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Increased generation of waste, production of plastics, and poor environmental stewardship 

has led to an increase in floating litter. Significant efforts have been dedicated to mitigating this 

globally relevant issue. Depending on the location of floating litter, removal methods would vary, 

but usually include manual cleanups by volunteers or workers, use of heavy machinery to rake or 

sweep litter off beaches or roads, or passive litter collection traps. In the open ocean or streams, a 

common passive technique is to use booms and a collection receptacle to trap floating litter. These 

passive traps are usually installed to intercept floating litter; however, identifying the appropriate 

locations for installing these collection devices is still not fully investigated. We utilized four 

common criteria and fifteen sub-criteria to determine the most appropriate setup location for an 

in-stream collection device (Litter Gitter—Osprey Initiative, LLC, Mobile, AL, USA). Bayesian 

Network technology was applied to analyze these criteria comprehensively. A case study 

composed of multiple sites across the U.S. Gulf of Mexico Coast was used to validate the proposed 

approach, and propagation and sensitivity analyses were used to evaluate performance. The results 

show that the fifteen summarized criteria combined with the Bayesian Network approach could 
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aid location selection and have practical potential for in-stream litter collection devices in coastal 

areas.
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CHAPTER I 

 IN-STREAM MARINE LITTER COLLECTION DEVICE LOCATION 

 DETERMINATION USING BAYESIAN NETWORK 

Introduction 

Economic development and rapid population growth have led to increasing volumes of 

waste generation, particularly trash and litter from human daily life and manufacturing activities 

[1]. Much of this waste eventually enters waterways or water bodies, becoming floating litter. 

Marine debris (often referred to as marine litter), generally synonymous with floating litter/marine 

litter, leads to the deaths of many marine organisms [2,3] and millions of dollars of economic 

losses each year [4,5,6]. Marine litter is an ever-increasing problem with the continuous growth of 

solid waste generation domestically and globally [7]. Sources of marine litter are ocean-based (e.g., 

from fishing vessels, stationary platforms, cargo ships, or other vessels) and land-based (e.g., from 

stormwater discharges, wind, extreme natural events, and waterfront areas such as beaches, piers, 

harbors, riverbanks, marinas, and docks) [8]. Litter can be found both floating at the surface and 

sinking to the ocean bed [9]. Among the marine litter distributed worldwide, approximately 82% 

of marine litter originates from land-based sources [10]. Approximately 275 million metric tons of 

plastic waste were generated by 192 coastal countries in 2010, with 4.8 to 12.7 million metric tons 

entering the ocean [7]. Floating litter, in particular, is harmful to the environment, marine life, 

human health, and the economy. For instance, piles of litter on the shore decrease the aesthetic 

value of such areas and make them less attractive to local residents and tourists; moreover, 

https://www.mdpi.com/2071-1050/14/10/6147/htm#B1-sustainability-14-06147
https://www.mdpi.com/2071-1050/14/10/6147/htm#B2-sustainability-14-06147
https://www.mdpi.com/2071-1050/14/10/6147/htm#B3-sustainability-14-06147
https://www.mdpi.com/2071-1050/14/10/6147/htm#B4-sustainability-14-06147
https://www.mdpi.com/2071-1050/14/10/6147/htm#B5-sustainability-14-06147
https://www.mdpi.com/2071-1050/14/10/6147/htm#B6-sustainability-14-06147
https://www.mdpi.com/2071-1050/14/10/6147/htm#B7-sustainability-14-06147
https://www.mdpi.com/2071-1050/14/10/6147/htm#B8-sustainability-14-06147
https://www.mdpi.com/2071-1050/14/10/6147/htm#B9-sustainability-14-06147
https://www.mdpi.com/2071-1050/14/10/6147/htm#B10-sustainability-14-06147
https://www.mdpi.com/2071-1050/14/10/6147/htm#B7-sustainability-14-06147
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ingestion and entanglement caused by marine litter are fatal to marine organisms [11,12,13], and 

17% of marine species ingesting/entangled in the litter are listed as near-threatened, vulnerable, 

endangered, or critically endangered [14]. Non-native species carried by marine litter drifting 

worldwide pose a major threat to local marine life [15]. For these reasons, there is an urgent need 

to remove or reduce floating litter in coastal areas to protect and enhance coastal resilience. 

In the study area of this research (Northern U.S. Gulf Coast), the primary litter commonly 

found is plastic, particularly single-use plastic, originating from land-based litter [16]. According 

to a recent marine litter study, less than 10% of local residents in the Mississippi Gulf Coast region 

would prefer to visit Mississippi or Louisiana beaches; 54% of beach visitors complain about the 

water and shoreline quality [17]. Depending on its location, there are generally two ways to remove 

macro-floating litter: (1) litter in the ocean, using collection vessels/tools to collect; and (2) litter 

in coastal streams and rivers, using collection traps [15,18,19,20]. Compared with litter in the 

ocean, transitory stream and river litter are easier to remove as their trajectory is within a 

predetermined path and can be collected using stationary traps. There are several different in-

stream litter collection devices available to rent or purchase that have been used extensively in 

inland streams; however, most operate similarly. Each typically includes floating booms that guide 

or collect floating litter, with some containing a centralized receptacle. Although floating in-stream 

litter collection devices are effective tools, it is necessary to place them systematically in order to 

yield the most benefit and avoid inefficiencies in collection capabilities due to a lack of systematic 

installation. Therefore, the selection of installation locations for such devices is critical. Identifying 

optimal locations for these devices involves multiple factors pertaining to stream hydrology and 

cost. Given the complexity and multiple siting consideration factors for an in-stream litter 

https://www.mdpi.com/2071-1050/14/10/6147/htm#B11-sustainability-14-06147
https://www.mdpi.com/2071-1050/14/10/6147/htm#B12-sustainability-14-06147
https://www.mdpi.com/2071-1050/14/10/6147/htm#B13-sustainability-14-06147
https://www.mdpi.com/2071-1050/14/10/6147/htm#B14-sustainability-14-06147
https://www.mdpi.com/2071-1050/14/10/6147/htm#B15-sustainability-14-06147
https://www.mdpi.com/2071-1050/14/10/6147/htm#B16-sustainability-14-06147
https://www.mdpi.com/2071-1050/14/10/6147/htm#B17-sustainability-14-06147
https://www.mdpi.com/2071-1050/14/10/6147/htm#B15-sustainability-14-06147
https://www.mdpi.com/2071-1050/14/10/6147/htm#B18-sustainability-14-06147
https://www.mdpi.com/2071-1050/14/10/6147/htm#B19-sustainability-14-06147
https://www.mdpi.com/2071-1050/14/10/6147/htm#B20-sustainability-14-06147
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collection device, this process can be considered a Multiple Criteria Decision Making (MCDM) 

problem. 

A wide set of MCDM methods, including Analytic Hierarchy Process (AHP), weighted 

sum approach (SW), multi-attribute value function theory (MAVT), multi-attribute utility function 

theory (MAUT), analytic network process (ANP), elimination and choice expressing reality 

(ELECTRE), and the TOPSIS method, can be used to determine the most appropriate location(s). 

Generally, in most multi-criteria problems, there is no optimal solution that can satisfy all the 

criteria at the same time; therefore, compromise solutions must be found [21]. MCDM has been 

used in many selection-related applications, such as supplier selection and order allocation (e.g., 

[22]), transportation systems [23], material selection (e.g., [24]), employee recruiting (e.g., [25]), 

sustainable project portfolio selection (e.g., [26]), and manufacturing (e.g., [27]). Among these 

approaches, TOPSIS, presented by Hwang and Yoon (1981), has become one of the most widely 

accepted MCDM approaches [28]. TOPSIS enables decision makers to decide among a group of 

key parameters that maximize the ability to satisfy the stakeholders [21]. 

Location selection problems involve variability and subjectivity, which require the 

understanding of overall available information via space and time scales. A statistical modeling 

approach to handle uncertainty and make detailed, rational, and transparent contingency plans 

before taking action is needed. One of the most popular methods for integrating this complexity 

into tangible actions is Bayesian Network (BN). BN decision making is a widely used tool in 

location selection applications, such as selecting the most sustainable and economical charging 

stations for electric vehicles [29]. In Singapore, BN is used to decide bridge location to help the 

land transport authority properly select and optimize optimal bridge locations [30]. A study in 

southeastern Australia implemented BN theory in a wildfire location selection problem to choose 

https://www.mdpi.com/2071-1050/14/10/6147/htm#B21-sustainability-14-06147
https://www.mdpi.com/2071-1050/14/10/6147/htm#B22-sustainability-14-06147
https://www.mdpi.com/2071-1050/14/10/6147/htm#B23-sustainability-14-06147
https://www.mdpi.com/2071-1050/14/10/6147/htm#B24-sustainability-14-06147
https://www.mdpi.com/2071-1050/14/10/6147/htm#B25-sustainability-14-06147
https://www.mdpi.com/2071-1050/14/10/6147/htm#B26-sustainability-14-06147
https://www.mdpi.com/2071-1050/14/10/6147/htm#B27-sustainability-14-06147
https://www.mdpi.com/2071-1050/14/10/6147/htm#B28-sustainability-14-06147
https://www.mdpi.com/2071-1050/14/10/6147/htm#B21-sustainability-14-06147
https://www.mdpi.com/2071-1050/14/10/6147/htm#B29-sustainability-14-06147
https://www.mdpi.com/2071-1050/14/10/6147/htm#B30-sustainability-14-06147
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fire station locations with the least cost impact [31]. BN has also been used to facilitate optimal 

blood logistics network decisions with the consideration of natural disasters [32]. More recently, 

BN was utilized to evaluate whether the industry needs to adapt additive manufacturing and model 

and assess the sustainability performance of supply chain networks [33,34]. Given the potential of 

the BN approach, it holds the capability to be applied to the decision-making process associated 

with siting in-stream litter collection devices. 

In light of the current state of the art, the major contributions of this study over the existing 

literature are as follows: 

• This is the first study to methodologically identify and prioritize in-stream litter 

collection device installation sites. 

• A BN approach is proposed to determine suitable in-stream litter collection device 

installation sites based on four criteria and fifteen sub-criteria identified in this study. 

• Litter collection device locations across the Northern U.S. Gulf Coast have been 

used to validate the proposed approach. 

 

 Problem Description and Methodological Framework 

Tested In-Stream Litter Collection Device—Litter Gitter 

The device used in this study is the Litter Gitter, an innovative device for in-stream litter 

collection with similar characteristics to other comparable devices used globally, such as The 

Bandalong Bandit, The Water Goat, Trash Trout, and Sungai Watch’s floating Barriers. The Litter 

Gitter (LG) is a small in-stream collection device developed by Osprey Initiative, LLC, and is 

designed to intercept floating litter from stormwater runoff. It includes floating booms that use the 

current to guide trash to a large wire-mesh collection container (shown in Figure 1). The boom 

https://www.mdpi.com/2071-1050/14/10/6147/htm#B31-sustainability-14-06147
https://www.mdpi.com/2071-1050/14/10/6147/htm#B32-sustainability-14-06147
https://www.mdpi.com/2071-1050/14/10/6147/htm#B33-sustainability-14-06147
https://www.mdpi.com/2071-1050/14/10/6147/htm#B34-sustainability-14-06147
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system does not have any nets or barriers that suspend through the water column; thus, limited 

harm will be made to fish and other wildlife. Litter Gitters have been used widely (43 currently 

deployed throughout the U.S.) in inland streams to capture floating litter. 

 

Figure 1 Litter Gitter in Auguste Bayou, Biloxi, Mississippi 

Bayesian Network (BN) 

Bayesian Network (BN), also referred to as a belief network, is utilized for risk assessment 

and decision making. BN is a probabilistic model built by an expert based on the theory of Bayes. 

BN is a useful and efficient approach for calculating the prior probability distribution of 

undiscovered variables that depend on prior observed variables. A BN model, also called a directed 

graph, involves two major entities: nodes indicating variables and arrows indicating the 

interrelationship between nodes. Nodes in BN can be categorized into three classes: (i) parent 

nodes that do not depend on prior nodes; (ii) child nodes that depend on prior nodes (also referred 

to as their parent nods); and (iii) intermediate nodes that have both parent and child nodes. In 

addition, every node in BN has a table referred to as a node probability table (NPT). The base 

probability of a set of variables can be reconstructed if BN has a different set of evidence. Arrows 
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in a BN denote the connections among nodes, and it can be explained by the conditional probability 

distribution provided by expert knowledge [35]. 

Through these relationships, experts can use inference on the random variables in the graph 

via directed arrows. BN is a distinctive tool for calculating new variable probability distribution 

computations with unknown conditional spotted variables. With BN, both quantitative and 

qualitative data can be utilized and added to the model for conditional probability calculation. The 

constructed nodes can take Boolean (yes/no), integer, qualitative (high/medium/low), discrete, or 

continuous values. BN has the capability to work with nodes of different types, which is considered 

as one of the main advantages of using this method. The collected data for the nodes are assembled 

from historical data and expert standpoints [29]. In this study, BN supports experts and decision 

makers to evaluate all possible options to locate Litter Gitter sites. 

Figure 2 illustrates the BN model with six nodes: N1, N2, N3, N4, N5, and N6, where N1, N2, 

and N3 are parent nodes. They are initial nodes, so they do not depend on the prior variables, 

while N4 and N5 are intermediate nodes. N4 depends on N1, and N5 depends on N2 and N3. N6 is a 

child or leaf node, and it depends on both N4 and N5. Observation reveals the arrow coming 

out N1 to N4, which indicates that N1 is an independent node, while N4 depends on N1. Equation 

(1) represents a comprehensive full joint probability distribution of a BN involving n variables: N1, 

…, Nn. 

 
P(N1, N2, , N3 … . Nn) = P(N1|N2, … . Nn)P(N2|N3, … . Nn)P(N3|N4, … . Nn) … 

 
P(Nn−1| Nn) P(Nn)=∏i=P(Ni|Ni+1,….,Nn) 

(1) 
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Figure 2 Illustration of Bayesian Network model with six nodes. 

 

The six variables shown in Figure 2, N1, N2, N3, N4, N5, and N6 in Equation (1) can be 

simplified because the primary node of each node is known. For example, we recognize 

that N4  has exactly one primary node, N1. Thus, the joint probability distribution 

of P(N1,…. Nn)  can be replaced with P(N4| N1), given that only N1 has a significant contribution 

to the existence of N4. The balanced joint probability distribution variables are delivered in 

Equation (2). 

 

P(N1, N2, N3 … , N6) = P(N1)P(N2) P(N3)P(N4|N1)P(N5|N2, N3)P(N6|N4, N5) (2) 

 

In Equation (2), we show the first requirement, which is the calculation of the unconditional 

probability of P(N1),P(N2), and P(N3) and then the conditional probability 

of P(N4|N1)P(N5|N2,N3), and P(N6|N4,N5) to express the joint distribution of  P(N1,N2,N3…,N6). 

BN is able to update propagation belief or marginal probabilities. Propagation belief can 

be added to P(Ni) after witnessing another node’s performance by observing other variables. The 

https://www.mdpi.com/2071-1050/14/10/6147/htm#fig_body_display_sustainability-14-06147-f002
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observed variables are referred to as evidence. For example, the conditional probability for 

variable N6 given evidence e, (e = {N1, N2, N3, N4, N5, N6}), can be calculated as follows [36]: 

  

P(N4|e) = P(N1,  N2,  N3,  N4,  N5,  N6)/P(N1,  N2,  N3,  N5,  N6)
= P(N1,  N2,  N3,  N4,  N5,  N6)/∑N4(N1,  N2,  N3,  N5,  N6) 

(3) 

The comprehensive conditional probability, represented in Equation (3), can be computed 

more precisely by discovering conditional self-sufficiency, as mentioned in Equation (4). 

 

P(N6|e) = P(N4|N1)P(N5|N2,  N3) P(N6|N4,  N5)

/∑N6P(N4|N1)P(N5|N2,  N3)P(N6|N4,  N5) 

(4) 

Conjoint Criteria Utilized for Assessing Litter Gitter Site Selection 

Criteria assessment plays a significant role in the site selection of an LG with the 

continuous growth of solid waste generated in water-based environments. Therefore, in this study, 

the criteria assessment of LG contributing to the site selection focuses on technical, economical, 

and environmental perspectives. These perspectives are considered to ensure the suitability and 

safety of the LG and crew members. The sub-criteria connected with suitability and technical 

criteria were determined by the following procedure. Firstly, the academic literature and feasibility 

research studies related to marine litter were collected and evaluated, and the initial sub-criteria 

were constructed accordingly. Secondly, the expert opinions were merged in the scopes of marine 

litter. Lastly, the less critical sub-criteria were cast off. Figure 3 illustrates the criteria and sub-

criteria considered for site selection of the Litter Gitter. The details of the sub-criteria are addressed 

below. 
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Figure 3 Criteria and sub-criteria for evaluating LG site selection. 

Stream Characteristic 

Seven sub-criteria, namely, flow rate reduction, bank steepness, bank composition, linear, 

navigability, creek width, and hydrologic flashness, are considered for the stream characteristic 

criteria. These criteria were developed during numerous interviews with the owner of Osprey 

Initiative, LLC, who developed Litter Gitter. The noted criteria come from first-hand experience 

of installing the Litter Gitters in a variety of environments and geographical locations. 

• Flow Rate Reduction: The LG should be placed downstream of a drop. A drop in power 

usually occurs when a stream straightens out, is downstream of a significant elevation 

change (i.e., a waterfall), or widens out. This will allow the water to flow smoothly and 

booms to sit correctly in the water. 
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• Bank Steepness: When banks are too steep, the booms attached to the LG do not lay 

correctly and can cause gaps that allow trash to bypass the trap. This gap occurs near the 

edge of the bank. 

• Bank Composition: The preferred method for securing an LG is to use a tree on either side 

of the stream. If a tree is not available, metal t-stakes could be used. 

• Linear: Traps should be placed in the straightest portion of the stream. Putting the trap in a 

turn/curve could cause the water to flow nonlinearly and allow trash to accumulate on the 

sides of the LG, leading to escape. 

• Navigability: This sub-criterion refers to navigable waterways. These waterways are used 

for ship movement. Hence, navigable waterways are not appropriate for LG. Navigable 

waters that are found in the U.S. refer to waters that are subject to tidal flow, and may be 

used, are reported as used in the past, or may in the future be used for transport that is either 

interstate or foreign commerce [37]. 

• Creek Width: Streams between 20 and 40 ft are best suited for LG. Larger streams tend to 

have high flow capacity, which puts a strain on the boom system used to anchor the LG. 

Additionally, larger streams can carry natural debris items such as logs or trees. These large 

debris items can put more tension on the boom system, causing them to break free from 

the LG, thus causing the trap to malfunction. 

• Hydrologic Flashness: Flashness refers to the frequency with which rapid, short-term 

changes in streamflow occur, especially during events where there is runoff and significant 

rain. An ideal LG placement would be in a stream that does not have significant flashes 

(10 ft or less). Sudden changes in water flow can cause extra tension to be placed on the 

anchor points for the LG. 
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Upstream Characteristics 

The three sub-criteria considered for the upstream characteristics are impervious surfaces, 

population density, and major road crossings. The following criteria are also based on interviews 

with staff from Osprey Initiative, LLC, and their field experience. There is a lack of data and 

literature surrounding sources of upstream litter and more research is needed to support these 

claims. 

• Impervious Surfaces: Can cause runoff, which can carry trash into stream systems. Ideally, 

the LG could be placed downstream of an area that will have high impervious surfaces. 

Examples include placing the trap downstream of a shopping center rather than upstream 

before the shopping center. Successful sites for LG may be placed within 0.25 miles of 

high-intensity developed areas. 

• Population Density: Places with high population density are likely to generate more trash 

simply because more people are there. Ideally, the LG will be located downstream of an 

area with high population density. 

• Major Road Crossings: A considerable amount of littering occurs around major road 

crossings. Ideally, the LG should be placed downstream of the road crossings to collect the 

litter coming from these road crossings. 

Permissions and Permitting 

In order to install an LG, a set of permissions or permits are typically required. These 

permissions could include the U.S. Army Corps of Engineers, city, county, or private property 

owners. During pre-site selection visits, assessments of the likelihood of receiving permission or 

permits are considered. These considerations include noting the presence of endangered species or 

habitats that are sensitive to disturbances, such as nesting grounds. Additionally, the jurisdiction 
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in which the site falls under must be investigated in order to infer the practicality of receiving the 

appropriate permits within the project timeline. 

Hazards 

Site safety is important to provide the crew with a secure environment to install and 

maintain the LGs. A site associated with potential risks is subject to exclusion. On the contrary, 

the safest site has more priority for selection. If the site receives a high risk rating, the trap cannot 

be placed at this location. Some examples of things that would increase a sites hazard rating could 

include a steep entrance to the creek, dangerous parking options, and the continual presence of 

dangerous animals. 

The Bayesian Network (BN) Methodological Framework 

Figure 4 systematically illustrates the BN methodological framework used to evaluate an 

LG site selection problem, more specific to a coastal application. The framework delineates the 

steps that could be undertaken to reliably validate the LG site selection decisions. Essentially, the 

framework is classified into the following three stages: 
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Figure 4 Methodology framework for evaluating an LG site selection problem. 

• Problem definition and systematic study: Systematically identifies the necessary criteria 

and sub-criteria required to site an LG for collecting marine litter in a coastal area. 

Professional input, accessible literature, and elementary LG installation procedures, as 

instructed by the Environmental Protection Agency (EPA), the U.S. Army Corps of 

Engineers (USACE), and the National Oceanic Atmospheric Administration (NOAA) 

[3,4], were utilized to create the criteria and sub-criteria. Overall, four criteria and fifteen 

sub-criteria are identified to evaluate a possible site for installing the LG (see Figure 3). 

• The preliminary stage: Includes collecting data, formulating, and modeling stages. A 

suitable link between the criteria and sub-criteria is constructed. Related data are gathered 

to build the BN model with the information collected via the first stage, and a BN model 

is constructed for each potential site. 

• Evaluating stage: Used to check the reliability and validity of the LG project. The result 

of the BN will undergo sensitivity analyses during the evaluating stage. If authenticated, 

https://www.mdpi.com/2071-1050/14/10/6147/htm#B3-sustainability-14-06147
https://www.mdpi.com/2071-1050/14/10/6147/htm#B4-sustainability-14-06147
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the analyst will select the best LG site(s); if not, the first stage will be revised, and the 

criteria/sub-criteria selection and data collection processes will be reevaluated. The process 

will continue until each site is validated correctly via sensitivity analysis. 

Floating Litter Case Study Solution 

BN Model for Evaluating Candidate Litter Gitter Sites 

More than fifty sites in the U.S. were initially studied. Ten candidate sites in the coastal 

area in the south of the U.S. were finally chosen based on their potential success to potentially 

install LGs. Figure 5 visualizes the ten candidate sites. The specific locations of the candidate sites 

are listed in Table 1. These potential locations have a common characteristic to ensure initial 

successful scenarios. For instance, permitting or permission criteria from the city governorate are 

mandatory for installing such a project. The model takes these criteria as a base requirement for 

the project. This section shows a BN model using Agena Risk (https://www.agenarisk.com, 

accessed on 31 March 2022) software for evaluating the possible location of the LG. 

 

Figure 5 The general geographical locations of the ten candidate LG installation sites. 

 

https://www.mdpi.com/2071-1050/14/10/6147/htm#fig_body_display_sustainability-14-06147-f005
https://www.mdpi.com/2071-1050/14/10/6147/htm#table_body_display_sustainability-14-06147-t001
https://www.agenarisk.com/
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Table 1 The potential LG sites in the coastal area 

 

Site 

 

City 

 

State 

 

Location name 

LG Location 

Latitude Longitude 

1 Mobile AL DR-Eslava Sage 30.67321 -88.11316 

2 Mobile AL 3MC-1MC Lawrence 30.70263 -88.05416 

3 Daphne AL1 DO-D'Olive Creek US98 30.65274 -87.91149 

4 Ponchatoula LA2 LP-Ponchatoula Creek_I-55 30.45581 -90.47149 

5 Foley AL BS-UTBS Cedar 30.38675 -87.69209 

6 Biloxi MS3 BBB-Keegan Bayou_I-110 30.40612 -88.89473 

7 Mobile AL DR-Montlimar Canal Michael Blvd 30.66329 -88.13669 

8 Mobile AL 3MC-3MC Infirmary 30.69957 -88.07901 

9 Mobile AL 3MC-3MC_Langan Park 30.70562 -88.16482 

10 Hammond LA LP-Yellow Water River, Adams Rd 30.45864 -90.50564 

 

The proposed model was developed using the BN theory. There are four criteria in the 

proposed model: (i) stream characteristics, (ii) upstream characteristics, (iii) permitting or 

permission, and (iv) hazards criteria. Based on a professional’s input and literature review, the 

priority ranking of these criteria is as follows. Permitting or permission (of city, counties, or 

municipality) is considered the top priority, as permission is mandatory for the project. If 

permission cannot be granted, the trap cannot be placed at the suggested location. The stream 

characteristics are considered the second priority since it covers the technical parts of the LG trap 

project. Without ensuring the availability of all needed requirements, an LG trap cannot be placed. 

The stream characteristics sub-criterion covers technical parameters that affect crew safety and are 

considered essential for placing an LG trap. Among all other criteria, the third priority is the 

upstream characteristics that cover an LG’s potential trash capacity and economic criteria. 

Below, we provide a description of how different variables are modeled and contribute to 

the Bayesian Network methodology. 

https://www.50states.com/louisiana.htm
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Modeling of Stream Characteristic 

Stream characteristics include types of variables that contribute to LG technical 

stability. Table 2 shows how the different variables are modeled under the stream characteristics. 

An explanation behind modeling the variables is further given in Table 2. Boolean (for binary 

decisions (e.g., true/false)) or Truncated Normal (TNORM) distribution (continuous values) are 

used to model the variables of specific nodes of the BN introduced in Figure 3. 

Table 2 Modeling of variables contributed to the stream characteristics 

Variable  Modeling Procedure Explanation  

 

Flow Rate Reduction  

 

IF (Flow rate = 1, "True", 

"False") 

It is difficult to position the LG in the 

direction of rapid rivers. High flow 

will cause the trash to get out of the 

LG. Therefore, LG needs to be placed 

in a downstream drop of energy. In 

the model, one represents a stable 

location, and zero represents a 

disturbance location. 

Bank Steepness  

 

TNORM (µ=57, σ2= 33, 

LB=10, UB= 90) 

According to the historical data, bank 

steepness follows a truncated normal 

distribution with a mean of 57.  

Bank Composition 

 

IF (Bank composition = 1, 

"True", "False") 

As it’s described earlier, the bank 

composition must hold to either a tree 

or a metal fence t-stakes. If not, the 

trap cannot be placed.  

Linear 

 

IF (Traps linearity = 1, "True", 

"False") 

Linearity is another critical aspect that 

follows a Boolean distribution. It has 

an equal probability of finding it or 

not. The threshold that traps linearity 

must be equal to one. 

Navigability 

 

 

IF (Navigability 

=1,"True","False") 

Navigability is an essential aspect of 

LG installation. The if condition 

ensures no navigability in the 

intended area. The one indicated area 

has no navigability. The area is calm 

enough for the trap to be placed.  
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Table 2 (continued) 

Creek Width 

 

 

Calculation of Creek Width  

 

TNORM (µ= 35, σ2= 12, LB= 

10, UB= 50)  

IF(Creek width 

<31,"True","False") 

According to the collected data, the 

creek width follows truncated normal 

distribution with an average of 35.  

 

To ensure Trap’s safe operation, we 

want to provide less interruption to 

the LG. Thus, it preferred the creek 

width be less than 31. 

Hydrologic Flashness 

 

IF (Hydraulic Flashiness 

<9.0,"True","False") 

 

The greatest accepted safe operation 

of HF is 9ft.  

 

Modeling of Upstream Characteristics 

Three variables contribute to the upstream characteristics of the LG installation, namely, 

impervious surfaces, population density, and major road crossings. Table 3 shows how the 

different variables are modeled under the upstream characteristics. An explanation behind 

modeling the variables is further given in Table 3. 

Table 3 Modeling of variables contributed to the upstream characteristics 

Variable Name  Modeling Procedure Explanation  

Impervious Surfaces 
 

NORM(µ=0.25, σ2= 0.03) 

Impervious surfaces follow a normal 

distribution with a mean of 0.25 miles 

and a variance of 0.03. 

Population Density Setup 

 

 

Population Density 

Calculation  

 

TNORM (µ= 2,193, σ2= 1,045, 

LB= 647, UB= 4,160) 

 

 

IF(Population Density Setup 

>1,800, "True", "False") 

 

The Population density follows a 

truncated normal distribution with an 

average of 2,193 and variance 1,045, 

the lower bound is 647, and the upper 

bound is 4,160.  

 

As it’s explained earlier, a site with a 

high-density level would be more 

favorable since the trap will capture 

more trash. A site would be more 

useful if the population density level 

is more than 1,800. 
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Table 3 (Continued) 

Major Road Crossings 

 

IF(Major Road Crossing >1, 

"True”, “False") 

As described earlier, more trash 

occurs in major road crossings. The if 

condition gives sites located near 

major road crossings more weight 

than other sites that don’t have. 

 

Modeling of Permissions Approval  

For Permission modeling, the IF condition is used to ensure at least one approval is 

obtained from either corps of engineers, city principle, county principle, or private property owner 

(see Figure 6). 

 

Figure 6 Securing permission modeling from city/county governor. 

 Modeling of Hazards Criteria 

 The hazard node was calculated manually based on the information provided from original 

data provided by Osprey. The selected sites were ranked from low to high based on factors that 

would impact the safety of the crew while installing and maintaining the LG (see Figure 7).  
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Figure 7 Modeling the hazards variable. 

Probability of Site Selection 

Table 4 provides the LG site selection probability of the ten candidate sites in the coastal 

area near the Gulf of Mexico (see Figure 5 and Table 1 for the details about the location of the 

candidate sites). We used the methodological framework introduced in Figure 4 to evaluate the 

site selection probability for all the ten candidate sites. The target node for our BN framework is 

the probability of the LG site selection, which is conditioned based on a set of problem-specific 

criteria, such as stream characteristics, upstream characteristics, permitting/permission, and hazard 

criteria. The first selection that stood out to install an LG from the ten candidate sites was Site #7, 

which is located in Mobile, AL (see Table 4). The probability of selecting this site is 81.8% 

(see Figure 8). This site satisfied all the critical installation criteria and other necessary sub-

criteria. The second selection site, with a probability of ~76%, is in Mobile City, AL (Site 

#1). Figure 9 visualizes the BN results for this site. One of the reasons for placing Site #1 as a 

second candidate LG installation location over Site #7 is probably the size of the population, which 

is slightly smaller in Site #7 than Site #1. Furthermore, hydrologic flashiness is slightly less in this 

selection than in the first selection. Similarly, we demonstrated the BN results for the third-, fourth-

, and fifth-best locations, which are nearly 73% (Site #8), 72% (Site #6), and 68% (Site #9), 

respectively (see Figure 10, Figure 11 and Figure 12). Note that the BN results for all the top 

sites can be compared with the standard BN results shown in Figure A1 in Appendix A1 

https://www.mdpi.com/2071-1050/14/10/6147/htm#table_body_display_sustainability-14-06147-t004
https://www.mdpi.com/2071-1050/14/10/6147/htm#fig_body_display_sustainability-14-06147-f005
https://www.mdpi.com/2071-1050/14/10/6147/htm#table_body_display_sustainability-14-06147-t001
https://www.mdpi.com/2071-1050/14/10/6147/htm#fig_body_display_sustainability-14-06147-f004
https://www.mdpi.com/2071-1050/14/10/6147/htm#table_body_display_sustainability-14-06147-t004
https://www.mdpi.com/2071-1050/14/10/6147/htm#fig_body_display_sustainability-14-06147-f008
https://www.mdpi.com/2071-1050/14/10/6147/htm#fig_body_display_sustainability-14-06147-f009
https://www.mdpi.com/2071-1050/14/10/6147/htm#fig_body_display_sustainability-14-06147-f010
https://www.mdpi.com/2071-1050/14/10/6147/htm#fig_body_display_sustainability-14-06147-f011
https://www.mdpi.com/2071-1050/14/10/6147/htm#fig_body_display_sustainability-14-06147-f012
https://www.mdpi.com/2071-1050/14/10/6147/htm#fig_body_display_sustainability-14-06147-f0A1
https://www.mdpi.com/2071-1050/14/10/6147/htm#app1-sustainability-14-06147
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Table 4  Site selection probability of the ten candidate sites in the coastal area near the Gulf 

of Mexico 

Criteria 
Sub-

criteria 

Sit

e  1 

Site  

2 

Site  

3 

Site  

4 

Site  

5 

Site  

6 

Sit

e  7 

Sit

e  8 

Sit

e  9 

Sit

e 

10 

 

 

 

 

 

Stream 

Characteristics 

Flow Rate 

Reduction 
Y* N* N Y N N N N N N 

Bake 

Steepness 
30 90 10 90 60 45 70 45 30 30 

Bank 

Compositi

on 

T 

pos

ts 

Tre

es 

Tre

es 

Tree

s/ 

Tpos

ts 

Tre

es 

Tree

s/ 

Tpos

ts 

T 

pos

ts 

T 

pos

ts 

T 

pos

ts 

T 

pos

ts 

Linear Y Y Y Y Y Y Y Y Y Y 

Navigabil

ity 
NN NN NN NN NN NN NN NN NN NN 

Creek 

Width 
35ft 20ft 50ft 35ft 10ft 40ft 25ft 20ft 15ft 35ft 

Hydraulic 

Flashiness 
10ft 5ft 3ft 10ft 3ft 2ft 5ft 1ft 3ft 6ft 

 

 

 

Upstream 

Characteristics 

Impervio

us 

Surfaces 

Y Y Y Y Y Y Y Y Y Y 

Populatio

n Density 

258

4 

183

2 

198

6 
983 646 1210 

409

2 

200

9 

122

6 
119 

Major 

Road 

Crossings 

Y Y N Y N Y Y N N N 

 

 

Permitting/Permis

sions 

Corp of 

Engineers 
Y Y N N N Y Y Y Y N 

City N N Y N Y Y Y Y Y N 

County N N N Y N N N N N Y 

Private 

Property 

Owner 

N N N Y N N N N N N 

Hazards 
General 

Site Safety 
L* H* M* M H L L L L L 

Probability of site selection- 

True (%) 
75.6 50.6 63.4 55.1 43.2 71.9 81.8 73.4 68.2 58.8 

*Y-Yes; N-No; H-High; M-medium; L-Low; NN-Non-navigable 
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Figure 8 The developed BN model for the first LG selection (Site #7). 

 

Figure 9 The developed BN model for the second LG selection (Site #1). 
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Figure 10 The developed BN model for the third LG selection (Site #8). 
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Figure 11 The developed BN model for the fourth LG selection (Site #6). 
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Figure 12 The BN model for the fifth LG selection (Site #9). 

Sensitivity Analysis 

Sensitivity analysis is a method used to validate the constructed Bayesian Network model 

that investigates the effect of variables on the target node. Sensitive parameters may significantly 

affect the results of the target node. Analyzing these parameters may help experts direct their 

efforts more efficiently to obtain a trustworthy Bayesian Network model. 

Validation is utilized to compare the current constructed model to the actual result. 

In Figure 13 and Figure 14, tornado graphs are used to demonstrate the importance of the nodes 

in determining the probability of selecting a candidate LG site. The variables in the chart are 

represented in boxes with two conditions, “true” and “false.” The longer the box, the greater the 

influence on determining the probability of the candidate LG sites (target node). The tornado graph 
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shows hazards, permitting, upstream characteristics, and stream characteristics criteria with a 

rough difference of 0.25. The analysis of the tornado chart indicates different influences among all 

criteria. Therefore, we can say that there is a similar influence on the target node among all criteria. 

 

Figure 13 The tornado chart shows the nodes that have the most impact on selecting the first 

site, “true”. 

 

Figure 14 The tornado chart shows the nodes that have the most impact on selecting the first 

site, “false” 

 

Hazard in the tornado graph explains that the probability of selecting the first LG location 

(“true”) starts from 0.47 (when the hazard criteria is “false”) to 0.72 (when a hazard criterion is 
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“true”). The probability of selecting the first litter location is 0.6, given that the hazard criteria is 

achieved. This range (0.47–0.72) is precisely the bar in the tornado graph explained in Figure 13. 

For permitting criteria, upstream characteristics, and stream characteristics criteria, the probability 

of selecting the first LG location is 0.39–0.64, 0.44–0.69, and 0.52–0.77, respectively. 

The chart’s vertical line mainly indicates the marginal probability for the first selection LG 

location being “true” (0.60). The likelihood of selecting the first selection site location is less 

sensitive to the changes in our model since all criteria length differences are almost the same 

between all constructed criteria. Therefore, decision makers must give equal attention to all criteria 

[29]. 

Conclusions 

Floating litter is one of the most widespread threats that can negatively impact the quality 

of life in coastal areas. In this study, we developed a methodological framework to assess optimal 

locations to install an LG, an example of an in-stream litter collection device that has the capability 

to reduce the quantities of floating litter in local habitats. We identified four criteria and fifteen 

sub-criteria to determine the most appropriate location to install an LG. The criteria and sub-

criteria were incorporated under the BN framework to quantify the selection probability of a site 

among a set of candidate sites. The developed BN model combines both qualitative and 

quantitative input for each potential site location. The Northern Gulf of Mexico Coast in the U.S. 

was used as a case study to validate the BN framework for installing LGs and similar collection 

devices. All the candidate sites were assessed based on the consideration of the site’s technical and 

safety factors. We performed a sensitivity analysis to understand the contribution of each criterion 

for determining the LG site. We found that the contribution of the criteria is ranked as 

recommended from an expert team and research studies (hazard, permitting, stream characteristics, 
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and upstream characteristics). However, decision makers must place equal focus on all criteria. 

The proposed BN decision-making framework and the generated insights have the potential to help 

stakeholders select the most effective sites for in-stream collection devices such as the LG. 



 

36 

CHAPTER II 

DEVELOPMENT OF A BAYESIAN NETWORK MODEL FOR BIOMASS-BASED 

COMBINED HEAT AND POWER SYSTEM SITE SELECTION  

IN RURAL COMMUNITY   

Introduction 

Based on the Energy Information Administration (EIA) approximated an increase of 

demand for Electricity to 4950 billion kilowatt-hours (kWh) by 2040 from 3830 billion kilowatt-

hours (kWh) in 2012. Therefore, it requires considerable effort to improve the overall system’s 

energy efficacy [37]. Among multiple energy alternatives, Electricity generated from biomass is a 

fast-growing renewable energy system because carbon dioxide is seized once the biomass crop is 

produced. As per the U.S Department of energy, biomass provides approximately billions of tons 

and has the advantage of producing 1 billion tons by 2040 to satisfy the energy demand [38]. The 

government is subsidizing domestic fuel prices, which reduces the cost of electricity generation 

from conventional sources to less than the cost of electricity generation from renewable sources. 

This support could be  backed off with the increase in the population over the years. Therefore, 

combined heat and power plants powered by biomass (bCHP) can meet rural communities’ heating 

and electrical necessities with less and efficient cost.   

Moreover, the bCHP incorporated microgrid has already proven its ability to reduce carbon 

dioxide (CO2) emissions and help increase energy efficiency for structures. Bioenergy scholars in 

many research aim to increase more ways to use biomass energy to reduce the draining of fossil 
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fuel energy sources to reduce environmental pollution. bCHP has the prospects for improving the 

current system via reducing pollution and reducing agricultural and forest firewood waste. A more 

specific aspect of installing bCHP in a rural community is to provide more sustainability and steady 

energy. Also, bCHP contributes to global warming improvement by reducing anthropogenic as an 

alternative to fossil fuel [39]. Thus, renewable energy progress would be necessary by 2040  

despite some limitations in the affordability of biomass and other valuable alternatives to 

traditional electricity and other energy sources.  

Literature review  

In the existing body of literature on bioenergy, the scholars aim to increase more ways to 

use biomass energy to reduce the consumption of fossil fuel energy sources to reduce 

environmental pollution. The electricity production from biomass can significantly impact the 

environment during the conversion. Combined heat and power-based biomass need to meet local 

and global requirements. Therefore,  emissions, solid ash disposal, noise, and other factors must 

be calculated carefully.  

Zhang and Kang [40] studied the distribution density of biomass CHP plants and their heat 

energy utilization efficiency. They studied the Biomass CHP technology location based on the heat 

that occurred from the system. They determined that the heat transmission threshold between 

towns and villages involves heat efficiency usage. They involve the population of town to 

approximate heat and electricity demand. They referred to the Geographical Information System 

(GIS) method to explore bCHP location and find population density for selected towns. The GIS 

is a commonly used tool for determining the availability of biomass feedstocks and minimizing 

transportation costs through logistics analysis and distance calculations. GIS network analysis and 

location-allocation analysis tools can simulate site competition for biomass resources. The 
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research findings demonstrate that GIS, land use, resource availability, and supply chain cost data 

can be integrated and mapped to facilitate the determination of different sustainable factor 

weightings and, ultimately, to generate optimal candidate sites for biomass energy plants [41,42]. 

The biggest challenges confronting large-scale biomass supply are 1) the energy density. 

If the biomass moisture content of conventional wood is 30% in a nutshell, each ton of wood 

transported contains 300 kg of water. Additionally, the shape of the biomass feedstock, which 

includes chipped, pelletized, rounded or baled, significantly impacts bulk density and 

transportation economics. As a result, compaction and densification are viewed as critical 

components of an efficient biomass supply. 2) Apart from bulk and energy density, large-scale 

biomass supply is constrained by a variety of bottlenecks, including initial raw material costs, 

biomass producer participation, environmental regulation, and sustainability. Solving all of these 

issues entails establishing a future biomass commodity in Europe and throughout the world. Forest 

biomass energy has the advantage of being abundant, renewable, and combustible in a clean 

manner. However, the majority of related works focused exclusively on cost or pollution 

minimization, with little emphasis on the social dimension. Social enterprise develops business 

models to address social and environmental issues. 3) Apart from cost and carbon reduction, the 

aforementioned problem takes into account the objective of increasing job opportunities created 

by social enterprise expansion.  

Additionally, the gap includes an uncertain number of inventory days, an uncertain number 

of job offers per unit of surplus factory scale, an undetermined amount of biomass production, and 

an unknown amount of biofuel demand due to fossil fuel price fluctuations. Long-term contracts 

for reliable feedstock supply at a reasonable price are virtually impossible to obtain. 4) Lack of 

sustainable profitability is also one of the reasons why many upstream firms lack driving forces 
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for technology reform. 5) Also, one of the economic obstacles is that biomass resources are 

dispersed, and to minimize transportation costs, biomass projects seek to locate as close to the 

source as possible, resulting in biomass project centralization. Due to decentralized capital, low 

profitability, frequent fluctuations in international crude oil prices, and high market risk, investors 

rarely entered the biomass power generation industry on their own. Biomass energy generation is 

constrained by high capital investment and operating costs. Biomass pretreatment technologies 

incur additional costs that small farmers and small-scale fuel producers may not afford [43]. 

According to the literature review and expert opinion, several factors must be considered 

when determining the location of a biomass power plant, including economic, environmental, 

technical, and social-political factors. While numerous researchers have applied the MCDM model 

to various fields of science and engineering, a trend that has been increasing for many years, very 

few have done so in the biomass power plant location selection process. Wood residues from 

manufacturing, discarded wood products diverted from landfills, and non-hazardous wood debris 

from construction and demolition activities are the most cost-effective sources of wood fuels. 

Generating energy from these materials allows for the recovery of the material’s energy value and 

avoids the environmental and financial costs associated with disposal or open burning. Throughout 

the country, biomass is abundant in a variety of forms. Certain types of biomass are more abundant 

in specific regions where the climate is more conducive to their growth. The biomass feedstocks 

discussed in this report are diverse in terms of their origins and fuel characteristics, and as a result, 

their typical considerations for utilization are also diverse [44]. 

Bayesian Network (BN) 

A Bayesian Network (BN) concept is a model that has proven its vitality today. The 

Bayesian network is a model that helps us understand the relationship between different variables 
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and how they affect different causes. A BN is a graphical model based on Bayesian theory that 

describes interdependencies among a set of variables via a directed acyclic graph. The prior 

probability of a set of variables can be updated in BNs once some new evidence is available to 

describe the variables. The structure of BN consists of two main concepts: nodes representing 

variables and arcs connecting and representing the interdependencies among a set of nodes. Nodes 

in BNs are classified into three levels: initial nodes that are called root or parent nodes, child or 

leaf nodes that depend on parent nodes, and nodes among them that are called intermediate nodes 

[45]. Arcs in BN represent causal relationships among variables, and to identify that, the 

conditional probability distribution is used based on expert and scientist knowledge.  

BN is a unique method for calculating the posterior probability distribution of unknown 

conditional observed variables. The BN may be built up manually or automatically. For manual 

Bayern networks, the variables provided are known by the expert coming up with the model, but 

for automatic Bayern networks, the variables are generated by the software automatically. The 

manual Bayern networks require less research as the researcher knows the variables. However, the 

data may require more intense research in automated Bayern networks as the variables may be 

new to the researcher. The Bayesian network shows relationships between two variables, and due 

to its visual captivation, it is easy to identify with different probable causes of an event.  

BN can handle quantitative and qualitative data types that are designed in conditional 

probability. The variables can be Boolean (yes/no), integer, qualitative (high/medium/low), 

discrete, or continuous. The ability to manipulate nodes of different types is the main characteristic 

of BN, which encourages us to locate and assess several alternatives to bCHP sites. Data variables 

can be gathered from historical data and/or expert perspectives [46]. 
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Figure 15 A Bayesian Network example with five nodes. 

 

Figure 15 demonstrates a graphical cycle of BN example with five variables (nodes). 

Nodes X1, X2, and X3 are parent nodes, node X4 is an intermediate node, and node X5 is a leaf 

node. Equation (1) is a general full joint probability distribution of a BN consisting of n variables 

X1,…, Xn. 

𝑃(𝑋1, 𝑋2, … . 𝑋𝑛) = 𝑃(𝑋1|𝑋2, … . 𝑋𝑛)𝑃(𝑋2|𝑋3, … . 𝑋𝑛) … (5) 

𝑃(𝑋𝑛−1| 𝑋𝑛) 𝑃(𝑋𝑛) = ∏ 𝑃(𝑋𝑖

𝑛

𝑖=1

|𝑋𝑖+1, … . , 𝑋𝑛) 

For the five variables shown in Figure 15, X1, X2, X3, X4, and X5, equation (1) can be 

streamlined since we know the parents of each node. For instance, we know that 𝑋4 has exactly 

two parent nodes, X1 and X2. Therefore, the joint probability distribution of 𝑃( 𝑋1, … . 𝑋𝑛) can be 

substituted with 𝑃(𝑋4| 𝑋1, 𝑋2) since only X1 and X2 have a significant contribution to the existence 

of X4. The symmetric breakdown of the joint distribution variables is provided in equation (2). 
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𝑃(𝑋1, 𝑋2, … , 𝑋5) = 𝑃(𝑋1)𝑃(𝑋2)𝑃(𝑋3)𝑃(𝑋4|𝑋1, 𝑋2)𝑃(𝑋5|𝑋3, 𝑋4) (6) 

 

The three unconditional probabilities in equation (2), namely P(X1), P(X2), and P(X3), and 

the two conditional probabilities, P(X4|X1,X2),and P(X5|X3,X4), are needed to define the joint 

distribution of P(X1,…,X5) [47]. 

Another characteristic of BN is the capability to insert propagation belief P(Xi) once 

observing other nodes’ behavior. The observed nodes are named evidence. For instance, the 

conditional probability for variable X5 given evidence 𝜃, (𝜃 = {X1, X2, X3, X4, X5}), can be used 

to calculate P(X5|𝜃) (see equation(3)). 

  

𝑃(𝑋5|𝜃) =
𝑃(𝑋1,𝑋2,𝑋3,𝑋4,𝑋5)

𝑃(𝑋1,𝑋2,𝑋3,𝑋4)
 = 

𝑃(𝑋1,𝑋2,𝑋3,𝑋4,𝑋5)

∑ 𝑃(𝑋1,𝑋2,𝑋3,𝑋4)𝑋5

 (7) 

 

This conditional probability, given in equation (3), can be calculated more efficiently by 

exploring conditional independencies using equation (4). 

 

𝑃(𝑋5|𝜃) =
𝑃(𝑋5|𝑋3)𝑃(𝑋4|𝑋1, 𝑋2)

∑ 𝑃(𝑋5|𝑋3)𝑃(𝑋4|𝑋1, 𝑋2)𝑋5

 (8) 

The Bayern network model is helpful in several ways. It is an important decision-making 

tool and helps analyze profit maximization in business. The Bayesian network models are used 

globally, especially by data scientists, to test the probable cause of an outcome and the contributing 

factors. Interested readers are encouraged to review [45] for details about BN modeling. 
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Multi-criteria Assessment for a bCHP Site Selection 

Criteria assessments play a significant role in the site selection of a bCHP system. Given 

the key idea for this study is to reliably locate bCHP in rural communities, the siting decisions are 

made from the technical and sustainability perspectives. Three sub-criteria are used to define the 

technical requirements, namely, electrical and thermal demand, power outage frequency, and 

integration of renewable energy. These requirements primarily followed the basic CHP installation 

guidelines set forward by the U.S. Department of Energy (DOE) [48,49]. Therefore, our main 

focus is mainly given to the sustainability perspective, which we defined under the light of three 

dimensions, namely, the environmental, economic, and social criteria. Each criterion is associated 

with a number of sub-criteria, which are determined in multiple ways. First, an initial set of sub-

criteria is identified under each criterion via reviewing academic literature and government reports 

(e.g., U.S. DOE, U.S. Environmental Protection Agency (EPA)), and performing an initial 

feasibility assessment for potential bCHP siting selection in the rural communities. Secondly, 

experts' opinions (e.g., stakeholders, researchers from academia, national lab, and government 

offices) are collected, and the initial sub-criteria list is refined. Finally, less important sub-criteria 

are discarded from the list, and the refined list is reviewed again with the experts. Figure 16 

delineates the criteria and sub-criteria used for evaluating bCHP site selection in a rural 

community. The details about the sub-criteria are provided below. 
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Figure 16 Criteria and sub-criteria for evaluating bCHP site selection in a rural community 

 

 Technical criterion  

The following three sub-criteria are used under the technical criteria. 

Electrical and thermal demand  

This sub-criteria refers to the potential electrical and thermal consumption needed for the 

selected sites. Facilities within a rural community, such as agricultural farms, food processing 

facilities, paper mills, schools, hospitals, government buildings, wholesale/retailer, can be 

considered as a potential location to install a bCHP facility [50]. It is assumed that the candidate 

sites may potentially be willing to install bCHP. Further, we deduct the sites which are already 

using CHP facilities in our test region (obtained via [50].). The approximation of possible 

consumption in terms of Megawatt (MW) is considered. 
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 Power outage frequency 

This sub-criterion refers to the consistency of power supply in the potential rural areas. The 

reliability of a power supply is defined by how frequently the power fails or the time between 

failures. A power outage can be due to technical reasons (e.g., planned maintenance) and odd 

reasons (e.g., natural disasters). A site with a stable power supply is more desirable though 

preference will be given for a rural community to become operational in an isolated or 

disconnected mode under any extreme natural event (e.g., hurricane, tornado).  

Integration of renewable energy 

This sub-criteria refers to the opportunity of a rural community to utilize renewable energy 

sources (e.g., solar or wind) to decrease the energy production cost and increase the overall system 

resiliency. For instance, our test region Mississippi tends to have a short winter and a long summer, 

with the average temperature being 82°F during summer and 52°F during the winter [51]. 

Therefore, the rural Mississippi communities may benefit from integrating solar energy.  

Environmental criterion 

Under the environmental criteria, three main factors can play critical roles in selecting the 

best alternative site location for bCHP in Mississippi rural communities: air quality, land use 

impact, and forest fire reduction. 

Air quality  

Electricity generation usually impacts air quality, which results in DOE concern. Air 

quality standards have to adhere to the Clean air act  (CAA), the DOE’s primary law governor. 

The electric power system can generate emissions and other pollutants. However, the use of 

biomass for CHP can fundamentally reduce air pollution [52]. Greenhouses gases and other 
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harmful emissions, such as carbon dioxide (CO2) and sulfur dioxide (SO2), will be significantly 

reduced using the bCHP system [46]. 

Land use impact 

Another environmental indicator of using bCHP is to reduce the biomass residues and 

wood waste that occupy a large space of landfill sites. Thus, their exploitation will provide more 

space in landfill sites and decrease waste disposal [39]. 

Forest fire reduction 

Wildfires have led to severe impacts on wildlife, humans, and global warming. The 

exploitation of the accumulated dry forest residues can reduce the risk of wildfires [39]. Using 

forest residues for electricity generation would be a sustainable alternative, while minimizing the 

risk of wildfire and possible destruction of wild habitant and the nearby local communities [53]. 

 Economic criterion 

The following three sub-criteria are used under the economic criteria.  

Feedstock collection cost 

The source and sustainability of the biomass feedstock significantly impact the economics 

behind the bCHP-based power generation. A wide range of biomass feedstocks which are abundant 

in the rural community, such as forest residues and wood waste, agricultural residues (e.g., corn 

stovers, wheat stalks), energy crops (e.g., grasses), and biogas from livestock effluent, can be 

considered as a potential feedstock source [39,48]. To increase the system resiliency, the bCHP 

site that can procure biomass feedstock from multiple sources (located within 30 miles radius from 

the facility), pending the conversion technology supports the feedstock types, will be weighted 
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higher. To summarize, this sub-criteria consists of the costs associated with feedstock 

procurement, transportation, pretreatment, and storage costs. 

Capital investment cost 

Biomass can be converted into power in a wide range of commercially-proven 

technologies, such as the thermal-chemical processes (e.g., combustion, gasification, and 

pyrolysis) or biochemical processes (e.g., anaerobic digestion). Depending upon the type of 

processes being used, the bCHP capital investment cost varies. Note that feedstock availability and 

costs have a strong influence on selecting the economic biomass conversion technologies for the 

bCHP facilities located in a rural community. 

Operations and maintenance (O&M) costs  

O&M costs refer to the costs associated with safe, smooth, and reliably maintaining the 

day-to-day power generation operations via the bCHP systems. More specifically, O&M costs 

consist of labor, scheduled and unscheduled maintenance, ash disposal, insurance, equipment 

replacement, and many others. 

Social criterion 

Lastly, the following two sub-criteria are used under the social criteria. 

Rurality index 

Given we are assessing the potential location(s) to open bCHP facilities in a rural 

community, we use the Index of Relative Rurality (IRR) indicator, proposed by [53], to gauge the 

level of rurality a particular community belongs to. A community (e.g., county) with a higher Index 

of Relative Rurality (IRR) is considered more favorable for bCHP installations for this study. 
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Rural economic development 

An assessment has been made based on the need for economic development in a rural 

community. Factors such as the number of existing farms and the unemployment rate are 

considered in this assessment [53]. Rural communities with a need for economic development are 

weighted higher during the bCHP site selection processes. 

The Proposed Bayesian Network Methodology  

This section introduces the methodology for bCHP site selection in the rural community. 

We broadly categorize this selection process into three different phases: (i) development phase, 

(ii) modeling phase, and (iii) assessment phase. The development phase consists of identifying 

several criteria and sub-criteria to locate a bCHP facility in a rural community systematically. 

Expert knowledge, available literature, and basic CHP installation guidelines, as mandated by the 

US DOE [48], are used to construct the criteria and sub-criteria. In total, four criteria and eleven 

sub-criteria are identified to assess a potential site for installing a bCHP unit (see Figure 16). Next, 

a proper connection between the criteria and sub-criteria is made, and the relevant data are 

collected to construct the BN model. With the knowledge gathered during the development phase, 

a BN model is constructed for each potential site during the modeling phase. The BN score for all 

potential sites will be assessed via numerous sensitivity analyses during the assessment phase. If 

validated, the analyst will select the best bCHP site(s); otherwise, the development phase will be 

visited again to reevaluate the criteria/sub-criteria selection and data collection processes. The 

process will continue until each site is adequately validated via rigorous sensitivity analysis. 
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Figure 17 The designed framework for selecting a bCHP system in a rural community 

Case Study 

This section presents a BN model simulated using AgenaRisk software 

(https://www.agenarisk.com/) to evaluate possible alternatives for bCHP sites. The developed BN 

model is decomposed into four sub-models: technical, social, economic, and environmental. We 

start by assuming equal weights for all four criteria. We use the 82 counties of Mississippi as a 

testing ground to visualize and validate the BN model. The procedure of modeling for each sub-

criteria is described below. 

https://www.agenarisk.com/
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Modeling Criteria  

This subsection discusses in detail how the four criteria are modeled, along with the data 

sources and assigned distributions. Below, we summarize the variables used during the modeling 

processes. 

(i) Boolean variables are usually used to evaluate dual responses (yes, no) 

(ii) Qualitative variables are usually used to assess ordinal categories utilized for weights 

for contributors (ranked) 

(iii) Discrete variables are usually used to measure constant values  

(iv) Continuous variables are usually used to evaluate random variables with an identified 

probability distribution; finally,  

(v) The integer variables are usually used with the aspect that does not accept fractions. 

Modeling of economic criterion  

The economic criteria consist of three cost components: feedstock collection, capital 

investment, and total operations and maintenance costs. The modeling procedure for economic 

criterion and its contributors is summarized in Table 6. We use corn stover and forest residues as 

the primary feedstock sources for our test region due to their availability and affordability in the 

rural communities in Mississippi. Figure 18 visualizes the total availability of corn stover and 

forest residues for the state of Mississippi. The data for the capital investment and total operations 

and maintenance costs are obtained from the International Renewable Energy Agency [24]. 
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Figure 18 The availability of forest residues and corn stover for the state of Mississippi 
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Table 5 Modeling of variables contributed to economic criterion 

Variable name  Modeling procedure Explanation  

 

 

Feedstock Collection Cost 

Forest residues1: 

Triangular distribution(15, 22, 30) 

Corn stover2:  

Triangular distribution(20, 35, 50) 

For the forest residues, we use triangular 

distribution with an average, minimum, and 

maximum feedstock collection cost of $22/ton, 

$15/ton, and $30/ton, respectively. For the corn 

stover, we use triangular distribution with an 

average, minimum, and maximum feedstock 

collection cost of $35/ton, $20/ton, and 

$50/ton, respectively [60]. 

 

 

 

 

Capital Investment Cost  

 

 

 

 

TNORM(µ=18,040; σ2=12,000; 

LB=1,990; UB= 28,000) 

The capital investment cost is assumed to 

follow a truncated normal distribution with a 

mean of $27,930, a variance of $7,180, and a 

lower and upper bound of $18,000 and 

$37,935, respectively. Equipment (prime 

mover), fuel management and preparation, 

machinery, engineering, and construction costs 

are contributed to the total investment cost. The 

largest contribution to the capital costs of the 

bCHP systems is the boiler itself and the 

supplementary equipment, which make up 

approximately 60-70% of the total capital cost. 

An appropriate system for rural communities 

would be 5 MW [65, 66].  

 

 

 

Operation and Maintenance Cost  

 

 

 

Expected lifetime3 x Annual 

Maintenance cost 

The operation and maintenance (O&M) of 

biomass power generation plants denote the 

fixed and variable costs. Fixed O&M costs 

involve labor and routine parts exchange. On 

the other hand, the variable O&M costs are 

accompanied by the output of the biomass 

system. The maintenance cost is assumed to 

depend on the capital investment cost, with an 

average cost of $0.0006/MW. Annual 

Maintenance cost = (0.0006*Capital 

investment cost (CAPEX)) [61]. 
1The feedstock residues availability is assumed to follow a truncated normal distribution with an average mean of 31,366 ton and a variance of 

18,022 ton, with lower and upper bound of 2,957 ton and 89,760 ton, respectively. 
2The corn stover availability is assumed to follow a truncated normal distribution with an average mean of 5,887 ton and a variance of 15,163 ton. 

The lower bound is zero since many counties in Mississippi do not produce corn stover, while the upper bound is 81,966 ton. 
3The expected lifetime of the bCHP system is assumed to follow a triangular distribution with a lower, average, and an upper lifetime of 15 years, 

20 years,  and 25 years, respectively [60]. 

 

 Modeling of technical criterion  

The technical criterion compromises the reliability of a facility’s power supply and the 

potential electrical and thermal consumption needed near the site locations. Therefore, the site 

location’s reliability that supplies power is measured based on the average failure of a certain 
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community’s power outage. Moreover, a community with more available businesses, houses, 

hospitals, and schools in the rural community is recommended.  Since we are investigating the 

potential of siting a bCHP facility in a rural community, we restrict the power plant capacity to 5 

MW [30]. Table 7 shows how the variables are modeled under the technical criteria to locate a 

bCHP facility in a rural community. 

Table 6 Modeling of variables contributed to the technical criteria 

Variable name  Modeling procedure Explanation  

Electrical and Thermal demand  IF(Housing Occupancy1 >= 3,000 & 

Business Occupancy2 > 12.0, 

"True","False") 

To model the needed electrical and thermal 

demand, it is necessary to identify the 

minimum power and heat threshold required to 

define the right system capacity in a rural 

community. The 5 MW per day power system 

can be considered satisfactory for a rural 

community with a minimum housing and 

business occupancy of 3,000 and 12, 

respectively [65,66].  

Power Outage Frequency  NORM(µ=90, σ2=75) 

IF(Power outage < 110, 

"True","False") 

 

The power outage can be considered a critical 

factor to ensure a system’s overall reliability. 

The average power outage in Mississippi is 

reported to be 110, with a variance of 75 [51]. 

Integration of Renewable 

Energy (e.g., solar system)   

IF(Renewable energy: solar = 

1.0,"True","False") 

Solar energy is considered to increase the 

system's resiliency. As per the Biofuels Atlas, 

seven counties located in the central and the 

northeast region of Mississippi are suitable for 

solar energy [51]. We select one if the county 

is suitable for solar energy integration; zero 

otherwise. 
1The housing occupancy rate is assumed to follow a truncated normal distribution with an average, variance, lower, and upper bound to be 3,000, 

1,090, 2,500, and 8,000 residential areas, respectively; i.e., TNORM (µ = 3,000, σ2 = 1,090, LB= 2,500,UB= 8,000)) [63].   
2The business occupancy rate is assumed to follow a truncated normal distribution with an average of 16 (includes retailer, plant, warehouse, store, 

and station), variance 3, lower and upper bound to be 12 and 40 businesses, respectively; i.e., TNORM (µ = 16, σ2  = 3, LB= 12, UB= 40) [58]. 

 

 Modeling of environmental criterion  

The environmental criterion consists of three variables: air quality, land use impact, and 

forest fire reduction. A Boolean variable with a true or false state is used to model the 

environmental node. The true state indicates a positive outcome, while the false state indicates a 
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negative result. Table 8 shows how the variables are modeled under the environmental criteria to 

locate a bCHP facility in a rural community. 

Table 7 Modeling of variables contributed to environmental criteria 

Variable name  Modeling procedure Explanation  

Air Quality1,2  IF(CO2 <= 150 & SO2 

<=7,040,"True","False") 

The if condition is used to define the threshold 

levels for CO2 and SO2. To model the air 

quality level for a given rural community, the 

quality index thresholds are set to be 150 and 

7,040, respectively [55,56]. 

Land Use impact   IF(Forest logging residues3 >21,955 

or corn stover4 

>3,944,"True","False") 

For modeling the land use impact, the if 

condition is used to determine the minimum 

usage of forest residues or corn stover to be 

utilized by a particular site in an attempt to 

reduce waste in the regions [57,58].   

Forest Fire Reduction     IF(Forest wildfire5 >7 or Total 

disaster occurrence6 

>10,"True","False") 

If a location (e.g., county) is impacted more 

frequently by a forest fire or other natural 

catastrophes (e.g., hurricanes and tornados), we 

assume that there would be a higher inclination 

to locate a bCHP facility in that location. Based 

on the historical data in Mississippi, counties 

with higher than 7 forest fires or 10 natural 

catastrophes are considered favorable for siting 

a bCHP facility [59,60]. 
1The CO2 level (ppm) is assumed to follow a truncated normal distribution with an average of 150 ppm, a variance of 15 ppm with a lower and 

upper bound of 100 ppm and 168 ppm, respectively; i.e., TNORM (µ = 150, σ2 = 15, LB= 100, UB= 168) [55]. 
2The level of SO2 (ppb) is assumed to follow a truncated normal distribution with an average 7,040, variances of 2,835 with a lower and upper 

bound of 3,900 and 12,200 ppb, respectively; i.e., TNORM (µ = 7,040, σ2 = 2,835, LB= 3,900, UB= 12,200) [56]. 
3Availability of logging forest residue is assumed to follow a normal distribution with a mean of 21,955 tons and a variance  of  12,615 tons; i.e., 

NORM (µ = 21,955, σ2 = 12,615) [57]. 
4Availability of corn stover is assumed to follow a normal distribution with a mean of 3,944 tons and a variance  of 1,015 tons; i.e., NORM (µ = 

3,944, σ2 = 1,015) [58]. 
5The wildfires in Mississippi are assumed to follow a truncated normal distribution with a mean of 7 wildfires, a variance of 5 wildfires, and a 

lower and upper bound are 1 and 28 wildfires, respectively. Figure 19 shows the data collected from the Mississippi Forestry Commission 

(MFC); i.e., TNORM (µ=7, σ2=5, LB= 1, UB= 28) [59].  
6The number of disasters (e.g., hurricanes, tornados) in Mississippi is assumed to follow a normal distribution with an average and variance of 10 

and 6, respectively. Figure 20 shows the data collected from the Mississippi State Fire Incident department (MSFI); i.e., NORM (µ=10, σ2=6) 

[60].  
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Figure 19 The average number of wildfire per county from 1/2016 to 12/2020 [59] 

 

Figure 20 The number of disaster occurrence per county from 1/2015 to 12/2020 [60] 
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 Modeling of Social criterion  

The social criterion consists of two variables: (i) rurality index and (ii) rural economic 

development. The relative rurality index measures the rurality in two aspects, namely, the discrete 

and continuous measures. Given that this study aims to investigate the bCHP site selection 

decisions in the rural community, the following discrete measures are used to serve this purpose: 

population size, population density, and remoteness from urbanized areas. On the other hand, the 

continuous measure captures the community health, knowledge, and standard of living typologies. 

The second sub-criteria in rural economic development contributes to social service in rural 

communities. Factors such as the number of existing farms and the unemployment rate are 

considered in this assessment [53]. Table 9 shows how the variables are modeled under the social 

criteria to locate a bCHP facility in a rural community. 

Table 8 Modeling of variables contributed to social criterion 

Variable name  Modeling procedure Explanation  

Rurality Index IF (Population size1 < 20,000.0 or 

Index of relative rurality2 > 

0.59,"True","False") 

To identify the rural community, a population 

with a size less than 20,000 is considered. 

Additionally, the Index of Relative Rurality 

(IRR) is set to be greater than 0.59 based on the 

studies from [53] and [54], where an IRR value 

of 0 implies most urban, and 1 implies most 

rural communities (see Figure 21). 

Rural economic development IF(Unemployment rate3 > 5.9 & 

Business Occupancy4 

>12,"True","False") 

To model rural economic development, 

counties with an unemployment rate of more 

than 5.9% (see Figure 22) and business 

occupancy with more than 12 different 

businesses are considered [64, 65]. 
1Population size follows a truncated normal distribution with an average, variance, lower, and upper bound to be 36,448, 30,000, 1,328 and 

241,774 residents, respectively, i.e., TNORM (µ=36,448, σ2=30,000, LB=1,328, UB=241,774) [28]. 
2The relative rurality index follows a truncated normal distribution with an average, variance, lower, and upper bound to be 0.55, 0.167, 0.01, and 

0.89; i.e., TNORM (µ=0.55, σ2=0.167, LB= 0.01, UB= 0.89) [17]. 
3The unemployment rate in Mississippi follows a truncated normal distribution with an average of 5.9%, a variance of 1.2%, and a minimum and 

maximum unemployment rate of 3.7% and 14.1% across all counties; i.e.,  TNORM (µ=5.9, σ2=1.2, LB= 3.7, UB= 14.1) [29]. 
4The business occupancy rate follows a truncated normal distribution with an average of 12 different types of business, and a variance, lower, and 

upper bound to be 3, 12, and 40, respectively; i.e., TNORM (µ=16, σ2=3, LB= 12, UB= 40) [28]. 
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Figure 21 Degree of Rurality at Census tract-level  [53] 

 

 

Figure 22 County-wise unemployment (in percentage) in Mississippi [65] 
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Experimental Results 

Probability of site selection 

The probability of bCHP site selection node (see Figure 23) is the target node in the BN 

model. The desired node is conditioned based on four previously mentioned criteria, namely, 

technical, environmental, technical, and social, which contribute to the probability of selecting a 

bCHP facility in a geographical region.  More specifically, the probability of a given site is 

calculated based on the following formula: 𝑃𝑟(site selection) =

 𝑃𝑟(environmental criteria being true) × 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙 +

𝑃𝑟(economic criteria being true) × 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐 + 𝑃𝑟(technical criteria being true) ×

𝑤𝑒𝑖𝑔ℎ𝑡𝑡𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙 + 𝑃𝑟(social criteria being true) × 𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑜𝑐𝑖𝑎𝑙 . In the above formula, 𝑃𝑟 

represents the probability and 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙, 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐, 𝑤𝑒𝑖𝑔ℎ𝑡𝑡𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙, and 

𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑜𝑐𝑖𝑎𝑙 to represent the weight of environmental, economic, technical, and social criteria, 

respectively. For our base case experiments, we set 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙, 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐, 

𝑤𝑒𝑖𝑔ℎ𝑡𝑡𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙, and 𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑜𝑐𝑖𝑎𝑙 to be 20%, 30%, 30%, and 20%, respectively. 

Table 11 shows the ranking of the top ten potential favorable locations to site a bCHP 

facility in the Mississippi State. Figure 27 visualizes the geographical locations of the top ten 

favorable bCHP site alternatives. Based on Table 11, it can be observed that Bolivar County is 

selected to be the most favorable location to site a bCHP facility in Mississippi, followed by Clarke 

and Coahoma Counties. Based on the BN model, the site selection probabilities for the three 

counties are 91.9%, 87.7%, and 81.3%, respectively. Both the three counties are rich in biomass 

resources (see Figure 18) and have a high rurality index (see Figure 21), making them favorable 
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to site a bCHP facility in Mississippi. Figure 24, 25, and 26 show the BN network for the Bolivar, 

Clarke, and Coahoma Counties.   

 

Figure 23 The BN model’s target node – Probability of bCHP site selection 
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Figure 24 The developed BN model for the first bCHP alternatives in Bolivar County 

 

Figure 25 The developed BN model for the first bCHP alternatives in Clarke County 
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Figure 26 The developed BN model for the first bCHP alternatives in Cohama County 

Table 9 Ranking of top 10 bCHP locations in Mississippi State (see Figure 27) 

 

Ranking 

 

County Name 
 

Site Selection Probability (%) 

 

 

Region 

True  False  

1 Bolivar 91.9 % 8.1% Delta region  

2 Clarke 89.4% 10.6% Coastal Region  

3 Coahoma 87.7% 12.3% Delta region  

4 Monroe 81.3% 18.7% Northeast region  

5 Leflore 80.1% 19.9% Delta region  

6 Itawamba 77.3% 22.7% Northeast region  

7 Pearl River 77.2% 22.8% Coastal region  

8 Warren  77.1% 22.9% Central region  

9 Lincoln  76.3% 23.7% Central region  

10 Greene 76.2% 23.8% Coastal region  

 

 



 

62 

 

Figure 27 The geographical locations of the top 10 bCHP site alternatives. 

Sensitivity analysis 

Sensitivity analysis is a technique used to assess the validity of the built model. Also, to 

understand which nodes have more influence on the target node. This process will show how 

accurate the method is on the built model. It will help the system’s model to see if it is within 

acceptable tolerance or not. We applied validation to compare the results of a model to the physical 

measurements, then computed a confidence interval of the difference. This formulation can also 

provide estimates for the system’s behavior when no data are available. Therefore, a sensitivity 

analysis was made on the target node (probability of bCHP selection on the four criteria 

(environmental, economic, social, and technical).  
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The outcomes of sensitivity analysis on the probability of selecting counties are explained 

in the Tornado graph in Figures 28 and 29. The Tornado graphs have been utilized for sensitivity 

analysis purposes by comparing the significance of nodes. The variables are embodied by bars 

with two states of “true” and “false.” From a purely visual perspective, the length of the bars in 

the tornado graph measures the influence of that variable on the probability of county selection of 

site location. Thus, the tornado graph’s technical criterion and environmental criterion show the 

most significant and least significant influence on the county’s selection of the first site alternative. 

The general understanding is that the probability of selecting the first county location (“true”) that 

is based on technical criterion goes from 0.16 (when the technical criterion is “false”) to 0.55 

(when a technical criterion is “true”). To be more precise, the probability of selecting the first 

county’s location is 0.55, given the technical criteria are achieved. This range (0.16–0.55) is 

precisely the bar in the tornado graph explained in Figure 28.  

On the other hand, for the environmental criteria, the range differs from (0.42 to 0.44), 

indicating the low influence of the environmental criterion on the selection of site location’s 

decision process. The vertical bar on the chart mainly represents the marginal probability for the 

first alternative county location being “true” (0.44). As shown in Figures 28 and 29, it can be 

determined that the probability of selecting the first alternative site location is more sensitive to 

the changes in the states of technical criterion and least sensitive to changes in environmental 

criterion. This can also be understood that technical criterion subsidizes the most to the variability 

of the site location variable. Consequently, decision-makers have to concentrate more on the 

technical criteria than other variables. 
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Figure 28 The tornado diagram express the effect on the first site alternative being “True”. 

 

Figure 29 The tornado diagram expresses the effect on the first site alternative being “False”. 

 

In the next set of experiments, we vary the base weighs (i.e., (𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙, 

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐, 𝑤𝑒𝑖𝑔ℎ𝑡𝑡𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙, 𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑜𝑐𝑖𝑎𝑙) = (20, 30, 30, 20)%) to examine how the weights 

on different criterion impact the bCHP site selection decisions. To carry out the experiments, we 

create three different scenarios. Table 12 shows the weight set for the three scenarios. In the first 

scenario, it is assumed that the economic criterion is significantly more important compared to the 
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other criteria. As such, the weight for this scenario is set as follows: (𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙, 

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐, 𝑤𝑒𝑖𝑔ℎ𝑡𝑡𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙, 𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑜𝑐𝑖𝑎𝑙) = (10, 70, 10, 10)%. Likewise, scenarios 2 and 3 

are constructed assuming that the technical and social criteria are more important as compared to 

the other criteria. Note that the environment criterion is neglected in the sensitivity analyses since 

the criterion has minimal impact on our study region. 

Table 10 Weight set for different scenarios 

Scenario  Weights 

1 (𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙, 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐, 𝑤𝑒𝑖𝑔ℎ𝑡𝑡𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙, 

𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑜𝑐𝑖𝑎𝑙) = (10, 70, 10, 10)% 

2 (𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙, 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐, 𝑤𝑒𝑖𝑔ℎ𝑡𝑡𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙, 

𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑜𝑐𝑖𝑎𝑙) = (10, 10, 70, 10)% 

3 (𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙, 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐, 𝑤𝑒𝑖𝑔ℎ𝑡𝑡𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙, 

𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑜𝑐𝑖𝑎𝑙) = (10, 10, 10, 70)% 

 

The bCHP sites selected under the three scenarios described in Table 12 are listed in Table 

13 and visualized in Figure 30. Results in Table 13 indicate that the top five counties in 

Mississippi, namely Bolivar, Clarke, Coahoma, Monroe, and Leflore Counties, are robust for 

locating a bCHP facility, despite higher weights being put on the economic, technical, and social 

criteria. However, we observe a change in the rankings of bCHP sites under all three scenarios 

after the top five preferences. For instance, scenario 3 diversifies the selection of bCHP facilities 

compared to the base case by putting more weightage on counties with a higher rurality index and 

economic development opportunities. A comprehensive BN network modeling for the Boliver 

county under scenarios 1 to 3 is visualized in Appendix A2. 
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Table 11 Top ten bCHP sites under different scenarios as discussed in Table 12 

 

 

Ranking  

Scenario 1  Scenario 2 Scenario 3 

 

County 

Name 

Site 

Selection 

Probability 

(%) 

 

County 

Name 

Site 

Selection 

Probability 

(%) 

 

County 

Name 

Site 

Selection 

Probability 

(%) 

1 Bolivar  93.9% Bolivar  93.9% Bolivar  90.6% 

2 Clarke  92.8% Clarke  92.7% Clarke  87.3% 

3 Coahoma  89.5% Coahoma  89.4% Coahoma 87.3% 

4 Monroe 87.1% Monroe  87.1% Monroe  86.3% 

5 Leflore  86.4% Leflore  86.4% Leflore 83.4% 

6 Itawamba 82.0% 
Itawamba  79.6% 

Pearl 

River  
83.4% 

7 Panola 79.6% Warren 79.6% Panola 83.4% 

8 Warren  79.6% Yazoo  79.6% Kemper 83.4% 

9 Washington 79.6% Copiah 78.8% Itawamba 83.4% 

10 Yazoo  79.6% Lincoln   78.8% Warren  83.3% 

 
(a)                                             (b)                                                 (c) 

Figure 30 Visualizing bCHP sites under (a) scenario 1, (b) scenario 2, and (c) scenario 3 
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Conclusion 

This study is the first to methodologically investigate bCHP site selection decisions in a 

rural community. The site selection decision of a candidate bCHP facility is made under four 

dimensions: technical, economical, environmental, and social. A number of sub-criteria are 

developed under each criterion to methodologically assess a candidate bCHP site. All the criteria 

and sub-criteria are added under a Bayesian Network (BN) framework to assess the likelihood of 

opening a bCHP facility. Overall, 82 counties in Mississippi are assessed and visualized under 

different scenarios. We observe that the top five favorable locations to locate bCHP facilities in 

Mississippi are Bolivar, Clarke, Coahoma, Monroe, and Leflore County. These counties are rich 

in biomass resources, marked as rural counties, and frequently impacted by power outages. 

Further, it is observed that these counties are insensitive to changing technical, economic, and 

social metrics, indicating the counties are reliable for locating a bCHP facility. Due to our 

application area, we observe little to no impact of environmental criteria in locating a bCHP facility 

in this study. 

This study can be extended in several research directions. Even though the criteria and sub-

criteria utilized in constructing the BN model developed in this study are generic, it might be 

interesting to examine how the model behaves in selecting bCHP facilities under varying and harsh 

climatic conditions (e.g., Alaska). Further, the developed BN model could be integrated with 

different advanced machine learning models to improve the prediction quality of selecting a bCHP 

facility in a targeted community. These issues could be addressed in future studies. 
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APPENDIX A 

CHAPTER I  IN STREAM MARINE LITTER COLLECTION STANDARD  

MODEL USING BAYESIAN NETWORK 
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Figure 31 The developed BN model standard for LG selections. 
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APPENDIX B 

CHAPTER II BOLIVAR COUNTY BAYESIAN NETWORK MODEL FOR SCENARIO 1,2 

AND 3 
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Figure 32 The developed BN model for the Bolivar County under scenario 1 
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Figure 33 The developed BN model for the Bolivar County under scenario 2 
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Figure 34 The developed BN model for the Bolivar County under scenario 3 
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