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This study proposes several decision-making tools utilizing optimization and machine learning

frameworks to assess and improve the safety of the workplaces. The first chapter of this study

presents a novel mathematical model to optimally locate a set of detectors to minimize the expected

number of casualties in a given threat area. The problem is formulated as a nonlinear binary

integer programming model and then solved as a linearized branch-and-bound algorithm. Several

sensitivity analyses illustrate the model’s robustness and draw key managerial insights. One of

the prevailing threats in the last decades, Active Shooting (AS) violence, poses a serious threat

to public safety. The second chapter proposes an innovative mathematical model which captures

several essential features (e.g., the capacity of the facility and individual choices, heterogeneity

of individual behavioral and choice sets, restriction on choice sets depending on the location

of the shooter and facility orientation, and many others) which are essential for appropriately

characterizing and analyzing the response strategy for civilians under an AS exposed environment.

We demonstrate the applicability of the proposed model by implementing the effectiveness of



the RUN.HIDE.FIGHT.® (RHF) program in an academic environment. Given most of the past

incidents took place in built environments (e.g., educational and commercial buildings), there

is an urgent need to methodologically assess the safety of the buildings under an active shooter

situation. Finally, the third chapter aims to bridge this knowledge gap by developing a learning

technique that can be used to model the behavior of the shooter and the trapped civilians in an active

shooter incident. Understanding how the civilians responded to different simulated environments,

a number of actions could have been undertaken to bolster the safety measures of a given facility.

Finally, this study provides a customized decision-making tool that adopts a tailored maximum

entropy inverse reinforcement learning algorithm and utilizes safety measurement metrics, such

as the percentage of civilians who can hide/exit in/from the system, to assess a workplace’s safety

under an active shooter incident.

Key words: Reinforcement Learning; Choice Model; Optimization; Safety; Detector Placement;
Casualty Minimization; Active Shooting
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CHAPTER I

OPTIMAL PLACEMENT OF DETECTORS TO MINIMIZE CASUALTIES IN AN

INTENTIONAL ATTACK

1.1 Introduction

Over the past few decades, there has been a significant increasing trend of manmade attacks (e.g.,

active shooting, bomb threat) worldwide and especially within the United States. For instance, The

Federal Bureau of Investigation (FBI) reports that the average number of active shooting incidents

between 2000-2007 was 7.4 incidents/year, which further increased to 17.6 incidents/year between

2008-2015 before finally accelerated to 25.7 incidents/year between 2016-2017 [27] (see Figure

1.1(a)). Most importantly, the majority of such attacks are occurring in the gun-free zones (e.g.,

education institutes, businesses and shopping malls, hospitals), include all areas where the general

public is forbidden to carry firearms. For instance, Figure 1.1(b) shows that 90% of the past

active shooting incidents occur in different gun free zones, including Pre-K to 12 schools (14.8%),

universities (6%), businesses and shopping malls (42%) to even in health care facilities (4%). Such

violence in the gun-free zones poses serious security concerns among public safety, primarily due to

the horrifying outcomes and potentially large number of casualties that typically stem from such an

attack. All the above underlying statistics indicate that there is an urgent need to methodologically

securing a workplace not only to minimize the expected number of casualties from a given attack

but also to restrain civilians experiencing such rare but dreadful events.

1
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Active shooter incidents in the United States from 2000 to 2017

1.1.1 Related literature

Knowledge on how to secure potential threat areas is still very limited despite knowing about the

outcomes of such events. A majority of the design decisions (e.g., sensor placement for detecting

threat objects (guns, bombs)) to secure these areas are primarily made based on intuition rather

than adopting a methodological framework. Though not directly related, it is worth mentioning

a few past studies that attempted to locate detectors under different real-life applications. For

instance, in [108], the authors proposed a method to efficiently determine the location of visual fire

detectors with a dual view from a process plant. Yang et al. [107] proposed an image processing

technique to optimally locate and map detectors for the oil and gas industry. Pirani et al. [75]

adopted a game-theoretic approach to optimally locate a set of security-aware sensors under an

attacker and a detector situation. Bard et al. [12] designed a two-phase methodology to help

decision-makers selecting the right technology for a critical system. Finally, Lakats and Pate-

Cornell [45] provided an analytical framework that designed and optimized a warning system from

2



a management perspective. The authors used an airport inspection and maintenance system as a

testbed to validate the modeling results.

Unfortunately, a very limited number of articles are available in the literature that research

methods to remedy this pressing problem. Kaplan and Kress [38] conducted one of the first novel

initiatives along this line of research to analyze the operational effectiveness and consequences

among individuals under a suicide bomber detection scheme. Given detectors with imperfect

reliability, Nie et al., [70] extended this work by considering the reliability of a single type

of detector. Later, Yan and Nie [105] extended this framework to consider multiple types of

detectors with an application of vessel attack in a maritime port. Besides modeling approaches,

a few researchers adopted the discrete event simulation approach (e.g., [40, 47, 46]) to assess the

workplace safety under an active shooting situation. Note that in these studies the researchers

indirectly assessed the workplace safety by examining civilian response under an active shooting

situation.

1.1.2 Research Scope and Contributions

Different than the studies discussed above, especially in [70] and [105], this study assumes

that a set of secondary/backup detectors are available in a workplace or any threat area in general

to support the primary detectors. The purpose of these secondary/backup detectors are twofold:

increasing the accuracy in detecting any threat event to minimize the (𝑖) expected number of

casualties from an attack and (𝑖𝑖) false alarm to unnecessarily confuse/shock both the civilians

and the law enforcement agencies. In overall, we propose a nonlinear binary integer programming

model to optimally locate a set of detectors (both primary and secondary) in such a way that

3



the expected number of casualties from an unexpected attack can be minimized. Because of this

additional layer of detection, the complexity of the model increases significantly (i.e., a number of

hard nonlinear terms are introduced) which mandates developing an efficient customized solution

approach to solve them efficiently in a reasonable timeframe. To alleviate these challenges,

we first attempt to linearize the proposed mathematical model, which is followed by solving

via a linearized branch-and-bound algorithm. A number of sensitivity analyses are performed

on a few sensitive parameters (e.g., detection radius, instantaneous detection rate, and budget

availability) to illustrate the robustness of the model and to draw important managerial insights. To

summarize, the major contributions of this study to the existing literature are as follows: (𝑖) extend

the framework proposed by [70] and [105] (primarily, the secondary detectors and associated

considerations) to develop a novel mathematical model; (𝑖𝑖) develop a highly customized solution

approach to efficiently solve the proposed mathematical model; and (𝑖𝑖𝑖) cast a number of insights

by changing different key input parameters in the proposed mathematical model (e.g., detection

radius, instantaneous detection rate, and budget availability) to increase our understanding on the

impact of such parameters on minimizing the casualties from an intentional attack.

1.2 Problem Description and Mathematical Model Formulation

The purpose of this chapter is to optimally deploy a set of primary and secondary detectors

on a threat area in such a way that the expected number of casualties from a sudden intentional

attack can be minimized. We assume that both the primary and secondary detectors are stationary

and perfectly concealed. We further assume that the interdiction team will start preparing for the

mission after receiving an alarm from the primary detectors, while the purpose of the secondary

4



detectors is to check any false detection before the mission initiates. The goal would be to locate

the detectors (both primary and secondary) in such a way that both the attacker(s) and threat

element(s) (e.g., bomb, gun) are appropriately detected and the interdiction team will receive a

minimum response time to baffle the attacker’s intention.

To formulate this problem, we first assume that the threat area is rectangular with equal-sized

grids. Figure 1.2 shows the threat area which has been divided into 𝑚 × 𝑛 grids and is denoted by

set G = { 𝑗 : 𝑗 = 1, 2, ..., 𝑚𝑛}. An attacker can enter into this threat area through a set of possible

entrances which is denoted by E = {1, 2, ..., 𝐸}. To model physical obstructions, we categorize

grids into two major types: (𝑖) blocked grids and (𝑖𝑖) unblocked grids. Blocked grids represent the

set of grids, denoted by set B ⊂ G, where an attacker cannot travel or no threatened individuals

are present. In contrary, unblocked grids represent the set of grids, denoted by U = G \ B,

where an attacker can travel or threatened individuals are present. It is assumed that some level

of knowledge about the attacker’s potential targets are known in advance. Let A ⊂ U be the set

of threat grids where any attack may potentially occur. We further let 𝛾𝑒 𝑗 to be the probability

associated with using an entrance 𝑒 ∈ E to attack threat grid 𝑗 ∈ A in a given time period. Hence,

𝛾𝑒 𝑗 ≥ 0;∀𝑒 = 1, 2, ..., 𝐸 ; 𝑗 ∈ A and
∑𝐸
𝑒=1

∑
𝑗∈A 𝛾𝑒 𝑗 = 1. It is reasonable to assume that an attacker

will enter into the threat area from an entrance 𝑒 ∈ E and then use a shortest path, denoted by 𝑑𝑒 𝑗 ,

to reach a threat grid 𝑗 ∈ A, if not obstructed by any of the blocked grids 𝑗 ∈ B. To find 𝑑𝑒 𝑗 , we

apply Dijkstra’s algorithm [25], a widely used shortest path algorithm available in the literature,

and we assume that the attacker will walk at a consistent pace, with a speed of ^ m/sec, from one

grid center to the next till she/he reaches to a threat grid 𝑗 ∈ A.
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Figure 1.2

Grid representation of a threat area

In this study we consider two types of detectors: primary and secondary detectors. We assume

that the grid centers are potential locations to place both the primary and secondary detectors.

We further assume that the purpose of the primary detectors is to perform only a Level 1 threat

detection (e.g., radar detection)1. Let𝛼𝑝, 𝛽𝑝, and𝜓𝑝 be the effective detection radius, instantaneous

detection rate, and unit purchasing cost for primary detectors. To increase the detection probability

and to minimize the false detection rate, we assume that an additional layer of protection, in the

form of secondary/backup detectors (e.g., radar and video together, thermal imagery, terahertz

radar), can be placed in selected critical grids. Let 𝛼𝑠, 𝛽𝑠, and 𝜓𝑠 be the effective detection radius,

instantaneous detection rate, and unit purchasing cost for secondary detectors. Since an additional

layer of protection will be provided to the secondary detectors, it is reasonable to assume that

1Details about different threat detection levels can be found from [28]
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𝛼𝑠 > 𝛼𝑝 and 𝛽𝑠 > 𝛽𝑝. Resultantly, the purchasing cost of a secondary detector will be significantly

higher than a primary detector, i.e., 𝜓𝑠 > 𝜓𝑝. We let 𝑀 𝑝 and 𝑀 𝑠 to denote the availability of

budget to procure primary and secondary detectors, respectively.

Preventing any threat event usually consists of three main steps: (𝑖) detection, (𝑖𝑖) response,

and (𝑖𝑖𝑖) neutralization. The placement of the detectors should be made in such a way that the

interdiction team receives at least 𝜒∗ seconds to neutralize the threat. Let 𝑁 𝑝
𝑒 ( 𝑗) be the set of

all non-blocked grids on which a primary detector can be located and timely detect the attacker

while traveling on path 𝑑𝑒 𝑗 2. We assume that as soon as the primary detector is able to detect any

threat, the interdiction team will start preparing for the neutralization process, i.e., the response

step starts. However, the actual neutralization process will only start after receiving a confirmation

alarm (i.e., no false detection) from the secondary detectors. Let 𝑁 𝑠𝑒 be the set of all non-blocked

grids on which a secondary detector can be located and confirm any threat event, along with the

attacker, while the attacker may travel on path 𝑑𝑒 𝑗 . It shall be noted that the construction of set

𝑁 𝑠𝑒 ( 𝑗) is made in such a way that the secondary detectors are still placed at least 𝜒∗ seconds away

to allow the interdiction team to neutralize the threat. Given the walking speed of the attacker be ^

m/sec, this converts the threat detection to be made at least ^𝜒∗ meter away (e.g., 10 m as defined

by Kaplan and Kress [38]).

We assume that the detectors (both primary and secondary detectors) are not perfectly reliable.

There is always a probability that the detectors are unable to detect any threat which is essentially

a function of the duration an attacker stay within the effective detection radius of the detectors.

For every 𝑖 ∈ 𝑁 𝑝
𝑒 ( 𝑗), let 𝜌𝑖𝑒 𝑗 be the probability associated with detecting any threat event by the

2A procedure to geometrically construct 𝑁 𝑝𝑒 ( 𝑗) can be found in [70] and [105]
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primary detector which has been carried out by the attacker while traveling on path 𝑑𝑒 𝑗 . Likewise,

for every 𝑖′ ∈ 𝑁 𝑠𝑒 ( 𝑗);∀(𝑖, 𝑖′) ∈ U, 𝑖 ≠ 𝑖′, let 𝜌𝑖′𝑒 𝑗 be the probability associated with detecting any

threat event by the secondary detector which has been carried out by the attacker while traveling on

path 𝑑𝑒 𝑗 . Based on Przemieniecki [77], we calculate 𝜌𝑖𝑒 𝑗 and 𝜌𝑖′𝑒 𝑗 as follows: 𝜌𝑖𝑒 𝑗 = 1 − 𝑒−𝛽
𝑝 𝑙
𝑝

𝑖𝑒 𝑗

and 𝜌𝑖′𝑒 𝑗 = 1 − 𝑒−𝛽
𝑠 𝑙𝑠
𝑖′𝑒 𝑗 where 𝛽𝑝 and 𝛽𝑠, respectively, denote the instantaneous detection rate for

the primary and secondary detectors. Further, parameters 𝑙 𝑝
𝑖𝑒 𝑗

and 𝑙𝑠
𝑖′𝑒 𝑗 , respectively, denote the

portion of the travel length on path 𝑑𝑒 𝑗 while the attacker is within the effective detection radius of

the primary and secondary detectors. A procedure to geometrically calculate 𝑙 𝑝
𝑖𝑒 𝑗

can be found in

[70] and [105].

We are now ready to introduce the following two detector placement decisions for our proposed

mathematical model. First, we define sets P =
⋃
𝑒, 𝑗 𝑁

𝑝
𝑒 ( 𝑗) and S =

⋃
𝑒, 𝑗 𝑁

𝑠
𝑒 ( 𝑗) which will

realistically restrict the detectors (primary and secondary) placement decisions in our tested threat

region. Let X := {𝑋 𝑗 }∀ 𝑗∈P and Y := {𝑌 𝑗 }∀ 𝑗∈S to denote binary decision variables if a detector

(primary or secondary) is placed on grid 𝑗 ∈ P⋃S. More specifically, we define the variables as

follows:

𝑋 𝑗 =


1 if a primary detector is placed in the center of grid 𝑗 ∈ P

0 otherwise;

𝑌 𝑗 =


1 if a secondary detector is placed in the center of grid 𝑗 ∈ S

0 otherwise;

Let us now introduce all possible events that may essentially incur to any threat event (see

Figure 1.3). We assume that the two detectors are independently correlated with each other. Figure

1.3 clearly depicts that there are four possible scenarios where an attack via path 𝑑𝑒 𝑗 may turns out
8



to be successful (nodes 3, 5, 7, and 9 in Figure 1.3). One scenario is that neither the primary nor

the secondary detector are capable of detecting any threat event with a probability of
∏

𝑖∈𝑁 𝑝𝑒 ( 𝑗)
(1 −

𝜌𝑖𝑒 𝑗 )𝑋𝑖
∏

𝑖′∈𝑁𝑠𝑒 ( 𝑗)
(1−𝜌𝑖′𝑒 𝑗 )𝑌𝑖′ (node 3). Another possible scenario may raise when the primary detector

is able to detect the threat but the secondary detector is not or pass this threat as a false detection

(node 5). This scenario may occur with a probability of
[
1−

∏
𝑖∈𝑁 𝑝𝑒 ( 𝑗)

(1−𝜌𝑖𝑒 𝑗 )𝑋𝑖
] ∏
𝑖′∈𝑁𝑠𝑒 ( 𝑗)

(1−𝜌𝑖′𝑒 𝑗 )𝑌𝑖′ .

Another possible scenario would be the case when the primary detector is unable to detect any

threat but can be later detected by the secondary detector. However, even though detected,

the interdiction team fails to foil this threat (node 7) which may occur with a probability of∏
𝑖∈𝑁 𝑝𝑒 ( 𝑗)

(1 − 𝜌𝑖𝑒 𝑗 )𝑋𝑖
[
1 −

∏
𝑖′∈𝑁𝑠𝑒 ( 𝑗)

(1 − 𝜌𝑖′𝑒 𝑗 )𝑌𝑖′
]
(1 − \2) where \2 is the probability of success of

any neutralization event. The last possible scenario may occur when both primary and secondary

detectors are capable of detecting the threat but the interdiction team fails to foil the threat (node 9).

This scenario may occur with a probability of
[
1−

∏
𝑖∈𝑁 𝑝𝑒 ( 𝑗)

(1−𝜌𝑖𝑒 𝑗 )𝑋𝑖
] [

1−
∏

𝑖′∈𝑁𝑠𝑒 ( 𝑗)
(1−𝜌𝑖′𝑒 𝑗 )𝑌𝑖′

]
(1−\1)

where \1 is the probability of success of any neutralization event. It is worth mentioning that the

interdiction team receives less time to prepare and perform any neutralization event under the

scenario defined in node 7 compared to the scenario defined in node 9. Therefore, it is reasonable

to assume that \1 > \2. Table 1.1 summarizes the probabilities associated with four possible failure

scenarios in Figure 1.3.

9



Figure 1.3

All possible events related to a threat

Table 1.1

Summary of four failure scenarios in Figure 1.3
Action

Node P S N Scenario Probability Status
3 × ×

∏
𝑖∈𝑁 𝑝𝑒 ( 𝑗)

(1 − 𝜌𝑖𝑒 𝑗 )𝑋𝑖
∏

𝑖′∈𝑁𝑠𝑒 ( 𝑗)
(1 − 𝜌𝑖′𝑒 𝑗 )𝑌𝑖′ Fail

5 ×
[
1 −

∏
𝑖∈𝑁 𝑝𝑒 ( 𝑗)

(1 − 𝜌𝑖𝑒 𝑗 )𝑋𝑖
] ∏
𝑖′∈𝑁𝑠𝑒 ( 𝑗)

(1 − 𝜌𝑖′𝑒 𝑗 )𝑌𝑖′ Fail

7 × ×
∏

𝑖∈𝑁 𝑝𝑒 ( 𝑗)

(1 − 𝜌𝑖𝑒 𝑗 )𝑋𝑖
[
1 −

∏
𝑖′∈𝑁𝑠𝑒 ( 𝑗)

(1 − 𝜌𝑖′𝑒 𝑗 )𝑌𝑖′
]
(1 − \2) Fail

9 ×
[
1 −

∏
𝑖∈𝑁 𝑝𝑒 ( 𝑗)

(1 − 𝜌𝑖𝑒 𝑗 )𝑋𝑖
] [

1 −
∏

𝑖′∈𝑁𝑠𝑒 ( 𝑗)
(1 − 𝜌𝑖′𝑒 𝑗 )𝑌𝑖′

]
(1 − \1) Fail

P: Primary detector; S: Secondary detector; N: Neutralization

Let Z 𝑗 to denote the expected number of casualties at attack grid 𝑗 ∈ A. Given that an attacker

utilizes path 𝑑𝑒 𝑗 with probability 𝛾𝑒 𝑗 , we get the total expected number of casualties as follows:

𝐸∑︁
𝑒=1

∑︁
𝑗∈A

{ ∏
𝑖∈𝑁 𝑝𝑒 ( 𝑗)

(1 − 𝜌𝑖𝑒 𝑗 )𝑋𝑖
∏

𝑖′∈𝑁𝑠𝑒 ( 𝑗)
(1 − 𝜌𝑖′𝑒 𝑗 )𝑌𝑖′ Z 𝑗𝛾𝑒 𝑗 +

[
1 −

∏
𝑖∈𝑁 𝑝𝑒 ( 𝑗)

(1 − 𝜌𝑖𝑒 𝑗 )𝑋𝑖
]

∏
𝑖′∈𝑁𝑠𝑒 ( 𝑗)

(1 − 𝜌𝑖′𝑒 𝑗 )𝑌𝑖′ Z 𝑗𝛾𝑒 𝑗 +
∏

𝑖∈𝑁 𝑝𝑒 ( 𝑗)
(1 − 𝜌𝑖𝑒 𝑗 )𝑋𝑖

[
1 −

∏
𝑖′∈𝑁𝑠𝑒 ( 𝑗)

(1 − 𝜌𝑖′𝑒 𝑗 )𝑌𝑖′
]
(1 − \2)Z 𝑗𝛾𝑒 𝑗+[

1 −
∏

𝑖∈𝑁 𝑝𝑒 ( 𝑗)
(1 − 𝜌𝑖𝑒 𝑗 )𝑋𝑖

] [
1 −

∏
𝑖′∈𝑁𝑠𝑒 ( 𝑗)

(1 − 𝜌𝑖′𝑒 𝑗 )𝑌𝑖′
]
(1 − \1)Z 𝑗𝛾𝑒 𝑗

}
(1.1)
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Rearranging (1.1), we obtain the following expression:

𝐸∑︁
𝑒=1

∑︁
𝑗∈A

[
(1 − \1)Z 𝑗𝛾𝑒 𝑗 + (\1 − \2)

∏
𝑖∈𝑁 𝑝𝑒 ( 𝑗)

(1 − 𝜌𝑖𝑒 𝑗 )𝑋𝑖 Z 𝑗𝛾𝑒 𝑗 + \1
∏

𝑖′∈𝑁𝑠𝑒 ( 𝑗)
(1 − 𝜌𝑖′𝑒 𝑗 )𝑌𝑖′ Z 𝑗𝛾𝑒 𝑗−

(\1 − \2)
∏

𝑖∈𝑁 𝑝𝑒 ( 𝑗)
(1 − 𝜌𝑖𝑒 𝑗 )𝑋𝑖

∏
𝑖′∈𝑁𝑠𝑒 ( 𝑗)

(1 − 𝜌𝑖′𝑒 𝑗 )𝑌𝑖′ Z 𝑗𝛾𝑒 𝑗
]

(1.2)

Note that the first term in (1.2) i.e., (1 − \1)Z 𝑗𝛾𝑒 𝑗 , is a constant. Therefore, we can drop this

term from the objective function without sacrificing the optimality of the model. With this, we are

now ready to introduce the following nonlinear binary integer program for our optimal detector

placement problem.

[DP] 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
X,Y

𝐸∑︁
𝑒=1

∑︁
𝑗∈A

[
(\1 − \2)

∏
𝑖∈𝑁 𝑝𝑒 ( 𝑗)

(1 − 𝜌𝑖𝑒 𝑗 )𝑋𝑖 Z 𝑗𝛾𝑒 𝑗 + \1
∏

𝑖′∈𝑁𝑠𝑒 ( 𝑗)
(1 − 𝜌𝑖′𝑒 𝑗 )𝑌𝑖′ Z 𝑗𝛾𝑒 𝑗

−(\1 − \2)
∏

𝑖∈𝑁 𝑝𝑒 ( 𝑗)
(1 − 𝜌𝑖𝑒 𝑗 )𝑋𝑖

∏
𝑖′∈𝑁𝑠𝑒 ( 𝑗)

(1 − 𝜌𝑖′𝑒 𝑗 )𝑌𝑖′ Z 𝑗𝛾𝑒 𝑗
]

subject to

∑︁
𝑗∈P

𝜓𝑝𝑋 𝑗 ≤ 𝑀 𝑝 (1.3)∑︁
𝑗∈S

𝜓𝑠𝑌 𝑗 ≤ 𝑀 𝑠 (1.4)

𝑋 𝑗 + 𝑌 𝑗 ≤ 1 ∀ 𝑗 ∈ P
⋂
S (1.5)
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𝑌 𝑗 ≤
∑︁
𝑗 ′∈P

𝑋 𝑗 ′ ∀ 𝑗 ∈ S (1.6)

𝑋 𝑗 ∈ {0, 1} ∀ 𝑗 ∈ P (1.7)

𝑌 𝑗 ∈ {0, 1} ∀ 𝑗 ∈ S (1.8)

The objective of model [DP] is to minimize the expected number of casualties due to a sudden

man-made attack. Constraints (1.3) and (1.4) ensure that the cost of placing detectors (primary

and secondary) is restricted to their budget availability. Constraints (1.5) ensure that at most one

detector, either primary or secondary, can be placed in a given grid 𝑗 ∈ P⋂S. Constraints (1.6)

ensure that a secondary detector may support multiple primary detectors. Finally, constraints (1.7)

and (1.8) set binary restrictions for the detectors placement decisions.

1.3 Branch-and-Bound Algorithm

Model [DP] is nonlinear due to containing several nonlinear terms in the objective function. To

linearize model [DP] and to provide quality solutions in a reasonable time, we use the linearized

branch and bound (B&B) algorithm proposed by Yan and Nie [105] which is extended over the

study from Sherali et al. [88] to solve a nonconvex continuous optimization model. For each (𝑒, 𝑗)

pair, we first introduce a set of decision variables, namely,

A := {𝐴𝑒 𝑗 }∀𝑒=1,2,...𝐸 ; 𝑗∈A 𝑤ℎ𝑒𝑟𝑒 𝐴𝑒 𝑗 =
∏

𝑖∈𝑁𝑒 ( 𝑗)
(1 − 𝜌𝑖𝑒 𝑗 )𝑋𝑖

Z := {𝑍𝑒 𝑗 }∀𝑒=1,2,...𝐸 ; 𝑗∈A 𝑤ℎ𝑒𝑟𝑒 𝑍𝑒 𝑗 = ln(𝐴𝑒 𝑗 ) =
∑︁

𝑖∈𝑁𝑒 ( 𝑗)
ln(1 − 𝜌𝑖𝑒 𝑗 )𝑋𝑖
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B := {𝐵𝑒 𝑗 }∀𝑒=1,2,...𝐸 ; 𝑗∈A 𝑤ℎ𝑒𝑟𝑒 𝐵𝑒 𝑗 =
∏

𝑖′∈𝑁𝑒 ( 𝑗)
(1 − 𝜌𝑖′𝑒 𝑗 )𝑌𝑖′

F := {𝐹𝑒 𝑗 }∀𝑒=1,2,...𝐸 ; 𝑗∈A 𝑤ℎ𝑒𝑟𝑒 𝐹𝑒 𝑗 = ln(𝐵𝑒 𝑗 ) =
∑︁

𝑖′∈𝑁𝑒 ( 𝑗)
ln(1 − 𝜌𝑖′𝑒 𝑗 )𝑌𝑖′

Note that both 𝐴𝑒 𝑗 and 𝐵𝑒 𝑗 variables will be bounded by a lower and an upper bound such that

𝐿𝐴
𝑒 𝑗
≤ 𝐴𝑒 𝑗 ≤ 𝑈𝐴

𝑒 𝑗
and 𝐿𝐵

𝑒 𝑗
≤ 𝐵𝑒 𝑗 ≤ 𝑈𝐵

𝑒 𝑗
. Let vectors L and U contain both lower (i.e., 𝐿𝐴

𝑒 𝑗
and 𝐿𝐵

𝑒 𝑗
)

and upper (i.e.,𝑈𝐴
𝑒 𝑗

and𝑈𝐵
𝑒 𝑗

) bounds for variables 𝐴𝑒 𝑗 and 𝐵𝑒 𝑗 , respectively. The initial bounds for

𝐴𝑒 𝑗 and 𝐵𝑒 𝑗 variables can be obtained as follows:

𝐿
𝐴,0
𝑒 𝑗

=
∏

𝑖∈𝑁𝑒 ( 𝑗)
(1 − 𝜌𝑖𝑒 𝑗 ) and 𝑈

𝐴,0
𝑒 𝑗

= 1 ∀𝑒 = 1, 2, ..., 𝐸 ; 𝑗 ∈ A (1.9)

𝐿
𝐵,0
𝑒 𝑗

=
∏

𝑖′∈𝑁𝑒 ( 𝑗)
(1 − 𝜌𝑖′𝑒 𝑗 ) and 𝑈

𝐵,0
𝑒 𝑗

= 1 ∀𝑒 = 1, 2, ..., 𝐸 ; 𝑗 ∈ A (1.10)

With this, an equivalent formulation of [DP] can be formulated as follows:

[DPN2(L,U)] 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
X,Y,A,B,Z,F

𝐸∑︁
𝑒=1

∑︁
𝑗∈A

Z 𝑗𝛾𝑒 𝑗

[
(\1 − \2)𝐴𝑒 𝑗 + \1𝐵𝑒 𝑗 − (\1 − \2)𝐴𝑒 𝑗𝐵𝑒 𝑗

]

subject to (1.3)-(1.8), and

𝑍𝑒 𝑗 =
∑︁

𝑖∈𝑁𝑒 ( 𝑗)
ln(1 − 𝜌𝑖𝑒 𝑗 )𝑋𝑖 ∀𝑒 = 1, 2, ..., 𝐸 ; 𝑗 ∈ A (1.11)

𝐹𝑒 𝑗 =
∑︁

𝑖′∈𝑁𝑒 ( 𝑗)
ln(1 − 𝜌𝑖′𝑒 𝑗 )𝑌𝑖′ ∀𝑒 = 1, 2, ..., 𝐸 ; 𝑗 ∈ A (1.12)
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𝑍𝑒 𝑗 = ln(𝐴𝑒 𝑗 ) ∀𝑒 = 1, 2, ..., 𝐸 ; 𝑗 ∈ A (1.13)

𝐹𝑒 𝑗 = ln(𝐵𝑒 𝑗 ) ∀𝑒 = 1, 2, ..., 𝐸 ; 𝑗 ∈ A (1.14)

𝐿𝐴𝑒 𝑗 ≤ 𝐴𝑒 𝑗 ≤ 𝑈𝐴
𝑒 𝑗 ∀𝑒 = 1, 2, ..., 𝐸 ; 𝑗 ∈ A (1.15)

𝐿𝐵𝑒 𝑗 ≤ 𝐵𝑒 𝑗 ≤ 𝑈𝐵
𝑒 𝑗 ∀𝑒 = 1, 2, ..., 𝐸 ; 𝑗 ∈ A (1.16)

Notice that model [DPN2(L,U)] contains two nonlinear terms: (𝑖) multiplication of two

variables (𝐴𝑒 𝑗𝐵𝑒 𝑗 ) in the objective function and (𝑖𝑖) natural logarithms in constraints (1.13) and

(1.14). Yet, [DPN2(L,U)] is still a mixed-integer nonlinear programming model. We first attempt to

linearize the natural logarithms which are present in constraints (1.13) and (1.14) in [DPN2(L,U)].

To linearize the natural logarithms in constraints (1.13) and (1.14), we construct a polyhedral

outer approximation, as inspired by Sherali et al. [88], for each (𝑒, 𝑗) pair which consists of a

convex envelope with three tangential support points, namely, 𝐿𝐴
𝑒 𝑗
, 𝐴𝑒 𝑗 =

𝑈𝐴
𝑒 𝑗
−𝐿𝐴

𝑒 𝑗

ln(𝑈𝐴
𝑒 𝑗
)−ln(𝐿𝐴

𝑒 𝑗
) ,𝑈

𝐴
𝑒 𝑗

for 𝐴𝑒 𝑗

variables and 𝐿𝐵
𝑒 𝑗
, 𝐵𝑒 𝑗 =

𝑈𝐵
𝑒 𝑗
−𝐿𝐵

𝑒 𝑗

ln(𝑈𝐵
𝑒 𝑗
)−ln(𝐿𝐵

𝑒 𝑗
) ,𝑈

𝐵
𝑒 𝑗

for 𝐵𝑒 𝑗 variables. Note that the middle points, namely,

𝐴𝑒 𝑗 and 𝐵𝑒 𝑗 for the 𝐴𝑒 𝑗 and 𝐵𝑒 𝑗 variables, are the one that minimize the maximum approximation

error. With this, [DPN2(L,U)] reduces to the following relaxed problem:

[DPN1(L,U)] 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
X,Y,A,B,Z,F

𝐸∑︁
𝑒=1

∑︁
𝑗∈A

Z 𝑗𝛾𝑒 𝑗

[
(\1 − \2)𝐴𝑒 𝑗 + \1𝐵𝑒 𝑗 − (\1 − \2)𝐴𝑒 𝑗𝐵𝑒 𝑗

]

subject to (1.3)-(1.8), (1.11), (1.12), (1.15), (1.16), and
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𝑍𝑒 𝑗 ≥ ln(𝐿𝐴𝑒 𝑗 ) +
ln(𝑈𝐴

𝑒 𝑗
) − ln(𝐿𝐴

𝑒 𝑗
)

𝑈𝐴
𝑒 𝑗
− 𝐿𝐴

𝑒 𝑗

(𝐴𝑒 𝑗 − 𝐿𝐴𝑒 𝑗 ) ∀𝑒 = 1, 2, ..., 𝐸 ; 𝑗 ∈ A (1.17)

𝑍𝑒 𝑗 ≤ ln(𝐿𝐴𝑒 𝑗 ) +
𝐴𝑒 𝑗 − 𝐿𝐴𝑒 𝑗
𝐿𝐴
𝑒 𝑗

∀𝑒 = 1, 2, ..., 𝐸 ; 𝑗 ∈ A (1.18)

𝑍𝑒 𝑗 ≤ ln(𝐴𝑒 𝑗 ) +
𝐴𝑒 𝑗 − 𝐴𝑒 𝑗
𝐴𝑒 𝑗

∀𝑒 = 1, 2, ..., 𝐸 ; 𝑗 ∈ A (1.19)

𝑍𝑒 𝑗 ≤ ln(𝑈𝐴
𝑒 𝑗 ) +

𝐴𝑒 𝑗 −𝑈𝐴
𝑒 𝑗

𝑈𝐴
𝑒 𝑗

∀𝑒 = 1, 2, ..., 𝐸 ; 𝑗 ∈ A (1.20)

𝐹𝑒 𝑗 ≥ ln(𝐿𝐵𝑒 𝑗 ) +
ln(𝑈𝐵

𝑒 𝑗
) − ln(𝐿𝐵

𝑒 𝑗
)

𝑈𝐵
𝑒 𝑗
− 𝐿𝐵

𝑒 𝑗

(𝐵𝑒 𝑗 − 𝐿𝐵𝑒 𝑗 ) ∀𝑒 = 1, 2, ..., 𝐸 ; 𝑗 ∈ A (1.21)

𝐹𝑒 𝑗 ≤ ln(𝐿𝐵𝑒 𝑗 ) +
𝐵𝑒 𝑗 − 𝐿𝐵𝑒 𝑗
𝐿𝐵
𝑒 𝑗

∀𝑒 = 1, 2, ..., 𝐸 ; 𝑗 ∈ A (1.22)

𝐹𝑒 𝑗 ≤ ln(𝐵𝑒 𝑗 ) +
𝐵𝑒 𝑗 − 𝐵𝑒 𝑗
𝐵𝑒 𝑗

∀𝑒 = 1, 2, ..., 𝐸 ; 𝑗 ∈ A (1.23)

𝐹𝑒 𝑗 ≤ ln(𝑈𝐵
𝑒 𝑗 ) +

𝐵𝑒 𝑗 −𝑈𝐵
𝑒 𝑗

𝑈𝐵
𝑒 𝑗

∀𝑒 = 1, 2, ..., 𝐸 ; 𝑗 ∈ A (1.24)

Note that model [DPN1(L,U)] is still nonlinear due to the presence of two continuous vari-

ables in the objective function, namely, 𝐴𝑒 𝑗𝐵𝑒 𝑗 . To linearize this bilinear term, we employ a

tighter piecewise McCormick relaxation technique as proposed by Castillo et al. [21]. Let us

first introduce variables {𝑉𝑒 𝑗 }∀𝑒=1,2,...,𝐸 ; 𝑗∈A to substitute the bilinear term from the objective func-

tion of [DPN1(L,U)], i.e., 𝑉𝑒 𝑗 = 𝐴𝑒 𝑗𝐵𝑒 𝑗 ;∀𝑒 = 1, 2, ..., 𝐸 ; 𝑗 ∈ A. The values of 𝑉𝑒 𝑗 can be

determined by a set of linear constraints as introduced below. To employ piecewise McCormick

relaxation technique, it is assumed that the feasible region of [DPN1(L,U)] is divided into P

partitions where the optimality will lie in one of the partition, as determined by binary variables
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{𝐻𝑒 𝑗 𝑝}∀𝑒=1,2,...,𝐸 ; 𝑗∈A;𝑝∈{1,...,P}. Further, continuous variables { �̂�𝑒 𝑗 𝑝}∀𝑒=1,2,...,𝐸 ; 𝑗∈A;𝑝∈{1,...,P} and

{�̂�𝑒 𝑗 𝑝}∀𝑒=1,2,...,𝐸 ; 𝑗∈A;𝑝∈{1,...,P} are used to determine the bounds of the partitions.

𝑉𝑒 𝑗 ≥
P∑︁
𝑝=1
( �̂�𝑒 𝑗 𝑝𝐵𝐿𝑒 𝑗 𝑝 + �̂�𝑒 𝑗 𝑝𝐿𝐴𝑒 𝑗 − 𝐻𝑒 𝑗 𝑝𝐿𝐴𝑒 𝑗𝐵𝐿𝑒 𝑗 𝑝) ∀𝑒 = 1, 2, ..., 𝐸 ; 𝑗 ∈ A (1.25)

𝑉𝑒 𝑗 ≥
P∑︁
𝑝=1
( �̂�𝑒 𝑗 𝑝𝐵𝑈𝑒 𝑗 𝑝 + �̂�𝑒 𝑗 𝑝𝑈𝐴

𝑒 𝑗 − 𝐻𝑒 𝑗 𝑝𝑈𝐴
𝑒 𝑗𝐵

𝑈
𝑒 𝑗 𝑝) ∀𝑒 = 1, 2, ..., 𝐸 ; 𝑗 ∈ A (1.26)

𝑉𝑒 𝑗 ≤
P∑︁
𝑝=1
( �̂�𝑒 𝑗 𝑝𝐵𝐿𝑒 𝑗 𝑝 + �̂�𝑒 𝑗 𝑝𝑈𝐴

𝑒 𝑗 − 𝐻𝑒 𝑗 𝑝𝑈𝐴
𝑒 𝑗𝐵

𝐿
𝑒 𝑗 𝑝) ∀𝑒 = 1, 2, ..., 𝐸 ; 𝑗 ∈ A (1.27)

𝑉𝑒 𝑗 ≤
P∑︁
𝑝=1
( �̂�𝑒 𝑗 𝑝𝐵𝑈𝑒 𝑗 𝑝 + �̂�𝑒 𝑗 𝑝𝐿𝐴𝑒 𝑗 − 𝐻𝑒 𝑗 𝑝𝐿𝐴𝑒 𝑗𝐵𝑈𝑒 𝑗 𝑝) ∀𝑒 = 1, 2, ..., 𝐸 ; 𝑗 ∈ A (1.28)

𝐴𝑒 𝑗 =

P∑︁
𝑝=1

�̂�𝑒 𝑗 𝑝 ∀𝑒 = 1, 2, ..., 𝐸 ; 𝑗 ∈ A (1.29)

𝐵𝑒 𝑗 =

P∑︁
𝑝=1

�̂�𝑒 𝑗 𝑝 ∀𝑒 = 1, 2, ..., 𝐸 ; 𝑗 ∈ A (1.30)

P∑︁
𝑝=1

𝐻𝑒 𝑗 𝑝 = 1 ∀𝑒 = 1, 2, ..., 𝐸 ; 𝑗 ∈ A (1.31)

𝐿𝐴𝑒 𝑗𝐻𝑒 𝑗 𝑝 ≤ �̂�𝑒 𝑗 𝑝 ≤ 𝑈𝐴
𝑒 𝑗𝐻𝑒 𝑗 𝑝 ∀𝑒 = 1, 2, ..., 𝐸 ; 𝑗 ∈ A; 𝑝 ∈ {1, ...,P} (1.32)

𝐵𝐿𝑒 𝑗 𝑝𝐻𝑒 𝑗 𝑝 ≤ �̂�𝑒 𝑗 𝑝 ≤ 𝐵𝑈𝑒 𝑗 𝑝𝐻𝑒 𝑗 𝑝 ∀𝑒 = 1, 2, ..., 𝐸 ; 𝑗 ∈ A; 𝑝 ∈ {1, ...,P} (1.33)

Note that the lower and upper bounds for the discretized variables {𝐵𝑒 𝑗 }∀𝑒=1,2,...,𝐸 ; 𝑗∈A , namely,

𝐵𝐿
𝑒 𝑗 𝑝

and 𝐵𝑈
𝑒 𝑗 𝑝

, are computed prior to solving [DPN1(L,U)] with the following two equations:

𝐵𝐿𝑒 𝑗 𝑝 = 𝐿𝐵𝑒 𝑗 +
(𝑈𝐵

𝑒 𝑗
− 𝐿𝐵

𝑒 𝑗
) (𝑝 − 1)

P ∀𝑒 = 1, 2, ..., 𝐸 ; 𝑗 ∈ A; 𝑝 ∈ {1, ...,P} (1.34)

𝐵𝑈𝑒 𝑗 𝑝 = 𝐿𝐵𝑒 𝑗 +
(𝑈𝐵

𝑒 𝑗
− 𝐿𝐵

𝑒 𝑗
)𝑝

P ∀𝑒 = 1, 2, ..., 𝐸 ; 𝑗 ∈ A; 𝑝 ∈ {1, ...,P} (1.35)
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With this, model [DPN1(L,U)] now can be reduced to the following mixed-integer linear program-

ming model, referred to as [DPL(L,U)]:

[DPL(L,U)] 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
X,Y,A,B,Z,F,V,H

𝐸∑︁
𝑒=1

∑︁
𝑗∈A

Z 𝑗𝛾𝑒 𝑗

[
(\1 − \2)𝐴𝑒 𝑗 + \1𝐵𝑒 𝑗 − (\1 − \2)𝑉𝑒 𝑗

]

subject to (1.3)-(1.8), (1.11), (1.12), and (1.15)-(1.33). We are now ready to introduce the steps

undertaken to solve [DPL(L,U)] using a linearized branch-and-bound algorithm. Note that the

bounds for L and U will be updated during the continuation of the branch-and-bound algorithm.

Below, we outline the procedure of the branch-and-bound algorithm.

Algorithm 1: Linearized Branch-and-Bound (B&B) algorithm:

Step 0. Set stage 𝑠 = 0, current node 𝑛(𝑠) = 0, and active node set 𝑂𝑠 = {0}. Let (𝐿𝐴,0
𝑒 𝑗
, 𝐿

𝐵,0
𝑒 𝑗
)

and (𝑈𝐴,0
𝑒 𝑗
,𝑈

𝐵,0
𝑒 𝑗
) to be the lower and upper bounds of variables 𝐴𝑒 𝑗 and 𝐵𝑒 𝑗 , respectively. The

initial bounds for L0 and U0 can be obtained from equations (1.9) and (1.10). With these initial

bounds, solve [DPL(L,U)] and obtain the corresponding optimal solution (X,Y,A,B,Z,F,V, and

H) and objective function v[DPL(L,U)]. Since [DPL(L,U)] is a relaxed problem of the original

model [DP], v[DPL(L,U)] provides a valid lower bound of the original problem. With the feasible

solution (X,Y) obtained via solving [DPL(L,U)], solve [DP] to obtain a valid upper bound for the

original problem. Let 𝑈𝐵, 𝐿𝐵, and 𝜖 to be the upper and lower bound and the optimality gap of

the B&B algorithm. The algorithm terminates if the optimality gap (i.e., 𝜖 = |𝑈𝐵 − 𝐿𝐵|/𝑈𝐵) falls

below a threshold value (e.g., 𝜖 = 1.0%); otherwise, go to Step 1.

Step 1. In this step, we employ a branching rule to split the current node 𝑛(𝑠) into two child

nodes, namely, 𝑛 + 1 and 𝑛 + 2. From the optimal solution of the current node, we determine
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indices 𝑒′ and 𝑗 ′ in |𝑍𝑒′ 𝑗 ′ − ln(𝐴𝑒′ 𝑗 ′) | and |𝐹𝑒′ 𝑗 ′ − ln(𝐵𝑒′ 𝑗 ′) | such that we obtain the maximum value

from 𝑚𝑎𝑥𝑒=1,2,...,𝐸 ; 𝑗∈A

{
|𝑍𝑛(𝑠)
𝑒 𝑗
− ln(𝐴𝑛(𝑠)

𝑒 𝑗
) |, |𝐹𝑛(𝑠)

𝑒 𝑗
− ln(𝐵𝑛(𝑠)

𝑒 𝑗
) |
}
. We then split the bound interval

[𝐿𝑛(𝑠)
𝑒′ 𝑗 ′ ,𝑈

𝑛(𝑠)
𝑒′ 𝑗 ′ ] into two subinterval based on the maximum value obtained from the branching

rule. For instance, if |𝑍𝑛(𝑠)
𝑒 𝑗
− ln(𝐴𝑛(𝑠)

𝑒 𝑗
) | ≥ |𝐹𝑛(𝑠)

𝑒 𝑗
− ln(𝐵𝑛(𝑠)

𝑒 𝑗
) |, two subintervals can be updated

as follows: [𝐿𝑛(𝑠)
𝑒′ 𝑗 ′ , 𝐴

𝑛(𝑠)
𝑒′ 𝑗 ′ ] and [𝐴𝑛(𝑠)

𝑒′ 𝑗 ′ ,𝑈
𝑛(𝑠)
𝑒′ 𝑗 ′ ]. We then update the active node set 𝑂𝑠 by 𝑂𝑠 =

𝑂𝑠 ∪ {𝑛 + 1, 𝑛 + 2} \ {𝑛(𝑠)} and bounds of two child nodes as (L𝑛+1,U𝑛+1) and (L𝑛+2,U𝑛+2),

respectively.

Step 2. Solve the two relaxation subproblems: [DPL(L𝑛+1, U𝑛+1)] and [DPL(L𝑛+2, U𝑛+2)]. By

utilizing the variables X and Y which are obtained from these subproblems, solve [DP] to update

the incumbent solution and its objective function value as𝑈𝐵. If the relaxed problem turns out to

be infeasible or the exceeds the best known𝑈𝐵, we fathom that node and update 𝑂𝑠.

Step 3. If𝑂𝑠 is empty, terminate the B&B algorithm and report the best incumbent. Otherwise,

select a node 𝑛(𝑠) from 𝑂𝑠 with the smallest relaxation objective function value and go to Step 1.

Set 𝑛← 𝑛 + 1 and 𝑠← 𝑠 + 1.

1.4 Case Study

In this section, we first introduce the problem parameters which are considered to validate the

performance of the B&B algorithm in solving model [DP]. We then perform multiple sensitivity

analyses to understand the robustness of model [DP] and to draw important managerial insights.

Both the model and B&B algorithm are coded in python 2.7 on a desktop computer with Intel Core

i7 3.6 GHz processor and 32.0 GB RAM and optimized in Gurobi Optimizer 6.53 solver.

3Available from: http://www.gurobi.com/
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We assume that the threat area is divided into 8 × 8 equal sized squares of 10𝑚 × 10𝑚 (see

Figure 1.4). For the base case, the set of entrances, E, targets, A, and blocked grids, B, are set

as E = {3, 6, 17, 24, 41, 48, 59, 62}, A = {28, 46}, and B = {13, 26, 31, 40, 43, 50}, respectively.

We set expected number of casualties {Z 𝑗 }∀ 𝑗∈A = 100 persons. We set unit purchasing price, 𝜓𝑝,

effective detection radius, 𝛼𝑝, and instantaneous detection rate, 𝛽𝑝, for primary detectors to be

𝜓𝑝 = $25 thousand, 𝛼𝑝 = 10 m, and 𝛽𝑝 = 0.05, respectively. Likewise, 𝜓𝑠, 𝛼𝑠, and 𝛽𝑠 are set to

be 𝜓𝑠 = $35 thousand, 𝛼𝑠 = 15 m, and 𝛽𝑠 = 0.08, respectively, for the secondary detectors. Since

the interdiction team will receive less time to prepare and respond to any neutralization event if

any threat could not be detected by a primary detector but by a secondary detector, we logically set

\1 = 0.8 and \2 = 0.6. Table 1.2 summarizes the values of the parameters used for the base case

[38, 70, 105].

Figure 1.4

Representation of the threat area with 8 × 8 equal sized squares
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Table 1.2

Base case parameter values
Parameter Description Value
E Set of entrances {3, 6, 17, 24, 41, 48, 59, 62}
A Set of targets {28, 46}
B Set of blocked grids {13, 26, 31, 40, 43, 50}
𝛾𝑒 𝑗 Probability of choosing each path 0.0625
Z 𝑗 Expected casualties at target 100 person
\1 Probability of successful intervention 0.8
\2 Probability of successful intervention 0.6
𝑘 Speed of terrorist 1 m/s
𝑀 𝑡 Total budget $320,000
𝑀 𝑝 Budget availability to procure primary detectors 60%𝑀 𝑡

𝑀𝑠 Budget availability to procure secondary detectors 40%𝑀 𝑡

𝜓𝑝 Unit purchasing price for primary detectors $25,000
𝜓𝑠 Unit purchasing price for secondary detectors $35,000
𝛼𝑝 Effective detection radius for primary detectors 10 m
𝛼𝑠 Effective detection radius for secondary detectors 15 m
𝛽𝑝 Instantaneous detection rate for primary detectors 0.05
𝛽𝑠 Instantaneous detection rate for secondary detectors 0.08

The first set of experiments study the impact of detection radius for the primary (𝛼𝑝) and

secondary (𝛼𝑠) detectors on the expected number of casualties. As evidenced from Figure 1.5 that

as 𝛼𝑝 and 𝛼𝑠 increases, the expected number of casualties decreases. Further, the results clearly

demonstrate an additional benefit of utilizing a two-layer detection over a one-layer detection

mechanism. Note that by setting {𝑌 𝑗 }∀ 𝑗∈S = 0 and ignoring constraints (1.4)-(1.6) and (1.8),

problem [DP] can be deduced to a one-layer detection problem, as introduced by Nie et al. [70].

Results indicate that casualties can be reduced by an additional 21.9% in a two-layer detection over

a one-layer detection problem if the detection radius (𝛼𝑝, 𝛼𝑠) can be increased by 50% from the

base case. The results clearly signify the impact of the increase in detection radius on the expected

number of casualties as well as the two layer detection method in a threat area.
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Figure 1.5

Impact of detection radius on expected casualties

The next set of experiments study the impact of instantaneous detection rate for primary (𝛽𝑝)

and secondary (𝛽𝑠) detectors and how it affects the resulting number of casualties. To run these

experiments, we first set base 𝛽𝑝 and 𝛽𝑠 values to 𝛽𝑝 = 0.05 and 𝛽𝑠 = 0.08. Figure 1.6 illustrates

the relationship between instantaneous detection rates and the expected number of casualties in a

given threat area. The results clearly indicate that as the values of 𝛽𝑝 and 𝛽𝑠 increase, the number

of expected casualties decreases. This trend is expected since improving in instantaneous detection

rates correlates to earlier threat detection, which is expected to reduce the number of casualties

in a given threat area. Furthermore, Figure 1.6 compares the results of a one-layer and two-layer

detection mechanism; a two-layer system reduces casualties by an average of 15.6% more than a

one-layer system. In conclusion, the number of casualties is highly sensitive to 𝛽𝑝 and 𝛽𝑠 for a

given threat area.
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Figure 1.6

Impact of instantaneous detection rate on expected casualties

We now experiment on the impact of budget (𝑀 𝑝 and 𝑀 𝑠) on the expected number of casualties

in a 8×8 grid threat area. As more budget is available to purchase primary and secondary detectors,

this shall have an impact on reducing the expected number of casualties in a given threat area. This

relationship is illustrated in Figure 1.7, where it can be shown that if the availability of budget is

increased by 50%, the expected number of casualties can be dropped by approximately 53% to any

threat event. Further, it is observed that if a two-layer detection plan is employed over a one-layer

detection plan, then the average number of expected casualties in a given threat area can be dropped

by approximately 18.1%. In overall, we observe that if an additional budget is allocated to purchase

more detectors to secure a given threat area, then the optimal assignment of the detectors, provided

by solving model [DP], may reduce the expected number of casualties from any potential threat

event.

22



Figure 1.7

Impact of budget on expected casualties

The last set of experiments study the impact of the robustness of the B&B algorithm in solving

the proposed mathematical model [DLP(L,U)]. To do this, we generate 27 problem instances by

randomly generating different entrances, E, attack, A, and blocked, B, grids, respectively. The

respectively description of the sets for E, A, and B in constructing these 27 problem instances

are provided in Table 1.3. Table 1.4 shows the robustness of the B&B algorithm in solving the

proposed mathematical model [DLP(L,U)], referred to as two-layer detection problem, and the

one-layer detection problem as introduced earlier. To run the experiments with the B&B algorithm,

we set a 0.0% optimality gap and a 3,600 CPU time. Table 1.4 reports the location of the primary,

𝑋 𝑗 , and secondary, 𝑌 𝑗 , detectors for the two-layer detection problem and only primary detectors,

𝑋 𝑗 , for the one-layer detection problem (second and fifth columns in Table 1.4). Note that these
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locations are represented for a threat area consisting of 8 × 8 grids. Additionally, in Table 1.4, we

report the optimal solution, 𝑉∗, and running time, 𝑇∗ (in seconds), for the two detection problems.

Table 1.3

Scenario Parameter Values
Scenario Parameter

1 E={20, 35, 56}; A={31}; B={6, 55}
2 E={4, 15, 50}; A={35}; B={1, 12, 16, 56}
3 E={20, 31, 42}; A={7}; B={23, 26, 36, 48, 61, 64}
4 E={14, 30, 53}; A={20, 42}; B={34, 44}
5 E={1, 41, 58}; A={7, 31}; B={2, 38, 42, 60}
6 E={22, 40, 51}; A={2, 17}; B={5, 11, 20, 29, 30, 48}
7 E={2, 14, 23}; A={34, 54, 64}; B={17, 42}
8 E={13, 37, 50}; A={8, 15, 35}; B={27, 28, 31, 62}
9 E={8, 44, 46}; A={12, 40, 60}; B={4, 5, 14, 16, 51, 53}
10 E={20, 26, 33, 34, 48, 53}; A={38}; B={23, 31}
11 E={11, 15, 18, 34, 38, 48}; A={44}; B={12, 19, 24, 52}
12 E={4, 16, 38, 39, 45, 46}; A={60}; B={13, 21, 25, 32, 62, 64}
13 E={20, 22, 26, 28, 42, 53}; A={47, 64}; B={1, 35}
14 E={17, 18, 32, 37, 45, 64 }; A={47, 62}; B={19, 22, 41, 44}
15 E={1, 14, 17, 25, 50, 51}; A={11, 40}; B={7, 13, 24, 29, 35, 49}
16 E={1, 7, 16, 34, 45, 64}; A={19, 20, 57}; B={2, 52}
17 E={5, 21, 40, 41, 44, 57}; A={3, 17, 24}; B={11, 18, 25, 43}
18 E={14, 15, 37, 53, 54, 63}; A={48, 41, 59}; B={23, 30, 34, 45, 58, 64}
19 E={5, 6, 7, 13, 15, 21, 33, 42, 44}; A={1}; B={60, 64}
20 E={27, 28, 29, 37, 39, 42, 47, 49, 53}; A={59}; B={1, 15, 51, 57}
21 E={12, 17, 18, 29, 43, 59, 62, 63, 64}; A={33}; B={4, 8, 9, 14, 21, 25}
22 E={2, 9, 12, 15, 17, 25, 40, 47, 50}; A={37, 61}; B={8, 58}
23 E={5, 8, 10, 13, 33, 37, 48, 49, 59}; A={54, 63}; B={4, 15, 31, 46}
24 E={4, 10, 23, 26, 36, 40, 42, 59, 60}; A={20, 46}; B={18, 25, 27, 35, 38, 57}
25 E={4, 18, 28, 32, 35, 38, 44, 48, 59}; A={7, 33, 63}; B={12, 47}
26 E={3, 10, 11, 21, 34, 40, 43, 58, 62}; A={16, 38, 60}; B={2, 8, 20, 54}
27 E={6, 12, 18, 19, 37, 44, 54, 55, 59}; A={34, 39, 41}; B={13, 17, 25, 31, 40, 64}

Table 1.4 shows the robustness of the B&B algorithm in solving the proposed mathematical

model [DLP(L,U)], referred to as two-layer detection problem, and the one-layer detection problem

as introduced earlier. To run the experiments with the B&B algorithm, set a 0.0% optimality gap and

a 3,600 CPU time. Table 1.4 reports the location of the primary, 𝑋 𝑗 , and secondary, 𝑌 𝑗 , detectors
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for the two-layer detection problem and only primary detectors, 𝑋 𝑗 , for the one-layer detection

problem (second and fifth columns in Table 1.4). Note that these locations are represented for an

8 × 8 element threat area. Additionally Table 1.4 includes the optimal solution, 𝑉∗, and running

time, 𝑇∗ (in seconds), for the two detection problems.

Table 1.4

B&B Algorithm Resulting Detector Placements
Scenario Two-layer System One-layer System

Primary and Secondary 𝑉∗ 𝑇∗ (sec) Primary 𝑉∗ 𝑇∗ (sec)
1 𝑋 𝑗={20, 27, 28, 29, 35, 36, 37} 0.39 0.38 𝑋 𝑗={20, 21, 22, 27, 28, 29, 30, 35, 36, 38} 0.64 0.02

𝑌𝑗={22, 23, 30, 38}
2 𝑋 𝑗={14, 21, 22, 29, 50} 0.92 0.33 𝑋 𝑗={14, 21, 22, 23, 27, 28, 29, 36, 42, 43, 50, 51} 1.06 0.02

𝑌𝑗={28, 34, 36, 42, 43 }
3 𝑋 𝑗={12, 13, 20, 21, 22, 27, 28, 29, 35, 43} 0.35 0.20 𝑋 𝑗={6, 12, 13, 14, 15, 20, 21, 28, 29, 34, 35, 43} 0.64 0.03

𝑌𝑗={6, 14}
4 𝑋 𝑗={22, 28, 36, 37, 45, 52, 53} 2.75 0.76 𝑋 𝑗={21, 22, 28, 29, 30, 36, 37, 43, 45, 51, 52, 53} 3.40 0.06

𝑌𝑗={21, 29, 35, 51}
5 𝑋 𝑗={3, 4, 5, 34, 37, 43, 44} 2.45 0.77 𝑋 𝑗={3, 4, 5, 6, 14, 28, 30, 34, 35, 37, 44, 51} 2.92 1.00

𝑌𝑗={6, 14, 22, 30}
6 𝑋 𝑗={12, 13, 19, 21, 22, 34, 42} 2.87 2.1 𝑋 𝑗={3, 12, 13, 18, 19, 21, 22, 26, 34, 35, 42, 43} 3.99 0.17

𝑌𝑗={3, 9, 25, 26}
7 𝑋 𝑗={10, 18, 20, 22, 29, 31, 39} 4.63 3.34 𝑋 𝑗={10, 18, 20, 22, 23, 26, 27, 28, 31, 39, 46, 47} 4.06 8.59

𝑌𝑗={26, 27, 45, 55}
8 𝑋 𝑗={12, 13, 14, 21, 29, 30, 51} 9.24 0.97 𝑋 𝑗={7, 13, 14, 20, 21, 22, 23, 29, 30, 42, 43, 50} 12.68 0.26

𝑌𝑗={7, 22, 36, 42}
9 𝑋 𝑗={7, 8, 24, 28, 38, 44, 45, 46} 9.88 3.09 𝑋 𝑗={7, 13, 20, 24, 28, 32, 38, 44, 45, 46, 47, 52} 10.58 0.26

𝑌𝑗={21, 31, 39, 52}
10 𝑋 𝑗={21, 28, 36, 40, 48, 53, 54} 3.07 0.35 𝑋 𝑗={21, 29, 30, 34, 35, 37, 39, 45, 46, 47, 48, 53} 5.24 0.04

𝑌𝑗={29, 37, 46, 47}
11 𝑋 𝑗={22, 26, 27, 30, 34, 38, 42, 46} 3.28 0.49 𝑋 𝑗={22, 26, 27, 28, 34, 35, 36, 37, 38, 42, 45, 46} 4.52 0.1

𝑌𝑗={35, 36, 45}
12 𝑋 𝑗={12, 23, 28, 38, 44, 45, 46, 54, 44} 1.85 1.01 𝑋 𝑗={12, 28, 36, 37, 38, 44, 45, 46, 52, 53, 54, 61} 2.97 0.07

𝑌𝑗={51, 52, 53}
13 𝑋 𝑗={8, 29, 31, 37, 44, 45, 53, 54} 16.05 1.53 𝑋 𝑗={29, 30, 36, 38, 39, 43, 45, 46, 53, 54, 55, 63} 17.87 0.63

𝑌𝑗={38, 46, 55 }
14 𝑋 𝑗={27, 31, 36, 37, 45, 46, 64,} 14.28 0.55 𝑋 𝑗={27, 37, 38, 39, 40, 45, 46, 53, 54, 55, 63, 64} 11.92 0.57

𝑌𝑗={38, 53, 54, 55}
15 𝑋 𝑗={1, 9, 14, 17, 27, 38, 43} 17.29 2.35 𝑋 𝑗={2, 9, 10, 12, 18, 19, 26, 27, 38, 39, 43, 45} 19.87 2.66

𝑌𝑗={10, 12, 18, 39}
16 𝑋 𝑗={9, 14, 34, 37, 44} 20.1 3.01 𝑋 𝑗={9, 13, 15, 21, 26, 27, 28, 37, 49, 50, 58, 63} 22.25 9.6

𝑌𝑗={12, 18, 28, 49, 50}
17 𝑋 𝑗={27, 34, 35, 36, 44, 49, 57} 28.94 1.11 𝑋 𝑗={4, 5, 12, 19, 20, 23, 26, 30, 32, 33, 36, 41} 23.55 2.23

𝑌𝑗={12, 23, 26}
18 𝑋 𝑗={31, 44, 46, 53, 63} 18.89 4.39 𝑋 𝑗={21, 22, 39, 40, 42, 44, 46, 47, 52, 55, 60, 61} 20.17 3.93

𝑌𝑗={39, 42, 47, 52, 55}
19 𝑋 𝑗={3, 4, 5, 11, 12, 18, 19, 26, 27, 34} 2.25 0.28 𝑋 𝑗={2, 3, 4, 5, 6, 9, 10, 11, 13, 18, 26, 34} 2.95 0.22

𝑌𝑗={2, 10}
20 𝑋 𝑗={35, 43, 44, 45, 46, 49, 53, 61} 6.23 0.9 𝑋 𝑗={27, 35, 42, 43, 44, 45, 46, 50, 52, 53, 58, 60} 7.83 0.16

𝑌𝑗={50, 52, 58}
21 𝑋 𝑗={17, 18, 19, 27, 35, 43, 51, 53} 6.51 3.1 𝑋 𝑗={17, 18, 19, 26, 27, 34, 35, 41, 42, 43, 51, 53} 8.76 0.35

𝑌𝑗={26, 41, 42}
22 𝑋 𝑗={20, 26, 27, 35, 44, 46, 51} 19.66 0.94 𝑋 𝑗={20, 27, 28, 29, 36, 38, 44, 46, 51, 52, 53, 54} 16.21 2.35

𝑌𝑗={36, 38, 52, 54}
23 𝑋 𝑗={21, 30, 38, 39, 48, 52, 60} 17.8 0.78 𝑋 𝑗={30, 37, 38, 39, 45, 47, 52, 53, 55, 56, 60, 62} 16.26 1.76

𝑌𝑗={45, 47, 56, 62 }
24 𝑋 𝑗={30, 36, 43, 52} 22.39 0.46 𝑋 𝑗={12, 19, 21, 22, 28, 30, 36, 37, 39, 28, 43, 44, 45} 26.73 1.79

𝑌𝑗={11, 21, 28, 29, 39, 45}
25 𝑋 𝑗={5, 22, 35, 36, 44, 46, 48} 30.77 2.72 𝑋 𝑗={6, 14, 15, 23, 29, 34, 35, 36, 48, 54, 55, 62} 36.73 8.8

𝑌𝑗={14, 34, 54, 55}
26 𝑋 𝑗={11, 21, 35, 36, 40, 44, 62} 34.3 3.98 𝑋 𝑗={11, 14, 15, 24, 29, 30, 35, 37, 39, 46, 51, 52} 39.03 12.9

𝑌𝑗={23, 29, 46, 52}
27 𝑋 𝑗={18, 20, 36, 37, 44, 51, 55} 30.23 4.97 𝑋 𝑗={19, 26, 27, 30, 35, 38, 42, 43, 44, 46, 47, 51, 47} 36.52 5.96

𝑌𝑗={27, 38, 42, 46}
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Figure 1.8 shows the optimal detector placements for both the two-and-one layer detection

problems in a given test instance (instance 24). Results demonstrate how the 𝑋 𝑗 and𝑌 𝑗 and only 𝑋 𝑗

are placed in Figures 1.8(a) and 1.8(b), respectively, to minimize the expected number of casualties

in a 8×8 threat area. It can be observed that an additional 16.2% expected number of casualties can

now be saved due to optimally placing the backup/secondary detectors in the threat area. Likewise,

Table 1.4 provides optimal detector placements for other test instances and under both two-and-one

layer detection problems.

(a) Two-layer detection (b) One-layer detection
Figure 1.8

Detector placement for two-and-one layer detection problems (instance 24)

Results in Table 1.4 clearly demonstrate the efficiency of the B&B algorithm in solving both

the two-and-one layer detection problems. It can be observed that the B&B algorithm is capable

26



of finding an optimal solution for both the two problems in a reasonable amount of time. For the

two-layer detection problem, the maximum running time (𝑇∗) is found to be 4.97 CPU seconds

among all the instances. Likewise, the maximum 𝑇∗ is found to be 12.9 CPU seconds for the

one-layer detection problem. In summary, it can be concluded that the B&B algorithm is shown to

be robust in consistently generating high-quality solutions within our test instances.

1.5 Conclusions and Future Work

This study proposes an innovative nonlinear binary integer programming model to optimally

deploy a set of primary and secondary detectors on a threat area in such a way that the expected

number of casualties can be minimized. We then employ a linearized branch-and-bound algorithm

to solve our proposed mathematical model. To the end, a number of sensitivity analyses are

performed to illustrate the robustness of the model and to draw key managerial insights. A few

notable insights are given below.

• An additional 21.9% casualties can be saved in a two-layer detection over a one-layer

detection problem if the detection radius (𝛼𝑝, 𝛼𝑠) can be increased by 50% from the base

case.

• Under the base instantaneous detection rates for primary (𝛽𝑝) and secondary (𝛽𝑠) detectors,

on average an additional 15.6% casualties can be saved if a two-layer detection mechanism

is employed over a one-layer detection mechanism. The percentage can be improved even

further with the advancement in 𝛼𝑝 and 𝛼𝑠 in the near future.

• The availability of budget to purchase additional primary and secondary detectors will

significantly secure an area and drop the expected number of casualties under a given threat
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event. For instance, we observe an approximately 53% drop in casualties with an increment

of 50% budget from the base case scenario.

• The B&B algorithm is shown to be robust in consistently generating high-quality solutions

in solving our proposed mathematical model within our test instances.

This study can be extended in several research directions. First, our study assumes indepen-

dent failures of the detectors (both primary and secondary and detectors). However, in reality,

interdependent failures may occur. Second, our study assumes known threat areas. It might be

interesting to examine how the model would behave under a dynamic threat attack. We also would

like to examine how the adoption of mobile detectors minimizes the expected number of casualties

in a given threat area. Finally, an extension of the cost modeling could also include expected costs

due to casualties incurred by delayed response times, lack of threat detection, or untimely threat

detection. Such real-world cost considerations would impact engineering management choices as

to whether or not it is cost-effective for the ownership organization to invest in the additional layer

of sensors as offset by increases of expected casualties and insurance costs. These issues will be

addressed in future studies.
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CHAPTER II

OPTIMIZING CIVILIAN RESPONSE STRATEGY UNDER AN ACTIVE SHOOTING

INCIDENT

2.1 Introduction
2.1.1 Motivation

Active Shooting (AS)1 is a common terminology that is frequently being used in the US and

all over the world in the last few decades, especially after the early 2,000. Despite remarkable

improvements in developing advanced training modules and civilian response strategies in the last

couple of years, neither the incident rate nor the casualty rate is seeing at a decline. The Federal

Bureau of Investigation (FBI) reports that the average number of AS incidents between 2000-2007

were 7.4 incidents/year, which further increased to 17.6 incidents/year between 2008-2015 before

finally accelerated to 25.7 incidents/year between 2016-2018 [27] (see Fig. 2.1 for details). Most

importantly, approximately 90% of the AS incidents occur in the gun-free (GF) facilities, include

all areas where the general public is forbidden to carry firearms (e.g., Pre-K to 12 schools (14.8%),

universities (6%), businesses and shopping malls (42%), and health care facilities (4%)) [27]. Such

violence in the GF facilities poses serious security concerns among public safety, primarily due to

the horrifying outcomes and potentially large number of casualties that typically stem from such an

attack. Another worrisome fact is that 70% of the past AS incidents ended in less than 5 minutes

1formally defined by The US Department of Homeland Security (DHS) as An individual actively engaged in killing
or attempting to kill people in a confined and populated area; in most cases, active shooters use firearm(s), and there
is no pattern or method to their selection of victim [101]
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(11% among them ended in less than 2 minutes) [84]. With an average law enforcement response

time greater than 5 minutes [91], the GF facilities must be carefully designed so that the civilians

get ample time to hide/exit in/from the system and the expected number of casualties from an AS

attack can be minimized.

Figure 2.1

Active shooting incidents in the US between 2000-2018

2.1.2 Related Literature

AS research in GF facilities probably started on November 12, 1840, when a law professor at

the University of Virginia was fatally shot (died in 3 days later) by one of his students [97]. This

perhaps was the first-ever recorded AS incident that held in any school infrastructure or campus

in the US. However, the 1999 Columbine school shooting can be considered as one of the most

tragic incident in the US history that let the policymakers and law enforcement officers feel for the

first time that such incidents can happen at any time and in any community and cannot continue

to be unprepared for such situations. Following this incident, in addition to SWAT team training,

specialized civilian training programs, such as the RUN.HIDE.FIGHT.® (RHF), Avoid, Deny,

DefendTM (ADD) programs, are introduced. Additionally, many statistics/case-based reports
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have started to publish periodically, primarily by the Department of Homeland Security (DHS),

Texas State University, and Purdue Homeland Security Institute. However, very little attention has

been paid to date to determine the optimal response strategy or assessing the safety of a workplace

under an AS exposed environment.

Realizing that many hypothetical situations can be modeled and analyzed easily and a significant

detail and fidelity can be incorporated into the model, researchers predominantly use an agent-based

simulation approach to mimic an AS exposed environment (e.g., [40, 91, 47, 48, 46]). For instance,

mitigation strategies, such as RHF [16, 91, 48, 46] and automatic door locking system [47], can be

modeled and visualized with the help of an agent-based simulation model. Additionally, few studies

attempted to simulate the past AS incidents, such as the 2012 movie theatre shooting in Aurora,

Colorado [33], and the 2017 Las Vegas shooting [48], to derive useful insights. To the end, different

policies, such as the effectiveness of the Senator Feinstein’s bill to regulate assault weapons and

magazine capacity [33], and scenarios, such as the no security/security guard/concealed carry gun

scenario [9, 40]; automatic door locking system [47]; civilian evacuation time and firearm discharge

rate by the shooter and police [48]; and cognitive delay [91], can be analyzed and assessed using an

agent-based simulation model. Other than adopting any modeling framework, a number of studies

qualitatively discuss different AS mitigation and response strategies on healthcare applications

[37, 44, 67, 83, 41].

Our problem can be considered as a special case of emergency evacuation problems (e.g.,

hurricane [117, 53]), fire ([104, 60]), football stadium evacuation [60]), except the fact that in this

specific case the threat actively chases to find the next target to maximize the number of casualties

in a given AS incident. Further, such incidents are characterized by highly unpredictable, evolve
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quickly, having (typically) no escape plan for the shooter(s), and with a major goal of mass

murdering in a very limited timeframe. Few studies examine the impact of crowd evacuation

under crowd density and various building parameters (e.g., sizes and position of doors) [78, 109,

51]. It is noteworthy to mention the study conducted by Li et al. [52], which first develops a

comprehensive three-stage decision-making and behavioral model for pedestrian evacuation under

different terrorist attacks (e.g., bombing, shooting, melee attack). Other closely related studies

include identifying patterns and relations to understand terrorist behaviors (e.g., [99]), attack

occurrences (e.g., [96, 32]), and vulnerability assessment of critical facilities in combating the

terrorism (e.g., [10, 8]).

2.1.3 Research Contributions

While previous studies have done a phenomenal job in quantifying and analyzing the effects

of many parameters (e.g., discharge rate, magazine capacity) in different AS situations, they just

ignored modeling/optimizing individual civilian response behaviors or often made simple assump-

tions that may not accurately reflect the reality (e.g., setting one response strategy (move/do not

move) for all civilians in a given simulation trial). Research is needed to develop advanced quantita-

tive methods to generate and analyze different possible AS scenarios for a specific population (e.g.,

age group, diversity) and facility (e.g., school, shopping mall, hospital) in mind. Unfortunately, no

rigorous quantitative technique has been developed to date that takes into account all these critical

factors and analyzes or optimizes civilian’s response strategy under an AS-exposed environment.

To the best of the authors knowledge, this study, for the first time in the literature, proposed

a mathematical model formulation that specifically optimizes individual’s behavioral decision
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while accounting several critical features, such as capacity of the facility and individual choices,

heterogeneity of individual behavioral and choice sets, restriction on choice sets depending on

the location of the shooter and facility orientation, and many others, which are essential for

appropriately characterizing and analyzing the response strategy for civilian’s under an AS exposed

environment. To realistically capture the time-space movement for both the civilians and the

shooter(s), we propose a greedy heuristic that can solve our mathematical model under a rolling

horizon framework.

We demonstrate the applicability of our proposed model by implementing the effectiveness

of the RHF program in an academic environment. A survey is conducted among a sample of

the students taking classes in that academic building to understand their responses under different

AS exposed environment. The choice behavior of the students (hereafter civilians to make this

generic) are collected and then appropriately incorporated into the proposed mathematical model

to maximize individuals utility under an AS exposed environment. Finally, a number of numerical

experiments are conducted, including varying building configurations (e.g., location and number

of hiding and entrances/exits), initial distribution and cognitive delay of the civilians, which may

provide significant managerial insights to the decision makers and hold promise to enhance the

reliability and resiliency of various threatening GF facilities (e.g., schools, hospitals, shopping

malls).

2.2 Problem Description and Mathematical Model Formulation

In this section, we present a mathematical model formulation which aims to maximize civilians

utility under an AS exposed environment. To formulate this problem, we first assume that a
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GF area is rectangular which has been divided into 𝑚 × 𝑛 equal-sized grids, denoted by set

G = {𝑔 : 𝑔 = 1, 2, ..., 𝑚𝑛}. To model physical obstruction, we divide set G into two major types:

(𝑖) blocked grids and (𝑖𝑖) unblocked grids. Blocked grids, denoted by set G𝑏 ⊂ G, represent the set

of grids where the shooter cannot travel or no civilians are present. On the other hand, unblocked

grids, denoted by set G𝑢 = G \ G𝑏, represent the set of grids where both the shooter and the

civilians can travel and G = G𝑏⋃G𝑢. It is assumed that the knowledge about a shooter’s potential

target is known in advance. Let G𝑎 ⊂ G𝑢 be the set of grids where a attack may potentially occur

(e.g., food court, library). We further define G𝑒 ⊂ G𝑢 to be the set of grids from which a shooter

or a civilian can enter or exit the facility. It is assumed that the shooter will enter the facility from

one of the entrances 𝑔 ∈ G𝑒 and reach to attack grid 𝑔 ∈ G𝑎 by utilizing a shortest path. Let

Gℎ ⊂ G𝑢 to be the set of grids where a civilian can potentially hide (e.g., locked classroom/office).

We further define set G𝑔, which includes a cell 𝑔 ∈ G𝑢 and it’s neighbouring cells. Appendix A1

summarizes the sets, parameters, and decision variables used in this section.

We assume a population of 𝑁 civilians, denoted by set N and indexed by 𝑛, present in the

GF area. A set of alternatives, denoted by set I (indexed by 𝑖), is also available for each civilian

𝑛 ∈ N . Since in this study we test the effectiveness of RHF program [46], we construct the set of

alternatives I as I = {runUp,runDown,runLeft,runRight,stay}. The first four alternatives

in set I determine the direction of running, whereas the last alternative indicates if the civilian

decides to stay in the same grid. We now introduce subset G𝑔,𝑖 that represents the neighbouring

cells of cell 𝑔 ∈ G𝑢, given action 𝑖 ∈ I is undertaken. Further, ∀𝑔 ∈ Gℎ, we define a set of

possible actions, I𝑔, in such a way that if we undertake them, they can lead us to a respective

hidden cell. Finally, we introduce set G𝑔,𝑖 to represent the neighbouring cells of cell 𝑔 ∈ Gℎ, given
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that the action 𝑖 ∈ I𝑔 is undertaken. If a civilian decides to run towards the direction of travel

of the shooter, we then infer that the civilian may fight with the shooter. On the other hand, a

civilian may find it safe by staying in a hiding grid 𝑔 ∈ Gℎ. Such model rely on the assumption

that each individual 𝑛 ∈ N associates a score, referred to as utility, with each alternative 𝑖 ∈ I.

Let us define U1 := {𝑈𝑖𝑛𝑔𝑟 |∀𝑖 ∈ I, 𝑛 ∈ N , 𝑔 ∈ G𝑢, 𝑟 = 1, 2, ..., 𝑅} to denote the utility associated

with choosing alternative 𝑖 by civilian 𝑛 located in grid 𝑔 under realization 𝑟. Given the nonlinear

nature of the utility functions, we use the simulation approach proposed by Bierlaire [14] to derive

a linear utility function. Essentially, the probabilistic nature of the choice model is captured via

generating 𝑅 draws, b𝑖𝑛𝑔1, b𝑖𝑛𝑔2, ..., b𝑖𝑛𝑔𝑅, from the distribution of the random error term of the

original utility function. Note that each of these draws represents a specific behavioral scenario.

Once all the draws are generated, for each realization 𝑟, we obtain the following utility associated

with alternative 𝑖 by civilian 𝑛 located in grid 𝑔:

𝑈𝑖𝑛𝑔𝑟 =
∑︁
𝑘

𝛽𝑘𝑥𝑖𝑛𝑔𝑘 + f(𝑥𝑖𝑛𝑔) + b𝑖𝑛𝑔𝑟

∀𝑖 ∈ I, 𝑛 ∈ N , 𝑔 ∈ G𝑢, 𝑟 = 1, 2, ..., 𝑅 (2.1)

where 𝑥𝑖𝑛𝑔𝑘 and 𝑥𝑖𝑛𝑔 represent, respectively, the endogenous and exogenous variables of the model

and 𝛽𝑘 are the associated parameters of the endogenous variables. Note that f(𝑥𝑖𝑛𝑔) will be

preprocessed prior to using them in the model; therefore, it does not matter if this function is linear

or not.

Given an alternative may become unavailable to a civilian (e.g., hidden place), we introduce a

binary variable Y1 := {𝑌𝑖𝑛𝑔 |∀𝑖 ∈ I, 𝑛 ∈ N , 𝑔 ∈ G𝑢} to denote the availability of alternative 𝑖 to a
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civilian 𝑛 located in grid 𝑔. Further, the availability of alternative 𝑖 to a civilian 𝑛 located in grid

𝑔 under realization 𝑟 is modeled by introducing another binary variable Y2 := {𝑌𝑖𝑛𝑔𝑟 |∀𝑖 ∈ I, 𝑛 ∈

N , 𝑔 ∈ G𝑢, 𝑟 = 1, 2, ..., 𝑅}, and we let Y = Y1 ⋃Y2. Note that through introducing variables

𝑌𝑖𝑛𝑔 and 𝑌𝑖𝑛𝑔𝑟 , heterogeneity among individuals decision can be captured. For instance, a disable

or aged civilian may not be able to run to escape herself/himself in a nearby entrances/exits even

though the alternative may be viable for most of the other civilians located in grid 𝑔 ∈ G𝑢. The

relationship between variables 𝑌𝑖𝑛𝑔 and 𝑌𝑖𝑛𝑔𝑟 can be modeled as follows:

𝑌𝑖𝑛𝑔𝑟 ≤ 𝑌𝑖𝑛𝑔 ∀𝑖 ∈ I, 𝑛 ∈ N , 𝑔 ∈ G𝑢, 𝑟 = 1, 2, ..., 𝑅 (2.2)

Constraints (3.2) indicate that an alternative 𝑖 ∈ I is not be available in the scenario level 𝑟 if that

alternative is not a feasible option for grid 𝑔 ∈ G𝑢 or not considered by the civilian 𝑛 ∈ N .

We now employ the concept of discounted utility [46] to associate an alternative with the

highest utility, pending the alternative is selected by the civilian; otherwise, a low utility value is

assigned to that alternative. To capture this behavior, we introduce a variable X := {𝑋𝑖𝑛𝑔𝑟 |∀𝑖 ∈

I, 𝑛 ∈ N , 𝑔 ∈ G𝑢, 𝑟 = 1, 2, ..., 𝑅} to represent the discounted utility associated with alternative 𝑖

chosen by civilian 𝑛 located in grid 𝑔 under scenario 𝑟, i.e.,

𝑋𝑖𝑛𝑔𝑟 =


𝑈𝑖𝑛𝑔𝑟 if 𝑌𝑖𝑛𝑔𝑟 = 1

l𝑛𝑔𝑟 if 𝑌𝑖𝑛𝑔𝑟 = 0
∀𝑖, 𝑛, 𝑔, 𝑟 = 1, 2, ..., 𝑅 (2.3)

where 𝑙𝑛𝑔𝑟 = min𝑖∈I 𝑙𝑖𝑛𝑔𝑟 to represent the smallest lower bound across all alternatives. Below,

∀𝑖 ∈ I, 𝑛 ∈ N , 𝑔 ∈ G𝑢, 𝑟 = 1, 2, ..., 𝑅, constraints (3.4)-(3.7) are provided to linearize condition
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(3.3). Proposition 1 proves that constraints (3.4)-(3.7) indeed provide an equivalent representation

of condition (3.3).

𝑙𝑛𝑔𝑟 ≤ 𝑋𝑖𝑛𝑔𝑟 (2.4)

𝑋𝑖𝑛𝑔𝑟 ≤ 𝑙𝑛𝑔𝑟 + 𝜙𝑖𝑛𝑔𝑟𝑌𝑖𝑛𝑔𝑟 (2.5)

𝑈𝑖𝑛𝑔𝑟 − 𝜙𝑖𝑛𝑔𝑟 (1 − 𝑌𝑖𝑛𝑔𝑟) ≤ 𝑋𝑖𝑛𝑔𝑟 (2.6)

𝑋𝑖𝑛𝑔𝑟 ≤ 𝑈𝑖𝑛𝑔𝑟 (2.7)

where parameter 𝜙𝑖𝑛𝑔𝑟 can be defined as follows: 𝜙𝑖𝑛𝑔𝑟 = (𝜙𝑖𝑛𝑔𝑟 − 𝑙𝑛𝑔𝑟) and 𝜙𝑖𝑛𝑔𝑟 is the upper

bound across all alternatives. Note that since 𝑥𝑖𝑛𝑔𝑘 are bounded and 𝑥𝑖𝑛𝑔 are given; therefore, we

can bound𝑈𝑖𝑛𝑔𝑟 as follows:

𝑙𝑖𝑛𝑔𝑟 ≤ 𝑈𝑖𝑛𝑔𝑟 ≤ 𝜙𝑖𝑛𝑔𝑟 ∀𝑖 ∈ I, 𝑛 ∈ N ,

𝑔 ∈ G𝑢, 𝑟 = 1, 2, ..., 𝑅 (2.8)

Proposition 1 Constraints (3.4)-(3.7) are equivalent to (3.3).

Proof. See Appendix A2.

We now introduce a binary variable Z1 := {𝑍𝑖𝑛𝑔𝑟 |∀𝑖 ∈ I, 𝑛 ∈ N , 𝑔 ∈ G𝑢, 𝑟 = 1, 2, ..., 𝑅} to

denote the choice of alternative 𝑖 by civilian 𝑛 located in grid 𝑔 under realization 𝑟. We further

introduce another binary variable Z2 := {𝑍𝑖𝑛𝑔𝑔′𝑟 |∀𝑖 ∈ I, 𝑛 ∈ N , 𝑔 ∈ G𝑢, 𝑔′ ∈ G𝑔,𝑖, 𝑟 = 1, 2, ..., 𝑅}

to indicate that the movement of civilian 𝑛 from grid 𝑔 to 𝑔′ by choosing alternative 𝑖 under
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realization 𝑟 and Z := Z1 ⋃Z2. Since civilian 𝑛 cannot select alternative 𝑖 if that alternative is not

available to that grid 𝑔, we introduce the following logical constraints:

𝑍𝑖𝑛𝑔𝑟 ≤ 𝑌𝑖𝑛𝑔𝑟 ∀𝑖 ∈ I, 𝑛 ∈ N , 𝑔 ∈ G𝑢, 𝑟 = 1, 2, ..., 𝑅 (2.9)

Each civilian 𝑛 ∈ N located in grid 𝑔 ∈ G𝑢 under realization 𝑟 = 1, 2, ..., 𝑅 is allowed to choose

only one alternative. This is enforced via constraints (3.10).

∑︁
𝑔∈G𝑢

∑︁
𝑖∈I

𝑍𝑖𝑛𝑔𝑟 = 1 ∀𝑛 ∈ N , 𝑟 = 1, 2, ..., 𝑅 (2.10)

It may take time for a civilian to realize that a shooting is occurring and then to appropriately

respond to such incident. This is known as cognitive delay [91]. This civilian-specific factor

is appropriately captured via introducing parameter 𝜋𝑛;∀𝑛 ∈ N . Let 𝑡𝑔𝑔′ to denote the standard

average travel time for a civilian to run from grid 𝑔 ∈ G𝑢 to 𝑔′ ∈ G𝑔 \ {𝑔}. We further denote 𝑡𝑛𝑔𝑔′

to be the actual travel time by civilian 𝑛 ∈ N to run from grid 𝑔 ∈ G𝑢 to 𝑔′ ∈ G𝑔 \ {𝑔}. Note

that the civilian-specific 𝑡𝑛𝑔𝑔′ parameter will be impacted by crowd density, facility configuration,

age, gender, and many other related factors. Finally, a binary parameter Z𝑔 ∈ {0, 1} is introduced

to indicate the proximity of shooter near grid 𝑔 ∈ G𝑢. If Z𝑔 is equal to zero (within the shooting

range of the shooter), running towards exit may not be a feasible decision.

(𝜋𝑛 + 𝑡𝑛𝑔𝑔′)𝑍𝑖𝑛𝑔𝑔′𝑟 ≤ Z𝑔𝑡𝑔𝑔′ ∀𝑛 ∈ N , 𝑔 ∈ G𝑢, 𝑖 ∈ I \ {𝑖5}

, 𝑔′ ∈ G𝑔,𝑖, 𝑟 = 1, 2, ..., 𝑅 (2.11)
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Note that if a civilian 𝑛 ∈ N decides to run from grid 𝑔 ∈ G𝑢, then she/he can reach to any of

the neighbouring grid 𝑔′ ∈ G𝑔. This is ensured via introducing the following constraints.

𝑍𝑖𝑛𝑔𝑟 = 𝑍𝑖𝑛𝑔𝑔′𝑟 ∀𝑖 ∈ I, 𝑛 ∈ N , 𝑔 ∈ G𝑢, 𝑔′ ∈ G𝑔,𝑖,

𝑟 = 1, 2, ..., 𝑅 (2.12)

Due to capacity restrictions, civilians are not allowed to hide more than 𝑣𝑔 numbers in a specific

grid 𝑔 ∈ Gℎ. We assume a 100% safety level for civilians upon reaching to a hidden grid 𝑔 ∈ Gℎ.

Note that 𝑣𝑔 ← 0, if no hiding option is available for the civilians in a specific grid 𝑔 ∈ Gℎ (e.g.,

open corridor in a building). The above restriction is enforced via constraints (2.13) as shown

below.

∑︁
𝑛∈N

∑︁
𝑖∈I𝑔′

∑︁
𝑔∈G′

𝑔′,𝑖

𝑍𝑖𝑛𝑔𝑔′ ≤ 𝑣𝑔′ ∀𝑔′ ∈ Gℎ, 𝑟 = 1, 2, ..., 𝑅 (2.13)

Based on the behavioral assumption, the alternative 𝑖 ∈ I picked by the civilian 𝑛 ∈ N should

associate with a highest discounted utility. This is ensured via introducing a continuous decision

variable U2 := {𝑈𝑛𝑔𝑟 |∀𝑛 ∈ N , 𝑔 ∈ G𝑢, 𝑟 = 1, 2, ..., 𝑅} and is defined as follows:

𝑈𝑛𝑔𝑟 = max
𝑖∈I

𝑋𝑖𝑛𝑔𝑟 ∀𝑛 ∈ N , 𝑔 ∈ G𝑢, 𝑟 = 1, 2, ..., 𝑅 (2.14)

Constraints (2.14) can be linearized as follows:
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𝑋𝑖𝑛𝑔𝑟 ≤ 𝑈𝑛𝑔𝑟 ∀𝑖 ∈ I, 𝑛 ∈ N , 𝑔 ∈ G𝑢,

𝑟 = 1, 2, ..., 𝑅 (2.15)

𝑈𝑛𝑔𝑟 ≤ 𝑋𝑖𝑛𝑔𝑟 + 𝜙𝑛𝑔𝑟 (1 − 𝑍𝑖𝑛𝑔𝑟) ∀𝑖 ∈ I, 𝑛 ∈ N ,

𝑔 ∈ G𝑢, 𝑟 = 1, 2, ..., 𝑅 (2.16)

where 𝜙𝑛𝑔𝑟 = (𝜙𝑛𝑔𝑟 − 𝑙𝑛𝑔𝑟) is the difference between the largest upper bound (𝜙𝑛𝑔𝑟) and the

smallest lower bound (𝑙𝑛𝑔𝑟) and 𝜙𝑛𝑔𝑟 is defined as follows: 𝜙𝑛𝑔𝑟 = 𝑚𝑎𝑥𝑖∈I𝜙𝑖𝑛𝑔𝑟 . Proposition 2

proves that constraints (2.15)-(2.16) indeed provide an equivalent representation of condition (2.14).

Proposition 2 Constraints (2.15)-(2.16) are equivalent to (2.14).

Proof. See Appendix A3.

The objective of this problem, referred to as model [AS], is to maximize the utility associated

with each civilians under an AS incident.

[AS] 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 1
𝑅

∑
𝑛∈N

∑
𝑔∈G𝑈𝑛𝑔𝑟

subject to (3.1), (3.2), (3.4)-(2.13), and (2.15)-(2.16).
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2.3 Solution Approach

Model [AS] is static. To represent a more realistic situation for an AS incident, we need to

appropriately capture the time-space movement for both the civilians and the shooter(s). In this

section, we propose a greedy solution approach to capture such behaviors dynamically. Addition-

ally, a set of performance measures are introduced to quantify the impact of our proposed model

to an AS situation.

Let 𝜒 = 1, 2, ..., 𝑃 to be the set of trails where in each trial it is assumed that the shooter

may enter the facility from one of the entrances and reach to a threat grid. For each trial

𝜒 = 1, 2, ..., 𝑃, we capture the movement of the shooter and civilians in different discrete time

periods, denoted by 𝑡 = 1, 2, ..., 𝑇 . Since model [AS] is now solved in each time period 𝑡 to

obtain {𝑌 𝑡
𝑖𝑛𝑔
, 𝑌 𝑡
𝑖𝑛𝑔𝑟

, 𝑍 𝑡
𝑖𝑛𝑔𝑟

, 𝑍 𝑡
𝑖𝑛𝑔𝑔′𝑟 , 𝑋

𝑡
𝑖𝑛𝑔𝑟

,𝑈𝑡
𝑖𝑛𝑔𝑟

,𝑈𝑡𝑛𝑔𝑟} decisions, we redefine model [AS] by [AS(t)].

Accordingly, parameters Z 𝑡,𝜒𝑔 and 𝑣𝑡𝑔′ are updated in each time period 𝑡 = 1, 2, ..., 𝑇 . At the end of

each trial 𝜒 = 1, 2, ..., 𝑃, the following performance measures are evaluated:

• 𝑉 𝜒
𝐸

: the number of civilians exit the system at the end of trial 𝜒

• 𝑉 𝜒
𝐻

: the number of civilians hide in the system at the end of trial 𝜒

• 𝑉 𝜒
𝑅𝐼𝑆𝐾

: the number of civilians are in risk (neither exit/hide from/in the system) at the end of

trial 𝜒

• 𝑉 𝜒
𝑠𝑜𝑙

: overall utility at the end of trial 𝜒

Likewise, at the end of evaluating all possible trials, performance measures𝑉𝐸 , 𝑉𝐻 , 𝑉𝑅𝐼𝑆𝐾 , and

𝑉𝑠𝑜𝑙 are obtained. Performance metric 𝑉𝑅𝐼𝑆𝐾 quantifies the average number of civilians who might

be at risk at the end of evaluating all possible trails. We determine this number by subtracting the

total number of civilians (𝑁 𝜒) with the number of civilians exit (𝑉𝐸 )/hide (𝑉𝐻) from/to the system
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i.e.,𝑉𝑅𝐼𝑆𝐾 :=
∑𝑃
𝜒=1 𝑁

𝜒 − (𝑉𝐸 +𝑉𝐻). The entire decision-making process is handled under a rolling

horizon framework, which is reported in Algorithm 1.

for 𝜒 = 1, 2, ..., 𝑃 do
Initialize Z 𝑡,𝜒𝑔 , 𝜋𝜒𝑛 , 𝑉𝜒

𝐸
, 𝑉𝜒
𝐻

, 𝑉𝜒
𝑅𝐼𝑆𝐾

, 𝑉 𝑡,𝜒
𝑠𝑜𝑙

, 𝑉𝜒
𝑠𝑜𝑙

, 𝑉 𝑡,𝜒
𝐸

and the distribution of population 𝑁 𝜒

for 𝑡 = 1, 2, ..., 𝑇 do
Solve model [AS(t)] to obtain {𝑌 𝑡

𝑖𝑛𝑔
, 𝑌 𝑡
𝑖𝑛𝑔𝑟

, 𝑍 𝑡
𝑖𝑛𝑔𝑟

, 𝑍 𝑡
𝑖𝑛𝑔𝑔′𝑟 , 𝑋

𝑡
𝑖𝑛𝑔𝑟

,𝑈𝑡
𝑖𝑛𝑔𝑟

,𝑈𝑡𝑛𝑔𝑟 } and 𝑉 𝑡,𝜒
𝑠𝑜𝑙

Update Z 𝑡,𝜒𝑔 and 𝑣𝑔′
Calculate: 𝑉 𝑡,𝜒

𝐸
:= 1

𝑅

∑𝑁𝜒
𝑛=1

∑
𝑔∈(G𝑢′ ⋃Gℎ ) ∑𝑔′∈G𝑒 𝑍 𝑡𝑖1𝑛𝑔𝑔′𝑟

end
Calculate: 𝑉𝜒

𝐸
:=

∑𝑇
𝑡=1 𝑉

𝑡,𝜒

𝐸

𝑉
𝜒

𝐻
:= 1

𝑅

∑𝑁𝜒
𝑛=1

∑
𝑔′∈Gℎ (𝑍𝑇𝑖5𝑛𝑔′𝑟 +

∑
𝑖∈I\{𝑖5}

∑
𝑔∈G𝑢′ 𝑍

𝑇
𝑖𝑛𝑔𝑔′𝑟 )

𝑉
𝜒

𝑅𝐼𝑆𝐾
:= 𝑁 𝜒 − (𝑉𝜒

𝐸
+ 𝑉𝜒

𝐻
)

𝑉
𝜒

𝑠𝑜𝑙
:=

∑𝑇
𝑡=1 𝑉

𝑡,𝜒

𝑠𝑜𝑙

end
Calculate: 𝑉𝐸 :=

∑𝑃
𝜒=1 𝑉

𝜒

𝐸

𝑉𝐻 :=
∑𝑃
𝜒=1 𝑉

𝜒

𝐻

𝑉𝑅𝐼𝑆𝐾 :=
∑𝑃
𝜒=1 𝑁

𝜒 − (𝑉𝐸 + 𝑉𝐻 )
𝑉𝑠𝑜𝑙 :=

∑𝑃
𝜒=1 𝑉

𝜒

𝑠𝑜𝑙

Algorithm 1: Greedy Heuristic

Figure 2.2 outlined a simplified decision-making framework for assessing the civilian response

strategy under an active shooter incident. From the figure, it can be seen that the successful

implementation and interpretation of the model [AS(t)] is contingent upon a number of input

parameters, such as individual’s choice behavior, building-specific and active shooter-specific

attributes, which can be obtained from participation survey, case building, or existing literature

and reports (see Section 2.4 for details). Once model [AS(t)] is solved for different time periods,

𝑡 = 1, 2, . . . , 𝑇 , a number of performance metrics, namely, 𝑉𝐸 , 𝑉𝐻 , 𝑉𝑅𝐼𝑆𝐾 , and 𝑉𝑆𝑂𝐿 , are checked

and are reviewed by the decision-makers (e.g., school officials, law enforcement officers). If

the performance measures sound acceptable by the decision-makers, the decision-making process

terminates; otherwise, different model attributes can be changed (e.g., number or position of the

entrances/exits, hiding places), and the performance metrics are reevaluated.
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Figure 2.2

A simplified decision-making framework for assessing civilian response strategy under an active
shooter incident

2.4 Experimental Results

This section first presents our survey results (Section 2.4.1), problem input parameters (Section

3.3.1), and then a series of numerical experiments to illustrate the model applications and to draw

useful managerial insights (Section 2.4.3). Both the model and the solution algorithm are coded

in Python 2.7 on a desktop computer with Intel Core i7 3.6 GHz processor and 32.0 GB RAM.

A state-of-the-art commercial solver, Gurobi Optimizer 6.52, is used to solve the proposed greedy

heuristic. We set a 1.0% optimality gap and 3,600 CPU seconds time limit to solve the model

[AS(t)] using the greedy heuristic. Note that all the experiments investigated in this study are

solved in less than 10 seconds.

2.4.1 Survey Summary

We surveyed among university students to get their responses under an AS incident. The

students were asked the type of grid-specific alternative (e.g., run, stay) they would pick under

different realistic AS situations (e.g., proximity to the shooter, hiding places, and exits). In total,

2Available from: http://www.gurobi.com/
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175 students (31.4% female) participated this survey. Among the students, 98.9% of students fall in

the age group between 16 to 30 while the remaining portion falls in the age group between 31 to 45.

Majority of the participants were Caucasian (80.6%; 29.1% among them were female), followed

by African-American: 8.6% (53.3% female), Asian: 6.9% (50% female), Latino-Hispanic: 2.9%

(no female), and others (e.g., Native American and Native Hawaiian/Pacific Islander): 1.0% (no

female). Among our participants, 5.1% had a physical or mental impairment (22.2% among them

were female); 22.3% had prior online AS training experiences (28.2% among them were female),

and 10.9% never played any shooting-related video games (78.9% among them were female).

Finally, 72% of the participants reported that they would be able to make a decision (e.g., choosing

an alternative as described before) between 2 to 6 seconds under an extremely stressful situation.

A summary of the participants is provided in Table 2.1.

Table 2.1

Summary of the survey participants
Item Description
Total samples 175 (31.4% female)
Ethnicity Caucasian: 80.6% (29.1% female)

African-American: 8.6% (53.3% female)
Asian: 6.9% (50% female)
Latino-Hispanic: 2.9% (no female)
Others: 1.0% (no female)

Total disability 5.1% (22.2% female)
Online training experience Yes: 22.3% (28.2% female)

No: 77.7% (32.4% female)
Gaming experience None: 10.9% (78.9% female)

Basic: 17.1% (66.7% female)
Average: 20.6% (25.0% female)
Above average: 23.4% (22.0% female)
Expert: 28.0% (4.1% female)

Decision making capability Very slow (>8 seconds): 2.3% (25.0% female)
(under stress) Slow (6−8 seconds): 3.4% (33.3% female)

Average (4−6 seconds): 30.3% (45.3% female)
Quick (2−4 seconds): 41.7% (32.9% female)
Very quick (<2 seconds): 22.3% (10.3% female)
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2.4.2 Input Parameters

Fig. 3.2 shows a 6×6 test grid facility (with an area of approximately 24,500 sq. ft) that

we have considered as a test-bed to visualize and validate our modeling results. The facility

has three entrances/exits (grid 4, 24, and 33), six blocked grids (grid 8, 12, 17, 21, 25, and

29), and a hiding grid(grid 14). Later, we test this base facility with varying entrance/exit and

hidden grid configurations. We assume that the shooter will enter the facility from one of the

entrances and reach to her/his destination by visiting different grids during this active shooting

period. Accordingly, we asked our participants to input their feedback under different position

for them and the shooter. Variables, such as proximity to nearest exits/entrances, hiding grids,

shooter’s position, and direction of the shooter and shooting range (binary variable), are considered

to construct the utility𝑈𝑖𝑛𝑔𝑟 for each individual 𝑛 ∈ N , choosing alternative 𝑖 ∈ I, locating in grid

𝑔 ∈ G𝑢, and under realization 𝑟 = 1, 2, ..., 𝑅 (shown in equation (3.1)). We use Mixed Multinomial

logit (MMNL) model [66] to derive these utilities 𝑈𝑖𝑛𝑔𝑟 . Fig. 3.4 demonstrates how the utilities

(𝑈𝑖𝑛𝑔𝑟) from the majority of the individuals are changing in different grids with respect to the

shooters position on different time periods. For instance, highest utility in grid 32 corresponds to

action runDown (Fig. 2.4.2) which instantaneously changed to action runRight (Fig. 2.4.2) when

the shooter changed her/his position from grid 33 to 27 (See Appendix A4 for a sample utility

calculation). We assume that it will require 15 seconds for a shooter to run from one center grid to

the center of it’s neighboring grid. Grid 14 is a hidden grid; therefore, the highest utility for this

grid corresponds to action stay. Other parameters for model [AS] are set as follows: {𝑣𝑔}∀𝑔∈Gℎ

= 10 civilians, 𝑡𝑔𝑔′ = 20 seconds, and 𝑡𝑛𝑔𝑔′ ≈ 𝑡𝑔𝑔′ = 15 seconds3; ∀𝑔 ∈ G𝑢; 𝑔′ ∈ (G𝑢′⋃Gℎ⋃G𝑒).
3We set 𝑡𝑛𝑔𝑔′ ≈ 𝑡𝑔𝑔′ since 98.9% of our participants age group fall between 16 to 30 years
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Finally, the cognitive delay of a civilian {𝜋𝑛}∀𝑛∈N is obtained from the inputs of our survey

participants (see “Decision making capability (under stress)" rows in Table 2.1).

Figure 2.3

6×6 test grid facility

(a) 𝑡 = 0 (b) 𝑡 = 30 (c) 𝑡 = 45

(d) 𝑡 = 60 (e) 𝑡 = 75
Figure 2.4

Demonstrating how the utility is changing (majority of the individuals) in different grids with
respect to the shooters position and time (in seconds)
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2.4.3 Lessons Learned

In this subsection, we first present the base case results to illustrate the model applications.

Following to this, we vary a set of key input parameters, such as the number of hidden grids |Gℎ |,

entrances/exits |G𝑒 |, cognitive delay of a civilian {𝜋𝑛}𝑛∈N , and initial distribution of civilians in

our 6×6 test grid facility (shown in Figure 3.2), to derive important lessons for the decision-makers.

We believe such lessons may help the decision-makers to design a safe and reliable facility that can

potentially hedge against possible AS threats. Fig. 2.5 shows the values of performance measures,

𝑉𝐸 , 𝑉𝐻 , and 𝑉𝑅𝐼𝑆𝐾 , over time period 𝑡 = {0, 15, 30, 45, 60, 75} seconds and under the base

input parameters as discussed in Section 3.3.1. Recall that we collected data from 175 civilians

(31.4% female). Results indicate that the curve for 𝑉𝐻 stabilizes just after 15 seconds. This is

understandable given we have only one hiding place with a capacity of 10 individuals ({𝑣𝑔}∀𝑔∈Gℎ

= 10) in our base case configuration. Interestingly, we notice that the values for performance

measures 𝑉𝐸 and 𝑉𝑅𝐼𝑆𝐾 increases and decreases, respectively, till time 𝑡= 45 seconds and then

remain flat till the end of this tested incident period. This might be due to the availability of

either one hiding grid (|Gℎ | = 1), the current entrance/exit configurations (|G𝑒 | = 3), the initial

and updated position of the civilians and shooter, and the cognitive delay of the civilians, or a

combination thereof.

Fig. 2.6 shows the movement of civilians over time under the base case setup. At time 𝑡 = 0

second, civilians are uniformly distributed in our test facility. As soon as the shooter becomes

available (at grid 33) at time 𝑡 = 15 seconds, the movement of the civilians’ changes and is

continued to be changing till the end of the incident period (𝑡 = 75 seconds). Notice that the

intensity of the two entrances/exits (grid 4 and 24) are getting darker over time. This is again
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Figure 2.5

Base case values of 𝑉𝐻 , 𝑉𝐸 , and 𝑉𝑅𝐼𝑆𝐾 over time

understandable since the locations of this two entrances/exits are farther away from the shooter’s

position. It is important to highlight that approximately 38% of the civilians (𝑉𝑅𝐼𝑆𝐾) are still at

risk even after 75 seconds. Rigorous system design and safety planning are required to drop the

percentage of 𝑉𝑅𝐼𝑆𝐾 under an active shooting incident.

(a) 𝑡 = 0 (b) 𝑡 = 15 (c) 𝑡 = 30 (d) 𝑡 = 45

(e) 𝑡 = 60 (f) 𝑡 = 75
Figure 2.6

Movement of civilians over time: base case
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The base case experimental results indicate that the system performance may be highly sensitive

to the input parameters. Hence, we now experiment with different input parameters, such as the

number of hidden grids |Gℎ |, entrances/exits |G𝑒 |, cognitive delay of a civilian {𝜋𝑛}𝑛∈N , and initial

distribution of the civilians, and summarizes the following lessons which are learned from our

experiments.

Lesson 1: Building configurations (e.g., location and number of entrances/exits, hiding places)

play a significant role in the safety of civilians under an AS incident.

The results in Figs. 3.5 and 3.6 support this observation. The graphs present the impact of 𝑉𝐻 ,

𝑉𝐸 , and 𝑉𝑅𝐼𝑆𝐾 under different hiding and entrance/exit configurations. Appendix A5 illustrates

different hiding and entrance/exit configurations (locations and numbers) for the tested facility

where |Gℎ | and |G𝑒 | are set as |Gℎ | = {1, 2, 3, 4} and |G𝑒 | = {1, 2, 3, 4}. Note that, for the base

case, we set |Gℎ | = 1 and |G𝑒 | = 3. We summarize a few of our key observations below:

• Given capacity restrictions for the hiding grids (e.g., {𝑣𝑔}∀𝑔∈Gℎ = 10 civilians for our base case

experimentations), we realize that the location and number of entrance/exit configurations

are more sensitive to an AS situation over the hiding configurations. For instance, when |G𝑒 |

increases from 1 to 4, then 𝑉𝐸 increases from 5.1% to 65.1%. Resultantly, we observe that

𝑉𝑅𝐼𝑆𝐾 drops down to 29.1% from 89.1%. On the other hand, when |Gℎ | increases from 1

to 4, 𝑉𝐻 increases from 5.7% to 19.4%, but both 𝑉𝐸 and 𝑉𝑅𝐼𝑆𝐾 drops from 54.3% to 50.3%

and 38.3% to 29.7%, respectively. The rate of dropping for 𝑉𝐸 and 𝑉𝑅𝐼𝑆𝐾 clearly indicates

that the entrance/exit configurations are more sensitive to an AS situation over the hiding

configurations.
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• It is interesting to note that for |Gℎ | = 4, the civilians utilized only 85% of the hiding

capacity after 75 seconds. This number was only 47.5% and 65% after 45 and 60 seconds,

respectively, from the onset of the shooting. This indicates that civilians have higher

preferences for exiting the threat area rather than hiding into the facility. We believe this

insight can help law enforcement officers to better educating the civilians for the case when

exiting the threat area may become infeasible.

(a) 𝑉𝐻 vs. time (b) 𝑉𝐸 vs. time (c) 𝑉𝑅𝐼𝑆𝐾 vs. time
Figure 2.7

Impact of 𝑉𝐻 , 𝑉𝐸 , and 𝑉𝑅𝐼𝑆𝐾 under different hiding configurations

(a) 𝑉𝐸 vs.time (b) 𝑉𝑅𝐼𝑆𝐾 vs. time
Figure 2.8

Impact of 𝑉𝐸 and 𝑉𝑅𝐼𝑆𝐾 under different entrance/exit configurations
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Lesson 2: Initial distribution of civilians has an impact on recovery from an AS incident.

The results in Fig. 3.7 support this statement where we can see how the initial distribution of

civilians impact the performance measures, 𝑉𝐸 and 𝑉𝑅𝐼𝑆𝐾 . Let us first introduce Table 3.2 which

lists the different initial civilian distribution that we have considered in our test region. Fig. A.6

depicts these initial distributions of the civilians. The first case considered the base distribution

where civilians are uniformly distributed over the entire test region (Fig. 1.8(a)). The remaining

cases are constructed based on an idea that 70% of the civilians are uniformly distributed in one

end of the test region, i.e., left distribution (Fig. 1.8(b)), right distribution (Fig. 1.8(c)), up

distribution (Fig. 1.8(d)), and down distribution (Fig. 1.6(e)). Note that, for all the experiments,

we set |Gℎ | = 1 and |G𝑒 | = 3 (Fig. 3.2). We summarize a few of our key observations below:

• The results in Fig. 3.7 clearly indicate that the right and down initial distribution of

the civilians significantly increases 𝑉𝐸 over the other distributions (e.g., base, left, up

distributions). For instance, after 75 seconds from the onset of the AS incident, the𝑉𝐸 drops

down to approximately 64% and 65.1%, respectively, under the right and down initial

distribution of the civilians. Note that at the same time, the 𝑉𝐸 only drops down to 45.7%

under the up initial distribution case. This is primarily due to the fact the shooter entered

into the facility from the upper entrance (see Fig. 3.2), which resulted in the civilians to

evade using that exit and using more on the right and downside exits.

• Similar observation can be drawn for the 𝑉𝑅𝐼𝑆𝐾 measure as well which drops significantly

for the right and down initial distribution of the civilians over the other distributions. For

instance, after 75 seconds from the onset of the AS incident, the 𝑉𝑅𝐼𝑆𝐾 drops down to

approximately 30.3% and 29.1%, respectively, under the right and down initial distribution
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of the civilians where the number is approximately 49% for the up initial distribution. The

results provide several managerial insights to decision-makers. For instance, the rate of the

casualty may differ on the different time periods of the day, e.g., the majority of the students

are on the left and right side of the facility during the class period which may not be the

case under lunch period. Further, the entrance of the shooter and the availability of multiple

exits and their locations may help to facilitate the movement of the civilians under an AS

situation.

Table 2.2

Initial distrbution of civilians over the test region
Item Description
Base distribution Civilians are uniformly distributed over the entire region
Left distribution 70% of the civilians are uniformly distributed over the left-side of the region
Right distribution 70% of the civilians are uniformly distributed over the right-side of the region
Up distribution 70% of the civilians are uniformly distributed over the upper-side of the region
Down distribution 70% of the civilians are uniformly distributed over the down-side of the region

(a) 𝑉𝐸 vs. time (b) 𝑉𝑅𝐼𝑆𝐾 vs. time
Figure 2.9

Impact of 𝑉𝐸 and 𝑉𝑅𝐼𝑆𝐾 under different civilian distribution configurations
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(a) Base distribution (b) Left distribution (c) Right distribution

(d) Up distribution (e) Down distribution
Figure 2.10

Illustration of different civilian distribution configurations

Lesson 3: Cognitive delay can significantly extend the risk-exposure time for the civilians

under an AS incident.

The results in Fig. 2.11 support this observation. The graphs present the impact of 𝑉𝐸 and

𝑉𝑅𝐼𝑆𝐾 under different decision making capabilities of the civilians. We consider six different

decision making capabilities of the civilians, namely, base, very slow, slow, average, quick,

and very quick, and examine their impact under an AS incident. Note that the base case is

constructed using the survey results as demonstrated in Table 2.1. Results clearly indicate that

the performance metrics 𝑉𝐸 and 𝑉𝑅𝐼𝑆𝐾 are significantly impacted by the different decision making

capabilities of the civilians. We summarize a few of our key observations below:
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• It is observed that 𝑉𝐸 remains 0% and 2.3%, respectively, after 75 seconds when assuming

that all the civilians are very slow (>8 seconds) and slow (6-8 seconds) in responding to

an AS situation. The performance improves significantly when the civilians can respond

quickly in an AS situation. For instance, 𝑉𝐸 reaches to 29.7% when the civilians can take

an average time (e.g., 4-6 seconds) in responding to an AS incident. The best situation

probably would be the case when the civilians could either take quick (2-4 seconds) or

very quick (<2 seconds) decisions in responding to an AS situation. It is observed that

under such cases, the𝑉𝐸 reaches to 59.4% and 60%, respectively. It is important to note that

our base case results lie very close to the quick or very quick decisions results. This is

primarily due to the fact that our case sample consists of university students; the majority of

their age (98.9%) fall between 16 to 30.

• We observe a similar trend in𝑉𝑅𝐼𝑆𝐾 calculations as well, where a slow response may lead to a

longer risk-exposure time for the civilians in the threat area. We observe that the life of nearly

100% of the civilians remain threatened in the shooting area if they are unable to execute

quick decisions (e.g., very slow or slow responses). However, this number significantly

drops down to approximately 34.9% and 34.3%, if the civilians are able to take quick or

very quick decisions, respectively. This signifies the importance of developing a quality

training program (e.g., interactive training as opposed to static training) for the civilians that

not only introduces them to different possible realistic AS situations but also their possible

actions under such a rare but dreadful event.
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(a) 𝑉𝐸 vs. time (b) 𝑉𝑅𝐼𝑆𝐾 vs. time
Figure 2.11

Impact of 𝑉𝐸 and 𝑉𝑅𝐼𝑆𝐾 under different decision making capabilities of the civilians

2.5 Conclusions and Future Research Directions

This study proposes an innovative mathematical model that accounts explicitly for individual

choice behaviors, facility configurations (e.g., location and number of exits/entrances and hiding

places), and other related factors (e.g., availability of choices, distribution of the population) to

realistically analyze different AS incidents. To capture the time-space movement for both the

civilians and the shooter(s), we propose a greedy heuristic that can solve our mathematical model

under a rolling horizon framework. We surveyed 175 students (31.4% female) to understand their

response behaviors under an AS incidents. The responses are appropriately incorporated into our

proposed mathematical model using a choice model. To the end, we summarize the key lessons

learned from this study by conducting a series of numerical experiments, such as changing the

facility orientations (e.g., location and number of exits/entrances and hiding places), the initial

distribution of the population, and cognitive delay of the civilians. We believe the results will cast

valuable insights to enhance the reliability and resiliency of various threatening GF facilities (e.g.,

schools, hospitals, shopping malls).
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This study can be extended in several research directions. In this study, we test our model

under a uniform sample (i.e., students) in an academic environment. It would be interesting to

examine how this model behaves under a large, heterogeneous sample in other environments (e.g.,

shopping mall, hospital). Next, the model only optimizes individual civilian response strategies

and assumed that the shooter would follow a specific trajectory under a given realization. High

fidelity models are needed to relax these modeling assumptions and develop a rigorous model and

solution approaches (e.g., [87, 95, 94, 7, 4, 6]) for the case when both players (e.g., civilians and

shooter) can intelligently optimize their own decisions. These issues will be addressed in future

studies.
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CHAPTER III

INVERSE REINFORCEMENT LEARNING TO ASSESS SAFETY OF A WORKPLACE

UNDER AN ACTIVE SHOOTER INCIDENT

3.1 Introduction
3.1.1 Motivation

Active Shooter events are increasingly becoming more common in the United States. According

to the Federal Bureau of Investigation (FBI), a total of 277 active shooter incidents occurred in the

United States between 2000 and 2018 [26]. Such incidents resulted in a total of 884 deaths and

1,546 injuries, where 25% of the deaths and 47% of the injuries occurred in 2017 and 2018 alone.

In 2019, a total of 417 mass shootings occurred in the United States (31 of those shootings were

mass murders), which was the highest number of mass shootings ever recorded in the history of the

United States [30]. Despite this increasing trend, another worrisome statistic is that 86% of the past

active shooter incidents took place in various built environments (e.g., educational, commercial

buildings) where the general public is forbidden to carry firearms [26]. All the statistics clearly

indicate that the buildings require a proper methodological assessment to protect civilians against

an active shooter incident.

3.1.2 Related Literature

Every active shooter incident is unique with respect to the physical restrictions (open space

(e.g., The 2017 Las Vegas shooting) vs. confined space (e.g., The 2018 Stoneman Douglas
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High School (Parkland) shooting)), the intent of the shooter (targeted shooting (e.g., The 2000

University of Arkansas shooting) vs. random shooting (e.g., The 2012 Sandy Hook Elementary

School shooting)), number of shooters (single (e.g., The 2007 Virginia Tech shooting) vs. multiple

(e.g., The 1999 Columbine High School massacre)), type of firearm used (manual (e.g., The 2012

Sandy Hook Elementary School shooting) vs. auto/semiautomatic pistol (e.g., The 2008 Northern

Illinois University shooting) or rifle/shotgun), and many others. These incidents are characterized

by highly unpredictable, evolve quickly, having (typically) no escape plan for the shooter(s), and

with a major goal of mass murdering in a minimal timeframe. Further, unlike many traditional

emergency evacuation problems (e.g., hurricane [117], fire [104], football stadium evacuation [42]),

the origin of the threat (i.e., shooter(s)) may not be stationary. In fact, the threat actively chases to

find the next target to maximize the number of casualties in a given active shooter incident. Finally,

realistic active shooter incident data is typically unavailability for the general public and in few

instances even a clear description of how the entire incident was conducted is unavailable.

All these unique aspects make much more difficult to fully understand or accurately model an

active shooter incident. Even though a large number of reports have been published to date to de-

scribe the most recent active shooter incidents (primarily by the Department of Homeland Security

(DHS), Texas State University, Purdue Homeland Security Institute and others), very few studies

focus on characterizing and determining the optimal action plan for an individual civilian/law

enforcement officer, in an attempt to maximize the overall system performance, under an active

shooter exposed environment. With the help of an agent-based simulation model (developed in

AnyLogic® computer simulation software), a few authors have attempted to cast valuable insights

on a number of different possible active shooter situations, such as automatic door locking system
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[47], no security/security guard/concealed carry gun scenarios at gun-free zones [40], civilian

evacuation time and firearm discharge rate by the shooter and police [48], civilian’s cognitive delay

[91], the effectiveness of the RUN.HIDE.FIGHT.® (RHF) training program [46], and many oth-

ers. Even though the existing simulation models provide numerous insights, capturing some vital

factors such as individual choice behaviors, making use of learnings from the environment, and

the modeling assumptions (e.g., setting one response strategy (move/do not move) for all civilians

in a given simulation trial) are missing. We believe such drawbacks can be eliminated in future

research by developing more sophisticated simulation models.

A complete understanding of human behavior under crisis conditions is critical for enhancing

civilian safety. However, gaining such knowledge is extremely challenging due to the complex

interactions with different correlated factors, including social attributes (e.g., herding, leader-

following behavior) [55, 89], building attributes (e.g., location and visibility of signage, stairs,

exits) [55], and emergency attributes (e.g., firearm, explosions, fires) [43]. Dating back to the

early 1950s, numerous innovative theories and models were developed by the researchers in an

attempt to better understand these complex interactions under different emergencies (e.g., fires,

earthquakes, terrorist attacks). Fortunately, a recent review by [115] broadly categorizes these

complex interactions into human-human interactions (i.e., interactions among people or groups of

people and their influence on behavior during emergencies), human-building interactions (i.e., how

buildings influence human behavior and how human behavior impacts the building performance

during emergencies), human-emergency interactions (i.e., how emergency situations impact human

behavior and people’s coping strategies with emergencies), and the second-order interactions among

humans, buildings, and emergencies. It is important to note that the necessity for research in these
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areas really fueled after the 2001 World Trade Center (WTC) attack, letting the policy-makers

rethink about the protection of civilians in buildings against terrorism-related risks.

Human-human interactions (e.g., herding, grouping, avoiding, leader-following, helping and

competing, information sharing) are widely studied in the literature, given they are the crucial

determinants of human behaviors during building emergencies [55, 89]. Understanding these

complex interactions allow decision-makers to unfold the barriers and patterns that slow down

the evacuation process (e.g., disabled occupants [13]). Given 86 % of the past AS incidents took

place in various building environments where the general public is forbidden to carry firearms

[26] (educational/commercial buildings), human-building interactions are extremely important

to enhance human safety during emergencies. Past studies also attempted to understand the

interactions between occupants and various building attributes, such as signage [103, 29], corridors

[85, 22], exits [73, 15], stairs/elevators [74, 34], and alarms [76, 11], under different human-

emergency situations (e.g., fire [20], earthquake [86, 56], and extreme violence (mass shootings,

terrorist attacks) [58, 49]).

All the abovementioned interactions are pivotal in understanding the human behaviors mostly

observed in different building environments, including pre-evacuation behavior (e.g., pre-event and

information-seeking behavior) [57, 39], wayfinding behavior [24, 102], interaction behavior with

others (e.g., grouping, competing, helping, queuing, waiting) [17, 90], and interaction behavior

with the environment (e.g., risk-taking, property-protecting, and hazard-fighting behavior) [34, 56].

Probably due to ease in modeling or experimenting with an agent to move towards finding a safer

destination, wayfinding behavior is widely studied in the literature. Specifically, the researchers

aim to study the impact of various factors, such as building attributes (e.g., location and visibility
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of signage, stairs, exits [55, 64, 5, 63], personal factors [112, 19], and social factors (e.g., herding,

leader-following behavior) [55, 89] that could impact the wayfinding behavior during emergencies.

Rather than restricting on observing the aforementioned behaviors, researchers further attempted to

develop different social, psychological, and behavioral theories that could explain human behavior

in building emergencies, such as panic theory [79, 98], heightened emotional theory [35], social

attachment/affiliative theory [65], self-categorized/social identity theory [93], role rule theory [18],

organizational breakdown theory [36], social proof theory [23], and the most-recently developed

social influence theory [71]. A comprehensive review of these theories can be found in [55]. Apart

from the aforementioned studies, researchers recently started to use virtual reality framework to

assess the interactions between humans and buildings under an active shooter incident [115, 114].

The aim is to create a safe, non-evasive environment where the impact of safety during active

shooter incidents and the corresponding human-building interactions that influence the response

performance is studied. Though not directly related to the active shooter incidents, another

stream of research attempted to locate detectors to minimize casualties under an intentional attack

[62, 105, 70]. These approaches paid attention to quick detection of weapons (e.g., guns, bombs) to

reduce casualties in a given threat area. Finally, rather than adopting a methodological framework,

a few studies qualitatively discusses human behavior and possible mitigation strategies following

an active shooter incident [37, 83].

In most of the real-life problems, researchers are interested in coming up with a policy using

which they can efficiently optimize the decision-making process of the agents in interacting with

an environment. Hence, discovering the fact of how expert people make sequential decisions and

extracting the process and functions that result in these decisions is of high importance. By doing
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so, we can retrieve the expert’s preference in dealing with an environment, although we do not fully

understand what is important and guides his or her actions. A more closely related example of

this would be the situation as the trapped civilians experience under an active shooter incident. To

tackle this challenge, researchers have been utilizing different topics in machine learning to create

a system that can mimic human decisions and behaviors, and based on real-world data, accomplish

tasks as efficiently as possible. For example, in some studies [3, 2], it can be observed that scientists

are trying to create a complex set of activities that are consisted of simpler and smaller actions taken

sequentially. Thus, the question is whether we can explain the decision-making process based on

the available data gathered from expert behaviors? The application of extracting knowledge from

available behavior data can be found in some studies [50, 100]. These studies try to characterize

urban passengers or taxi drivers based on their mobility patterns. Also, they explore the way these

agents weigh factors such as travel time, travel cost, or travel time variance. Discovering a reward

function or cost function associated with human behaviors plays a crucial role in understanding

what we observe and how to mimic this observation.

One of the techniques that have widely been used among researchers to explore human behaviors

and its motivational factors is the inverse reinforcement learning (IRL) [82]. The IRL problem, also

known as an inverse planning problem, can be considered as a problem within the reinforcement

learning framework based on the Markov decision processes (MDPs). In an IRL problem, the goal

is to identify an MDP that is consistent with the observed behavior of the rational agent. In other

words, all the mentioned factors for an MDP are assumed to be known except the reward function,

and the solution of this problem is a reward function that can describe an observed trajectory. Until

now, a number of approaches have been proposed such as linear optimal reward [69], maximum

62



reward margins [3, 81], and maximum reward likelihood [80, 118] to address wide varieties of

application areas, including autonomous helicopter control [1], airplane pilot objective inference

[110], measuring cultural preferences in negotiation [72], and predicting human behavior [106, 59].

3.1.3 Summary of Major Contributions

This study extends the existing literature by proposing a learning technique that can be used

to model the behavior of the shooter and the trapped civilians under an active shooter situation.

Our developed decision tool, for the first time in the literature, will provide a methodological

basis to enhance our understanding of the complicated interactions that exist between civilians

and the shooters, shooter-specific characteristics (e.g., prior shooting experiences, type of firearm

carried, the timing of the incident), and building configurations (e.g., number/location of exits,

hiding places) with the expected number of casualties in an active shooter incident. Knowledge

gained from creating such experiments will allow decision-makers to assess the ongoing safety

measures of a workplace (e.g., school, commercial buildings) against an active shooter incident.

To summarize, the major contributions of this study to the existing literature are as follows: (𝑖)

capturing the dynamic nature of the active shooter incidence by introducing a new framework; (𝑖𝑖)

inferring dynamic emergency action plans based upon the observed behavior of expert agents; and

(𝑖𝑖𝑖) evaluating the performance of the proposed framework in reassessing the safety of a workplace

under an active shooter incident by a simplistic and hypothetical environment.

3.2 Problem Formulation

The problem of modeling an active shooter situation can be defined as a traumatized situation

with unpredicted movements of the active shooter and ambiguity in the real-time path selection
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policies, which leads to a higher rate of fatality and serious injury. To resolve this ambiguity, this

study first proposes a Markov Decision Process (MDP) to model the behavior of the attacker and

the trapped civilians under an active shooter incident. Then, adapted from [118], we propose a

Dynamic Maximum Entropy Inverse Reinforcement Learning (IRL) to achieve the desired behavior

escaping behavior.

3.2.1 Markov Decision Process

From robotics to economics and healthcare, MDP is widely used in a variety of applications,

particularly when uncertainty is interwoven with system performance procedures. An MDP process

is a probabilistic framework that models the interaction of each agent with the environment [92].

Through the interaction procedure, the agent takes action in each time step and transitions from

the current state to another state. Moving from one state to another in each time step, the agent

receives (𝑖) a representation of the environment in the new state, (𝑖𝑖) a reward that could be positive,

negative, or zero, and (𝑖𝑖𝑖) the feasible set of actions the agent can take in the new state. Throughout

time, the agent learns to enhance its performance simply by taking the actions that result not only in

higher rewards, but they also guarantee higher accumulated reward at the end of the time horizon.

The typical agent-environment interaction is shown in Figure 3.1.

Figure 3.1

Agent-environment interaction
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An MDP consists of six tuples (𝑆, 𝐴, 𝑇, 𝛾, 𝐷, 𝑅), where 𝑆 is the set of feasible states in the

environment, 𝐴 is the set of possible actions that can be taken in each state, 𝑇 is the transition

matrix that provides the probability of an agent ending up in a particular state knowing its current

state and the action it would take, 0 < 𝛾 ≤ 1 is a parameter, referred to as discount rate, which

guarantees the convergence of the accumulated rewards, 𝐷 is the initial state distribution, and 𝑅

is a reward function that specifies the reward an agent receives knowing its current state, and the

possible action it takes. The goal of an MDP problem is to find a policy function, 𝝅, that maps a

series of actions from the state space, 𝑆 → 𝐴, that results in maximum accumulated rewards as

shown in equation (3.1) below.

𝝅∗ = argmax
𝝅

(
E
[∑︁
𝑡∈𝑇

𝛾𝑡𝑅(𝑠𝑡 , 𝝅(𝑠𝑡))
] )

(3.1)

Here, 𝑅(𝑠𝑡 , 𝝅(𝑠𝑡)) is the reward the agent receives if it is in the state 𝑠𝑡 , and take action aligned

with policy 𝝅. Having a set of feasible policy functions, the space of MDP is reduced to a procedure

with transition matrices 𝑇𝝅 where,

𝑇𝝅 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) = 𝑇𝝅 (𝑠𝑡 , 𝝅(𝑠𝑡)) (3.2)

3.2.2 Incident Modeling

The active shooter incident can be modeled under a MDP framework with a dynamic and

moving object environment. We assume that the action of the shooter will be unpredictable

within the environment, i.e., the shooter might choose an action from the action set {shoot,
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move-towards, move-away, move-left, move-right}, randomly. The agent (civilian) has no

control over the behavior of the shooter. Therefore, it accepts the behavior as a part of the dynamics

of the environment. Trapped in the environment, each civilian represents an agent who takes a

sequence of actions against the shooter to obtain the maximum reward (i.e., to survive or stop the

shooter). The feasible set of actions for each agent is given by 𝐴 = {move-left, move-right,

move-up, move-down}. We assume that each agent does not interact with others, and in each

time step, chooses a move that shortens their distance from the nearest exit door or hiding place,

i.e., picking the shortest paths. The choice of paths might change depending on the location of

the shooter. What an agent knows is: (𝑖) reaching to exit doors and hiding places has the highest

reward among all possible states and (𝑖𝑖) the nearer the agent is to the active shooter, the lower the

reward accumulates by the agent. As for the active shooter, we model her/his movement behavior

by assigning higher probabilities to the choices of directions towards more populated spots.

3.2.2.1 State definition

The target indoor environment represents a rectangular 𝑛 × 𝑛 grid world, where a subset of

the grids to represent entrance/exit doors, blocks, and hiding places, respectively. We assume an

active shooter to enter the environment from one of the entrances, carrying a gun with specific

point-blank range, 𝑟𝑔, and level of accuracy, 𝑙𝑔. The active shooter’s location, and consequently

the point-blank range’s diameter, change dynamically as the person moves across the environment.

The total number of states for each agent is 𝑛 × 𝑛, as each agent can end up in each block of the

environment. Considering the initial state, 𝐷, civilians are distributed randomly throughout the

entire environment.
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3.2.2.2 State transitions

To model the state transition process for each agent, we first make the following assumptions:

(𝑖) the preference of each agent is to approach hiding and exit blocks in a minimum number of

time steps, (𝑖𝑖) the capacity of exit blocks are infinity, (𝑖𝑖𝑖) the actions an agent takes do not affect

the set of feasible actions for others, (𝑖𝑣) only one movement is allowed per time step, (𝑣) affected

by choice distribution and obstacle location, each agent might choose a different path to reach to a

hiding or exit block, (𝑣𝑖) each agent has an estimation of the shooting point-blank range. During

the state transition process, 𝑠𝑡 → 𝑠(𝑡+1) , each agent observes its current state, 𝑠𝑡 , and its distance

from the location of the obstacle and selects action 𝝅(𝑠𝑡) aligned with its current policy. The

obstacle responds to the action of the agent(s) and the new positions of obstacle and agent(s) form

the new state 𝑠(𝑡+1) . In each time steps, a subset of blocks, 𝐴′𝑡 , (i.e., the location of the obstacle, and

the area inside the shooting-blank range), are infeasible for the transition. However, not knowing

the response of the obstacle, the agent might take an action which ends up in a new state, 𝑠(𝑡+1) ,

which is not in the shooting range at time 𝑡 and becomes infeasible to move towards in time 𝑡 + 1.

3.2.2.3 Value function

To evaluate the performance of a policy function, the agent needs to define performance metrics

(i.e., 𝑆 × 𝐴 → 𝑅). This function stands for the immediate reward received after taking action,

𝑎𝑡 ∈ 𝐴, in state, 𝑠𝑡 ∈ 𝑆, and is one of the key elements in identifying the desirability of a chain

of events during the learning process, 𝑅𝑡 (𝑠𝑡 , 𝑎𝑡). However, to obtain the maximum cumulative

reward, the agent must consider the possible rewards in future time step (i.e.,
∑𝑁
𝑘=0 𝑅(𝑡+𝑘)), as a

67



consequence of taking an action in the present state. To do so, the learner uses the value function

to estimate the consequent future reward.

𝑉𝝅 (𝑠) = E𝝅

[ ∞∑︁
𝑘=0

𝛾𝑘𝑅𝑡+𝑠 | (𝑠𝑡 , 𝑎𝑡)
]

(3.3)

which can be shown in the following recursive format:

E𝝅

[
𝑅𝑡 + 𝛾𝑉 (𝑠𝑡+1) | (𝑠𝑡 , 𝑎𝑡)

]
=

∑︁
𝑎𝑡∈𝐴

𝝅(𝑠𝑡 , 𝑎𝑡)
∑︁
𝑠𝑡+1∈𝑆

𝑃(𝑠𝑡+1 | (𝑠𝑡 , 𝑎𝑡))
(
𝑅𝑠𝑡+1,𝑠𝑡 ,𝑎𝑡 + 𝛾𝑉𝝅 (𝑠𝑡+1)

)
(3.4)

Here, 𝝅(𝑠𝑡 , 𝑎𝑡) : 𝑆 → 𝐴 is the probability of taking an action, 𝑎𝑡 , in the state, 𝑠𝑡 . 𝑅𝑠𝑡+1,𝑠𝑡 ,𝝅(𝑠𝑡 ) is the

reward of taking the action, 𝑎𝑡 , in the state, 𝑠𝑡 , with probability 𝝅(𝑠𝑡) and ending up in the new state

𝑠(𝑡+1) , 𝑃(𝑠𝑡+1 | (𝑠𝑡 , 𝑎𝑡)) as the probability of ending up in the new state 𝑠(𝑡+1) , knowing that the agent

is in the state, 𝑠𝑡 , and would take action, 𝑎𝑡 [113]. From the Bellman equation, (3.3), we desire to

derive the optimal policy that maximized the cumulative reward in each time step as follows:

𝑉∗(𝑠𝑡) = max
𝑎

∑︁
𝑠𝑡+1∈𝑆

𝑃(𝑠𝑡+1 | (𝑠𝑡 , 𝑎𝑡))
(
𝑅𝑠𝑡+1,𝑠𝑡 ,𝑎𝑡 + 𝛾𝑉𝝅 (𝑠𝑡+1)

)
(3.5)

Compared to 𝑉𝝅, there is another value function, 𝑄𝝅 (𝑠𝑡 , 𝑎𝑡), which focuses on maximizing the

cumulative rewards by considering the choice of action in the present state, 𝑠𝑡 :

∑︁
𝑠𝑡+1∈𝑆

𝑃(𝑠𝑡+1 | (𝑠𝑡 , 𝑎𝑡))
(
𝑅𝑠𝑡+1,𝑠𝑡 ,𝑎𝑡 + 𝛾

∑︁
𝑎𝑡+1∈𝐴

𝝅(𝑠𝑡+1, 𝑎𝑡+1)𝑄𝝅 (𝑠𝑡+1, 𝑎𝑡+1)
)
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Again, the optimal policy is the one that maximizes the value function as follow:

𝑄∗(𝑠𝑡 , 𝑎𝑡) =
∑︁
𝑠𝑡+1∈𝑆

𝑃(𝑠𝑡+1 | (𝑠𝑡 , 𝑎𝑡))
(
𝑅𝑠𝑡+1,𝑠𝑡 ,𝑎𝑡 + 𝛾 max

𝑎𝑡+1∈𝐴
𝑄𝝅 (𝑠𝑡+1, 𝑎𝑡+1)

)
(3.6)

We summarize the value function iteration, 𝑄-learning iteration, in Algorithm 1. This algo-

rithm will be used in Sections 3.2.2.1 and 3.2.2.2 to obtain the agent’s choices of actions and states,

by (𝑖) finding the maximum value function in each trajectory of choices and (𝑖𝑖) the optimal choice

policy that illustrates the agent’s behavior.

3.2.3 Maximum Entropy Inverse Reinforcement Learning (IRL)

During the learning process, what complicates the active shooter problem is the ambiguities in

determining the reward function. In other words, the uncertainties in the movement of obstacle and

the point-blank range form a dynamically changing environment with stochastic reward function

distribution. Despite uncertainties about the reward function, 𝑅∗, what is certain is the optimal

policy, 𝝅∗, which is reaching to survival states in the minimum number of time steps. Therefore,

by reversing the process of reinforcement learning, we can form a new learning process that learns

the unknown reward using the optimal policy 𝝅∗. Several studies propose reversing methodologies

to derive the optimal reward function [69], [3], [81]. However, it was not until Zeibart et al. [118]

that a solid approach was proposed, referred to as Maximum Entropy (IRL), to match the observed

policy and the agent’s behavior. In this paper, we use a tailored Maximum Entropy technique to

model the distribution of the behavior of civilians in the active shooter problem and match them

with the optimal survival policy.
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Algorithm 1: Value Function Iteration
Input: 𝝅(𝑠, 𝑎), |𝑆 |, 𝑃(𝑠𝑡+1 | (𝑠𝑡 , 𝑎𝑡 )), 𝑅, 𝛾
Function Optimal Value Deterministic
𝑉 ← 0
𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← 𝜖

𝑑𝑖 𝑓 𝑓 ←∞
while diff > Threshold do

for 𝑠 = 1, ..., |𝑆 | do
𝑉∗ ← −∞
for 𝑎 = 1, ..., |𝐴| do

𝑉∗ ← 𝑚𝑎𝑥

(
𝑉∗,

∑
𝑠′∈𝑆 𝑃(𝑠′ | (𝑠, 𝑎)) (𝑅𝑠,𝑎,𝑠′ + 𝛾𝑉 (𝑠′))

)
𝑑𝑖 𝑓 𝑓 ∗ ← 𝑚𝑎𝑥

(
𝑑𝑖 𝑓 𝑓 , |𝑉 (𝑠) −𝑉∗ |

)
end
if (𝑑𝑖 𝑓 𝑓 ∗ > 𝑑𝑖 𝑓 𝑓 ) then

𝑑𝑖 𝑓 𝑓 ∗ ← 𝑑𝑖 𝑓 𝑓

end
𝑉 (𝑠) ← 𝑉∗

end
end
for 𝑠 = 1, ..., |𝑆 | do

𝝅∗ ← argmax
𝜋

( ∑
𝑠′∈𝑆 𝑃(𝑠′ | (𝑠, 𝑎)) (𝑅𝑠,𝑎,𝑠′ + 𝛾𝑉 (𝑠′))

)
end

Function Find Policy
V∗ ← Function Optimal Value
if non-deterministic then

for 𝑠 = 1, ..., |𝑆 | & 𝑎 = 1, ..., |𝐴| do
𝑄(𝑎, 𝑠) ← ∑

𝑠′∈𝑆 𝑃(𝑠′ | (𝑠, 𝑎)) (𝑅𝑠,𝑎,𝑠′ + 𝛾𝑄(𝑎′, 𝑠′))
end
Q∗(𝑎, 𝑠) ← 𝑄 (𝑎,𝑠)∑

𝑠∈𝑆 𝑄 (𝑎,𝑠)
for 𝑠 = 1, ..., |𝑆 | do

𝝅∗ ← argmax
𝑎

(𝑄(𝑎, 𝑠))

end
end
Output:

𝝅∗, V∗(𝑠)
𝝅∗, Q∗(𝑎, 𝑠)

3.2.3.1 Maximum Entropy

The Maximum Entropy approach includes an agent who interacts with the environment and gets

feedback in the form of rewards and a learner who tries to model and imitate the behavior of the70



agent. From learner’s perspective, each agent’s behavior is modeled as a set of states and actions

Z = {(𝑠, 𝑎)}. By entering each state, 𝑠 𝑗 , the agent is assumed to activate a feature function, 𝑓𝑠, and

maps the vector of features of that state into the reward value, \𝑇 𝑓𝑠, where \ is the reward weight

vector. The reward value of a trajectory Z is simply the summation of the reward value vectors of

each state in the trajectory, and the probability of a trajectory chosen by the agent is:

R( 𝑓Z ) =
∑︁
𝑠∈Z

\𝑇 𝑓𝑠 → P(Z) = 𝑒R( 𝑓Z ) (3.7)

To implement the maximum entropy technique, we need to have an estimation of the agent’s

behavior and how it chooses the next steps starting from different positions in the grid environment.

To do so, adapted from [111], we propose a Generate Demonstration algorithm (Algorithm 2) to

produce a set of movement trajectories that start from a variety of positions and assimilates agent’s

choice distribution. In Algorithm 2, 𝑆𝑡𝑥,𝑦, and 𝑆𝑡𝑥,𝑦 are the position of trapped agents and the

position of the active shooter, respectively. At the beginning of the algorithm, these positions are

assigned randomly (𝑅𝑎𝑛𝑑𝑆𝑡). Later, it updates the next positions at the end of each iteration as a

result of the movement policy they choose. During the state transition process, 𝑠𝑡 → 𝑠(𝑡+1) , each

agent observes its current state, 𝑠𝑡 , and its distance from the location of the obstacle 𝑠𝑡 and selects

action 𝝅(𝑠𝑡) aligned with its current policy.
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Algorithm 2: Generate Demonstration
Input: 𝝅, |Z |, 𝑆𝑡𝑥,𝑦 , 𝑆𝑡𝑥,𝑦 , 𝑅𝑎𝑛𝑑𝑆𝑡 (Random start or not),𝑝𝑑(probability of deviating optimal
policy)
Z ← 0
b ← [0]
for 𝑖 = 1, ..., |Z | do

if 𝑅𝑎𝑛𝑑𝑆𝑡 then
𝑆𝑡𝑥,𝑦 ← 𝑟𝑎𝑛𝑑𝑜𝑚( [0, 0], [𝑁, 𝑁])

end
𝑆𝑖,1, 𝑆𝑖,0, 𝑎𝑖,0, 𝑟𝑖,0 = argmax

𝑠′∈𝑆
𝝅(𝑆𝑡𝑥,𝑦 , 𝑎), 𝑆𝑡𝑥,𝑦 , argmax

𝑎∈𝐴
𝝅(𝑆𝑡𝑥,𝑦),R(𝑆𝑡𝑥,𝑦 , 𝝅(𝑆𝑡𝑥,𝑦))

for 𝑗 = 1, ..., |Z | do
𝑆𝑖, 𝑗+1, 𝑆𝑖, 𝑗 , 𝑎𝑖, 𝑗 , 𝑟𝑖, 𝑗 = argmax

𝑠′∈𝑆
𝝅(𝑆𝑖, 𝑗 , 𝑎), 𝑆𝑡𝑖, 𝑗 , argmax

𝑎∈𝐴
𝝅(𝑆𝑖, 𝑗),R(𝑆𝑖, 𝑗 , 𝝅(𝑆𝑖, 𝑗))

b𝑖, 𝑗 ← (𝑆𝑖, 𝑗+1, 𝑆𝑖, 𝑗 , 𝑎𝑖, 𝑗 , 𝑟𝑖, 𝑗)
end
Z𝑖 ← b𝑖

end
Output: Z

As an input for Maximum Entropy Imitation algorithm, we need to know about the State

Visitation Frequency (SVF). Therefore, the learner computes the SVF vector using equation (3.8),

P(𝑠) =
∑︁
𝑡

`𝑡 (𝑠) (3.8)

where `𝑡 (𝑠) is the probability of visiting state 𝑠 at time 𝑡, and P(𝑠) is the visitation frequency of

state 𝑠. In each time step, the learner calculates `𝑡 (𝑠) by solving the value iteration problem under

the non-deterministic space.

`𝑡+1(𝑠) =
∑︁
𝑠𝑡+1∈𝑆

∑︁
𝑎𝑡∈𝐴

`𝑡 (𝑠)𝝅(𝑠, 𝑎)P(𝑠𝑡+1 | (𝑠𝑡 , 𝑎𝑡)) (3.9)

where the learner calculates the optimal policy, 𝝅(𝑠, 𝑎), and transition probability P(𝑠𝑡+1 | (𝑠𝑡 , 𝑎𝑡))

by solving MDP and DP. In Algorithm 3, we illustrate the SVF computation procedure using MDP.
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The output of this algorithm is a vector, P( |𝑆 |×1) , with the elements showing the expected frequency

of visiting each state, 𝑠 ∈ 𝑆.

Algorithm 3: State Visitation Frequency
Input: Z ← Algorithm 2, |𝑆 |, |𝐴|, P(𝑠𝑡+1 | (𝑠𝑡 , 𝑎𝑡 )), 𝛾
`← 0
for b in Z do

Zb0,0 ← Zb0,0 + 1
end
Zb0,0 =

Zb0 ,0
Z

for 𝑠 = 1, ..., |𝑆 | do
for b = 1, ..., (Z − 1) do

if 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐 then
`Z𝑠′ [b+1] =

∑
𝑠∈𝑆 `Z𝑠′ [b ]P(𝑠 | (𝑠, 𝜋(𝑠)))

end
else

`Z𝑠′ [b+1] =
∑
𝑎∈𝐴

∑
𝑠∈𝑆 `Z𝑠′ [b ]P(𝑠 | (𝑠, 𝑎))𝜋(𝑎, 𝑠)

end
end

end
𝑝 =

∑
𝑠∈𝑆 `Z𝑠

Output: 𝑃

To imitate the agent’s behavior, the learner uses an estimation of reward weight, which maxi-

mizes the likelihood of its behavior to the agent’s state-action trajectory. That is:

\∗ = argmax
\

L(\) = argmax
\

1
|Z |P(Z |\) = argmax

\

1
|Z |

∑︁
Z

R(Z) − 𝑙𝑜𝑔
∑︁
Z

𝑒R(Z) (3.10)

Finally, finding the gradients, the learner assimilates its behavior to the agent’s by differentiating

equation (3.10) on R(Z):

▽\𝐿 =
1
|Z |

∑︁
𝑠∈Z

𝑓𝑠 −
∑︁
𝑠∈Z

P(𝑠 |\) 𝑓𝑠 (3.11)
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where P(𝑠 |\) is the frequency of visiting state, 𝑠. Algorithm 4 represents the application of

the maximum entropy technique in the agent’s behavior imitation. The output of the algorithm is

a reward weights matrix most similar to the one aligned with the performance of the agent.

Algorithm 4: Maximum Entropy Imitation
Input: Z ← Algorithm 2, 𝑓Z , |𝑆 |, |𝐴|, P(𝑠𝑡+1 | (𝑠𝑡 , 𝑎𝑡 )), 𝛾, 𝛼
𝑁 = |𝐻 | × |𝑊 |

𝑓𝑛,𝑛 =
©«
0 · · · 0
...

. . .
...

0 · · · 0

ª®®¬
for 𝑘 = 1, ..., 𝑁 do

for 𝑖 = 1, ..., |𝐻 | do
for 𝑗 = 1, ..., |𝑊 | do

𝑘𝑥, 𝑘𝑦 ← 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑘)
𝑓𝑘, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 [𝑖, 𝑗 ] = |𝑘𝑦 − 𝑗 | + |𝑘𝑥 − 𝑖 |

end
end

end
\ ← 𝑟𝑎𝑛𝑑𝑜𝑚𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚( | 𝑓Z |)
𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛← 0
𝑓𝑒𝑥𝑝 ← 0
for b in Z do

for 𝑖 in b do
𝑓𝑒𝑥𝑝 = 𝑓𝑒𝑥𝑝 + 𝑓b ,𝑖

end
end
𝑓𝑒𝑥𝑝 ←

𝑓𝑒𝑥𝑝
|Z |

for 𝑡 in 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 do
𝑅 ← ∑

𝑠∈Z \
𝑇 𝑓𝑠

𝜋 ← Algorithm 1
𝑆𝑉𝐹 ← Algorithm 3
▽← 𝑓𝑒𝑥𝑝 − 𝑓 × 𝑆𝑉𝐹
\ ← \ + 𝛼▽
𝑅 ← \𝑇 𝑓

end
Output: \𝑇 𝑓
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3.2.3.2 Inverse Reinforcement Learning (IRL): A Case in Active Shooting Incidents

Building upon Algorithms 1-4, we propose a tailored maximum entropy inverse reinforcement

learning (IRL) algorithm (shown in Algorithm 5) to identify the optimal reward weight for each

block in the grid world environment considering the uncertainties in the moves of the obstacle,

the point-blank range, and each agent’s choice distribution. We assume that each person will pick

the shortest path from her current position to the nearest exit/hiding place, if not interfered with

by the active shooter. In each time-step, we convert the two-dimension position of each individual

to an equivalent integer number, which represents their current states, and we accumulate them

to track the length of their escape paths. Further, the algorithm converts the coordinates of the

hiding places and entrances/exits into equivalent integers to track the number of civilians currently

locating to that cell. The model assumes that at most one block movement is possible in each time

step, and each individual has notions of the position of the shooter, the estimation of point-blank

range, and the like. Note that we define a set of danger states, in size to the point-blank range, in

which an agent might shot with a high probability.

The Algorithm starts with forming a grid environment and distributing the agents and obstacles

randomly. The initial reward weight matrix, \, will be chosen randomly. For each agent and

active shooter, a set of neighboring locations, on the left, right, bottom, and top of the present

location is defined. Let us now define a set of parameters to assess the model performance:

• 𝑉𝐻: to denote the percentage of civilians who are able to reach into the hiding cells, i.e.,

𝑉𝐻 =

∑𝑀𝑎𝑥𝑇𝑟𝑖𝑎𝑙
𝑖=1 𝑉 𝑖

𝐻

𝑀𝑎𝑥𝑇𝑟𝑖𝑎𝑙

• 𝑉𝐸 : to denote the percentage of civilians who are able to exit the threat area via the exit cells,

i.e., 𝑉𝐸 =

∑𝑀𝑎𝑥𝑇𝑟𝑖𝑎𝑙
𝑖=1 𝑉 𝑖

𝐸

𝑀𝑎𝑥𝑇𝑟𝑖𝑎𝑙
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Algorithm 5: Maximum Entropy Inverse Reinforcement Learning
Input: grid environment, P(𝑠𝑡+1 | (𝑠𝑡 , 𝑎𝑡 ))
𝑆𝑡𝑥,𝑦 (∀𝐴𝑔𝑒𝑛𝑡𝑠), 𝑆𝑡𝑥,𝑦 (𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒)
𝑁𝑥,𝑦 ← array 1 × 4 four blocks neighboring the block with the coordinate (𝑥, 𝑦) (∀𝑎𝑔𝑒𝑛𝑡𝑠)
𝑁𝑥,𝑦 ← array 1 × 4 four blocks neighboring the block with the coordinate (𝑥, 𝑦) (𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒)
\0 ← 𝑅𝑎𝑛𝑑𝑜𝑚(\)
\∗ ← \0

𝑉0, 𝜋0 ← Algorithm 1, \∗
V∗, 𝝅∗ ← 𝑉0, 𝜋0

𝑉𝐻 , 𝑉𝐸 , 𝑉𝑅𝐼𝑆𝐾 ← 0, 0, 0
𝑡 ← 0
for 𝑖 = 1, ..., 𝑀𝑎𝑥𝑇𝑟𝑖𝑎𝑙 do

while 𝑡 < 𝑚𝑎𝑥𝑇𝑖𝑚𝑒 do
for 𝑘 = 1, ..., |𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑛𝑔 | do

𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑎𝑔𝑒𝑛𝑡 [1, 𝑘] = neighboring location in the ith side of 𝑆𝑡𝑥,𝑦
𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 [1, 𝑘] = neighboring location in the ith side of 𝑆𝑡𝑥,𝑦

end
Z𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 ← Random with more weight toward more occupied blocks
Z𝐴𝑔𝑒𝑛𝑡 ← Shortest path to hiding places and exit blocks, while keeping distance from
obstacle (∀𝑎𝑔𝑒𝑛𝑡𝑠)

Algorithm 3← Algorithm 4, Z
\∗ ← Algorithm 3
V∗, 𝝅∗ ←Algorithm 1, \∗
𝑆𝑡𝑥,𝑦 , 𝑆𝑡𝑥,𝑦 ← Algorithm 2, 𝑉∗, 𝜋∗
for 𝑘 = 1, ..., |𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑛𝑔 | do

if 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛∀𝐴𝑔𝑒𝑛𝑡 [1, 𝑘] = 𝑆𝑡𝑥,𝑦 then
𝑁𝑥,𝑦 [1, 𝑘] ← 𝑆𝑡𝑥,𝑦

end
if 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 [1, 𝑘] = 𝑆𝑡𝑥,𝑦 then

𝑁𝑥,𝑦 [1, 𝑘] ← 𝑆𝑡𝑥,𝑦
end

end
𝑡 ← 𝑡 + 1

end
𝑆𝑡𝑥,𝑦 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑥,𝑦 (𝑁𝑥,𝑦)
𝑆𝑡𝑥,𝑦 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑥,𝑦 (𝑁𝑥,𝑦)
𝑉 𝑖
𝐻
, 𝑉 𝑖
𝐸
, 𝑉 𝑖
𝑅𝐼𝑆𝐾

← 𝑆𝑡𝑥,𝑦 (∀𝑎𝑔𝑒𝑛𝑡)
end

Output: 𝑉𝐻 =

∑𝑀𝑎𝑥𝑇𝑟𝑖𝑎𝑙
𝑖=1 𝑉 𝑖

𝐻

𝑀𝑎𝑥𝑇𝑟𝑖𝑎𝑙
, 𝑉𝐸 =

∑𝑀𝑎𝑥𝑇𝑟𝑖𝑎𝑙
𝑖=1 𝑉 𝑖

𝐸

𝑀𝑎𝑥𝑇𝑟𝑖𝑎𝑙
, 𝑉𝑅𝐼𝑆𝐾 =

∑𝑀𝑎𝑥𝑇𝑟𝑖𝑎𝑙
𝑖=1 𝑉 𝑖

𝑅𝐼𝑆𝐾

𝑀𝑎𝑥𝑇𝑟𝑖𝑎𝑙

• 𝑉𝑅𝐼𝑆𝐾 : to denote the percentage of civilians who are still freely floating within the threat

area (i.e., the ones who are unable to reach the hiding/exit cells), i.e., 𝑉𝑅𝐼𝑆𝐾 =

∑𝑀𝑎𝑥𝑇𝑟𝑖𝑎𝑙
𝑖=1 𝑉 𝑖

𝑅𝐼𝑆𝐾

𝑀𝑎𝑥𝑇𝑟𝑖𝑎𝑙
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where, 𝑖 and MaxTrial stand for individual trial and maximum number of the trials used in our

experiments, respectively. To be specific, the Algorithm 5 generates a number of trials, MaxTrial,

in which the active shooter chooses a random trajectory across the environment. In each trial, the

algorithm (𝑖) builds a set of movement trajectories, Z , aligned with the shortest paths to hiding and

exit blocks and considering the longest possible distance from the active shooter, (𝑖𝑖) calculates

the state visitation frequency aligned with the optimal policy 𝝅∗, (𝑖𝑖𝑖) obtain the gradient ▽\𝐿 and

update the reward weight matrix of \ for the next time step, (𝑖𝑣) finds the optimal value function,

V∗, and policy, 𝝅∗, for the corresponding reward, \, obtained from step (𝑖𝑖), (𝑣) aligned with the

given policy, 𝝅∗ and updated the position of civilians and shooter(s), and consequently, the number

of civilians who are endangered, have exited, hidden, and are still inside the threat area. After

experiencing all the number of trials, the model calculates the overall performance metrics given

the ones computed for the individual trials. The output of Algorithm 5 is the overall safety metrics

for the threat area.

3.3 Experimental Results

This section first presents a test grid to visualize and validate the experimental results. We then

summarize the key lessons learned from running the experiments under different simulated active

shooter situations. All the solution algorithms are coded in Python 3.7.6 on a desktop computer

with Intel Core i7 3.6 GHz processor and 32.0 GB RAM.

3.3.1 Input Parameters

Figure 3.2 shows a 10×10 test grid facility that we have considered as a test-bed to visualize

and validate our modeling results. The facility has three entrances/exits (grid 6, 51, and 96), four
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blocked grids (grid 23, 28, 73 and 77), and a hiding grid (grid 47). Later, we test this base facility

with varying entrance/exit and hidden grid configurations. We assume that the shooter will enter

the facility from one of the entrances and reach to her/his destination by visiting different grids

during this active shooting period. Note that approximately 70 % of the past active shooter incidents

ended in less than 5 minutes (11 % among them ended in less than 2 minutes [84]). As such,

we designed our experiments such that they could include even extreme cases of active shooter

incidents. Fixing the duration of the experiments to 𝑇 seconds, we assumed that the attacker would

have at least 𝑇 seconds to move across the environment before law enforcement intervenes in his

or her action. The agents will have 15 seconds in each time period to follow their assigned policy.

In our experiments, the base configuration and input parameters are evaluated under four different

simulation scenarios, i.e., 𝑇 = {75, 90, 105, 120} seconds.

Figure 3.2

10×10 test grid facility
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3.3.2 Lessons Learned

In this section, first, we evaluate the performance of the proposed approach using the base

case. Afterward, we will vary some of the key input parameters, such as the number of hidden

grids |𝐺ℎ |, entrances/exits |𝐺𝑒 |, shooting range of the attacker, and the initial distribution of

civilians in our 10 × 10 test grid facility (shown in Figure 3.2), to derive important lessons for

the decision-makers. We believe that the metrics developed in this study provides a customized

tool for decision-makers to design a safe and reliable facility and assess the safety of the existing

facility. Since our experiments are subject to stochasticity, 50 trials are conducted to validate and

denote the safety metrics’ value throughout the experiments. Moreover, for base input parameters

as discussed in Section 3.3.1, to represent the impact of simulation time on the safety metrics, four

different simulation times, i.e., 75, 90, 105, 120 seconds, are evaluated (See Table 3.1). Table

3.1 represents the average, standard deviation, maximum, and minimum value of the metrics over

50 trial in each simulation time scenario (The detailed information of trial-specific metrics are

presented in Appendix A5). It can be observed that when the simulation time increases from

75 seconds to 120 seconds, percentage of individuals (175 in our experiments) who could exit

the threat area increases from 52.89 % to 67.03 %. To further visualize the individuals’ overall

behavior over time, we use the information related to the first trial and simulation time equal to

75 seconds. Figure 3.3 represents the values of performance metrics, 𝑉1
𝐸
, 𝑉1

𝐻
, and 𝑉1

𝑅𝐼𝑆𝐾
, over

five consecutive time periods 𝑡 = {0, 15, 30, 45, 60, 75}. The results corresponding to the first

trial indicates that the curve 𝑉1
𝐻

stabilizes after 45 seconds. On the other hand, we notice that

the values or performance measures 𝑉1
𝐸

and 𝑉1
𝑅𝐼𝑆𝐾

increase and decrease till the end of simulation

time (45 seconds), respectively. This might be due to the availability of the current entrance/exit
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configurations (|𝐺𝑒 | = 3), the initial and updated positions of the civilians and shooter, and the

attacker’s shooting range or a combination thereof. Moreover, using Maximum Entropy IRL, we

derive the corresponding reward values for all unblocked grids, 𝑅(𝑠), in different time periods,

which describe the best optimal policy that could be undertaken dynamically in different grids

in our test facility under an active shooting situation. Figure 3.4 demonstrates how the reward,

𝑅(𝑠), from the majority of the individuals are changing in different grids concerning the shooter’s

position on different time periods (when the simulation time is fixed to 𝑡 = 75 seconds under the

first trial).

Table 3.1

The sumary of performance metrics over 50 trials (in %)

T=75 T=90 T=105 T=120

statistics 𝑉𝐻 𝑉𝐸 𝑉𝑅𝐼𝑆𝐾 𝑉𝐻 𝑉𝐸 𝑉𝑅𝐼𝑆𝐾 𝑉𝐻 𝑉𝐸 𝑉𝑅𝐼𝑆𝐾 𝑉𝐻 𝑉𝐸 𝑉𝑅𝐼𝑆𝐾

Average 8.48 52.89 38.54 8.5 59.76 31.69 8.54 64.43 27.02 8.58 67.03 24.42

Standard Deviation 0.24 3.71 3.74 0.22 3.69 3.71 0.18 3.78 3.79 0.12 3.71 3.71

Max 8.6 58.3 43.4 8.6 65.1 37.1 8.6 70.3 32.6 8.6 73.1 30.3

Min 8 48 33.1 8 54.3 26.3 8 58.9 21.1 8 61.1 18.3

The base case experimental results indicate that the system performance may be susceptible

to the input parameters. Note that the explored environment in this study is hypothetical and all

the calculated results are based on limited numerical simulations. Nevertheless, running several

experiments and doing sensitivity analysis, we are to evaluate the fact that if the proposed framework

can successfully function following the embedded environmental characteristics. The following
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Figure 3.3

Impact of 𝑉1
𝐻

, 𝑉1
𝐸
, and 𝑉1

𝑅𝐼𝑆𝐾
under base input parameters when simulation time is 75 seconds.

(a) 𝑡 = 15 (b) 𝑡 = 30 (c) 𝑡 = 45

(d) 𝑡 = 60 (e) 𝑡 = 75
Figure 3.4

Reward illustration for first trial when simulation time is 75 seconds
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lessons summarize our observation of the numerical simulations for the case where the simulation

time is fixed to 75 seconds.

Lesson 1: Building configurations (e.g., location and number of entrances/exits, hiding places)

play a significant role in the safety of civilians under an active shooter incident.

The results in Figures 3.5 and 3.6 support this observation. The graphs demonstrate the impact

of 𝑉𝐻 , 𝑉𝐸 , and 𝑉𝑅𝐼𝑆𝐾 under different hiding and entrance/exit configurations. Appendix A6 shows

different hiding and entrance/exit configurations (locations and numbers) for the tested facility,

where |Gℎ | and |G𝑒 | are set as |Gℎ | = {1, 2, 3, 4} and |G𝑒 | = {1, 2, 3, 4}, respectively. Note that,

for the base case, we set |Gℎ | = 1 and |G𝑒 | = 3. We summarize a few of our key observations

below:

• Given capacity restrictions for the hiding grids (e.g., {𝑣𝑔}∀𝑔∈Gℎ = 10 civilians for our base case

experimentations), we realize that the location and number of entrance/exit configurations

are more sensitive to an active shooter situation over the hiding configurations. For instance,

when |G𝑒 | increases from 1 to 4, then 𝑉𝐸 increases from 5.7% to 71.4%, respectively, while

𝑉𝑅𝐼𝑆𝐾 drops down to 20.1% from 85.7%. On the other hand, when |Gℎ | increases from 1 to

4, 𝑉𝐻 increases from 8.5% to 34.2%, but both 𝑉𝐸 and 𝑉𝑅𝐼𝑆𝐾 drops from 51.4.3% to 37.14%

and 40.3% to 28.5%, respectively. The rate of dropping for 𝑉𝐸 and 𝑉𝑅𝐼𝑆𝐾 clearly indicates

that the entrance/exit configurations are more sensitive to an active shooter incident over the

hiding configurations.

• It is interesting to note that for |Gℎ | = 4, the civilians utilized 100% of the hiding capacity after

75 seconds. This number was only 53.3% and 78.3% after 15 and 30 seconds, respectively,

from the onset of the shooting. Based on our experimental study (under pre-specified
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modeling assumptions and experimental conditions), we observe that civilians have higher

preferences for exiting the threat area rather than hiding into the facility.

(a) 𝑉𝐻 vs. time (b) 𝑉𝐸 vs. time

(c) 𝑉𝑅𝐼𝑆𝐾 vs. time
Figure 3.5

Impact of 𝑉𝐻 , 𝑉𝐸 , and 𝑉𝑅𝐼𝑆𝐾 under different hiding configurations.

Lesson 2: Initial distribution of civilians has an impact on recovery from an active shooter

incident.

The results in Figure 3.7 show the gravity of the initial distribution of civilians on performance

measures, 𝑉𝐸 and 𝑉𝑅𝐼𝑆𝐾 . Before delving into the details, let us first introduce Table 3.2, which

lists different initial civilian distributions for our experiments. These distributions are depicted in

Appendix A7. As can be seen, the base distribution is constructed by assuming that the civilians
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(a) 𝑉𝐸 vs. time (b) 𝑉𝑅𝐼𝑆𝐾 vs. time
Figure 3.6

Impact of 𝑉𝐸 and 𝑉𝑅𝐼𝑆𝐾 under different entrance/exit configurations.

are uniformly distributed over the entire test region, while the remaining cases are constructed

based on an idea that 70% of the civilians are uniformly distributed in one end of the test region,

i.e., left distribution, right distribution, up distribution, and down distribution. Further, to run

the experiments, we kept the base values for |Gℎ | and |G𝑒 |, i.e., |Gℎ | = 1 and |G𝑒 | = 3 (see Figure

3.2). We summarize a few of our key observations below:

• Results in Figure 3.7(a) indicate that the left and down initial distribution of the civilians

significantly increases𝑉𝐸 over the other distributions (e.g., base, right, and up distributions).

For instance, after 75 seconds from the onset of the active shooter incident, the 𝑉𝐸 drops

down for the left and down initial distribution of the civilians to approximately 67.4% and

57.1%, respectively, while in the same time, the 𝑉𝐸 only drops down to 44% under the up

initial distribution case. This is primarily due to the fact the shooter entered into the facility

from the upper entrance (see Figure 3.2), which resulted in the civilians to evade using that

exit and instead utilizing more on the right and downside exits.
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• We observe similar observations for the 𝑉𝑅𝐼𝑆𝐾 measure, which drops significantly for the

left and down initial distribution of the civilians over the other distributions (See Figure

3.7(b)). For instance, after 75 seconds from the onset of the active shooter incident, the

𝑉𝑅𝐼𝑆𝐾 drops down for the left and down initial distribution of the civilians to approximately

24.3% and 34.1%, respectively, while the number is approximately 47.5% for the up initial

distribution. The results provide several managerial insights to decision-makers, such as, the

rate of the casualty may differ on the different time periods of the day, e.g., the majority of

the students are on the left and right side of the facility during the class period which may

not be the case under lunch period. Further, the entrance of the shooter and the availability of

multiple exits and their locations may help to facilitate the movement of the civilians under

an active shooter situation.

• The results in Figure 3.7(c) demonstrate the utilization of the hidden place under different

civilian distribution configurations. As can be seen in Figure 3.7(c) that after 75 seconds

from the onset of the active shooter incident, only 26.6% of the hidden place is utilized

for the left distribution, while the number is nearly 93.3% for the right initial civilian

distribution. Further, after 45 seconds, the hidden place is entirely utilized irrespective of

the civilian distribution. Though a different configuration and number of hidden places may

end up with different results, it can be generally stated that their positions and numbers shall

have an impact on dropping the 𝑉𝑅𝐼𝑆𝐾 measure under an active shooter incident.
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Table 3.2

Initial distribution of civilians over the test region

Item Description

Base distribution Civilians are uniformly distributed over the entire region

Left distribution 70% of the civilians are uniformly distributed over the left-side of the region

Right distribution 70% of the civilians are uniformly distributed over the right-side of the region

Up distribution 70% of the civilians are uniformly distributed over the upper-side of the region

Down distribution 70% of the civilians are uniformly distributed over the down-side of the region

(a) 𝑉𝐸 vs. time (b) 𝑉𝑅𝐼𝑆𝐾 vs. time

(c) Utilization of the hidden place
Figure 3.7

Impact of 𝑉𝐸 , 𝑉𝑅𝐼𝑆𝐾 , and hidden place utilization under different civilian distribution.
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Lesson 3: Shooting range and accuracy has an impact on recovery from an active shooter

incident.

The results in Figure 3.8 support this observation. It can be observed that the shooting range

and the accuracy of the gun, carried by the shooter, has an impact on the performance measure

𝑉𝑅𝐼𝑆𝐾 . We assume that the shooter will enter into the facility with a fully-loaded pistol. Before

delving into the details of our results, let us first introduce different possible shooting ranges (range

1 to 4) and accuracy levels (45%, 60%, 75%, and 90%) that we use in our experimental setup

(shown in Appendix A4). First figure in Appendix A4 demonstrates different possible shooting

ranges of the gun, which may be carried by the shooter. As can be seen that depending on the

type of firearm being used, more civilians may fall under the shooting range of the shooter, which

greatly increases the security concerns (assuming no obstacles are in between). On the other hand,

for a given shooting range, the accuracy of the shooter will also significantly increase the security

concerns for the civilians (assuming again that no obstacles are in between). This cumbersome

relationship is depicted in a three-dimensional plot in Figure 3.8. The results essentially convey

two major findings.

• First, for a given shooting range, the 𝑉𝑅𝐼𝑆𝐾 increases with an increase in shooter’s shooting

accuracy. For instance, in range 1, 𝑉𝑅𝐼𝑆𝐾 increases from 6% to 14%, when the shooting

accuracy increases from 45% to 90%, respectively (see Figure 3.8). For range 4, this

performance metric increases from 42% to 68%, when the shooting accuracy again increases

from 45% to 90%, respectively. The above results indicate that the shooter’s prior shooting

experiences can prove to be deadly, which can greatly increase the security concern in an

active shooter situation.

87



• Second, for a given shooting accuracy, the 𝑉𝑅𝐼𝑆𝐾 increases with an increase in shooting

range. For instance, for a shooting accuracy of 45%,𝑉𝑅𝐼𝑆𝐾 increases from 6% to 42%, when

the shooting range increases from range 1 to 4, respectively (see Figure 3.8). We also observe

the similar increasing trend for shooting ranges, given the shooting accuracy remains fixed

for that experiment. The above results indicate that the quality of the firearm carried by the

shooter may pose serious security concerns to the civilians under an active shooter incident.

Figure 3.8

𝑉𝑅𝐼𝑆𝐾 vs. shooting range and accuracy. Note that 𝑉𝑅𝐼𝑆𝐾 denotes the percentage of civilians who
are still freely floating within the threat area.

3.4 Conclusions and Future Work

This study proposes a dynamic maximum entropy inverse reinforcement learning technique

to model the behavior of the shooter and the trapped civilians under an active shooter incident.

We derive a number of insights by demonstrating the proposed technique in a testing facility.
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We methodologically demonstrate that building configurations (e.g., location and number of en-

trances/exits, hiding places) can play a significant role in the safety of civilians under an active

shooter situation. We further demonstrate that the casualty rate may differ in the different periods

of the day (e.g., lunchtime vs. class time in a school setting) when the civilians may initially locate

in different locations (e.g., classroom, cafeteria). Finally, we demonstrate that the shooter’s prior

shooting experiences or the firearm carried may pose serious security concerns to the civilians

under an active shooter incident. We believe our proposed technique holds promise to assess the

safety and security of various vulnerable facilities (e.g., schools, hospitals, shopping malls) against

a possible active shooter incident.

This study can be extended in several research directions. First, all the insights generated

in this study are based on pure numerical simulation without any validation or comprehensive

incorporation of realistic human behavior in the simulation model. Therefore, such insights may not

be applicable to realistic situations. To alleviate such challenges and to generate reliable insights,

future studies will focus on collecting human evacuation behavioral data via various existing

research methods (e.g., virtual reality [54, 116], hypothetical surveys [90, 61], and controlled

experiments [68, 31]) and incorporate such behavioral data into our proposed modeling framework.

Second, we aim to integrate advanced choice theory models in our proposed framework in an

attempt to explain human behavior and the possible trajectories that resulted from the behaviors

under an active shooter incident. Finally, this study considers a hypothetical test facility to

demonstrate the performance of the proposed learning algorithm. Efforts will be paid in future

studies to demonstrate the performance of the learning algorithm in assessing the safety and security
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of different realistic environments under an active shooter situation, such as school buildings,

hospitals, shopping malls, and related facilities.
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A.1 Summary of sets, parameters, and decision variables for chapter 2

• I: set of alternatives

• N : set of civilian

• G𝑏: set of blocked grids

• G𝑢: set of unblocked grids

• G𝑒: set of entrance/exit grids

• G𝑎: set of threat grids

• Gℎ: set of hiding grids

• G: set of grids where G = G𝑏⋃G𝑢 and G𝑏⋂G𝑢 = ∅

• G𝑔: subset of neighboring cells for grid 𝑔 ∈ G𝑢

• G𝑔,𝑖: subset of neighboring cells for grid 𝑔 ∈ G𝑢 given action 𝑖 ∈ I is undertaken

• I𝑔: subset of alternatives that can end up in 𝑔 ∈ Gℎ

• G′
𝑔,𝑖

: subset of neighboring cells for grid 𝑔 ∈ Gℎ given action 𝑖 ∈ I𝑔 is undertaken

Parameters:

• 𝜋𝑛: cognitive delay of civilian 𝑛 ∈ N

• 𝑣𝑔: hiding capacity for the civilians in grid 𝑔 ∈ Gℎ

• 𝑡𝑔𝑔′: standard average travel time for a civilian to run from grid 𝑔 ∈ G𝑢 to 𝑔′ ∈ G𝑔

• 𝑡𝑛𝑔𝑔′: realized running time for civilian 𝑛 ∈ N located in grid 𝑔 ∈ G𝑢 to 𝑔′ ∈ G𝑔

• Z𝑔: a 0/1 indicator which refers the proximity of shooter to grid 𝑔 ∈ G𝑢

Decision Variables:

• 𝑌𝑖𝑛𝑔: 1 if alternative 𝑖 ∈ I is available to civilian 𝑛 ∈ N located in grid 𝑔 ∈ G𝑢; 0 otherwise
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• 𝑌𝑖𝑛𝑔𝑟 : 1 if alternative 𝑖 ∈ I is available to civilian 𝑛 ∈ N located in grid 𝑔 ∈ G𝑢 under

scenario 𝑟 = 1, 2, ..., 𝑅; 0 otherwise

• 𝑍𝑖𝑛𝑔𝑟 : 1 if alternative 𝑖 ∈ I is chosen by civilian 𝑛 ∈ N located in grid 𝑔 ∈ G𝑢 under scenario

𝑟 = 1, 2, ..., 𝑅; 0 otherwise

• 𝑍𝑖𝑛𝑔𝑔′𝑟 : 1 if choosing alternative 𝑖 ∈ I let the civilian 𝑛 ∈ N move from grid 𝑔 ∈ G𝑢 to grid

𝑔′ ∈ G𝑔,𝑖 under scenario 𝑟 = 1, 2, ..., 𝑅; 0 otherwise

• 𝑋𝑖𝑛𝑔𝑟 : to representing the discounted utility associated with alternative 𝑖 ∈ I chosen by

civilian 𝑛 ∈ N located in grid 𝑔 ∈ G𝑢 under scenario 𝑟 = 1, 2, ..., 𝑅

• 𝑈𝑖𝑛𝑔𝑟 : the utility associated with choosing alternative 𝑖 ∈ I by civilian 𝑛 ∈ N located in grid

𝑔 ∈ G𝑢 under realization 𝑟 = 1, 2, ..., 𝑅

• 𝑈𝑛𝑔𝑟 : the highest discounted utility associated with choosing an alternative by civilian 𝑛 ∈ N

located in grid 𝑔 ∈ G𝑢 under realization 𝑟 = 1, 2, ..., 𝑅

A.2 Proof of Proposition 1

Proof. We prove this by constructing two cases as shown below:

Case 1: For the first case, we assume that𝑌𝑖𝑛𝑔𝑟 = 1. With this,∀𝑖 ∈ I, 𝑛 ∈ N , 𝑔 ∈ G𝑢, 𝑟 = 1, 2, ..., 𝑅

constraints (3.4)-(3.7) become:

𝑙𝑛𝑔𝑟 ≤ 𝑋𝑖𝑛𝑔𝑟 (A.1a)

𝑋𝑖𝑛𝑔𝑟 ≤ 𝑙𝑛𝑔𝑟 + 𝜙𝑖𝑛𝑔𝑟 (A.1b)

𝑈𝑖𝑛𝑔𝑟 ≤ 𝑋𝑖𝑛𝑔𝑟 (A.1c)

𝑋𝑖𝑛𝑔𝑟 ≤ 𝑈𝑖𝑛𝑔𝑟 (A.1d)
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Constraints (A.1c) and (A.1d) ensure that 𝑋𝑖𝑛𝑔𝑟 = 𝑈𝑖𝑛𝑔𝑟 ;∀𝑖 ∈ I, 𝑛 ∈ N , 𝑔 ∈ G𝑢, 𝑟 = 1, 2, ..., 𝑅.

We plug this enforcement into equations (A.1a) and (A.1b) for each 𝑖 ∈ I, 𝑛 ∈ N , 𝑔 ∈ G𝑢, and

𝑟 = 1, 2, ..., 𝑅 and obtain the following:

𝑙𝑛𝑔𝑟 ≤ 𝑈𝑖𝑛𝑔𝑟 (A.2a)

𝑈𝑖𝑛𝑔𝑟 ≤ 𝑙𝑛𝑔𝑟 + 𝜙𝑖𝑛𝑔𝑟 = 𝑙𝑛𝑔𝑟 + (𝜙𝑖𝑛𝑔𝑟 − 𝑙𝑛𝑔𝑟) = 𝜙𝑖𝑛𝑔𝑟 (A.2b)

The validity of constraints (A.2a) and (A.2b) are ensured via constraint (3.8).

Case 2: For the second case, we assume that 𝑌𝑖𝑛𝑔𝑟 = 0. With this, ∀𝑖 ∈ I, 𝑛 ∈ N , 𝑔 ∈ G𝑢, 𝑟 =

1, 2, ..., 𝑅 constraints (3.4)-(3.7) become:

𝑙𝑛𝑔𝑟 ≤ 𝑋𝑖𝑛𝑔𝑟 (A.3a)

𝑋𝑖𝑛𝑔𝑟 ≤ 𝑙𝑛𝑔𝑟 (A.3b)

𝑈𝑖𝑛𝑔𝑟 − 𝜙𝑖𝑛𝑔𝑟 ≤ 𝑋𝑖𝑛𝑔𝑟 (A.3c)

𝑋𝑖𝑛𝑔𝑟 ≤ 𝑈𝑖𝑛𝑔𝑟 (A.3d)

Constraints (A.3a) and (A.3b) ensure that 𝑋𝑖𝑛𝑔𝑟 = 𝑙𝑛𝑔𝑟 ;∀𝑖 ∈ I, 𝑛 ∈ N , 𝑔 ∈ G𝑢, 𝑟 = 1, 2, ..., 𝑅.

We plug this enforcement into equations (A.3c) and (A.3d) for each 𝑖 ∈ I, 𝑛 ∈ N , 𝑔 ∈ G𝑢, and

𝑟 = 1, 2, ..., 𝑅 and obtain the following:

𝑈𝑖𝑛𝑔𝑟 − 𝜙𝑖𝑛𝑔𝑟 = 𝑈𝑖𝑛𝑔𝑟 − (𝜙𝑖𝑛𝑔𝑟 − 𝑙𝑛𝑔𝑟) ≤ 𝑙𝑛𝑔𝑟 (A.4a)

𝑙𝑛𝑔𝑟 ≤ 𝑈𝑖𝑛𝑔𝑟 (A.4b)
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Again, the validity of constraints (A.4a) and (A.4b) are ensured via constraint (3.8). This completes

the proof.

A.3 Proof of Proposition 2

Proof. To prove this proposition, we again construct two cases as shown below:

Case 1: For the first case, we assume that 𝑍𝑖𝑛𝑔𝑟 = 1. With this, ∀𝑖 ∈ I, 𝑛 ∈ N , 𝑔 ∈ G𝑢, 𝑟 =

1, 2, ..., 𝑅 constraints (2.15)-(2.16) become:

𝑋𝑖𝑛𝑔𝑟 ≤ 𝑈𝑛𝑔𝑟 (A.5a)

𝑈𝑛𝑔𝑟 ≤ 𝑋𝑖𝑛𝑔𝑟 (A.5b)

Constraints (A.5a) and (A.5b) ensure that 𝑋𝑖𝑛𝑔𝑟 = 𝑈𝑛𝑔𝑟 ;∀𝑖 ∈ I, 𝑛 ∈ N , 𝑔 ∈ G𝑢, 𝑟 = 1, 2, ..., 𝑅.

This indicates that the highest discounted utility is assigned to alternative 𝑖.

Case 2: For the second case, we assume that 𝑍𝑖𝑛𝑔𝑟 = 0. With this, ∀𝑖 ∈ I, 𝑛 ∈ N , 𝑔 ∈ G𝑢, 𝑟 =

1, 2, ..., 𝑅 constraints (2.15)-(2.16) become:

𝑋𝑖𝑛𝑔𝑟 ≤ 𝑈𝑛𝑔𝑟 (A.6a)

𝑈𝑛𝑔𝑟 ≤ 𝑋𝑖𝑛𝑔𝑟 + 𝜙𝑛𝑔𝑟 (A.6b)

We plug the values of 𝜙𝑛𝑔𝑟 = (𝜙𝑛𝑔𝑟 − 𝑙𝑛𝑔𝑟) into constraints (A.6b) to obtain the following for

each 𝑖 ∈ I, 𝑛 ∈ N , 𝑔 ∈ G𝑢, and 𝑟 = 1, 2, ..., 𝑅:

𝑈𝑛𝑔𝑟 ≤ 𝑋𝑖𝑛𝑔𝑟 + 𝜙𝑛𝑔𝑟 − 𝑙𝑛𝑔𝑟
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This is always guaranteed since (𝑋𝑖𝑛𝑔𝑟 − 𝑙𝑛𝑔𝑟) ≥ 0. This completes the proof.

A.4 Sample Utility Calculation

In our study, the MMNL model is adopted to study the choice of individuals under an AS

incident. Both the attributes of the alternatives and socio-economic characteristics of the individuals

are collected using a survey among 175 respondents (see Table 2.1). In this survey, based on

the current and possible next position of the shooter, the individuals with their hypothetical

current location were asked to select one of the five alternatives, namely, staying in the same

location, running to the right grid, running to the left grid, running to the up grid, and running

to the down grid. Different scenarios (current location and possible move of the shooter in the

6x6 grid facility (Figure 3.2)) are provided to the participants, and their behavioral decisions

(i.e., alternative selected) are recorded. The socio-economic attributes, i.e., individual-specific

attributes, considered in this study are gender (binary), age (categorical), ethnicity (categorical),

disability status (binary), education status (categorical), active shooting related training status

(binary), the gaming experience of the respondents (binary). Moreover, the alternative-specific

attributes considered in this study are distance to the attacker (𝐷𝐴), distance to the closest hiding

place (𝐷𝐻), distance to the closest entrance while avoiding the shooting range (𝐷𝐸), taking out

of shooting range (𝑇𝑂𝑆). The position of the attacker in the upcoming time periods in an AS

incident is random; hence, two of the alternative-specific attributes, namely, 𝐷𝐴 and 𝑇𝑂𝑆, are

considered as a random variable enabling us to capture the presence of preference heterogeneity

in the sampled population. For instance, Figure A.1 represents the utility of the majority of

the individuals along with the position of the attacker at time 𝑡 =30 seconds. From this figure,
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it could be inferred that most people in the grid 21 (𝑔=21) prefer to go to the right grid. Let

𝑑 (𝑔1, 𝑔2) to represent the Euclidean distance between grids 𝑔1 and 𝑔2. Given Figure A.1, which

represents the number of grids, the alternative-specific attributes related to this alternative is

calculated as follows: 𝐷𝐻 = 𝑑 (22, 21) + 𝑑 (21, 15) + 𝑑 (15, 14) + 𝑑 (14, 13); 𝐷𝐸 = 𝑑 (22, 23);

𝐷𝐴 = 𝑑 (22, 21)+𝑑 (21, 27)+𝑑 (27, 26);𝑇𝑂𝑆 = 1, where𝐷𝐻,𝐷𝐸 , and𝐷𝐴 represents, respectively,

the Euclidean distance of the individual to the hiding place, closest entrance, attacker after taking

the running-right action, i.e., going from grid 21 to grid 22. Further, as can be seen, taking this

alternative, the individual could manage to leave the shooting range of the attacker; hence, the

value of the 𝑇𝑂𝑆 attribute for this alternative is fixed to 1.

Figure A.1

A sample utility calculation for grid 21

A.5 Illustration of different hiding and entrances/exits configurations in chapter 2
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(a) |G𝑒 | = 1 (b) |G𝑒 | = 2 (c) |G𝑒 | = 3 (d) |G𝑒 | = 4
Figure A.2

Illustration of different exit/entrance configurations

(a) |Gℎ | = 1 (b) |Gℎ | = 2 (c) |Gℎ | = 3 (d) |Gℎ | = 4
Figure A.3

Illustration of different hiding configurations
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A.6 Illustration of different hiding and entrances/exits configurations in chapter 3

(a) |Gℎ | = 1 (b) |Gℎ | = 2 (c) |Gℎ | = 3 (d) |Gℎ | = 4
Figure A.4

Illustration of different hiding configurations. |𝐺ℎ | represents the number of the available hidden
places in the threat area.

(a) |G𝑒 | = 1 (b) |G𝑒 | = 2 (c) |G𝑒 | = 3 (d) |G𝑒 | = 4
Figure A.5

Illustration of different exit/entrance configurations. |𝐺𝑒 | represents the number of the
exit/entrance cells in the threat area.

A.7 Illustration of different civilian distribution configurations in chapter3
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(a) Base distribution (b) Left distribution (c) Right distribution

(d) Up distribution (e) Down distribution
Figure A.6

Illustration of different civilian distribution configurations

A.8 Illustration of different shooting ranges and accuracy in chapter3

To capture different characteristics of the used weapon by the shooter, four different shooting

ranges ranging from 1 to 4 were considered. To be more clear, assume that all the grids in the

environment are 1 by 1, and the attacker is positioned in the center of one of the grids. Then the

ranges 1, 2, 3, and 4 stand for a circle with a radius of 1.5, 2.5, 3.5, and 4.5 around the shooter

(see Figure A.8), respectively. Moreover, Figure A.7 illustrates different accuracy scenarios used

in this study. With an increase in the shooting accuracy, the respective probability of casualties in

the attacker’s shooting range increases accordingly.
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Figure A.7

Illustration of different shooting accuracy

(a) Range 1 (b) Range 2

(c) Range 3 (d) Range 4
Figure A.8

Illustration of different shooting ranges
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A.9 Performance metrics over trials in chapter3

Table A.1

The detailed information of the performance metrics based upon individual trials (in %)
T=75 T=90 T=105 T=120

Trial 𝑉𝑖
𝐻

𝑉𝑖
𝐸

𝑉𝑖
𝑅𝐼𝑆𝐾

𝑉𝑖
𝐻

𝑉𝑖
𝐸

𝑉𝑖
𝑅𝐼𝑆𝐾

𝑉𝑖
𝐻

𝑉𝑖
𝐸

𝑉𝑖
𝑅𝐼𝑆𝐾

𝑉𝑖
𝐻

𝑉𝑖
𝐸

𝑉𝑖
𝑅𝐼𝑆𝐾

1 8.6 49.1 42.3 8.6 55.4 36 8.6 60 31.4 8.6 62.9 28.6
2 8.6 49.7 41.7 8.6 56 35.4 8.6 60 31.4 8.6 62.3 29.1
3 8 50.3 41.1 8 56.6 34.9 8.6 61.1 30.3 8.6 64 27.4
4 8 58.3 33.1 8 65.1 26.3 8.6 69.7 21.7 8.6 72.6 18.9
5 8.6 48.6 42.9 8.6 55.4 36 8.6 60 31.4 8.6 62.9 28.6
6 8 51.4 40.6 8 58.9 33.1 8 64 28 8 66.9 25.1
7 8 48 43.4 8 54.9 36.6 8 60 31.4 8.6 62.9 28.6
8 8.6 57.7 33.7 8.6 65.1 26.3 8.6 70.3 21.1 8.6 73.1 18.3
9 8.6 57.1 34.3 8.6 64.6 26.9 8.6 69.1 22.3 8.6 72 19.4
10 8.6 57.1 34.3 8.6 63.4 28 8.6 68.6 22.9 8.6 70.9 20.6
11 8.6 49.1 42.3 8.6 56 35.4 8.6 61.1 30.3 8.6 64 27.4
12 8.6 50.9 40.6 8.6 57.7 33.7 8.6 62.3 29.1 8.6 65.1 26.3
13 8.6 49.1 42.3 8.6 56.6 34.9 8.6 61.1 30.3 8.6 64 27.4
14 8.6 58.3 33.1 8.6 65.1 26.3 8.6 69.1 22.3 8.6 71.4 20
15 8.6 58.3 33.1 8.6 64.6 26.9 8.6 69.7 21.7 8.6 72.6 18.9
16 8.6 48 43.4 8.6 54.9 36.6 8.6 58.9 32.6 8.6 61.7 29.7
17 8.6 57.7 33.7 8.6 65.1 26.3 8.6 70.3 21.1 8.6 72.6 18.9
18 8 53.1 38.3 8 60 31.4 8 65.1 26.3 8.6 67.4 24
19 8.6 57.7 33.7 8.6 64.6 26.9 8.6 68.6 22.9 8.6 70.9 20.6
20 8.6 57.7 33.7 8.6 64.6 26.9 8.6 69.1 22.3 8.6 72 19.4
21 8.6 48.6 42.9 8.6 54.9 36.6 8.6 58.9 32.6 8.6 61.7 29.7
22 8.6 51.4 40 8.6 57.7 33.7 8.6 62.3 29.1 8.6 65.1 26.3
23 8.6 52.6 38.9 8.6 59.4 32 8.6 64.6 26.9 8.6 67.4 24
24 8.6 48 43.4 8.6 54.3 37.1 8.6 59.4 32 8.6 61.7 29.7
25 8 57.1 34.3 8.6 64 27.4 8.6 69.1 22.3 8.6 71.4 20
26 8.6 49.1 42.3 8.6 56 35.4 8.6 60 31.4 8.6 62.9 28.6
27 8 49.1 42.9 8 56.6 35.4 8 61.7 30.3 8 64.6 27.4
28 8.6 48 43.4 8.6 54.9 36.6 8.6 59.4 32 8.6 62.3 29.1
29 8.6 48.6 42.9 8.6 56 35.4 8.6 60.6 30.9 8.6 63.4 28
30 8.6 54.3 37.1 8.6 60.6 30.9 8.6 65.7 25.7 8.6 68 23.4
31 8.6 55.4 36 8.6 61.7 29.7 8.6 66.9 24.6 8.6 69.1 22.3
32 8.6 54.3 37.1 8.6 61.7 29.7 8.6 65.7 25.7 8.6 68 23.4
33 8.6 48.6 42.9 8.6 56 35.4 8.6 60.6 30.9 8.6 63.4 28
34 8.6 50.3 41.1 8.6 57.7 33.7 8.6 62.3 29.1 8.6 65.1 26.3
35 8 54.3 37.1 8.6 60.6 30.9 8.6 65.7 25.7 8.6 68.6 22.9
36 8 57.1 34.3 8 63.4 28 8 68.6 22.9 8.6 70.9 20.6
37 8.6 58.3 33.1 8.6 65.1 26.3 8.6 69.7 21.7 8.6 72 19.4
38 8.6 50.3 41.1 8.6 57.1 34.3 8.6 62.3 29.1 8.6 64.6 26.9
39 8.6 54.3 37.1 8.6 61.1 30.3 8.6 66.3 25.1 8.6 69.1 22.3
40 8.6 53.1 38.3 8.6 60 31.4 8.6 64 27.4 8.6 66.3 25.1
41 8.6 57.1 34.3 8.6 64 27.4 8.6 69.1 22.3 8.6 71.4 20
42 8.6 53.7 37.7 8.6 61.1 30.3 8.6 65.1 26.3 8.6 68 23.4
43 8.6 52 39.4 8.6 59.4 32 8.6 64 27.4 8.6 66.3 25.1
44 8.6 52.6 38.9 8.6 60 31.4 8.6 64 27.4 8.6 66.3 25.1
45 8.6 53.7 37.7 8.6 60.6 30.9 8.6 65.1 26.3 8.6 67.4 24
46 8.6 57.1 34.3 8.6 63.4 28 8.6 67.4 24 8.6 69.7 21.7
47 8.6 48 43.4 8.6 54.3 37.1 8.6 58.9 32.6 8.6 61.1 30.3
48 8.6 49.1 42.3 8.6 56.6 34.9 8.6 61.1 30.3 8.6 63.4 28
49 8 53.7 37.7 8 61.1 30.3 8.6 66.3 25.1 8.6 68.6 22.9
50 8.6 57.7 33.7 8.6 64 27.4 8.6 68.6 22.9 8.6 71.4 20

A.10 A summary of the characteristics in chapter 3

A summary of the agents’ characteristics and capabilities, the environment, and the agent

interactions are provided below. The code used for this study could be provided upon request.

Environment characteristics:
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• The environment designed in this study is 𝑚 × 𝑚 rectangular with equal-sized grids.

• Each one of the grids represents a specific state in the Markov Decision Process model.

• The grids (states) in the environment are categorized into 4 groups: 1-Blocked grids, which

represent the set of grids that attacker and agents cannot travel or no threatened individuals

are present; 2- unblocked grids, which represent the set of grids that an attacker and agent

can travel or threatened individuals are present; 3- entrance/exit grids, which represent a set

of grids using which the attacker can enter the threat are and the agent can safely exit the

threat area; 4- hiding grids, which represent grids that are only available for agents to survive

the active shooter incident and has a limited capacity to accommodate individuals.

• Given each grid’s configuration, at most four possible actions are available for state transition

in the designed environment, i.e., the neighboring grids of each grid are the ones on the

left-side, right-side, up-side, and down-side of that grid.

• Exit and hiding grids (states) have the highest reward among all possible states for agents.

• The grid (state) where the attacker is located and its neighboring grids have the lowest reward

among all possible states for agents.

Agents characteristics:

• 𝑁 agents are present in the environment and randomly distributed in the grids.

• Given each agent’s location, he or she can select one of the feasible actions to survive the

incident. For instance, when the left neighboring grid to an agent is blocked grid, then the

respective feasible action set does not have move-left action.

• We assume that each agent does not interact with others, and in each time step.
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• We assume all agents need equal time to move from a specific grid to all its neighboring

grids.

• Only one movement is allowed per time for each agent

• The agents choose a move that shortens their distance from the nearest exit door or hiding

place, i.e., picking the shortest paths to survive the threat area.

• To account for real-life active shooting incidents where even expert agents could show

abnormal decisions, we consider a small probability (denoted by parameter 𝑝𝑑 in algorithm

2) that let trajectories deviate the shortest path to the target grids.

Active shooter characteristics:

• One active shooter is present in the environment that in each trial, it chooses to randomly

enter the environment from one of the entrances.

• We assume that the shooter carries a gun with specific point-blank range, 𝑟𝑙 , and level of

accuracy, 𝑙𝑔.

• To model the attacker movement behavior, we assign higher probabilities to the choices of

directions towards more populated spots.

• Given the attacker’s location, he or she can select one of the feasible actions to survive the

incident. The action which leads the attacker to the hidden place or the blocked grid is not

present in its viable actions in this grid.

• We assume the attacker needs the same time as all agents to move from a specific grid to its

neighboring grids.

• Only one movement is allowed per time for the attacker.
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• We assume that the active shooter decides to cease the actions after 𝑇 seconds, and we

consider this time as our simulation duration.
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