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Accurate short-term electricity price forecasts are essential to all electricity market 

participants. Generation companies adopt price forecasts to hedge generation shortage risks; load 

serving entities use price forecasts to purchase energy with low cost; and trading companies 

utilize price forecasts to arbitrage between markets.  

Currently, researches on point forecast mainly focus on exploring periodic patterns of 

electricity price in time domain. However, frequency domain enables us to identify more 

information within price data to facilitate forecast. Besides, price spike forecast has not been 

fully studied in the existing works. Therefore, we propose a short-term electricity price forecast 

framework that analyzes price data in frequency domain and consider price spike predictions. 

First, the variational mode decomposition is adopted to decompose price data into multiple band-

limited modes. Then, the extended discrete Fourier transform is used to transform the 

decomposed price mode into frequency domain and perform normal price forecasts. In addition, 

we utilize the enhanced structure preserving oversampling and synthetic minority oversampling 

technique to oversample price spike cases to improve price spike forecast accuracy. 



 

 

In addition to point forecasts, market participants also need probabilistic forecasts to 

quantify prediction uncertainties. However, there are several shortcomings within current 

researches. Although wide prediction intervals satisfy reliability requirement, the over-width 

intervals incur market participants to derive conservative decisions. Besides, although electricity 

price data follow heteroscedasticity distribution, to reduce computation burden, many researchers 

assume that price data follow normal distribution. Therefore, to handle the above-mentioned 

deficiencies, we propose an optimal prediction interval method. 1) By considering both 

reliability and sharpness, we ensure the prediction interval has a narrow width without sacrificing 

reliability. 2) To avoid distribution assumptions, we utilize the quantile regression to estimate the 

bounds of prediction intervals. 3) Exploiting the versatile abilities, the extreme learning machine 

method is adopted to forecast prediction intervals.  

The effectiveness of proposed point and probabilistic forecast methods are justified by 

using actual price data from various electricity markets. Comparing with the predictions derived 

from other researches, numerical results show that our methods could provide accurate and stable 

forecast results under different market situations.  
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CHAPTER I 

INTRODUCTION 

From a length point of view, price forecasts can be categorized into short-term price 

forecasts, medium-term price forecasts, and long-term price forecasts. A majority of U.S. 

electricity markets have a two-settlement markets system that contains a day-ahead (DA) 

forward market and a real-time (RT) spot market [1]. Price forecasts related to those two markets 

are regarded as short-term forecasts. Medium-term price forecasts are range from one week to 

several months [2] and long-term electricity price forecasts focus on predicting electricity prices 

in the next few years [3]. Although medium-term and long-term price forecasts are vital to 

energy purchase and policy-making, almost all market participants need to join the day-ahead 

and the real-time market on a daily basis. Therefore, our research focuses on study short-term 

electricity price forecasts.  

1.1 Point forecast 

Short-term (day-ahead and real-time) electricity price forecasts are essential to all 

electricity market participants. For generation companies, accurate short-term price forecasts are 

used to derive optimal bidding strategies to hedge risks and reduce losses [4], [5]; for load 

serving entities, accurate short-term price forecasts can assist them to obtain sufficient energy 

with low costs [6] [85]; and for trading companies, profitable bidding strategies rely on accurate 

price forecasts [7]. 
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Researchers have stated that short-term electricity prices are a type of time-series data 

that possess both periodic and uncertain characteristics [8]. Daily, weekly, seasonally, and other 

common periodic patterns are used in price forecasts. Reference [9] applies the weighted nearest 

neighbors’ methodology in the day-ahead price forecast, which is a type of similar day forecast 

method that assumes that if the prices of the previous day i are close to the prices of the current 

day d, then the prices of day i+1 in the past are similar to the prices of day d+1 in the future. To 

learn non-linear relationships between predictors and targets that are hard to be captured by a 

similar day method, a hybrid method is presented in [10] [44] that combines the artificial neural 

network (ANN) model with a similar day method. Reference [11] uses an autoregressive 

integrated moving average (ARIMA) method to model linear daily and weekly patterns and 

implements ANN models to capture nonlinear relationships within short-term electricity prices. 

Comparing with [11] and [83] that assume error terms with zero mean and constant variance, [4] 

considers that short-term electricity prices have a seasonality and time-varying nature of 

volatility. Therefore, the generalized autoregressive conditional heteroskedastic (GARCH) 

method is adopted to model the time-varying volatility of Spain and California day-ahead 

electricity prices. By taking advantage of the ARIMA method in modeling stationary linear 

relationships, the GARCH method in modeling non-constant variance, and the adaptive wavelet 

neural network (AWNN) method in modeling non-linear relationships, [12] proposes a hybrid 

model to forecast the day-ahead electricity prices. Comparing with [10], forecast results of the 

hybrid method in [12] are not only accurate but also stable, which means forecast results of [12] 

have lower forecast errors and lower error variance. However, training ANN networks is still a 

time-consuming procedure. To shorten training period and maintain forecast accuracy, [5] 

utilizes the extreme learning machine (ELM) method to substitute ANN. As input weights of the 
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ELM method are only generated once instead of being tuned iteratively, compared with the ANN 

method, the ELM method saves a lot of computation time. 

Uncertainty is another characteristic of electricity price data and price spikes are one of 

the most salient uncertain situations [68]. Normally, price spikes are rarely occurred and have no 

stable patterns. Besides, the magnitude of spike price is tens or hundreds of times higher than 

normal electricity prices. Therefore, the difficulties of price spike forecasts are related to price 

spike occurrence forecast and price spike magnitude prediction. Reference [13] explicitly focuses 

on forecasting the incidence of price spikes. The probabilistic neural network (PNN) is used to 

find relationships between the inputs and outputs. Besides, a mutual information (MI) based 

feature selection method is applied to identify the most useful input data to reduce data 

redundancy and improve forecast accuracy. Using intra-hour data and applying a lower spike 

identification threshold, [14] provides a framework to forecast a one-hour ahead spike 

occurrence. By comparing support vector machine (SVM) and probability classifier, [15] proves 

that SVM can provide a more reliable spike occurrence prediction. Reference [16] compares a 

broader range of spike forecast methods than [15] and also concluded that SVM is a better choice 

to predict spike occurrence. On the other hand, researches also focus on spike magnitude 

prediction. Reference [17] utilizes a consecutive method in which a naive Bayesian classifier is 

used to roughly classify spikes into several coarse categories (e.g., prices between [75, 100], 

[100, 150] … [500, 2000]) and a nearest neighboring hybrid method is applied to calculate the 

final forecast spike values by averaging k nearest prices in the same category. Researchers also 

propose a set of price spike forecast methods [18] - [21] that not only predict spike occurrence 

but also forecast spike values. Reference [18] offers a framework that combines forecast results 

of the SVM and the Bayesian classifier to improve occurrence forecast accuracy. Besides, spike 
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magnitudes are estimated by using the nearest neighboring method in [17]. Combined with the 

spike classification results derived from [13], [19] proposes a hybrid neuro-evolutionary system 

(HNES) to predict the values of spikes under different spike definitions (e.g., prices over 150 

$/MWh or 200 $/MWh). In order to forecast spike values, the HNES framework adopts neural 

networks (NNs) to estimate spike magnitudes and uses evolutionary algorithms (EA) to tune the 

parameters of NNs. Reference [20] forecasts the spike occurrence by using a spike classifier and 

estimates spike values by using a neural networks method. Reference [21] adopts an 

autoregressive conditional hazard model to forecast spike occurrence in which the ARIMA 

method is used to estimate spike occurrence by considering the duration of spikes. And, the 

asymmetric loss scores are used to evaluate the model performance where higher penalties are 

assigned to spike value forecast errors while normal prices forecast errors have lower penalties.  

To some extent, all methods discussed above utilized periodicities resided in price data to 

perform forecasts. The ARIMA-based methods explicitly express periodicities in formulations. 

The machine learning based methods use historical price data to train networks that implicitly 

estimate periodicities. However, both types of methods estimate periodicities through a trial-and-

error process which may overlook some important information and result in forecast accuracy 

degradation. On the other hand, as price spike occurrence is low and historical data is limited, it 

is hard for those algorithms to give reliable price spike predictions. Therefore, to identify 

periodicity information of electricity prices in frequency domain and to increase price spike 

forecast accuracy, we propose a new short-term electricity price forecast framework that 

analyzes and predicts electricity prices in frequency domain and uses oversampling methods to 

facilitate price spike forecast. The main contributions are summarized as follows: 
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1) Decompose the frequency mixed time-series electricity prices into a set of modes by 

using the variational mode decomposition (VMD) method. To separately analyze 

periodicity information in electricity price data and reduce random noise, the VMD 

method is utilized to decompose electricity prices into several modes. The mode is 

defined as time series data with limited bandwidth in frequency domain and has a 

center frequency.  

2) Use the extended discrete Fourier transform (EDFT) method [22] to forecast normal 

prices for each mode. There are two reasons to choose the EDFT method. The first 

one is that the EDFT method achieves a higher resolution in frequency domain than 

the discrete Fourier transform (DFT) method. This feature helps us to identify the 

actual frequencies within electricity price data. The second one is that the EDFT 

method does not have limitations on the forecast data, while the DFT method assumes 

that the data outside the observation period repeat the data within the observation 

period.   

3) Synthesize price spike cases to improve price spike forecast accuracy. As limited real 

cases hinder spike forecast accuracy, we use the following methods to increase the 

number of spike cases. Spike cases contain two parts. The predictor variables are the 

inputs of spike cases and the target values are the outputs. We oversample predictors 

by using the enhanced structure preserving oversampling (ESPO) method to ensure 

that the synthesized cases have similar temporal structures as the real spike cases. The 

target values are oversampled by utilizing the synthetic minority oversampling 

technique (SMOTE) for regression.  
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1.2 Probabilistic forecast 

Currently, there are two major electricity price forecast types. One is the point forecast, 

and the other is the probabilistic forecast [50]. The characteristic of point forecast is that 

algorithms only give one prediction at each time point in the future. Point forecast has several 

accretive prosperities. The most salient one is that the point forecast results are easy to 

understand. Besides, under ideal conditions, point forecasts are able to provide an accurate and 

parsimonious relationship between predictors and target variables [51]. However, there is an 

inherent limitation within point forecasts [62]. As the relationships between predictors and target 

variables are not fixed, so the same predictors could result in different target values [63]-[64], 

[66]. Therefore, in order to acquire a deterministic prediction, point forecast algorithms normally 

look for the conditional mean function to link between predictors and target variables [71] [74]. 

Because of this limitation, point forecast algorithms cannot provide the distribution of target 

values related to predictors, and price uncertainty information also cannot be provided [82]. 

Besides, as a majority of day-ahead and real-time electricity prices belong to the low-price zone 

and only a few prices reside in the high-price zone, the distribution of electricity prices is heavy-

tailed. Therefore, point forecasts could be inaccurate as conditional means might be affected by a 

handful of price spikes.  

On the other hand, probabilistic forecasts are able to provide predictions of electricity 

price distribution that resolve the difficulties reside in point forecasts [50] and [69]. Normally, 

the probabilistic forecasts can be categorized into two groups that one is the probability density 

forecast and the other is the quantile or prediction interval (PI) forecast [8] [81][84]. Probability 

density forecast aims to provide all distributional information of electricity prices to incorporate 

uncertainties in the future. As total distribution is hard to obtain, usually, probability density 
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forecast assumes the predictive errors follow a normal distribution or logistic distribution [8] 

[57] [61] [72] [76] [78]. The assumption is reasonable when data are normally distributed. 

However, since electricity prices are a set of highly skewed data, the normal distribution 

assumption does not fit electricity price data well and leads to poor distribution predictions [52]. 

Different from the probabilistic density forecast, the prediction interval forecast aims to predict 

an interval that the actual data will fall into with a predefined probability [7]. Researches have 

shown that prediction interval is able to circumvent predefined data distribution assumption. 

Methods include using quantile regression to estimate the upper and lower bound of the interval 

or using the kernel density estimation method to provide price distribution [53]. Therefore, 

considering the heavy-tailed feature of electricity price distribution, we decide to use the 

prediction interval to quantify the uncertainty of electricity prices. 

Generally, we use predictors to forecast target values. The relationships between 

predictors and targets can be classified into linear and nonlinear categories. The autoregressive 

integrated moving average (ARIMA) based methods are able to model linear relationships and 

are widely used in the time series analysis and electricity price point forecasts. Zhou et al. [54] 

extended the ARIMA method to enable the proposed framework can provide probability 

forecasts. They first use the ARIMA method to provide electricity price point forecasts. Then, 

forecast errors are receptively updated. The forecast errors are derived by using the actual 

electricity prices to minus the point and the error predictions. The error update stops when the 

confidential interval of error distribution meets the pre-defined criteria. The benefit of the 

proposed method is easy to implement. However, in order to facilitate distribution calculation, 

this method has some limitations. To derive confidential interval, the proposed method assumes 

that the distribution of error follows a Gaussian or uniform distribution. The price distribution 
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assumption might not fit the deregulated markets electricity prices as price distribution is highly 

skewed. To avoid pre-defining price distribution, Weron et al. [55] utilizes a semi-parameter 

time series model to estimate prediction intervals. In their research, although the point forecasts 

are still derived from ARIMA-based methods, the parameters of ARIMA models are derived by 

maximizing the likelihood of error distribution, and the electricity price forecast error density 

function is calculated by using kernel density methods such as Hsieh–Manski Estimator or 

Kreiss’ Estimator. Compared with [54], they resolve the distribution assumption problem. 

However, the ARIMA-based methods are hard to model nonlinear relationships between 

predictors and target values.  

In order to capture nonlinear relationships between predictors and target values [70], 

several probabilistic forecast methods adopt machine learning in their studies. Shrivastava et al. 

[38] apply the support vector machines (SVM) to learn the nonlinear relationships from the 

training data and applied the trained SVMs to forecast prediction intervals. Besides, the particle 

swarm optimization method (PSO) is used to tune the hyper-parameters of the SVMs. In order to 

derive the bounds of prediction intervals, they use two SVM models to forecast the upper and 

lower bound. Compared with [38], Khosravi et al. [43] use a neural network to perform 

electricity price point forecasts and adopt a bootstrap method to forecast prediction intervals. 

Instead of directly constructing the upper and lower bound of PI, Khosravi et al. [43] assume 

forecasts follow a Gaussian distribution. The variance of the distribution comprises two parts the 

one is the model variance and the other one is the noise variance. The model variance is 

calculated by averaging the prediction variance of all bootstrap models, and a separate neural 

network [56] predicts the noise variance. As the model variance and the noise variance are 

statistically independent, the total variance equals the summation of those two variances. 
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Because of the Gaussian distribution assumption, the upper and lower bound of PI are calculated 

by using the point forecasts adding or subtracting the critical value of the normal distribution 

multiplying the square root of the total variance, respectively. In [7], the authors propose a 

method to forecast prediction intervals that combine ideas from [43] and [38]. To provide 

electricity price point forecasts, they adopt a SVM method to handle the nonlinear relationship 

between predictors and target values that is the same as [38]. To forecast prediction interval, they 

also assume the total variance is normally distributed and they calculate the upper and lower 

bound of PI using the same method as [43]. The only difference between [43] and [7] is that 

Zhao et al. directly provide the total variance forecasts but Khosravi et al. separately estimate the 

model variance and the noise variance.  

Recently, a single hidden layer feed-forward neural network (SLFN) called extreme 

learning machine (ELM) draws a lot of attention [65]. The ELM is able to model nonlinear 

relationships as traditional neural networks but the training speed is much faster. In [5], the 

authors select to use the ELM to provide point forecasts. They calculate prediction intervals by 

using a bootstrap method. However, the bootstrap method used in [5] is different from the 

bootstrap method used in [43]. Chen et al. [5] assume that if the bootstrap replications are large 

enough, the quantiles derived from ELM can form prediction intervals non-

parametrically. Therefore, the ELM point forecasts arrange in ascending order, and the upper and 

lower bound of prediction intervals are the quantiles of the ELM point forecasts. By taking 

advantage of the fast-training characteristic of the ELM method, [57] also adopt this method to 

provide prediction interval forecasts. The forecast structure of [57] is the same as [43] that use a 

bootstrap method to estimate the model variance and adopt a separate neural network to forecast 

the noise variance. Also, the upper and lower bound of PI are calculated using the same method 
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as [43]. The only difference between [57] and [43] is that [57] uses the fast-training extreme 

learning machine to substitute the neural network. Different from methods that directly forecast 

the bounds of prediction interval or use bootstrap methods to estimate prediction intervals, [58] 

proposes a method to derive an optimal prediction interval considering both reliability that is 

used to evaluate PI forecast accuracy and sharpness that is to measure the width of PI prediction 

[67]. The upper and lower bound of prediction intervals are also forecasted by using the ELM 

method. To derive optimal intervals, a heuristic method called non-dominated sorting genetic 

algorithm II (NSGA-II) is adopted. 

Except [58], the above prediction interval methods rarely discuss the quality of prediction 

intervals. Wide intervals imply that the price forecast uncertainty level is high. For market 

participants, they should make a bid or offer decision with more caution. Therefore, we expect 

the width of prediction intervals as narrow as possible so that decisions can be made with 

confidence. Except for narrow width, we also expect that prediction intervals could reach the 

pre-defined nominal confidence level. Thus, optimal prediction intervals should not only have a 

narrow width but also meet the pre-defined nominal confidence level criterion. Besides,  the 

speed of forecast algorithms should also be taken into consideration. However, no matter using 

the PSO to tune hyper-parameters of the SVM or using bootstrap methods to estimate 

predictions, or applying the heuristic algorithm NSGA-II to perform optimization, they are all 

time-consuming. 

Therefore, there are several major objectives we want to achieve. The first one is to 

derive a prediction interval forecast method that considers both reliability requirements to ensure 

forecast accuracy and sharpness requirement to reduce prediction interval width. The second 

objective is that our forecast method could capture the nonlinear relationship between predictors 
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and target values. And the third one is that the forecast method should not rely on pre-defined 

price data distribution assumptions. In order to meet all requirements, we propose an electricity 

price prediction interval forecast method. The main technical contributions are summarized:   

1) We propose an optimal electricity price probabilistic forecast method to estimate 

prediction interval while considering reliability and sharpness. 

2) We adopt the fast-training extreme learning machine (ELM) method to learn the 

nonlinear relationship between predictors and target values. 

3) We utilize the quantile regression method to estimate the upper and lower bound of 

prediction intervals so that price distribution assumption can be avoided. 

1.3 Proposal organization 

The whole proposal contains five chapters. In Chapter I, we introduce two types of 

electricity price forecast that one is the point forecast, and the other is the probabilistic forecast. 

After reviewing previous researches, major motivations and core contributions of our proposed 

methods are listed.  

In Chapter II, a point forecast framework is presented. The proposed method flowchart is 

shown in section 2.1. In section 2.2, key methods and algorithms are introduced. Following each 

algorithm, we use a simple example to demonstrate its function in our proposed method. At the 

end of this chapter, we provide a summary.  

Chapter III is used to evaluate the effectiveness of the proposed price forecast framework. 

In this chapter, we introduce real market data that are used in our test in section 3.1. In section 

3.2, we list some metrics to measure the performance of our forecast results. The normal and 

price spike prediction results are shown in sections 3.3 and 3.4, respectively. In section 3.5, we 
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use data from different seasons and from different markets to further justify the performance of 

our method. We draw conclusions in section 3.6. 

In Chapter IV, an optimal prediction interval forecast method is proposed. In section 4.1, 

we list the metrics that are used to measure the performance of prediction interval forecasts. The 

formulations of the proposed model and the solving method are demonstrated in section 4.2. 

Also, the flowchart and detailed calculation procedures are also shown in section 4.2 to facilitate 

understanding. 

In Chapter V, based on preliminary studies and currently obtained numerical results of 

our researches, the initial conclusions on the point and probabilistic forecast are drawn. Finally, 

future works are listed at the end of this chapter. 
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CHAPTER II 

PROPOSED POINT FORECAST METHOD 

In this section, a forecast framework is presented for the short-term electricity price 

forecast. The section 2.1 presents the proposed short-term electricity price forecast flowchart. 

The key algorithms and methods are demonstrated in section 2.2. Following the introduction of 

each algorithm, a simple example is utilized to show the usage of the algorithm in the forecast 

framework. At end of chapter II, a brief summary related to the proposed forecast framework is 

shown in section 2.3.  

2.1 Framework of the proposed short-term price forecast 

The proposed short-term electricity price forecast framework is shown in Figure 2.1. Its 

major steps are described as follows (Note that steps 2-4 are for the normal price forecast and 

steps 5&6 are for the price spike forecast. They can be implemented in parallel): 

Step 1: Data Preprocessing: Electricity price data derived from public resources are 

imported to the proposed price forecast program. As raw data may have some deficiencies (e.g., 

data loss and data duplication), we need to identify and modify the imperfect data. For example, 

the missing price data could be substituted by an average price that is derived from price values 

before and after the missing one; and the duplicated price is eliminated to ensure every time spot 

has only one price data. 
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Figure 2.1 Framework of the proposed short-term electricity price forecast 
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Step 2: Time-series Separation. Electricity prices can be viewed as a set of time-series 

data that consists of trend and seasonal components [23]. To improve forecast accuracy and 

facilitate data analysis, we perform a time-series decomposition to separate the trend and 

seasonal components from the input price data. The trend component, which shows a long-term 

increase/decrease tendency, is calculated by using the moving average method; the seasonal 

component, which demonstrates a repeating short-term cycle in the series, is captured by 

averaging the detrended time-series data for a certain seasonality period; and the remaining data 

are obtained from the input price data after extracting trend and seasonal components. 

Step 3: Variational Mode Decomposition. The price data components (e.g., trend, 

seasonal, and remaining) discovered from Step 2 are still mixed with frequency components. 

Although the periodicities of the decomposed time-series price data can be directly utilized to 

provide forecasts with moderate accuracy, to further improve prediction precision, the 

frequencies hidden in the decomposed time-series data should be identified. In this step, the 

VMD method is adopted to transform each price data component into multiple price modes that 

will facilitate the following normal price forecast module. 

Step 4: Normal Price Forecast. The normal electricity price forecast is performed by 

using the EDFT method as the EDFT method enables us to find the frequencies within electricity 

prices and utilizes the identified frequencies to provide electricity price predictions. As the time-

series price data decomposition and the VMD decomposition are additive models, the outputs of 

this step are calculated by summing up the EDFT forecast results of all modes and components. 

Step 5: Spike Cases Oversampling. As the number of electricity price spikes is much less 

than normal prices and so the imbalanced dataset will influence the accuracy of price spike 

forecast, we will synthesize price spike cases. In this step, we first define price spikes for each 
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hour as electricity prices at different hours have different patterns. Then, we form price spike 

cases that have two parts. One part is for the target values and the other part is for the predictors. 

The target values are the price spikes that need to be forecasted and the predictors are the 

variables used to predict the target values. Then, we oversample the predictors and targets of the 

price spike cases for the following price spike classification and regression forecast.  

Step 6: Price Spike Forecast. A classifier that is tuned to have an acceptable classification 

accuracy, such as the well-known support vector machine (SVM) [15], [16], is used to identify 

whether the predicted electricity price is a price spike or not. In order to improve the accuracy of 

the price spike classification, the classifier is trained by using the oversampled dataset. Then, a 

regression algorithm (e.g., SVM trained by the oversampled dataset) is used for the identified 

price spike to predict its value.  

Step 7: Forecast Results Combination. This step combines the normal price and price 

spike prediction results. If a forecasted price is identified by the price spike classification as a 

spike, we get the price value from the price spike forecast in Step 6. Otherwise, the price value 

from the normal price forecast in Step 4 is applied. Therefore, the final output of the short-term 

electricity price forecast framework is the combined forecast results. 

2.2 Point forecast key modules 

In this section, three key methodologies in the proposed price forecast framework, 

including VMD, EDFT, and spike oversampling methods, are discussed in detail. 

2.2.1 Variational mode decomposition module 

As illustrated in Figure 2.1, the VMD [24] method is utilized to decompose the frequency 

mixed price component data 𝑓(𝑡) into several modes where each mode is band-limited data with 
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a center frequency. The input of the VMD module is the trend, seasonal, or remaining data and 

its time-series output modes will be used to facilitate normal price forecasts.    

Firstly, we transfer the price mode data into its analytical form as this form has three 

features that benefit frequency analysis. The first feature is that the analytical form of data has a 

positive unilateral spectrum in frequency domain. If the Fourier transform is directly applied to 

the price data, we get a spectrum with both positive and negative frequency components. 

However, by converting price data to its analytical form, the spectrum derived from the Fourier 

transform only has a positive frequency part. The second feature is that when demodulating price 

data within frequency domain by shifting frequency spectrum, we only need to consider the 

shifting effect on a one-sided spectrum. The last feature is that it is easy to restore the original 

data by only retrieving the real part from the analytical form of data.  

By using (2.1), the data 𝑢𝑣(𝑡) of price mode 𝑣 is able to be transformed into its analytical 

form 𝑢𝐴,𝑣(𝑡) ,  

𝑢𝐴,𝑣(𝑡) = 𝑢𝑣(𝑡) + 𝑗𝐻𝑢𝑣(𝑡) = (𝛿(𝑡) +
𝑗

𝜋𝑡
) ∗ 𝑢𝑣(𝑡) (2.1) 

where 𝐻 is the Hilbert transform operator (the impulse response is ℎ(𝑡) = 1 𝜋𝑡⁄  in time domain 

and ℎ(𝜔) = 𝑗𝜔 |𝜔|⁄  in frequency domain); 𝛿(𝑡) is the Dirac delta function; and ∗ is a 

convolution operator. 

After analytical transformation, in order to derive a band limited price mode 𝑢𝑣(𝑡) in 

frequency domain, we can recenter the spectrum of 𝑢𝑣(𝑡) and apply a low pass filter. The 

amount of shift for every mode 𝑣 is determined by each mode’s center frequency 𝜔𝑣. The 

formulation of recenter process is shown in (2.2). 

𝑢𝐴,𝑣(𝑡)𝑒−𝑗𝜔𝑣𝑡 = [(𝛿(𝑡) +
𝑗

𝜋𝑡
) ∗ 𝑢𝑣(𝑡)] 𝑒−𝑗𝜔𝑣𝑡 (2.2) 
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Note that after the Fourier transform, the 𝑒−𝑗𝜔𝑣𝑡 term in time domain is converted to a Dirac 

delta 𝛿(𝜔 + 𝜔𝑣 ) in frequency domain. Therefore, in (2.2), multiplying the analytical form of 

mode 𝑢𝐴,𝑣(𝑡) by 𝑒−𝑗𝜔𝑣𝑡 in time domain equals to convoluting 𝑢𝐴,𝑣(𝜔) with 𝛿(𝜔 + 𝜔𝑣 ) in 

frequency domain. The effect of this convolution is to shift the spectrum 𝑢𝐴,𝑣(𝜔) to the left by 

𝜔𝑣  amount. 

The bandwidth of the price mode 𝑢𝑣(𝑡) can be determined by optimizing the Gaussian 

smoothness of the demodulated spectrum in frequency domain which equals to optimize the 

squared 𝐿2 norm of the demodulated data’s gradient in time domain. Thus, the objective is 

formed in (2.3). The constraint (2.4) is used to ensure the price component data 𝑓(𝑡) can be 

recovered from the decomposed price modes 𝑢𝑣(𝑡). 

𝑚𝑖𝑛 {∑ ‖𝜕𝑡 [(𝛿(𝑡) +
𝑗

𝜋𝑡
) ∗ 𝑢𝑣(𝑡)] 𝑒−𝑗𝜔𝑣𝑡‖

2

2

𝑣

} (2.3) 

𝑠. 𝑡. ∑ 𝑢𝑣(𝑡)

𝑣

= 𝑓(𝑡) (2.4) 

In order to relieve the constraint (2.4), the augmented Lagrangian method is used to 

convert the above constrained optimization problem to an unconstrained form (2.5) by moving 

the constraint (2.4) into the objective (2.3) 

ℒ(𝑢𝑣, 𝜔𝑣, 𝜆) = 𝛼 ∑ ‖𝜕𝑡 [(𝛿(𝑡) +
𝑗

𝜋𝑡
) ∗ 𝑢𝑣(𝑡)] 𝑒−𝑗𝜔𝑣𝑡‖

2

2

𝑣

+ ‖𝑓(𝑡) − ∑ 𝑢𝑣(𝑡)

𝑣

‖

2

2

+ 𝜆 [𝑓(𝑡) − ∑ 𝑢𝑣(𝑡)

𝑣

] (2.5)

 

, where 𝛼 is the balancing parameter of the data-fidelity constraint and 𝜆 is Lagrangian multiplier 

in time domain. 
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Since it is hard to solve the above optimization problem with exponential term 

multiplication, convolution, and derivative operation in time domain, we transfer (2.5) from time 

domain into frequency domain by using the Fourier transform. 

𝑚𝑖𝑛 𝛼 ∑ 𝑗𝜔‖[(1 + 𝑠𝑔𝑛(𝜔 + 𝜔𝑣))𝑢𝑣(𝜔 + 𝜔𝑣)]‖
2

2

𝑣

+ ‖𝑓(𝜔) − ∑ 𝑢𝑣(𝜔)

𝑣

 +
𝜆(𝜔) 

2
‖

2

2

(2.6)

 

where the exponential term multiplication becomes the frequency spectrum shift operation; the 

convolution becomes multiplication; the derivative operation becomes multiplying the objective 

function with  𝑗𝜔 ; and the 𝑠𝑔𝑛  means the sign function.  

As each mode in (2.6) can be viewed as an independent frequency spectrum 𝑢𝑣(𝜔) with a 

center frequency 𝜔𝑣 in frequency domain, by using the alternate direction method of multipliers 

(ADMM) method, the spectrum of mode 𝑢𝑣(𝜔)  is calculated by iteratively optimizing (2.7). 

𝑢𝑣
𝑟+1(𝜔) = argmin

𝑢𝑣

{ 𝛼‖𝑗𝜔[(1 + 𝑠𝑔𝑛(𝜔 + 𝜔𝑣
𝑟))𝑢𝑣

𝑟(𝜔 + 𝜔𝑣
𝑟)]‖

2

2

+ ‖𝑓(𝜔) − ∑ 𝑢𝑙
𝑟+1(𝜔)

𝑣−1

𝑙=1

− ∑ 𝑢𝑙
𝑟(𝜔)

𝑉

𝑙=𝑣

+
𝜆𝑟(𝜔) 

2
‖

2

2

} (2.7)
 

where 𝑟 represents iteration number; 𝑙 is mode index; and 𝑉 is the total number of modes. As the 

price mode data are a set of real numbers, by applying the Hermitian symmetry, the equation 

(2.7) can be simplified to (2.8) where 𝜔 is used to substitute 𝜔 − 𝜔𝑣 in the first term, 

𝑢𝑣
𝑟+1(𝜔) =  argmin

𝑢𝑣

{ ∫ 4𝛼(𝜔 − 𝜔𝑣
𝑟)2|𝑢𝑣

𝑟(𝜔)|2
∞

0

+2 |𝑓(𝜔) − ∑ 𝑢𝑙
𝑟+1(𝜔)

𝑣−1

𝑙=1

− ∑ 𝑢𝑙
𝑟

𝑉

𝑙=𝑣

(𝜔) +
𝜆𝑟(𝜔)

2
|

2

𝑑𝜔} (2.8)
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The optimal solution of (2.8) is calculated by letting its derivative equal to zero. Thus, the 

𝑢𝑣
𝑟+1(𝜔) can be expressed as,  

𝑢𝑣
𝑟+1(𝜔) =

𝑓(𝜔) − ∑ 𝑢𝑙
𝑟+1(𝜔)𝑣−1

𝑙=1 − ∑ 𝑢𝑙
𝑟𝑉

𝑙=𝑣+1 (𝜔) +
𝜆𝑟(𝜔) 

2
1 + 2𝛼(𝜔 − 𝜔𝑣

𝑟)2
(2.9) 

 By applying (2.9), the price mode 𝑢𝑣(𝜔) is demodulated from the input by using a low-pass 

narrow-band filter around 𝜔 = 𝜔𝑣 which is able to remove high frequency noise from the data. 

As the center frequency 𝜔𝑣  does not appear in the second term of (2.6), we ignore this 

term from the center frequency calculation. So, the center frequency 𝜔𝑣 of 𝑢𝑣(𝜔) is the optimal 

solution of (2.10). 

𝜔𝑣
𝑟+1 = argmin

𝜔𝑣

{𝑗𝜔‖[(1 + 𝑠𝑔𝑛(𝜔 + 𝜔𝑣
𝑟))𝑢𝑣

𝑟+1(𝜔 + 𝜔𝑣
𝑟)]‖

2

2
} (2.10) 

Similar to (2.8), the equation (2.10) can be simplified into (2.11)  

𝜔𝑣
𝑟+1 =  argmin

𝜔𝑣

{∫ (𝜔 − 𝜔𝑣
𝑟)2|𝑢𝑣

𝑟+1(𝜔)|2
∞

0

𝑑𝜔} (2.11) 

The solution of (2.11) is 

𝜔𝑣
𝑟+1 =  

∫ 𝜔|𝑢𝑣
𝑟+1(𝜔)|2∞

0
𝑑𝜔

∫ |𝑢𝑣
𝑟+1(𝜔)|2∞

0
𝑑𝜔

(2.12) 

Note that Lagrangian multipliers 𝜆(𝜔) in frequency domain is updated by using (2.13), where 𝜏 

is the penalty parameter. 

𝜆𝑟+1(𝜔) = 𝜆𝑟(𝜔) +  𝜏(𝑓(𝜔) − ∑ 𝑢𝑣
𝑟+1

𝑣
(𝜔)) (2.13) 

The above iterative calculations (2.9), (2.12) and (2.13) will run until the convergence 

criterion (2.14) is met. 
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∑ ‖𝑢𝑣
𝑟+1(𝜔) − 𝑢𝑣

𝑟(𝜔)‖2
2

𝑣

‖𝑢𝑣
𝑟(𝜔)‖2

2 ≤ 𝜀 (2.14) 

As the output of the VMD module is a set of modes in time domain, by using real part of 

the inverse Fourier transform in (2.15), we can transfer 𝑢𝑣(𝜔) from frequency domain back to 

time domain, 𝑢𝑣(𝑡). 

𝑢𝑣(𝑡) =  𝑅𝑒𝑎𝑙(𝑖𝑓𝑡(𝑢𝑣(𝜔))) (2.15) 

where, the 𝑅𝑒𝑎𝑙 is an operator that only takes the real part of the inverse Fourier transform  𝑖𝑓𝑡.   

Example 1: The following example illustrates the effectiveness of the VMD method to 

separate a set of modes from a frequency mixed time series data. The function of cos(2𝜋2𝑡) +

0.5 cos(2𝜋6𝑡) + 𝑛𝑜𝑖𝑠𝑒 is used to generate the time series data, that is composed of two cosine 

waves with center frequency 2 𝐻𝑧 and 6 𝐻𝑧, and random noise. The plot of this time series data 

is shown in Figure 2.2.  

 

Figure 2.2 Input signal of the VMD method example 
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Figure 2.3 Decomposed signals of the VMD method example 

 

Figure 2.4 Spectrums of the VMD decomposed signals 

 

Figure 2.5 Composed signal  

After applying the proposed VMD method, the time series input is decomposed into two 

modes shown in Figure 2.3. To identify whether the decomposed modes are the same as the 

cosine waves in the input, we use the root-mean-square error (RMSE) metric to calculate the 
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difference between them. The RMSE values are 0.019 and 0.025 for the 2 𝐻𝑧 and 6 𝐻𝑧 cosine 

waves, respectively. Besides, to view the decomposed modes from frequency perspective, Figure 

2.4 shows the spectrum of each mode. On the left-hand side of Figure 2.4, there is a spike at the 

frequency 2 𝐻𝑧 that means that the center frequency of this mode is 2 𝐻𝑧 . On the right-hand 

side, the center frequency is 6 𝐻𝑧 . The center frequencies of these two modes match the 

frequencies mixed in the input data. In the end, Figure 2.5 shows the time series data recovered 

from the decomposed modes. Compared the input plot Figure 2.2 with the recovered plot Figure 

2.5, we can tell the recovered time series data is almost identical to the input without noise. 

Therefore, the VMD method can be utilized to further identify frequencies within the price data 

components provided by Step 2 in Figure 2.1 and remove noises from the data, which will 

benefit the forecast. 

2.2.2 Extended discrete Fourier transform module 

In the proposed price forecast framework, the EDFT method is selected to predict normal 

prices rather than the DFT method. The first reason is that the frequency resolution of the DFT 

method is limited by the length of input data. If frequency resolution is not fine enough, a 

spectrum leakage situation may happen and the true periodicity within price data may not be 

identified. The second one is that the DFT method simply assumes that data outside the 

observation period is the same as the data within the period. Although this assumption can ensure 

the spectrum derived from the DFT method is in a discrete form which can be handled easily by 

modern computing derives, it may not be true. Therefore, we utilize the EDFT method to provide 

high frequency resolution around periodicities within the price data without imposing limitations 

on data outside the observation period. According to Figure 2.1, the input of the EDFT module is 
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the time series price mode derived from the VMD module and its output is the forecast for each 

mode. 

As the continuous frequency spectrum derived from the Fourier transform provides the 

finest frequency resolution, we regard the continuous frequency spectrum as the target and use a 

new basis 𝛼(𝜔, 𝑡𝑘) to convert data from time domain into frequency domain. To simplify 

expressions in this section, the symbol 𝑢(𝑡) is utilized to substitute the price mode data 𝑢𝑣(𝑡) 

from (2.15). Since the price mode data 𝑢(𝑡) are sampled uniformly, the basis 𝛼(𝜔, 𝑡𝑘) can be 

written as 𝛼(𝜔, 𝑘𝑇). So, the EDFT can be written as (2.16) 

𝐹𝛼(𝜔) = ∑ 𝑢(𝑘𝑇)

𝐾−1

𝑘=0

𝛼(𝜔, 𝑘𝑇) (2.16) 

where 𝑢(𝑘𝑇) is the mode derived from the VMD module uniformly and 𝑘 = 0,1,2 … , 𝐾 − 1; 𝐾 

is the number of sampled points within the observation period; 𝑇 is the sampling interval; and 𝜔 

is the radian frequency. 

In order to ensure that the EDFT (2.16) and the Fourier transform (2.17) are as close as 

possible, we formulate the objective (2.18) where ∆ is the squares error expression between 

(2.17) and (2.16). 

𝐹(𝜔) = ∫ 𝑢(𝑡)𝑒−𝑗𝜔𝑡
+∞

−∞

𝑑𝑡 (2.17) 

∆= |𝐹(𝜔) −  𝐹𝛼(𝜔)|2 (2.18) 

However, the Fourier transform (2.17) cannot be used directly on the input 𝑢(𝑡) as there are no 

infinite long prices period. To circumvent this obstacle, the input prices with 𝜔0 frequency can 

be expressed in the form of (2.19) where −∞ < 𝑡 < ∞, 

𝑢(𝜔0, 𝑡) =  𝑆(𝜔0)𝑒𝑗𝜔0𝑡 (2.19) 
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By substituting (2.19) into (2.17), the Fourier transform 𝐹(𝜔) at the frequency 𝜔0 can be 

expressed by the Dirac delta function in (2.20), 

𝐹(𝜔0) = ∫ 𝑢(𝜔0, 𝑡)𝑒−𝑗𝜔𝑡
+∞

−∞

𝑑𝑡 = 2𝜋𝑆(𝜔0)𝛿(𝜔 − 𝜔0) (2.20) 

where 𝜔0 is the cyclic frequency within the range −Ω ≤ 𝜔0 ≤ Ω ; Ω  is the upper frequency of 

the prices 𝑓(𝜔0, 𝑡); and 𝑆(𝜔0) is the complex amplitude of 𝑓(𝜔0, 𝑡) in frequency domain. By 

using the 𝐹(𝜔) in (2.20) and the 𝐹𝛼(𝜔) in (2.16) where the 𝑢(𝑘𝑇) is substituted by using (2.19), 

the difference between the Fourier transform and the EDFT is shown in (2.21). 

𝐷 = 2𝜋𝑆(𝜔0)𝛿(𝜔 − 𝜔0) − ∑ 𝑆(𝜔0)𝑒𝑗𝜔0𝑘𝑇

𝐾−1

𝑘=0

𝛼(𝜔, 𝑘𝑇) (2.21) 

So, the objective function (2.18) can be rewritten as (2.22).  

∆= ∫ |𝐷|2𝑑𝜔0 
Ω

−Ω

(2.22) 

To specifically calculate the EDFT basis 𝛼(𝜔, 𝑘𝑇) so as to minimize square error ∆, we 

can solve (2.22) by letting the derivative of this function with respect to 𝛼(𝜔, 𝑙𝑇) equals to zero, 

𝜕Δ 𝜕𝛼(𝜔, 𝑙𝑇) = 0⁄ , 𝑙 = 0,1, … 𝐾 − 1. The solution is shown in (2.23). 

∫ [2𝜋𝑆(𝜔0)𝛿(𝜔 − 𝜔0) − ∑ 𝑆(𝜔0)
𝐾−1

𝑘=0
𝑒𝑗𝜔0𝑘𝑇𝛼(𝜔, 𝑘𝑇)] 𝑆(𝜔0)∗𝑒−𝑗𝜔0𝑙𝑇𝑑𝜔0

Ω

−Ω

= 0 (2.23) 

As Dirac delta functions are able to select frequencies, the equation (2.23) can be simplified into 

(2.24) where the first term of (2.23) is at the right side of (2.24). 

∑ (
1

2𝜋
∫ |𝑆(𝜔0)|2

Ω

−Ω

𝑒𝑗𝜔0(𝑘−𝑙)𝑇𝑑𝜔0)

𝐾−1

𝑘=0

𝛼(𝜔, 𝑘𝑇) = |𝑆(𝜔)|2𝑒−𝑗𝜔𝑙𝑇 (2.24) 

The solutions of (2.24) that is the EDFT basis 𝛼(𝜔, 𝑘𝑇) can be expressed (2.25).  
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𝑨𝜔 = |𝑆(𝜔)|2𝑹−1𝑬𝜔 (2.25) 

where 𝑬𝜔: 𝑒−𝑗𝜔𝑙𝑇, and the components of 𝑹(𝐾 × 𝐾), are expressed as (2.26).  

𝑟𝑙,𝑘 =
1

2𝜋
∫ |𝑆(𝜔0)|2

Ω

−Ω

𝑒𝑗𝜔0(𝑘−𝑙)𝑇𝑑𝜔0 (2.26) 

Then, we can utilize (2.27) to transform the input price mode in time domain into frequency 

domain by using the new derived basis. 

𝐹𝛼(𝜔) = 𝒖𝑨𝜔 = |𝑆(𝜔)|2𝒖𝑹−1𝑬𝜔, −Ω ≤ 𝜔 ≤ Ω (2.27) 

To facilitate the above calculation, continuous function integration can be substituted by 

summation. For instance, the equation (2.26) can be estimated by (2.28) if the number of 

sampled points 𝑁  within the integral interval is large enough.  

𝑟𝑙,𝑘 ≈
𝛺

𝜋𝑁
∑|𝑆(𝜔𝑛)|2𝑒𝑗𝜔𝑛(𝑘−𝑙)𝑇

𝑁−1

𝑛=0

(2.28) 

where -Ω ≤ ωn ≤Ω  𝑛 =  0,1, … 𝑁 − 1. To derive (2.28) from (2.26), we can regard the 

integration as to calculate the area under a curve. The inner part of integration is the height and 

𝑑𝜔0 is the width. In order to substitute integration with summation, we have 2Ω 𝑁⁄  points 

between frequency interval [−Ω, Ω].    

By viewing (2.27), the last obstacle that hinders the EDFT calculation is that the true 

amplitude spectrum 𝑆(𝜔) of the input price mode is unknown. As suggested by [22], the 

amplitude spectrum can be obtained by using an iterative process (2.29) - (2.32). The equation 

(2.29) is the matrix form of (2.28). The equation (2.30) is the estimation of (2.27). And the 

amplitude spectrum 𝑆(𝜔) is estimated by (2.31). The weight vector 𝑾 is calculated by (2.32).   

𝑹𝑖 =  
𝟏

𝑵
𝑬𝑾𝑖𝑬𝐻 (2.29) 
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𝑭𝑖 = 𝒖𝑨𝑖 =  𝒖(𝑹𝑖)−1𝑬𝑾𝑖 (2.30) 

𝑺𝑖 =  
𝒖(𝑹𝑖)−1𝑬

𝑑𝑖𝑎𝑔(𝑬𝐻𝑹𝑖𝑬)
 (2.31) 

𝑾𝑖+1 =  𝑑𝑖𝑎𝑔(|𝑺𝑖|
2

) (2.32) 

where superscript 𝑖 is iteration number and 𝑾1 = 𝑰 for the first iteration. The superscript 𝐻 

stands for Hermitian transpose. 𝑬(𝐾 × 𝑁) has elements 𝑒−𝑗𝜔𝑛𝑘𝑇that is a vector form of 𝑬𝜔 

where continuous frequency ω is estimated by using  ωnThe above iteration stops if the result of 

𝑺𝑖 at the current iteration is close to the last iteration. 

Now, the output of the EDFT module 𝒖𝑒 can be extrapolated. As the number of 

frequency component 𝑁 is larger than the number of input data 𝐾 , by using the inverse discrete 

Fourier transform (IDFT) (2.33), we can obtain a time sequence 𝒖𝑒 that contains a number of 

 N-K  extrapolated data. 

𝒖𝑒 =  
1

𝑁
𝑭𝑬𝑁

𝐻 (2.33) 

where 𝑬𝑁(𝑁 × 𝑁) is a matrix that has element 𝑒−𝑗2𝜋𝑓𝑛𝑚𝑇 , 𝑚 = 0,1 … , 𝑁 − 1 and 𝜔𝑛 = 2𝜋𝑓𝑛. 

Example 2: In order to show the ability of the proposed EDFT method to perform 

forecast, a simple example is shown below. A cosine wave with amplitude 1 and frequency 2 𝐻𝑧  

(e.g., mode 1 in Example 1) is used as the input and the sampling frequency is 100 𝐻𝑧 . The 

observation time period is  0 - 1.3 seconds and the data within the time interval 1.3 - 4 seconds 

need to be forecasted. In other words, the first 2.6 cycles are trucked as measured data and we 

need to forecast the following 5.4 cycles data. In this example, we use the DFT as a comparison 

and the number of frequency points  𝑁 = 4,000 is selected which is larger than the number of 

observation data 𝐾 = 1,300. Figure 2.6 (a) shows the forecast results derived from the DFT and 
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EDFT methods, respectively. Their forecast errors in time domain are shown in Figure 2.6(b). It 

is obvious that the DFT method fails to provide accurate forecasts. The DFT predictions between 

time interval 1.3-2.6 seconds and 2.6-3.9 seconds are the same as data within the observation 

period 0-1.3 seconds. However, the EDFT method can provide more accurate forecast results. 

We also analyze the performance of the DFT and EDFT methods in frequency domain.  
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(a) The DFT (left) and EDFT (right) forecasts 

 

(b) The DFT (left) and EDFT (right) forecast errors 

 

(c) Weight of the DFT (left) and EDFT (right) put on frequency components 

Figure 2.6 Example of DFT and EDFT methods 



 

30 

To identify periodicities within the input data, algorithms should put high resolution 

around the true frequency components. The frequency resolution of the DFT method is 1/𝐾  and 

the highest frequency resolution of the EDFT method can reach1/𝑁 . Therefore, the EDFT 

method’s frequency resolution is 𝑁/𝐾  times higher than the DFT method. Besides, in order to 

emphasize true frequency, algorithms should put more weight on it. For the DFT method, the 

weight on every frequency component is 𝒘 =  𝑑𝑖𝑎𝑔(
1

𝑁
𝑬𝑯𝑬) which equals to 𝐾/𝑁. On the other 

hand, the EDFT method puts 𝒘𝒂 = 𝑑𝑖𝑎𝑔(
1

𝑁
𝑬𝑯𝑨) weight on every frequency component and 𝑤𝑎  

is within range [0, 1]. Compare with two weights illustrated in Figure 2.6(c), to some 

frequencies, the weight of the EDFT method 𝒘𝒂 is  𝑁/𝐾  times larger than the weight of the 

DFT method 𝒘. We can tell that the weight by the EDFT method at frequency 2𝐻𝑧 is 𝑁 𝐾⁄ =

4,000 1,300⁄ = 3  times more than the weight by the DFT method. 

2.2.3 Price spike oversampling module 

As the low occurrence rate of price spike affects classifiers (e.g., SVM) to recognize the 

pattern of the spike, the price spike oversampling module is utilized in our proposed forecast 

framework to increase the number of price spike cases. Price spike cases can be divided into two 

parts: predictor variables and target values. The ESPO method [25] is used to oversample 

predictors while preserving temporal relationship among data and the SMOTE for regression 

method [26], [27] is used to oversample the targets.  

To create the predictors of spike cases using the ESPO method, we firstly calculate the 

spike case predictors covariant matrix 𝑾 by using (2.34).  

𝑾 =
1

𝑁𝑐𝑎𝑠𝑒
∑ (𝑷𝑖 − 𝑷̅)(𝑷𝑖 − 𝑷̅)𝑇

𝑁𝑐𝑎𝑠𝑒

𝑖=1
(2.34) 
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where 𝑷̅ = 1 𝑁𝑐𝑎𝑠𝑒⁄ ∑ 𝑷𝑖
𝑁𝑐𝑎𝑠𝑒
𝑖=1  represents the mean of spike case predictors and 𝑾  is a positive 

semi-definite covariant matrix. Then, we utilize the eigen decomposition (2.35) on 𝑾.  

𝑫 = 𝑽𝑇𝑾𝑽 (2.35) 

where 𝑫 is the diagonal eigenvalue matrix with descending order; the 𝑽 is the eigenvector matrix 

of 𝑾; and the superscript 𝑇 means transposition. Eigenvectors of a covariance matrix can be 

viewed as data varying directions and eigenvalues are the magnitude of variance on the direction. 

In order to create new spike cases that have a similar temporal structure as the real spike cases, in 

the eigenvector directions derived from equation (2.35), the eigenvalues of synthetic cases 

should be comparable with the eigenvalues of real cases. 

Although the eigenvalue matrix 𝑫 can be measured from data, to facilitate data synthesis, 

it is convenient to scale the eigenvector matrix 𝑽 and convert 𝑫 to an identity matrix 𝑰. 

Therefore, we scale the eigenvector matrix 𝑽 using (2.36) to divide each eigenvector 𝑣𝑘 by √𝑑𝑘 , 

where 𝑑𝑘 is the eigenvalue of the eigenvector 𝑣𝑘.   

𝑭 = 𝑽𝑫−1 2⁄ (2.36) 

Then, the equation (2.35) can be rewritten as (2.37). 

𝑰 = 𝑫−
1
2𝑽𝑇𝑾𝑽𝑫−

1
2 = 𝑭𝑇𝑾𝑭

=
1

𝑁𝑐𝑎𝑠𝑒
∑ 𝑭𝑇(𝑷𝑖 − 𝑷̅)(𝑷𝑖 − 𝑷̅)𝑇𝑭 

𝑁𝑐𝑎𝑠𝑒

𝑖=1

=
1

𝑁𝑐𝑎𝑠𝑒
∑ (𝑭𝑇𝑷𝑖 − 𝑭𝑇𝑷̅)(𝑭𝑇𝑷𝑖 − 𝑭𝑇𝑷̅)𝑇

𝑁𝑐𝑎𝑠𝑒

𝑖=1
(2.37)

 

If we define  

𝒁 =  𝑭𝑇(𝑷̃ − 𝑷̅) (2.38) 

𝑷̃ are the synthesized predictors. We generate 𝒁 from multivariate Gaussian distribution 𝑁(𝟎, 𝑰) 

as a large number of random and independent distributions that obey the Gaussian distribution 
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[29]. Therefore, if we generate a sufficient number of rare cases, after eigen decomposition and 

scaling, the eigenvalue matrix of the generated cases covariance matrix also has an identify 

matrix structure, which ensures the synthesized predictors have the same temporal structure as 

the original rare cases. After getting 𝒁, the synthesized predictors 𝑷̃ can be derived from (2.39).  

𝑷̃ =  𝑽𝑫
1
2𝒁 +  𝑷̅ (2.39) 

After synthesizing predictors, the next step is to synthesize the target value of spike case. 

The SMOTE for regression method [27], as a weighted average method where the larger distance 

has a smaller weight, is used in this step to calculate the values of the synthesized target. First, a 

spike case is selected with the synthesized predictor derived by using (2.39) and its 𝑅 nearest 

spike cases are identified in the real spike case dataset. Then, the distance between the predictor 

and its 𝑅 nearest spike cases are calculated. Finally, the equation (2.40) is adopted to calculate 

the value of its target 𝐺𝑠.   

𝐺𝑠 =
∑ 𝐺𝑟𝐿𝑟𝑠

𝑅
𝑟=1

∑ 𝐿𝑟𝑠
𝑅
𝑟=1

(2.40) 

𝐿𝑟𝑠 is the Euclidean distance between predictor values of real case 𝑟 and synthetic case 𝑠. 𝐺𝑟 is 

the target values of the 𝑅 nearest spike cases in the real spike case dataset.  

Example 3: The following example shows that when the number of interested cases is 

limited, using the oversampled dataset could provide a better forecast result compared with only 

using the original dataset in [28]. The training dataset contains 300 cases and each case has 60 

predictors and 1 target. As listed in Table 2.1, the cases with the target value 1 are rare cases and 

account for 1/6 of the original dataset. After oversampling by the proposed methods, the number 

of rare cases increases to 250 and accounts for 50% of the new dataset. 
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Table 2.1 Information of dataset 

Dataset Rare cases (R) Normal cases (N) R/N 

Original 50 250 20% 

Oversampling 250 250 50% 

Table 2.2 Confusion matrix derived from the SVM trained by the original dataset 

Items True Rare Target True Normal Target 

Rare Prediction 5 0 

Normal Prediction 5 10 

Table 2.3 Confusion matrix derived from the SVM trained by the oversampled dataset 

Items True Rare Target True Normal Target 

Rare Prediction 9 1 

Normal Prediction 1 9 

 

Figure 2.7 Results of forecast using original and oversampled dataset 

There are 20 cases selected to be tested, in which 10 cases have normal targets and the 

other 10 cases have rare targets. In order to forecast the target value of the rare cases, firstly, we 

need to identify whether a case is a rare case or not. In Table 2.2 and Table 2.3, we list the 

classification results of the SVM classifier trained by the original dataset and the oversampled 

dataset, respectively. From Table 2.2, we can see that there are 5 rare targets are incorrectly 

classified as normal targets and only 5 rare targets are identified. However, from Table 2.3, the 

classifier trained by using the oversampled dataset almost identified all rare targets. Only 1 rare 
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target is incorrectly classified as a normal target. Then, the rare target numeric forecast results 

are demonstrated in Figure 2.7. we can tell that the SVM trained by the oversampled dataset for 

the regression has higher forecast accuracy than the one trained by the dataset without being 

oversampled. 

2.3 Conclusion 

The proposed forecast framework considered both periodic and volatile characteristics of 

short-term electricity prices. In this chapter, three key methodologies and their potentials were 

presented in detail. The VMD module can separate the price data into several modes and be able 

to remove more random noises from the original data. Without assuming the data outside the 

observation period is the same as the data within the period, the EDFT module can achieve a 

higher resolution in frequency domain. The oversampling module with ESPO and SMOTE for 

regression methods can properly synthesize more price spike cases and enhance the training 

dataset. All of those key modules are properly integrated into our proposed forecast framework 

to provide an accurate and reliable price prediction. Further, the performance of the proposed 

price forecast framework and its key modules will be tested on several major electricity markets 

including PJM, MISO, ISO-NE, NYISO, et cetera. The detailed results will be discussed in the 

next chapter. 
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CHAPTER III 

PRELIMINARY RESULTS OF POINT FORECAST 

This chapter is used to evaluate the effectiveness of the proposed price forecast 

framework. In this chapter, we present forecast results by using the proposed short-term 

electricity price forecast framework. Multiple electricity markets are studied and proper 

evaluation metrics are selected to estimate the performance of key modules of the proposed 

short-term price forecast framework. Numerous results illustrate that the proposed forecast 

method is capable to accurately predict both normal and spike electricity prices. In this chapter, 

the electricity markets that are used to test our proposed forecast method are presented in section 

3.1. In order to evaluate the classification and regression forecast results, we introduce evaluation 

metrics in section 3.2. The normal electricity price forecast and price spike prediction results are 

shown in section 3.3 and 3.4, respectively. Section 3.5 demonstrates more forecast results by 

using data from different seasons of several major markets. Conclusions are drawn in section 3.6.  

3.1 Introduction 

Extensive researches on the short-term electricity price forecast have been conducted to 

improve its accuracy. As normal electricity prices can be viewed as time series data and 

demonstrate periodic patterns, researchers have put a lot of effort into exploring periodicities 

within electricity prices in time domain which is a type of trial-and-error process. However, if 

price data are transferred into frequency domain, we are able to explore more price periodicities 

which should be able to provide more accurate forecasts. Besides, as price spikes rarely 
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occurred, existing forecast methods are hard to learn patterns from limited data and difficult to 

provide high-quality predictions. Therefore, the accuracy of price spike forecast could improve if 

more spikes data exist in the price dataset. 

In Chapter 2, a new forecast framework was proposed to predict short-term electricity 

prices. To accurately estimate price periodicity and reduce random noise, the variational mode 

decomposition (VMD) method is firstly utilized to decompose electricity prices into multiple 

modes. Then, the extended discrete Fourier transform (EDFT) method is applied to perform 

normal price forecast for each mode as it can achieve a high resolution around dominant 

frequencies within price modes and does not simply assume that data outside the observation 

period repeat data within that period. In addition, to enhance the price spike forecast, data 

oversampling methods such as the enhanced structure preserving oversampling (ESPO) method 

and the synthetic minority oversampling technique (SMOTE) for regression method are applied 

to synthesize spikes data.  

In this chapter, numerical case studies are presented and analyzed to demonstrate the 

effectiveness of the proposed short-term electricity price forecast framework as well as the 

performance of the used methodologies for both normal and spike electricity price forecasts by 

using the following price data sources:  

• Pennsylvania-New Jersey-Maryland Interconnection (PJM) [30]  

• Midcontinent Independent System Operator (MISO) [31] 

• ISO New England (ISO-NE) [32] 

• New York Independent System Operator (NYISO) [33] 

• Southwest Power Pool (SPP) [34] 

• Day ahead electricity market of mainland Spain [35] 
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3.2 Evaluation metrics 

In order to evaluate the performance of the proposed short-term price forecast 

framework, metrics should be carefully selected as different forecast targets have distinctive 

assessment requirements. For numerical forecast results, we commonly utilize the mean absolute 

percentage error (MAPE) metric to assess forecast accuracy. In equation (3.1), the 𝑃𝑡 and 𝐹𝑡 

represent the predicted and real electricity prices, respectively.  The 𝑇 is the forecast time period 

and the subscript 𝑡 is the measured time point. Besides, we utilize the variance of forecast errors 

to measure uncertainty. The smaller the variance, the less uncertain is the model or the more 

accurate are the forecast results. The variance of the forecast errors is calculated by using 

equation (3.2) where the 𝜎2 represents variance and 𝜎 is the standard deviation of errors. 

Although the MAPE is a common metric to evaluate the accuracy of forecast results, under 

certain circumstances, the MAPE metric may not work well. For instance, if one electricity price 

is close to zero, the value of MAPE tends to be infinite and cannot fairly demonstrate the 

effectiveness of forecast methods. Therefore, the average-mean absolute percentage error 

(AMAPE) metric (3.3) is also applied in which the dominator is 𝑃𝑡̅ = 1 𝑇⁄ ∑ 𝑃𝑡
𝑇
𝑡=1  as the 

probability that all electricity prices within the forecast period are almost zero is very low.  

𝑀𝐴𝑃𝐸 = [
1

𝑇
∑  

|𝑃𝑡 − 𝐹𝑡|

𝑃𝑡

𝑇

𝑡=1
] × 100% (3.1) 

𝜎2 =
1

𝑇
∑ [ 

|𝑃𝑡 − 𝐹𝑡|

𝑃𝑡̅

− 𝑀𝐴𝑃𝐸]

2𝑇

𝑡=1
(3.2) 

𝐴𝑀𝐴𝑃𝐸 = [
1

𝑇
∑

|𝑃𝑡 − 𝐹𝑡|

𝑃𝑡̅

𝑇

𝑡=1
] × 100% (3.3) 

On the other hand, unlike normal electricity prices, price spikes have low occurrence 

rates and large magnitude values. Therefore, for the price spike forecast, we need to evaluate 
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whether or not the forecast methods can identify price spikes. To evaluate such classification 

performance, metrics such as precision and recall are commonly used. Precision (3.4) is the ratio 

of the number of correctly predicted spikes to the number of total predicted spikes. Recall (3.5) is 

the ratio of the number of correctly predicted spikes to the number of total true spikes. The 

symbols used in (3.4) and (3.5) are defined in the confusion matrix in Table 3.1. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑆 

𝑇𝑆 + 𝐹𝑆
(3.4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑆 

𝑇𝑆 + 𝐹𝑁
(3.5) 

Table 3.1 Confusion matrix 

Items True Spike True Normal 

Spike Prediction True Spike (TS) False Spike (FS) 

Normal Prediction False Normal (FN) True Normal (TN) 

For price spike forecast, we care more about recall than precision as it is vital to classify 

as many true price spikes as possible. Therefore, we also utilize the F2-score to evaluate the price 

spike classification performance. The F2-score in (3.6) not only combines both precision and 

recall measurements into a single value but also focuses more on recall than precision. 

𝐹2 − 𝑠𝑐𝑜𝑟𝑒 =
5 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙 

4 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(3.6) 

3.3 Case 1: normal electricity price forecast 

In this section, the proposed normal price forecast is tested by using the PJM price 

dataset. Five days day-ahead electricity prices are chosen to be forecasted. The chosen dates 

include January 20, February 10, March 5, April 7, and May 13 in the year 2006. Those dates 

have also been used in [12], [10] to test their price forecast methods. The comparisons between 
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our forecast results and those in the published papers are discussed in 3.3.1. Besides, the detailed 

results of key forecast modules for the normal price prediction are explained in 3.3.2 

3.3.1 Forecast results of the PJM market 

In this subsection, to measure the accuracy of the price forecast, the AMAPE value of our 

proposed normal price forecast method is calculated and compared with that of the published 

forecast methods in [12] and [10]. The comparison results are listed in Table 3.2. The first 

column indicates the forecast date. The AMAPE values of our proposed forecast method, [12], 

and [10] are listed in the column 2, 3, and 5, respectively. A lower AMAPE value means a more 

accurate forecast result. Columns 4 and 6 list the forecast accuracy improvements of our forecast 

method compared with [12] and [10], respectively. A positive value means that the price 

predicted by our forecast method is more accurate than the results reported in the references. 

From Table 3.2, we can tell that the AMAPE values of our proposed method are around 3%. 

Compared with [10], our method has an overall better performance as the AMAPE values of [10] 

are basically above 6%. The forecast accuracy of our method is also normally better than [12] 

except for the price prediction for February 10. However, the AMAPE value of our method on 

February 10 is 3.12% which is still acceptable and close to the AMAPE value of 2.85% in [12]. 

The largest AMAPE improvement of our proposed method compared with [12] and [10] are 

53.8% and 69.7% on March 5, respectively. 

Table 3.3 shows the variance of forecast errors, 𝜎2. A smaller variance means a more 

stable forecast result. As we can see, the variance of the proposed forecast method is between 

0.00043 on March 5 and 0.00078 on February 10. Compared with those in [12] and [10], the 

variance of forecast errors of the proposed method is overall lower. The largest variance 
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improvements of our method compared with [12] and [10] are 87% and 93% on March 5, 

respectively. 

Table 3.2 Comparison of daily AMAPEs for case 1 

Date of 2006 Proposed Ref. [12] Improv. Ref. [10] Improv. 

Jan. 20 2.61% 3.71% 29.6% 6.93% 62.3% 

Feb. 10 3.12% 2.85% -9.47% 7.96% 58.9% 

Mar. 5 2.53% 5.48% 53.8% 7.88% 67.9% 

Apr. 7 3.15% 4.17% 24.5% 9.02% 65.1% 

May 13 3.27% 4.06% 20.5% 6.91% 52.7% 

Table 3.3 Comparison of daily error variances for case 1 

Date of 2006 Proposed Ref. [7] Improv. Ref. [8] Improv. 

Jan 20 0.00070 0.0010 30.0% 0.0010 79.4% 

Feb 10 0.00078 0.0050 84.4% 0.0050 84.4% 

Mar 5 0.00043 0.0033 87.0% 0.0033 93.0% 

Apr 7 0.00051 0.0013 60.8% 0.0013 86.6% 

May 13 0.00043 0.0015 71.3% 0.0015 91.2% 

Figure 3.1-3.5 compare the forecasted and real electricity prices and further illustrate the 

accuracy of our electricity price forecasts for the chosen days of January 20, February 10, March 

5, April 7, and May 13, 2006, respectively. From Figure 3.1-3.3, we can see that there are two 

price peaks within each day: morning and evening peaks. However, on March 5, the peak pattern 

changes and shows in Figure 3.3 that the value of the evening peak is higher than the morning 

peak. As the methods applied in [7] and [8] rely on recognizing repetitive patterns within 

historical data and utilizing such patterns to perform forecast, when price daily pattern changed, 

their forecast accuracy may decrease, which was supported by the numerical results listed in 

Table 3.2 and 3.3. From Figure 3.4 and 3.5, we can tell that there are two peak periods within a 

day and the peak values are almost the same. Therefore, the forecast performance of our method 
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for April 7 and May 13 are alike that the AMAPE for those two days are 3.15% and 3.27% and 

the variances of forecast errors are 0.00051 and 0.00043, respectively 

 

Figure 3.1 Real and forecasted PJM electricity price (January 20, 2006). 

 

Figure 3.2 Real and forecasted PJM electricity price (February 10, 2006). 
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Figure 3.3 Real and forecasted PJM electricity price (March 5, 2006). 

 

Figure 3.4 Real and forecasted PJM electricity price (April 7, 2006). 
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Figure 3.5 Real and forecasted PJM electricity price (May 13, 2006). 

3.3.2 Detailed results of each key module 

To better understand key forecast modules for the normal price prediction, electricity 

prices on March 5, 2006 are selected to show the results of each key forecast module. According 

to the proposed price forecast framework, the first step is to read data and perform data 

preprocessing. After loading the PJM price dataset, no missing or duplicated price data are to be 

found. The imported historical price data from December 1, 2005 to March 4, 2006 are shown in 

Figure 3.6. 

The second step of our proposed forecast procedure is to perform the time series 

separation. As the variance of electricity prices doesn’t increase with time, we utilize an additive 

time series decomposition model to separate trend, seasonal, and remaining data, which are 

shown in Figure 3.7. 

As the price data components derived from step 2 are still mixed with frequency 

components, the third step of our proposed forecast procedure is to perform the VMD 
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decomposition to transform each price data component into multiple modes where each mode is 

band-limited data with a center frequency. We separate the trend data into four modes, the 

seasonal data into one mode, and the remaining data into four modes. As an example, the 

periodogram of the remaining data is shown in Figure 3.8, which contains four major frequencies 

marked by dotted circles. Accordingly, the decomposed four modes of the remaining data are 

illustrated in Figure 3.9. 

 

Figure 3.6 PJM electricity price for the period of December 1, 2005 to March 4, 2006. 
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Figure 3.7 Time series decomposition of the imported PJM electricity price for the period 

December 1, 2005 to March 4, 2006. Trend (top), seasonal (middle), and the 

remaining data (bottom). 
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Figure 3.8 Periodogram of the remaining data of the PJM electricity price for the period 

December 1, 2005 to March 4, 2006.   

 

Figure 3.9 VMD decomposed remaining data of the PJM electricity price for the period 

December 1, 2005 to March 4, 2006. 

The fourth step is to utilize the EDFT method to perform the forecast on the decomposed 

price modes. Figure 3.10 shows an example of the modes forecast for the remaining data. 
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Obviously, the forecasted modes, except for mode 2, perfectly trace their real values. Although 

the forecast accuracy of mode 2 of the remaining data is not good enough, it doesn’t have a 

significant impact on the price forecast accuracy as it is only a tiny portion of the total price. 

 

Figure 3.10 EDFT forecast for the remaining data of the PJM electricity price on March 5, 

2006. 

The final step is to compose the forecast results. Based on the additive model assumption, 

forecast results of the trend, seasonal, and remaining data/modes are added together to obtain the 

final normal price prediction result which is shown in Figure 3.11. Finally, the forecasted price is 

very close to the real one which has been shown in Figure 3.3. The reference [10] mentioned that 

the peak hour electricity price is hard to predict and may worsen the performance of the total 

forecast. However, by applying our proposed forecast modules, the peak price prediction at hour 

20 is more accurate and the AMAPE 2.53% of our forecast is lower than the AMAPE values 

reported in [12] and [10] that are 5.48% and 7.88%, respectively. 
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Figure 3.11 The trend, seasonal, remaining, and combined day-ahead electricity price forecast 

of the PJM day-ahead market on March 5, 2006.  

3.4 Case study 2: electricity price spike forecast 

The electricity price spike is a type of abnormal data within the day-ahead electricity 

price dataset as it rarely happens and is larger than the normal electricity price. Due to low 

occurrence rate, price spike is hard to be identified by normal classification algorithms as those 

methods assume a balanced dataset that means there are almost equal amount of data from 

different types. Besides, as classifiers are hard to identify price spikes from an imbalanced 

dataset, the regression algorithms are barely able to provide accurate price spike values. To 

address those problems, we use oversampling methods to increase the number of price spikes to 

facilitate classification algorithms. Once classification algorithms could identify price spikes 

correctly, regression algorithms that are specifically tuned will provide more precise quantity 

predictions on price spikes. In the following two subsections, the performances of classification 

and regression forecasts are discussed. 
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3.4.1 Price spike classification results 

Before utilizing oversampling methods, firstly, we need to define what is price spike. 

Different researchers utilized different price spike definitions in their studies. According to [14] 

and [17], price spikes are electricity prices over the threshold value 𝜇 + 2𝜎, where 𝜇 is the mean 

value of the historical data set and 𝜎 is the standard deviation of historical prices. Besides, [19] 

defined that electricity prices above 150 $/MWh or 200 $/MWh are price spikes. Noticed that the 

𝜇 + 2𝜎 definition will be heavily influenced by several large electricity prices as the mean value 

is easily affected by extreme values. And the thresholds such as 150 $/MWh or 200 $/MWh are 

too rigid and may not be true for certain markets or circumstances. Therefore, we decide to use 

the interquartile range (IQR) method to identify price spikes, which means electricity prices are 

defined as price spikes if their values are higher than Q3 + 1.5 × IQR. The Q3 is the third quartile 

and the IQR is the difference between the third quantile Q3 and the first quantile 𝑄1 that is 

𝐼𝑄𝑅 =  𝑄3  −  𝑄1. One of the benefits of using the IQR method is that the quantile is not 

affected by extreme values as the quantiles are called resistant measures. The other benefit is that 

it is more flexible than a hard threshold.  

Figure 3.12 shows the hourly means plot for day-ahead electricity prices of PJM from 

January 2, 2005 to July 31, 2006. According to Figure 3.12, it is obvious that day-ahead 

electricity prices at different hours have different patterns. Therefore, it is unfair to use a single 

threshold to tell whether an electricity price is a price spike or not. If we utilize the same 

threshold to define a price spike, price spikes at hour 3 might not be treated as abnormal 

electricity prices compared with the prices from on-peak hours 7 a.m. - 11 p.m. [30], but they are 

actually unusual data occurred at hour 3. So, we utilize the IQR method to identify price spikes 

for each hour. 
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Figure 3.12 Hourly means plot for day-ahead electricity prices of PJM from January 2, 2005 to 

July 31, 2006. 

 

Figure 3.13 Hourly price spike boxplot for day-ahead electricity prices from January 2, 2005 to 

July 31, 2006. 

The price spikes identified by using the IQR method are shown in Figure 3.13. The points 

above the green bar are regarded as price spikes (where the red dots represent price spikes at off-
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peak hours 12 p.m. - 6 a.m. [30], and the blue dots are price spikes at on-peak hours). The green 

bars represent the upper-level threshold for each hour and the value of each green bar is 

calculated by using the equation Q3 + 1.5 × IQR. The boxes demonstrate the electricity price 

distribution between 25th – 75th percentile for each hour and the range of each box equals to 

electricity price interquartile range. Besides, the bold black bar in each box is the median of 

electricity prices for each hour. The median can be used as a measure of central tendency 

because it is barely affected by extreme values. From Figure 3.13, we can tell that the upper-

level thresholds have different values for different hours and the off-peak hour upper-level 

thresholds are lower than the on-peak hour upper-level thresholds. Besides, compared with the 

variance of median, the upper-level threshold for each hour fluctuates more heavily. Importantly, 

in order to perform price spike classification with acceptable accuracy, for different hours, we 

need to train the classifier with different data. 

Meanwhile, the statistics related to electricity prices from January 2, 2005 to July 31, 

2006 are shown in Table 3.4. Data in the shaded area are related to the on-peak hours and 

otherwise related to the off-peak hours. The first column indicates the time of a day. The second 

column shows the upper-level threshold for each hour. If electricity prices are larger than or 

equal to the threshold, they are regarded as price spikes, otherwise are counted as normal 

electricity prices. The third and fourth columns show the number of price spikes and normal 

electricity prices for each hour, respectively. The last column provides the ratio of the number of 

price spikes to the number of normal prices. Table 3.4 shows that the number of price spikes is 

far less than the number of normal prices. Even though we summarize almost two years 

electricity price data, the spike/normal ratios are normally below 10% for each hour. 
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Table 3.4 Electricity prices statistics from January 2, 2005 to July 31, 2006 

Hour Threshold 

($/MWh) 

 # of price 

spikes 

# of normal 

prices  

Spike/normal 

ratio 

1 58.60 29 549 5.28% 

2 53.15 21 555 3.78% 

3 48.40 25 549 4.55% 

4 47.92 26 550 4.73% 

5 48.85 29 547 5.30% 

6 60.72 28 548 5.11% 

7 103.69 20 556 3.60% 

8 105.43 21 555 3.78% 

9 99.48 20 556 3.60% 

10 99.30 24 552 4.35% 

11 100.03 35 541 6.47% 

12 109.61 22 554 3.97% 

13 122.72 19 557 3.41% 

14 129.57 20 556 3.60% 

15 135.30 23 553 4.16% 

16 143.57 23 553 4.16% 

17 153.82 20 556 3.60% 

18 164.43 10 566 1.77% 

19 145.07 14 562 2.49% 

20 132.54 23 553 4.16% 

21 122.48 24 552 4.35% 

22 104.16 28 548 5.11% 

23 75.98 31 545 5.69% 

24 65.85 25 551 4.54% 

Therefore, in order to increase the number of price spikes, we adopt the proposed 

methods that utilize enhanced structure preserving oversampling (ESPO) to oversample price 

spike classification cases in section 2.2.2 to oversample imbalanced data. Since electricity prices 

at different hours have different patterns, the oversampling methods are applied to the dataset of 

each hour. As examples, we oversample the dataset of two hours. One of the selected hours is 

hour 4 that has the lowest price spike threshold according to Table 3.4 and the other selected 

hour is hour 17. For the dataset of hour 4, we have oversampled the set of 26 price spike cases to 

a total of 550 cases that is the amount of normal price cases in the original dataset at hour 4. And, 
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for the dataset of hour 17, we have oversampled the set of 20 price spike cases to a total of 556 

cases. To visualize the effectiveness of our proposed methods, we plot the oversampling results 

in a two-dimensional feature space. The x-axis and y-axis of Figure 3.14 and 3.15 are the 

principal components that have the largest and the second largest eigenvalue that are calculated 

by using the principal component analysis (PCA) method. From Figure 3.14(a), we can see that 

although the price spike cases in the original dataset are separated from the normal price cases, 

the total amount of price spike cases is much less than the normal price cases at hour 4. At hour 

17 shown in Figure 3.14(b), it is hard to differentiate the price spike cases from the normal price 

cases as they are mixed together. After oversampling, from Figure 3.15 (a), the number of price 

spikes at hour 4 increases and the boundary between the normal price cases and the price spike 

cases is clearer than the original dataset. For hour 17 shown in Figure 3.15(b), after 

oversampling, although some of the normal price cases are still mixed with the price spike cases, 

compared with the original dataset, it is much easier to differentiate those two types of cases in 

the oversampled dataset. 
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(a) Original dataset at hour 4  

 

(b) Original dataset at hour 17 

Figure 3.14 Scatter plot of the original dataset at hour 4 and hour 17. 
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(a) Oversampled dataset at hour 4  

 

(b) Oversampled dataset at hour 17 

Figure 3.15 Scatter plot of the oversampled dataset at hour 4 and hour 17 
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To evaluate the impact of oversampling on the price spike classification, we compared 

the classification results derived from the classifier that is trained by the original dataset and/or 

the oversampled dataset. We choose the support vector machines (SVM) method as the classifier 

because 1) the SVM method is able to provide an acceptable classification to unseen data as it 

minimizes the structural risk instead of the empirical risk [25]; 2) the SVM method enables to 

learn the non-linear relationship between the predictors and target variable; and 3) the 

classification performance of the SVM method is well proved in many publications [15]-[16]. In 

order to determine whether or not the electricity price is a price spike, we utilize the electricity 

prices of previous day as predictors. For example, to determine if the electricity price at hour 1 

on August 1, 2006 is a price spike or not, we utilize the electricity prices from hour 1 to hour 24 

on July 31, 2006 as predictors. Table 3.5 shows the confusion matrix derived from the SVM that 

is trained by the original dataset. The training period is from January 2, 2005 to July 31, 2006 

and the test period is from August 1, 2006 to December 30, 2006. Within the training period, 

there are total 13,824 training cases and 576 cases for each hour. During the test/forecast period, 

there are 3,648 cases and 152 cases for each hour. From Table 3.5, the classification precision is 

38 (38 + 47)⁄  =  44.71%  and recall is 38 (38 + 32)⁄  =  54.29%. Thus, the F-2 score is 0.52. 

Similarly, Table 3.6 shows the confusion matrix derived from the SVM that is trained by the 

oversampled dataset. Within the training period of January 2, 2005 to July 31, 2006, there are 

total 26,528 training cases and around 1,100 cases for each hour. During the test/forecast period 

of August 1, 2006 to December 30, 2006, there are 3,648 cases and 152 cases for each hour. 

From Table 3.6, the classification precision is 65 (65 + 42)⁄  =  60.75%  and recall is 

65 (65 + 5)⁄  =  92.85%. Its F-2 score is 0.84.   
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Table 3.5 Confusion matrix derived from the SVM trained by the original dataset 

Items True Spike  True Normal  

Spike Prediction 38  47 

Normal Prediction 32 3,531 

Table 3.6 Confusion matrix derived from the SVM trained by the oversampled dataset 

Items True Spike  True Normal  

Spike Prediction 65 42 

Normal Prediction 5 3,536 

Table 3.7 summarizes the classification results derived from the SVM trained by the 

original dataset and/or the oversampled dataset. Since we care more about recall than precision 

as it is vital to classify as many true price spikes as possible, the recall of the SVM trained by the 

oversampled dataset is 85.71% that is almost 58% higher than the recall of the SVM trained by 

the original dataset. For the F2-score, the closer the score to 1, the better classification 

performance is. From Table 3.7, we can tell that the F2-score of the SVM trained by the 

oversampled data is 0.79 that is much larger than the F2-score of the SVM trained by the original 

dataset. In other words, the performance of price spike classification is significantly improved by 

using our proposed oversampling methods. 

Table 3.7 Classification results comparation 

 Original data Oversampled data Improvement 

Precision 44.71% 60.75% 35.88% 

Recall 54.29% 92.85% 71.03% 

F2-score 0.52 0.84 61.31% 

3.4.2 Price spike regression results 

In this subsection, we focus on forecasting the numeric values of the price spikes. The top 

three highest day-ahead electricity prices occurred on August 1-3 are shown in Figure 3.16. As 
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the prices on August 2 and 3 are both much higher than the prices on August 1, therefore, we 

utilize those two days as examples to show the performance of our price spike numeric forecast. 

Using August 2, we will explain the details of the numeric value forecast of price spikes. August 

3 is used to compare our price spike forecast results with the results obtained from other popular 

regression methods. 

 

Figure 3.16 Three highest prices per month in 2006. 

According to the price spike classification forecast results discussed in the previous 

subsection, we have identified price spikes on August 2 (e.g., hours 1-3 and 10-24). Now, we 

should give numeric target value to the oversampled price spike cases by using the SMOTE for 

regression method. As different hours have different price spike thresholds, we do need to 

oversample dataset for each hour. For each hour, in order to assign a numeric value to an 

oversampled case, we need to find several real cases that are near to the selected oversampled 

case and utilize the target values from the real cases to calculate the target value of the selected 
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oversampled case according to the formulation (2.40). For example, in order to derive the target 

value of a price spike case at hour 1, firstly, we measure the predictors distance between the 

oversampled case with 29 real price spike cases. Then, we utilize the targets of the two nearest 

real cases to calculate the target value of the oversampled case. 

Table 3.8 Price spike forecast results on august 2, 2006 

Hour 
Actual Price 

($/MWh) 

Forecast Price 

($/MWh) 
Relative Error 

1 99.85 100.21 0.36% 

2 80.00 82.48 3.10% 

3 63.55 68.47 7.73% 

10 143.33 157.69 10.02% 

11 169.11 176.99 4.66% 

12 208.12 208.86 0.35% 

13 235.87 231.26 1.95% 

14 271.30 264.38 2.55% 

15 301.82 293.76 2.67% 

16 321.45 313.06 2.61% 

17 328.05 319.03 2.75% 

18 298.60 287.65 3.67% 

19 265.06 251.31 5.18% 

20 217.38 202.60 6.80% 

21 208.92 196.84 5.78% 

22 183.45 178.46 2.71% 

23 136.79 142.87 4.45% 

24 94.12 112.60 19.64% 

After deriving the oversampled dataset for each hour, the regression algorithm trained by 

the oversampled dataset is used to forecast the price values at the spike hours determined by the 

classifier. To show the performance of the price spike forecast, we use August 2, 2006 as an 

example and list the numeric forecast results in Table 3.8. The highest day-ahead electricity price 

on August 2, 2006 occurred at hour 17 and the price was 328.05 $/MWh. Compared with the 

forecasted spike price in [12] that the forecast value is 289.83 $/MWh at hour 17 and the relative 
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error is 11.65%, our forecasted price value is 319.03$/MWh and the relative forecast error is 

only 2.75%. The relative error reduction is 76.39% by using our proposed oversampling 

methods. 

To obtain final price forecast results, we place the normal forecast values at the place the 

classifier is regarded as normal price and place the price spike forecast values at the place that 

the classifier is regarded as price spike. We utilize August 3, 2006 as an example to show the 

final forecast results. The highest day-ahead electricity price in 2006 is 333.91$/MWh that 

happened at hour 17 on August 3. The AMAPE of the on-peak hour price forecast is 6.98% and 

the off-peak hour price forecast is 5.70%. The AMAPE over 24 hours on August 3 is 6.50%. 

Besides, the forecasted spike value at hour 17 is 346.98$/MWh with the relative error of 3.91%. 

To further compare the forecast performances of our proposed method with other forecast 

methods such as neural network (NN) [10], extreme learning machine (ELM) [5], and 

autoregressive integrated moving average (ARIMA) [11], we utilize some off-the-shelf 

packages, such as ‘forecastHybrid’, ‘nnfor’, and ‘forecast’, to calculate the day-ahead electricity 

price on August 3, 2006. The parameters of NN, ELM and ARIMA are determined by the 

automatic tune process provided by those forecast packages. The forecast results of different 

methods are shown in Figure 3.17. 
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Figure 3.17 Real and forecasted day-ahead PJM electricity price (August 3, 2006). 

As the ELM method can learn the complex nonlinear relationships between input and 

output, compared with the ARIMA method that can only find linear relationships, the forecast 

performance of the ELM is better than the ARIMA. The AMAPE values of the ELM and 

ARIMA methods are 16.38% and 26.12%, respectively. Neural network can also learn non-linear 

patterns between input and output. However, as the majority of electricity prices are normal 

prices, in order to ensure normal price forecast accuracy, the NN method barely provides 

accurate predictions during on-peak hours. Therefore, the AMAPE of the NN method during on-

peak hours is 45.05% and during the off-peak hours is 18.82%. However, the electricity price 

predictions provided by our proposed method are close to the real prices during both on-peak and 

off-peak hours which shows that our forecast method has a better forecast performance 

compared with all other three traditional methods. 
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3.5 Case study 3: various electricity markets forecast results 

To further justify the effectiveness of our proposed price forecast framework, in this 

section, multiple electricity markets are studied, such as MISO, ISO-NE, NYISO, SPP, and the 

electricity market of Spain. The selected price nodes and test dates are listed in Table 3.9. This 

challenging case study will predict the day-ahead electricity prices in the first seven days of each 

season in the year 2020: Mar 1-7 (Spring), Jun 1-7 (Summer), Sep 1-7 (Fall), and Dec 1-7, 2020 

(Winter). To show the performance of our proposed short-term price forecast, the AMAPE and 

MAPE of forecast errors are listed in Tables 3.10 and 3.11, respectively. From Table 3.10, we 

can see that for each market, our proposed forecast performances for the selected weeks are 

consistent and acceptable. In addition, we list the MAPE values in Table 3.11. Basically, the 

values are acceptable, except for the SPP market. The MAPE values of the SPP market are 

abnormal compared with other markets. that the MAPE value of the week of March 1-7 is 263%. 

Table 3.9 Selected price nodes and test dates for multiple electricity markets 

Market Node Testing Dates 

MISO MISO System Mar 1-7, Jun 1-7, Sep 1-7, and Dec 1-7, 2020 

ISO-NE Internal hub Mar 1-7, Jun 1-7, Sep 1-7, and Dec 1-7, 2020 

NYISO Zone New York City Mar 1-7, Jun 1-7, Sep 1-7, and Dec 1-7, 2020 

SPP Sppnorth Mar 1-7, Jun 1-7, Sep 1-7, and Dec 1-7, 2020 

Spain Mainland Spain Mar 1-7, Jun 1-7, Sep 1-7, and Dec 1-7, 2020 

Table 3.10 AMAPE of multiple electricity markets 

Week of 2020 MISO ISO-NE NYISO SPP Spain 

Mar. 1-7 5.06% 8.46% 4.40% 11.99% 6.62% 

Jun. 1-7 5.20% 5.96% 4.92% 12.28% 4.35% 

Sep. 1-7 3.77% 6.48% 4.02% 10.49% 3.72% 

Dec. 1-7 3.56% 7.07% 3.79% 9.62% 4.54% 

Average 4.40% 6.99% 4.28% 11.10% 4.81% 
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Table 3.11 MAPE of multiple electricity markets 

Week of 

2020 MISO ISO-NE NYISO SPP Spain 

Mar. 1-7 5.00% 8.50% 4.43% 263.00% 6.74% 

 Jun. 1-7 5.37% 5.88% 4.67% 23.42% 4.45% 

 Sep. 1-7 3.90% 6.43% 3.95% 25.77% 3.72% 

Dec. 1-7 3.48% 7.19% 3.77% 10.34% 4.62% 

Average 4.44% 7.00% 4.20% 80.64% 4.88% 

 

Figure 3.18 Real and forecasted day-ahead SPP electricity price (March 2, 2020). 

To understand more about the performance of our forecast methods on the SPP market, 

we also demonstrate the price forecast results on March 1 and September 2, 2020 in Figure 3.19 

and 3.20, respectively. Obviously, the forecast results are close to the real electricity prices of the 

SPP market. As the lowest price on March 1 is 6.33$/MWh and on September 2 is 14.86$/MWh 

(none of the real prices in those two days are close to zero), the MAPE value on March 1 is 

8.08% and on September 2 is 5.80%, which is reasonable (note that the AMAPE values on 

March 1 and September 2 are 7.02% and 5.33%, respectively). Besides, while March 1 and 2 are 
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consecutive days, the price patterns that are shown in Figure 3.18 and 3.19 are different. For 

example, the peak price on March 2 is at hour 16 but the peak price is at hour 1 on March 1. 

Although the electricity price patterns of those two days are different, from Figure 3.18 and 3.19, 

we can tell that our price forecasts are close to the real prices. Again, the forecast performance 

shows that our forecast method is capable to handle different markets under different situations 

 

Figure 3.19 Real and forecasted day-ahead SPP electricity price (March 1, 2020). 
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Figure 3.20 Real and forecasted day-ahead SPP electricity price (September 2, 2020) 

To provide more detailed assessments, we also use the relative mean absolute error 

(rMAE) as a metric to measure the point forecasts accuracy as the authors [60] argue that the 

scaled error metric facilitates comparison between datasets. Besides, the Giacomini-White (GW) 

test is adopted to determine whether the predictions derived from the proposed method are 

statistically accurate than the forecasts derived from the benchmark models. The open-access 

benchmark models [60] we adopt are the Lasso Estimated Auto Regression (LEAR) and the 

Deep Neural Network (DNN) where the LEAR is a linear statical model and the DNN is able to 

model the nonlinear relationships between the predictors and the target variables. 

As shown in Table 3.12, the rMAP value of the proposed method are always lower than 

the benchmark methods for every market in the selected seasons. Besides, to determine whether 

the difference of forecast accuracy is statistically significant, the p-values of the GW test are 

listed in Table 3.13. As the p-values close to 0 means there are significant differences between 
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forecast results, combined with the accuracy results shown in Table 3.12, we can tell that our 

price forecasts are statistically better than the predictions derived from the benchmark models. 

Table 3.12 rMAP of multiple electricity markets 

Date in 

2020 

MISO ISO-NE NYISO Spain 

LEAR DNN Prop. LEAR DNN Prop. LEAR DNN Prop. LEAR DNN Prop. 

Mar.1-7 0.52 0.62 0.29 0.85 0.62 0.45 0.82 1.04 0.49 0.88 0.92 0.55 

Jun.1-7 0.73 0.73 0.28 1.08 0.73 0.47 0.64 0.75 0.29 0.74 0.94 0.34 

Sep.1-7 0.89 0.75 0.28 0.69 0.75 0.38 0.64 0.78 0.27 0.59 0.59 0.49 

Dec.1-7 0.95 0.91 0.37 0.83 0.91 0.42 0.7 1 0.33 0.77 0.75 0.53 

Average 0.77 0.75 0.31 0.86 0.75 0.43 0.7 0.89 0.34 0.74 0.8 0.48 

Table 3.13 MAPE of multiple electricity markets 

Comparison MISO ISO-NE NYISO Spain 

LEAR/Prop. 3.89e-07 2.41e-06 9.57e-06 7.65e-04 

DNN/Prop. 2.75e-06 5.27e-06 4.80e-07 9.36e-05 

3.6 Conclusion 

In chapter, numerous case studies for different electricity markets, such as PJM, MISO, 

ISO-NE, NYISO, et cetera, were discussed in detail and proper evaluation matrices were utilized 

to assess the overall performance of our proposed price forecast framework. According to the 

analysis on the used methodologies and numerical comparison studies, our proposed work is 

capable to predict short-term electricity prices of different markets with acceptable accuracy and 

reliable performance. 

 



 

67 

CHAPTER IV 

PROBABILISTIC FORECAST AND RESULTS 

In this chapter, an optimal prediction interval forecast method is presented to capture the 

uncertainties within electricity prices. Section 4.1 presents the metrics that are used to measure 

the performance of prediction interval forecasts. The formulations of the proposed optimal 

prediction interval problem and the solving method are shown in section 4.2. Besides, to 

facilitate understanding, we list the flowchart and detailed calculation procedures at the end of 

section 4.2. To justify the effectiveness of the proposed methods, case study results are shown in 

section 4.3. The conclusions are drawn in section 4.4. 

4.1 Prediction interval metrics 

In order to estimate the performance of prediction interval forecasts, we introduce some 

common measurements in this chapter that one is reliability, and the other one is sharpness [75]. 

The detailed mathematic formations of the two metrics are shown below. 

4.1.1 Reliability 

Reliability is one of the key measurements to evaluate whether the forecast prediction 

interval aligns with the pre-defined confidence level. To provide detailed explanations, we 

introduce two terminologies that one is the prediction interval nominal confidence (PINC) and 

the other is the prediction interval coverage probability (PICP) [36]-[37]. The PINC indicates the 

pre-defined confidence level, and the formulation is shown below 
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𝑃𝐼𝑁𝐶 = 100 × (1 − 𝛽)% (4.1) 

, where 𝛽 is the pre-defined probability of error [38]. The PICP indicates the percentage of 

forecasts within the predefined interval. The mathematic expression is shown in equation (4.2) 

𝑃𝐼𝐶𝑃 = 100 ×  
1

𝑁
∑ 𝐶𝑖

𝑁

𝑖=1
  (4.2) 

where the 𝑁 is the number of cases in the test dataset. The 𝐶𝑖 implies whether the forecast target 

value is within the predefined interval or not.  

𝐶𝑖 =  {
1      𝑡𝑖  ∈  [𝑞𝑖

𝛼 
, 𝑞𝑖

𝛼]

0      𝑡𝑖  ∉  [𝑞𝑖

𝛼 
, 𝑞𝑖

𝛼]
  (4.3) 

The 𝑡𝑖 is the predicted target value. The 𝛼  and 𝛼 are the upper and lower quantile proportions 

and the 𝑞𝑖

𝛼 
 and 𝑞𝑖

𝛼 represent the upper and lower quantile of the prediction interval, respectively 

[39]. 

In order to evaluate whether the experimental prediction interval aligns with the pre-

defined one, we measure the deviation of PICP from PINC, and called the averaged difference 

between PICP and PINC as the average coverage error (ACE). 

𝐴𝐶𝐸 = 𝑃𝐼𝐶𝑃 − 𝑃𝐼𝑁𝐶 (4.4) 

The value of ACE could be positive or negative that indicates the PICP value is higher or lower 

than the PINC. The closer ACE to zero, the better prediction interval forecasts we have. 

4.1.2 Sharpness 

A large positive ACE value means the electricity price uncertainties have been amplified. 

The consequence of using the over-width prediction interval is that market participants might 

make a conservative decision and result in benefits reduction. Therefore, we also need to 
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measure the sharpness of the prediction interval forecasts. The sharpness means the width of the 

prediction interval [40] and is calculated by using equation (4.5). 

𝑃𝐼𝐴𝑊 =  
1

𝑁
 ∑ (𝑞𝑖

𝛼 − 𝑞𝑖

𝛼 
)

𝑁

𝑖=1
 (4.5) 

The PIAW is short for prediction interval average width.  

When using the sharpness to evaluate the prediction interval forecasts, the closer the 

PIAW value reaches zero the sharper prediction interval we will get. Then we expect that the 

calculated PIAW as small as possible. However, if our probabilistic forecasts reach the lowest 

PIAW value, this means the upper and lower bound of the prediction interval are the same and 

our probabilistic forecasts become point forecasts. In that situation, we cannot quantify the 

uncertainty within the future electricity prices. Therefore, we need to ensure reliability and try to 

minimize the width between the upper and lower bound of the prediction interval forecasts. 

4.2 Proposed optimal prediction interval method 

In this section, the optimal prediction interval problem is formulated in subsection 4.2.1. 

In subsection 4.2.2, we introduce the extreme learning machine (ELM) to provide the upper and 

lower bounds of prediction interval. In subsection 4.2.3, an augmented Lagrangian method is 

adopted to solve the optimal prediction interval problem. The detailed solution steps and 

flowchart are shown in the last subsection.  

4.2.1 Formulations of the optimal prediction interval problem 

Before introducing the formulations, first, we need to define the meaning of optimal 

prediction interval. In this chapter, the optimal prediction interval is the prediction interval that 

takes both reliability and sharpness into consideration. To fulfill the reliability requirement, the 

objective function is shown below 
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𝑚𝑖𝑛 ∑  [ 𝜌𝛼(𝑦𝑖 −  𝑞𝑖
𝛼)  +   𝜌𝛼(𝑦𝑖 −  𝑞𝑖

𝛼
)] 

𝑁

𝑖=1
(4.6) 

, where 𝑦 is the observed target value and 𝑖 is the index of cases. The 𝜌 represents a function 

with a tiled form that is called tick or pinball loss function [41] [73]. The formulation of the 

pinball loss function [77][79][80] is listed in equation (4.7) 

𝜌 =  {
𝛼𝑢                𝑖𝑓 𝑢 ≥ 0
(𝛼 − 1)𝑢     𝑖𝑓 𝑢 < 0

 (4.7) 

, where the 𝑢 represents the difference between the observed target value and the corresponding 

upper or lower predicted quantiles. The pinball loss function can be visualized in Figure 4.1. 

 

Figure 4.1 Pinball loss function 

Besides, to ensure we have a sharper prediction interval, we also place the differences 

between the upper and lower prediction interval bounds into our objective function. The 

sharpness requirement is shown in formulation (4.8). 

𝑚𝑖𝑛 ∑ (𝑞𝑖
𝛼 −  𝑞𝑖

𝛼
)

𝑁

𝑖=1
 (4.8) 
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After showing the objective function, we introduce several constraints that related to the 

optimal prediction interval problem. In order to avoid quantile crossing situation that is the lower 

quantile forecasts larger than the upper quantile predictions, we utilize the non-crossing 

constraint (4.9) to ensure the quantile forecast monotonically increase as the quantile probability 

increase [42]. 

𝑞𝑖

𝛼
≤ 𝑞𝑖

𝛼       𝑖 = 1 … 𝑁 (4.9) 

To ensure the width of the predictions aligns with the pre-defined confidence level, the 

next set of constraints are related to the width of the prediction intervals. Researchers that use 

parametric ways to calculate the prediction intervals normally assume that the electricity price 

errors follow a normal distribution that has a symmetric spread around the mean values [7], [43]. 

Therefore, the central prediction interval (CPI) is a common way to define the bounds of 

prediction intervals. The upper and lower bounds are calculated by using the point forecasts to 

add or subtract the critical value of the normal distribution multiplying the square root of the 

variance, respectively. However, [39] points out if the target value distribution is skewed, the 

CPI might be a conservative way to derive the prediction interval width. Therefore, in our study, 

we utilize the probability mass bias (PMB) metric [45] to measure the deviation of the proposed 

prediction interval from the central prediction interval 

𝑃𝑀𝐵 = (1 − 𝛼) − 𝛼  =  −2𝛿 (4.10) 

, where the 𝛿 indicates the deviation of the upper or lower bound of the proposed prediction 

interval from the corresponding central prediction interval bounds. If we want to make sure that 

the confidence interval is (1 − 𝛽)%, we can use the following constraints. 

𝛼 = 1 −
𝛽

2
+ 𝛿 (4.11) 



 

72 

𝛼  =  
𝛽

2
+ 𝛿 (4.12) 

And to guarantee the range of 𝛼 and 𝛼 within interval [0,1], we include constraint (4.13). 

−
𝛽

2
≤ 𝛿 ≤

𝛽

2
 (4.13) 

From Fig. 4.1, we can tell that the pinball loss function is not differentiable at the origin. 

In order to facilitate calculation, according to [45], we can linearize the pinball loss objective 

function (4.6) using the following equations and constraints. 

𝑚𝑖𝑛 ∑ 𝛼𝜉𝑖,+
𝛼 + (1 − 𝛼)𝜉𝑖,−

𝛼 + 𝛼𝜉𝑖,+

𝛼
+ (1 − 𝛼)𝜉𝑖,−

𝛼
𝑁

𝑖=1
 (4.14) 

𝑦𝑖 −  𝑞𝑖
𝛼 = 𝜉𝑖,+

𝛼 −  𝜉𝑖,−
𝛼  𝑖 = [1 … 𝑁] (4.15) 

𝑦𝑖 −  𝑞𝑖

𝛼
= 𝜉𝑖,+

𝛼
−  𝜉𝑖,−

𝛼
 𝑖 = [1 … 𝑁] (4.16) 

𝜉𝑖,+
𝛼 , 𝜉𝑖,−

𝛼 ,  𝜉𝑖,+

𝛼
, 𝜉𝑖,−

𝛼
≥ 0  𝑖 = [1 … 𝑁] (4.17) 

In order to consider both reliability and sharpness, we combine (4.14) and (4.8) to get a 

new objective formulation  

𝑚𝑖𝑛 ∑
(𝑤[ 𝛼𝜉𝑖,+

𝛼 + (1 − 𝛼)𝜉𝑖,−
𝛼 + 𝛼𝜉𝑖,+

𝛼
+ (1 − 𝛼)𝜉𝑖,−

𝛼
]

+[𝑞𝑖
𝛼 −  𝑞𝑖

𝛼
])

𝑁

𝑖=1

(4.18) 

, where the 𝑤 is a weight factor that indicates the importance of the reliability over sharpness. 

The overall optimal prediction interval problem is formulated below. 

𝑂𝑏𝑗. (4.18) 

𝑠. 𝑡. {

𝑁𝑜𝑛 − 𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: (4.9)

 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: (4.11) − (4.13)

𝑃𝑖𝑛𝑏𝑎𝑙𝑙 𝑙𝑜𝑠𝑠 𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛: (4.15) − (4.17)

(4.19)
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4.2.2 Extreme learning machine 

The extreme learning machine (ELM) is a type of single-hidden layer feed-forward 

neural network (SLFN) that is proposed by Huang et al. [46]. Compared with other machine 

learning algorithms such as the least square support vector machine (LS-SVM), the ELM could 

achieve a better regression performance. Besides, in theory, ELM could estimate any continuous 

target function [47]. One of the salient characteristics of the method is that the computational 

burden of the ELM method is low. Compared with neural networks that require multiple back-

and-forth feed-forward and backpropagation calculations, the input weights and the hidden layer 

biases of an ELM are randomly initialized and without further tuning. And the output weights are 

calculated by using a matrix multiplication method. Based on the characteristics of the ELM, we 

choose this method to forecast the upper and lower bound of the optimal prediction intervals. 

We utilize (𝒙𝑖, 𝑦𝑖), 𝑖 = 1, … , 𝑁 to indicate the training set with the number of 𝑁 cases. 𝒙𝑖 

is the predictor vector where 𝒙 ∈ 𝑹𝑛 and 𝑦𝑖 is the observed target value of the case 𝑖. The 

symbol 𝑡𝑖is used to denote the predicted target value. The hidden node activation function is 

denoted using the symbol 𝑔. If we adopt an ELM with a number of 𝑀 hidden nodes to estimate 

𝑦𝑖 from 𝒙𝑖, we can use the following formulation to show the relationship between the predictors 

and target values. 

∑ 𝑜𝑗𝑔(𝝎𝑗𝒙𝑖 + 𝑏𝑗)
𝑀

𝑗=1
=  𝑡𝑖  𝑖 = 1, … , 𝑁 (4.20) 

The symbol 𝝎𝑗 is the input weight vector that connects the input node with the hidden node 𝑗 and 

𝑏𝑗 is the bias of node 𝑗. Besides, 𝑜𝑗 means the output weight vector of the hidden node 𝑗 that 

connects with the output node.  

The equation (4.20) can also be presented using a matrix form to facilitate expression.   
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𝑯𝒐 = 𝒕  (4.21) 

The 𝑯 is the hidden layer output matrix. The expended 𝑯 is shown in (4.22) 

𝑯 =  [
𝑔(𝝎1𝒙1 + 𝑏1) ⋯ 𝑔(𝝎𝑀𝒙1 + 𝑏𝑀)

⋮ ⋱ ⋮
𝑔(𝝎1𝒙𝑁 + 𝑏1) ⋯ 𝑔(𝝎𝑀𝒙𝑁 + 𝑏𝑀)

]

𝑁×𝑀

 (4.22) 

The output weight vector 𝒐 and the predicted target vector 𝒕 are shown below. 

𝒐 =  [

𝑜1

⋮
𝑜𝑀

]

𝑀×1

𝑎𝑛𝑑 𝒕 =  [

𝑡1

⋮
𝑡𝑁

]

𝑁×1

  (4.23) 

The minimization problem (4.24) is use to make sure the ELM forecast values are close 

to the observed target values.   

𝑚𝑖𝑛𝜷‖𝑯𝒐 − 𝒚‖2
2  (4.24) 

According to [46], since the input weights 𝝎𝑗 and the hidden layer biases 𝑏𝑗 do not need to be 

modified after initialization, we can treat the hidden layer output matrix 𝑯 as a constant. 

Therefore, in the minimization problem (4.24), we only need to tune the output weight vector 𝒐. 

The (4.24) is actually a least square problem and the optimal 𝒐 can be derived analytically. 

𝒐̂ =  𝑯†𝒚 (4.25) 

The 𝑯† is the Moore–Penrose generalized inverse of the hidden layer output matrix. The 

generalized inversion is used here to relief calculation difficulties if 𝑯 is a singular matrix or do 

not have a squared form.  

Compared with neural networks that use numbers of iterations to tune parameters, the 

output weights of the ELM can be derived by calculating a generalized matrix inversion and then 

use the inversed matrix to multiply the observed target vector. Besides, other parameters are 

fixed at the beginning. Therefore, the training speed of the ELM method is quick. Besides, we 
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can choose different activation functions to model the nonlinear relationships between the 

predictors and target values. 

4.2.3 Reformed formulations of the optimal prediction interval problem 

In this subsection, we will present a modified optimal prediction interval problem based 

on the optimal problem formulated in 4.2.1 and the forecast method introduced in 4.2.2.  

Based on the characteristic of the ELM, only the output weight parameters need to be 

tuned. Therefore, by using the ELM to predict the upper and lower bound of prediction interval, 

the objective (4.18) can be rewritten. 

𝑚𝑖𝑛
𝒙

∑
(𝑤[ 𝛼𝜉𝑖,+

𝛼 + (1 − 𝛼)𝜉𝑖,−
𝛼 + 𝛼𝜉𝑖,+

𝛼
+ (1 − 𝛼)𝜉𝑖,−

𝛼
]

+[𝒉𝑖
𝑇𝒐𝛼 −  𝒉𝑖

𝑇𝒐𝛼])

𝑁

𝑖=1

(4.26) 

𝒙 = {𝛼, 𝛼, 𝛿, 𝒐𝛼, 𝒐𝛼𝜉𝑖,+
𝛼 , 𝜉𝑖,−

𝛼 , 𝜉𝑖,+

𝛼
𝜉𝑖,−

𝛼
}. The 𝒉𝑖 is the hidden layer output vector for the case 𝑖 and 

the superscript 𝑇 means transpose operation. Besides, the 𝒐𝛼 and 𝒐𝛼 are the output weight vector 

of the ELM for the upper and lower quantile of the prediction interval, respectively. 

Except the objective function, we also modified several sets of constraints. As the non-

crossing constraint (4.9) is related to the upper and lower quantile of the prediction interval, we 

changed it into the following form. 

𝒉𝑖
𝑇𝒐𝛼 ≤ 𝒉𝑖

𝑇𝒐𝛼      𝑖 = 1 … 𝑁 (4.27) 

Since the prediction interval constraints are not related to quantile prediction, we leave them 

unchanged. For the constraints related to the objective function linearization, we substitute (4.15) 

and (4.16) by using equation (4.28) and (4.29) as constraint (4.15) and (4.16) are related to the 

quantile forecast. 

𝑦𝑖 −  𝒉𝑖
𝑇𝒐𝛼 = 𝜉𝑖,+

𝛼 −  𝜉𝑖,−
𝛼  𝑖 = [1 … 𝑁] (4.28) 
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𝑦𝑖 −  𝒉𝑖
𝑇𝒐𝛼 = 𝜉𝑖,+

𝛼
−  𝜉𝑖,−

𝛼
 𝑖 = [1 … 𝑁] (4.29) 

After the adjustment, the reformed optimal prediction interval problem is shown in (4.30) 

𝑂𝑏𝑗. (4.26) 

𝑠. 𝑡. {

𝑁𝑜𝑛 − 𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: (4.27)

 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: (4.11) − (4.13)

𝑃𝑖𝑛𝑏𝑎𝑙𝑙 𝑙𝑜𝑠𝑠 𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛: (4.17) 𝑎𝑛𝑑 (4.28) − (4.29)

(4.30)
 

4.2.4 Augmented Lagrangian method 

The augmented Lagrangian method is used to solve the reformed optimization problem in 

this subsection. As the nonlinear terms, such as 𝛼𝜉𝑖,+
𝛼 , exist in the objective function (4.26), and 

there are several equality and inequality constraints in the constraint set, we can tell that the 

optimization problem (4.30) is a nonlinear optimization problem with different types of 

constraints. Therefore, the off-the-shelf solvers are hard to directly apply on the problem. 

However, as those solvers are fast and reliable, in this paper, an Augmented Lagrangian method 

[48] is used to modify the optimization problem so that solvers only need to calculate an 

unconstrained optimization problem in each iteration.  

To avoid complicated expression and facilitate generalization, we simplify the reformed 

optimal prediction interval problem (4.30). The objective function in (4.30) is denoted as 𝑓(𝒙). 

The constraints are categorized into two classes that one set of constraints is equality constraints 

and the other set is inequality constraints 

𝑃 =
{𝑐𝑘(𝒙) = 0 𝑘 = 1 … 𝑟

 𝑐𝑘(𝒙) ≥ 0 𝑘 = 𝑟 + 1 … 𝑚}
(4.31) 

We utilize 𝑘 as the constraints index. Symbol 𝑟 and 𝑚 − 𝑟 are the number of equality and 

inequality constraints, respectively. 
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By using the generalized objective function and constraints, we change the reformed 

optimization problem with constraints into an unconstrained optimization problem by using the 

augmented Lagrangian method. 

𝜑(𝒙, 𝝀, 𝜎) =  𝑓(𝒙) − 𝝀𝑇𝒅(𝒙) +  
1

2
𝜎𝒅(𝒙)𝑇𝒅(𝒙) (4.32) 

The elements of vector 𝝀 are the Lagrangian multipliers for constraints and 𝜎 is a positive 

number that penalizes active constraints violation. The 𝒅(𝒙) is defined as 

𝑑𝑘(𝒙) =  {
𝑐𝑘(𝒙) 𝑘 < 𝑟 𝑜𝑟 𝑐𝑘(𝒙) ≤ 𝛿

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑘 = 1 … 𝑚 (4.33) 

, where 𝛿 is a small positive number that is use to define the active inequality constraints. The 

meaning of 𝒅(𝒙) is to ensure the objective with augmented Lagrangian form only penalizes 

active constraints.  

According to [49], Fletcher shows that if the 𝜎 is larger than a finite number 𝜎̂ and 𝝀 =

𝝀∗, then 𝒙∗ is an unconstrained local minimizer of 𝜑(𝒙, 𝝀∗, 𝜎). 

𝒙∗
𝝀,𝜎 =  𝑎𝑟𝑔𝑚𝑖𝑛

𝒙
𝜑(𝒙, 𝝀, 𝜎) (4.34) 

Therefore, if 𝜎 > 𝜎̂,  

𝒙∗
𝝀,𝜎 =  𝒙∗ (4.35) 

So, if we utilize a large enough 𝜎 and have 𝝀∗, the optimal solutions of the unconstrained 

augmented Lagrangian optimization problem equal to the optimal solutions of the constrained 

one. Therefore, given a large 𝜎 and iteratively updating 𝝀 to the 𝝀∗, we can get the solutions of 

the proposed optimal prediction interval problem from solving a set of unconstrained problems.  

In order to update 𝝀, we let 𝜎 = 𝜎𝑓𝑖𝑥 and form a function that is only related to the 

Lagrangian vector 𝝀  
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𝜓(𝝀) = 𝜑(𝒙𝝀, 𝝀, 𝜎𝑓𝑖𝑥) (4.36) 

, where 𝒙𝝀 is a minimizer of the augmented Lagrangian function given 𝝀 and 𝜎𝑓𝑖𝑥. To find a 

direction 𝜼 that is used to update 𝝀, by using the Taylor expansion at 𝝀, equation (4.36) can be 

expended as  

𝜓(𝝀 + 𝜼) = 𝜓(𝝀) +  𝜼𝑻𝜓′(𝝀) + 𝑂(‖𝜼‖2)

= 𝜓(𝝀) −  𝜼𝑻𝑑(𝒙𝝀) (4.37)
 

As 𝒙𝝀 is a minimizer of the augmented Lagrangian function (4.32), then,  

𝜑𝒙
′ (𝒙𝝀, 𝝀, 𝜎𝑓𝑖𝑥) = 0 (4.38) 

which means 

𝑓′(𝒙𝝀) − 𝑱𝒅(𝒙𝝀)[𝝀 −  𝜎𝑓𝑖𝑥𝒅(𝒙𝝀)] = 0 (4.39) 

, where 𝑱𝒅 means Jacobian matrix. Considering the KKT stationary condition of a Lagrangian 

function 𝐿𝒙
′ (𝒙∗, 𝝀∗) = 0 

𝑓′(𝒙𝝀) − 𝑱𝒅(𝒙𝝀)𝝀∗ = 0 (4.40) 

Comparing (4.40) with (4.39), assuming 𝒙 is at 𝒙∗, then, we can get the direction 𝜼 to update 𝝀. 

𝝀∗  = 𝝀 +  𝜼

≈ 𝝀 −  𝜎𝑓𝑖𝑥𝒅(𝒙𝝀) (4.41) 

At this time, we know how to update the Lagrangian multiplier, however, we cannot in 

advance decide which inequality constraints are active. Therefore, by adding auxiliary variables, 

we reform the inequality constraints in (4.31) into equality constraints.  

{
𝑐𝑘(𝒙) − 𝑠𝑘 =  0 

𝑠𝑘 ≥ 0
𝑘 =  𝑟 + 1 … 𝑚 (4.42) 

Then, the augmented Lagrangian function 𝜑(𝒙, 𝝀, 𝜎) is change to 𝜑(𝒙, 𝝀, 𝜎, 𝒔).  
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𝜑(𝒙, 𝝀, 𝜎, 𝒔) = 𝑓(𝒙) − ∑ 𝜆𝑘𝑐𝑘(𝒙)
𝑟

𝑘=1
+

1

2
𝜎 ∑ [𝑐𝑘(𝒙)]2

𝑟

𝑘=1
 

∑ 𝜆𝑘[𝑐𝑘(𝒙) − 𝑠𝑘]
𝑚

𝑘=𝑟+1
+

1

2
𝜎 ∑ [𝑐𝑘(𝒙) − 𝑠𝑘]2

𝑚

𝑘=𝑟+1
(4.43)

 

Still, we have introduced some inequality constraints that are 𝑠𝑘 ≥ 0, 𝑘 =  𝑟 + 1 … 𝑚. Although 

we have a simpler form of inequality constraints, we still want to avoid the auxiliary variables 

and inequality constraints.  

Given 𝝀 and 𝜎, the minimizers of the augmented Lagrangian function 𝜑(𝒙, 𝝀, 𝜎, 𝒔) are 

denoted as (𝒙𝝀,𝜎, 𝒔𝝀,𝜎). The characteristics of the optimal auxiliary variables are that  

 𝑠𝑘 =  0 𝑜𝑟 𝜕𝜑 𝜕𝑠𝑘⁄ = 0   𝑘 = 𝑟 + 1 … 𝑚 (4.44) 

The 𝑠𝑘 =  0 happens if the inequality constraints are inactive. On the other hand, 𝜕𝜑 𝜕𝑠𝑘⁄ = 0 is 

the situation that inequality constraint 𝑘 is active. Based on formulation (4.43), the partial 

derivative can be written as 

𝜕𝜑

𝜕𝑠𝑘
= 𝜆𝑘 −  𝜎 (𝑐𝑘(𝒙) − 𝑠𝑘) = 0  𝑘 = 𝑟 + 1 … 𝑚 (4.45) 

Therefore, we can derive that 𝑠𝑘 =  𝑐𝑘(𝒙) − 𝜆𝑘 𝜎⁄  if inequality constraints are inactive. So, 

(4.44) can be reformed as 

 𝑠𝑘 = 𝑚𝑎𝑥 {0, 𝑐𝑘(𝒙) − 𝜆𝑘 𝜎⁄ }  𝑘 = 𝑟 + 1 … 𝑚 (4.46) 

When performing the iterative calculation, by substituting (4.46) into (4.43), we can eliminate 

the auxiliary variable 𝑠𝑘 and the inequality constraints. The augmented Lagrangian function and 

the reformed equality constraints are shown in (4.47) and (4.48).  

𝜑(𝒙, 𝝀, 𝜎) =  𝑓(𝒙) − 𝝀𝑇𝒆(𝒙) + 
1

2
𝜎𝒆(𝒙)𝑇𝒆(𝒙) (4.47) 

𝑒𝑘(𝒙) =  {
𝑐𝑘 𝑖𝑓 𝑘 ≤ 𝑟 𝑜𝑟 𝑐𝑘 ≤ 𝜆𝑘 𝜎⁄   

𝜆𝑘 𝜎⁄ 𝑖𝑓 𝑘 > 𝑟 𝑎𝑛𝑑 𝑐𝑘 > 𝜆𝑘 𝜎⁄
 𝑘 = 1 … 𝑚 (4.48) 
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At this point, we have eliminated all inequality constraints and auxiliary variables. The 

overall procedure to iteratively calculate the optimization problems includes three major steps. 

The first step is to calculate the minimizer 𝒙 of the unconstrained (4.47) given 𝝀 and 𝜎. Then, the 

second step is to update 𝝀 by using (4.41) or increase the value of 𝜎 to enforce constraints. The 

third step is to determine whether stop iteration or not based on the pre-defined stopping criteria. 

The detailed steps to derive the optimal prediction interval are shown in the following 

subsection. 

4.2.5 Flowchart and major steps 

In Figure 4.2, we present the flowchart to solve the proposed optimal prediction interval 

problem. Besides, the detailed descriptions of each major step are also listed below. 

Step 1: Parameter initialization: There are two sub-steps within this major step that one is 

the ELM parameter initialization and the other is the augmented Lagrangian function 

initialization. For the ELM parameter initialization, given there are number of 𝑀 hidden nodes, 

we randomly assign the input weights vector 𝝎 and the hidden layer bias 𝑏 for each of them. For 

the augmented Lagrangian function initialization, before iteratively solving the optimal problem, 

initially, we let the Lagrangian multiplier vector 𝝀 = 𝟎 and assign a positive number to the 

penalty parameter such as 𝜎 = 1. Besides, the iteration index 𝑙 is set to 0 at this step. 

Step 2: Problem optimization and value calculation: This step is to calculate the 

unconstrained optimization problem where the objective function is the augmented Lagrangian 

function with the given Lagrangian multipliers and penalty parameter. At the beginning of the 

iterative calculation, as number of loops is one of the stopping criteria, we increase and record 

the iteration number. As the largest constraint violation is the other stopping criteria, after 
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solving the unconstrained problem, we insert the derived minimizer into constraint set (4.48) and 

record the largest constraint violation 

Step 3: Parameter updating: At the beginning of this step, we will decide whether to 

update Lagrangian multipliers 𝝀 or update the penalty parameter 𝜎. If the maximum constraint 

violation 𝑉 derived by the current minimizer reduces three-quarters of the previous maximum 

constraint violation 𝑉 ≤ 𝑉𝑝𝑟𝑒𝑣 4⁄ , then, we update the Lagrangian multipliers by using 

formulation (4.41). And, the maximum constraint violation of the current iteration is recorded to 

be the threshold of the next iteration. On the other hand, if the maximum constraint violation of 

the current iteration has not reduced enough, we update the penalty parameter that is 10 time 

more than the previous one 𝜎 = 10 ×  𝜎 to enforce the constraints 

Step 4: Stop criteria checking: In this step, we will utilize two thresholds to decide 

whether the iteration stops or not. The first criterion is the maximum constraint violation 

𝑉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. The second one is the maximum loop number. If the current maximum constraint 

violation less than the pre-defined threshold 𝑉 ≤ 𝑉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, then, we terminate the iteration. 

Otherwise, if the loop index 𝑙 is more than the pre-defined maximum loop limit 𝑙max _𝑖𝑡𝑒𝑟, we 

also end the iteration. The final optimization results will be derived after the end of the iterative 

calculation. 
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Figure 4.2 Flowchart to solve the proposed optimal prediction interval problem. 
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In order to reduce computation time and derive stable prediction interval forecasts, we 

also propose a parallel computation structure that is shown in Figure 4.3. To avoid wasting time 

to share information between different modules, each computation module includes the whole 

optimization procedures that are shown in Figure 4.2. The final prediction intervals are the 

ensemble of the upper and lower bounds of the prediction intervals that are derived by each 

computation module. 

 

Figure 4.3 Parallel optimal prediction interval computation structure. 

4.3 Case studies  

In this subsection, we use numeric results of case studies to show the effectiveness of our 

proposed optimal prediction interval method.  

1. As electricity price data are heteroscedastic so that the distribution is not pre-fixed, to 

show our proposed non-parametric method is able to provide accurate predictions, we 
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compare our forecast results with the prediction intervals derived from the method that 

assumes price distribution in advanced.  

2. To demonstrate that the prediction intervals derived from the proposed method are 

sharper while meet reliability requirement, we compare our forecast results with the 

prediction intervals forecasted by using the neural network with the bootstrap, which both 

types of methods are non-parametric and can learn non-linear relationships.  

3. To show method versatility, instead of just using data from the Pennsylvania-New Jersey-

Maryland Interconnection (PJM), we also adopt our proposed method on different 

electricity markets, such as the Australian Energy Market (AEM) or the Ontario 

electricity market, and compare forecast results with other references.   

4.3.1 Proposed and Parametric Methods Forecasts Comparison 

In this section, we adopt our proposed method to forecast the prediction interval of the 

PJM day-ahead locational marginal price (LMP), where the data are available in [30].  

Figure 4.4 shows the LMP probability density function (PDF) of each season where the 

covered areas are filled with different colors. In this figure, we can tell that the day-ahead 

electricity prices of the PJM are not symmetrically distributed. Majority of electricity prices are 

located around 10$/MWh to 40$/MWh. And only a few electricity prices are higher than 

50$/MWh. Therefore, the normal distribution is an error-prone assumption to describe the 

electricity price distribution. This phenomenon also justifies the benefits of choosing a non-

parametric method to forecast the prediction interval without defining the distribution of price 

data in advance. Besides, from the Figure 4.4, we can observe that the distributions of the 

electricity price within each season have different shapes. Therefore, we adopt different models 

to forecast the price prediction intervals of each season. 
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Figure 4.4 PJM LMP probability density function of each season in 2019. 

To compare the forecast performance of non-parametric and parametric methods, we 

demonstrate the prediction intervals derived from our proposed method and the ARIMA method 

that assumes the residuals follow normal distribution. To visualize our forecast results, in Figure 

4.5 – 4.8, we plot the prediction intervals of the PJM market in the spring (March to May), 

summer (June to August), fall (September to November), and winter (December to February) in 

2019, respectively. As our focus is on the day-ahead electricity price prediction, the forecast 

horizon is the next 24 hours. Without loss of generality, the nominal coverage probability of the 

prediction interval is set to be 90%. From plots, we can observe that the day-ahead electricity 

prices of the PJM are heteroscedastic. Although the price distribution in each season has its own 

characteristic, the record day-ahead prices of different seasons are bounded by the prediction 

intervals derived from our proposed method that demonstrate our predictions are reliable. 

Besides, the width between the upper and lower bound of prediction interval are narrow that 

shows the sharpness of our forecasts.    

 



 

86 

Table 4.1 Prediction intervals comparison between proposed method and ARIMA method  

Season 
PICP (%) ACE (%) PIAW ($/MWh) 

Proposed ARIMA Proposed ARIMA Proposed ARIMA 

Winter 90.42 97.71 0.42 7.71 11.75 32.27 

Spring 90.53 88.25 0.53 -1.75 9.29 11.15 

Summer 93.23 86.58 3.23 -3.41 9.09 13.23 

fall 92.71 86.04 2.71 -3.96 15.62 16.97 

The detailed statistics related to the forecast results are listed in Table 4.1. To compare 

prediction interval reliability, from Table 4.1, we can tell that the prediction interval coverage 

probability derived from our proposed method is closer to the pre-defined nominal confidence 

than the ARIMA method. This situation is also reflected in the ACE metric that the deviations of 

the PICP from the PINC of the proposed method are between 0.42% to 3.23% where the ACE 

values of the ARIMA method range from -3.96% to 7.71%. Besides, to compare forecast results 

sharpness, the PIAW value of our proposed method are lower than the PIAW value of the 

ARIMA method. As narrow prediction intervals could give market participants more confidence 

in decision making, our proposed method is able to not only provide reliable forecast results but 

also prediction intervals with a narrow width. 
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Figure 4.5 Prediction interval of the day-ahead electricity price with 90% nominal coverage 

probability in spring 2019. 

 

Figure 4.6 Prediction interval of the day-ahead electricity price with 90% nominal coverage 

probability in summer 2019. 
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Figure 4.7 Prediction interval of the day-ahead electricity price with 90% nominal coverage 

probability in fall 2019. 

 

Figure 4.8 Prediction interval of the day-ahead electricity price with 90% nominal coverage 

probability in winter 2019. 

4.3.2 Proposed and Neural Network Forecasts Comparison 

To further evaluate our method, we compare the prediction intervals derived from our 

method with the forecast results predicted by using the neural network (NN) approach with 

bootstrap strategy. The reasons to choose the neural network method as another benchmark are 

two-fold. The first reason is that both our proposed method and the neural network method are 
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able to learn non-linear relationship within price data. Besides, by adopting the bootstrap 

strategy, the neural network method is also a type of non-parametric method to generate 

prediction intervals without assuming price data distribution in advance. However, the difference 

between our proposed method and the neural network method is that we take prediction interval 

sharpness requirement into consideration. The detailed statistics related to the prediction 

intervals are provided in Table 4.2.   

To give a comprehensive comparison, we evaluate the forecast results from the reliability 

and sharpness perspectives. From Table 4.2, as the ACE value of the proposed method is less 

than 5% whereas the ACE value of the neural network are around 10%, we can tell that the 

coverage of prediction interval derived from our proposed method are closer to the pre-defined 

requirement than results predicted by using the neural network method. From sharpness 

perspective, from Table 4.2, we can tell that the prediction intervals of our proposed method are 

tighter the neural network in each season. Another interesting observation is that, by comparing 

the PIAW values from Table 4.1 and 4.2, we can tell that although the prediction intervals of 

neural network are wider than our proposed method, their width is still narrower than forecast 

results of the ARIMA method. This results further demonstrate the benefits of non-parametric 

method. 

Table 4.2 Prediction intervals comparison between proposed method and neural network 

method 

Season 
PICP (%) ACE (%) PIAW ($/MWh) 

Proposed ARIMA Proposed ARIMA Proposed ARIMA 

Winter 90.42 85 0.42 5.00 11.75 18.91 

Spring 90.53 77.46 0.53 -12.54 9.29 10.01 

Summer 93.23 75.91 3.23 -14.09 9.09 10.28 

fall 92.71 79.38 2.71 -10.62 15.62 15.72 
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4.3.3 Overall Comparison 

To demonstrate the versatility of the proposed method, we provide more detailed forecast 

results related to the PJM market including the prediction intervals with 95% and 99% nominal 

coverage probability. Besides, we also test our method using data from electricity markets, such 

as the Australian Energy Market (AEM) and Independent Electricity System Operator (IESO) in 

Canada, and compare our prediction results with references [5] and [38].  

For the PJM electricity market, from Tables 4.3, the proposed forecast method provides 

reliable results as the prediction interval coverages measured by PICP of the proposed method 

are close to the nominal coverage probability. And all of the prediction interval forecast 

deviations measure by the absolute ACE are smaller than 3% where the largest ACE values of 

the 95% and 99% nominal coverage are 2.58% and 1.21%, respectively. Besides, by comparing 

the 95% and 99% PIAW values, it shows that although prediction interval coverage increases to 

accommodate more extreme prices, the width of prediction interval does not increase 

dramatically. For instance, the PIAW of confidence level 95% and 99% are 10.86$/MWh and 

15.11$/MWh in winter.  

Table 4.3 PJM prediction intervals with 95% and 99% nominal coverage probability 

Season 
PICP (%) ACE (%) PIAW ($/MWh) 

PI 95 PI 99 PI 95 PI 99 PI 95 PI 99 

Winter 92.92 98.13 -2.08 -0.87 10.86 15.11 

Spring 92.99 98.86 -2.01 -0.13 10.20 15.65 

Summer 96.48 97.79 1.48 -1.21 11.41 15.40 

fall 97.58 99.46 2.58 0.46 20.59 32.35 

The prediction results related to the Australia electricity market AEMO are shown in 

Table 4.4 and 4.5 that related to 90% and 99% prediction interval forecasts, respectively. Note 
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that four seasons in Australia are winter (June–August), spring (September–November), summer 

(December–February), and autumn (March–May). From Table 4.4 and 4.5, we can tell that 

prediction interval proposed by the proposed are also close to the nominal coverage probability. 

And compared with PICP values from the reference, the proposed method normally will provide 

reliable results. Besides, by comparing the PIAW values, we can tell that our forecast results 

avoid quantile crossing situation as the width of prediction interval is increasing with respect to 

the probability coverage increase. For example, the PIAW of confidence level 90% and 99% are 

34.53$/MWh and 62.59$/MWh in spring. 

Table 4.4 AEMO 90% prediction intervals comparison 

Season 
PICP (%) ACE (%) PIAW ($/MWh) 

Proposed Ref [5] Proposed Ref [5] Proposed 

Winter 89.97 89.88 -0.03 -0.12 19.55 

Spring 90.14 92.36 0.14 2.26 34.53 

Summer 94.46 89.88 4.64 -0.12 39.81 

fall 90.47 89.29 0.47 -0.71 46.78 

Table 4.5 AEMO 99% prediction intervals comparison 

Season 
PICP (%) ACE (%) PIAW ($/MWh) 

Proposed Ref [5] Proposed Ref [5] Proposed 

Winter 99.24 97.92 0.24 -1.08 49.03 

Spring 98.95 97.32 -0.05 -1.68 62.59 

Summer 98.86 97.62 -0.14 -1.38 218.89 

fall 98.81 98.21 -0.19 -0.79 115.2 

Table 4.6 IESO 90% prediction intervals comparison 

Season 
PICP (%) ACE (%) PIAW ($/MWh) 

Proposed Ref [38] Proposed Ref [38] Proposed Ref [38] 

Winter 92.95 90.48 2.95 0.48 16.47 37.92 

Spring 91.11 92.26 1.11 2.26 26.45 54.85 

Summer 87.77 88.10 -2.23 -1.90 27.48 8.45 

fall 90.10 93.45 0.10 3.45 20.80 42.70 
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Table 4.6 shows 90% prediction interval forecasts of the Ontario electricity markets 

IESO where the Ontario electricity market has some of most volatile prices in North America 

[59]. From Table 4.6, we can tell that the volatile of electricity price does have impact on 

prediction interval forecast. Some of the ACE values of 90% nominal coverage forecasts are 

more than 1% in the PJM or AEMO markets while most of ACE are more than 1% in the IESO 

market. Compared with the reference, although the electricity prices are very volatile, the 

proposed method could provide reliability results while ensure sharpness requirements that most 

of the interval widths of the proposed method are narrow than the reference results.  

4.4 Conclusions 

As uncertainty is inevitable in electricity price forecasts, power market participants often 

use probabilistic forecasts to quantify the uncertainty. Although wide prediction interval could 

reach a high reliability level, due to overlook sharpness, market participants are prone to make 

costly and conservative decisions. 

In this section, we propose an optimal electricity price prediction interval method that 

considers both reliability and sharpness. In order to ensure that nonlinear relationships between 

the predictor and the target variable are identified, the extreme learning machine method is 

adopted. Besides, the upper and lower bound of the prediction interval is derived from quantile 

regressions without assuming electricity price distribution. 
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CHAPTER V 

PRELIMINARY CONCLUSION AND FUTURE WORK  

As all market participants require electricity price forecasts to hedge risks, reduce cost, 

and make profits, therefore, the more accurate predictions they can get, the better decisions they 

will derive. According to literature reviews and numerical results, for point forecast, by 

analyzing price data within frequency domain and utilizing the frequencies information, we 

could get accurate price forecast results under different circumstances. Besides, the price spike 

oversampling method can resolve the spike forecast difficulties caused by real data shortage. 

And for probabilistic forecast, to improve prediction results quality, the optimal prediction 

interval method not only considers the reliability requirement but also considers the sharpness 

criterion. To avoid the influence of error-prone price distribution assumption, we adopt the 

quantile regression in our study. Besides, the ELM method is adopted in our method to capture 

the nonlinear relationships within price data and ensure our method versatility.  

Based on the study and results shown in this proposal, we are going to conduct the 

following work in the near future. Forecast combination is a widely used as method to improve 

point forecast accuracy. However, this concept has not been formally exploited in the 

probabilistic forecasts. To further improve forecast quality, we are planning to develop an 

optimal combination of electricity price probabilistic forecasts technique that further improve the 

quality of prediction interval forecasts. And to ensure the ability of the proposed method to work 

under different circumstances, we are going to use the proposed method to forecast electricity 
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prices of different seasons and from different markets. Besides, to show the benefits of our 

method, we also decide to compare our forecast results with the prediction results derived from 

some benchmark methods.  
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