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Abstract
Background: Studies of microRNA biology have increased in numerous scientific research domains, including 
eye science. MicroRNAs (miRNAs) are small non-coding RNAs that operate as post-transcriptional regulators 
of gene expression by destroying or blocking the translation of target messenger RNA. Recent research has 
revealed the functions of several miRNAs in the regulation of pathological ocular disease, implying that 
miRNAs could be used as biomarkers and therapeutic targets in eye diseases. Many of the ocular miRNAs’ 
target genes are still unknown. It seems that more research is needed to better understand their role. Despite 
significant efforts to investigate the miRNA of eye disease, a complete platform of frequent ocular disease with 
genes, pathways, and miRNA is still unavailable. 
Material and Methods: Since the most important part of designing a platform is collecting reliable data, three 
well-known databases were used as the main data source: DisGeNET, OMIM, and KEGG. The curated genes 
involved in each disease were manually collected. Then, the annotation information like gene’s sequence, 
description, chromosome’s number, start and end loci were extracted from the Ensembl data source. Gene’s 
pathway information was earned from KEGG and Reactome. Finally, experimentally validated gene’s related 
miRNA has been collected from miRecords, miRTarBase, and TarBase. In order to consider miRNAs expression 
in ocular tissues, we reported their expression in terms of RPM (based on miTED).
Results: we present EyeMirDB (http://eyemirdb.databanks.behrc.ir/), a web-based platform of consisting of 
all predicted and validated miRNAs. Information on the annotation of miRNA-related genes was also collected 
in order to better understand the effects of miRNA. Pathways by which these genes are active were also 
identified. Right now, EyeMirDB contains 429 curated genes, 1258 pathways, and 2596 validated miRNAs of 
25 prevalent ocular diseases.
Conclusion: We introduce EyeMirDB, a web-based platform of Eye diseases-related interactions including 
disease-gene, gene-miRNA, gene-pathway curated information, and annotations, with the optionality of 
studying all these entities from different viewpoints. This data portal is a good entry point for ocular disease 
researchers.
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Introduction
The Human Genome Project, which ran from 
1990 to 2003, provided complete and exhaustive 
data on human genome configurations in 
all their complexities, ushering in the post-
genomic era (1). This time is set apart to a 
limited extent by broad examinations on non-
coding RNAs (ncRNAs), which do not encode 
for proteins yet still record for over 98.5 % 
of human genome records (1-3). Although 
many studies on the roles of transfer RNAs 
(tRNAs) and ribosomal RNAs (rRNAs) have 
been conducted, non-coding RNAs (ncRNAs) 
such as long non-coding RNAs (lncRNAs), 
microRNAs (miRNAs), and circular RNAs 
(circRNAs) have only recently been discovered 
to play a role in pathological and physiological 
processes. Among these regulatory ncRNAs, 
miRNAs are the most widely studied ncRNAs 
in biomedical research.
The discovery of microRNAs has been the most 
exciting new development in RNA biology in 
the last two decades (miRNAs). MiRNAs are 
members of the non-coding RNA family, which 
consists of genomically encoded untranslated 
RNA molecules ranging in size from 18 to 
24 nucleotides. They regulate protein-coding 
genes by interfering with the mRNAs’ original 
instructions. MiRNA expression is spatially 
and temporally regulated. This is why they 
were initially referred to as small temporal 
RNAs. MiRNAs have been discovered in 
some viruses as well as all multicellular 
eukaryotes such as algae, plants, and animals. 
MiRNAs regulate many important biological 
processes, including cell growth, cell death, 
development, and differentiation. According 
to the findings, miRNAs play an important 
role in the genome-wide regulation of gene 
expression and add a layer of complexity 
to gene expression regulation (2). MiRNA 
dysregulation has been linked to a variety 

of diseases such as cancer, cardiovascular 
infections, and neurological disorders. MiRNA 
inherited variants have also been linked to 
a few acquired disorders, including hearing 
loss and embryo development. Given their 
biological significance, miRNAs are currently 
regarded as astute infection biomarkers and 
likely restorative focuses for expanding new 
intercessions (4-6).
The human eye is a complicated organ with 
multiple separate tissues (e.g., lens, cornea, 
retina, and iris) that all perform different 
activities in order to detect a visual image. The 
lens, for example, is a very simple structure 
made of columnar and elongated lens epithelial 
cells that focuses incoming light onto the 
retina. The retina, on the other hand, is a 
multilayered tissue that contains a variety of 
cell types, including photoreceptors, amacrine 
cells, ganglion cells, and bipolar cells, and 
analyzes and transmits visual signals to the 
brain. The role of miRNA in the development 
and function of the eye is unknown, but it is 
being investigated. Several studies published 
in the last five years have improved our 
understanding of ocular miRNA expression (7) .
Growing evidence suggests that miRNAs 
and their biogenesis machinery are altered 
and dysregulated in neovascular eye diseases 
such as diabetic retinopathy (DR), age-related 
macular degeneration (AMD), and retinopathy 
of prematurity (ROP), suggesting the potential 
for miRNAs to be used as biomarkers and 
therapeutic targets (8) . Because of their critical 
roles in normal development and illness, 
recent research has shown that miRNAs are 
effective indicators or molecular targets for 
potential treatments. Following their recent 
discovery via miRNA expression analysis, 
researchers are now looking into the role of 
miRNAs in the eye. Many of the target genes 
of these ocular miRNAs are still unknown.
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Although many efforts have been made 
to study miRNAs in ophthalmic diseases, 
there is still no comprehensive database of 
common ophthalmic diseases involving genes, 
pathways and miRNAs. Therefore, there is 
an urgent need for a reliable data source from 
miRNA data for eye diseases. The aim of this 
study is presenting EyeMirDB a novel source 
that, for the first time comprises 429 curated 
genes, 1258 pathways, and 2596 validated 
miRNAs associated with 25 common ocular 
disorders (9). 

Materials and methods

Data sources

EyeMirDB currently holds 429 curated 
genes, and 2596 validated miRNA of humans, 
representing a comprehensive coverage of 
annotation profile for 25 common eye diseases. 
EyeMirDB data collection pipeline is shown 
in figure 1.
Since the most important part of designing a 
platform is collecting reliable data, three well-
known databases were used as the main data 
source: 1. DisGeNET, a discovery platform 
that houses one of the most comprehensive 
publicly available libraries of genes and 
variations linked to human disorders (10) , 
2. OMIM, a free authoritative database of 
human genes and genetic traits that is updated 
daily (11)  . 3. KEGG, a database resource 
for understanding high-level functions and 
utilities of biological systems, such as the cell, 
organism, and ecosystem, using molecular-
level data, particularly large-scale molecular 
datasets generated by genome sequencing 
and other high-throughput experimental 
technologies (12-14). 
As can be seen in the pipeline (Figure 1), 
to collect data, disease information was 
first searched in the KEGG and OMIM, 

and DisGeNet databases. The collected 
information was placed in the disease table. 
Then, the curated genes involved in each 
disease were manually collected from the three 
mentioned databases and placed in the gene-
disease table. Duplicate genes were removed. 
In this table, in addition to gene symbol 
and disease name, three binary values were 
considered that indicate whether the reported 
gene was extracted from that source. The 
annotation information like gene’s sequence, 
description, chromosome’s number, start and 
end loci were extracted from the Ensembl 
data source (a genome browser for vertebrate 
genomes that aids comparative genomics, 
evolutionary biology, sequence variation, and 
transcriptional regulatory studies (15) ), and 
Ensemble id, Entrez id, gene name, gene 
symbol, UniProt Id, OMIM Id obtained from 
NCBI (16). This step was carried out using the R 
packages biomaRt (17) and org.Hs.eg.db (18). All 
this data is available in the gene source.
Gene’s pathway information was earned from 
KEGG and Reactome (19). reactome.db (20) 

And KEGG.db (21) R packages were used to 
manage the pathways. The results are in Gene-
Pathway and pathway table. Gene-Pathway 
entries are pathway names and related genes. 
For the pathways, their name, id in KEGG or 
Reactome, were extracted
And finally, experimentally validated gene’s 
related miRNA has been collected from 
miRecords (22), miRTarBase (23), TarBase (24), 
and predicted gene’s related miRNA was 
collected from diana_microt (25), elmmo (26), 
microcosm (27), Miranda (28), mirdb (29), pictar (30), 
pita (31), and targetscan (32). The miRNA 
annotation information such as Accession, 
gene family, chromosome, hairpin, sequence, 
mature miRNA id from miRBase (33) . For 
these steps, multiMiR (34) and mirbase.db (35)  R 
packages were used, respectively. In order to 
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consider miRNAs expression in ocular tissues, 
we inserted their expression level in terms of 
RPM based on miTED (36) database.
Results
As we mention before, we focused on 25 
prevalent ocular diseases. Diseases are divided 
into three main categories: Neuropathy 
(Cataract, retinal neovascularization, corneal 
neovascularization, neuromyelitis optica, 
posterior capsule opacification), metabolic 
disease (diabetic retinopathy, diabetic 
cataract), Nervous system disease (myopia, 
primary open-angle glaucoma, glaucoma, 
Vogt-Koyanagi-Harada disease, keratoconus, 
retinitis pigmentosa), Cancer (uveal 
melanoma, retinoblastoma), Vascular disease 

(proliferative vitreoretinopathy, Behcet’s 
disease), age-related disease (Exfoliation 
syndrome, age-related cataract, age-related 
macular degeneration), systemic autoimmune 
disorder (primary Sjögren’s syndrome), 
Congenital disorder (pterygium, strabismus, 
Volkmann cataract) and  Infectious disease 
(herpes simplex virus).
We collect data on 429 curated genes based on 
these diseases. We also retrieved annotation 
data for each gene. Approximately 11.6 % of 
the genes belonged to chromosome 1, 7.4 % 
to chromosome 6, and 81 % to the rest of the 
chromosomes. To complete the information, 
we looked at the pathways for each gene. 
The total number of detected pathways was 

Figure 1:  EyeMirDB data collection pipeline.  First, the information of each disease was extracted 
manually from KEGG, OMIM and DisGeNet database. Then genes associated with each disease 
were obtained and their annotations were obtained from the Ensembl and NCBI databases using 
R packages biomaRt and org.Hs.eg.db. In addition, the pathway’s data related to each gene were 
collected from two databases, KEGG and Reactome. In this process, reactome.db and KEGG.db R 
packages were used. Finally, miRNA data related to each gene were extracted from eleven different 
sources (diana_microt, elmmo, microcosm, Miranda, mirdb, pictar, pita, targetscan, miRecords, 
miRTarBase, TarBase). R Package multiMiR was used for this purpose. miRNA annotation data 

from miRBase was also collected with the help of the mirbase.db R package
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1258. Finally, we got 2596 miRNA, 16687 
validated gene-miRNA associations. 164 and 
145 of miRNAs are located in chromosome 1 
and x respectively and for other chromosome 
we have less than this number. Result of this 
miRNA distribution on chromosomes, can 
show the effect of gender on the disease, this 
could be a matter for further investigation by 
researchers. Among validated gene-miRNA 
associations 11,839 of them are reported in 
the miRTarBase, 10138 in TarBase and only 
183 of them repoted in miRecords. In the 
expriment column related to the validated 
gene-microRNA association table, we see 
68 techniques, among which Degradome 
sequencing, PAR-CLIP and HITS-CLIP 
were the most common. Support type of 
these interactions belongs to Functional MTI, 
Functional MTI (Weak), Non-Functional MTI, 
Non-Functional MTI (Weak), negative and 
positive, The highest frequency is related to 
positive and Functional MTI (Weak).

Web portal
The EyeMirDB is developed by the .NET 
MVC technology. In the server-side, it is 
programmed by C#, powered by Razor, and 
in the client-side, JQuery, HTML5, and 
bootstrap. Its data technology is MSSQL 
with the LINQ object relational mappings 
and EntityFramework. The homepage of 
EyeMirDB is demonstrated in figure 2.
Using the three boxes of Eye Diseases, Genes, 
and Search miRNA, it is possible to study 
ocular diseases from different viewpoints. In 
the Eye Disease tab (Figure 3); all eye diseases 
are listed with the capability of detailed 
investigations.
As mentioned previously, these details contains 
of disease title, description, links to other 
sources and its involved genes, which could be 
viewed in details (shown in figure 4).
Moreover, the search tab includes the options 
of gene and miRNA research. As demonstrated 
in figure 5, inside the EyeMirDB, we provided 

Figure 2: Home page of EyeMirDB
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the capability of searching a microRNA using 
its Mature ID, Pre-Mature ID or its sequence. 
A typical search result is depicted in figure 6.

Discussion

Finding disease-related microRNA can help 
researchers better understand the mechanism 

of disease. It can also be effective in prescribing 
medication. In this platform, in order to help 
researchers, we tried to introduce disease-
related microRNA in two groups: validated 
and predicted. We introduce EyeMirDB, a 
web-based platform of Eye diseases-related 
interactions including disease-gene, gene-

Figure 3: Eye Diseases list. For every record, the details information is provided

Figure 4: Disease Search Result page
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miRNA, gene-pathway curated information, 
and annotations, with the optionality of 
studying all these entities from different 
viewpoints. This data portal is a good entry 

point for ocular disease researchers (37).

Conclusion

miRNAs operate as post-transcriptional 

Figure 6: miRNA search result

Figure 5: miRNA search form. In this page, looking for miRNAs are provided through their Mature 
ID, Pre-Mature ID, and their sequence
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regulators of gene expression by destroying 
or blocking the translation of their target 
mRNAs. Recent studies have revealed the 
functions of several miRNAs in the regulation 
of pathological ocular disease, implying that 
miRNAs could be used as biomarkers and 
therapeutic targets in eye diseases. Herein, 
we introduce EyeMirDB, a platform of 
Eye diseases-related interactions including 
disease-gene, gene-miRNA, gene-pathway 
curated information, and annotations, with the 
optionality of studying all these entities from 
different viewpoints. This data portal is a good 
entry point for ocular disease researchers. 
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