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Nitrogen run-off from agriculture have been linked to human health problems on a global 

level. Large-scale conventional producers struggle to redefine themselves as sustainable because 

reducing nitrogen (N) inputs without justification or validation may lead to severe profit losses. 

Small unmanned aerial systems (sUAS) sensing may allow for decreased N runoff. Failure to 

address this problem will exacerbate already excessive N runoff into the Mississippi River and 

beyond. The purpose of this study was to reduce fertilizer N input using sUAS technology to 

assess crop canopy needs. In 2020 and 2021, variable rate nitrogen (VRN) side-dress N 

application maps were calculated on early corn and cotton crops sensed with MicaSense® 

technology. The SCCCI and FENDVI VIs most often were highly related by SEq to early corn 

and cotton canopy N status. VariRite™ technology was successfully implemented in producer’s 

fields using VI calibrated imagery captured from sUAS. 
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CHAPTER I 

BACKGROUND 

There are over 405 oceanic “Dead Zones” (hypoxic) according to Diaz (2018), and the 

Mississippi River Gulf dead zone covers approximately 15,540- 18,130 sq km (6,000-7,000 sq 

mi) (AP, 2021; Bruckner, 2019). Most dead zones are attributed to agricultural fertilizer nitrogen 

(N) runoff leading to aquatic deoxygenation. Fertilizer N overapplication can also contribute to 

health conditions such as “Blue Baby Syndrome” (Knobeloch et al., 2000). Methemoglobinemia 

is a form of Blue Baby Syndrome caused by nitrate (NO3-) polluted drinking water. The nitrates 

in the water convert to nitrites and form methemoglobin in the bloodstream of infants 

(Christiano, 2017). Methemoglobin’s inability to bind oxygen in the infant’s blood stream 

creates oxygen deficiency and results in a blue tint in their skin color. Increasing N use 

efficiency in crop production systems may aid in reducing N in potable water. 

Inefficient N use is a contributor to the pollution of major worldwide waterways (Kanter, 

2019). In 2015, the U.S. applied 10.79 Tg (11.9 tn) of fertilizer N (Mosheim, 2019). The goal of 

reducing N fertilizer usage necessitates determining the optimal N rate for crops such as corn 

(Zea mays L.) and cotton (Gossypium hirsutum L.) against environmental challenges. In 

Mississippi, corn and cotton producers, being the primary consumer of commercial N fertilizer, 

planted 267,093 ha (660,000 ac) and 287,327 ha (710,000 ac), respectively (USDA Quick Stats, 

2019). Corn and cotton have distinctive canopy architecture and related sunlight reflectance 

characteristics that aid in estimating N sidedress requirements through analysis by remote 
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sensing technologies (Baret et al., 2007; Cammarano et al., 2011). Corn and cotton canopy 

reflectance research, and related sustainable N applications, may also be translatable to other 

cropping systems. 

Small Unmanned Aerial Systems (sUAS) missions equipped with MicaSense RedEdge® 

(Seattle, WA) technology may support estimating canopy N status in corn and cotton (Xu et al., 

2019). From sUAS sensing missions, variable rate nitrogen (VRN) prescriptions may be 

estimated through quantitative calculation and delivered to the crop in need via fertilizer 

applicator at the most critical growth stages. Variable rate N prescription may aid producers in 

applying appropriate N fertilizer rates, thus lowering the whole-season fertilizer load. Reducing 

N fertilizer and maintaining optimal yields may also increase nitrogen use efficiency (NUE).  

Failure to address farm N use may exacerbate already excessive N runoff into the 

waterways, may decrease yield and reduce producers’ net profit. Excessive N fertilization is not 

sustainable as it leads to contaminated runoff and decreased profitability in southern states 

(Erisman et al., 2013). Persistent overapplication of N fertilizer will result in increased 

environmental perturbations. The current generation of farm producers are charged with the 

challenge of reducing inputs while producing sustainable outcomes (Green, 2019). The challenge 

calls for a revolution in new agricultural technology that will increase sustainability while also 

promote increasing yields. Increasing N and other nutrient efficiencies is the next step in finding 

solutions to long ignored problems in agriculture.  

 Purpose of Study 

The overarching goal of this study is aimed at reducing fertilizer nitrogen (N) inputs 

through employment of technologies that may increase sustainability and, simultaneously, reduce 

environmental pollution related to fertilizer N use. The purpose of this study was to compare 
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techniques to aid in estimating early crop N status for supplementary, but reduced, fertilizer N 

sidedress applications at varying rates in corn and cotton. Commercial off-the-shelf aerial 

technology and sensors will be compared for their efficiency in estimating early N status.  

Study Hypotheses 

The first study hypothesis is that research conducted using a sUAS equipped with a 

multispectral sensor (visible-near infrared) will accurately estimate early corn and cotton crop 

leaf N percentage and aid in improving NUE through the production and employment of VRN 

sidedress maps.  

The second study hypothesis is based on limited studies defining distinct differences 

between fixed-wing and quad-copter technologies. Based on induction, this study hypothesizes 

that fixed-wing may provide imaging data returns with higher efficacy due to factors such as 

speed and power consumption.  

Study Objectives 

For this study, the research objectives are: 

1. Compare unmanned, fixed-wing flight technology to quad-copter to establish 

which system estimates early crop canopy N status most effectively 

2. Evaluate five different VIs for estimating early corn and cotton canopy N status 

3. Demonstrate a sensor-based VRN technology in a producer’s field using VI 

calibrated imagery captured on unmanned flight systems 

 

Expected Outcomes 

The expected outcome of this study was improved fertilizer N distribution through 

prescription VRN mapping, which simultaneously supports both an increased NUE and crop 
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production sustainability. Moreover, it was expected that this study will demonstrate benefits of 

fixed-wing flight platforms as an alternative to conventional quad-copter platforms for overall 

sensing mission success.  

Study Limitations 

This study is limited to the 2020-2021 growing seasons for corn and cotton in Mississippi 

and (potentially) Louisiana Mississippi River Alluvium. Field operations (planting, fertilizing, 

harvesting) and sensing missions are highly dependent on weather. The sensing missions flown 

by sUAS will include two flight platforms that have flight distance limitations related to power 

supply systems. The study methods are limited to applications that are utile by farmers and farm 

service providers and cost less than a total of $10,000. This study also faced a flight platform 

limitation during year one due to a contractor failure.  
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CHAPTER II 

LITERATURE REVIEW 

Overview of Remote Sensing in Agriculture 

Remote sensing and aerial imagery predate to the mid-19th century when hot air balloons 

equipped with large and cumbersome cameras were used to capture a bird’s eye view from 

moderately low altitudes (Byrum, 2017). Military became dependent on aerial imagery during 

war time to help strategically plan attacks on the enemy. Remote sensing gained momentum in 

agriculture when the United States Department of Agriculture (USDA) began working with the 

National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and 

Space Administration (NASA) on the large area crop inventory experiment in 1974 (Moore, 

1981). The collaboration led to the launch of the AgRISTARS project in 1978 that assessed the 

future course of remote sensing in agriculture. 

Along with the AgRISTARS program, the launching of earth observation satellites (EOS) 

into orbit also sparked interest for technological solutions within the agricultural community 

(Jarman and Dimmock, 2018). There are currently 4,550 satellites in operation with the majority 

being communication satellites (UCS, 2021; Chaturvedi, 2019). The ability to view data returns 

from satellites in the 1970’s and 1980’s gave farmers the opportunity to make management 

decisions from imagery for the first time. Once data for decision making filtered into agriculture, 

precision farming technologies were founded (Igor, 2017). Remote sensing technology allowed 

farmers to manage large land area on an acre-by-acre basis.  
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History of Agricultural Flight Systems for Sensing Missions 

Low-orbiting satellites have collected data returns for agricultural purposes for the past 

six decades (Igor, 2017). Earth observing satellites (EOS) fly at approximately 708 km (438 mi) 

altitude and produce images with approximately 30 m (98ft) spatial resolution (Jarman and 

Dimmock, 2018). A common type of satellite used for agricultural data collection is the EOS, 

which typically circumnavigate the globe daily at 705 km altitude. Communication satellites in 

moderately high orbit and Global Positioning System (GPS) in high orbit also provide valuable 

services to precision agriculture.  

While satellites still play a role in agricultural data collection, Small Unmanned Aerial 

systems (sUAS) provide a customizable technology to precision agriculture at much higher 

spatial and temporal resolutions (Tsouros et al., 2019). Colomina and Molina (2014) highlight 

the rapid growth of sUAS used for photogrammetry and remote sensing. The sUAS market was 

evaluated at $1.19 billion in 2018, and is predicted to reach $6.52 billion by 2026 (Watson, 

2019). Originally, sUAS were primarily used for observational aerial imagery; but have recently 

shifted the focus to developing artificial intelligence (AI) autonomous applications. Although AI 

is a rapidly emerging technology, there is a need to increase efficacy of image-based flight 

systems in terms of speed and endurance (Tsouros et al., 2019). Fixed-wing flight platforms are 

the most efficient in terms of speed, but further testing to discover the most efficient system 

encompassing all necessary parameters is needed. 

Modern Agricultural Sensors 

Agricultural flight systems have evolved to carry a wide range of optical sensors 

including multispectral sensors, time-of-flight sensors, and others (Khot, 2017). When utilizing 

optical sensors, researchers must consider the sensor capabilities necessitated by their specific 
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research. Radiometric resolution is defined by the amount of information contained within a 

pixel; known as a single binary computer data value, or bit (Ose, 2016). Sensor sensitivity is 

directly related to a sensor’s radiometric resolution. For example, a sensor with a finer 

radiometric resolution will produce high intensity returns with a broader range of digital number 

values directly related to the computational bit range. 

 The MicaSense RedEdge® (Seattle, WA), can produce images in 12- or 16-bit format 

(MicaSense, 2019). A 12-bit sensor produces image grayscale pixel values ranging from 0-4,096 

(black to white, respectively) while a 16-bit image range spans 0-65,535. Also directly related to 

the radiometric resolution, spatial resolution is a critical consideration when choosing a sensor 

for flight operations. 

 A sensor’s spatial resolution is determined by the measure of the smallest object detected 

by the sensor measured in ground sample distance (GSD) or pixel size (Leslie, 2018). MicaSense 

sensors have a GSD of 8 cm per pixel at 121 m (394 ft) above ground level (AGL). Another 

consideration when choosing a sensor is the desired, spectral resolution. Spectral resolution is 

defined as the number and width of the spectral bands within a sensor system. The MicaSense 

sensor captures five bands including blue (λ475 nm center, 20 nm bandwidth), green (λ 560 nm 

center, 20 nm bandwidth), red (λ 668 nm center, 10 nm bandwidth), red edge (λ 717 nm center, 

10 nm bandwidth), and near-infrared (NIR) (λ 840 nm center, 40 nm bandwidth). The remaining 

resolution parameter, temporal resolution, is defined as the time necessary for a sensor to revisit 

the same spot on the earth’s surface, or the revisit interval. Temporal resolution is primarily only 

measured on orbiting satellites.  

Sensor function is classified as either passive or active (Mai, 2015). Active sensors rely 

on an external electromagnetic energy source, while passive sensors sample reflected, emitted, or 
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thermal electromagnetic energy during sensing operations. Agricultural sensors flown on sUAS, 

such as MicaSense RedEdge, are typically passive and sample reflected, radiant light.  

Flight Sensing Platforms in Agriculture 

Quad-copter flight systems are the most deployed platform in precision agriculture 

(Dukowitz, 2019). Multirotor aircraft may also be configured with five, six, and eight rotor-blade 

options. Quad-copters are ideal for sensing due to their stability, maneuverability, ability to 

hover, and vertical takeoff and landing (Herrick, 2017). Fixed-wing flight platforms are 

impacting precision agriculture due to their long endurance and faster flight speeds (Yinka-Banjo 

and Ajayi, 2019). Although fixed-wing platforms fly faster than quad-copter, increased speed 

may lead to distortion in data. 

Flight Parameters  

Quad-copter technology limitations include slower flight speed and less flight endurance, 

thus covering less land during sensing missions (Khot, 2016). While quad-copter is most 

common, fixed-wing flight systems may prove to be more efficient. Fixed-wing flight systems 

provide advantages such as faster flight speeds, and longer flight duration. Disadvantages of 

fixed-wing systems may include image blurriness related to speed distortion, inability to hover in 

place, and require a large area to make aerial turns and, finally, land. Fixed-wing platforms can 

cover an area in half of the time of quad-copter flight systems and may result in higher efficiency 

and a more productive sensing mission.  

Sensor Efficacy for Fixed-Wing vs. Quad-Copter 

Whether data clarity will be compromised on the fixed-wing platform due to increased 

speed is not clearly understood. According to Boon et al. (2017), fixed-wing flight data did 
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possess a decrease in data quality, but was satisfactory for the intended purpose. While fixed-

wing data was considered utile, quad-copter data was preferred. Image overlap was constant for 

both platforms with 80 percent forward overlap and 60 percent side overlap. Although Moran et 

al. (2003) did not analyze data clarity, the quad-copter flight platform was found to follow 

waypoints closer than fixed-wing which may lead to higher data accuracy for precise points. 

Estimating Early Corn and Cotton Canopy N Status 

Corn Cultivation 

Corn has a rich history predating back 9,000 years to the Balsas River Valley in Mexico 

(Katz, 2018). The origin of corn begins with the domestication of the grass teosinte (genus Zea). 

While genetic characteristics of corn and teosinte are very similar, the tough outer casing of 

teosinte was not ideal for human consumption. Ancient settlers selectively bred teosinte for its 

favorable traits that form current day corn.  

Corn is typically planted approximately 5 cm (2 in) deep (Roozeboom and Sindelar, 

2017). The seed requires a minimum soil temperature of 10 oC (50 oF) for germination. 

Emergence timing depends upon soil temperatures. Cooler soil temperatures will result in a later 

emergence date than warmer temperatures. Soil moisture is also required for successful 

germination and emergence. Once the seedling has emerged and began to grow, proper nutrient 

management is essential for a successful corn crop (McConnell, 2018). Nitrogen (N), 

Phosphorous (P), Potassium (K), Sulfur (S), Magnesium (Mg) and Zinc (Zn) are the primary 

nutrients that must be monitored to maintain a healthy corn plant (Larson and Oldham, 2021). 

Corn growth stages are characterized as either vegetative or reproductive. The vegetative 

stages begin with VE at emergence and end at VT which is the tasseling stage. The first stage 

(VE) is characterized by the radicle emerging from the seed coat. After the emergence of the 
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radicle, the mesocotyl will begin to grow inside a protective casing called the coleoptile 

(Roozeboom and Sindelar, 2017). The following vegetative stages are identified by a V followed 

with the number of leaves (Licht, 2021). The V1 stage is noted when the bottom leaf has a collar 

and a rounded tip. During the second stage, known as V2, the second leaf appears with a visible 

collar. The second leaf and all following leaves will have a sharp point at the tip. The plants 

growing point will become visible above ground at V6 and the first leaf will die. The V6 stages 

may be a critical remote sensing sampling stage at which leaf N is highly detectable from low 

altitude missions. Ideal N application time is during the V4-V6 due to plant height restrictions. 

In-ground knife N application requires the plant to be below the toolbar of the implement. 

Nutrient and water requirements will become crucial during the V10 stage. The plant will 

possess multiple shoots that may become successful growing points. The final vegetative growth 

stage is tassel formation known as VT. Vegetative growth will now end and the reproductive 

stage will take over. At VT, it may be possible to estimate final corn crop yield using remote 

sensing technologies.  

 The reproductive stages initiate after the vegetative stages have completed their cycle 

(Roozeboom and Sindelar, 2017). Silking is the first reproductive stage in the corn plant. Silking 

produces reproductive silk strands elongating beginning at the bottom of the cob. Corn silk 

elongation is dependent upon turgor pressure; therefore, dry conditions can postpone silk 

development. Silk strands are responsible for capturing pollen and germinating the ovule from 

which they originate. The second reproductive stage is the kernel blister stage, which occurs 

approximately 11 days after silking. If the plant endures a high amount of weather-related or 

nutritional stress, kernels may be aborted during the kernel blister stage. Kernel milk stage is the 

third reproductive stage that occurs around 18 days after silking. “Milk” is the term used for the 
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white substance that begins to appear within the kernels during the milk stage. Reproductive 

stage four is termed the kernel dough stage. The kernels begin to harden from the milk stage and 

form into a dough type consistency. Kernel moisture is around 70% during the dough stage. 

Kernel dent stage is the fifth stage of reproduction. During the dent stage, a milk line begins to 

appear on the kernels. A dent line is used to determine the amount of “milk” left in the kernels. 

The milk line moves lower and lower on the kernel as the cob grows closer to physiological 

maturity.  

Physiological maturity is the final stage of the reproductive growth cycle. The kernel 

milk line is gone, and a black layer appears on the tip of the kernels. A milk line forms typically 

when the farmer will stop irrigation since the corn has completed its reproductive growth. The 

final stage is harvest maturity when the corn has reached below 25 percent moisture.  

Nitrogen uptake in corn can depend on a number of variable such as environment, soil 

type, N rate, and plant population (Ciampitti and Vyn, 2014). Nutrient replacement 

recommendations should also be monitored and accounted for each year when considering N 

rates. Best nutrient management practices must be implanted using the above-mentioned 

information. 

Corn Production 

The United States (U.S.) ranks first worldwide in corn producing approximately 377.5 Tg 

annually (Nag, 2017). The U.S. is also the leading corn exporter worldwide with $12.9 billion, 

which account for 38% of total worldwide exports, in 2018 (Workman, 2019). The majority of 

corn production in the U.S. comes from the Midwest with Iowa producing 68.5 million Tg (2.7 

bill bu) of corn in 2016 (Cook, 2020). Mississippi produced three million Tg (119 mil bu) in 

2016 ranking twentieth among all fifty states. 
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Markets, Uses, and Distribution 

United States corn production is primarily used for biofuels and animal feed (Foley, 

2013). Biofuel production consumes up to 40% of U.S. corn production while 36% of U.S. corn 

production is used for animal feed. Ethanol is the main biofuel manufactured from corn. 

Approximately 98% of U.S. gasoline contains ethanol thus making ethanol essential in the 

fueling of cars (Lewandrowski and Hohenstein, 2017). Corn is also a main ingredient in animal 

feed due to high protein content (Lardy, 2018). Additional to ethanol and animal feed, corn is a 

large factor in the production of corn meal and other foods (Cellania, 2010). 

Cornmeal is used for various foods including batter, cornbread, pancakes, and donuts. 

Cornmeal is made by grinding whole corn and separating the remnants into different sized 

categories (Lardy, 2018). Starch is also another common product of corn made using the 

endosperm within the corn. The endosperm undergoes grounding and separation to release 

carbohydrates. Corn starch is primarily used to condense liquid food and is also a main 

ingredient in the creation of biodegradable plastics (Cellania, 2010). High-fructose corn syrup, 

often found in soft-drinks, is also a popular by-product of corn processing. Corn is an essential 

crop constituent many products in the U.S. and abroad. 

Cotton Cultivation 

The New World allopolyploid Gossypium hirsutum L., commonly referred to as upland 

cotton, originated in regions of Central and South America (Wendel et al., 2010). The climate of 

Central and South America is ideal for cotton growth due to cotton’s desire for warm conditions 

within the temperature range of 32 to 35 oC (90-95 oF) (Sharpe, 2019). Cotton requires a 

significant amount of sunlight and a soil temperature of at least 16 o C (60 o F) for seed 

germination. After the cotton has emerged, the primary nutrients for cotton are  Nitrogen (N), 
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Phosphorus (P), Potassium (K), and Boron (B) (Stevens, 2019). Secondary nutrients that are 

needed for cotton growth are Calcium (Ca), Magnesium (Mg), and Sulfur (S). 

Ideal depth for cotton seeds at planting is 1.3 to 1.8 cm (0.5 – 0.7 in) deep (Collins, 

2017). All necessary elements for germination, besides water, are encased in the cotton seed 

capsule (Main, 2012). The radical is the first to emerge from the swelling cotton seed. The 

“crook” stage is the period when the hypocotyl is growing towards the soil surface. Crook Stage 

is a crucial stage in the growth period due to the risk of the cotyledons being unable to penetrate 

through the soil surface. After the cotyledons develop successfully, growth of new plant tissues 

is driven by photosynthesis (Dodds et al., 2010). The first true leaf is created by photosynthesis 

drive and the following leaves will repeat the process. Sunlight reception increases directly in 

relation to new growth and the general increase of the overall surface area of the plant (Stewart 

et al., 2010). Carbohydrates are used by the plant to ensure continual growth throughout the 

season. 

Historically, cotton is known as an indeterminate perennial grown as an annual (Dodds et 

al., 2010). The term “indeterminate” signifies the cotton does not have a genetically 

predetermined stopping point for growth. Also, indeterminate suggests the plant is constantly 

adding vegetative growth along with fruit. Plant growth regulators (PGRs) become necessary to 

transfer the excess vegetative growth to fruit formation. Several hormones in a cotton plant 

naturally regulate plant growth (Stevens, 2020). The PGRs currently deployed act with the same 

mode of action as the ones naturally present regulators. 

Auxins, gibberellins, gibberellic acid and cytokinins are examples of hormones in the 

plant that contribute to regulating plant growth. Gibberellins play a role in stem elongation along 

with leaf growth (Stevens, 2020). Increased boll retention was also found associated with 
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gibberellins, but yield responses were inconclusive. Gibberellic acid primarily induces seed 

growth and cell elongation. Cell division and overall plant growth are promoted by cytokinins. A 

decrease in fruit abscission has also been found associated with cytokinins. Photosynthesis is 

also prolonged due to cytokinin delay of leaf aging (Stewart et al., 2010). The primary role of 

auxin is to contribute to leaf expansion, cell and stem elongation, and increased rooting. 

Application of additional auxins may lead to increased boll retention. 

Simultaneously occurring with applications of PGR, a leaf “square,” the first visible leaf 

structure containing the leaf-like bracts, is continually developing throughout the growing 

season. The true square development begins at the pinhead square stage, or at about 30-45 dap 

(Main, 2012). The square continues through match-head square and candle stage. Prior to bloom 

stage is considered optimal for remote sampling of reflectance to develop leaf N status. After 

candle stage, flowering occurs which pollinates to form the boll. It is at the flowering stage that 

most remote sensing imaging missions can begin to estimate crop yield. 

Fifty days is the typical time period required for the boll to open, exposing the cotton 

within it (Stewart et al., 2010). The boll goes through three primary growth phases during the 

fifty-day span including enlargement, filling, and maturation. The enlargement stage is 

characterized by fibers elongating within the boll. Seed volume is maximized and the boll is 

prepared for the filling phase (Stevens, 2019). Secondary wall growth begins during the filling 

face as fiber elongation is terminated. During boll development, external factors such as weather 

can impact fiber quality, strength, and micronaire gradings. Boll maturation is the final stage of 

boll development. Maximum weight and size are achieved during boll maturation stage. 
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Cotton Production 

During 2017, 26.3 billion Tg (120.86 bill bales) of cotton were produced worldwide with 

the majority being grown in India, China, and the United States (Shahbandeh, 2018). The United 

States alone produced 4.5 million Tg (20.9 mil bales) of the 26.3 billion Tg (120.86 bill bales) 

worldwide. Most cotton growth in the United States is based in the southern portion of the states. 

Cotton is the fourth largest agricultural product produced in Mississippi. In the year 2018, the 

Mississippi cotton market was valued at $623 million (USDA Quick Stats, 2019). 

Markets, Uses, and Distribution  

Cotton is traded globally in raw and finished products (Meyer, 2019). The United States 

plays a large role in the worldwide cotton market as the world’s leading cotton exporter 

supplying over one third of world cotton exports. Cotton has a variety of uses ranging from 

clothing to oil (Worcester, 2017). Cotton is desirable for clothing production due to its comfort 

ability to absorb and release moisture quickly. Lint from cotton is classified into three separate 

groups to determine usage. 

Fine lint, the first group which consists of primarily Pima cotton, is used for making 

stockings, yarn, and other fine fabrics (Weigmann, 2020). American upland cotton, commonly 

found growing in the United States, is classified as medium staple and is used for ring spinning 

in combed and carded yarn production (Chen et al., 2005). The final group, short staple, is used 

to produce carpets, blankets, and other inexpensive fabrics. While fiber is one part of cotton mill 

produce, oil and meal are also important products that come from cotton (Wickison, 2019). 

Cotton seed oil is produced by extracting the oil from the seed within a cotton seed plant. 

Once in oil form, the product can be used for cooking, biodiesel, or as a natural pesticide (Chen 

et al., 2005). Along with the oil from cotton seed, meal is also a product from the cotton seed 
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mill (Wickison, 2019). Cotton seed meal is used for cattle feed alone. Due to the toxicity of 

gossypol, a chemical compound found in cotton seed meal, the meal can only be consumed and 

digested by ruminants. Gossypol has been used as an experimental contraception in male and 

female humans. Cotton has a variety of uses and is an important crop in worldwide agriculture. 

Slope-, Distance -, and Orthogonal- based Indices 

Three common types of vegetation indices (VI) used are slope, distance, and orthogonal 

based indices. Slope-based indices use a combination of red and near infrared (NIR) bands to 

formulate indices. One of the first slope-based VIs was the Ratio Vegetation Index (RATIO) 

(Birth and McVey, 1968). While RATIO was one of the earliest indices, normalized difference 

vegetation index (NDVI) (Rouse, 1974) is the most commonly used VI due to little topographic 

effects and ability to produce a linear measurement scale (Glenn et al., 2011). The Normalized 

Ratio Vegetation Index (NRVI) (Baret and Guyot, 1991) is a normalized version of the Ratio 

Vegetation Index (RVI) (Richardson and Wiegand, 1977), the inverse of RATIO, similar to the 

normalization of NDVI. Slope-based VIs are the basis for the majority of agricultural sensing 

indices. 

Distance-based vegetation indices originated from the Perpendicular Vegetation Index 

(PVI) (Richardson and Wiegand, 1977). The goal of distance-based VIs is to remove the soil 

brightness factor where vegetation is scarce. The Ashburn Vegetation Index (AVI) (Ashburn, 

1979) is a distance-based VI focused around measuring green growing vegetation. The most 

efficient distance-based VI is the Weighted Difference Vegetation Index (WDVI) (Clevers, 

1988; Richardson and Wiegand, 1977), which is calculated by weighting the red band with soil 

slope line. 
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Orthogonal-based VIs are calculated by using the spectral bands to create a group of 

uncorrelated bands. Principal Components Analysis (PCA) is an orthogonal-based method that 

produces a group of uncorrelated images ordered by the variation within the original set of 

images. There is wide array of vegetation indices to choose from for each unique sensing mission 

in agriculture. 

Overview of Remote Sensing N Status Sensing in Crops 

Corn Sensing Methods 

Several studies of N sensing in corn use a variety of sensing platforms to perform 

research. Paiao, (2018) conducted a N in corn study using SPAD (Spectrum Technologies, 

Aurora, IL), GreenSeeker 505 (Trimble, Sunnyvale, Ca), and RapidSCAN CS-45 (Holland 

Scientific, Lincoln, Ne) platforms. The goal of this study was to determine the best sensing and 

application time for N in corn. Among the VIs tested, Normalized Difference Red-Edge (NDRE) 

(Barnes et al., 2000) was found to have the most accurate prediction of grain yield and N 

requirements compared to NDVI. The SPAD readings were found to have a high level of 

accuracy but lacked full-scale N predictive capabilities. 

Near-term, handheld, and tractor based sensors were tested during a study by Samborski 

et al., (2009). A well-fertilized reference plot, a no N reference plot, and relative yield were used 

to mitigate factors other than N than caused results to be biased. Sensor improvements such as 

footprint, and band availability are needed in near-term sensing. Needed is an algorithm that 

would be applicable in various soil and weather scenarios. 

 A study conducted by Corti et al., (2019) utilized small unmanned aerial systems (sUAS) 

to sense N status in corn. The UAS used for this study was an octocopter equipped with a Global 

Navigation Satellite System (GNSS) NEO-M8 N and a Canon® Powershot SX260 HS (Melville, 
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New York) camera converted to a color infrared (CIR) camera. The VIs used in this study were 

NDVI, Green normalized difference vegetation index (GNDVI) (Gitelson, 2004), Blue 

normalized difference vegetation index (BNDVI) (Yang et al., 2007), and calculated ground 

cover (GC). The results indicated GNDVI as most accurate index from this study with a R2 value 

of 0.7 and a root mean square error (RMSE) of less than 25 percent. 

Cotton Sensing Methods 

Raper et al., (2013) led a study in cotton utilizing Yara N Sensor (Yara International 

ASA, Oslo, Norway), GreenSeeker (GS) Model 505 Optical Sensor Unit (NTech Industries, Inc., 

Ukiah, CA) and Crop Circle (CC) Model ACS-210 (Holland Scientific, Inc., Lincoln, NE). 

Cotton leaf N status was not successfully predicted through sensing methods, yet NDVI showed 

a strong relationship with plant height. Needed is a vegetation index that is not strongly related to 

plant height to increase accuracy of N sensing. The different sensors within the study produced 

inconsistent canopy reflectance-based NDVI values. 

Utilizing remote sensing to determine N status in cotton has become popular in recent 

years. In 2017, Ballester et al., (2017) performed a study to test N status sensing and lint yield 

prediction using sUAS. The sUAS platform used was a Dà-Jiāng Innovations (DJI) Inspire® 

(Shenzhen, China) equipped with a MicaSense RedEdge multispectral sensor. The VIs employed 

were NDVI, NDRE, Simplified Canopy Chlorophyll Content Index (SCCCI), the Transformed 

Chlorophyll Absorption Reflectance Index normalized by the optimized soil adjusted vegetation 

index (TCARI/OSAVI), and the visible-band indices Triangular Greenness Index (TGI) and 

Visible Atmospherically Resistant Index (VARI). The results concluded that SCCCI had the 

highest coefficient of determination, making it the most accurate VI tested. 
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Chen, (2019) conducted a similar study utilizing sUAS to predict N status in cotton. The 

sensing platform used was a quadcopter, 3DR Solo, equipped with a MicaSense RedEdge 

multispectral sensor. This study tested nine different VIs including NDVI, GNDVI, Modified 

Soil-adjusted Vegetation Index (MSAVI) (Qi et al., 1994), Optimized Soil-adjusted Vegetation 

Index (OSAVI) (Rondeaux et al., 1996), Enhanced Vegetation Index (EVI) (Huete et al. 1994), 

Triangular Vegetation Index (TVI) (Broge and Leblanc, 2001), Modified Triangular Vegetation 

Index 2 (MTVI2) (Haboudane et al., 2004),  RVI, and NDRE. Including all VIs evaluated, RVI 

proved to have the highest accuracy for predicting N status. 

Selected Study Vegetation Indices 

Normalized Difference Vegetation Index 

Normalized Difference Vegetation Index (NDVI) was derived by Dr. John Rouse of 

Texas A&M University in 1973 (Tu, 2002). The establishment of NDVI revolutionized the way 

remote sensing analyst detect live green plant canopies and is calculated by (Equation 2.1). 

 

(𝑁𝐷𝑉𝐼 =
(𝑅840 − 𝑅650)

(𝑅840 + 𝑅650)
 ) (2.1) 

 

  

(Rouse et al., 1973)  

The NDVI index has become the most well known in agriculture. Along with detecting 

live green plant canopies, NDVI is also used to quantify photosynthetic capacity of plants. 

Shaver et al. (2011) found NDVI to be the most efficient vegetation index for estimating N 

content. 
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Normalized Difference Red Edge 

Barnes et al. (2000) founded Normalized Difference Red Edge Index (NDRE) during a 

study to assess crop water stress, N status, and canopy density. While NDVI uses a combination 

of visual red and near-infrared (NIR) light, NDRE combines NIR and a transitional region 

between red and NIR known as red edge Equation number (Equation 2.2). 

 

(𝑁𝐷𝑅𝐸 =
(𝑅780 − 𝑅720)

(𝑅780 + 𝑅720)
 ) 

(Barnes et al., 2000; Varco et al., 2013; Taipale, 2019)  (2.2) 

 

  

Due to the substitution of Red edge for red light band, NDRE has the ability to penetrate 

further into the canopy for permanent or later stage crops. Rodriguez et al. (2006) found that 

NDRE, along with NDVI, was efficient at detection N stress. 

Simplified Canopy Chlorophyll Content Index 

Barnes et al. (2000) originally formulated the equation for Simplified Canopy 

Chlorophyll Content Index (SCCCI) followed up by further analysis by Varco et al., (2013). The 

SCCCI index is calculated by dividing NDVI into NDRE (Equation 2.3). 

 

(𝑆𝐶𝐶𝐶𝐼 =
𝑁𝐷𝑅𝐸

𝑁𝐷𝑉𝐼
) 

(Barnes et al., 2000; Varco et al., 2013; Raper and Varco, 2014) (2.3) 

 

  

Among all indices tested by Ballester et al. (2017), SCCCI had the highest coefficient of 

determination for determining N status in plants. 
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Early Nitrogen Detection Vegetation Index 

Early Nitrogen Detection Vegetation Index [(ENDVI) Fox, 2015] is a N specific index 

calculated by Dr. Amelia Fox of Mississippi State University. The SCCCI index, proposed by 

Varco et al., (2013), is divided into a transformed green bandwidth (R550) shown in (Equation 

2.4) and taken in the inverse. During Fox’s research, ENDVI was theoretically derived from 

spectroradiometer sampling at 10 nm intervals from 350-940 nm.  

 

(𝐸𝑁𝐷𝑉𝐼 = − ( 
𝑅550.003

𝑆𝐶𝐶𝐶𝐼
)) 

(Fox, 2015) 
(2.4) 

 

  

The goal of ENDVI was to provide additional means of estimating N levels in crops. 

During Fox’s study, ENDVI performed similar to SCCCI proving a high level of accuracy. For 

clarification, Fox’s ENDVI will be referred to as FENDVI for this research. 

Green Normalized Difference Vegetation Index 

Gitelson et al. (1996) discovered Green Normalized Difference Vegetation Index 

(GNDVI) by incorporating the green band into the NDVI and removing the red band (Equation 

2.5). 

(𝐺𝑁𝐷𝑉𝐼 =
(𝑅840 − 𝑅550)

(𝑅840 + 𝑅550)
 ) 

(Gitelson et al., 1996) (2.5) 

The GNDVI index was found to be more sensitive to chlorophyll content than the NDVI. 

Schmidt et al. (2009) found GNDVI may be advantageous for calculating N content for 

construction of prescription N applications. 
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Enhanced Normalized Difference Vegetation Index 

Enhanced Normalized Difference Vegetation Index (ENDVI) was defined by Bulanon et 

al. (2016) during a study on irrigation in agriculture using aerial systems. The equation for 

ENDVI consists of the near infrared (NIR) band, green band, and blue band (Equation 2.6). 

(𝐸𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 + 𝐺 − 2(𝐵)

𝑁𝐼𝑅 + 𝐺 + 2(𝐵)
) 

(Bulanon et al., 2016) (2.6) 

 Bulanon et al. (2016) found that ENDVI performed best among five vegetation indices. 

There is interest in comparing sensitivity equivalence values of ENDVI to SCCCI. For the sake 

of this research, Bulanon’s ENDVI will be referred to as BENDVI. 

Sensitivity Equivalent (SEq) Modeling 

 Viña and Gitelson (2005) linked vegetation index (VI) sensitivity to biophysical 

parameters during a 2005 study. Solari et al. (2008) developed an equation to calculate 

sensitivity equivalents (SEq) using slope of the linear regression of the ANOVA and root mean 

square error created by relating the VI to each biophysical parameter tested (Equation 2.7). 

(𝑆𝐸𝑞 =
𝑠𝑙𝑜𝑝𝑒

𝑅𝑀𝑆𝐸
) 

(Solari et al., 2008; Fox, 2015) (2.7) 

The SEq calculation is a vital tool to compare results amongst indices. Studies suggest 

that SEq may allow for an alternate measure of accuracy between VIs. 
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CHAPTER III 

METHODS AND MATERIALS 

Site Description 

The statistical design for the on-farm study was a randomized complete block. The 

variable rate nitrogen (VRN) treatments were established on 24-row plots with a full fixed-rate 

as a control and two different VRN applications (from two different aircraft imaging missions) as 

treatments. Four replications of the three treatments were established on 9 ha (20 ac) plots. All 

plots in this study included the same statistical design, VRN treatments and replications. 

2020 Corn 

The 2020 corn crop was located in a production plot (-90.989750, 33.873667) in 

Rosedale, MS, USA. The mapped soil series for the 2020 corn plot were identified as 30% 

Dowling clay (Very-fine, smectitic, nonacid, thermic, Vertic Endoaquepts), 46% Dundee silty 

clay loam (Fine-silty, mixed, active, thermic Typic Endoaqualfs), 14% Dundee very fine sandy 

loam, and 10% Dundee-clack silt loam. During the 2019 growing season, the field was leveled 

and hipped. A 116-day Dekalb 66-94 corn hybrid was planted at a population of 84,014 seeds ha-

1 (34,000 seeds ac-1). The plot was furrow irrigated according to grower recommendation. 

Figure 3.1 identifies the research sites. 
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Figure 3.1 Research locations in Mississippi and Louisiana 

Locations are denoted by stars. 

2020 Cotton 

The first 2020 cotton research site was located in a field (-91.200889, 32.847611) in Lake 

Providence, LA, USA. The mapped soil series for the 2020 cotton plot were identified as 50% 

Bruin silt (loam coarse-silty, mixed, superactive, thermic, Oxyaquic Eutrudepts), 35% Newellton 
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complex (Clayey over loamy, smectitic over mixed, superactive, nonacid, thermic, Fluvaquentic 

Epiaquepts), 10% Tunica clay (Clayey over loamy, smectitic over mixed, superactive, nonacid, 

thermic, Vertic Epiaquepts), and 5% Commerce silt (Fine-silty, mixed, superactive, nonacid, 

thermic Fluvaquentic Endoaquepts). An 8.1 ha (20 ac) plot area was situated in the northern end 

of a 16.2 ha (40 ac) field. Upon completion of the 2019 corn harvest, the stalks were shredded, 

and the field was hipper-rolled (hipped and rolled with a combination implement). After hipper-

rolling, a cover crop of cereal rye (Secale cereale), black oats (Avena strigose), crimson clover 

(Trifolium incarnatum), and hairy vetch (Vicia villosa) was planted. During the spring of 2020, 

the cover crop was terminated before planting. A mid to full maturity Deltapine 1646 B2XF was 

planted at a rate of 103,530 seeds ha-1 (41,898 seeds ac-1). An overhead pivot irrigated the plot in 

accordance with grower recommendation. 

The second plot for the 2020 cotton crop was in a field (-91.200972, 32.833028) in Lake 

Providence, LA, USA. The mapped soil series for the 2020 cotton location were identified as 

60% Bruin silt loam (Coarse-silty, mixed, superactive, thermic, Oxyaquic Eutrudepts) and 40% 

Newellton-Tunica complex (Clayey over loamy, smectitic over mixed, superactive, nonacid, 

thermic, Fluvaquentic Epiaquepts). The 8.1 ha (20 ac) study plot was located in the southern 

portion of a 48.6 ha (120 ac) field. After the 2019 cotton crop was harvested, the stalks were 

shredded, and a cover crop was planted consisting of cereal rye, black oats, crimson clover, and 

hairy vetch. During the spring of 2020, the cover crop was terminated, harrowed, and hipped to 

prepare for planting. A mid-maturity Phytogen 440W3FE was planted at 103,660 seeds ha-1 

(41,950 seeds ac-1). The plot was furrow irrigated with poly pipe according to grower 

recommendation. 
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2021 Corn 

The 2021 Corn research plot was grown in a field (-91.200889, 32.847611) in Lake 

Providence, LA, USA. The mapped soil series for the 2021 corn plot were identified as 50% 

Bruin silt loam (Coarse-silty, mixed, superactive, thermic, Oxyaquic Eutrudepts), 35% 

Newellton complex (Clayey over loamy, smectitic over mixed, superactive, nonacid, thermic, 

Fluvaquentic Epiaquepts), and 10% Tunica clay (Clayey over loamy, smectitic over mixed, 

superactive, nonacid, thermic, Vertic Epiaquepts). An 8.1 ha (20 ac) plot area was situated in the 

northern end of a 16.2 ha (40 ac) field. Upon harvest of the 2020 cotton crop, the stalks were 

shredded, and a cover crop of black oat, cereal rye, and Austrian winter pea were planted. During 

the spring of 2020, the cover crop was terminated, harrowed, and hipped to prepare for planting. 

A 116-day Syngenta NK1677 corn hybrid was planted at 78,686 seeds ha-1 (31,843 seeds ac-1). 

The plot was irrigated with an overhead pivot in accordance with grower recommendation. 

2021 Cotton 

The 2021 Cotton research plot was located in a field in Lake Providence (-91.200503, 

32.845759), LA, USA. An 8.1 ha (20 ac) plot was located in the north end of a 31.5 ha (78 ac) 

field. The mapped soil series for the 2021 cotton plot consisted of 26% Bruin silt loam (Coarse-

silty, mixed, superactive, thermic, Oxyaquic Eutrudepts), 71% Commerce silt loam (Fine-silty, 

mixed, superactive, nonacid, thermic Fluvaquentic Endoaquepts), and 3% Newellton-Tunica 

complex (Clayey over loamy, smectitic over mixed, superactive, nonacid, thermic, Fluvaquentic 

Epiaquepts). A mid-maturity DeltaPine 20r734 cotton variety was planted at 103,455 seeds ha-1 

(41,868 seeds ac-1). The plot was furrow irrigated with poly pipe according to grower 

recommendation. 
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Sampling and Nitrogen Treatments 

Soil Sampling  

Prior to planting, soil sample cores were taken in each plot at 0-15 cm (1-6 in) on a 1 ha 

(2.5 ac) grid. Soil samples were sent to Waypoint Analytical (Ridgeland, MS) for S3M package 

testing which includes pH, buffer pH, P, K, Mg, Ca, OM, CEC, percent cation saturation, B, S, 

Fe, Mn, Cu, Zn, and Na. Separate soil sample cores were taken at 0-30 cm (1-12 in) on a 1 ha 

(2.5 ac) grid, and sent to Waypoint Analytical for extractable N testing which includes NO3
- and 

NH4
+. The resulting available soil N map was derived through IDW (Inverse Distance 

Weighting) interpolation, thus aiding in establishing the difference between optimal crop 

performance occurring from the variable rate N application and residual soil N resources. 

Starter Nitrogen Applications 

At corn planting during the 2020 growing season, an initial application of 45 kg ha-1 (40 

lb ac-1) of N was applied using urea (46-0-0). When the corn was at the V1 stage, a second 

application of 53.8 kg ha-1 (48 lb ac-1) of N was knifed in using a blend of diammonium 

phosphate (DAP) (18-46-0) and urea. A third fertilizer N application was a prescribed variable 

rate of liquid UAN 32% (32-0-0) calculated by sUAS sensing data with a low of 114 kg ha-1 (102 

lb ac-1) of fertilizer N to a high of 170 kg ha-1 (152 lb ac-1) of N. The final application was a 

tassel shot of DAP applied by airplane at 45 kg ha-1 (40 lb ac-1) of N. The method used for unit 

conversion was lb ac-1 multiplied by 1.121 resulted in kg ha-1. 

Multiple sources of N were used in this study based on grower recommendations. 

Varying cost of fertilizer sources were noted as the primary reason for multiple sources across 

applications. Soil fertility needs were also a consideration when choosing fertilizer N sources. 

Sources other than UAN 32% can fulfill multiple nutrient needs. 
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The 2021 corn crop received an initial application of DAP at 34 kg ha-1 (30 lb ac-1) of N 

after planting. A second application of liquid UAN 32% was applied at 135 kg ha-1 (120 lb ac-1) 

of N. When the corn was at V8 stage, a prescribed variable rate of liquid UAN 32% was applied 

with a low of 79 kg ha-1 (70 lb ac-1) of fertilizer N and a high of 135 kg ha-1 (120 lb ac-1) of 

fertilizer N. A tassel shot was not applied for the 2021 corn crop. 

Following cotton planting in 2020, an initial application of 90 kg ha-1 (80 lb ac-1) of N 

was spread using a blend of DAP and Urea. The final application of N was a prescribed rate of 

liquid UAN 32% (32-0-0) based on sUAS sensing data. The 2021 cotton crop received the same 

N rates and applications (Table 3.2). 

Table 3.2 Timeline detailing research methods 

Year 1-2020 Year 2 - 2021 Activity 

 

 

March 26 

 

 

March 5 

• Extract soil samples pre plant for 

available soil N and calculate a residual 

soil N map. MSST extraction for total soil 

N. 

• Waypoint Analytical for analysis. 

 

April 17 (corn) March 13 (corn) 
• Plant and apply half rate N; 38in row 12 

row planter; UAN®-32 (32-0-0); Max rate 

= 110-120 lb N/ac cotton and 240 - 280 lb 

N/ac corn depending on soil type. 

May 28 (cotton plot 1) 
 

May 16 (cotton) 
May 11 (cotton plot 2) 

 

 

June 6 (V6) 

 

 

May 1 (V8) 

• Collect Corn leaf N tissue samples and 

ship to Waypoint Analytical. Fly sUAS 

missions with MicaSense® (Seattle, WA) 

and calculate VRN sidedress; 400 ft above 

ground level Quad-copter at 20mph. 

(Additional Quad-copter flights at 10, 15 

and 25mph for measuring SEq of VIs for 

2020 season; no fixed-wing for 2020.) 

June 8 May 8 • Corn VRN application. 
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Table 3.2 (continued) 

Year 1-2020 Year 2 - 2021 Activity 

 

 

July 11  

 

 

July 28 

• Collect Cotton leaf tissue N samples and 

deliver to Waypoint Analytical; Fly sUAS 

missions with MicaSense® (Seattle, WA) 

and calculate VRN sidedress; 400 ft above 

ground level Quad-copter at 20 mph. 

Additional Quad-copter flights at 10, 15 

and 25mph for measuring SEq of VIs.  

 

July 15 June 20 • Cotton VRN application 

 

September 9 

 

August 28 
• Harvest Corn and relate yield to VRN 

prescription (corn harvester = 8-row). 

October 17 October 23 
• Harvest Cotton and relate yield to VRN 

prescription (cotton picker = 6-row). 

 

Post-Harvest 

 

Post-Harvest 

• Calculate available N (residual soil N + 

VRN prescription) and relate to yield; 

SAS 9.4 analysis using LSD (̘̘̘̘α = 0.5) 

PROC GLM. 

--- December • Disseminate Results 

 

Sensing Missions, VRN Treatments, and Leaf N% Sampling 

At early corn and cotton growth stages (V4-V8 and pinhead square, respectively) sUAS 

missions were flown at 121m (400 ft) above ground level with MicaSense RedEdge® (Seattle, 

WA) sensor technology. A quad-copter mission flown at 32 km h-1 (20 mi h-1) was used for 

calculating the VRN application map. 

Upon completion of flight missions, leaf tissue samples (corn most matured collard leaf, 

cotton first matured leaf) were shipped to Waypoint Analytical. Leaf samples allowed for 

relating of leaf N concentration to the VRN map and validation of imaging efficiency. Imaged 

datasets from all missions were processed and calibrated with a SCCCI (Fox, 2015) to estimate 

sensed canopy leaf N percentage. Optimal sensing method was described through a comparison 
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of calibrated imagery to actual, sampled corn canopy leaf N percentage. Within 24 hours after 

the sensing missions, MicaSense imagery datasets from the conventional quad-copter flights 

were used to calculate the variable rate N sidedress prescription. VariRite™ (Mississippi State 

University, MS) geospatial technology was used to generate the prescription N maps. VariRite is 

a proprietary copyrighted remote sensing algorithm used to estimate crop canopy N both off 

nadir and on nadir at distances of 4.6 – 121 m (15-400 ft), respectively. To estimate crop canopy 

N status and create a final, relational side-dress VRN prescription map, crop reflectance was 

sampled at some critical stage that best exemplifies future crop fertilizer N requirements. 

Resultant imagery outputs, created in Pix4D Mapper® (Prilly, Switzerland) and converted to VIs, 

are used to calibrate the remainder N fertilizer rate for the season, which equals the total 

maximum rate (or ‘producer’s preferred maximum rate’). The crop remainder fertilizer N 

balance was estimated by linearly stretching VI values from low to high over a normally 

distributed fertilizer N rate. The VRN rate map was calculated in gallons UAN 32% using 

ArcGIS Desktop software, after which maps were delivered to the equipment operator for 

application in WGS84 projection format. 

Harvest and Aircraft Data Analysis 

Harvest Data Analysis 

Harvested yield data was collected in digital format for relating yield to VRN 

prescription. The yield data aided in determining the efficacy of the VRN mapping operations 

from unmanned systems. Yield data was compared to available N calculation (residual soil N + 

VRN prescription) to find the full N amount used throughout the growing season. 

The unit bu ac-1 was multiplied by 0.0673 to achieve yield in Mt ha-1. 
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Measuring Aircraft Efficiency 

The quad-copter platform used during year one (2020) was a 650 commercial class copter 

with a 10,000 mAh 4S battery capable of 15 minutes sustained flight custom designed by Dennis 

Lott (UASSolutions, Clinton, MS). A MicaSense RedEdge sensor was employed for the 

missions. The quad-copter platform has the capability to fly approximately 40 ha h-1 (100 ac h-1). 

Quad-copter missions [flown at 16 km h-1 (10 mi h-1), 24 km h-1 (15 mi h-1), 32 km h-1 (20 mi h-

1), 40 km h-1 (25 mi h-1)] were used to determine flight data accuracy at multiple speeds. 

Year two (2021) of this study included flight missions with the quad-copter from the year 

one, and a fixed-wing platform. The fixed-wing platform was a custom-built Anaconda designed 

by Kevin Garland at KG Aviation (Oro Valley, AZ). A MicaSense RedEdge was employed 

aboard the Anaconda for data collection. The quad-copter was flown at 32 km h-1 (20 mi h-1), 

and the Anaconda was flown at 64.37 km-1 (40 mi h-1). Sensitivity Equivalents were calculated 

for each VI at both speeds. 

Quad-copter flight in Rosedale, MS (Figure 3.2). 
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Figure 3.2 Parker flying quad-copter at Rosedale, MS research plot  

 

Statistical Analysis of Data Sets 

The statistical analysis of the data sets was performed in SAS® ver 9.4 (SAS Institute, 

Cary, NC). The analysis employed statistical classification methods to relate the factors to the 

outcomes for comparison of data returns. Statistical methods found if there are outliers that exist 

and determine data fitness. The commands “PROC REG” and “PROC GPLOT” in SAS coupled 

with r2 modeling in Microsoft Excel (Microsoft Inc., Redmond, WA) were used to identify 

outliers within the leaf N point data. 

Descriptive statistics were used to describe the different flight speeds. A linear regression 

coupled with Wald approximation was conducted in R® Statistical Software (R Foundation for 

Statistical Computing, Vienna, Austria) to determine the effect of speed on VI value. The 

command “PROC REG” in SAS was used to run a linear regression to determine the sensitivity 
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equivalents (SEq) for all VIs (Table 3.3). Calculations were performed by dividing the slope of 

the equation by the corresponding root-mean-square-error (Raper and Varco, 2014; Solari et al., 

2008; Vina and Gitelson, 2005). When predominant or prevalent VIs were noted from the SEq 

analysis, means separation to determine statistically significant differences between the VIs was 

conducted using Tukey’s studentized range test. 

The PROC REG diagnostics tests (DFFITS and DFBetas) were employed to locate 

influential datasets when relating leaf N to the VIs. Yield was modeled in Microsoft Excel for 

comparison to both variable and fixed N rates. Yield means, as they relate to categorized VRN 

prescription rates, were separated using LSD Means protocol in SAS PROC GLM. 

Table 3.3 details the vegetation indices used in this study. 
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Table 3.3  Vegetation indices employed in this study 

Acronym  Name Algorithm Reference 

NDVI 
Normalized Difference Vegetation 

Index 
(𝑁𝐷𝑉𝐼 =

(𝑅840 − 𝑅650)

(𝑅840 + 𝑅650)
 ) (Rouse et al., 1973) 

NDRE 
Normalized Difference Red Edge 

Index 
(𝑁𝐷𝑅𝐸 =

(𝑅780 − 𝑅720)

(𝑅780 + 𝑅720)
 ) 

(Barnes et al., 2000; 

Varco et al., 2013; 

Taipale, 2019) 

SCCCI 
Simplified Canopy Chlorophyll 

Content Index 
(𝑆𝐶𝐶𝐶𝐼 =

𝑁𝐷𝑅𝐸

𝑁𝐷𝑉𝐼
) 

(Barnes et al., 2000; 

Varco et al., 2013; Raper 

and Varco, 2014) 

FENDVI 
Early Nitrogen Detection 

Vegetation Index 
(𝐹𝐸𝑁𝐷𝑉𝐼 = − ( 

𝑅550.003

𝑆𝐶𝐶𝐶𝐼
)) (Fox, 2015) 

GNDVI 
Green Normalized Difference 

Vegetation Index 
(𝐺𝑁𝐷𝑉𝐼 =

(𝑅840 − 𝑅550)

(𝑅840 + 𝑅550)
 ) 

 

(Gitelson et al., 1996) 

BENDVI 
Enhanced Normalized Difference 

Vegetation Index 
(𝐵𝐸𝑁𝐷𝑉𝐼 =

𝑁𝐼𝑅 + 𝐺 − 2(𝐵)

𝑁𝐼𝑅 + 𝐺 + 2(𝐵)
) 

 

(Bulanon et al. 2016) 
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CHAPTER IV  

RESULTS 

Climate in Rosedale, MS 

2020 Corn Crop 

Average weekly temperature and rainfall for the 2020 corn plot was gathered from the 

USDA-NASS Cleveland, MS station (Table 4.1). The temperature during the growing season 

was slightly lower than normal during the beginning but increased toward the end of the season. 

Rainfall was recorded as sporadic with a high amount during the second half of the growing 

season. Ultimately, the crop was damaged by the high winds and heavy rainfall during the month 

of August. 

Table 4.1 details the weekly average temperatures and precipitation in Cleveland, MS 

during 2020. 
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Table 4.1 Weekly average temperature and precipitation for the 2020 corn crop near 

Cleveland, MS 

           Temperature, oC 
 

Precipitation, mm 

Period 
Weekly     

Average 
DFN 

Weekly 

Average 
DFN 

April 12.5 -1.0 58.58 31.25 

May 22.4 0.1 1.05 -34.62 

June 25.5 -1.6 92.56 62.58 

July 28.6 1.4 28.59 15.78 

August 28.2 1.1 36.84 16.53 

September 23.9 -1.2 88.12 64.32 

October 20.4 3.5 58.17 32.52 

Totals 23.1 0.3 51.98 26.91 

Source: USDA-NASS-MS Crop Progress and Condition Report. 

DFN=Departure from normal based on 1981-2010 average 

Climate in Lake Providence, LA 

2020 Cotton Crop 

Weather conditions for the 2020 Cotton Plots in Lake Providence, LA were obtained 

from the USDA-NASS Eudora, AR reporting location (Table 4.2). The season began with dryer 

than normal conditions that resulted in a slow start for the plots. As the season progressed, the 

precipitation increased with a greater amount of rainfall in the month of September. The 

temperatures were slightly lower than normal for the duration of the growing season. 

Table 4.2 details the weekly average temperatures and precipitation in Eudora, AR during 

2020. 
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Table 4.2 Weekly average temperature and precipitation for the 2020 cotton crop near 

Eudora, AR 

      Temperature, oC 
 

Precipitation, mm 

           Period 
Weekly 

Average 
DFN 

Weekly 

Average 
DFN 

April 17.5 -3.0 17.87 8.01 

May 21.7 -2.9 33.44 -16.58 

June 25.8 -2.1 98.96 75.89 

July 29.4 1.5 3.58 -10.22 

August 27.9 0.6 26.41 7.620 

September 23.9 -0.4 90.58 65.62 

October 19.1 4.9 5.78 -9.85 

Totals 23.6 -0.2 39.52 17.21 

Source: USDA-NASS-MS Crop Progress and Condition Report. 

DFN=Departure from normal based on 1981-2010 average 

2021 Cotton and Corn Crop 

Weather conditions for the 2021 Cotton and Corn crops located in Lake Providence, LA 

were gathered from the USDA-NASS Eudora, AR reporting location (Table 4.3). The Pine Bluff 

and Crossett, AR sites were used when the Eudora, AR location was unavailable. The Eudora 

location data was unavailable from June through October. 

Table 4.3 details the weekly average temperatures and precipitation in Eudora, AR during 

2021. 
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Table 4.3 Weekly average temperature and precipitation for the 2021 corn and cotton crop 

near Eudora, AR 

      Temperature, oC 
 

Precipitation, mm 

           Period 
Weekly 

Average 
DFN 

Weekly 

Average 
DFN 

April 10.3 -6.0 28.78 4.58 

May 19.5 -4.5 28.75 1.87 

June 24.3 -3.1 55.49   41.32 

July 27.3 -1.3 14.78 -4.54 

August 29.1 3.0 7.24 -7.58 

September 22.5 -2.6 8.25 -12.68 

October 20.0 3.0 1.02 -23.25 

Totals 21.8 -1.6 20.61 -0.04 

Source: USDA-NASS-MS Crop Progress and Condition Report. 

DFN=Departure from normal based on 1981-2010 average 

Residual Soil N 

2020 Corn Crop 

Residual Soil N levels for the 2020 corn crop were mapped prior to planting using 

ArcGIS Desktop 10.8.1® software (Esri, Redlands CA) Geostatistical Analyst Inverse Distance 

Weighted interpolation. Soil N levels ranged from 59 to 83 kg ha-1 with high concentration 

existing primarily in the northeast and southwest corners of the field (Figure 4.1). The northwest 

and southeast corners show very low residual N likely due to both corners being low elevation. 
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Figure 4.1 Soil N variability 2020 corn plot prior to planting 

Total area: 8.1 ha (20 ac) 

2020 Cotton Crop  

Residual Soil N levels for the 2020 cotton crop were mapped prior to planting using 

ArcGIS Desktop 10.8.1® Geostatistical Analyst Inverse Distance Weighted interpolation (Figure 

4.2). Soil N levels in the north plot ranged from 65 to 121 kg ha-1 with primarily high 

concentration along the southeast edge. The low N levels depicted in red at the far northwest 

corner was an area of low elevation in the plot. 
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Figure 4.2 Soil N variability in 2020 cotton plot north prior to planting 

Total area: 8.1 ha (20 ac) 

Residual Soil N levels for the 2020 south cotton plot ranged from 74 to 109 kg ha-1 

(Figure 4.3). The majority of the plot consisted of low to mid-range N levels with two distinct 

low N areas. A drainage ditch runs through the red areas where low N levels were detected. 



 

41 

 

Figure 4.3 Soil N variability in 2020 cotton plot south prior to planting 

Total area: 8.1 ha (20 ac) 

2021 Corn Plot 

ArcGIS Desktop 10.8.1® Geostatistical Analyst Inverse Distance Weighted interpolation 

was employed to map the Residual Soil N levels prior to planting for the 2021 corn crop (Figure 

4.4). Soil N levels ranged from 69 to 116 kg ha-1 across the plot. The low N level areas of the 

field were consistent with last year’s results prior to planting the plot. The red area in the 

northwest end continues to be a low elevation area that results in decreased residual N. 
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Figure 4.4 Soil N variability in 2021 corn plot prior to planting 

Total area: 8.1 ha (20 ac) 

2021 Cotton Plot 

ArcGIS Desktop 10.8.1® Geostatistical Analyst Inverse Distance Weighted interpolation 

was employed to map the Residual Soil N levels prior to planting for the 2021 cotton crop 

(Figure 4.5). Soil N levels ranged from 69 to 107 kg ha-1 across the plot. Mid to low residual N 

levels persisted across the plot with few areas of extreme lows. The red area in the east section of 

the field falls along the irrigation pipeline, while the other red area lies in the low elevation area 

of the plot. 
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Figure 4.5 Soil N variability in 2021 cotton plot prior to planting 

Total area: 8.1 ha (20 ac) 

Crop Canopy Data Processing 

2020 Growing Season 

During the year 2020, eight sampling locations were used for soil sampling, leaf 

sampling, and VI comparison and analysis. Using these few locations limited the ability to cull 

out poor data points. For example, sample location five shown below was a known low area of 

the plot, yet the point could not be omitted due to the small number of available locations (Figure 

4.6). The poorly performing data point was also verified with r2 modeling in Microsoft Excel. 

Despite locating the single outlier, it was required to be included in the 2020 data. To reduce 

error, additional sampling points were added to the 2021 research studies. 
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Figure 4.6 2020 cotton plot north sampling locations 

Total area: 8.1 ha (20 ac) 

2021 Growing Season 

Modeling selected sampling points was improved by adding additional sampling sites to 

the 2020 study. Sample population adjustments were made to include 24 total sampling points 

for the 2021 growing season. The increased sample size allowed for determination of outliers 

and removing them accordingly. Outliers were determined by analyzing the plot from an arial 

view and hypothesizing which points may be suspect. The primary areas that suspect points may 

arise are sample points in low elevation, drainage ditches, and along the edge of the plot. Figure 

4.7 details the sampling point scheme and where they fall in the field in relation to field 

topographic features. Sample eleven, which was located in the low end of the plot, was noted 

among possible outliers, and is circled below (Figure 4.7). 
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Figure 4.7 2021 corn plot sampling locations 

Total area: 8.1 ha (20 ac) 

After suspected outliers were identified, r2 modeling was performed to further examine 

the points in question. Leaf N and SPAD were graphed against all VIs to determine if outliers 

were consistent among all VIs. The SCCCI was the standard measure against all other VIs. 

Clearly defined outliers in the chart below were consistent with anomalies in the field described 

previously. Sample point eleven proved to be an outlier in excel graphing as well. Once the 

outliers were consistent amongst both aerial view and Microsoft excel chart, SAS software was 

employed (Figure 4.8). 
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Figure 4.8 2021 corn plot SCCCI graphed against leaf N data in Microsoft Excel 

Sample point 11 is circled in black 

Statistical DFBetas tests were run on all sample points to determine if outliers were 

consistent with the previous outlier selection methods. DFBetas measure the influence of each 

individual point on the entire dataset. If a DFBetas has a high value, then that value is a very 

influential point within the dataset (Mukherjee et al., 1998). High DFBetas values can skew data 

and create undue influence toward an outlier. Any value above two (2.0) is typically rejected in 

DFBetas testing, but the selective number should be adjusted based on sample size. The initial 

limit placed on the dataset was no greater than 0.6. Sample number 11 fell outside of the 

acceptable range, thus, sample 11 being identified as an outlier. Additional samples were 

removed based on a combination of aerial image analysis, r2 modeling, and SAS DFBetas 

analysis (Table B.9). 

 Crop Canopy Sensing to Detect Early N Status 

Results from crop canopy sensing missions, conducted between 2020-21 in corn and 

cotton, are discussed in relationship to flight speed trials, biophysical parameters relating crop 
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canopy N status to imagery outputs, and the fitting of vegetation indices (VIs) to sensitivity 

equivalents (SEqs). Data are presented in tabular format detailing the statistical outcomes that 

comprise the resulting quotient (linear regression slope divided by the root mean square error) 

from relating a biophysical parameter to extracted imagery VIs. It is worth noting the canopy 

sensing missions featured both corn (erectophile) and cotton (planophile) canopy types. 

Variations in canopy reflectance across many other crops may be strategically related to the data 

discussed herein. 

Because of the unique nature of weather and technical events affecting mission quality 

during each year of this study, data will be presented by year instead of by crop. The crop canopy 

section concludes with a synopsis of the general findings and assumptions. 

Speed Effects on VIs 

Until this study, no research was found that tested speed effects on imagery outcomes 

while holding a constant altitude and shutter speed utilizing sUAS. The altitude was held 

constant at 121.9 m (400 ft) due to conventional and efficient sUAS standard operating 

procedures. Additionally, an altitude of 121.9 m produced a resolution of 8 cm pixel-1. The 

shutter speed was held constant in order to reproduce the time constraints that would be present 

during the mission for farmers and farm service providers. Moreover, the shutter speed 

adjustment would increase processing time, thus, delaying data delivery to the N applicator. A 

possible explanation for a decrease in SCCCI value with increased speeds may be due to 

sampling error due to imperfect data in need of georeferencing. Sun angle may also provide 

explanation as to why SCCCI value decreased as speed increased. During each mission, the 

fixed-wing flight was performed before the quad-copter flight, thus, experiencing a different sun 
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angle. A different sun angle results in less brightness of soil albedo which may affect SCCCI 

value.  

Linear regression models were performed in R software to determine the effect that speed 

has on VIs. The first test conducted was to determine the linear regression model of SCCCI as a 

function of leaf N (Figure 4.9).  

 

Figure 4.9 SCCCI as function of leaf N in 2020 corn plot. 

Sensed at 16, 24, 32 and 40 km hr-1 at V6 growth stage. Different colors represent different 

speeds 

Figure 4.9 depicts how SCCCI values reduced as speeds increased. There is a positive 

correlation between SCCCI and leaf N. Effects of leaf N on SCCCI were significant and positive 

only at 24 and 40 km h-1 speeds. 

Table 4.4 details the regression analysis results for the 2020 corn crop. Analysis results 

were shown for all VIs regardless of significance. However, for the remainder of VI vs. speed 

and VI vs. platform analyses, only statistically significant results were included. 
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Table 4.4 Regression analysis output of leaf N and six different vegetation indices (VI) for 

2020 corn plot. 

 Leaf N, % 

VI/Speed 16 24 32 40 

NDVI 

y = 0.269 + 

0.0341x; R2 = 

0.03; P = 0.664 

y = 0.218 + 

0.0498x; R2 = 

0.07; P = 0.513 

y = 0.259 + 

0.0458x; R2 = 0.05; 

P = 0.613 

y = 0.188 + 

0.0476x; R2 = 

0.05; P = 0.588 

GNDVI 

y = 0.385 + 

0.0323x; R2 = 

0.06; P = 0.546 

y = 0.31 + 0.531x; 

R2 = 0.16; P = 

0.329 

y = 0.355 + 0.044x; 

R2 = 0.12; P = 

0.406 

y = 0.009 + 

0.0204x; R2 = 

0.04; P = 0.637 

NDRE 

y = 0.133 + 

0.0309x; R2 = 

0.08; P = 0.504 

y = 0.080 + 

0.0462x; R2 = 

0.17; P = 0.306 

y = 0.0976 + 

0.039x; R2 = 0.10; 

P = 0.437 

y = 0.0461 + 

0.0405x; R2 = 

0.12; P = 0.401 

SCCCI 

y = 0.527 + 

0.0267x; R2 = 

0.34; P = 0.129 

y = 0.47 + 

0.0422x; R2 = 

0.55; P = 0.03 

y = 0.436 + 

0.0347x; R2 = 0.39; 

P = 0.097 

y = 0.361 + 

0.0485x; R2 = 

0.57; P = 0.03 

FENDVI 

y = 0.55 + 

0.0256x; R2 = 

0.30; P = 0.158 

y = 0.51 + 

0.0368x; R2 = 

0.38; P = 0.103 

y = 0.478 + 

0.0249x; 

R2 = 0.23; P = 

0.232 

y = 0.357 + 

0.0543x; R2 = 

0.52; P = 0.043 

BENDVI 

y = 0.451 + 

0.0232x; R2 = 

0.04; P = 0.652 

y = 0.43 - 

0.0414x; R2 = 

0.21; P = 0.257 

y = 0.3 - 0.0111x; 

R2 = 0.01; P = 

0.788 

y = 0.353 - 

0.0199x; R2 = 

0.13; P = 0.388 

Sensed at different speeds (16, 24, 32, and 40 km h-1) at V6 growth stage 

The regression analysis depicted in Table 4.4 suggests that SCCCI and FENDVI have the 

highest coefficient of determination when modeled with LN percentage at speeds of 24 km h-1 

and 40 km h-1 speeds. Moreover, the p-value of both SCCCI and FENDVI at the aforementioned 

speeds were below 0.05, thus, indicating that they are statistically significant.  

Figure 4.10 depicts SCCCI and FENDVI as a function of SPAD across all speeds for the 

2020 corn crop. 
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Figure 4.10 SCCCI (A) and FENDVI (B) as function of SPAD in the 2020 corn plot. 

Sensed at 16, 24, 32 and 40 km hr-1 at V6 growth stage. Different colors represent different 

speeds 

According to Figure 4.10, SCCCI and FENDVI values reduced as speed increased. The 

relationship between SPAD and SCCCI was significant and positive at 16 km h-1, 24 km h-1 and 

32 km h-1. The relationship between SPAD and FENDVI was significant and positive at the 32 

km h-1 speed.  

Results for the 2020 cotton plot north are not depicted due to neither LN nor SPAD 

significantly relating to VIs at all speeds. Table 4.5 depicts the regression analysis output of 

SPAD and six different VIs in the 2020 cotton crop south field. 
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Table 4.5 Regression analysis showing strength of relationship between SPAD readings and 

six different VIs in the 2020 cotton plot south   

 SPAD 

VI/Speed 16 24 32 40 

NDVI 

y = 0.892 + 

0.0001x; R2 = 

0.51; P = 0.046 

y = 0.983 - 

0.001x; R2 = 0.11; 

P = 0.430 

y = 0.716 + 0.004x;  

R2 = 0.63; P = 

0.019 

y = 0.812 + 

0.0024x; R2 = 

0.54; P = 0.037 

GNDVI 

y = 0.778 + 

0.002x; R2 = 0.51; 

P = 0.048 

y = 0.934 - 

0.000x; 

R2 = 0.01; P = 

0.954 

y = 0.579 + 0.004x; 

R2 = 0.57; P = 

0.030 

y = 0.656 + 

0.0038x; R2 = 

0.61; P = 0.022 

NDRE 

y = 0.528 + 

0.0035x; R2 = 

0.45; P = 0.069 

y = 0.761 - 

0.0026x; R2 = 

0.04; P = 0.652 

y = 0.166 + 

0.0078x; R2 = 

0.62; P = 0.652 

y = 0.334 + 

0.00052x; R2 = 

0.62; P = 0.020 

SCCCI 

y = 0.598 + 

0.0026x; R2 = 

0.41; P = 0.088 

y = 0.777 - 

0.0020x; R2 = 0.03 

P = 0.702 

y = 0.297 + 

0.00603x; R2 = 

0.58; P = 0.027 

y = 0.433 + 

0.0041x; R2 = 

0.63; P = 0.013 

FENDVI 

y = 0.594 + 

0.0267x; R2 = 

0.41; P = 0.086 

y = 1.27 + 

0.00397x; R2 = 

0.02; P = 0.710 

y = 0.295 + 

0.00597x; 

R2 = 0.59; P = 

0.026 

y = 0.431 + 

0.00407x; R2 = 

0.63; P = 0.018 

BENDVI 

y = 0.292 + 

0.0279x; R2 = 

0.46; P = 0.063 

y = 0.3 + 0.0552x;  

R2 = 0.04; P = 

0.641 

y = 0.0726 - 

0.0143x; 

R2 = 0.10; P = 

0.449 

y = 0.183 - 

0.0135x; R2 = 

0.53; P = 0.042 

Sensed at four different speeds (16, 24, 32, and 40 km h-1) for cotton crop – south field in 2020. 

Interpretation of results shown in Table 4.5, SCCCI, FENDVI, and NDRE modeled with 

SPAD consistently achieved a high coefficient of determination at a speed of 32 km hr-1. The p-

value of SCCCI and FENDVI modeled with SPAD remained under 0.05 at a speed of 32 km hr-1. 

Figure 4.11 depicts SCCCI and FENDVI as a function of SPAD for the 2020 cotton plot 

south.   
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Figure 4.11 SCCCI (A) and FENDVI (B) as function of SPAD in the 2020 cotton south plot 

Sensed at 16, 24, 32 and 40 km hr-1 at mid-bloom stage in 2020. Different colors represent 

different speeds 

According to figure 4.11, the relationship between SPAD and SCCCI and FENDVI was 

significant and positive at 32 and 40 km h-1. As stated previously, the speed effects on VIs may 

be related to shutter speed settings on the camera. 

For the 2021 corn crop, VIs were not affected by LN with change in flight platform. 

Figure 4.12 depicts NDRE, SCCCI, and FENDVI as a function of SPAD in the 2021 corn plot.   
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Figure 4.12 NDRE (A), SCCCI (B) and FENDVI (C) as function of SPAD in the 2021 corn 

plot. 

Sensed with fixed wing (64 km h-1) and quadcopter (32 km h-1) at V8 growth stage. Different 

colors represent different platforms  

In Figure 4.12, the relationship between SPAD on NDRE, and SCCCI was significant 

and positive. The relationship between SPAD on FENDVI was significant and negative with 

both platforms. 

The 2021 cotton plot data showed that LN and SPAD did not affect the VI value with 

change in flight platform. 

Corn 2020 

In year one of this study, no fixed-wing aircraft was available to accomplish the 

prescribed goal of comparing fixed- to rotor-craft efficiency. Therefore, a quad-copter was 

deployed at four different speeds to develop a preliminary speed-related dataset. 

The corn crop established for this study received a starter-rate fertilizer N treatment of 45 

kg ha-1 (40 lb ac-1) at planting. The 2020 corn canopy N sensing mission was flown on June 6, 

2020. A quad-copter flew four separate flights at speeds of 16 km h-1 (10 mi h-1), 24 km h-1 (15 

mi h-1), 32 km h-1 (20 mi h-1) and 40 km h-1 (25 mi h-1). From the June 6 sensing mission, both 
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fixed-rate N and VRN applications were calculated from the 16 km h-1 (10 mi h-1) mission, and 

fertilizer N was applied on June 8, 2020. Corn yield data was lost in Hurricane Laura and was 

not included in the Yield data portion of this study (Table 4.6). 

Table 4.6 Slope, root mean square error and sensitivity equivalents of indices of corn at V6 

stage in 2020. 

2020 Corn 16 km h-1 
 2020 Corn 24 km h-1 

SLOPE SPAD 
Leaf 

N%  
SLOPE SPAD Leaf N% 

NDVI 0.00285 0.0341  NDVI 0.00210 0.04985 

GNDVI 0.00318 0.0323  GNDVI 0.00273 0.05313 

NDRE 0.00259 0.0309  NDRE 0.00242 0.04620 

SCCCI 0.00237 0.0267  SCCCI 0.00307 0.04220 

FENDVI 0.00211 0.0256  FENDVI 0.00248 0.03678 

BENDVI 0.00243 0.0232  BENDVI -0.00260 -0.04140 

RMSE   
 RMSE   

NDVI 0.04391 0.0442  NDVI 0.04353 0.04242 

GNDVI 0.02899 0.0299  GNDVI 0.03093 0.02959 

NDRE 0.02528 0.0257  NDRE 0.02556 0.02438 

SCCCI 0.00768 0.0090  SCCCI 0.00919 0.00928 

FENDVI 0.00876 0.0094  FENDVI 0.01174 0.01129 

BENDVI 0.02830 0.0289  BENDVI 0.02017 0.01951 

SEq   
 SEq   

NDVI 0.06491 0.7722  NDVI 0.04824 1.17515 

GNDVI 0.10969 1.0813  GNDVI 0.08826 1.79554 

NDRE 0.10245 1.2031  NDRE 0.09468 1.89500 

SCCCI 0.30859 2.9743  SCCCI 0.33406 4.54741 

FENDVI 0.24087 2.7274  FENDVI 0.21124 3.25775 

BENDVI 0.08587 0.8028  BENDVI -0.12740 -2.12050 

Speeds are 16 km h-1 (10 mi h-1) and 24 km h-1 (15 mi h-1) 

Among all VIs in the 16 km h-1 (10 mi h-1) and 24 km h-1 (15 mi h-1) flights, SCCCI 

attained the greatest sensitivity equivalents when compared to both SPAD and leaf N variables. 

FENDVI performed second best behind SCCCI in all categories (Table 4.4). As speed increased 

from 16 km h-1 (10 mi h-1) to 24 km h-1 (15 mi h-1), SCCCI SEq increased by 0.02547 when 

modeled against SPAD. SCCCI modeled with leaf N increased by 1.57311 when comparing 16 
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km h-1 (10 mi h-1) to 24 km h-1 (15 mi h-1). The increase in value among both SCCCI with SPAD 

and SCCCI with leaf N indicates that the 24 km h-1 (15 mi h-1) speed was superior to 16 km h-1 

(10 mi h-1) when related via SEq analysis. The 24 km h-1 (15 mi h-1) was also a more efficient 

flight that was faster than the 16 km h-1 (10 mi h-1) flight (Table 4.6). 

The relative success of NDRE-based VIs (both NDRE and SCCCI) employed to estimate 

canopy leaf N in early corn complements earlier study findings (Fox, 2015; Raper and Varco, 

2014). The precise biochemical nature of red-edge shift, as it relates to canopy leaf N%, remains 

unclear. Red-edge shift is a ‘rubberbanding’ effect caused by stretching of the red-to-NIR bands’ 

respective decrease and increase of canopy reflectance and, therefore, may elicit a red-edge shift 

in conjunction with increased N treatment and canopy leaf N% expression. However, few, if any 

studies have been conducted to ascertain if a lateral, right red-edge shift relating to increased N 

status and/or availability is related to a biochemical phenomenon Therefore, the exact nature of 

the red-edge shift cannot be stated with certainty. Needed is research in a laboratory setting that 

might decouple red-edge shift from red-to-NIR reflectance decrease and increase, respectively. 

Table 4.7 exhibits the double speed sampling from the previous (Table 4.6) flights. 
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Table 4.7 Slope, root mean square error and sensitivity equivalents of indices of corn at V6 

stage in 2020. 

2020 Corn 32 km h-1  2020 Corn 40 km h-1 

SLOPE SPAD Leaf N%  SLOPE SPAD Leaf N% 

NDVI 0.00171 0.04582  NDVI 0.00096 0.04756 

GNDVI 0.00283 0.04697  GNDVI 9.22222 0.02042 

NDRE 0.00231 0.03896  NDRE 0.00153 0.04050 

SCCCI 0.00349 0.03473  SCCCI 0.00317 0.04845 

FENDVI 0.00280 -0.02492  FENDVI 0.00300 0.05426 

BENDVI -0.00040 -0.01110  BENDVI -0.00205 -0.01990 

RMSE     RMSE    

NDVI 0.05169 0.05082  NDVI 0.05029 0.04906 

GNDVI 0.03170 0.03107  GNDVI 0.02481 0.02432 

NDRE 0.02817 0.02765  NDRE 0.02777 0.02649 

SCCCI 0.00660 0.01045  SCCCI 0.01128 0.01013 

FENDVI 0.00843 0.01107  FENDVI 0.01509 0.01252 

BENDVI 0.02338 0.02327  BENDVI 0.01165 0.01263 

SEq     SEq    

NDVI 0.03308 0.90161  NDVI 0.01917 0.96943 

GNDVI 0.08927 1.51175  GNDVI 0.00371 0.83964 

NDRE 0.08200 1.40904  NDRE 0.05509 1.52888 

SCCCI 0.52879 3.32344  SCCCI 0.28102 4.78282 

FENDVI 0.33215 2.25113  FENDVI 0.19880 4.33387 

BENDVI -0.01740 -0.47490  BENDVI -0.17596  -1.57480 

Speeds are 32 km h-1 (20 mi h-1) and 40 km h-1 (25 mi h-1) 

Consistent with the 16 km h-1 (10 mi h-1) and 24 km h-1 (15 mi h-1) results, SCCCI 

achieved the highest sensitivity equivalents value among all VIs at both 32 km h-1 (20 mi h-1) and 

40 km h-1 (25 mi h-1) speeds. When speed increased from 32 km h-1 (20 mi h-1) to 40 km h-1 (25 

mi h-1), SCCCI with SPAD sensitivity equivalents exhibited an indirect relationship with a 

decrease of 0.25. The 0.25 decrease infers that a speed of 32 km h-1 (20 mi h-1) was preferable to 

40 km h-1 (25 mi h-1) based on SCCCI and SPAD sensitivity equivalents. For SCCCI with leaf N 

sensitivity equivalents increased by 1.46 when speeds increased from 32 km h-1 (20 mi h-1) to 40 
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km h-1 (25 mi h-1), thus, revealing a direct relationship of speed to leaf N. The 1.46 increase from 

32 km h-1 (20 mi h-1) to 40 km h-1 (25 mi h-1) implies that 40 km h-1 (25 mi h-1) was desirable for 

the quad-copter flight platform when considering SCCCI with leaf N sensitivity equivalents. 

Overall, the 2020 corn sensing missions revealed that SCCCI may be desirable compared 

to other VIs in this study. Noting that SCCCI is an NDRE-based VI, the SCCCI and SPAD 

sensitivity equivalents values were greatest at 32 km h-1 (20 mi h-1), which infers that the 32 km 

h-1 (20 mi h-1) speed was optimal to 16 km h-1 (10 mi h-1), 24 km h-1 (15 mi h-1), and 40 km h-1 (25 

mi h-1) when using SCCCI with SPAD to predict canopy N status. The 40 km h-1 (25 mi h-1) 

produced the highest sensitivity equivalents for SCCCI and leaf N status. Again, what role 

aircraft attitude plays in increasing or decreasing VI sensitivity is yet unknown (Table 4.7). 

One phenomenon that may explain the decrease in SEq value at different flight speeds 

was the tipping or pitching (an alteration of aircraft horizontal attitude towards the nose) of the 

quad-copter during increased acceleration. Witnessed by camera fly-by at 16 km h-1 (10 mi h-1), 

24 km h-1 (15 mi h-1), 32 km h-1 (20 mi h-1), and 40 km h-1 (25 mi h-1), a noticeable upward shift 

in the aircraft aft that was succeeded by a downward shift in the aircraft forward nose created an 

angular tilt of the camera sensor backwards. The backwards shift will be referred to as NADIR-

Aft and was most notable at 24 km h-1 (15 mi h-1) and 40 km h-1 (25 mi h-1). A remedy to control 

NADIR-Aft shift would be the installation of a sensor gimble but this study precludes deploying 

the device. Needed is research that will decouple aircraft attitude from speed by addition of a 

sensor gimbal that will horizontally align lenses to topography. 
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Cotton 2020  

The 2020 cotton sensing mission was flown on July 11, 2020. A quad-copter was 

employed to fly four separate flights at speeds of 16 km h-1 (10 mi h-1), 24 km h-1 (15 mi h-1), 32 

km h-1 (20 mi h-1) and 40 km h-1 (25 mi h-1). From the July 11 sensing mission, both fixed-rate N 

and VRN applications were made on July 15, 2020 (Table 4.8). 

Table 4.8 Slope, root mean square error and sensitivity equivalents of indices of north cotton 

plot at mid bloom stage in 2020. 

2020 Cotton North 16 km h-1  2020 Cotton North 24 km h-1 

SLOPE SPAD Leaf N%  SLOPE SPAD Leaf N% 

NDVI 0.01154 -0.00039  NDVI 0.00190 -0.00007 

GNDVI 0.00362 0.01864  GNDVI -0.00137 0.00350 

NDRE 0.01430 -0.00018  NDRE -0.00156 0.01590 

SCCCI -0.02903 -0.00051  SCCCI 0.02302 -0.07329 

FENDVI 0.00930 0.00074  FENDVI -0.00465 0.01977 

BENDVI 0.07537 0.20076  BENDVI -0.00782 0.01484 

RMSE   
 RMSE   

NDVI 0.10154 0.10327  NDVI 0.11607 0.11612 

GNDVI 0.08538 0.08525  GNDVI 0.08353 0.08354 

NDRE 0.06935 0.07316  NDRE 0.08591 0.08570 

SCCCI 0.05515 0.07267  SCCCI 0.14393 0.14573 

FENDVI 0.01656 0.02245  FENDVI 0.03541 0.03531 

BENDVI 0.46194 0.47101  BENDVI 0.13078 0.13126 

SEq   
 SEq   

NDVI 0.11365 -0.00375  NDVI 0.01637 -0.00058 

GNDVI 0.04240 0.21865  GNDVI -0.01640 0.04190 

NDRE 0.20620 -0.00250  NDRE -0.01816 0.18553 

SCCCI -0.52638 -0.00705  SCCCI 0.15994 -0.50292 

FENDVI 0.56159 0.03317  FENDVI -0.13132 0.55990 

BENDVI 0.16316 0.42623  BENDVI -0.05980 0.11306 

Speeds are 16 km h-1 (10 mi h-1) and 24 km h-1 (15 mi h-1) 

There was no consistently high-performing VIs among speeds 16 km h-1 (10 mi h-1) and 

24 km h-1 (15 mi h-1) in the 2020 North Cotton plot. FENDVI produced the highest sensitivity 
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equivalents for the 16 km h-1 (10 mi h-1) when modeled with SPAD. The SPAD meter does not 

sample for green (550 nm) reflectance as is incorporated into the FENDVI but, instead, measures 

the absorbance in red and NIR wavelengths. Therefore, it is not possible to state whether 

FENDVI and SPAD are highly relatable other than through SEq modeling. The FENDVI 

algorithm incorporates NDRE, NDVI, and green bands of a sensor. Opposite of red-edge 

detection and shift relating to canopy N status, green band reflectance is indirectly related with 

canopy N status during photosynthesis and, therefore, inadvertently detectable by SPAD meters 

(Mutanga and Skidmore, 2004). However, research is needed to decouple green, red, red-edge, 

and NIR band reflectance behavior from other phenomenon especially considering SPAD does 

not account for red-colored soil albedo detected with the above-canopy sensing tools. 

Development of a SPAD tool that includes the green (550 nm) band may increase understanding 

of individual band reflectance’s and improve canopy N detection through proximal and sUAS 

sensing methods. 

The greatest sensitivity equivalents for 16 km h-1 (10 mi h-1) when modeled with leaf N 

was achieved by BENDVI, a VI that incorporates NIR, blue, and green bands (Table 4.6). For 

the 24 km h-1 (15 mi h-1) speed, SCCCI had the greatest sensitivity equivalents when modeled 

with SPAD. The 24 km h-1 (15 mi h-1) speed for VIs modeled with leaf N resulted in FENDVI, a 

VI incorporating a modified green band with SCCCI, having the greatest sensitivity equivalents 

(Table 4.8). 

Table 4.9 exhibits the double speed sampling from the previous (Table 4.6) flights. 
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Table 4.9 Slope, root mean square error and sensitivity equivalents of indices of north cotton 

plot at mid bloom stage in 2020. 

2020 Cotton North 32 km h-1  2020 Cotton North 40 km h-1 

SLOPE SPAD Leaf N%  SLOPE SPAD Leaf N% 

NDVI -0.00013 -0.04011  NDVI 0.00429 0.08414 

GNDVI -0.00215 -0.02248  GNDVI -0.00041 0.06394 

NDRE -0.00242 -0.01656  NDRE -0.00300 0.06381 

SCCCI 0.02171 -0.00478  SCCCI 0.03188 -0.08844 

FENDVI -0.00402 0.00228  FENDVI -0.00764 0.02345 

BENDVI -0.00274 -0.02587  BENDVI -0.01481 0.12881 

RMSE   
 RMSE   

NDVI 0.11420 0.11303  NDVI 0.10626 0.10087 

GNDVI 0.08349 0.08307  GNDVI 0.07977 0.07544 

NDRE 0.08463 0.08446  NDRE 0.07904 0.07484 

SCCCI 0.15956 0.16343  SCCCI 0.11946 0.12523 

FENDVI 0.03755 0.03811  FENDVI 0.03004 0.03110 

BENDVI 0.11652 0.11614  BENDVI 0.12046 0.11118 

SEq   
 SEq   

NDVI -0.00110 -0.35486  NDVI 0.04037 0.83414 

GNDVI -0.02575 -0.27062  GNDVI -0.00515 0.84756 

NDRE -0.02860 -0.19607  NDRE -0.03796 0.85262 

SCCCI 0.13606 -0.02925  SCCCI 0.26687 -0.70622 

FENDVI -0.10706 0.05983  FENDVI -0.25433 0.75402 

BENDVI -0.02352 -0.22275  BENDVI -0.12295 1.15857 

Speeds are 32 km h-1 (20 mi h-1) and 40 km h-1 (25 mi h-1) 

When canopy N status was assessed using SPAD, SCCCI attained the greatest sensitivity 

equivalents value for the 32 km h-1 (20 mi h-1) speed. The greatest sensitivity equivalents result 

for the 32 km h-1 (20 mi h-1) speed was FENDVI when modeled with leaf N. SCCCI modeled 

with SPAD achieved the greatest sensitivity equivalents for 40 km h-1 (25 mi h-1). An increase of 

0.13 was noted in SCCCI for the SPAD sensitivity equivalents with a speed increase from 32 km 

h-1 (20 mi h-1) to 40 km h-1 (25 mi h-1). Inconsistent with the 32 km h-1 (20 mi h-1) speed, 

BENDVI modeled with Leaf N outperformed other VIs in terms of sensitivity equivalents. 
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Sensitivity Equivalents results across all speeds did not reveal a consistent ideal VI for 

modeling with SPAD or leaf N. A probable cause for the inconsistent results is related to the 

previously mentioned “tilt” of the quad-copter coupled with the inability to remove outliers due 

to small sample count (Table 4.9). 

Table 4.10details the slope, root mean square error and sensitivity equivalents of indices 

of south cotton plot at mid bloom stage in 2020 

Table 4.10 Slope, root mean square error and sensitivity equivalents of indices of south cotton 

plot at mid bloom stage in 2020. 

2020 Cotton South 16 km h-1  2020 Cotton South 24 km h-1 

SLOPE SPAD Leaf N%  SLOPE SPAD Leaf N% 

NDVI 0.00139 0.00504  NDVI -0.00101 0.00024 

GNDVI 0.00226 0.00648  GNDVI -0.00056 -0.00635 

NDRE 0.00354 0.00503  NDRE -0.00261 -0.00951 

SCCCI 0.00534 0.00332  SCCCI -0.00201 -0.01005 

FENDVI 0.00267 0.00164  FENDVI -0.00397 -0.01995 

BENDVI 0.02790 0.12982  BENDVI 0.05523 -0.03256 

RMSE   
 RMSE   

NDVI 0.00332 0.00462  NDVI 0.00715 0.00756 

GNDVI 0.00546 0.00762  GNDVI 0.00571 0.00553 

NDRE 0.00958 0.01285  NDRE 0.0328 0.03334 

SCCCI 0.01535 0.02012  SCCCI 0.03001 0.03033 

FENDVI 0.00779 0.01015  FENDVI 0.06084 0.06145 

BENDVI 0.07325 0.09574  BENDVI 0.67367 0.68700 

SEq   
 SEq   

NDVI 0.41867 1.09090  NDVI -0.14125 0.03267 

GNDVI 0.41391 0.85039  GNDVI -0.09964 -1.14828 

NDRE 0.36951 0.39143  NDRE -0.07957 -0.28524 

SCCCI 0.34788 0.16500  SCCCI -0.06697 -0.33135 

FENDVI 0.34274 0.16157  FENDVI -0.06525 -0.32465 

BENDVI 0.38088 1.35596  BENDVI 0.08198 -0.04739 

Speeds are 16 km h-1 (10 mi h-1) and 24 km h-1 (15 mi h-1) 
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The 2020 south cotton plot results imply that NDVI modeled with SPAD produced the 

greatest sensitivity equivalents value at a speed of 16 km h-1 (10 mi h-1). Both SPAD and NDVI 

employ red and NIR bands to estimate chlorophyll (and thus, related N status). BENDVI 

modeled with leaf N sensitivity equivalents results revealed that BENDVI may be preferred to 

other VIs at the 16 km h-1 (10 mi h-1) speed. At 24 km h-1 (15 mi h-1) results indicated that 

BENDVI modeled with SPAD may be favored compared to alternative VIs.  

At a value of 0.03267, NDVI modeled with leaf N sensitivity equivalents results achieved 

a greatest value than comparable VIs. One single VI sensitivity equivalents value was not 

identified as consistently higher at speeds of 16 km h-1 (10 mi h-1) and 24 km h-1 (15 mi h-1). 

Subsequent studies using sUAS and sensing technologies necessitate an increase in sample size 

collection that will likely mitigate sampling errors related to on-farm topographic changes. 

Moreover, a highly consistent and uniform off-farm research methodology made up of similar 

small-plot research sites on limited soil substrate may also improve VI sensitivity Table 4.10. 

Table 4.11 details the doubling of speed over the Table 4.10 sampling values. 
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Table 4.11 Slope, root mean square error and sensitivity equivalents of indices of north cotton 

plot at mid bloom stage in 2020. 

2020 Cotton South 32 km h-1  2020 Cotton South 40 km h-1 

SLOPE SPAD Leaf N%  SLOPE SPAD Leaf N% 

NDVI 0.00444 0.02621  NDVI 0.00246 0.0177 

GNDVI 0.00494 0.02318  GNDVI 0.00380 0.01839 

NDRE 0.00787 0.03397  NDRE 0.00526 0.03051 

SCCCI 0.00603 0.07127  SCCCI 0.00413 0.02144 

FENDVI 0.00597 0.02160  FENDVI -0.00407 -0.02109 

BENDVI 0.01429 0.22557  BENDVI 0.01348 0.06615 

RMSE   
 RMSE   

NDVI 0.00835 0.01238  NDVI 0.00549 0.00711 

GNDVI 0.01043 0.01508  GNDVI 0.00743 0.01116 

NDRE 0.01496 0.02315  NDRE 0.01007 0.01483 

SCCCI 0.01241 0.06084  SCCCI 0.00768 0.01175 

FENDVI 0.01219 0.01838  FENDVI 0.00756 0.01155 

BENDVI 0.10553 0.09913  BENDVI 0.03124 0.04291 

SEq   
 SEq   

NDVI 0.53173 2.11712  NDVI 0.44808 2.48945 

GNDVI 0.47363 1.53713  GNDVI 0.51144 1.64784 

NDRE 0.52606 1.46738  NDRE 0.52234 2.05731 

SCCCI 0.48589 1.15075  SCCCI 0.53776 1.82468 

FENDVI 0.48974 1.17519  FENDVI 0.53835 1.82597 

BENDVI 0.13541 2.27549  BENDVI 0.43149 1.54159 

Speeds are 32 km h-1 (20 mi h-1) and 40 km h-1 (25 mi h-1) 

NDVI modeled with SPAD produced greater sensitivity equivalents value than other VIs 

at a speed of 32 km h-1 (20 mi h-1) for cotton. A value of 2.28 resulted with BENDVI modeled 

with SPAD, thus, implying that BENDVI is optimal to other VIs at a speed of 32 km h-1 (20 mi 

h-1). For the 40 km h-1 (25 mi h-1) speed, FENDVI had the greatest sensitivity equivalents when 

modeled with SPAD. NDVI modeled with Leaf N sensitivity equivalents resulted in higher 

values than compared VIs for the 40 km h-1 (25 mi h-1) speed. 
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Consistent with the 2020 cotton plot north results, the 2020 cotton plot south results did 

not have a persistent VI that ranked above other VI sensitivity equivalents. The quad-copter tilt 

and small sample count may factor into inconsistent results. 

Corn 2021 

The sensing mission for the 2021 corn crop was flown on May 1, 2021. Two separate 

flights at speeds of 32 km h-1 (20 mi h-1) and 64 km h-1 (40 mi h-1) were conducted using both 

quad-copter and fixed-wing flight platforms, respectively. 

From the May 1 sensing mission, both fixed-rate N and VRN applications were made on 

May 8, 2021, utilizing quad-copter data (Table 4.12). 
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Table 4.12 Slope, root mean square error and sensitivity equivalents of indices of corn plot at 

V8 stage in 2021. 

2021 Corn 32 km h-1  2021 Corn 64 km h-1 

SLOPE SPAD Leaf N%  SLOPE SPAD Leaf N% 

NDVI -0.00598 0.03481  NDVI -0.00560 0.04302 

GNDVI -0.00082 0.03026  GNDVI -0.00053 0.03593 

NDRE 0.00180 0.03861  NDRE 0.00200 0.04578 

SCCCI 0.00888 0.03756  SCCCI 0.00874 0.04794 

FENDVI 0.03967 0.19055  FENDVI 0.05140 0.30738 

BENDVI -0.00369 0.02667  BENDVI -0.00344 0.02989 

RMSE   
 RMSE   

NDVI 0.05486 0.05462  NDVI 0.05828 0.05723 

GNDVI 0.03117 0.02933  GNDVI 0.03595 0.03365 

NDRE 0.02975 0.02667  NDRE 0.03278 0.02877 

SCCCI 0.02365 0.02566  SCCCI 0.02971 0.02937 

FENDVI 0.11304 0.11723  FENDVI 0.19119 0.18439 

BENDVI 0.03407 0.03346  BENDVI 0.03312 0.03205 

SEq   
 SEq   

NDVI -0.10900 0.63731  NDVI -0.09609 0.75170 

GNDVI -0.02646 1.03171  GNDVI -0.01478 1.06776 

NDRE 0.06050 1.44769  NDRE 0.06101 1.59124 

SCCCI 0.37548 1.46376  SCCCI 0.29418 1.63228 

FENDVI 0.35094 1.62544  FENDVI 0.26884 1.66701 

BENDVI -0.10831 0.79707  BENDVI -0.10386 0.93261 

Speeds are 32 km h-1 (20 mi h-1) and 64 km h-1 (40 mi h-1) 

The 2021 corn plot revealed that SCCCI, when modeled with SPAD, produced the 

greatest sensitivity equivalents value at a speed of 32 km h-1 (20 mi h-1). FENDVI, a modified 

green band divided by the SCCCI, performed best when modeled with Leaf N at the 32 km h-1 

(20 mi h-1) speed. A decrease of 0.0813 was noted in SCCCI modeled with SPAD sensitivity 

equivalents among an increase of speed from 32 km h-1 (20 mi h-1) to 64 km h-1 (40 mi h-1). 

FENDVI modeled with leaf N experienced a slight increase in sensitivity equivalents of 0.04157 

when speed increased from 32 km h-1 (20 mi h-1) to 64 km h-1 (40 mi h-1) (Table 4.12). 



 

66 

Among both quad-copter (32 km h-1 (20 mi h-1)) and fixed-wing platforms (64 km h-1 (40 

mi h-1)), SCCCI modeled with SPAD experienced a decrease. The 0.0813 decrease in SCCCI 

modeled with SPAD sensitivity equivalence is likely due to the unreliability of SPAD. SPAD 

requires an elevated level of precision and consistency when collecting samples that is not 

typically present when conducting on-farm sampling. Xiong et al. (2015) found that SPAD 

readings are highly variable depending upon leaf and environmental characteristics. 

When performing on-farm research, SPAD is not a preferred biophysical parameter by 

which to assay canopy leaf N status. The physically demanding and time-consuming effort 

required to sample using SPAD are, in themselves, tremendously limiting factors. Added effects 

of end-user subjectivity and inconsistent sampling method necessitates the development of 

objective on-the-fly field measurements techniques that can, in almost real time, determine crop 

canopy status. Moreover, a SPAD lacking green band assessment may also reduce its overall 

efficacy for use on-farm. A reduction in green band reflectance is highly and indirectly relatable 

to increasing canopy N status. 

FENDVI modeled with leaf N produced an increase of 0.04157 in sensitivity equivalents 

with an increase in speed from quad-copter (32 km h-1 (20 mi h-1)) to fixed-wing platforms (64 

km h-1 (40 mi h-1)). The 0.04157 increase expresses that fixed-wing flight may produce higher 

sensitivity equivalents than quad-copter flight. 

Cotton 2021 

On June 18, 2021, the first sensing mission was completed for the 2021 cotton crop 

during pinhead square development stage. Due to a fixed-wing platform malfunction, only a 

quad-copter flight was executed at a speed of 32 km h-1 (20 mi h-1) on June 18. From the June 18 

quad-copter only sensing mission, both fixed-rate N and VRN applications were made on June 
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20, 2021, utilizing quad-copter data (Table 4.13). A second sensing mission was accomplished 

on July 28, 2021, at mid-bloom development stage, employing both quad-copter (32 km h-1 (20 

mi h-1)) and fixed-wing (64 km h-1 (40 mi h-1)) flight systems. The July 28 mission was necessary 

for comparison of quad-copter and fixed-wing flight data in similar environmental conditions 

(Table 4.14). 

Table 4.13 details the slope, root mean square error and sensitivity equivalents of indices 

of cotton plot at pinhead square stage in 2021. 

Table 4.13 Slope, root mean square error and sensitivity equivalents of indices of cotton plot 

at pinhead square stage in 2021. 

2021 Cotton 32 km h-1  
SLOPE SPAD Leaf N%  

NDVI 0.00183 0.04386  
GNDVI 0.00079 0.00691  
NDRE 0.00069 0.01359  
SCCCI 0.00003 0.02270  
FENDVI 0.00070 0.07362  
BENDVI 0.00086 0.00616  

RMSE   
 

NDVI 0.03060 0.02835  
GNDVI 0.01373 0.01380  
NDRE 0.00964 0.00904  
SCCCI 0.01264 0.01054  
FENDVI 0.09051 0.08792  
BENDVI 0.01804 0.01815  

SEq   
 

NDVI 0.05980 1.54709  
GNDVI 0.05748 0.50072  
NDRE 0.07171 1.50332  
SCCCI 0.00225 2.15370  
FENDVI 0.00772 0.83735  
BENDVI 0.04746 0.33939  

Speed is at 32 km h-1 (20 mi h-1) 
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The VRN quad-copter flight for the 2021 cotton crop resulted in the NDRE modeled with 

SPAD sensitivity equivalents value rising above compared VIs. NDRE may be ideal when 

modeled with SPAD at a speed of 32 km h-1 (20 mi h-1). When modeled with leaf N, SCCCI 

resulted in a greater sensitivity equivalents value than other VIs. At a speed of 32 km h-1 (20 mi 

h-1), SCCCI modeled with SPAD may be preferred in terms of sensitivity equivalents (Table 

4.13). 

Table 4.14 details the slope, root mean square error and sensitivity equivalents of indices 

of cotton plot at mid-bloom stage in 2021. 

Table 4.14 Slope, root mean square error and sensitivity equivalents of indices of cotton plot 

at mid-bloom stage in 2021. 

2021 Cotton 32 km h-1  2021 Cotton 64 km h-1 

SLOPE SPAD 
Leaf 

N%  
SLOPE SPAD Leaf N% 

NDVI -0.00087 0.04752  NDVI 0.00111 0.05667 

GNDVI -0.00031 0.03245  GNDVI 0.00122 0.04027 

NDRE 0.00018 0.03830  NDRE 0.00179 0.04649 

SCCCI 0.00073 0.01512  SCCCI 0.00122 0.01533 

FENDVI 0.00234 0.05260  FENDVI 0.00391 0.04925 

BENDVI -0.00074 0.03273  BENDVI 0.00096 0.04262 

RMSE   
 RMSE   

NDVI 0.04341 0.04119  NDVI 0.03496 0.03054 

GNDVI 0.02815 0.02651  GNDVI 0.02159 0.01812 

NDRE 0.03058 0.02845  NDRE 0.02144 0.01698 

SCCCI 0.01083 0.01014  SCCCI 0.00873 0.00830 

FENDVI 0.03976 0.03737  FENDVI 0.02809 0.02670 

BENDVI 0.03163 0.03022  BENDVI 0.02665 0.02342 

SEq   
 SEq   

NDVI -0.02009 1.15368  NDVI 0.03175 1.85560 

GNDVI -0.01096 1.22407  GNDVI 0.05651 2.22241 

NDRE 0.00589 1.34622  NDRE 0.08349 2.73793 

SCCCI 0.06716 1.49112  SCCCI 0.13975 1.84699 

FENDVI 0.05885 1.40755  FENDVI 0.13920 1.84457 

BENDVI -0.02343 1.08306  BENDVI 0.03603 1.81981 

Speeds are 32 km h-1 (20 mi h-1) and 64 km h-1 (40 mi h-1) 
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When modeled with SPAD, SCCCI possessed a greater sensitivity equivalents value than 

other VIs at a speed of 32 km h-1 (20 mi h-1). Consistent with SCCCI modeled with SPAD at 32 

km h-1 (20 mi h-1), SCCCI modeled with leaf N attained a greater sensitivity equivalents value 

than compared VIs at 32 km h-1 (20 mi h-1). An increase of 0.07259 was noted in SCCCI 

modeled with SPAD when speed was increased from 32 km h-1 (20 mi h-1) to 64 km h-1 (40 mi h-

1). Inconsistent with leaf N sensitivity equivalents results at 32 km h-1 (20 mi h-1), NDRE 

achieved the highest sensitivity equivalents value when modeled with SPAD for the 64 km h-1 

(40 mi h-1) speed (Table 4.14). 

The mid-bloom sensing mission resulted in SCCCI having the greatest sensitivity 

equivalents when modeled with SPAD. The increase in speed from quad-copter (32 km h-1 (20 

mi h-1)) to fixed-wing (64 km h-1 (40 mi h-1)) led to an increase in SCCCI modeled with SPAD 

sensitivity equivalents of 0.07259. The increase of 0.07259 may infer that fixed-wing is ideal to 

quad-copter for sensitivity equivalents in VIs modeled with SPAD. When speed increased from 

32 km h-1 (20 mi h-1) to 64 km h-1 (40 mi h-1), VIs modeled with leaf N’s sensitivity equivalents 

values resulted in the higher values for SCCCI and NDRE, respectively. 

Concluding Remarks on Crop Canopy Sensing 

Sensing missions for this study resulted in numerous novel findings. The first being that 

NDRE-based indices performed well in comparison to other VIs in all individual studies. 

Multiple studies support similar findings revealing NDRE-based VIs produced the strongest 

relationship with leaf N content (Varco et al., 2013; Raper and Varco, 2014; Fox, 2015; Sumner 

et al., 2021). Among all VIs, NDRE-based VIs may yield the greatest relationship to crop canopy 

N levels. This study does not suggest there is verifiable causation between canopy N status and 

VI efficiency without further study into the complex relationship of lateral, right red-edge shift, 
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and accompanying reduction in green reflectance with increasing canopy N status. However, 

noted to date herein, no SPAD canopy analysis tools have successfully incorporated the green 

band, which may further elucidate canopy N status in-field. 

The prevalent and predominate VIs were found to be SCCCI and FENDVI for detecting 

early N status in corn and cotton during the V4-V8 and pinhead square-mid bloom stages, 

respectively. Means separation by way of Tukey’s studentized range test was performed across 

all SCCCI and FENDVI values. Results revealed no statistically significant difference between 

SCCCI and FENDVI among all crops and flight speeds. 

A loss in VI efficiency was not evident among an increase in speed from quad-copter (32 

km h-1 (20 mi h-1)) to fixed-wing (64 km h-1 (40 mi h-1)). In select cases, faster but moderate 

sensing speeds may result in a greater level of accuracy. Fixed-wing sensing platforms provided 

more efficacy than quad-copter platforms in these studies, but further studies are needed. 

Overall, fixed-wing platforms may provide a faster alternative to quad-copter platforms without 

a loss of data accuracy. However, the results from this study suggest the sensor attitude onboard 

the aircraft may affect sensing results, but relevant research is needed to decouple speed and 

attitude effects.  

Variable Rate N Demonstration using sUAS 

The following results sections detail experiments and outcomes of a variable rate 

fertilizer N experiment in corn and cotton conducted between 2020 and 2021 in the Mississippi 

River Alluvium production areas of MS and LA.  
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VRN Flights and Nitrogen Applications 

Autonomous, unmanned flights were conducted at critical sampling stages for corn and 

cotton, which allowed for adequate post-flight data processing and return of the VRN maps to 

the fertilizer N applicator in WGS84 gridded format [22.9 m2 (75 ft2)]. All missions were flown 

with a MicaSense RedEdge® (Seattle, WA) (MSRE) sensor onboard (no gimble). Table 4.15 

details the flight dates, crop, and critical stages in relationship to a preferred speed and flight 

altitude. 

Table 4.15 sUAS flight dates and specifications for corn and cotton VRN application 

calibration in 2020 and 2021 

Date Crop Stage 
Flight 

Platform 
Altitude Speed 

June 6, 2020 Corn V6 Quad-copter 121.92 m 32 km h-1 

July 11, 2020 Cotton Mid-Bloom Quad-copter 121.92 m 32 km h-1 

May 1, 2021 Corn V8 Quad-copter 121.92 m 32 km h-1 

June 18, 2021 Cotton Pinhead Square Quad-copter 121.92 m 32 km h-1 

Speeds is at 32 km h-1 (20 mi h-1). Altitude is at 121.92 m (400 ft). 

Post-flight data analysis of the MSRE imagery included mosaicking of all bands and 

calculation of the SCCCI VI. The VRN rates were calculated in ArcGIS Desktop Spatial Analyst 

in WGS84 UTM15N. Post-processed maps were converted to WGS84 format. Prior to fertilizer 

N application, the VRN maps were uploaded to the John Deere® (Moline, IL) GreenStar™ 

monitor and deployed within one week after sampling. Table 4.16 details the VRN application 

dates and ranges of rates for both VRN and fixed N applications. 
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Table 4.16 VRN and fixed-rate applications and specifications for corn and cotton in 2020 and 

2021 

Date Crop 
VRN Rate 

Low 

VRN Rate 

High 
Fixed-Rate 

June 8, 2020 Corn 114.33 kg ha-1 170.37 kg ha-1 170.37 kg ha-1 

July 15, 2020 Cotton 0 kg ha-1 33.63 kg ha-1 33.63 kg ha-1 

May 8, 2021 Corn 78.46 kg ha-1 134.50 kg ha-1 134.50 kg ha-1 

June 20, 2021 Cotton 56.04 kg ha-1 89.67 kg ha-1 89.67 kg ha-1 

Fertilizer N source: UAN 32% (32-0-0) 

Refer to Materials and Methods for unit conversions 

2020 Corn Crop 

The 2020 corn crop flight was performed on June 6, 2020 (Table 4.13). A flight was 

conducted at a speed of 32 km h-1 (20 mi h-1) and altitude of 121.92 m (400 ft) using a 650-class 

commercial quadcopter with a 10,000 mAh 4S battery capable of 15 minutes sustained flight 

[custom designed by Dennis Lott (UASSolutions, Clinton, MS)]. A MicaSense RedEdge® was 

employed aboard the quadcopter for multispectral sensing. The fixed- and variable-rate N 

applications were made on June 8, 2020, utilizing sensor data from the 32 km h-1 (20 mi h-1) 

flight. During August of the 2020 growing season, the corn experienced yield loss from 

Hurricane Laura. The salvaged plot was harvested on September 9, 2020. Figure 4.13 depicts the 

variable- and fixed-rate N applications noted in Table 4.16. 
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Figure 4.13 2020 corn N application including both fixed-rate and VRN applications 

Soil series were described as 30% (2.43 ha) Dowling clay (Very-fine, smectitic, nonacid, 

thermic, Vertic Endoaquepts), 46% (3.72 ha) Dundee silty clay loam (Fine-silty, mixed, active, 

thermic Typic Endoaqualfs), 14% (1.13 ha) Dundee very fine sandy loam, and 10% (0.81) 

Dundee-clack silt loam. 

An N rate of 137.87 kg ha-1 (123 lb ac-1) was the mean, median, and mode for the VRN 

application dataset. The total season variable-rate N section of the plot ranged from 257.80 N kg 

ha-1 (230 N lb ac-1) to 313.84 N kg ha-1 (280 N lb ac-1) (Figure 4.13). The yield map for the 2020 

corn crop is depicted in Figure 4.14. 
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Figure 4.14 2020 corn yield map 

Soil series were described as 30% (2.43 ha) Dowling clay (Very-fine, smectitic, nonacid, 

thermic, Vertic Endoaquepts), 46% (3.72 ha) Dundee silty clay loam (Fine-silty, mixed, active, 

thermic Typic Endoaqualfs), 14% (1.13 ha) Dundee very fine sandy loam, and 10% (0.81) 

Dundee-clack silt loam. 

The 2020 corn crop resulted in unusually low yields due to damage from Hurricane Laura 

(Figure 4.14). Yield average for the total plot, fixed- and variable-rate combined, was 3.76 Mt 

ha-1 (56 bu ac-1). The VRN section of the plot yielded an average of 3.42 Mt ha-1 (51 bu ac-1). 

Fixed-rate N applicated crops produced a mean yield of 4.13 Mt ha-1 (61 bu ac-1). Unfortunately, 

yield analysis cannot be accurately conducted due to total loss of the 2020 corn crop (Figure 

4.15). 
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Figure 4.15 2020 corn crop damage as a result of Hurricane Laura 

Corn is seen laid over directly in front of the harvester. The plants to the right in the photo 

sustained less damage, but still produced substantial yield loss 

Nitrogen Use Efficiency (NUE) was an integral piece to this study. VRN applications 

were classified using equal interval four classes. The VRN NUE was calculated based on the 

yield divided by the VRN application. Total available NUE was achieved by yield divided by the 

available N that was available to the plant throughout the season (Residual Soil N + Total Season 
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N Application). The 2020 corn NUE is classed by N rate across four VRN rates and one fixed 

rate (Table 4.17). 

Table 4.17 2020 corn plot NUE by N rate class 

N Rate Class 

N Rate 

by Class 

(kg ha-1) 

Yield by 

N Rate 

(Mt ha-1) 

N Rate 

NUE 

Total 

Available 

NUE 

Percentage 

of Field 

Hectares 

per Class 

(ha) 

VRN Low 114-129 3.01 0.02 0.01 11% 0.91 

VRN Mod Low 130-142 3.45 0.03 0.01 29% 2.30 

VRN Mod High 143-157 3.76 0.03 0.01 10% 0.83 

VRN High 158-170 1.88 0.01 0.01 1% 0.06 

Fixed Rate 170 4.13 0.02 0.01 49% 3.87 

Refer to Materials and Methods for unit conversions 

As depicted in Table 4.17, yield increased as VRN rate increased from 114 kg ha-1 (102 

lb ac-1) to 157 kg ha-1 (140 lb ac-1). The VRN moderately high rate class shows evidence that 143 

kg ha-1 (128 lb ac-1) to 157 kg ha-1 (140 lb ac-1) is the ideal N rate range before loss is 

experienced. A significant decrease in yield by 50% was noted when VRN rates increased from 

the 143 kg ha-1 (128 lb ac-1) to 157 kg ha-1 (140 lb ac-1) range to the 158 kg ha-1 (141 lb ac-1) to 

170 kg ha-1 (152 lb ac-1) range. Table 4.18 details the comparison of LSMeans for the 2020 corn 

crop. 
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Table 4.18 2020 corn plot Tukey Studentized range of yield means by treatment class 

 Yield LSMEAN Treatment Class 

A 4.14 2 

   

B 3.41 1 

LSMeans with same letter are not significantly different 

Yield units are Mt ha-1 

Treatment Classes: VRN Treatment = 1 (Total N application average = 280 kg ha-1).  

Fixed-rate Treatment = 2 (Total N applied = 314 kg ha-1) 

 

According to Tukey’s studentized range test shown in Table 4.16, treatment classes one 

and two yield are not significantly different (Table 4.18). The fixed-rate treatment, treatment 

class two yield was 0.73 Mt ha-1 higher than treatment class one. Figure 4.16 depicts the yield for 

the 2020 corn plot modeled against the VRN application rates. 

 

Figure 4.16 2020 corn yield modeled against VRN rates 

Percentages indicate the portion of the VRN area that the rate covered 

As reported by Figure 4.16, the VRN average highest fertilizer N rate produced 1/3rd the 

average yield of the fixed-rate N plots. Figure 4.13 displays the locations of the high rate VRN 
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areas of the plot. All high rate VRN locations exist on the edge of the plot. The edge of the plot 

was subject to higher winds due to lack of protection from surrounding plants. Figure 4.15 shows 

the drastic damage that the edge of the plot received. 

2020 Cotton Plot North 

The 2020 cotton crop sensing flight was performed on July 11, 2020 (Table 4.13). A 

quad-copter was employed at a speed of 32 km h-1 (20 mi hr-1) and altitude of 121.92 m (400 ft) 

for the flight. Multispectral sensing was conducted by a MSRE aboard the quad-copter. Both 

fixed- and variable-rate N applications were made on July 15, 2020, using data from the 32 km h-

1 (20 mi hr-1) flight on July 11. The 2020 cotton plot north N application including both fixed-

rate and VRN applications are shown in Figure 4.17. 
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Figure 4.17 2020 cotton plot North N application including both fixed-rate and VRN 

applications 

The soil in this plot was identified as 50% (4.05 ha) Bruin silt (loam coarse-silty, mixed, 

superactive, thermic, Oxyaquic Eutrudepts), 35% (2.83 ha) Newellton complex (Clayey over 

loamy, smectitic over mixed, superactive, nonacid, thermic, Fluvaquentic Epiaquepts), 10% 

(0.81 ha) Tunica clay (Clayey over loamy, smectitic over mixed, superactive, nonacid, thermic, 

Vertic Epiaquepts), and 5% (0.40 ha) Commerce silt (Fine-silty, mixed, superactive, nonacid, 

thermic Fluvaquentic Endoaquepts). 

The mean N rate was 13.45 kg ha-1 (12 lb ac-1) for the VRN application dataset (Figure 

4.17). The mode for the VRN dataset was 15.69 kg ha-1 (14 lb ac-1). A rate of 14.57 kg ha-1 (13 lb 

ac-1) was found to be the median of the VRN dataset. The total season variable-rate N section of 

the plot ranged from 89.67 kg ha-1 (80 lb ac-1) to 123.29 kg ha-1 (110 lb ac-1). Figure 4.18 

displays the yield map for the 2020 cotton plot north. 
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Figure 4.18 2020 cotton plot North yield map 

The soil in this plot was identified as 50% (4.05 ha) Bruin silt (loam coarse-silty, mixed, 

superactive, thermic, Oxyaquic Eutrudepts), 35% (2.83 ha) Newellton complex (Clayey over 

loamy, smectitic over mixed, superactive, nonacid, thermic, Fluvaquentic Epiaquepts), 10% 

(0.81 ha) Tunica clay (Clayey over loamy, smectitic over mixed, superactive, nonacid, thermic, 

Vertic Epiaquepts), and 5% (0.40 ha) Commerce silt (Fine-silty, mixed, superactive, nonacid, 

thermic Fluvaquentic Endoaquepts). 

The overall mean yield for the 2020 cotton plot north was 1,445.89 kg ha-1 (1,290 lb ac-1) 

(Figure 4.18). An average yield of 1,448.14 kg ha-1 (1,292 lb ac-1) was observed for the VRN 

application area of the plot. The fixed-rate application portion of the plot resulted in an average 

yield of 1,440.29 kg ha-1 (1,285 lb ac-1). Table 4.19 depicts the fertilizer N treatment effects on 

yield and NUE for the 2020 cotton plot north. 
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Table 4.19 2020 cotton plot North NUE by N rate class 

N Rate Class 

N Rate 

by Class 

(kg ha-1) 

Yield by 

N Rate 

(kg ha-1) 

N Rate 

NUE 

Total 

Available 

NUE 

Percentage 

of Field 

Hectares 

per Class 

(ha) 

VRN Low 0-9 1,419.70 3.03 6.51 12% 1.00 

VRN Mod Low 10-17 1,444.73 4.64 6.57 54% 4.39 

VRN Mod High 18-26 1,422.63 4.68 7.03 3% 0.21 

VRN High 27-34 1,377.65 4.76 6.35 0.1% 0.01 

Fixed Rate 34 1,439.36 4.28 6.74 31% 2.48 

Refer to Materials and Methods for unit conversions 

An increase in yield was evident among an increase in VRN application from 0 kg ha-1 (0 

lb ac-1) to 17 kg ha-1 (15 lb ac-1) (Table 4.19). Once yield peaked at the 10 kg ha-1 (9 lb ac-1) to 17 

kg ha-1 (15 lb ac-1) stage, yield experienced a decrease as VRN application increased from 18 kg 

ha-1 (16 lb ac-1) to 34 kg ha-1 (30 lb ac-1). The high yield at the 10 kg ha-1 to 17 kg ha-1 class may 

suggest that 10 kg ha-1 to 17 kg ha-1 class is the optimal rate for cotton N application. Both VRN 

and total available NUE experienced an increase when VRN application increased from 0 kg ha-1 

(0 lb ac-1) to 26 kg ha-1 (23 lb ac-1). VRN NUE continued to rise as VRN application rates 

increased to 34 kg ha-1 (30 lb ac-1) while total available NUE decreased by 0.68. LSMeans 

comparison for the 2020 cotton plot south are detailed in Table 4.20. 
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Table 4.20 2020 cotton plot North Tukey Studentized range of yield means by treatment class 

 Yield LSMEAN Treatment Class 

A 1,443.4 1 

A   

A 1,439.4 2 

LSMeans with same letter are not significantly different 

Yield units are kg ha-1 

Treatment Classes: VRN Treatment = 1 (Total N application average = 102 kg ha-1).  

Fixed-rate Treatment = 2 (Total N applied = 123 kg ha-1) 

Tukey’s studentized range test revealed that the yield for treatment classes one and two 

were not significantly different (Table 4.20). According to Tukey’s studentized range test, VRN 

treatment class one may be preferred to fixed-rate treatment class two due to lower input of N 

without a significant loss in yield. Yield for the 2020 cotton plot north modeled against VRN rate 

is depicted in Figure 4.19. 

 

Figure 4.19 2020 cotton plot North yield modeled against VRN rates 

Percentages indicate the portion of the VRN area that the rate covered 

The final, high rate, VRN class resulted in a 61.71 kg ha-1 (55 lb ac-1) lower yield than the 

fixed-rate N application (Figure 4.19). Edge-effect is a probable cause for the decrease in yield 
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since all locations for the high rate VRN applications were located on the outer edge of the plot. 

Future on-farm research should integrate the edge-effect and spatial dynamics related to outer 

rows and consider possible removal of marginal edge production from results. 

The 2020 cotton plot south employed the same platform and payload as the 2020 cotton 

plot north did (Table 4.15). Fertilizer date and rates for the 2020 cotton plot south are consistent 

with 2020 cotton plot north. Figure 4.20 depicts the variable- and fixed-rate fertilizer N 

applications as outlined in Figure 4.16. 

 

Figure 4.20 2020 cotton plot South N application including both fixed-rate and VRN 

applications 

The soil series were identified as 60% (4.86 ha) Bruin silt loam (Coarse-silty, mixed, 

superactive, thermic, Oxyaquic Eutrudepts) and 40% (3.24 ha) Newellton-Tunica complex 

(Clayey over loamy, smectitic over mixed, superactive, nonacid, thermic, Fluvaquentic 

Epiaquepts). 
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A season total of 123.29 kg ha-1 (110 lb ac-1) was applied for the fixed-rate N amount 

(Figure 4.20). A rate of 21.29 kg ha-1 (19 lb ac-1) was the mean for the VRN application dataset. 

The mode for the VRN dataset was calculated to be 26.90 kg ha-1 (24 lb ac-1). A rate of 23.54 kg 

ha-1 (21 lb ac-1) was found to be the median of the VRN dataset. The variable-rate N section of 

the plot received a total season amount ranging from 89.67 kg ha-1 (80 lb ac-1) to 123.29 kg ha-1 

(110 lb ac-1). The 2020 cotton plot south yield map is depicted in Figure 4.21. 

 

Figure 4.21 2020 cotton plot South yield map 

The soil series were identified as 60% (4.86 ha) Bruin silt loam (Coarse-silty, mixed, 

superactive, thermic, Oxyaquic Eutrudepts) and 40% (3.24 ha) Newellton-Tunica complex 

(Clayey over loamy, smectitic over mixed, superactive, nonacid, thermic, Fluvaquentic 

Epiaquepts). 

The 2020 cotton plot south attained an overall average yield of 1,173.53 kg ha-1 (1,047 lb 

ac-1) (Figure 4.21). A mean yield of 1,185.86 kg ha-1 (1,058 lb ac-1) was noted for the fixed-rate 
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portion of the plot. The VRN applicated portion of the plot achieved an average yield of 1,163.92 

kg ha-1 (1,038 lb ac-1). Table 4.21 denotes the fertilizer N treatment effects on yield and NUE in 

the 2020 cotton plot south. 

Table 4.21 2020 cotton plot South NUE by N rate class 

N Rate Class 

N Rate 

by Class 

(kg ha-1) 

Yield by 

N Rate 

(kg ha-1) 

N Rate 

NUE 

Total 

Available 

NUE 

Percentage 

of Field 

Hectares 

per Class 

(ha) 

VRN Low 0-9 1,350.86 2.15 5.97 1% 0.06 

VRN Mod Low 9-16 1,343.71 4.90 6.67 4% 0.34 

VRN Mod High 17-24 1,203.72 5.68 6.01 24% 1.96 

VRN High 25-34 1,149.32 4.46 5.64 28% 2.35 

Fixed Rate 34 1,185.86 3.53 5.59 44% 3.63 

Refer to Materials and Methods for unit conversions 

As VRN application increased from 0 kg ha-1 (0 lb ac-1) to 34 kg ha-1 (30 lb ac-1), yield 

decreased from 1350.86 kg ha-1 (1205 lb ac-1) to 1149.32 kg ha-1 (1025 lb ac-1) (Table 4.21). The 

reason for the decrease in yield was due to heavy rain from Hurricane Laura. The heavier bolls 

loaded with N were shed from the plant during the heavy wind and rain (Figure 4.18). The NUE 

for both VRN and total available sections increased as VRN application increased from 0 kg ha-1 

(0 lb ac-1) to 16 kg ha-1 (14 lb ac-1). The VRN NUE increase corresponded with a decrease in N 

rate applied as VRN application progressed from 17 kg ha-1 (15 lb ac-1) to 34 kg ha-1 (30 lb ac-1). 

Table 4.22 displays the LSMeans comparison for the 2020 cotton plot south. 
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Table 4.22 2020 cotton plot South Tukey Studentized range of yield means by treatment class 

 
 Yield 

LSMEAN 

Treatment 

Class 

A  1,220.2 1 

A    

A  1,215.8 2 

LSMeans with same letter are not significantly different 

Yield units are kg ha-1 

Treatment Classes: VRN Treatment = 1 (Total N application average = 112 kg ha-1).  

Fixed-rate Treatment = 2 (Total N applied = 123 kg ha-1) 

Yield means for treatment classes one and two were not significantly different based on 

Tukey’s studentized range test. Variable rate N treatment class one may be preferred due to the 

decrease in N input without significantly decreasing yield. Damage to the cotton plot sustained 

by Hurricane Laura is shown in (Figure 4.22). 
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Figure 4.22 2020 cotton plot South damage sustained during Hurricane Laura 

Photograph depicting bolls laying on ground due to wind and heavy rain 

Figure 4.23 depicts the 2020 cotton plot north yield modeled against VRN rates. 



 

88 

 

Figure 4.23 2020 cotton plot South yield modeled against VRN rates 

Percentages indicate the portion of the VRN area that the rate covered 

As fertilizer N rates progressed, yield encountered a drastic decrease for both the VRN 

applications and the fixed-rate application (Figure 4.23). Hurricane Laura produced a unique 

scenario where the fixed-rate N application performed poor. The heavy bolls possessed by the 

plants that received the high N application rate were too cumbersome to remain attached to the 

plant amidst high winds and heavy rain. 

2021 Corn 

The 2021 corn crop sensing mission was conducted on May 1, 2021 (Table 4.15). A 

quad-copter platform was equipped with a MicaSense RedEdge multispectral camera and flown 

at 32 km h-1 (20 mi h-1). Table 4.15 outlines the variable- and fixed-rate applications that are 

displayed in Figure 4.24. 
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Figure 4.24 2021 corn N application including both fixed-rate and VRN applications 

The soil in this plot was identified as 50% (4.05 ha) Bruin silt (loam coarse-silty, mixed, 

superactive, thermic, Oxyaquic Eutrudepts), 35% (2.83 ha) Newellton complex (Clayey over 

loamy, smectitic over mixed, superactive, nonacid, thermic, Fluvaquentic Epiaquepts), 10% 

(0.81 ha) Tunica clay (Clayey over loamy, smectitic over mixed, superactive, nonacid, thermic, 

Vertic Epiaquepts), and 5% (0.40 ha) Commerce silt (Fine-silty, mixed, superactive, nonacid, 

thermic Fluvaquentic Endoaquepts). 

The season total fixed-rate fertilizer N amount was 302.63 kg ha-1 (270 lb ac-1) (Figure 

4.24). The mean rate for the VRN application dataset was 102.25 kg ha-1 (91 lb ac-1). 96.41 kg 

ac-1 (86 lb ac-1) served as the mode for VRN application dataset. A rate of 99.77 kg ha-1 (89 lb ac-

1) was discovered to be the median of the VRN application dataset. A season total range of 246 

kg ha-1 (220 lb ac-1) to 302.63 kg ha-1 (270 lb ac-1) was applied to the VRN portion of the plot. 

Figure 4.25 shows the yield map for the 2021 corn plot. 
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Figure 4.25 2021 corn plot yield map 

The soil in this plot was identified as 50% (4.05 ha) Bruin silt (loam coarse-silty, mixed, 

superactive, thermic, Oxyaquic Eutrudepts), 35% (2.83 ha) Newellton complex (Clayey over 

loamy, smectitic over mixed, superactive, nonacid, thermic, Fluvaquentic Epiaquepts), 10% 

(0.81 ha) Tunica clay (Clayey over loamy, smectitic over mixed, superactive, nonacid, thermic, 

Vertic Epiaquepts), and 5% (0.40 ha) Commerce silt (Fine-silty, mixed, superactive, nonacid, 

thermic Fluvaquentic Endoaquepts). 

An overall average and fixed-rate average yield of 14.66 Mt ha-1 (217 bu ac-1) was 

observed for the 2021 corn plot (Figure 4.25). The VRN application portion of the plot exceeded 

the overall average with a yield of 14.69 Mt ha-1 (218 bu ac-1). Fertilizer N treatment effects on 

yield and NUE for the 2021 corn plot are denoted in Table 4.23. 
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Table 4.23 2021 corn plot NUE by N rate class 

N Rate Class 

N Rate 

by Class 

(kg ha-1) 

Yield by 

N Rate 

(Mt ha-1) 

N Rate 

NUE 

Total 

Available 

NUE 

Percentage 

of Field 

Hectares 

per Class 

(ha) 

VRN Low 85-98 14.90 0.15 0.04 13% 1.09 

VRN Mod Low 99-110 14.98 0.14 0.04 12% 0.94 

VRN Mod High 111-122 15.23 0.13 0.04 4% 0.30 

VRN High 123-134 15.16 0.12 0.04 2% 0.13 

Fixed Rate 134 15.11 0.12 0.04 70% 5.66 

Refer to Materials and Methods for unit conversions 

Corn yield increased from 14.90 Mt ha-1 (221 bu ac-1) to 15.23 Mt ha-1 (226 bu ac-1) as 

VRN application increased from 85 kg ha-1 (75 lb ac-1) to 122 kg ha-1 (108 lb ac-1) (Table 4.23). 

The peak in yield at 15.23 Mt ha-1 (226 bu ac-1) may suggest that the VRN application range of 

111 kg ha-1 (99 lb ac-1) to 122 kg ha-1 (108 lb ac-1) is the optimal rate. Furthermore, corn yield 

decreased as VRN application reached the 123 kg ha-1 (110 lb ac-1) to 134 kg ha-1 (120 lb ac-1) 

range. The VRN NUE exhibited a decrease as VRN application increased. Table 4.24 details the 

2021 corn plot LSMeans yield comparison. 

Table 4.24 2021 Corn plot Tukey Studentized range of yield means by treatment class 

 
 Yield 

LSMEAN 

Treatment 

Class 

A  14.99 1 

A    

A  14.66 2 

LSMeans with same letter are not significantly different 

Yield units are Mt ha-1 

Treatment Classes: VRN Treatment = 1 (Total N application average = 270 kg ha-1).  

Fixed-rate Treatment = 2 (Total N applied = 303 kg ha-1) 

Tukey’s studentized range test discovered that the yield of treatments one and two were 

not significantly different (Table 4.24). A difference of 0.33 Mt ha-1 separated treatment one 

from treatment three. Treatment one may be favored to treatment two due to reduced N input 
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without significant decrease in yield. The 2021 corn plot yield modeled against VRN rates is 

shown in Figure 4.26. 

 

Figure 4.26 2021 corn yield modeled against VRN rates. 

Percentages indicate the portion of the VRN area that the rate covered 

Yield peaked at 15.23 Mt ha-1 (226 bu ac-1) followed by a decline to 15.16 Mt ha-1 (225 

bu ac-1) (Figure 4.26). The fixed-rate portion of the plot performed lower than the highest VRN 

application rate at a yield of 15.11 (224 bu ac-1). Edge-effect may be a likely culprit to the 

decline of yield among the highest VRN application and the fixed-rate application. 

2021 Cotton 

The crop sensing mission for the 2021 cotton crop was conducted on June 18, 2021 

(Table 4.15). A quad-copter platform was equipped with a MicaSense RedEdge multispectral 

camera and flown at 32 km h-1 (20 mi h-1). Table 4.16 notes the variable- and fixed-rate N 

applications that are mapped in Figure 4.27. 
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Figure 4.27 2021 cotton N application including both fixed-rate and VRN applications 

The soil series consisted of 26% (2.10 ha) Bruin silt loam (Coarse-silty, mixed, superactive, 

thermic, Oxyaquic Eutrudepts), 71% (5.75 ha) Commerce silt loam (Fine-silty, mixed, 

superactive, nonacid, thermic Fluvaquentic Endoaquepts), and 3% (0.24 ha) Newellton-Tunica 

complex (Clayey over loamy, smectitic over mixed, superactive, nonacid, thermic, Fluvaquentic 

Epiaquepts). 

The fixed-rate total season N application that the crop received was 89.67 kg ha-1 (80 lb 

ac-1) (Figure 4.27). A rate of 84.87 kg ha-1 (75 lb ac-1) served as the mean for the VRN 

application dataset. The mode and median for the VRN application dataset were 85.34 kg ha-1 

(76 lb ac-1). Total season range of the VRN applicated portion of the plot was 56 kg ha-1 (50 lb 

ac-1) to 89.67 kg ha-1 (80 lb ac-1). 

For the 2020 season, a heavier, early season N treatment of 89.67 kg ha-1 (80 lb ac-1) was 

applied as the starter N rate. The 2021 cotton crop only received a starter N rate of 33.63 kg ha-1 

(30 lb ac-1). The decrease in VRN application variability for the 2021 season may be linked to a 
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reduced need for N at pinhead square as a result of the heavier starter N rate. Figure 4.28 depicts 

the 2021 cotton plot yield map. 

 

Figure 4.28 2021 cotton plot yield map 

The soil series consisted of 26% (2.10 ha) Bruin silt loam (Coarse-silty, mixed, superactive, 

thermic, Oxyaquic Eutrudepts), 71% (5.75 ha) Commerce silt loam (Fine-silty, mixed, 

superactive, nonacid, thermic Fluvaquentic Endoaquepts), and 3% (0.24 ha) Newellton-Tunica 

complex (Clayey over loamy, smectitic over mixed, superactive, nonacid, thermic, Fluvaquentic 

Epiaquepts). 

An overall average yield of 91.93 kg ha-1 (1,366 lb ac-1) was noted for the 2021 cotton 

plot (Figure 4.28). The fixed-rate only portion of the plot achieved a mean yield of 92.66 kg ha-1 

(1,377 lb ac-1). Plants that received the VRN application achieved an average yield of 91.01 kg 

ha-1 (1,352 lb ac-1). Low topographic field areas are noted to have a significantly reduced yield. 

Fertilizer N treatment effect on yield and NUE for the 2021 cotton plot is noted in Table 4.25. 
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Table 4.25  2021 cotton plot NUE by N rate classes 

N Rate Class 

N Rate 

by Class 

(kg ha-1) 

Yield by 

N Rate 

(kg ha-1) 

N Rate 

NUE 

Total 

Available 

NUE 

Percentage 

of Field 

Hectares 

per Class 

(ha) 

VRN Low 73-76 1,586.50 21.41 8.31 0.3% 0.02 

VRN Mod Low 77-81 1,645.63 20.61 8.62 0.7% 0.04 

VRN Mod High 82-84 1,663.44 19.98 8.08 3% 0.17 

VRN High 85-89 1,559.24 18.09 8.31 33% 1.73 

Fixed Rate 89 1,542.29 17.21 7.28 63% 3.30 

 

Yield increased from 1586.50 kg ha-1 (1415 lb ac-1) to 1663.44 kg ha-1 (1483 lb ac-1) as 

VRN application rate increased from 73 kg ha-1 (65 lb ac-1) to 84 kg ha-1 (75 lb ac-1) (Table 

4.25). A decrease in yield was found as VRN application rate increased from 85 kg ha-1           

(76 lb ac-1) to 89 kg ha-1 (79 lb ac-1). Total available NUE increased from 8.31 to 8.62 with 

transition from the first VRN application class to the second. After peaking at 8.62, total 

available NUE decreased as VRN application increased. Variable rate N NUE consistently 

decreased as VRN application increased from 73 kg ha-1 (65 lb ac-1) to 89 kg ha-1 (79 lb ac-1). 

The 2021 LSMeans comparison is displayed in Table 4.26. 

Table 4.26 2021 cotton plot Tukey Studentized range of yield means by treatment class. 

 
 Yield 

LSMEAN 

Treatment 

Class 

A  1,543.5 2 

A    

A  1,519.6 1 

LSMeans with same letter are not significantly different 

Yield units are kg ha-1 

Treatment Classes: VRN Treatment = 1 (Total N application average = 119 kg ha-1).  

Fixed-rate Treatment = 2 (Total N applied = 123 kg ha-1) 

According to Tukey’s studentized range test, treatment classes one and two are not 

significantly different (Table 4.26). Although class one and two were not significantly different, 
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fixed-rate treatment class two yielded 23.9 kg ha-1 greater than VRN treatment class one. 

Variable rate N treatment class one may be the preferred rate due to decreased input N without a 

significant yield loss. 2021 cotton yield modeled against variable- and fixed-rate application rate 

and is noted in Figure 4.29. 

 

Figure 4.29 2021 cotton yield modeled against VRN rates 

Percentages indicate the portion of the VRN area that the rate covered 

Yield increased as fertilizer rate increased from 73 kg ha-1 (65 lb ac-1) to 84 kg ha-1 (75 lb 

ac-1) (Figure 4.29). A decrease in yield occurred as fertilizer rate increased from 85 kg ha-1 (76 lb 

ac-1) to 89 kg ha-1 (79 lb ac-1). The highest VRN application (89 kg ha-1 (79 lb ac-1)) resulted in 

an 83 kg ha-1 (74 lb ac-1) lower yield than the fixed-rate applied area. The low yield of the final 

VRN application point may be due to limited sample locations that fell within the highest VRN 

applied area. 
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Discussion on Variable Rate N Demonstration Using sUAS 

The variable rate N demonstration using sUAS provided insightful results. Variable rate 

N demonstration data from 2020 and 2021 found that farmers may reduce N input without a 

significant reduction in yield. Reduced N input would improve sustainability for the future of our 

crop land and the wildlife that surrounds the land. This study confirmed that sUAS can 

successfully be used to implement variable rate N practices in an on-farm situation. 

Results Conclusions 

Through the results of this study, the following is inferred: 

1. sUAS sensing mission data provided sufficient evidence suggesting that fixed-

wing flight platforms may be successfully deployed to estimate crop canopy N 

status most effectively, and the results of fixed-wing missions were not 

significantly different than that of the slower, quad-copter missions. 

2. The SCCCI and FENDVI VIs most often were highly related by SEq to early corn 

and cotton canopy N status. In general, compound red-edge VIs outperformed 

simple slope-based VIs in most cases. 

3. The VariRite™ technology was successfully implemented in a producer’s field 

using VI calibrated imagery captured on an sUAS. Deployment of a VRN 

prescription across corn and cotton provided evidence for reduction of fertilizer N 

inputs towards the mutual goals of N redistribution and sustained yield. 

This concludes the Chapter 4 Results section of this paper. 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

The research detailed in the previous sections cultivated many ideas that should be 

considered for future research. Objective outcomes, issues, and shortcomings in this research, as 

stated below, must be noted and mitigated in research to come. In a 1675 letter to Robert Hooke, 

Sir Isaac Newton stated, “If I have seen further, it is by standing on the shoulders of Giants.” 

Researchers are charged to use the past as a steppingstone for the future. Future research must 

continuously build upon past findings and failures to ensure the advancement of our people. 

Finding such as the ones listed below should be accounted for and closely considered when 

performing future research. 

Review of Research Results 

In this study, the following results were noted: 

1. sUAS sensing mission data provided sufficient evidence suggesting that fixed-

wing flight platforms may be successfully deployed to estimate crop canopy N 

status most effectively, and the results of fixed-winged missions were not 

significantly different than that of the slower, quad-copter missions. 

2. The SCCCI and FENDVI VIs most often were highly related by SEq to early corn 

and cotton canopy N status. In general, compound red-edge VIs outperformed 

simple slope-based VIs in most cases. 

3. The VariRite™ technology was successfully implemented in a producer’s field 

using VI calibrated imagery captured on an sUAS. Deployment of a VRN 

prescription across corn and cotton provided evidence for reduction of fertilizer N 

inputs towards the mutual goals of N redistribution and sustained yield. 
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The study results ally with the stated objectives and hypothesis in the deployment of red-

edge VIs to assess canopy N status in early corn and cotton will successfully demonstrate the 

practical utility of reducing fertilizer N applications through remote sensing calibrated re-

distribution techniques. 

Limitations of On-Farm sUAS Research and Future Recommendations 

This study was conducted in a highly variable, on-farm theater in lieu of a highly-

constrained and limited-variability research plot array. A primary and limiting issue exposed 

during the 2020 research was the limited number of soil and in situ sample locations. Ample soil 

and biophysical data sample count should be taken into consideration for future research. Too 

few of soil sample locations will increase the likelihood of outlying statistical samples being 

integrated into the soil N dataset. SPAD data collection is problematic and, therefore, 

necessitates increased sampling to improve relationships with objective leaf N% sample datasets. 

Noted in this research are outliers occurring in the highly variable on-farm research and must be 

excluded to ensure accuracy. Increasing sample number may also lead to a better understanding 

of phenomenon actually occurring in the soil beneath the surface. 

Quad-copter “tilt” was also noted as a prominent issue in this research. Tilting of the 

quad-copter, thus skewing the camera angle, resulted in variable sensitivity equivalents values as 

speed increased. The implementation of a gimble on a quad-copter platform is proposed for use 

in future research scenarios. A gimble would allow the sensor to maintain a constant perspective 

of the ground regardless of quad-copter attitude. Gimble implementation is necessary in future 

research to resolve data variability due to inconsistent camera angles. 

Vegetation indices testing also encountered hurtles that should be addressed in future 

research. Needed is a SPAD sensor that incorporates the green (550 nm) reflectance band. 
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Currently, SPAD measures the absorbance in red and NIR wavelengths. Vegetation indices in 

this study, such as FENDVI stated previously, require a green band incorporated testing tool to 

determine efficacy of VIs that incorporate the green band. Green band reflectance is indirectly 

related with canopy N status during photosynthesis, thus, coextended in detectable by SPAD 

meters (Mutanga and Skidmore, 2004). SPAD, in addition, does not account for red-colored soil 

albedo detected with sensors above canopy level. SPAD developed with a green band may 

increase understanding of individual band reflectance’s and improve canopy N detection through 

proximal and sUAS sensing methods. 

The red-edge shift relation to canopy leaf N% is an important connection that must be 

discussed in future research. A ‘rubberbanding’ effect occurs as reflective bands stretch within 

the red to NIR region. The stretch among the reflective bands may be linked to increase and 

decrease of canopy reflectance that correlate canopy N levels. A biochemical phenomenon has 

not been linked to the lateral red-edge shift that may occur with increased N status and/or 

availability. Gitelson et al. (1999) proposed the ratio of F737/F700 nm detectable florescence is 

directly correlated to canopy chlorophyll, and thus, highly relatable to canopy N status. 

Laboratory research is necessary to decouple red-edge shift from red-to-NIR reflectance decrease 

and increase. Moreover, research is needed to discover why red-edge is superior in detecting 

canopy N status. Little, if any, research has been done to dissect the true cause of success among 

red-edge based indices in canopy N related research. 

Final recommendations for this research are to expand the study beyond small plot 

canopy N status assessment to larger, broader field landscapes using fixed-wing sUAS parallel 

with continued deployment of the VariRite VRN algorithm. The stated purpose of this research 

was to reduce N fertilization by redistributing resources to field areas of greater need and 
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maintaining sustainable yields, although likely not highest attainable yields. Future research is 

needed to expand the results of the study herein and advance the technologies to ensure the 

safety of our environment parallel to profitable, sustainable farm production. 

This concludes the research results and recommendations for this study.
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Figure A.1 2020 corn crop at V4 stage 

 

Figure A.2 2020 corn crop at V4 stage in field 
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Figure A.3 2020 cotton plot north at pinhead square stage 

 

Figure A.4 2020 cotton plot north receiving VRN application 
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Figure A.5 2020 cotton plot south at mid bloom stage 

 

Figure A.6 2020 cotton plot south post-Hurricane Laura 
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Figure A.7 2021 cotton plot at boll development stage 

 

Figure A.8 2021 cotton plot ready to be harvested 
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Figure A.9 Quad-copter platform used in this study 

Measures .65 m (2.13 ft) across 

 

Figure A.10 Fixed-wing platform used in this study 

 

Wingspan is 2.06 m (6.76 ft)
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SAS CODE FOR ANALYSIS
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Figure B.1 SAS code used for all datasets VI comparison to LN for SEq calculations 
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Figure B.2 SAS code used for all datasets VI comparison to SPAD for SEq calculations 
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Table B.2 DFBetas test on 2020 corn quad data conducted in SAS for Leaf N 

Output Statistics 

Obs Residual RStudent 
Hat Diag 

H 

Cov 

Ratio 
DFFITS 

DFBETAS 

Intercept LN 

1 -0.0152 -1.8384 0.1283 0.5881 -0.7052 0.0647 -0.1125 

2 0.0064 0.6219 0.1283 1.4232 0.2385 -0.0219 0.0380 

3 -0.0043 -0.6385 0.6152 3.1996 -0.8074 0.6942 -0.7207 

4 -0.0110 -1.3240 0.2848 1.1039 -0.8356 -0.6622 0.6259 

5 0.0093 0.9667 0.1558 1.2108 0.4153 -0.1589 0.1847 

6 -0.0001 -0.0124 0.1266 1.6487 -0.0047 0.0002 -0.0005 

7 0.0027 0.3252 0.4298 2.4220 0.2824 0.2476 -0.2378 

8 0.0122 1.3274 0.1311 0.9062 0.5157 0.1455 -0.1115 
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Figure B.3 SAS code used for all LN DFBetas tests 
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Table B.3 DFBetas test on 2020 corn quad data conducted in SAS for SPAD 

Output Statistics 

Obs Residual RStudent 
Hat Diag 

H 

Cov 

Ratio 
DFFITS 

DFBETAS 

Intercept SPAD 

1 -0.0088 -1.6647 0.1575 0.7076 -0.7199 -0.3689 0.3271 

2 0.0057 0.9211 0.1291 1.2086 0.3547 -0.0401 0.0634 

3 -0.0047 -0.9088 0.3919 1.7443 -0.7296 0.5735 -0.6021 

4 -0.0004 -0.0970 0.5570 3.2384 -0.1088 -0.0990 0.0958 

5 0.0041 0.6745 0.2203 1.5517 0.3585 -0.2175 0.2358 

6 -0.0056 -0.9383 0.1748 1.2616 -0.4318 0.2058 -0.2305 

7 0.0011 0.1819 0.2401 1.8703 0.1023 0.0755 -0.0708 

8 0.0087 1.5908 0.1291 0.7289 0.6125 -0.0693 0.1094 
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Figure B.4 SAS code used for all SPAD DFBetas tests 
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Table B.4 DFBetas test on 2020 cotton north quad data conducted in SAS for Leaf N 

Output Statistics 

Obs Residual RStudent 
Hat Diag 

H 

Cov 

Ratio 
DFFITS 

DFBETAS 

Intercept LN 

1 0.0079 0.1997 0.1267 1.6230 0.0761 -0.0028 0.0089 

2 0.0274 0.7416 0.1791 1.4238 0.3465 -0.1667 0.1905 

3 0.0071 0.1799 0.1277 1.6296 0.0688 -0.0044 0.0099 

4 0.0249 0.6585 0.1620 1.4551 0.2896 -0.1176 0.1384 

5 -0.0369 -1.1519 0.2962 1.2779 -0.7473 0.5274 -0.5682 

6 -0.0000 -0.0025 0.8544 9.8871 -0.0062 -0.0059 0.0057 

7 -0.0697 -2.7555 0.1285 0.2605 -1.0581 -0.2576 0.1745 

8 0.0392 1.0831 0.1254 1.0801 0.4100 0.0546 -0.0218 

 

Table B.5 DFBetas test on 2020 cotton north quad data conducted in SAS for SPAD 

Output Statistics 

Obs Residual RStudent 
Hat Diag 

H 

Cov 

Ratio 
DFFITS 

DFBETAS 

Intercept SPAD 

1 0.0059 0.1522 0.1407 1.6603 0.0616 0.0223 -0.0206 

2 0.0202 0.6017 0.3283 1.8640 0.4206 0.3385 -0.3310 

3 0.0084 0.2155 0.1306 1.6261 0.0835 -0.0150 0.0174 

4 0.0246 0.6460 0.1256 1.4029 0.2449 0.0245 -0.0173 

5 -0.0416 -1.2757 0.2153 1.0445 -0.6683 -0.4476 0.4329 

6 -0.0051 -0.1370 0.2009 1.7886 -0.0687 -0.0438 0.0422 

7 -0.0611 -3.3756 0.4017 0.2238 -2.7657 2.2491 -2.2954 

8 0.0486 2.1729 0.4569 0.7013 1.9929 -1.6672 1.6985 
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Table B.6 DFBetas test on 2020 cotton south quad data conducted in SAS for Leaf N 

Output Statistics 

Obs Residual RStudent 
Hat Diag 

H 

Cov 

Ratio 
DFFITS 

DFBETAS 

Intercept LN 

1 -0.0049 -0.2869 0.2783 1.9313 -0.1781 0.1254 -0.1322 

2 -0.0065 -0.4770 0.5215 2.7534 -0.4980 0.4202 -0.4343 

3 0.0019 0.1265 0.4000 2.3846 0.1033 0.0887 -0.0857 

4 -0.0356 -3.6991 0.1704 0.1243 -1.6762 -0.9427 0.8649 

5 0.0157 0.9076 0.1611 1.2653 0.3978 -0.1687 0.1883 

6 0.0186 1.0856 0.1273 1.0807 0.4146 0.0784 -0.0559 

7 -0.0014 -0.0789 0.1629 1.7159 -0.0348 -0.0184 0.0168 

8 0.0122 0.6920 0.1785 1.4598 0.3226 0.1912 -0.1766 

 

Table B.7 DFBetas test on 2020 cotton south quad data conducted in SAS for SPAD 

Output Statistics 

Obs Residual RStudent 
Hat Diag 

H 

Cov 

Ratio 
DFFITS 

DFBETAS 

Intercept SPAD 

1 0.0028 0.2293 0.1331 1.6267 0.0899 0.0263 -0.0221 

2 -0.0183 -2.7803 0.4047 0.3731 -2.2924 1.8429 -1.9058 

3 -0.0099 -0.8489 0.1509 1.2955 -0.3579 0.1326 -0.1483 

4 -0.0107 -1.8939 0.7008 1.6316 -2.8984 -2.6825 2.6272 

5 0.0110 0.9577 0.1628 1.2281 0.4223 -0.1856 0.2035 

6 0.0129 1.1525 0.1458 1.0524 0.4762 -0.1587 0.1799 

7 0.0043 0.3532 0.1750 1.6616 0.1627 0.0934 -0.0870 

8 0.0079 0.6517 0.1269 1.4012 0.2485 -0.0188 0.0306 

 

  



 

126 

Table B.8 DFBetas test on 2021 corn quad data conducted in SAS for Leaf N 

Output Statistics 

Obs Residual RStudent 
Hat Diag 

H 

Cov 

Ratio 
DFFITS 

DFBETAS 

Intercept LN 

1 0.0150 0.3973 0.0550 1.1442 0.0959 -0.0385 0.0473 

2 0.0465 1.2936 0.0787 1.0219 0.3780 -0.2297 0.2592 

3 0.0001 0.0048 0.0528 1.1587 0.0011 -0.0004 0.0005 

4 0.0747 2.1732 0.0440 0.7651 0.4660 0.1525 -0.1065 

5 0.0289 0.7705 0.0441 1.0859 0.1655 -0.0221 0.0388 

6 -0.0576 -1.6576 0.0961 0.9495 -0.5404 0.3680 -0.4067 

7 0.0077 0.2036 0.0417 1.1408 0.0425 0.0058 -0.0015 

8 -0.0525 -1.6943 0.2794 1.1788 -1.0551 -1.0099 0.9732 

9 -0.0510 -1.5645 0.2147 1.1211 -0.8182 -0.7676 0.7345 

10 -0.0196 -0.5192 0.0417 1.1165 -0.1083 -0.0067 -0.0044 

11 -0.0629 -1.9000 0.1508 0.9411 -0.8008 -0.6345 0.6812 

12 -0.0544 -1.5087 0.0465 0.9369 -0.3332 0.0747 -0.1076 

13 -0.0150 -0.4028 0.0712 1.1636 -0.1115 0.0627 -0.0719 

14 -0.0024 -0.0639 0.0627 1.1705 -0.0165 -0.0109 0.0096 

15 0.0115 0.3132 0.1107 1.2226 0.1105 0.0937 -0.0872 

16 0.0223 0.5901 0.0431 1.1098 0.1252 0.0352 -0.0227 

17 0.0241 0.6937 0.1824 1.2829 0.3276 0.3023 -0.2878 

18 0.0195 0.5181 0.0536 1.1306 0.1233 0.0690 -0.0582 

19 0.0239 0.6384 0.0517 1.1137 0.1491 -0.0517 0.0658 

20 0.0277 0.7379 0.0428 1.0894 0.1561 -0.0096 0.0255 

21 0.0300 0.8043 0.0550 1.0931 0.1941 -0.0779 0.0957 

22 0.0198 0.5232 0.0428 1.1173 0.1107 -0.0068 0.0181 

23 0.0122 0.3235 0.0616 1.1580 0.0829 -0.0399 0.0472 

24 -0.0483 -1.3461 0.0767 1.0074 -0.3880 0.2316 -0.2623 
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Table B.9 DFBetas test on 2021 corn quad data conducted in SAS for SPAD 

Output Statistics 

Obs Residual RStudent 
Hat Diag 

H 

Cov 

Ratio 
DFFITS 

DFBETAS 

Intercept SPAD 

1 0.0043 0.1665 0.0524 1.1551 0.0391 -0.0161 0.0177 

2 0.0260 1.0343 0.0791 1.0791 0.3032 -0.1983 0.2086 

3 -0.0014 -0.0562 0.0428 1.1462 -0.0119 0.0014 -0.0019 

4 0.0361 1.5121 0.1221 1.0168 0.5640 -0.4421 0.4578 

5 0.0099 0.3856 0.0652 1.1576 0.1019 -0.0574 0.0612 

6 -0.0389 -1.5711 0.0510 0.9260 -0.3643 -0.1711 0.1561 

7 -0.0020 -0.0799 0.0471 1.1510 -0.0178 0.0052 -0.0060 

8 -0.0300 -1.2269 0.1130 1.0773 -0.4378 -0.3597 0.3478 

9 -0.0491 -2.0561 0.0510 0.8014 -0.4768 -0.2239 0.2043 

10 -0.0212 -0.8187 0.0418 1.0757 -0.1711 0.0033 -0.0112 

11 -0.0324 -1.3007 0.0695 1.0102 -0.3555 -0.2375 0.2250 

12 -0.0188 -0.7520 0.1077 1.1663 -0.2613 -0.2119 0.2046 

13 -0.0031 -0.1193 0.0449 1.1475 -0.0259 -0.0081 0.0069 

14 0.0158 0.6150 0.0695 1.1381 0.1681 0.1123 -0.1064 

15 0.0556 2.6626 0.1915 0.7588 1.2960 1.1731 -1.1465 

16 0.0130 0.4966 0.0457 1.1235 0.1087 -0.0274 0.0322 

17 -0.0216 -0.8704 0.1166 1.1573 -0.3162 0.2444 -0.2534 

18 -0.0088 -0.3428 0.0791 1.1786 -0.1005 0.0657 -0.0691 

19 0.0222 0.8579 0.0428 1.0702 0.1814 -0.0210 0.0293 

20 0.0110 0.4258 0.0595 1.1470 0.1071 -0.0544 0.0586 

21 -0.0202 -0.8568 0.2047 1.2884 -0.4348 0.3786 -0.3880 

22 0.0123 0.4721 0.0457 1.1260 0.1033 -0.0261 0.0306 

23 0.0325 1.2955 0.0578 0.9987 0.3207 0.1816 -0.1693 

24 0.0088 0.3680 0.1994 1.3533 0.1836 0.1670 -0.1633 

 

  



 

128 

Table B.10 DFBetas test on 2021 cotton quad data conducted in SAS for Leaf N 

Output Statistics 

Obs Residual RStudent 
Hat Diag 

H 

Cov 

Ratio 
DFFITS 

DFBETAS 

Intercept LN 

1 0.0110 0.9475 0.0945 1.1148 0.3062 0.2427 -0.2290 

2 0.0013 0.1114 0.0501 1.1541 0.0256 0.0121 -0.0105 

3 -0.0142 -1.2114 0.0510 1.0104 -0.2809 0.1023 -0.1204 

4 -0.0050 -0.4317 0.1003 1.1984 -0.1441 0.1034 -0.1102 

5 -0.0025 -0.2204 0.1075 1.2240 -0.0765 0.0564 -0.0599 

6 0.0048 0.4053 0.0902 1.1876 0.1276 -0.0873 0.0936 

7 0.0042 0.3559 0.1003 1.2052 0.1188 -0.0852 0.0908 

8 0.0026 0.2334 0.1649 1.3074 0.1037 -0.0858 0.0896 

9 -0.0041 -0.3384 0.0453 1.1372 -0.0737 0.0159 -0.0210 

10 -0.0037 -0.3085 0.0417 1.1349 -0.0643 -0.0060 0.0015 

11 -0.0135 -1.1419 0.0477 1.0216 -0.2555 -0.1072 0.0906 

12 -0.0296 -2.8960 0.0621 0.5975 -0.7450 -0.4688 0.4271 

13 6.6809 0.0005 0.0428 1.1466 0.0001 0.0000 -0.0000 

14 -0.0041 -0.3449 0.0530 1.1459 -0.0816 -0.0427 0.0378 

15 -0.0036 -0.2972 0.0466 1.1415 -0.0657 -0.0257 0.0214 

16 -0.0232 -2.0957 0.0488 0.7892 -0.4749 -0.2124 0.1820 

17 0.0048 0.4042 0.0621 1.1521 0.1040 0.0654 -0.0596 

18 0.0132 1.1173 0.0510 1.0304 0.2591 -0.0944 0.1111 

19 0.0081 0.6851 0.0704 1.1295 0.1885 -0.1099 0.1204 

20 0.0062 0.5232 0.0614 1.1394 0.1338 -0.0679 0.0758 

21 0.0185 1.6234 0.0594 0.9211 0.4079 -0.1983 0.2229 

22 0.0012 0.1002 0.0664 1.1745 0.0267 0.0178 -0.0163 

23 0.0043 0.4307 0.3357 1.6232 0.3061 0.2934 -0.2865 

24 0.0232 2.2441 0.1469 0.8369 0.9311 0.8209 -0.7881 
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Table B.11  DFBetas test on 2021 cotton quad data conducted in SAS for Leaf N 

Output Statistics 

Obs Residual RStudent 
Hat Diag 

H 

Cov 

Ratio 
DFFITS 

DFBETAS 

Intercept SPAD 

1 0.0144 1.3126 0.2179 1.1985 0.6928 -0.6007 0.6231 

2 0.0029 0.2378 0.1083 1.2242 0.0829 0.0684 -0.0650 

3 -0.0157 -1.3178 0.0861 1.0245 -0.4044 -0.3092 0.2905 

4 -0.0090 -0.7766 0.1704 1.2501 -0.3520 0.2932 -0.3059 

5 -0.0065 -0.5279 0.0729 1.1530 -0.1481 -0.1044 0.0970 

6 0.0012 0.1031 0.0801 1.1919 0.0304 -0.0195 0.0211 

7 0.0004 0.0339 0.0429 1.1465 0.0072 0.0017 -0.0012 

8 -0.0028 -0.2295 0.0564 1.1573 -0.0561 0.0253 -0.0287 

9 -0.0048 -0.4332 0.2364 1.4119 -0.2410 -0.2252 0.2187 

10 -0.0036 -0.2909 0.0421 1.1366 -0.0610 -0.0104 0.0062 

11 -0.0124 -1.0192 0.0775 1.0802 -0.2954 0.1855 -0.2009 

12 -0.0274 -2.4515 0.0424 0.6928 -0.5157 0.0311 -0.0665 

13 0.0005 0.0404 0.0453 1.1494 0.0088 -0.0019 0.0025 

14 -0.0024 -0.1960 0.0567 1.1592 -0.0480 -0.0275 0.0247 

15 -0.0024 -0.1963 0.0584 1.1613 -0.0489 -0.0290 0.0262 

16 -0.0219 -1.8656 0.0421 0.8431 -0.3909 0.0108 -0.0377 

17 0.0071 0.5735 0.0567 1.1279 0.1406 0.0805 -0.0724 

18 0.0116 0.9450 0.0564 1.0702 0.2311 -0.1042 0.1182 

19 0.0054 0.4355 0.0533 1.1386 0.1034 -0.0419 0.0483 

20 0.0039 0.3311 0.1429 1.2671 0.1352 -0.1085 0.1138 

21 0.0164 1.3532 0.0433 0.9705 0.2878 -0.0359 0.0555 

22 0.0036 0.2925 0.0447 1.1395 0.0632 0.0206 -0.0164 

23 0.0129 1.0679 0.0779 1.0708 0.3104 0.2269 -0.2117 

24 0.0284 2.6583 0.0890 0.6744 0.8308 0.6436 -0.6058 
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Figure B.5 SAS code used for SCCCI vs FENDVI means separation 
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Table B.12 Tukey’s Studentized Range test to determine if SCCCI and FENDVI modeled with 

Leaf N were significantly different 

The GLM Procedure 
  

Tukey's Studentized Range (HSD) Test for Value 

 

  

Alpha 0.05 

Error Degrees of Freedom 32 

Error Mean Square 2.177344 

Critical Value of Studentized Range 2.88062 

Minimum Significant Difference 1.0309 

 

Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N SCCCI1FENDVI2 

A 1.5164 17 1 

A       

A 1.4233 17 2 
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Figure B.6 SAS code used for separation of means for yield across all datasets 

Data cards are concatenated for space constrictions 
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