
to the proximity of the electronic system to the environment.
We stress that excitons in InAs tubes are always less bound
than excitons in GaAs or InP tubes for any considered value
of the ratio €/ €g.

In Fig. 4, we also show in color scale and point size the
oscillator strength of Eq. (8) as a function of diameter and
dielectric configuration. For each material, the oscillator
strength is normalized relative to the maximum value for the
same material, so that the atomic part, S,, of the oscillator
strength cancels out. The results shown in Fig. 4 can be
summarized as follows. (i) For GaAs and InP QTs, the re-
combination probability is larger the smaller is the diameter,
while for InAs QTs, it is nearly insensitive to it. (ii) For
GaAs and InP QTs, the relative oscillator strength is very
weakly dependent on €, while for InAs QTs, it decreases for
increasing ratio €g/€g. The peculiar behavior of InAs with
respect to GaAs and InP in both respects must be traced to
interplay between the small band gap of InAs and the very
large exciton binding energy in this class of systems, making
the denominator in Eq. (8) strongly dependent on Ej.

In order to further investigate the effect of the Coulomb
interaction between the carriers, we plot the squared modulus
of the ground-state excitonic wave function for three differ-
ent dielectric environments: for a InAs tubes of diameters
D=20 nm (Fig. 5) and D=100 nm (Fig. 6), for both hollow

(top) and filled (bottom) tubes. These are two relevant cases,
since the former exhibits a geometrical confinement caused
by the small circumference, whereas the latter falls fully in
the 2D regime without any confinement.

As shown in Fig. 5, the wave function for small tubes is
distributed overall the circumference, best visible in the ho-
mogeneous case (€z=¢g). Reducing the screening by dimin-
ishing € affects the wave functions only weakly, leading to
a slightly increased localization, both of the hollow (upper
panels) as well as of the filled cases (lower panels). On the
other hand, both dielectric configurations lead to similar
wave functions, reflected in the energies reported in Fig. 4,
too.

For large tubes of Fig. 6, the wave function is no more
distributed overall the circumference, but well localized.
Therefore, the curvature of the tube has no effects on the
exciton for larger diameters, making it fully 2D. Again,
changing the dielectric configuration, by diminishing €z as
well as by going from hollow (top panels) to filled (bottom
panels) tubes, is changing the wave functions only margin-
ally, while the respective energies are very sensitive to it (see
Fig. 4). Therefore, while the diameter has a definite influence
on the dimensionality of the excitonic states, changing the
dielectric configuration amounts to modulating the mean
screening with nearly no effects on the wave function, shift-
ing only the energy.

IV. CONCLUSIONS

We have studied theoretically the excitonic properties of
semiconductor QTs, focusing on the influence of their dielec-
tric environment and its interplay with structural parameters.
We find that, due to the strong increase of the electron-hole
interaction and ensuing very large excitonic binding which is
possible in these structures, the spectral properties of exci-
tonic absorption are strongly dependent on geometrical pa-
rameters and dielectric environment, with energies well be-
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FIG. 6. (Color online) As in Fig. 5 for tubes of diameter D=100 nm.

low the energies of the dielectrically homogenous case which
is always in the 2D regime for typical parameters. Calcula-
tions have been performed for InAs, GaAs, and InP. The low
gap material InAs shows a peculiar behavior, since in the
investigated systems, the exciton binding energy is a sub-
stantial fraction of the gap. The very large binding energies,
their tunability in a wide range, and the large sensitivity of
the excitonic response to the dielectric medium point to per-
spective applications of these systems.
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APPENDIX: DERIVATION OF THE COULOMB
INTERACTION IN A TUBE

The inner radius a=R—-¢ and the outer radius b=R+J
divide the space into three regions: core (p<<a), shell (a
<p<b), and environment (p>b) with dielectric constants
€c, €, and eg, respectively (see Fig. 1). The electrostatic
potential at point r induced by an electron localized in the
shell, i.e., with a=p’ =<b, screened by €5 has to obey the
Poisson equation in cylindrical coordinates (with charge e

-1)
V) == S p ) )02 (AD
€sp

Here, « indicates one of the three possible regions of the test
charge: core (C), shell (S), or environment (E). Eq. (A1) is
solved by the ansatz

1 < ,
V.(rr)=—s m(d—¢'")
(=5 3 e

m=—o0

y f dk cos[k(z =) Jgnallopp)  (A2)
0

where g, .(k,p,p’) is the solution of the radial Poisson
equation in each region «,

19 9gna m? 41 ,
-—<9A> - <k2+ —z)gm,f— —dp-p"),
pap\  dp p Esp

(A3)

and can be written as a linear combination of the solutions of
the homogeneous Laplace equation, i.e., modified Bessel
functions of the first kind, I,(¢gp), and the second kind,
K, (gp), with the following properties:*

lim 7,,(x) =0, lim [,(x) =0, (Ada)
x—0 x—©

lim K,,(x) =%, lim K,,(x) = 0. (Adb)
x—0 x—©

Imposing that lim, ... g, g(kp)=0 and the finiteness of
lim, .o g, c(kp), we have

gm,C(p) = Amlm(kp) ’ (Asa)

m

Ys(e") = B/, (k") + CUK, (kp"). (ASD)

gm,E(p) = Dme(kP) s (ASC)
where y</ )

s are no Green’s functions, but solutions of the
(homogeneous) Laplace equation, from which we construct
the solution g,, s(p,p’) of Eq. (A3) in the following. We
define p==min[p,p’] and p~ =max[p, p']. Matching compo-
nents of fields E; and D, at the interfaces is equivalent to*
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dg Y
Em,c= 7’2,5’ €c G = €s 2S5 at p=a, (A6a)
dap ap
08mg Vs
SmE=Vos € T =€ at p=b. (A6b)
ap dap

To determine the last two unknowns, we use the symmetry of
the Green’s function g, s(p,p’) with respect to the exchange
of p and p’ making**

Sns(P:P") = Vs Vims (A7)
and normalization
%n (p) dvm (p 4
Yos(P) 25 =y () == = - — . (A8)
€sp
Defining a=€g/€- and B=¢€/ €5 and the quantities
K, (kp)l (kp)’'
Sin(kp) — L’”(p)’ , (A9a)
Im(kp)Km(kp) p=[
K, (k
7 (kp) = Sk (A9b)
Im(kp) p=I
Uy =TS = a)(Sh, = B) = S To(a=1)(B-1),
(A9c¢)

where I(x)'=dl(x)/dx and I=a,b indicates the inner and
outer radii of the cylindrical shell, the coefficients in Eq.
(A5) are given by

4
A= —ZaTo (s~ 1) (St~ 1)/U,,  (Al0a)
€s
< 4 b a
BS=—T(S" = 1)(5% - a)/U,,, (A10b)
€s
B, = T‘,; . (A10¢c)
< 4 a (ab
Co=—5%(8" - )(a=1)U,, (A10d)
€s
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Sw=B
C">1=Sl,;——l’ (A10e)
D, =1. (A10f)

In particular, for two charges localized at the same distance
p=p’ =R from the center,

gm’s(k,R,R)z[B I (kR)+C K, (kR)][B I1,,(kR)

m

+ C;Km(kR)] = _’n-[E; + 6;]
€s

X[B” + C I, (kR)K,,(kR), (A11)
where we defined for clarity
B =Sp, (Al12a)
4
~ K, (kR
&= = & KnlkR) o (A12b)
4 I,,(kR)
~ I, (kR
— = L (kR) - (Al12c)
K, (kR)

Hence, taking Eq. (A2) in the special case p=p’=R gives the
Coulomb potential for two particles localized in the shell on
a cylindrical surface of radius R,

Vir,r') = 2 E

TI'GS m=—o0

emé=4) J (B, +C,]
0

X[B + C I, (kR)K,,(kR)cos[k(z — z')1dk.

(A13)

m

For €-=€g= €, this reduces to the usual form 1/€glr—r'| in
cylindrical coordinates,** while for €-=€5# €z Eq. (A13)
reproduces the result of Ref. 45. Note that V is scalable.
Since all arguments in Eq. (A13) are products of lengths and
momenta and thus dimensionless, only the measure dk of the
integral is reciprocal in length The latter one scales with the
effective Bohr length aj=(e€s/©1)0.053 nm and therefore V
itself with the effective Hartree Ha"=(u/ 62)27 21 eV.

*david. kammerlander @unimore.it
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