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Globally, illegal logging poses a significant threat. This results in environmental damage 

as well as lost profits for legitimate wood product producers and taxes for governments. A global 

value of $30 to $100 billion is estimated to be associated with illegal logging and processing. 

Field identification of wood species is fundamental to combating species fraud and 

misrepresentation in global wood trade. Using computer vision wood identification (CVWID) 

systems, wood can be identified without the need for time-consuming and costly offsite visual 

inspections by trained wood anatomists. While CVWID research has received significant 

attention, most studies have not considered the generalization capabilities of the models by 

testing them on a field sample, and only report overall accuracy without considering 

misclassifications. The aim of this dissertation is to advance the design and development of 

CVWID systems by addressing three objectives: 1) to develop functional, field-deployable 

CVWID models for Peruvian and North American hardwoods, 2) test the ability of CVWID to 

solve increasingly challenging problems (e.g., larger class sizes, lower anatomical diversity, and 

spatial heterogeneity in the context of porosity), and 3) to evaluate the generalization capabilities 

by testing models on independent specimens not included in training and analyzing 



 

 

misclassifications. This research features four main sections: 1) an introduction summarizing 

each chapter, 2) a chapter (Chapter 2) developing a 24-class model for Peruvian hardwoods and 

testing its generalization capabilities with independent specimens not used in training, 3) a 

chapter (Chapter 3) on the design and implementation of a continental scale 22-class model for 

North American diffuse-porous hardwoods using wood anatomy-driven model performance 

evaluation, and 3) a chapter (Chapter 4) on the development of a 17-class models for North 

American ring-porous hardwoods, in particular examining the model's effectiveness in dealing 

with the greater spatial heterogeneity of ring-porous hardwoods. 
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CHAPTER I 

INTRODUCTION: EXECUTIVE SUMMARY 

In 2018, the global trade of forest products represented a value chain of more than 550 

billion U.S. dollars1 with illegal logging accounting for 15–30% of the global timber supply 

chain (Food and Agriculture Organization, 2018; Nellemann, 2012).  This value chain includes 

products such as lumber, logs, dressed lumber, veneers, furniture, pulp, wood fuel, and others 

(Food and Agriculture Organization, 2018). Illegal logging is the most profitable form of 

transnational natural resource crime and the fourth most lucrative form of transnational crime 

following counterfeiting, drug trafficking, and human trafficking (May, 2017).  

One tool used to combat this massive problem is in-field wood identification. 

Conventional wood identification is largely human-based whereby a trained expert observes the 

anatomical features with a hand lens or a microscope (Wheeler and Baas, 1998). These 

observations are then compared to reference descriptions, verified specimens, field guides, or 

online resources such as InsideWood2 (Wheeler and Baas, 1998). However, substantial training 

in wood anatomy is required to become proficient at recognizing and interpreting the anatomical 

patterns needed for accurate identification. A study by Wiedenhoeft et al. (2019), presents 

evidence suggesting that there is likely a severe shortage of wood anatomists that can identify 

wood at a forensic level in the U.S. and presumably worldwide. It is challenging to sustain the 

level of expertise needed for reliable wood identification due to individuals retiring, changing 

 

1 http://www.fao.org/faostat/en/#data/FO 
2 https://insidewood.lib.ncsu.edu/ 
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jobs, or simply losing interest. Acquiring necessary proficiency would require several months to 

years, which does not scale with the current demand (Wiedenhoeft et al., 2019).  

Automated wood identification may offer a solution to this shortage of human expertise 

(Ravindran et al., 2020). Computer vision wood identification (CVWID) uses a combination of 

feature extraction and machine learning, a method of automating decisions without instructions 

from a human (Hwang and Sugiyama, 2021). CVWID systems consist of hardware (digital 

camera, lens, and a computer) and software (feature detection and classification algorithms). The 

potential benefit of CVWID systems is the ability to provide accurate and reliable identifications 

without the need for extensive human training (Hermanson and Wiedenhoeft, 2011).  

One such CVWID system is the XyloTron, an open-source, field-deployable CVWID 

system designed at the USDA Forest Products Laboratory (Ravindran et al., 2020). The 

XyloTron is comprised of the XyloScope (camera and lens) and a laptop paired with 

convolutional neural network (CNN) software for identification.  

Published research on computer-vision based automated wood identification systems 

began with Khalid et al. (2008), in which the authors developed a prototype computer-based 

wood identification system that was capable of classifying 20 tropical Malaysian wood species 

with an accuracy of 95.0%, suggesting that automated identification systems might be suitable 

for commercial purposes. Martins et al., (2013) performed two different experiments to classify 

112 different softwood and hardwood species. In the first experiment, classifiers were trained to 

distinguish between softwoods and hardwoods, a 2-class model. In the second experiment, 

classifiers were trained to distinguish between all 112 species as individual classes. They 

reported 98.6% and 86.0% accuracy, respectively. These results suggest a decrease in model 

performance as the number of classes increases. Filho et al. (2014) proposed a two-level divide-
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and-conquer classification approach in which an input image is divided into several sub-images, 

each of which is classified independently, and the partial decisions are then combined in order to 

produce a final decision. When classifying 41 different wood species from Brazil, the best 

accuracy they achieved was 97.7%. Ravindran et al. (2018) developed a 10-class species- and a 

6-class genus-level computer-vision classification model for ten CITES-listed species and other 

neotropical species in the family Meliaceae. For species-level and genus-level predictions, each 

model achieved an accuracy of 87.4% and 97.5%, respectively. This study also made an initial 

analysis of the misclassified images and found that they generally corresponded to human-based 

wood identification errors.  

Previous studies on the development of CVWID models show high in silico accuracies 

(Hwang and Sugiyama, 2021); however, most studies have not tested the generalizability of their 

models with subsequent field-testing on independent specimens, that is, these studies have not 

demonstrated that their models can perform on new specimens. Most studies only report the 

overall accuracies of the models with little or no analysis of misclassifications. Ravindran et al., 

(2019) developed a 15-class model for Ghanaian timbers and were the first to perform field 

testing on independent specimens. They discovered a deployment gap (discrepancy between lab 

and field accuracies) of 25.0%, when in silico accuracy was 97.0%, and a field accuracy on 

independent specimens of 72.0%. 

To advance the design and development of CVWID systems, this dissertation has three 

objectives: 1) to develop functional, field-deployable CVWID models for Peruvian and North 

American hardwoods, 2) to determine if CVWID can solve progressively more challenging 

problems (e.g. larger number of classes, lower anatomical diversity, and spatial heterogeneity as 
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it relates to porosity), and 3) to evaluate generalizability by testing models on independent 

specimens not used in training and analyzing misclassifications. 

This dissertation contains four major sections: 1) an introduction (Chapter 1) 

summarizing each chapter, 2) a chapter (Chapter 2) developing a 24-class CVWID model for 

Peruvian hardwoods, the largest class model for Peru to date, and testing the model’s 

generalization capabilities on independent test specimens not used training, 3) a chapter (Chapter 

3) on the design and implementation of the first and largest continental scale model for North 

American diffuse-porous hardwoods using wood anatomy-driven model performance evaluation, 

and 4) a chapter (Chapter 4) on the development of one of the first and largest CVWID models 

for North American ring-porous hardwoods, specifically investigating how well the model 

handles the greater spatial heterogeneity of ring-porous hardwoods. 

1.1 Summary of Chapter 2 

Forests in Peru are greatly threatened by illegal logging, which is found in more than 

two-thirds of logging concessions and at least 58% of exported lumber (Finer et al., 2014). To 

help combat illegal logging in Peru, a 24-class CVWID model was trained using images of 

specimens from 228 Peruvian species obtained from six xylaria using the open-source, field-

deployable XyloTron platform. This chapter evaluates the performance of CVWID with larger 

class sizes and presents the largest tested national-scale CVWID model for Peruvian woods that 

is ready for immediate in-country field evaluation and will be tested in Fall of 2022. The results 

of the specimen-level cross-validation accuracy were 97.0%. The generalization capabilities of 

the model were assessed by using independent test specimens, multiple hardware instantiations, 

and different operators of varying skill levels. When tested on independent specimens from a 

xylarium that did not contribute to training data, the top-1 and top-2 classification accuracies are 
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86.5% and 92.4%, respectively. Based on the technology's readiness for implementation in real-

world field screening scenarios, this study provided evidence that the technology has the 

potential to help promote legal and sustainable wood value chains in Peru. 

1.2 Summary of Chapter 3 

North American wood products is a multi-billion-dollar industry in the United States, 

with total output (summation of business revenues and industry sales of hardwood products) of 

over 130 billion USD (Hardwood Federation, 2016). Rapid and reliable identification of wood 

along this value chain is essential for sustainable practices and conservation efforts to succeed, 

(Wiedenhoeft et al., 2019). To design a complete CVWID model for North American (NA) 

hardwoods, approximately 40 classes would be needed, which exceeds anything published for 

this region. As a way to separate the NA hardwoods into smaller number of classes, this study 

leverages a domain-based factor by separating the NA hardwoods by wood anatomical spatial 

heterogeneity as it relates to porosity. This chapter presents the first and largest continental-scale 

model for identifying NA diffuse-porous hardwoods and assesses model performance among 

classes with lower wood anatomical diversity than previous work (e.g., Chapter 2, Peru). A five-

fold cross-validation strategy was used to train and evaluate the model. Images from the training 

specimens were split into five folds with class level stratification while maintaining mutual 

exclusivity at the specimen level between the folds. Each specimen contributed to images in 

exactly one fold, where four folds were used to train the model and the remaining fold was used 

for validation. The field model was trained using 100% of the images in the five-fold cross-

validation and then evaluated on specimens from a separate xylarium.  The cross-validation 

model accuracy was 95.2%, and the top-1 and top-2 accuracies were 80.6% and 90.5%, 

respectively, when the field model was tested on independent specimens that were not included 



 

6 

in the model's training. Additionally, this study assessed misclassifications by considering the 

anatomical properties of the woods considered, pointing out the importance of wood anatomy 

informing CVWID model development. 

1.3 Summary of Chapter 4 

Wood identification is crucial to ensuring the legality of the hardwood value chain in 

North America. In continuing to develop a unified North American hardwood model, this 

chapter expands on the work in chapter 3 by training and evaluating complementary 17-class 

XyloTron CVWID models for identifying North American ring-porous hardwoods. Along with 

evaluating model accuracy and examining misclassifications, this study focuses on how the 

greater spatial heterogeneity of ring-porous woods may affect model predictions. In ring-porous 

hardwoods, the earlywood and latewood exhibit marked differences in vessel size and 

arrangement. Due to this greater spatial heterogeneity, capturing an image that does not contain 

all the anatomical features needed for accurate identification may be possible. For example, an 

image may capture only latewood for fast radial growth, omitting the larger diameter earlywood 

vessels. Slow radial growth can produce an image primarily of earlywood, displaying the relative 

absence of latewood features, which readily separates the white oak group from the red oak 

group. Additionally, some images may lack tangentially varying characteristics, such as broad 

rays in Quercus. The five-fold cross-validation model's results demonstrated 98.0% accuracy, 

and a field model tested on independent test specimens achieved top-1 and top-2 predictions of 

91.4% and 100%, respectively. When testing the model on three smaller spatial heterogeneity 

datasets (Slow-Growth, Fast-Growth, and Broad Rays Absent), the results suggest that spatial 

heterogeneity may not affect model predictions to the extent anticipated. In addition, this study 
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highlights the importance of cooperation between wood anatomists and machine learning experts 

in developing field-deployable CVWID systems. 

1.4 Conclusion 

Previous studies have demonstrated the theoretical potential of CVWID technology as a 

way to overcome the shortage of wood identification experts, help combat illegal logging, and 

deter fraud and misrepresentation of forest products. This dissertation evaluates how CVWID 

models can solve progressively more challenging problems by: 1) investigating how increasing 

class sizes affects CVWID models, 2) evaluating how comparatively lower wood anatomical 

diversity among classes impacts CVWID model performance, and 3) examining how the greater 

spatial heterogeneity of North American ring-porous hardwoods influences model performance. 

The findings suggest the following: 

• It is recommended that CVWID models with large class sizes are developed, 

taking into account domain-based factors for informed model selection, label 

space design, and model predictions, while leveraging human expertise in model 

development, implementation, and evaluation. 

• The development and evaluation of CVWID technologies require a wood 

anatomically-informed approach. 

• The greater spatial heterogeneity of North American ring-porous hardwoods does 

not appear to influence the model performance as initially anticipated. 
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CHAPTER II 

FIELD-DEPLOYABLE COMPUTER VISION WOOD IDENTIFICATION  

OF PERUVIAN TIMBERS 

Ravindran, P., Owens, F. C., Wade, A. C., Vega, P., Montenegro, R., Shmulsky, R. (2021). 

Field-deployable computer vision wood identification of Peruvian 

timbers. Front. Plant Sci. 12:647515. doi: 10.3389/fpls.2021.647515  

(Republished with permission) 

2.1 Abstract 

Illegal logging is a major threat to forests in Peru, in the Amazon more broadly, and in 

the tropics globally. In Peru alone, more than two thirds of logging concessions showed 

unauthorized tree harvesting in natural protected areas and indigenous territories, and in 2016 

more than half of exported lumber was of illegal origin. To help combat illegal logging and 

support legal timber trade in Peru we trained a convolutional neural network using transfer 

learning on images obtained from specimens in six xylaria using the open source, field-

deployable XyloTron platform, for the classification of 228 Peruvian species into 24 

anatomically informed and contextually relevant classes. The trained models achieved accuracies 

of 97% for five-fold cross validation, and 86.5 and 92.4% for top-1 and top-2 classification, 

respectively, on unique independent specimens from a xylarium that did not contribute training 

data. These results are the first multi-site, multi-user, multi-system-instantiation study for a 

national scale, computer vision wood identification system evaluated on independent scientific 

wood specimens. We demonstrate system readiness for evaluation in real-world field screening 
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scenarios using this accurate, affordable, and scalable technology for monitoring, incentivizing, 

and monetizing legal and sustainable wood value chains. 

2.2 Keywords 

XyloTron, wood identification, illegal logging and timber trade, computer vision, 

machine learning, deep learning 

2.3 Introduction 

State-owned Amazonian forests cover 60% of the total area of Peru with over 15.3 

million hectares of the Amazon forest being classified as natural protected areas (SERNANP, 

2020) and the rest supporting diverse modes of managed production (e.g., 11 million hectares 

designated as Forest Logging Concessions; Kometter, 2019). However more than 68% of 

supervised logging concessions showed unauthorized tree harvesting from natural protected 

areas and indigenous territories (Finer et al., 2014), and in 2016 alone at least 58% of exported 

lumber was of illegal origin (SBS and GIZ, 2018). According to official data, over the past 

decade the volume of wood produced from illegally logged trees increased from 1.15 to 1.8 

million cubic meters per annum (OSINFOR, 2015—onward). 

For the last twenty years Peru has been building governance infrastructure to achieve 

sustainability of its forest products, facilitated by national and international policies (Office of 

the US Trade Representative, 2006; SERFOR, 2015) to improve the monitoring and regulation 

of the forest products supply chain. Oversight of this monitoring is conducted at inspection 

stations by government authorities such as the National Forestry and Wildlife Service, the 

Supervisory Agency for Forest and Wildlife Resources, the Regional Offices of Forests and 

Wildlife, and the National Customs Superintendency of Peru. Rapid field identification of wood 

can help efficiently establish due cause for further investigation (UNODC, 2016) at these 
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inspection stations when officials are confronted with falsified documentation. In contrast to 

plant identification, which is based on common botanical structures (i.e., flowers, fruits, leaves), 

conventional wood identification is dependent on recognizing anatomical patterns in wood and 

comparing them to reference descriptions or specimens. Such identifications are best performed 

by highly trained wood anatomists with substantial training in forensic wood identification, and 

are typically conducted in a laboratory, which does not meet the needs for rapid field screening 

at the inspection stations.  

In the larger Amazonian context, two notable initiatives that enable human-based wood 

identification are: a mobile phone-based identification key that enables humans to identify 157 

species (Gontijo et al., 2017), and the development of electronic identification keys as part of the 

Brazil-Colombia Amazon Cooperation Treaty Organization (OTCA, 2018). The knowledge of 

wood anatomical characteristics of Peruvian species conveyed in academic publications 

(Acevedo and Kikata, 1994; Chavesta, 2015, 2018) and industry guides/manuals (Rodriguez and 

Sibille, 1996; Gonzales, 2008; Ugarte and Mori, 2018) have not yet been encapsulated in similar 

solutions and adopted for widespread human-based wood identification in Peru. The 

development and uptake of these solutions at the national level in Peru has been challenging, in 

part, due to limited institutional wood forensics capacity, limited opportunities (university 

courses and infrequent workshops) for human expertise development, and mostly localized 

access to xylaria for comparative forensic work (the largest Peruvian xylarium, with around 

8,500 samples, is housed in the National Agrarian University, Lima). It should be noted that 

these approaches emphasize or depend on developing human-based expertise.  

To remove the need for extensive human expertise and to enable officials with only a 

modicum of training to identify wood, computer vision-based approaches (Khalid et al., 2008; 
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Ravindran et al., 2018) have been explored for automated wood identification. Souza et al. 

(2020) and de Andrade et al. (2020) used machine learning for macroscopic image-based 

identification for woods of 21 and 46 Brazilian species, respectively. Apolinario et al. (2018) 

used a convolutional neural network (CNN) for identification of 7 commercial Peruvian timber 

species using a portable microscope. Recently, the open source XyloTron system (Ravindran et 

al., 2020), was used to demonstrate a field deployable computer vision wood identification 

model for fourteen commercial Colombian woods by Arévalo et al. (2021). Among these works, 

it should be noted that XyloTrons have been shown to have comparable/better accuracy than 

expensive mass spectrometric methods (Ravindran and Wiedenhoeft, 2020), have been deployed 

for charcoal identification across the European Union in partnership with the Forest Stewardship 

Council (as noted in Wiedenhoeft, 2020), and, critically, have been field-tested for wood 

identification in Ghana (Ravindran et al., 2019). This field testing of a machine learning model 

on wholly new specimens, ideally by distinct users and using distinct instantiations of the 

system, especially at the scale undertaken in this work, is lacking in virtually all forensic wood 

identification literature, regardless of the modality, technique, or the taxa studied. 

In this study, we train 24 class (228 taxa grouped into anatomically informed classes 

representing 57% by volume of the commercially harvested roundwood and 66% by volume of 

the sawn wood produced in 2019 in Peru; SERFOR, 2020) CNN based computer vision 

identification models of Peruvian commercial woods for the XyloTron. We use wood specimens 

from the MADw, SJRw, BCTw, BOFw, Tw, and FORIGw xylaria to develop five-fold cross-

validated models and then train a field model using the same hyperparameter values. The field 

model was trained by incorporating all the images and specimens used in the cross-validation 

analysis but was evaluated on completely different specimens from the PACw xylarium, using 
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different hardware and different operators. Performance evaluation of an automated wood 

identification system requires expert verification of each specimen identified by the system and 

can be logistically challenging. Our approach using verified, mutually exclusive specimens from 

distinct xylaria during the training and testing phases serves as a practical surrogate for field 

evaluation (a first step toward real-world field deployment) and provides a useful measure of the 

generalization capability of the identification system. To the best of our knowledge this is the 

first, large-scale study of Peruvian commercial timber identification using distinct instantiations 

of a computer vision identification system, in this case, the XyloTron. 

2.4 Materials and Methods 

2.4.1 Species Selection 

The 24 Peruvian woods selected for this study represent 57% by volume of the 

commercially harvested roundwood and 66% by volume of the sawn wood produced in 2019 in 

Peru (SERFOR, 2020) and are listed in Appendix A.1.1, (Supplementary Material 1). Because 

wood anatomy is typically accurate only to the genus level (Gasson, 2011) and given that the 

XyloTron operates on macroscopic anatomical variation, we included a range of wood 

anatomically appropriate, congeneric, Amazonian species and restricted data collection to the 

transverse surface of the specimens (e.g., congeneric species that are differentiable only from the 

tangential surface are clubbed into the same class here).  

2.4.2 Sample Preparation 

The transverse surface of 1,419 wood specimens from seven xylaria (Table 2.1) were 

polished by sanding with progressively finer-grit sandpapers (240, 400, 600, 800, 1,000, 1,500). 

To the extent possible, compressed air and adhesive tape were employed to remove dust from 
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cell lumina between each grit. This sample preparation protocol enabled the consistent an 

efficient preparation of wood samples for imaging. 

Table 2.1 Summary of xylaria and their wood specimen contributions for model training and 

testing. 

Institution (Xylarium acronym) 
Specimen 

counts 
Role 

USDA Forest Products Laboratory, Madison 

collection (MADw) 
501 

Model 

Training 

USDA Forest Products Laboratory, Samuel J. 

Record collection (SJRw) 
589 

Model 

Training 

Instituto de Pesquisas Tecnologicas do Estado de 

SaoPaulo (BCTw) 139 
Model 

Training 

Wood Laboratory, Universidad Distrital Francisco 

Jose de Caldas (BOFw) 37 
Model 

Training 

Royal Museum of Central Africa (Tw) 32 
Model 

Training 

Forestry Research Institute of Ghana (FORIGw) 2 
Model 

Training 

Mississippi State University, David A. Kribs 

collection (PACw) 
119 

Model 

Testing 

Note: The testing xylarium and specimen count is in bold case. 

2.4.3 Image Collection 

The XyloTron (Ravindran et al., 2020), an open-source macroscopic imaging system, 

was used to collect 6244 nonoverlapping RGB images of the polished transverse surfaces of 

specimens from 228 taxa. Each XyloTron image shows 6.35 x 6.35 mm of tissue and has 

dimensions 2,048 x 2,048 pixels. Each institution employed one or more unique XyloTrons to 



 

16 

collect images, so at least seven different hardware instantiations were employed. The details of 

the collected image dataset are presented in Table 2.2. 

Table 2.2 Details of the image data set. 

 

Training 

data 

(counts) 

PACw 

data 

(counts) 

Total 

(counts) 

Number of specimens 1,300 119 1,419 

Number of images 5,715 529 6,244 

Number of taxa 186 70 228* 

Note: 1,419 specimens from 228 unique taxa were prepared and imaged. *Some taxa appeared in 

both data sets, thus the total number of taxa is not the sum of the training and testing taxa. 

2.4.4 Label Space Design 

The 228 taxa included: (i) the species of interest to the Peruvian wood value chain, and 

(ii) additional congeneric macroscopically inseparable species native to South America. 

Brosimum was separated into two anatomically distinguishable classes while the remaining 

species were grouped into genus level classes, producing 24 classes. Complete details about the 

class labels and their constituent taxa are provided in Appendix A.1.2 (Supplementary Material 

2) 

2.4.5 Model Architecture and Training 

A convolutional neural network (CNN; LeCun et al., 1989) classifier, with a aResNet50 

(He et al., 2016) backbone and a custom head that included batchnorm (Ioffe and Szegedy, 

2015), dropout (Srivastava et al., 2014), global average and max pooling, and linear layers 

(Goodfellow et al., 2016), was implemented for identification (see Figures 2.1 A, B). A two-
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stage (Howard and Gugger, 2020) transfer learning (Pan and Yang, 2010) methodology, 

comprising locking the ImageNet (Russakovsky et al., 2015) pre-trained backbone weights while 

training the randomly initialized weights (He et al., 2015) of the custom head followed by fine 

tuning the weights of the entire network, was adopted (see Figures 2.1 C, D). The Adam 

optimizer (Kingma and Ba, 2015) with simultaneous cosine annealing of the learning rate 

(maximum value of 1.8e-2) and momentum (Smith, 2018) was employed with cross-entropy loss 

for both the stages. Random 2,048 x 768 image patches were sampled from the training images, 

downsampled to 512 x 192 pixel images, and fed to the CNN in batches of size 16 with a data 

augmentation strategy that included horizontal/vertical flips, small rotations and cutout (Devries 

and Taylor, 2017). The hyperparameters were the same across all the training runs. Further 

details about the hyperparameter settings and training methodology can be found in Ravindran et 

al. (2020). The model definition, training and evaluation was performed using PyTorch (Paszke 

et al., 2019) and scientific Python tools (Pedregosa et al., 2011). 
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Figure 2.1 Model schematics of the CNN architecture. 

 

Note: The CNN architecture comprises a ResNet50 backbone with a custom head. Given an 

input image, the network produces a 24-element vector that represents the prediction confidence 

for each of the 24 classes in the model. Tensor dimensions are depicted over the connections 

between the modules. (B) The custom head includes global average pooling (A), global max 

pooling (M), concatenation (C), batchnorm (B), dropout (D) and linear layers with ReLU (R) and 

softmax (S) activations. Dp represents a dropout layer with drop probability parameter p. Tensor 

dimensions are depicted over the connections between the layers. (C) The first stage of transfer 

learning locks (or freezes) the ImageNet pretrained weights of the ResNet50 backbone and 

optimizes the randomly initialized weights of the custom head using the cross-entropy (CE) loss. 

(D) The weights of the entire network are fine-tuned using the CE loss during the second stage of 

the training methodology. 

2.4.6 Model Evaluation 

The predictions of the trained models were evaluated at the specimen level with the 

predicted class for a specimen taken to be the majority of class predictions for the images 

contributed by the specimen. Accuracies based on the top prediction (top-1) for each specimen 

are reported for all the models. Additionally, the top two image-level predictions (from a 
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specimen) are aggregated, with equal weights, to generate the top-2 predictions for a specimen. 

If the true label is one of the top-2 specimen level predictions, the specimen is considered to be 

correctly identified. 

The following two analyses were performed to evaluate model performance in this study:  

(1) Training and evaluation using five-fold cross validation: Images from 1,300 

specimens were split into five folds with class level stratification while maintaining 

mutual exclusivity at the specimen level between the folds i.e., each specimen 

contributed images to exactly one fold. This specimen-aware partitioning of the data 

into folds with distinct specimens is required for correct evaluation of a trained 

model’s generalization capability to unseen samples. It should be noted that cross 

validation analysis did not include specimens from the PACw xylarium. A standard 

cross validation strategy, with four folds used for training and the trained model 

tested on the hold-out fold, was implemented and the specimen-level predictions over 

the five folds were accumulated to compute the accuracy (Table 2.3) and the 

confusion matrix (Figure 2.2). 

(2) Training a field model for evaluation on PACw specimens: All images in the five-

fold cross-validation analysis were used to train a single model—the field model—

using the same training hyperparameters. The specimen-level prediction performance 

of the field model was tested on 119 specimens from the PACw xylarium at 

Mississippi State University. The top-1 and top-2 predictions of the field model are 

reported in Table 2.3.  
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The operators and XyloTron hardware used to collect the 529 images from the PACw 

specimens were different from those for the training data, and the images were used to evaluate 

the prediction accuracy of the trained model as a proxy for in-country field testing. 

All images of the misclassified specimens in the five-fold cross validation were 

qualitatively evaluated and the misclassified specimens were categorized into three types: (1) 

taxa are anatomically consistent and the test specimen is typical; (2) the test specimen is 

atypical—but within reasonable variation for the taxon (i.e., it is not an archetypal image for the 

taxon); and (3) the taxa and test specimen are anatomically typical, but not anatomically 

consistent with each other. Types 1 and 2 represent misidentifications that trained field 

inspectors are likely to make, and so are sensible. Type 3 represents misidentifications not as 

likely to be made by trained human field inspectors, and for which there is no clear anatomical 

explanation. 

2.5 Results 

The cross-validated specimen-level identification accuracy (accumulated over the five 

folds) was 97%. The field model had top-1 and top-2 specimen-level accuracies of 86.5 and 

92.4% when tested on the PACw specimens. The cross-validation confusion matrix is shown in 

Figure 2.2, and the predictive performance of the models is summarized in Table 2.3. 
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Figure 2.2 Confusion matrix for the top-1 predictions of the five-fold cross-validation models.  

Note: The specimen-level accuracy accumulated over the five folds was 97%. The majority of 

misclassifications are between anatomically similar woods. 
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Table 2.3 Predictive accuracies for the trained models and the corresponding number of 

specimen-level prediction errors. 

 
Accuracy 

(%) 

Number of specimens 

misclassified 

Predictions on 

cross-validation folds 
97% 39/1,300 

Top-1 prediction on PACw 

specimens 
86.5% 16/119 

Top-2 prediction on PACw 

specimens 
92.4% 9/119 

 

Figure 2.3 presents examples of each of the three types of misclassifications, which are 

summarized and reported in Table 2.4. When comparing two wood anatomically similar taxa 

(Type 1 misclassification, Figures 2.3 A, B) the misclassification is sensible—both woods are 

characterized by vessels with similar grouping, arrangement, and of similar diameter, with 

lozenge-aliform-to-confluent axial parenchyma, and narrow, abundant rays. In Figures 2.3 C, D 

(an example of Type 2 misclassification) the similarities between the atypical specimen of class 

Virola (Virola surinamensis; Figure 2.3 C) and class Swietenia (Swietenia macrophylla; Figure 

2.3 D) include prominent marginal parenchyma, roughly similar vessel diameters, similar vessel 

grouping and arrangement, and absence of axial parenchyma in the body of the growth ring. An 

example of anatomically disparate misclassification (Type 3 misclassification) is shown in 

Figures 2.3 E, F where the apotracheal banded parenchyma and much smaller vessels of class 

Cariniana (Cariniana pyriformis; Figure 2.3 E) present a pattern not at all similar to the human 

eye to the larger vessels and vasicentric axial parenchyma of class Cedrelinga (Cedrelinga 

cateniformis; Figure 2.3 F). 
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Figure 2.3 Images of the transverse surface of test specimens (A, C, E) and exemplars of the 

class to which they were assigned (B, D, F).  

Note: All images are 6.35 mm on a side. An anatomically representative specimen of class 

Amburana (A) was misclassified as the anatomically similar class Ormosia (B). An anatomically 

atypical specimen of class Virola (C) was classified as class Swietenia (D). An anatomically 

typical specimen of class Cariniana (E) was misclassified as the wood anatomically disparate 

class Cedrelinga (F). 
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Table 2.4 Number and proportion of misclassified specimens from Figure 2.2 when 

categorizing into one of three misclassification types. 

Misclassification type 

Number of 

misclassified 

specimens 

Proportion of 

misclassified specimens 

Taxa are anatomically 

consistent, test specimen 

typical (Type 1) 

13 0.333 

Test specimen atypical for its 

taxon* (Type 2) 
11 0.282 

Taxa and test specimen are 

not anatomically consistent 

(Type 3) 

15 0.385 

Total 39 1.0 

Note: Types 1 and 2 are consistent with wood anatomy and the kind of misidentifications likely 

to be made by human field inspectors. Type 3 misclassifications are inconsistent with 

macroscopic wood anatomy and would not be expected to be made by a human inspector. *But 

within reasonable variation for the taxon. 

 

2.6 Discussion 

The top-1 specimen-level accuracy of the field model was approximately 10 percentage 

points lower than the cross-validation accuracy while the top-2 specimen-level accuracy was 

over 90% — a level which is arguably sufficient to establish probable cause and initiate a full 

forensic investigation when fraud or misrepresentation is detected. The generalization capability 

of machine learning wood identification models must be evaluated on specimens that were not 

used to train the model. Additionally, real world systems deployed at scale must also be robust to 

the skills of operators (with different levels of training) and variations in system instantiations. 

The prediction accuracies reported above were obtained using training and testing datasets that 

were mutually exclusive at the specimen level. We maintained specimen-level mutual exclusivity 
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of specimens across folds for cross validation analysis, and likewise xylaria specimen mutual 

exclusivity for field model evaluation. Additionally, the performance evaluation metrics were 

obtained using data collected at multiple sites and by multiple operators using different 

instantiations of the XyloTron system.  

Our approach of testing models on specimens from a xylarium that did not contribute 

data to model training was employed as a logistically manageable, practically useful surrogate 

for real-world field testing. The ultimate test of any automated wood identification system is in-

country field testing, but the main logistical challenge is the requirement of a wood identification 

expert for validation of the specimens being tested. Prior field testing by Ravindran et al. (2019) 

of a pilot XyloTron model for Ghanaian woods showed a 25%3 drop in identification accuracy 

when comparing results on xylarium specimens to testing on field specimens. Such losses of 

accuracy of computer vision models when tested on wholly new datasets have been found by 

research in other domains of computer vision (Recht et al., 2018, 2019; Zech et al., 2018). The 

drop in performance shown in Ravindran et al. (2019) and in this study could be attributed to a 

combination of many factors such as differences in the quality of specimen surface preparation; 

differences in subtle anatomical patterns present in xylarium specimens as compared to material 

currently in trade; differences between green and dry wood; and slight variations in operator use 

of the equipment or the equipment itself. A well-designed field-testing strategy for evaluating 

automated wood identification systems must incorporate these factors in a context-specific 

manner. For example, given that the XyloTron platform is intended as a field screening rather 

than a forensic tool, a testing protocol that incorporated taking multiple images per specimen of 

 

3 The reported value of 25% replaces the mistake value of 10% reported in the published paper. 
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multiple specimens per shipment/consignment, etc., should yield reliable, robust results when 

characterizing the shipment at large, rather than any single piece of wood. 

Our top-2 specimen-level accuracy was computed with equal weights for the top-2 

image-level predictions, but for practical deployment a weighting scheme should be chosen in a 

context dependent fashion that takes into account factors such as the taxa-aware cost of making 

an incorrect identification, the anatomical similarity of the taxa being considered, the number of 

specimens to field screen per shipment, and the calibration of the model predictions (Niculescu-

Mizil and Carauna, 2005; Guo et al., 2017). By including top-2 specimen level accuracy, we 

provide a window into the performance of the model and how such a model could be deployed. 

For example, the XyloTron platform’s classification software, xyloinf (Ravindran et al., 2020), 

provides the confidence value and an exemplar image for each class for the top-3 predictions per 

image, plus the sum of the confidences for the remaining N-3 classes in a given model of N 

classes. An operator thus has access not only to the ranked results, but also the confidence of a 

prediction and an exemplar image for human evaluation. This opens an interesting avenue for 

future research into the real-world deployment of computer vision wood identification systems 

(and other modalities) for maximum practical effect by incorporating human judgment (e.g., 

visual matching of an image from a field specimen to reference exemplar images for human 

approval and for flagging Type 3 misclassifications) or comparison of top-k results to some 

affirmative claim (e.g., a shipping manifest or transit permit). Even as field screening and 

forensic tools grow in power and sensitivity, it is critical to ensure that users of those tools are 

guided in how to achieve best practical effect with the tools at hand. 

The uptake of computer vision and machine learning for automated wood identification is 

accelerating (Ravindran et al., 2018, 2019, 2020; de Andrade et al., 2020; Souza et al., 2020; 
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Arévalo et al., 2021) and the real-world adoption of these systems is critically dependent on 

rigorous validation metrics and methodologies underlying any well-considered field-deployment 

framework. An easy first step toward rigorous validation is to enforce specimen-level separation 

between the training and testing splits (as in this work) rather than only image-level separation 

(most prior works). As affordable mobile phone adaptations (Tang et al., 2018; Wiedenhoeft, 

2020) democratize access to these automated technologies, for wider impactful adoption it is 

critical that they be rigorously evaluated on external validation data. For this work, the next 

obvious steps will be testing the field model on specimens in Peruvian xylaria; folding in the 

PACw specimens to train a new field model to test in Peruvian xylaria; folding in the specimens 

from the Peruvian xylaria to iterate a new field model; and then, taking that model into the real-

world and conducting the necessary field-testing coupled with independent forensic validation of 

the field tested specimens, an approach that should be applied to all modalities (Dormontt et al., 

2015) in forensic wood science. 

2.7 Summary 

We provided the largest tested computer vision wood identification model for Peruvian 

woods that is ready for immediate in-country field evaluation on the XyloTron platform. We 

demonstrated the utility and practicality of our model by evaluation using completely new 

specimens with independent hardware instantiations and different users, emphasized the critical 

need for specimen-level control of training and testing splits, and laid out a clear, iterative plan 

for augmenting the existing model. It is our hope that this work can be deployed within Peru to 

prevent illegally logged material from entering trade, and to support the trade in legal timber. 
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CHAPTER III 

TOWARDS SUSTAINABLE NORTH AMERICAN WOOD PRODUCT VALUE CHAINS, 

PART 1: COMPUTER VISION IDENTIFICATION OF  

DIFFUSE-POROUS HARDWOODS 

Ravindran, P., Owens, F. C., Wade, A. C. Shmulsky, R., Wiedenhoeft, A. C. (2022). Towards 

sustainable North American wood product value chains, Part I: Computer vision identification of 

diffuse porous hardwoods. Front. Plant Sci. 12:104536. doi: 10.3389/fpls.2021.758455 

(Republished with permission) 

 

3.1 Abstract 

Availability of and access to wood identification expertise or technology is a critical 

component for the design and implementation of practical, enforceable strategies for effective 

promotion, monitoring and incentivization of sustainable practices and conservation efforts in the 

forest products value chain. To address this need in the context of the multi-billion-dollar North 

American wood products industry 22- class, image-based, deep learning models for the 

macroscopic identification of North American diffuse porous hardwoods were trained for 

deployment on the open-source, field-deployable XyloTron platform using transverse surface 

images of specimens from three different xylaria and evaluated on specimens from a fourth 

xylarium that did not contribute training data. Analysis of the model performance, in the context 

of the anatomy of the woods considered, demonstrates immediate readiness of the technology 

developed herein for field testing in a human-in-the-loop monitoring scenario. Also proposed are 
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strategies for training, evaluating, and advancing the state-of-the-art for developing an expansive, 

continental scale model for all the North American hardwoods. 

3.2 Keywords 

Wood identification, illegal logging and timber trade, XyloTron, computer vision, 

machine learning, deep learning, diffuse porous hardwoods, sustainable wood products 

3.3 Introduction 

North American hardwoods are utilized in a multitude of applications including furniture 

(household, office, and institutional), construction and remodeling (e.g., flooring, millwork, and 

kitchen cabinets), and industrial products (e.g., pallets, access mats, and crossties). In 2016, the 

total US output1 of hardwood products was US$135.6 billion including US$39.8 billion in 

exports (Hardwood Federation, 2016). Proper identification of hardwoods along this value chain 

is essential for ensuring that contractual obligations have been met, detecting and preventing 

commercial fraud (Wiedenhoeft et al., 2019), determining appropriate drying schedules 

(Simpson, 1991), deciding on suitable methods of chemical treatment (Kirker and Lebow, 2021), 

and assessing the condition of in-service structures (Ross and White, 2014). Whether in the 

context of in-service wood or new wood-based products, identification of the material is germane 

both in an engineering context, and in terms of interrogating or verifying claims of legality 

and/or sustainability of the wood in a final product. Material identification is a necessary 

requirement for the design of practical strategies for designing, monitoring, and incentivizing 

sustainable wood product value chains. 

Legality and sustainability of wood and wood-based products are two disparate concepts, 

the former being a matter of jurisdiction and legislation and thus essentially referring to de facto 
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claims or criteria, whereas the latter is a topic of scholarly, practical, economic, and 

environmental debate (Giovannoni and Fabietti, 2013; Magnus Boström et al., 2015). For wood 

and woodbased products, legality can be governed by international treaties (e.g., the Convention 

on the International Trade in Endangered Species of Flora and Fauna [CITES, 27 U.S.T. §1087]) 

and by national laws and policies (e.g., the United States’ Lacey Act [18 U.S.C. §42-43; 16 

U.S.C. §3371-3378]) and wood identification can play a critical role in enforcement. 

Sustainability is a more elusive concept and legitimate disagreements as to what constitutes 

sustainability can occur between otherwise similarly minded parties (Miller and Bush, 2015; 

Ruggerio, 2021). In addition to the conceptual or theoretical differences that may exist between 

the principles and details subtending sustainability criteria, there is also the question of real-

world implementation and enforcement of sustainability measures along supply chains (Bush et 

al., 2015; Chappin et al., 2015; Dieterich and Auld, 2015) to ensure that a product labelled as 

sustainable is in fact sustainably sourced. Confirming the sustainability of a consumer product 

may not be possible by testing the final product, but rather may depend more upon the supply 

chain and sustainability regime employed to produce and guarantee that product claim. 

Disproving sustainability, however, can sometimes happen readily by testing consumer products, 

for example by determining that the wood used in a product is from a threatened or protected 

species (Wiedenhoeft et al., 2019), or from a region with a high overall prevalence of unmanaged 

forest harvest. For establishing claims of legality and sustainability for wood-products there is a 

critical need for developing and scaling wood identification capacity. 

Presently, wood identification is primarily performed by wood anatomy experts who have 

spent months or years training to acquire this skill; who typically carry out this function in a 

laboratory setting; and whose accuracy depends on the ability to recognize and distinguish a 
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wood specimen’s anatomical features and interpret them in the context of established methods 

(e.g., dichotomous keys, multiple entry keys, comparison to reference specimens) for wood 

identification (Wheeler and Baas, 1998). Despite the efficacy of such human-based anatomical 

identification, trained experts are rare, competence varies, and overall capacity for this task in the 

United States (Wiedenhoeft et al., 2019)–and presumably globally–is critically limited. For 

example, respondents to the proficiency test in Wiedenhoeft et al. (2019), when confronted with 

US domestic woods, demonstrated in-laboratory accuracies (with access to the full gamut of 

traditional wood identification resources such as light microscopy, reference specimens, keys, 

online resources, etc.) ranging from as low as 7% of the 28 specimens to as high as 86%-when 

considering only the specimens attempted, accuracies ranged from 25 to 92% (Wiedenhoeft et 

al., 2019). There is the expectation that macroscopic field identification would achieve 

substantially lower accuracies (Wiedenhoeft, 2011; Ruffinatto et al., 2015).  

To overcome the dearth of human expertise in wood identification, various teams have 

developed computer vision-based systems which can be implemented in the laboratory or in the 

field (Khalid et al., 2008; Martins et al., 2013; Filho et al., 2014; Figueroa-Mata et al., 2018; 

Ravindran et al., 2018, 2019, 2021; Damayanti et al., 2019; de Andrade et al., 2020; Ravindran 

and Wiedenhoeft, 2020; Souza et al., 2020). Even with microscopic inspection and complete 

access to reference collections, human based wood identification is typically accurate only to the 

genus level with reliable species-level identification being rare (Gasson, 2011). Machine 

learning, on the other hand, either alone (Martins et al., 2013; Filho et al., 2014; Barmpoutis et 

al., 2017; Kwon et al., 2017, 2019; Rosa da Silva et al., 2017; Figueroa-Mata et al., 2018; 

Ravindran et al., 2018, 2019, 2020, 2021; de Geus et al., 2020; Hwang et al., 2020; Ravindran 

and Wiedenhoeft, 2020; Souza et al., 2020; Fabija´nska et al., 2021) or in combination with 
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human expertise (Esteban et al., 2009, 2017; He et al., 2020), has shown promise that species-

level identification might be possible, when the woods in question allow resolution at this 

granularity. Recent work involving the open-source XyloTron platform (Ravindran et al., 2020) 

has shown promise for real-time, field-deployable, screening-level wood identification 

(Ravindran et al., 2019, 2021; Ravindran and Wiedenhoeft, 2020; Arévalo et al., 2021) with the 

hardware to transition to smartphone-based systems now available (Tang et al., 2018; 

Wiedenhoeft, 2020). Affordability and democratization make computer vision wood 

identification (CVWID) an attractive technology for robust, multi-point monitoring of the full 

sustainable wood products value chain from producers to consumers. While multiple platforms 

for imaging biological specimens in natural history collections are available (e.g., Hedrick et al., 

2020; Pearson et al., 2020; von Baeyer and Marston, 2021), it should be noted that the XyloTron, 

XyloPhone, and similar systems for CVWID have been designed for affordability, field 

screening, human-in-the-loop deployment, and also have the potential (especially given the 

comparative affordability of the XyloPhone system) for crowd-sourcing data collection, citizen-

science efforts (Goëau et al., 2013), and use in secondary education, all of which have the 

potential to enrich image datasets if images can be vetted and curated. 

Putting forth a field-deployable computer vision model for the identification of 

commercially important North American hardwoods requires on the order of 50 classes, which 

far exceeds anything published to date for this region, either at the naked eye level (Wu et al., 

2021) or using macroscopic images (Lopes et al., 2020). Increasing the number of classes in a 

model has the potential to influence model accuracy (Bilal et al., 2018; Shigei et al., 2019), and 

unpublished work on the expansion of a 15-class Ghanaian timber model (Ravindran et al., 

2019), using the same model training methodology, to 39 and 43 classes showed a reduction in 
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model accuracy. While these data might suggest a negative relationship between number of 

classes and accuracy, the literature does not provide consensus on how increasing the number of 

classes impacts the performance of classification models. Abramovich and Pensky (2019) 

suggest that increasing the number of classes could positively influence model accuracy while 

other sources suggest, in general, an inverse relationship (e.g., Bilal et al., 2018; Shigei et al., 

2019). Whether additional classes improve or reduce model accuracy undoubtedly depends on 

multiple factors including the degree to which the additional classes are similar to each other and 

to those already in the model. Greatly increasing the number of classes is presumed to have a 

non-trivial effect on model accuracy; thus, larger multiclass models should be handled with care, 

paying close attention to factors that might negatively impact model performance. An option for 

building practical, high performing models with a large number of classes is to leverage domain-

based factors for informed model selection, label space design, and filtering of the model 

predictions, thus taking advantage of human expertise in determining the breadth and scope of 

the model implementation, evaluation, and deployment.  

In the case of North American hardwoods, one such factor, commonly used for human-

based macroscopic identification, that could affect accuracy might be wood anatomical spatial 

heterogeneity as it relates to porosity (IAWA, 1989; Ruffinatto et al., 2015). Classically ring-

porous woods exhibit large and abrupt differences in vessel diameter and often in parenchyma 

patterns between earlywood and latewood. In addition, the macroscopic appearance of vessel and 

parenchyma patterns in the latewood can vary greatly among specimens exhibiting slow growth, 

medium growth, and fast growth. In cases of fast-grown ring-porous specimens, the growth rings 

can be so wide that images captured at the macroscopic level might include nothing but 

latewood, completely excluding earlywood features important for identification. This greater 
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spatial heterogeneity of ring-porous woods contrasts with the lesser spatial heterogeneity of 

classically diffuse-porous woods, which exhibit little macroscopic anatomical variation both 

between and within growth rings regardless of variations in radial growth rate. As shown in 

Figure 3.1, the radial growth rate of a ring-porous wood imparts greater spatial heterogeneity at 

the macroscopic scale (Figures 3.1 B, D, F) compared to the lower spatial heterogeneity of a 

diffuse-porous wood growing at similar radial growth rates (Figures 3.1 A, C, E).  

This study presents the design and implementation of 22-class deep learning models for 

image-based, macroscopic identification of North American diffuse porous hardwoods. The main 

highlights of this study include:  

• Providing the first continental scale model for the identification of an important 

set of North American hardwoods, which is the largest wood identification model 

reported across all available wood identification technologies (Schmitz et al., 

2020); 

• Reporting on the first multi-site, multi-operator, multi-instantiation study of 

computer vision identification for North American woods that has been evaluated 

using a practical field-testing surrogate (Ravindran et al., 2020);  

• Using wood anatomy-driven label space design (the grouping and partition of 

species into classes) and model performance evaluation; 

• Establishing a strong baseline using a simple machine learning methodology for 

the quantitative comparison of advances in wood identification across all 

modalities; and, 

• Discussing practical strategies for field-testing and model deployment for 

empowering sustainability and conservation efforts in wood product value chains. 
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Figure 3.1 Images of transverse surfaces of Betula alleghaniensis (A, C, E) and Robinia 

pseudoacacia (B, D, F) showing similar slow-growth conditions (A, B) medium-

growth conditions (C, D), and faster-growth conditions (E, F).  

Note: Betula alleghaniensis shows comparatively lesser wood anatomical spatial heterogeneity 

than Robinia pseudoacacia. The nearly three complete growth rings in C and D present wood 

anatomical detail sufficient to facilitate an identification. The slow growth in A and B and partial 

growth rings in E and F demonstrate the comparatively lesser spatial heterogeneity of the diffuse 

porous Betula alleghaniensis. In Robinia pseudoacaia there a is lack of latewood characters in 

the slow-grown image (B), and only latewood anatomy in F. By contrast, Betula alleghaniensis 

shows substantially similar anatomy across the three images (A, C, E). 
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3.4 Materials and Methods 

3.4.1 Dataset Details 

3.4.1.1 Taxa and Sample Selection 

105 unique species from 24 prominent genera of North American diffuse porous woods 

were selected based on the commercial importance and specimen availability among four 

scientific wood collections. The four wood collections and details of their specimen 

contributions are summarized in Table 3.1. 

Table 3.1 The four xylaria providing wood specimen images for the data sets used to train 

and test the wood identification models.  

Institution (Xylarium acronym) 
Specimen 

counts 
Role 

USDA Forest Products Laboratory, Madison collection 

(MADw) 
410 

Model 

Training 

USDA Forest Products Laboratory, Samuel J. Record 

collection (SJRw) 
77 

Model 

Training 

Royal Museum of Central Africa (Tw) 17 
Model 

Training 

Mississippi State University (PACw) 284 
Model 

Testing 

Note: The MADw, SJRw and Tw specimens contributed images exclusively to the training data 

set, while the test data set was obtained from only the PACw specimens.   

3.4.1.2 Sample Preparation and Imaging 

The transverse surfaces of 788 wood specimens from the selected taxa were progressively 

sanded from coarse to fine grit (240, 400, 600, 800, 1000, 1500) with dust removal from cell 

lumina using compressed air and adhesive tape when possible. The prepared surfaces were 

imaged using multiple instantiations of the XyloTron system (Ravindran et al., 2020) to produce 
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a data set with 6393 non-overlapping images. The 2048 x 2048-pixel images obtained with the 

XyloTron had a linear resolution of 3.1 microns/pixel and each image shows 6.35 mm 6.35 mm 

of tissue. The sample preparation and image collection were done by multiple operators with 

varying levels of wood anatomy expertise and specimen preparation experience (undergraduate 

students, graduate students, postdoctoral researchers, and technical specialists). A summary of 

the collected dataset is provided in Table 3.2. 

Table 3.2 Image data set summary.  

 
Training 

(counts) 

Testing 

(counts) 

Total 

(counts) 

Number of xylaria 3 1 4 

Number of taxa 98 69 105* 

Number of specimens 504 284 788 

Number of images 5184 1209 6393 

Note: 788 specimens from 105 unique taxa (belonging to 24 genera) were prepared and imaged 

to produce 6393 images for training and testing the classification models. *The total number of 

taxa does not equal the sum of the training and testing counts as not all species comprising each 

class were present in both the training and testing data sets. 

3.4.1.3 Label Assignment 

Wood identification is typically accurate only to the genus level when the full gamut of 

light microscopic characters is employed (Gasson, 2011). For the taxa in this study, a 

combination of supra-generic, generic, and sub-generic granularity for classification is 

appropriate for macroscopic wood identification. To facilitate machine learning, the taxa were 

grouped into 22 classes based on their macroscopic anatomical similarity in the following 

manner:  
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1. The genera Aesculus, Alnus, Arbutus, Betula, Carpinus, Fagus, Frangula, 

Liquidambar, Liriodendron, Magnolia, Nyssa, Ostrya, Oxydendrum, Platanus, 

Populus, Rhamnus, Salix, and Tilia were assigned to 18 genus-level classes (with 

genus names as labels). 

2. The genus Acer was split into two classes, “hard” and “soft,” with labels “AcerH” 

and “AcerS,” respectively, as within North American Acer, hard maple (A. 

saccharum) is separable from the soft maples (e.g., A. macrophyllum, A. 

saccharinum, A. rubrum) based on ray widths observed macroscopically and 

microscopically (Panshin and de Zeeuw, 1980; Hoadley, 1990). 

3. Species from the genera Crataegus, Malus, Prunus, Pyrus, and Sorbus were 

grouped into one class, with the label "Fruitwood," with the exception of Prunus 

serotina which was its own class with the label “Prunus” as P. serotina is wood 

anatomically distinct from the other fruitwoods. 

A listing of the 105 taxa, their class labels and their training/testing set membership can 

be found in Appendix A.2.1 (Supplementary Material 3). 

3.4.2 Machine Learning Details 

3.4.2.1 Model Architecture and Training 

While multiple deep learning architectures for image classification exist (e.g., Krizhevsky 

et al., 2012; Simonyan and Zisserman, 2014; Szegedy et al., 2015; Huang et al., 2017), we 

employed a convolutional neural network (CNN; LeCun et al., 1989) with a ResNet34 (He et al., 

2016) backbone and a custom 22-class classifier head (see Figure 3.2), based on prior success 

using this architecture for wood identification (e.g., Ravindran et al., 2019, 2021). The CNN 

backbone was initialized with ImageNet (Russakovsky et al., 2015) trained weights and He 
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weight initialization (He et al., 2015) was employed for the custom classifier head. In the first 

stage of training, the backbone weights were frozen, and the weights of the custom head were 

optimized. The weights of the entire network were fine-tuned during the second training stage. 

For both the stages, the Adam optimizer (Kingma and Ba, 2015) with a two-phase simultaneous 

cosine annealing (Smith, 2018) of the learning rate and momentum was employed. Each mini-

batch (of size 16) was composed of 2048 x 768 pixel random image patches extracted from each 

of 16 images, down-sampled to 512 x 192 pixels, randomly augmented using horizontal/vertical 

flips, small rotations, and cutout (Devries and Taylor, 2017), and input to the network. Complete 

details about the architecture and the adopted two-stage (Howard and Gugger, 2020) transfer 

learning (Pan and Yang, 2010) training methodology can be found in Ravindran et al. (2019) and 

Arévalo et al. (2021). Models with a ResNet50 backbone were also trained and evaluated, with 

the results presented in Appendix A.2.2 (Supplementary Material 4). Scientific Python tools 

(Pedregosa et al., 2011) and the PyTorch deep learning framework (Paszke et al., 2019) were 

used for model definition, training, and evaluation. 
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Figure 3.2 Model schematic of the CNN architecture.  

Note: (a) The CNN architecture for our 22-class wood identification models consisted of a 

ResNet34 backbone with a custom classifier head. The custom head shown in (b) is comprised of 

global average (A) and max (M) pooling (Goodfellow et al., 2016) layers that are concatenated 

(C) to form a 1024-vector. This is followed by two fully-connected blocks (B1, B2) each with 

batchnorm (Ioffe and Szegedy, 2015) and dropout (Srivastava et al., 2014) layers. The dropout 

layers had parameters p=0.5 and p=0.25 in the B1 and B2 blocks, respectively. ReLU activation 

was used in B1, while B2 had a softmax activation. The status of the weights of the backbone 

and custom head, whether they are modified or not during the two stages of training, are 

represented by the lock and unlock symbols respectively. 

3.4.2.2 Model Evaluation 

The predictive performance of the trained models was evaluated using specimen level 

top-k accuracies with k = 1 and k = 2. The top-1 prediction for a specimen was the majority of 

the class predictions for the images contributed by the specimen. The top-2 prediction for a 

specimen was obtained by equally weighted voting of the top-2 image level predictions for the 

images contributed by the specimen and the specimen was considered correctly identified if its 

true class was one of the top-2 predicted classes. The specimen level top-1 and top-2 

performance of the trained models were evaluated using fivefold cross-validation (5184 images 

from 504 specimens; MADw, SJRw, and Tw collections) and an independent test set (1209 

images from 284 specimens; PACw collection). The PACw images: (i) were obtained by a 

different operator using a different instantiation of the XyloTron, (ii) were not used to train the 
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field or cross validation models, and (iii) serve as a valid, practical proxy for real field testing 

(Ravindran et al., 2021). Each PACw specimen contributed up to five images for evaluation and 

this maximum number of images per specimen was fixed before any model evaluation was 

performed i.e., the number of images per PACw test specimen was not tuned. Specifically, the 

following analyses were performed:  

1. Five-fold cross-validation analysis was performed with label stratified folds and 

specimen level separation between the folds i.e., each specimen contributed 

images to exactly one fold. Specimen level mutual exclusivity between the folds 

is necessary for the valid evaluation of any machine learning based classifier for 

wood identification (e.g., Ravindran et al., 2019, 2020, 2021 and as discussed in 

Hwang and Sugiyama, 2021). Model predictions over the five folds were 

aggregated to compute the (top-1) prediction accuracy and a confusion matrix. 

2. The (mean) top-1 and top-2 predictive performance of the five trained models 

from the cross-validation analysis on the PACw data was computed. It should be 

noted that each of the five models was trained on four folds (80%) of the training 

data.  

3. All the images from the cross-validation analysis (i.e., 100% of the training data) 

were used to train a separate model (field model) which was then evaluated on the 

independent PACw data. The top-1 and top-2 prediction accuracy and the 

confusion matrix were computed to evaluate the efficacy of the field model. 

3.4.2.3 Misclassified Specimens 

All images of the misclassified specimens in the five-fold cross validation model and 

field model were evaluated and reported as in Ravindran et al. (2021), assigning each to one of 
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three types of misclassification: (1) taxa were anatomically consistent, and the test specimen was 

typical; (2) the individual test specimen was atypical for the taxon (i.e., it is not an archetypal 

specimen for the taxon); or, (3) the taxa and test specimen were anatomically typical, but the 

classes are not anatomically consistent with each other, and errors of this type would not be 

expected to be made by a human identifier. It is important to note that these attributions are made 

on a specimen basis, so while Types 1 and 3 are mutually exclusive, the remaining combinations 

are possible (e.g., class A misclassified as class B with 5 such misclassifications could show all 

Type 1, all Type 2, all Type 3, combinations of Types 1 and 2 or Types 2 and 3, but never a 

combination of Type 1 and Type 3). 

3.5 Results 

The specimen level prediction accuracies for the cross-validation and field models are 

presented in Table 3.3. While the cross-validation accuracy was 95.2%, the (mean) top-1 and 

top-2 accuracies were 73.5 and 85.1%, respectively, when the models were tested on the PACw 

test specimens. The top-1 accuracy of the field model was 80.6%, and the top-2 accuracy was 

90.5%. Figures 3.3, 3.4 display the confusion matrices for the cross-validation (accumulated over 

the five folds) and field models, respectively.  
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Table 3.3 Specimen level model prediction accuracies.  

Training and evaluation 

details 
Top-k Accuracy (%) 

Five-fold cross-validation k=1 95.2 

Trained using four folds, tested 

on PACw* 

k=1 73.5 

k=2 85.1 

Field model trained using all 

five folds, tested on PACw 

k=1 80.6 

k=2 90.5 

Note: *The mean top-1 and top-2 prediction accuracies over the five models are reported with the 

standard deviations 4.5% and 4.1% respectively. Accuracies in bold are those for which a 

confusion matrix is provided. 
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Figure 3.3 Confusion matrix for the cross-validation model predictions on 504 specimens. 

Note: The specimen-level top-1 prediction accuracy accumulated over the five folds was 95.2%. 
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Figure 3.4 Confusion matrix for the field model predictions on 284 PACw specimens.  

Note: The top-1 and top-2 specimen-level accuracies were 80.6% and 90.5%, respectively. 

Figure 3.5 presents example images of Type 1, Type 2, and Type 3 misclassifications, 

and summary of misclassification data for both the five-fold cross-validation model and the field 

model are presented in Table 3.4.  
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Figure 3.5 Images of the transverse surface of test specimens (B, C, D) and an exemplar (A) 

of the class (Populus).  

Note: All images are 6.35mm on a side. An anatomically representative specimen of Salix 

scouleriana (B) was misclassified as the wood anatomically similar class Populus (A), a Type 1 

misclassification. An anatomically atypical specimen of Betula nigra (C) was classified as (A), a 

Type 2 misclassification. An anatomically typical specimen of Platanus occidentalis (D) was 

misclassified as the anatomically disparate class (A), a Type 3 misclassification. Note the 

anatomical similarities between A and B, and to a lesser extent A and C, and the anatomical 

dissimilarity between A and D, especially with regard to the wide rays in D. 
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Table 3.4 Number and proportion of misclassified specimens from Figure 3.4 by type of 

misclassification.  

Misclassification type 

Number of 

misclassified 

specimens 

Proportion of 55 

misclassified (of 284 

total) specimens  

Taxa are anatomically 

consistent, test specimen 

typical (Type 1) 

34 0.618 (0.12) 

Test specimen atypical for its 

taxon* (Type 2) 
10 0.182 (0.035) 

Taxa and test specimen are 

not anatomically consistent 

(Type 3) 

11 0.20 (0.039) 

Total 55 1.0 (0.194) 

Note: Types 1 and 2 are consistent with wood anatomy and are expected errors made by human 

field inspectors. Type 3 errors are inconsistent with macroscopic wood anatomy and would not 

be expected to be made by a human inspector. 

When considering top-1 accuracy of the field model, 9 classes showed no 

misclassifications when input into the trained model for field testing with PACw specimens: 

Acer (hard), Acer (soft), Carpinus, Fagus, Frangula, Fruitwood, Ostrya, Rhamnus, and Tilia, 

with the other 13 classes showing at least one specimen misclassification (Figure 3.4). Of the 55 

misclassified specimens, 80% were Type 1 or Type 2 misclassifications, with only 20% being 

anatomically inconsistent (Type 3) misclassifications (Table 3.4). While specimens from 13 

classes were misclassified, they were attributed only to 7 classes: Alnus, Frangula, Fruitwood, 

Liquidambar, Nyssa, Populus, and Salix (Figure 3.4). Seven classes neither contributed nor drew 

misclassifications: Acer (hard), Acer (soft), Carpinus, Fagus, Ostrya, Rhamnus, and Tilia. 
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3.6 Discussion 

For a field-deployable image-based CVWID model for North American diffuse porous 

hardwoods to make the greatest real-world impact in law enforcement, industrial compliance, 

and supply chain verification, it is critical to establish the ways in which the model succeeded in 

identifying the woods and to dissect the ways in which it failed. Prior work in the field of 

CVWID has largely limited its analysis of results to reports of overall model accuracy (e.g., 

Martins et al., 2013; Filho et al., 2014; Rosa da Silva et al., 2017; Figueroa-Mata et al., 

 2018; Ravindran et al., 2019; de Geus et al., 2020; Souza et al., 2020) with comparatively little 

prior work addressing wood anatomical details of the misclassifications (Lens et al., 2020; 

Ravindran et al., 2021). More detailed analyses of the types of misclassifications can yield 

insights that improve the state-of-the-art in the performance and interpretability of CVWID 

technologies. 

3.6.1 Accuracy of Cross-Validation and Field Models 

Top-1 cross-validation accuracy (Table 3.3, row 1) was ~22 points higher than when the 

same fivefold models were tested with the PACw specimens (Table 3.3, row 2). The increase in 

top-1 performance of the field model (trained on 100% of the training data) when compared to 

the five-fold models trained on 80% of the data suggests that the wood anatomy variability 

captured within the full training dataset contributes to a field model with better predictive power. 

Moreover, this suggests that the wood anatomical data space may not have been fully 

represented by 80% of the data, and in fact even the field model (trained with 100% of the data) 

may not fully represent the wood anatomical data space. One contributor to a richer data space is 

provision of a representative and robust selection of specimens from which images can be 

captured. The question of how top-k specimen level accuracy varies with the number of image 
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level predictions used to compute the specimen level prediction is an open problem [but see 

Supplementary Material 4 in Appendix for the impact of the number of images per specimen (1–

5) on model prediction accuracy], but certainly should be informed by deployment context and 

the wood anatomy of classes in the model. Top-k accuracy can also be informative in a field-

deployed CVWID system when done in a human-in-the-loop context where a human user can 

make a visual comparison of the unknown to reference images of the top-k predictions. Here the 

number of image-level predictions used to derive a specimen level prediction was fixed a priori, 

but for a practical system this should be informed by model calibration (Niculescu-Mizil and 

Carauna, 2005; Guo et al., 2017), inter- and intra-class anatomical variability of the woods in the 

model (Ravindran et al., 2018), and probably adaptively based on predictions being performed. 

3.6.2 Analysis of Misclassifications 

When considering a confusion matrix (e.g., Figure 3.4), the off-diagonal results are 

misclassifications, and can further be evaluated as the propensity for an input class to be 

misclassified, and/or the propensity for a predicted class to pull or draw misclassifications, each 

of which can display any of the three misclassification types (1, 2, 3), or combinations thereof, 

excluding Type 1 + Type 3, as they are mutually exclusive. To codify this concept, the terms 

“source” and “sink” misclassifications are introduced, where the input misclassified specimens 

are sources (i.e., the sum of the off-diagonal predictions for each row), and the classes that draw 

misclassifications are sinks (i.e., the sum of the off-diagonal predictions for each column). For 

example, in a confusion matrix with four classes A, B, C, and D (Figure 3.6), the on-diagonal 

cells (e, j, o, t) are correct predictions. For class B, i + k + l would be the source 

misclassifications, and f + n + r would be its sink misclassifications. If classes A and B were 

anatomically similar, source misclassification f and sink misclassification i would both be Type 1 
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misclassifications. If A and C were anatomically disparate, source misclassification g and sink 

misclassification m would both be Type 3 misclassifications. The anatomical characteristics of 

the classes and test images therefore determine which type of misclassification is found in each 

cell, and this finer grained analysis of the misclassifications may assist in designing cost-aware 

loss functions for improved training (Elkan, 2001; Chung et al., 2016) in the future, making more 

robust inferences about model performance, and possibly using these insights to inform protocols 

for real-world model deployment. 

 

Figure 3.6 Example 4-class confusion matrix, with classes A, B, C, and D.  

Note: Correct predictions are on the main diagonal (e, j, o, t, shown shaded) and off-diagonal 

cells are the misclassifications. Sums of off-diagonal elements along a row (column) are the 

source (sink) misclassifications for the class. 

Table 3.5 presents a summary of the analysis of source/sink misclassifications by the 

field model for the confusion matrix in Figure 3.4. With regard to source misclassifications, it is 

noteworthy that in three of thirteen classes with misclassifications–Aesculus, Liriodendron, and 

Magnolia (yellow cells)–half or more of the source specimens are misclassified. Of particular 

note in source misclassifications is the class Liriodendron (green cell), which accounts for over 

63% (7 of 11) of all Type 3 source misclassifications, though it contributes only 14 of 284 (~5%) 
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specimens to the entire test data set. Of the seven classes showing sink misclassifications, three 

are responsible for more than 85% - Fruitwood, Nyssa, and Populus (blue cells). Fruitwood is a 

composite multi-generic class (see Supplementary Material 3 in Appendix) but interestingly 

contributes no source misclassifications while drawing nearly a quarter of sink 

misclassifications. 
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Table 3.5 A class-wise assessment of misclassifications for the top-1 misclassified specimens 

in the field model.  

  

Class-wise proportion of all specimens (source) or all 

misclassified specimens (sink) 

 Source Sink 

Class (n 

specimens) Type 1 Type 2 Type 3 Total Type 1 Type 2 Type 3 Total 

AcerH (9)                  

AcerS (9)                 

Aesculus (6) 0.500     0.500         

Alnus (8)   0.125   0.125 0.018     0.018 

Arbutus (9) 0.111     0.111         

Betula (33) 0.091 0.091 0.061 0.243         

Carpinus  (9)                  

Fagus (13)                 

Frangula (1)           0.018 0.018 0.036 

Fruitwood 

(32)         0.182 0.036 0.018 0.236 

Liquidambar 

(10) 0.100     0.100 0.036     0.036 

Liriodendron 

(14)   0.143 0.500 0.643         

Magnolia 

(25) 0.440 0.120 0.120 0.680         

Nyssa (23) 0.043     0.043 0.145 0.018 0.055 0.218 

Ostrya (2)                 

Oxydendrum 

(9) 0.111     0.111         

Platanus (3)     0.333 0.333         

Populus (26) 0.038     0.038 0.182 0.091 0.127 0.400 

Prunus (16) 0.063     0.063         

Rhamnus (2)                 

Salix (13) 0.077     0.077 0.018 0.018 0.018 0.055 

Tilia (3)                 

 

Note: Source misclassification proportions are the based on the total number of input specimens 

(n=284). Sink misclassification proportions are based on the total number of misclassified 

specimens (n=55). Dark grey indicates a class for which there were neither source nor sink 

misclassifications; light grey indicates the absence of misclassifications in either source or sink; 

colored cells are proportions of note and are discussed in the text. 
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The inter-class variability is largely limited to variations in the vessels and the rays, as the 

diffuse-porous North American woods we included have comparatively limited macroscopically 

visible variation in axial parenchyma patterns. In Figure 3.5, the Type 3 misclassification 

between Populus (A) and Platanus (D) suggests that the model’s feature detection is perhaps less 

sensitive to ray width and abundance than a human identifier would be, as the rays in Platanus 

are much wider and less numerous than the abundant, uniseriate rays in Populus. A human 

identifier would be expected to note this distinct difference with little trouble. Similarly, in 

Figure 3.4, seven Liriodendron are misidentified as class Populus, which would appear to be 

another instance of the feature detection either failing to detect or the classifier failing to weight 

the wider rays of Liriodendron sufficient to make a correct classification, an error that would not 

be expected of human identifier. Tools adapted from research on feature visualization (e.g., 

Zeiler and Fergus, 2014; Olah et al., 2017; Qin et al., 2018) and model interpretability (e.g., 

Chen et al., 2020) may enable further understanding of the misclassifications and spur richer 

methodologies that guide the CNN to emphasize human recognized features. 

3.6.3 On Datasets and Architectures for Computer Vision Wood Identification 

In this work strict adherence to specimen level splits was maintained to encourage 

learning of generalizable features (vs. memorizing the dataset) and for model evaluation based 

on specimen identification which is the desired real-world capability. This practically relevant 

constraint means that despite combining data from three xylaria at multiple institutions, our 

dataset is still modest in size–even though we have hundreds of images per class, there are only 

tens of unique representatives (the specimens) per class. Unlike other datasets (e.g., Horn et al., 

2018), images used in CVWID are fully composed of the wood tissue being imaged and do not 

have a foreground and background. Additionally, for the classes considered in this study the 
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wood anatomical spatial heterogeneity is low. Given these characteristics of CVWID data, 

though our ResNet34 based model trained on the modest sized dataset (by sampling random 

patches with a fixed size) yields a practically useful model, the interplay between inter- and 

intra-class wood anatomical feature variability, dataset size, architecture depth (or capacity), and 

hyperparameter optimization is yet largely unexplored (an area that we are actively exploring–

Supplementary Material 4 in Appendix provides results for a ResNet50 based model trained with 

the same epoch budget that suggests that our dataset size may be insufficient to leverage the 

higher capacity afforded by the deeper ResNet50 architecture). 

Unique scientifically collected and properly identified specimens are a limited resource, 

typically found only in xylaria, many of which are underfunded, effectively closed, or gone 

altogether, though the World Forest ID project (Gasson et al., 2021) is a noteworthy effort in 

opposition to this trend. The intent of the open-source XyloTron (Ravindran et al., 2020) and 

XyloPhone (Wiedenhoeft, 2020) projects is the democratization of CVWID technology to enable 

research groups across the world to contribute to a frequently updated and globally relevant 

standardized wood dataset, but finding the resources to establish, curate, and maintain such a 

repository remains a challenge. Crowdsourcing technology may aid in the construction of such 

curated datasets but paucity of expertise in vetting non-scientific specimens (Wiedenhoeft et al., 

2019) must be adequately addressed to optimally leverage citizen science resources such as 

Pl@ntNet (Goëau et al., 2013). 

3.6.4 Towards Real Field Evaluation 

Model evaluation with a surrogate for field testing, i.e., specimens from a xylarium not 

used for model training, was a first step towards real field testing which is the gold standard for 

evaluating any wood identification technology. The polished specimens used to train the models 
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reflect a different surface preparation to what occurs in the field, but prior work with the 

XyloTron on Ghanaian woods (Ravindran et al., 2019) demonstrated a similar deployment gap 

(drop in accuracy from the cross validation to field testing results) even though field specimens 

were prepared by knife-cut of the transverse surface (as described in Wiedenhoeft, 2011). Based 

on these results with Ghanaian woods, it is expected that the trained models described herein can 

be deployed effectively in a human-in-the-loop setting for field testing where the top predictions 

of the model along with exemplar images for the predicted classes are presented to the user for 

verification of the predictions (e.g., as in the xyloinf interface for the XyloTron platform of 

Ravindran et al., 2020). To derive maximum insights enabling real deployment, any performance 

metric must be evaluated in the contexts of taxonomic ambiguity, discriminative anatomical 

features among the woods, and commercially or practically relevant granularity to facilitate the 

formulation of practical, useful models. To make best use of such models, strategies for 

deploying them along wood product value chains to promote sustainability should consider 

context-specific requirements for each use-case. The performance of our trained models (in 

cross-validation, surrogate, and future field-testing scenarios) can also serve as a strong baseline 

for developing and comparing future state-of-the-art models or systems. 

3.7 Conclusion 

Employing practical, wood anatomy-driven strategies for the development and evaluation 

of CVWID technologies, we presented the first continental-scale, image-based identification 

model for North American diffuse porous hard woods. Ongoing work tackles the development of 

a complementary model for the ring porous North American hardwoods and a unified North 

American hardwood identification model. Operationalization of CVWID technologies with 

market-relevant scale will require the rigorous exploration of machine learning architecture and 
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hyperparameters, model training paradigms, performance evaluation protocols, and evidence-

based deployment strategies. This work is a first step towards the realization of such a practical, 

field-deployable, wood identification technology with the potential to inform and impact 

strategies for the promotion, monitoring, and monetization of sustainable North American and 

global wood product value chains, and for enabling biodiversity and conservation efforts. 
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CHAPTER IV 

TOWARDS SUSTAINABLE NORTH AMERICAN WOOD PRODUCT VALUE CHAINS, 

PART 2; COMPUTER VISION IDENTIFICATION  

OF RING-POROUS HARDWOODS 

Ravindran, P., Wade, A. C., Owens, F. C., Shmulsky, R., and Wiedenhoeft, A. C. (2022). 

Towards sustainable North American wood product value chains, Part 2: Computer vision 

identification of ring-porous hardwoods. Can. J. For. Res., cjfr-2022-0077. doi: 10.1139/cjfr-

2022-0077. (Republished with permission) 

4.1 Abstract 

Wood identification is vitally important for ensuring the legality of North American 

hardwood value chains. Computer vision wood identification (CVWID) systems can identify 

wood without necessitating costly and time-consuming offsite visual inspections by highly 

trained wood anatomists. Previous work by Ravindran et al. presented macroscopic CVWID 

models for identification of North American diffuse porous hardwoods from 22 wood 

anatomically informed classes using the open-source XyloTron platform. This manuscript 

expands on that work by training and evaluating complementary 17-class XyloTron CVWID 

models for the identification of North American ring porous hardwoods – woods that display 

spatial heterogeneity in earlywood and latewood pore size and distribution and other radial 

growth-rate related features. Deep learning models trained using 4045 images from 452 ring-

porous wood specimens from four xylaria demonstrated 98% five-fold cross-validation accuracy. 

A field model trained on all the training data and subsequently tested on 198 specimens drawn 

from two additional xylaria achieved top-1 and top-2 predictions of 91.4% and 100%, 
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respectively, and images devoid of earlywood, latewood, or broad rays did not greatly reduce the 

prediction accuracy. This study advocates for continued cooperation between wood anatomy and 

machine learning experts for implementing and evaluating field-operational CVWID systems. 

4.2 Key words 

Wood identification, illegal logging and timber trade, XyloTron, computer vision, 

machine learning, deep learning, diffuse porous hardwoods, ring porous hardwoods, sustainable 

wood products 

4.3 Introduction 

Wood identification can be of vital importance for designing, monitoring, and 

establishing sustainable wood product value chains and for ensuring legality under laws and 

policies governed by international treaties (e.g., the Convention on the International Trade in 

Endangered Species of Flora and Fauna) as well as national laws and policies (e.g., the United 

States' Lacey Act., and 2012 Illegal Logging Prohibition Act of Australia). Wood identification 

is traditionally performed by wood anatomy experts in a laboratory setting and relies on the 

ability of human experts to recognize and differentiate anatomical features. Recently, in order to 

tackle the paucity of traditional wood identification expertise (Wiedenhoeft et al., 2019), 

computer vision wood identification (CVWID) systems have been applied both in the laboratory 

and in the field to address the challenge of identifying wood without a trained expert's eye 

(Khalid et al., 2008; Martins et al., 2013; Filho et al., 2014; Figueroa-Mata et al., 2018; 

Ravindran et al., 2018, 2019; Damayanti et al., 2019, de Andrade et al., 2020; Ravindran and 

Wiedenhoeft, 2020; Souza et al., 2020; Ravindran et al., 2021). The open-source XyloTron 

platform (Ravindran et al., 2020, 2021) has shown potential for real-time, field-deployable, 
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screening-level wood identification (Ravindran et al., 2019; Ravindran and Wiedenhoeft, 2020; 

Arévalo et al., 2021; Ravindran et al., 2021), and, with the XyloPhone (Wiedenhoeft, 2020), it is 

possible to move from laptop-based devices to smartphones for field deployment. Both the 

XyloTron and XyloPhone platforms provide an imaging system that enable the capture of 

macroscopic features (Miller et al., 2002; Ruffinatto et al., 2015) suitable for wood identification. 

Designing high-performing, scalable CVWID systems requires understanding wood 

anatomy and how that anatomy influences the training, performance and deployability of 

convolutional neural networks (CNN) (Ravindran et al., 2022) or other machine learning based 

models (de Geus et al., 2021). Hwang and Sugiyama (2021) report the classification accuracy of 

numerous CNN models used in wood identification studies, with most prior works demonstrating 

a high in silico accuracy of 90% and better with similar performance across different 

architectures, but most of those studies do not report any subsequent model testing on new, 

unique specimens, so their real-world applicability is unknown. It may be the case that for 

CVWID the number of classes, number of training images (coverage of anatomical variation), 

quality of specimen surface preparation (visibility of anatomical features), quality of images 

(clarity of anatomical features), the size of the area imaged vis-à-vis the scale of diagnostic 

anatomical features, and the degree to which the anatomical features among the classes are 

similar are all likely important factors for CNN architecture design and eventual field 

performance of trained models. For this reason, it is vitally important to attempt to evaluate how 

wood anatomy at a range of scales affects imaging and CVWID model performance.  

Ravindran et al. (2022) estimated that approximately 40 classes of North American 

hardwoods need to be included in a field-deployable computer vision model for the North 

American market, a number substantially greater than anything previously published for this 
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region, either in terms of macroscopic images (Lopes et al., 2020, 10 classes) or at the naked-eye 

level (Wu et al., 2021, 11 classes). As noted in Ravindran et al. 2022, the influence of class 

number on CVWID models is unknown, especially for North American hardwoods, where there 

are, broadly speaking, two wood anatomically distinct groups of woods – the diffuse-porous 

woods and the ring-porous woods. They therefore used a fundamental domain-specific factor, 

porosity, to inform taxa selection and label space design. In general, diffuse-porous woods show 

less wood anatomical spatial heterogeneity with regard to radial growth rate, growth ring 

domains (earlywood vs. latewood), and physiological age of the wood (Ravindran et al., 2022). 

Diffuse-porous woods of North America also show comparatively lower overall wood 

anatomical variability (e.g. axial parenchyma patterns, vessel arrangement, and ray width and 

frequency), than, for example, diffuse-porous tropical woods (e.g. de Andrade et al., 2020; 

Arevalo et al., 2021), or compared to the latewood of ring-porous North American woods (Fig. 

4.1). Ravindran et al. (2022) therefore separated the North American hardwoods into two groups: 

the diffuse-porous woods of the earlier work and the ring-porous woods addressed herein. 

Unlike diffuse-porous hardwoods, ring-porous hardwoods, by definition, show dramatic 

differences between earlywood and latewood within a growth ring and among species (Fig. 4.1). 

Due to the spatial heterogeneity displayed by ring-porous woods, it is possible, depending on the 

area of tissue captured and the respective sizes of the earlywood and latewood regions, to obtain 

an image that does not exhibit all the anatomical characteristics that typify the wood. Fast radial 

growth can result in images that show only latewood (Fig. 4.1-C), that is, only the latter-formed 

portion of a single growth ring. Tangentially varying features (e.g., broad rays in Quercus; Fig. 

4.1-B) may be absent in some images. Slow radial growth can produce an image that is primarily 

earlywood (Fig. 4.1-D). The impact of such spatial heterogeneity as reflected in test images is 
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unknown and unexplored. An initial work purporting to use CVWID to classify ten ring-porous 

North American hardwoods did not appear to consider spatial heterogeneity related to wood 

anatomy (Lopes et al., 2020). Further, the apparently subpar image quality of that dataset was 

first questioned (Wiedenhoeft, 2020), and, later, the machine learning analysis and underlying 

dataset were demonstrated to be inherently flawed based on data hygiene for CVWID inference 

(Ravindran and Wiedenhoeft, 2022).   

In this study, we develop a CVWID model to identify 17 classes of North American ring-

porous woods using the XyloTron platform and a convolutional neural network. In addition to 

performance evaluation for accuracy and domain-informed examination of model 

misclassifications, we investigate the influence of wood anatomical spatial heterogeneity of ring-

porous woods on specimen level model predictions and discuss how other forms of wood 

anatomical heterogeneity are thus potentially capable of influencing model performance in field 

deployment settings. Finally, we propose a path for future research for developing a robust, 

highly accurate, field-deployable, unified North American hardwood model. 
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Figure 4.1 Images of the transverse surfaces of Quercus alba specimens under varying growth 

conditions: slow-, medium-, and fast-growth.  

Note: Images A and B show medium-growth with approximately three complete growth rings. 

Image B lacks broad rays which are necessary for identifying Quercus. Images C and D are each 

missing important anatomical features that would allow for accurate identification. As a result of 

fast radial growth, image C shows a partial, latewood-only growth ring, thus not demonstrating 

ring porosity. Due to the Slow-Growth conditions, image D displays the relative absence of 

latewood features, precluding the ready separation of the white oak group from the red oak 

group. Note also in D, the ring-porous character of the wood is less obvious as a result of the 

closely spaced growth rings. Each image represents 6.35mm of tissue on a side. 
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4.4 Material and Methods 

4.4.1 Dataset Details 

4.4.1.1 Taxa and Sample Selection 

We selected 68 North American ring-porous hardwood species from 15 prominent genera 

based on their commercial importance, botanical relevance, and specimen availability from five 

scientific wood collections and forensically verified specimens from a wood anatomical teaching 

collection. Table 4.1 summarizes the details of these six collections and their specimen 

contributions.  
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Table 4.1 Summary of xylaria and wood specimen contributions for model training and 

testing. 

Institution (Xylarium acronym) 
Specimen 

counts 
Role 

USDA Forest Products Laboratory, Madison 

collection (MADw) 
314 

Model 

Training 

USDA Forest Products Laboratory, Samuel J. Record 

collection (SJRw) 
94 

Model 

Training 

USDA Forest Products Laboratory, Forest 

Stewardship Council Quercus specimen collection 

(fscquercus) 
28 

Model 

Training 

Royal Museum of Central Africa (Tw) 16 
Model 

Training 

Mississippi State University, David A. Kribs 

collection (PACw) 
192 

Model 

Testing 

Mississippi State University, Department of 

Sustainable Bioproducts Teaching collection 

(MSUtw) 

6 
Model 

Testing 

Note: Four xylaria, one teaching collection (MSUtw), and a set of scientifically collected, 

georeferenced stem discs (fscquercus) provided specimens for image datasets for the training and 

testing of the wood identification models. MADw, SJRw, fscquercus, and Tw specimens 

contributed solely to the training dataset. In contrast, the independent test dataset was obtained 

from specimens acquired from the PACw and MSUtw specimens, the class-level identifications 

of the latter confirmed by laboratory analysis. 

4.4.1.2 Sample Preparation and Imaging 

The transverse surface of 650 wood specimens was polished using sanding discs with 

progressively finer abrasive grit (240, 400, 600, 800, 1000, 1500). Between each grit, 

compressed air and adhesive tape were used to remove dust from the cell lumina to the extent 

possible. It should be noted that the aqueous polishing method of Barbosa et al. (2021) is not 

suitable for entire xylarium specimens, as it would tend to damage historic specimen labels, 



 

80 

induce swelling-related checking, cause extractive movement or staining, and/or a combination 

of all the above. Our progressive sanding protocol provided a repeatable method for consistently 

preparing uniform specimen surfaces for imaging. Multiple non-overlapping images of the 

transverse surface of each wood sample were captured with the XyloTron platform (Ravindran et 

al., 2020). Each image had a resolution of 2048 × 2048 pixels and captured an area of tissue that 

measured 6.35mm × 6.35mm with a linear resolution of 3.1 microns/pixel. Multiple 

instantiations of the XyloTron system along with multiple operators with varying degrees of 

experience in sample preparation and knowledge of wood anatomy (undergraduate students, 

graduate students, postdoctoral researchers, and technical specialists) were utilized for sample 

preparation and image capture. The resulting images were subsequently curated for image 

quality and the presence of representative anatomical characteristics. Table 4.2 shows a summary 

of the collected datasets. 
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Table 4.2 Summary of image datasets.  

 
Training 

(counts) 

Testing 

(counts) 

Total 

(counts) 

Number of collections 4 2 6 

Number of taxa* 64 40 68 

Number of specimens 452 198 650 

Number of images 4045 936 4981 

Note: 650 specimens from 68 unique taxa (from 15 genera) were polished and imaged, resulting 

in 4981 images: 4045 for training, and 936 for testing the classification models. Supplementary 

Material 5 details the membership of classes and training/testing datasets. 

4.4.1.3 Label Assignment  

According to Gasson (2011), the light microscopic identification of wood specimens is 

generally accurate only to the genus-level. In this study, we categorized the selected taxa into a 

combination of generic and sub-generic classes based on the similarity of macroscopic 

anatomical characteristics to facilitate machine learning and for use on the XyloTron platform. 

We grouped the taxa into 17 classes in the following ways: 

1. The genera Asimina, Carya, Castanea, Catalpa, Celtis, Cladrastis, Fraxinus, 

Gleditsia, Gymnocladus, Maclura, Morus, Robinia, and Sassafras were each assigned to a 

genus-level class. 

2. The genera Quercus and Ulmus were each split into two classes. Quercus classes were 

labeled “QuercusR” (red) and “QuercusW” (white) corresponding to the commercial red and 

white oak groups, which are anatomically distinguishable on the transverse surface on the basis 

of differences in latewood pore diameter and distribution. Ulmus classes were labeled “UlmusS” 

(soft) and “UlmusH” (hard) based on commercial grouping and continuous and discontinuous 
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row(s) of earlywood vessels, respectively, and differences in the mean radial and tangential 

earlywood vessel diameter (Wheeler et al., 1989).  

Although class names include genus names, we follow a convention of not italicizing the 

class names so that we can distinguish when we are discussing genera or species (which are 

italicized) versus class names. 

Supplementary Material 5 in Appendix contains a list of the 68 taxa, their class labels, 

and their training and testing dataset membership. 

4.4.1.4 Spatial Heterogeneity Datasets 

In addition to the 936 images that comprised the main testing dataset shown in Table 4.2, 

three smaller datasets were collected to evaluate the effects of spatial heterogeneity on model 

accuracy (hereafter the “spatial heterogeneity datasets,” Table 4.3). From the 192 PACw 

specimens imaged for the main test dataset, 38 specimens were selected that exhibited 1) 

especially slow radial growth (narrow, closely-spaced growth rings), 2) especially fast growth 

(wide growth rings), or 3) large areas devoid of broad rays (in Quercus). These specimens were 

reimaged in areas that contained entirely earlywood (to generate the Slow-Growth dataset), 

virtually no earlywood (to generate the Fast-Growth dataset), or that lacked broad rays (to 

generate the Broad Rays Absent dataset). The three resulting datasets thus each lacked at least 

one characteristic wood anatomical feature used by human identifiers to characterize the woods 

in question.  

The classes included in the Slow-Growth dataset are Carya, Cladrastis, Gleditsia, Morus, 

QuercusR, and QuercusW. The Fast-Growth dataset included classes Catalpa, Cladrastis, Morus, 

QuercusR, QuercusW, Robinia, and UlmusS. Specimens in QuercusW were the only ones to 
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display images lacking broad rays. Not all classes were included in these datasets due to the 

absence of specimens in some classes featuring distinctly slow-or fast-growth. Table 4.3 

summarizes the number of images contained in each dataset. 

Table 4.3 Summary of spatial heterogeneity image datasets. 

 No. of Images No. of 

classes 

No. of 

Specimens 

Slow-Growth (earlywood only) 101 6 23 

Fast-Growth (latewood only) 44 7 10 

Broad-Rays Absent 44 1 6 

 

4.4.2 Machine Learning Details 

4.4.2.1 Model Architecture and Training  

Prior work (e.g., Ravindran et al., 2019, 2020, 2021, Arevalo et al., 2021) has 

demonstrated the effectiveness of using a two-stage (Howard and Gugger, 2020) transfer 

learning (Pan and Yang, 2010) approach for training strong baseline convolutional neural 

network (CNN) models for CVWID. This training approach was employed here to learn the 

weights of a ResNet34-based CNN with a custom classifier head that can handle 17 classes. The 

custom classifier head consisted of global average and global maximum pooling layers which 

were concatenated and fed through two fully-connected layers with batch-normalization (Ioffe 

and Szegedy, 2015) and dropout (Srivastava et al., 2014) in sequence. This was followed by a 

softmax layer that produced class prediction distribution over the 17 classes. In the first stage of 

training, the ImageNet (Russakovsky et al., 2015) pretrained weights of the backbone were 

frozen and only the weights of the custom head were learned. During the second stage, the 
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weights in both the backbone and the head were finetuned. Data augmentation, that included 

reflections, rotations and CutOut (DeVries and Taylor, 2017), was performed during training. 

The learning rate hyperparameter was estimated using the one-cycle policy of (Smith, 2018) and 

was annealed (Howard and Gugger ,2020) when training using the Adam optimizer (Kingma and 

Ba, 2017). Details about the model architecture, training methodology, hyperparameter 

optimization, and data augmentation can be found in Ravindran et al., 2022. PyTorch (Paszke et 

al., 2019) and scientific Python tools (Pedregosa et al., 2011) were used for model definition, 

training, and evaluation. Additional details of a ResNet 50 model trained and evaluated 

identically to the ResNet34 model are available in Supplementary Material 6 in the Appendix. 

4.4.2.2 Model Evaluation 

The following analyses were conducted for evaluation of trained models: 

(1) Training and evaluation were performed using five-fold cross-validation analysis with 

class level stratification folds along with specimen-level separation among the five folds (i.e., 

images of each specimen contributed images to exactly one fold). For valid assessment of any 

wood identification machine learning-based classifier, it is necessary to conduct specimen level 

mutual exclusivity between the folds (e.g., Ravindran et al., 2019, 2020, 2021, as discussed in 

Hwang and Sugiyama, 2021, and in Ravindran and Wiedenhoeft, 2022). A confusion matrix and 

the corresponding top-1 and top-2 prediction accuracies were computed by consolidating the 

model predictions over the five folds. It should be reiterated that the cross-validation analysis did 

not include images from the PACw or MSUtw datasets.  
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(2) The five models from the cross-validation analysis, each trained using a different 80% 

split of the training data, were also tested on the PACw + MSUtw dataset. The top-1 and top-2 

accuracies for this analysis are also presented.  

(3) A field model was trained using all the images from the cross-validation analysis (i.e., 

100% of the training data) and evaluated on images from the PACw + MSUtw dataset. A 

confusion matrix and the top-1 and top-2 prediction accuracies were computed to assess the 

utility of the field model. 

The predicted top-1 class for a specimen was taken to be the majority of class predictions 

for the images contributed by the specimen. The top-2 image-level predictions for a specimen 

were generated with equal weight voting: if a specimen’s true class was one of the top-2 

predicted classes, the specimen was considered correctly identified.  

4.4.2.3 Misclassification Analysis  

Images from all misclassified specimens from the field models were evaluated and 

assigned to one of three types of misclassification as reported in detail in Ravindran et al. 2022, 

and we also adopt their source and sink misclassification analysis as implemented therein. 

4.4.2.4 Spatial Heterogeneity Evaluation 

The impact of spatial heterogeneity on model performance was evaluated using the three 

datasets obtained from the PACw specimens (see section 4.4.1.4). Table 4.4 lists the classes and 

the number of specimens per class that comprise each of the spatial heterogeneity datasets (Slow-

Growth, Fast-Growth, and Broad Rays Absent). 
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Table 4.4 Summary of the number of specimens and their class labels included in each of the 

spatial heterogeneity datasets. 

Slow-Growth Dataset Fast-Growth Dataset 
Broad-Rays Absent 

Dataset 

Class 
No. of 

Specimens 
Class 

No. of 

Specimens 
Class 

No. of 

Specimens 

Carya 11 Catalpa 2 QuercusW 6 

Cladrastis 1 Cladrastis 1   

Gleditsia 1 Morus 1   

Morus 1 QuercusR 2   

QuercusR 3 QuercusW 1   

QuercusW 6 Robinia 1   

  UlmusS 2   

Note: Not all classes are included in these datasets due to the lack of specimens characterized as 

slow-growth or fast-growth. 

4.5 Results 

The top-1 prediction accuracy for the specimen level cross-validation model was 98.0%. 

When tested on the PACw + MSUtw dataset, the top-1 and top-2 cross-validation accuracies 

were 91.9% and 98.3%, respectively. The field model top-1 accuracy was 91.4%, and the top-2 

accuracy was 100%. Table 4.5 shows the summary of the cross-validation (accumulated over the 

five folds) and field model’s prediction accuracies. Confusion matrices for the cross-validation 

and field models are shown in Figures 4.2 and 4.3, respectively. 
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Figure 4.2 Confusion matrix for the cross-validation model.  

Note: Top-1 predictions on 452 specimens (accumulated over five folds), with a specimen-level 

accuracy of 98.01%. 
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Figure 4.3 Confusion matrix for the field model’s top-1 predictions. 

Note: 198 specimens in the PACw + MSUtw dataset. Specimen-level accuracies for top-1 and 

top-2 predictions were 91.41% and 100%, respectively. 
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Table 4.5 Training and testing specimen level model prediction accuracies.  

Training and evaluation 

details 
Top-k Accuracy (%) 

Five-fold cross-validation k=1 98.0 

Trained using four folds, 

tested on PACw + MSUtw 

k=1 91.9  

k=2 98.3  

Field model trained using 

all five folds, tested on 

PACw + MSUtw 

k=1 91.4 

k=2 100 

Note: The training and testing dataset accuracies were computed using 452 (across the five folds) 

and 198 specimens respectively. Confusion matrices are provided for the percentages in bold.  

Example images of Type 1 and Type 3 misclassifications from the field model’s 

confusion matrix (Fig. 4.3) are shown in Figure 4.4. A summary of misclassification data for the 

field model is presented in Table 4.6. 
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Figure 4.4 Images of the transverse surface of test specimens from classes Gleditsia and 

QuercusR (A and C) and exemplar images from classes Gymnocladus (B) and 

UlmusH (D).  

Note: Images A and B shows the type 1 misclassification where a specimen of Gleditsia was 

misclassified to the anatomically similar class Gymnocladus. An anatomically typical specimen 

of the class QuercusR (C) was misclassified as the anatomically disparate class UlmusH (D), a 

Type 3 misclassification. Note the anatomical similarities between A and B and the anatomical 

dissimilarity between C and D, especially with regard to the difference in ray size, earlywood 

vessel diameter and arrangement. Also, in images C and D, the red arrows indicate a possible 

comparison of banded parenchyma in the latewood of QuercusR (C) and ulmiform latewood 

vessel arrangement in UlmusH (D). This comparison of anatomical features may have accounted 

for the misclassification of QuercusR specimens as UlmusH specimens. Each image represents 

6.35mm of tissue on a side. 
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Table 4.6 Number and proportion of misclassified specimens from Figure 4.3 by type of 

misclassification. 

Misclassification types 

Number of 

misclassified 

specimens 

(of 198 total 

specimens) 

Proportion of 

the 17 

misclassified 

(of 198 total) 

specimens 

Taxa are anatomically consistent, test specimen 

typical (Type 1) 
15 0.88 (0.08) 

Test specimen atypical for its taxon* (Type 2) 0 0 

Taxa and test specimen are not anatomically 

consistent (Type 3) 
2 0.12 (0.01) 

Total 17 1 (0.09) 

Note: Types 1 and 2 are consistent with wood anatomy and expected errors made by human field 

inspectors. Type 3 errors are inconsistent with macroscopic wood anatomy and would not be 

expected to be made by a human inspector. * But within a reasonable range for the taxon. 

For the top-1 accuracy of the field model, 11 classes showed zero source 

misclassifications on the PACw + MSUtw dataset: Asimina, Carya, Castanea, Catalpa, Celtis, 

Fraxinus, Gymnocladus, Morus, Robinia, Sassafras, and UlmusH. At least one source 

misclassification was shown in the remaining 6 classes (Fig. 4.3), with 17 misclassified 

specimens of 198 test specimens in total. Six classes provided source misclassifications, and 

those misclassified specimens were attributed to the five following classes: Gymnocladus, 

QuercusR, QuercusW, Robinia, and UlmusH. There were 5 classes that drew sink 

misclassifications: Gymnocladus, QuercusR, QuercusW, Robinia, and UlmusH. Eight classes 

showed neither source nor sink misclassifications: Asimina, Carya, Castanea, Catalpa, Celtis, 

Fraxinus, Morus, and Sassafras. Table 4.6 summarizes the number and proportions of 

misclassification types. Fifteen of the seventeen (88.2%) misclassifications were Type 1. There 
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were only 2 out of 17 (11.8%) misclassifications that were of Type 3, and there were zero Type 2 

misclassifications. 

When tested against the three spatial heterogeneity datasets, prediction accuracy of the 

field model remained nearly unchanged at 91.3% in the case of the Slow-Growth dataset and fell 

by 11.4% for the Fast-Growth dataset and 8.3% for the Broad Rays Absent (QuercusW) dataset. 

Of the Slow-Growth dataset, a specimen from class Cladrastis was predicted as Gymnocladus 

and a specimen from the class QuercusW was predicted as QuercusR. Within the Fast-Growth 

dataset, two specimens from the class UlmusS were predicted as UlmusH. The Broad Rays 

Absent dataset, which consisted of the class QuercusW, had one of six specimens misclassified 

as QuercusR. Table 4.7 summarizes the accuracies for the three spatial heterogeneity datasets 

when tested with the field model. A comparison of the test specimen and an example image of 

the predicted class of each spatial heterogeneity dataset is shown in Figure 4.5. 

Table 4.7 Specimen-level field model performance metrics on spatial heterogeneity datasets.  

Dataset Accuracy 

Slow-Growth (earlywood only) 91.3% 

Fast-Growth (latewood only) 80.0% 

Broad-Rays Absent (only in QuercusW) 83.3% 

Note: Top-1 field model accuracy on typical images was 91.41%. 
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Figure 4.5 Images of the transverse surface of test specimens from classes Cladrastis, 

QuercusW, and UlmusS (A, C, and E) along with exemplar images from classes 

Gymnocladus (B), QuercusR (D), and UlmusH (F).  

Note: Image pairs A and B, C and D, and E and F illustrates the misclassification within the 

slow-growth, no broad rays, and fast-growth spatial heterogeneity datasets.  
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4.6 Discussion 

4.6.1 Deployment Gap of Cross-Validation and Field Testing 

The deployment gap, the drop in accuracy (Ravindran et al., 2021) between the top-1 

cross-validation and field-testing accuracy when tested on PACw and MSUtw specimens, was 

6.6%. Previous studies by Ravindran et al. (2019, 2021) found deployment gaps of 25.0% and 

10.5%, respectively, and in the diffuse-porous North American hardwoods, a deployment gap of 

14.6% was reported (Ravindran et al., 2022). Research in other fields of computer vision have 

found a comparable loss in accuracy when models are tested on completely new datasets (Recht 

et al., 2018, 2019; Zech et al., 2018). According to Recht et al. (2019), there is a strong 

likelihood that models will struggle to generalize to images that present greater challenges than 

those in the original dataset. Other factors described in Ravindran et al. (2021) that might 

influence this deployment gap include minor variations in the anatomical patterns between 

xylarium specimens and the wood currently available in the market, differences between green 

and dry wood, variability in operator skills, and/or systematic differences imparted by different 

instantiations of imaging equipment. Using CVWID models in human-in-the-loop scenarios, 

such as the xyloinf classification software (Ravindran et al., 2020), provides users with the top 

predictions and exemplar images for the predicted classes, permitting the incorporation of human 

judgment. Additionally, organoleptic characters unavailable to the CVWID system, such as odor, 

luster, and taste, could serve as initial indicators of wood identity as well as assist in 

identification of Type 3 misclassifications by visual comparison of field images with 

representative images. 

CVWID is typically formulated as an inductive learning problem where a model (𝑓: 𝒳 →

ℒ) that maps images (from 𝒳) to labels (from ℒ) is learned using labeled training data and the 
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quality of the trained model is evaluated on its capability to generalize to unseen test data. The 

test data are assumed to be drawn independent and identically distributed (i.i.d.) from the same 

distribution as the training data i.e., if 𝑃𝑡 and 𝑃𝑑 represent the training and deployment data 

distributions then 𝑃𝑡(𝒳) = 𝑃𝑑(𝒳) and 𝑃𝑡(ℒ) = 𝑃𝑑(ℒ). When the i.i.d. assumption is violated 

and distributional shifts between the training and testing/deployment data exist, in silico model 

performance will not translate to commensurate real-world field performance. Two types of 

distributional shifts can influence the real-world performance of deployed CVWID models: 

covariate shift (𝑃𝑡(𝒳) ≠ 𝑃𝑑(𝒳))  and semantic shift (𝑃𝑡(ℒ) ≠ 𝑃𝑑(ℒ)).  

Differences in wood anatomy, sample preparation, imaging parameters, and operator skill 

can be sources of covariate shift. In this work, the use of the XyloTron platform to image 

progressively sanded wood specimen surfaces enabled the capture of consistent image data 

thereby minimizing covariate shifts due to specimen preparation and imaging. Our study pooled 

data from different wood collections (using multiple operators for specimen preparation and 

imaging) to train a model which was then tested on specimens from a different xylarium that did 

not contribute to the training data (a logistically manageable surrogate for real-world field 

testing), thereby enforcing separation between the training and testing datasets. The surrogate 

field testing approach used here (similar to Ravindran et al., 2022) is an initial attempt to 

incorporate covariate shifts due to operator skill (while following the progressive sample 

preparation protocol) in the evaluation of trained models. In the context of covariate shifts in 

relation to spatial heterogeneity of ring-porous woods, the Slow-Growth, Fast-Growth and Broad 

Rays Absent datasets were used to evaluate model performance with respect to the positioning of 

the imaging sensor on the specimen surface.  
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While our data set is the largest (in terms of number of images and unique specimens) for 

the considered classes and leads to models that are deployable in a human-in-the-loop setting, the 

observed deployment gap for the field model suggests the need for larger datasets for training 

models that better capture the inter- and intra-class wood anatomical variations. Our models (like 

most prior works but see Apolinario et al., 2019) were trained and evaluated based on a closed-

world assumption i.e., there is no semantic shift, and the test specimen belongs to one of the 

classes the model was trained to identify. Augmented models that include a larger set of woods 

along with a “catch all” out-of-distribution class and/or reporting prediction uncertainties can be 

practical approaches for handling semantic shifts in the data distribution. Elucidating the 

interplay of dataset sizes, model capacities, and distributional shifts, especially relaxation of 

sample preparation protocols (e.g., using knife cuts instead of progressive sanding, or sanding to 

a coarser grit [thus involving fewer steps and less time]) and the closed-world assumption 

(Scheirer et al., 2013), is likely to be an important challenge in the realization of general field-

deployable CVWID systems. We expect the exploration of these ideas (e.g., Mahdavi and 

Carvalho, 2021; Vaze et al., 2021; Yang et al., 2021) to be a fertile area for future work. 

4.6.2 Spatial Heterogeneity 

According to Panshin and de Zeeuw (1980) and Hoadley (1990), the initial discriminant 

macroscopic character commonly used in North American hardwood identification is porosity 

(ring-porous vs. diffuse-porous). The second character frequently invoked in such wood 

identification keys within the ring-porous hardwoods is the characteristic presence of wide rays 

in Quercus. By definition, vessels in ring-porous woods will display dramatic and abrupt changes 

in diameter between earlywood and latewood, as well as changes in the parenchyma patterns 
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from earlywood to latewood. It has been found that specimens with varying growth rates (slow-

growth, medium-growth, and fast-growth (Fig. 4.1)) can have an impact on the appearance of 

both these features such that some macroscopic images of some fast-grown specimens may not 

capture the earlywood vessels, some images of Slow-Growth specimens may not capture 

latewood features, and some images of Quercus may lack wide rays. Our spatial heterogeneity 

datasets explicitly tested the influence of these features (or their lack), and the results suggest 

that this may not affect model predictions as strongly as anticipated (no change for Slow-

Growth, 11.4% reduction for Fast-Growth, and 8.3% reduction for Broad Rays Absent). In the 

Slow-Growth dataset, a specimen from class Cladrastis was misclassified as class Gymnocladus, 

a Type 1 misclassification that was also observed in the five-fold dataset. Of the Fast-Growth 

dataset, all specimens in class UlmusS were predicted as UlmusH. This outcome was likely 

caused by the absence of the earlywood zone, where the prominent, continuous and sometimes 

multiple rows of earlywood vessels would have served to separate UlmusS from UlmusH. 

Interestingly, none of the images of QuercusW captured without broad rays (e.g. Fig. 4.1-B) was 

mistaken for Castenea despite the latter’s striking resemblance to the former in absence of this 

distinguishing feature. Figure 4.5 shows an example comparison of misclassifications in each of 

the three spatial heterogeneity datasets. 

4.6.3 Analysis of Misclassifications 

Table 4.8 presents a summary of the misclassifications in the field model based on the 

confusion matrix in Figure 4.3. Source misclassification proportions were calculated on a per 

class basis (n = number of specimens in each class) and sink misclassification proportions were 

calculated as a percentage of the total number of misclassified specimens across all classes (n = 
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17). Our analysis found eight classes that have neither source nor sink misclassifications; they 

include Asimina, Carya, Castanea, Catalpa, Celtis, Fraxinus, Morus, and Sassafras. As for 

classes exhibiting Type 1 source misclassifications, they ranged from a 2.4% in QuercusR to 

87.5% in UlmusS. The only Type 3 source misclassification came from QuercusR, where 4.9% 

of the specimens were misclassified as UlmusH. Among the five classes with sink 

misclassifications, UlmusH and QuercusR account for over 60% of the Type 1 errors. It is 

noteworthy that UlmusH was the only class to show a Type 3 misclassification, with 11.8% of 

specimens classified as Quercus R.   
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Table 4.8 Proportions of misclassifications in the top-1 predictions in the field model by 

class.  

 Proportion of misclassified specimens by class. 

 

 Source Sink 

Class (no. 

specimens) 

Type 

1 

Type 

2 

Type 

3 
Total 

Type 

1 

Type 

2 

Type 

3 
Total 

Asimina (3)         

Carya (45)         

Castanea (2)         

Catalpa (4)         

Celtis (3)         

Cladrastis (4) 0.25   0.25     

Fraxinus (4)         

Gleditsia (7) 0.14   0.14     

Gymnocladus (2)     0.12   0.12 

Maclura (3) 0.33   0.33     

Morus (5)         

QuercusR (41) 0.02  0.05 0.07 0.24   0.24 

QuercusW (55) 0.07   0.07 0.06   0.06 

Robinia (6)     0.06   0.06 

Sassafras (3)         

UlmusH (3)     0.41  0.12 0.53 

UlmusS (8) 0.88   0.88     

Note: Source misclassification proportions are based on the total number of specimens per class 

(shown in parentheses next to the class name). Sink misclassification proportions are based on 

the total number of misclassified specimens across all classes (n=17). Dark grey indicates a class 

for which there were neither source nor sink misclassifications; light grey indicates the absence 

of misclassifications in either source or sink; colored cells are proportions of note discussed in 

the text. 

When analyzing the field-model confusion matrix (Fig. 4.3), two of 49 QuercusR 

specimens were classified as UlmusH. As noted above, this is classified as a Type 3 

misclassification, but in reviewing the misclassified images, it might be that the features 

recognized by the model are emphasizing the relative similarity between the wavy bands of 

latewood parenchyma in QuercusR and the ulmiform latewood vessel arrangement in UlmusH, 
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and thus failing to emphasize the importance of earlywood vessel arrangement, ray abundance, 

and ray width. A human identifier would be unlikely to mistake these features for each other and 

thus would be unlikely to confuse these woods. This comparison can be seen in Figure 4.4 

images C and D. 

4.6.4 Toward a Unified Model for North American hardwoods. 

. In continuity with our previous study on diffuse-porous hardwoods (Ravindran et. al., 

2022), we are working to develop a unified CVWID model for North American commercial 

woods that covers the entire spectrum of porosity patterns. In addition to ring- and diffuse-

porous woods, a unified model must incorporate semi-ring-porous woods into the label space 

design. As CVWID for semi-ring-porous woods is still unexplored, it represents a type of label 

space heterogeneity that requires parsing before a unified model can be developed.  

 As future studies lead us closer to model unification, it becomes increasingly 

important to evaluate model performance in a way that assesses accuracy and most closely 

approximates model deployment in the field. While CVWID models are commonly subjected to 

five-fold cross validation, the extent to which such models developed from inadequate (at best) 

and potentially misleading (at worst) datasets can misrepresent accuracy in the absence of testing 

with independent specimens has been demonstrated (Ravindran and Wiedenhoeft, 2022). To be 

sure, testing models with specimens from disparate xylaria not used for model training has been 

a useful and convenient surrogate for field testing, but the gold standard for CVWID model 

evaluation remains on-the-ground testing of actual commercial material. 

 As the number of classes increases to cover more of the commercial hardwood 

species in North America (somewhere around 40+), we expect to see the overall frequency of 
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misclassifications increase, as well as the frequency of Type 3 errors. Whereas a human trained 

in wood identification would rarely (if ever) mistake a ring-porous wood for a diffuse-porous 

wood, a 40+ class CVWID model might. For this reason, it is important to develop large, unified 

models in such a way as to reduce or eliminate those types of errors. In addition to incorporating 

domain expertise in designing the label space, this improvement could possibly be accomplished 

by varying CNN depth, applying penalty weights for out-of-genus misclassifications, or even 

nesting models inside others 

4.7 Conclusions 

. The CVWID model presented here is one of the first, and the largest, to be developed 

for ring-porous hardwoods in North America. A 17-class model was trained using 4045 images 

captured from 452 specimens of ring-porous woods from four xylaria to determine how well the 

model handles spatial heterogeneity. A five-fold cross validation showed a 98.0% accuracy while 

a field model tested on 198 specimens drawn from two additional xylaria achieved top-1 and top-

2 predictions of 91.4% and 100%, respectively. Results tested on three smaller spatial 

heterogeneity datasets also showed that images devoid of earlywood, latewood, or broad rays did 

not greatly reduce prediction accuracy. This study emphasizes the continued importance of 

allowing wood anatomy to inform CVWID model creation and evaluation and advises against 

relying solely on CNN architecture to increase accuracy. In an ongoing study, we are working on 

developing a combined model for North American diffuse-porous and ring-porous hardwoods 

that will also examine how semi-ring-porous hardwoods (such as Juglans) affect the predictions 

of the model and the possibilities of getting computer-vision models to predict classes in a more 

anatomically informed way. 
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A.1 Supplementary Material for Chapter 2 

A.1.1 Supplementary Material 1: The 24 Peruvian Woods Selected  

Table A.1 Volume of round wood of selected Peruvian species 

VOLUME OF ROUND WOOD OF SELECTED 
SPECIES 

 
VOLUME OF ROUND WOOD OF 

SELECTED SPECIES COMPARED TO 
TOTAL VOLUME 2019 

GENUS 
TOTAL VOLUME  

(m3) 

% of Total 
Volume 

Analyzed 

 GENUS 
TOTAL 

VOLUME  
(m3) 

% of Total 
Volume 

Produced 

Dipteryx 143,592.12 19.52%  Dipteryx 143,592.12 11.09% 

Cedrelinga 83,436.12 11.34%  Cedrelinga 83,436.12 6.45% 

Cariniana 76,283.40 10.37%  Cariniana 76,283.40 5.89% 

Guazuma 70,056.20 9.52%  Guazuma 70,056.20 5.41% 

Maquira 67,583.58 9.19%  Maquira 67,583.58 5.22% 

Copaifera 53,754.59 7.31%  Copaifera 53,754.59 4.15% 

Brosimum 40,141.17 5.46%  Brosimum 40,141.17 3.10% 

Eucalyptus 34,717.20 4.72%  Eucalyptus 34,717.20 2.68% 

Virola 24,172.74 3.29%  Virola 24,172.74 1.87% 

Myroxylon 19,035.69 2.59%  Myroxylon 19,035.69 1.47% 

Hura crepitans 18,831.12 2.56%  Hura crepitans 18,831.12 1.45% 

Aspidosperma 16,922.09 2.30%  Aspidosperma 16,922.09 1.31% 

Calycophyllum 16,675.37 2.27%  Calycophyllum 16,675.37 1.29% 

Amburana 16,313.51 2.22%  Amburana 16,313.51 1.26% 

Schizolobuim 12,970.92 1.76%  Schizolobuim 12,970.92 1.00% 

Pinus 11,743.42 1.60%  Pinus 11,743.42 0.91% 

Poulsenia 8,943.72 1.22%  Poulsenia 8,943.72 0.69% 

Cedrela 6,575.55 0.89%  Cedrela 6,575.55 0.51% 

Ormosia 4,804.40 0.65%  Ormosia 4,804.40 0.37% 

Aniba 4,531.20 0.62%  Aniba 4,531.20 0.35% 

Iryanthera 2,463.04 0.33%  Iryanthera 2,463.04 0.19% 

Swietenia 1,376.99 0.19%  Swietenia 1,376.99 0.11% 

Chorisia 576.89 0.08%  Chorisia 576.89 0.04% 

Pouteria  0.00%  Pouteria  0.00% 

       

 735,501.07   Analyzed volume 735,501.07 57% 

    Total volume 2019 1,294,501.64 
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Table A.2 Volume of lumber of selected Peruvian species 

VOLUME OF LUMBER OF 
SELECTED SPECIES 

 
VOLUME OF LUMBER OF 

SELECTED SPECIES COMPARED 
TO TOTAL VOLUME 2019 

GENUS 
TOTAL 

VOLUME  
(m3) 

% of Total 
Volume 

Analyzed 

 GENUS 
TOTAL 

VOLUME  
(m3) 

% of Total 
Volume 

Produced 

Cedrelinga 80,760.62 20.55%  Cedrelinga 80,760.62 13.54% 

Dipteryx 58,773.05 14.95%  Dipteryx 58,773.05 9.85% 

Cariniana 43,265.26 11.01%  Cariniana 43,265.26 7.25% 

Copaifera 33,851.90 8.61%  Copaifera 33,851.90 5.67% 

Guazuma 27,711.82 7.05%  Guazuma 27,711.82 4.65% 

Brosimum 26,156.52 6.65%  Brosimum 26,156.52 4.38% 

Virola 23,140.46 5.89%  Virola 23,140.46 3.88% 

Hura crepitans 16,847.34 4.29%  Hura crepitans 16,847.34 2.82% 

Calycophyllum 11,719.18 2.98%  Calycophyllum 11,719.18 1.96% 

Eucalyptus 9,465.67 2.41%  Eucalyptus 9,465.67 1.59% 

Aspidosperma 9,150.05 2.33%  Aspidosperma 9,150.05 1.53% 

Pinus 7,571.08 1.93%  Pinus 7,571.08 1.27% 

Myroxylon 6,890.35 1.75%  Myroxylon 6,890.35 1.16% 

Amburana 5,907.81 1.50%  Amburana 5,907.81 0.99% 

Schizolobuim 5,713.90 1.45%  Schizolobuim 5,713.90 0.96% 

Poulsenia 5,646.56 1.44%  Poulsenia 5,646.56 0.95% 

Maquira 5,611.33 1.43%  Maquira 5,611.33 0.94% 

Cedrela 5,187.25 1.32%  Cedrela 5,187.25 0.87% 

Aniba 3,417.98 0.87%  Aniba 3,417.98 0.57% 

Ormosia 2,641.89 0.67%  Ormosia 2,641.89 0.44% 

Iryanthera 1,618.11 0.41%  Iryanthera 1,618.11 0.27% 

Chorisia 1,378.06 0.35%  Chorisia 1,378.06 0.23% 

Swietenia 645.38 0.16%  Swietenia 645.38 0.11% 

Pouteria  0.00%  Pouteria  0.00% 

       

 393,071.57   Analyzed 
volume 

393,071.57 66% 

    Total volume 
2019 

596,547.14  
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A.1.2 Supplementary Material 2: Class Composition Details 

Across the training and testing data sets a total of 188 taxa were partitioned into 24 

classes based on wood anatomy similarities. For model training the taxa were grouped into genus 

level classes. It should be noted that some of the species included in the test dataset were not part 

of the training dataset. The species of the genus Brosimum were grouped into two classes: 

BrosimumA (anatomy similar to Brosimum alicastrum) and BrosimumU (anatomy similar to 

Brosimum utile). 

In the table below, the column “Accession Taxon" lists the taxa of the specimen as they 

are recorded in the xylarium (and used for label space design) while the column “Verified 

Taxon" lists the taxa as verified using the online data base http://www.worldoraonline.org/.  

We would like to highlight and provide clarification on two specific cases of taxonomic 

flux encountered during the verification: 

• The correct taxonomic designation of Copaifera chodatiana is Guibortia 

chodatiana. There was exactly one Copaifera chodatiana specimen that 

contributed four images to our data set. In our five-fold cross validation 

experiments, this specimen (when its images were part of the testing fold) was 

misclassified (both at top-1 and top-2 predictions), which is the expected correct 

behavior. 

• Images from exactly one specimen of Eucalyptus trachyphloia, from the PACw 

xylarium, was included in our testing data set. The correct taxonomic designation 

of Eucalyptus trachyphloia is Corymbia trachyphloia. The wood anatomy of 

Corymbia trachyphloia, at the hand lens level, is consistent with that of 

http://www.worldoraonline.org/
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Eucalyptus. This specimen was correctly identified by our model as class 

Eucalyptus at the top-2 prediction. 

In conclusion, our label space design and accuracy results are both valid and consistent 

after accounting for taxonomic flux. The authors would like to gratefully acknowledge the 

reviewer who suggested accounting for taxonomic flux issues. 

Table A.3 The class labels and their constituent taxa. 

Label Accession Taxon Verified Taxon Train Test 

Amburana Amburana cearensis Amburana cearensis X X 

Aniba Aniba bracteata Aniba bracteata X 
 

Aniba Aniba canelilla Aniba canellila X 
 

Aniba Aniba hostmanniana Aniba hostmanniana X 
 

Aniba Aniba nearparurensis Aniba panurensis 
 

X 

Aniba Aniba riparia Aniba riparia X 
 

Aniba Aniba rosaeodora Aniba rosaeodora X 
 

Aniba Aniba trinitatis Aniba citrifolia X 
 

Aspidosperma Aspidosperma album Aspidosperma album X 
 

Aspidosperma Aspidosperma centrala Aspidosperma album X 
 

Aspidosperma Aspidosperma cruentum Aspidosperma desmanthum X 
 

Aspidosperma Aspidosperma cylindrocarpon Aspidosperma cylindrocarpon X 
 

Aspidosperma Aspidosperma desmanthum Aspidosperma desmanthum X 
 

Aspidosperma Aspidosperma macrocarpon Aspidosperma macrocarpon X 
 

Aspidosperma Aspidosperma marcgravianum Aspidosperma excelsum X 
 

Aspidosperma Aspidosperma megalocarpon Aspidosperma megalocarpon X 
 

Aspidosperma Aspidosperma melanocalix Aspidosperma spruceanum X 
 

Aspidosperma Aspidosperma parvifolium Aspidosperma parvifolium X 
 

Aspidosperma Aspidosperma polyneuron Aspidosperma polyneuron X 
 

Aspidosperma Aspidosperma rigidum Aspidosperma rigidum X 
 

Aspidosperma Aspidosperma sp. Aspidosperma sp. 
 

X 

BrosimumA Brosimum alicastrum Brosimum alicastrum X 
 

BrosimumA Brosimum colimbianum Brosimum alicastrum 
 

X 

BrosimumA Brosimum latifolium Brosimum alicastrum 
 

X 

BrosimumA Brosimum terrabanum Brosimum alicastrum 
 

X 

BrosimumU Brosimum utile Brosimum utile X 
 

Calycophyllum Calycophyllum acreanum Calycophyllum megistocaulum X 
 

Calycophyllum Calycophyllum candidissimum Calycophyllum candidissimum X X 

Calycophyllum Calycophyllum multiflorum Calycophyllum multiflorum X X 

Calycophyllum Calycophyllum obovatum Calycophyllum obovatum X 
 

Calycophyllum Calycophyllum spruceanum Calycophyllum spruceanum X X 

Amburana Amburana cearensis Amburana cearensis X X 

Aniba Aniba bracteata Aniba bracteata X 
 

Aniba Aniba canelilla Aniba canellila X 
 

Aniba Aniba hostmanniana Aniba hostmanniana X 
 

Table A.3 (continued) 
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Label Accession Taxon Verified Taxon Train Test 

Aniba Aniba nearparurensis Aniba panurensis 
 

X 

Aniba Aniba riparia Aniba riparia X 
 

Aniba Aniba rosaeodora Aniba rosaeodora X 
 

Aniba Aniba trinitatis Aniba citrifolia X 
 

Aspidosperma Aspidosperma album Aspidosperma album X 
 

Aspidosperma Aspidosperma centrala Aspidosperma album X 
 

Aspidosperma Aspidosperma cruentum Aspidosperma desmanthum X 
 

Aspidosperma Aspidosperma cylindrocarpon Aspidosperma cylindrocarpon X 
 

Aspidosperma Aspidosperma desmanthum Aspidosperma desmanthum X 
 

Aspidosperma Aspidosperma macrocarpon Aspidosperma macrocarpon X 
 

Aspidosperma Aspidosperma marcgravianum Aspidosperma excelsum X 
 

Aspidosperma Aspidosperma megalocarpon Aspidosperma megalocarpon X 
 

Aspidosperma Aspidosperma melanocalix Aspidosperma spruceanum X 
 

Aspidosperma Aspidosperma parvifolium Aspidosperma parvifolium X 
 

Aspidosperma Aspidosperma polyneuron Aspidosperma polyneuron X 
 

Aspidosperma Aspidosperma rigidum Aspidosperma rigidum X 
 

Aspidosperma Aspidosperma sp. Aspidosperma sp. 
 

X 

BrosimumA Brosimum alicastrum Brosimum alicastrum X 
 

BrosimumA Brosimum colimbianum Brosimum alicastrum 
 

X 

BrosimumA Brosimum latifolium Brosimum alicastrum 
 

X 

BrosimumA Brosimum terrabanum Brosimum alicastrum 
 

X 

BrosimumU Brosimum utile Brosimum utile X 
 

Calycophyllum Calycophyllum acreanum Calycophyllum megistocaulum X 
 

Calycophyllum Calycophyllum candidissimum Calycophyllum candidissimum X X 

Calycophyllum Calycophyllum multiflorum Calycophyllum multiflorum X X 

Calycophyllum Calycophyllum obovatum Calycophyllum obovatum X 
 

Calycophyllum Calycophyllum spruceanum Calycophyllum spruceanum X X 

Cariniana Cariniana domestica Cariniana domestica X 
 

Cariniana Cariniana estrellensis Cariniana estrellensis X 
 

Cariniana Cariniana excelsa Cariniana estrellensis X 
 

Cariniana Cariniana exigua Cariniana pyriformis 
 

X 

Cariniana Cariniana legalis Cariniana legalis X X 

Cariniana Cariniana micrantha Cariniana micrantha X 
 

Cariniana Cariniana pyriformis Cariniana pyriformis X X 

Cedrela Cedrela angustifolia Cedrela angustifolia X 
 

Cedrela Cedrela fissilis Cedrela fissilis X X 

Cedrela Cedrela lilloi Cedrela angustifolia X 
 

Cedrela Cedrela montana Cedrela montana X 
 

Cedrela Cedrela odorata Cedrela odorata X X 

Cedrela Cedrela rosei Cedrela rosei 
 

X 

Cedrela Cedrela sp. Cedrela sp. 
 

X 

Cedrela Cedrela whitfordii Cedrela odorata 
 

X 

Cedrelinga Cedrelinga cateniformis Cedrelinga cateniformis X 
 

Cedrela Cedrela odorata Cedrela odorata X X 

Cedrela Cedrela rosei Cedrela rosei 
 

X 

Cedrela Cedrela sp. Cedrela sp. 
 

X 

Cedrela Cedrela whitfordii Cedrela odorata 
 

X 

Table A.3 (continued) 

Label Accession Taxon Verified Taxon Train Test 
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Cedrelinga Cedrelinga cateniformis Cedrelinga cateniformis X  

Ceiba Ceiba pentandra Ceiba pentandra X  

Ceiba Ceiba samauma Ceiba samauma X 
 

Ceiba Ceiba speciosa Ceiba speciosa X 
 

Ceiba Chorisia insignis Ceiba insignis X 
 

Ceiba Chorisia integrifolia Ceiba insignis X 
 

Ceiba Chorisia speciosa Ceiba speciosa X 
 

Copaifera Copaifera aromatica Copaifera aromatica X 
 

Copaifera Copaifera canime Copaifera canime X 
 

Copaifera Copaifera chiriquensis Copaifera sp. X 
 

Copaifera Copaifera chodatiana Guibourtia chodatiana X 
 

Copaifera Copaifera guianensis Copaifera guyanensis X 
 

Copaifera Copaifera langsdorffii Copaifera langsdorffii X 
 

Copaifera Copaifera langsdorfii Copaifera langsdorffii X 
 

Copaifera Copaifera majorina Copaifera majorina X 
 

Copaifera Copaifera martii Copaifera martii X 
 

Copaifera Copaifera multijuga Copaifera multijuga X 
 

Copaifera Copaifera officinalis Copaifera officinalis X 
 

Copaifera Copaifera panamensis Copaifera panamensis X 
 

Copaifera Copaifera religiosa Copaifera religiosa X 
 

Copaifera Copaifera reticulata Copaifera reticulata X X 

Copaifera Copaifera trapezifolia Copaifera trapezifolia X 
 

Dipteryx Dipteryx alata Dipteryx alata X 
 

Dipteryx Dipteryx cf-ferrea Dipteryx micrantha X 
 

Dipteryx Dipteryx magnifica Dipteryx magnifica X 
 

Dipteryx Dipteryx micrantha Dipteryx micrantha X 
 

Dipteryx Dipteryx odorata Dipteryx odorata X X 

Dipteryx Dipteryx oleifera Dipteryx oleifera X 
 

Dipteryx Dipteryx polyphylla Dipteryx polyphylla X 
 

Dipteryx Dipteryx punctata Dipteryx punctata X 
 

Dipteryx Dipteryx rosea Dipteryx rosea X 
 

Dipteryx Dipteryx sp. Dipteryx sp. X 
 

Eucalyptus Eucalyptus acmenioides Eucalyptus acmenoides 
 

X 

Eucalyptus Eucalyptus botryoides Eucalyptus botryoides 
 

X 

Eucalyptus Eucalyptus camaldulensis Eucalyptus camaldulensis X 
 

Eucalyptus Eucalyptus capitellata Eucalyptus capitellata 
 

X 

Eucalyptus Eucalyptus cornuta Eucalyptus cornuta 
 

X 

Eucalyptus Eucalyptus dawsonii Eucalyptus dawsonii 
 

X 

Eucalyptus Eucalyptus deglupta Eucalyptus deglupta X X 

Eucalyptus Eucalyptus delegatensis Eucalyptus delegatensis 
 

X 

Eucalyptus Eucalyptus diversicolor Eucalyptus diversicolor 
 

X 

Eucalyptus Eucalyptus eugenoides Eucalyptus eugenioides 
 

X 

Eucalyptus Eucalyptus gigantea Eucalyptus globulus  X 

Eucalyptus Eucalyptus gomphocephala Eucalyptus gomphocephala  X 

Eucalyptus Eucalyptus delegatensis Eucalyptus delegatensis 
 

X 

Eucalyptus Eucalyptus diversicolor Eucalyptus diversicolor 
 

X 

Eucalyptus Eucalyptus eugenoides Eucalyptus eugenioides 
 

X 

Table A.3 (continued) 

Label Accession Taxon Verified Taxon Train Test 

Eucalyptus Eucalyptus gigantea Eucalyptus globulus  X 
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Eucalyptus Eucalyptus gomphocephala Eucalyptus gomphocephala  X 

Eucalyptus Eucalyptus grandis Eucalyptus grandis X  

Eucalyptus Eucalyptus hemiphloia Eucalyptus moluccana  X 

Eucalyptus Eucalyptus longifolia Eucalyptus elata  X 

Eucalyptus Eucalyptus macrorhyncha Eucalyptus macrorhyncha 
 

X 

Eucalyptus Eucalyptus maculata Corymbia maculata 
 

X 

Eucalyptus Eucalyptus marginata Eucalyptus marginata X X 

Eucalyptus Eucalyptus muelleriana Eucalyptus muelleriana 
 

X 

Eucalyptus Eucalyptus obliqua Eucalyptus obliqua X X 

Eucalyptus Eucalyptus pilularis Eucalyptus pilularis X X 

Eucalyptus Eucalyptus propinqua Eucalyptus propinqua 
 

X 

Eucalyptus Eucalyptus redunea Eucalyptus redunca 
 

X 

Eucalyptus Eucalyptus regnans Eucalyptus regnans X 
 

Eucalyptus Eucalyptus robusta Eucalyptus robusta X 
 

Eucalyptus Eucalyptus rostrata Eucalyptus camaldulensis 
 

X 

Eucalyptus Eucalyptus rudderi Eucalyptus rudderi 
 

X 

Eucalyptus Eucalyptus saligna Eucalyptus saligna X X 

Eucalyptus Eucalyptus sideropholoia Eucalyptus siderophloia 
 

X 

Eucalyptus Eucalyptus sieberiana Eucalyptus sieberi 
 

X 

Eucalyptus Eucalyptus tereticornis Eucalyptus tereticornis 
 

X 

Eucalyptus Eucalyptus trachyphloia Corymbia trachyphloia 
 

X 

Guazuma Guazuma crinita Guazuma crinita X 
 

Guazuma Guazuma guazuma Guazuma ulmifolia X 
 

Guazuma Guazuma rosea Guazuma crinita X 
 

Guazuma Guazuma sp. Guazuma sp. X 
 

Guazuma Guazuma tomentosa Guazuma ulmifolia X 
 

Guazuma Guazuma ulmifolia Guazuma ulmifolia X 
 

Hura Hura crepitans Hura crepitans X 
 

Maquira Maquira calophylla Maquira calophylla X 
 

Maquira Maquira coriacea Maquira coriacea X 
 

Maquira Maquira costaricana Maquira guianensis X 
 

Maquira Maquira guianensis Maquira guianensis X 
 

Maquira Maquira sclerophylla Maquira sclerophylla X 
 

Maquira Maquira sp. Maquira sp. X 
 

Myroxylon Myroxylon balsamum Myroxylon balsamum X 
 

Myroxylon Myroxylon balsamun Myroxylon balsamum 
 

X 

Myroxylon Myroxylon peruiferum Myroxylon peruiferum X 
 

Myroxylon Myroxylon toluiferum Myroxylon balsamum X 
 

Ormosia Ormosia amazonica Ormosia amazonica X 
 

Ormosia Ormosia avilensis Ormosia avilensis X 
 

Ormosia Ormosia coccinea Ormosia coccinea X X 

Ormosia Ormosia colombiana Gongylolepis colombiana X 
 

Ormosia Ormosia costulata Ormosia costulata X 
 

Ormosia Ormosia coutinhoi Ormosia coutinhoi X 
 

Ormosia Ormosia dasycarpa Ormosia monosperma X 
 

Ormosia Ormosia avilensis Ormosia avilensis X 
 

Ormosia Ormosia coccinea Ormosia coccinea X X 

Table A.3 (continued) 

Label Accession Taxon Verified Taxon Train Test 

Ormosia Ormosia colombiana Gongylolepis colombiana X  
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Ormosia Ormosia costulata Ormosia costulata X  

Ormosia Ormosia coutinhoi Ormosia coutinhoi X  

Ormosia Ormosia dasycarpa Ormosia monosperma X  

Ormosia Ormosia elata Ormosia elata X  

Ormosia Ormosia excelsa Ormosia excelsa X X 

Ormosia Ormosia flava Ormosia flava X X 

Ormosia Ormosia isthmensis Ormosia isthmensis X 
 

Ormosia Ormosia krugii Ormosia krugii X 
 

Ormosia Ormosia larecajana Ormosia larecajana X 
 

Ormosia Ormosia lignivalis Ormosia lignivalvis X 
 

Ormosia Ormosia macrocalyx Ormosia macrocalyx X 
 

Ormosia Ormosia monosperma Ormosia monosperma X 
 

Ormosia Ormosia nobilis Ormosia nobilis X 
 

Ormosia Ormosia pacycarpa Ormosia pachycarpa 
 

X 

Ormosia Ormosia panamensis Ormosia panamensis X X 

Ormosia Ormosia paraensis Ormosia paraensis X 
 

Ormosia Ormosia smithii Ormosia smithii X 
 

Ormosia Ormosia stipularis Ormosia stipularis X 
 

Ormosia Ormosia toledoana Ormosia macrocalyx X 
 

Pinus Pinus ayacahuite Pinus ayacahuite X 
 

Pinus Pinus caribaea Pinus caribaea X 
 

Pinus Pinus hartwegii Pinus hartwegii X 
 

Pinus Pinus montezumae Pinus hartwegii X 
 

Pinus Pinus occidentalis Pinus montezumae X X 

Pinus Pinus oocarpa Pinus oocarpa X 
 

Pinus Pinus patula Pinus patula X 
 

Pinus Pinus pseudostrobus Pinus montezumae X 
 

Pinus Pinus tropicalis Pinus tropicalis X 
 

Poulsenia Poulsenia armata Poulsenia armata X X 

Pouteria Pouteria aff-gongrijpii Pouteria gongrijpii X 
 

Pouteria Pouteria aff-reticulata Planchonella reticulata X 
 

Pouteria Pouteria bilocularis Pouteria bilocularis X 
 

Pouteria Pouteria caimito Pouteria caimito X 
 

Pouteria Pouteria cuspidata Pouteria cuspidata X 
 

Pouteria Pouteria decorticans Pouteria decorticans X 
 

Pouteria Pouteria engleri Pouteria engleri X 
 

Pouteria Pouteria filipes Pouteria filipes X 
 

Pouteria Pouteria furcata Pouteria furcata X 
 

Pouteria Pouteria glomerata Pouteria glomerata X 
 

Pouteria Pouteria gomphiifolia Pouteria gomphiifolia X 
 

Pouteria Pouteria guianensis Pouteria guianensis X 
 

Pouteria Pouteria gutta Pouteria torta X 
 

Pouteria Pouteria hispida Pouteria hispida X 
 

Pouteria Pouteria jariensis Pouteria jariensis X 
 

Pouteria Pouteria krukovii Pouteria krukovii X 
 

Pouteria Pouteria lasiocarpa Pouteria caimito X 
 

Pouteria Pouteria laurifolia Pouteria caimito X  

Table A.3 (continued) 

Label Accession Taxon Verified Taxon Train Test 

Pouteria Pouteria guianensis Pouteria guianensis X  

Pouteria Pouteria gutta Pouteria torta X  
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Pouteria Pouteria hispida Pouteria hispida X  

Pouteria Pouteria jariensis Pouteria jariensis X  

Pouteria Pouteria krukovii Pouteria krukovii X  

Pouteria Pouteria lasiocarpa Pouteria caimito X  

Pouteria Pouteria laurifolia Pouteria caimito X  

Pouteria Pouteria macrocarpa Pouteria multiflora X  

Pouteria Pouteria macrophylla Pouteria macrophylla X  

Pouteria Pouteria multiflora Pouteria multiflora 
 

X 

Pouteria Pouteria ovata Pouteria ramiflora X 
 

Pouteria Pouteria plicata Pouteria plicata X 
 

Pouteria Pouteria procera Pouteria procera X 
 

Pouteria Pouteria ramiflora Pouteria ramiflora X 
 

Pouteria Pouteria reticulata Pouteria reticulata X 
 

Pouteria Pouteria salicifolia Pouteria salicifolia X 
 

Pouteria Pouteria solimoesensis Pouteria hispida X 
 

Pouteria Pouteria surumuensis Pouteria surumuensis X 
 

Pouteria Pouteria torta Pouteria torta X 
 

Pouteria Pouteria torta-glabra Pouteria torta X 
 

Pouteria Pouteria trichopoda Pouteria hispida X 
 

Pouteria Pouteria trilocularis Pouteria trilocularis X 
 

Pouteria Pouteria vestita Sarcaulus vestitus X 
 

Schizolobium Schizolobium amazonicum Schizolobium amazonicum X 
 

Schizolobium Schizolobium excelsum Schizolobium parahyba 
 

X 

Schizolobium Schizolobium parahyba Schizolobium parahyba X 
 

Schizolobium Schizolobium parahybum Schizolobium parahyba 
 

X 

Schizolobuim Schizolobuim excelsum Schizolobium parahyba 
 

X 

Swietenia Swietenia macrophylla Swietenia macrophylla X X 

Swietenia Swietenia sp. Swietenia sp. 
 

X 

Virola Virola bicuhyba Virola bicuhyba X 
 

Virola Virola calophylla Virola calophylla X X 

Virola Virola calophylloidea Virola calophylloidea X 
 

Virola Virola carinata Virola carinata X 
 

Virola Virola cuspidata Virola elongata 
 

X 

Virola Virola elongata Virola elongata X 
 

Virola Virola flexuosa Virola flexuosa X 
 

Virola Virola gardneri Virola gardneri X 
 

Virola Virola gracilis Virola surinamensis X 
 

Virola Virola guatemalensis Virola guatemalensis X 
 

Virola Virola koschnyi Virola koschnyi X 
 

Virola Virola loretensis Virola loretensis X X 

Virola Virola macrocarpa Virola macrocarpa X 
 

Virola Virola melinonii Virola michelii X 
 

Virola Virola merendonia Virola koschnyi 
 

X 

Virola Virola michelii Virola michelii X 
 

Virola Virola molissima Virola mollissima X X 

Virola Virola multicostata Virola multicostata X 
 

Table A.3 (continued) 

Label Accession Taxon Verified Taxon Train Test 

Virola Virola multinervia Virola multinervia X  

Virola Virola melinonii Virola michelii X  

Virola Virola merendonia Virola koschnyi  X 
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Virola Virola michelii Virola michelii X  

Virola Virola molissima Virola mollissima X X 

Virola Virola multicostata Virola multicostata X  

Virola Virola multinervia Virola multinervia X  

Virola Virola officinalis Virola officinalis X X 

Virola Virola oleifera Bicuiba oleifera X  

Virola Virola pavonis Virola pavonis X  

Virola Virola sebifera Virola sebifera X X 

Virola Virola sp. Virola sp. X 
 

Virola Virola surinamensis Virola surinamensis X X 

Virola Virola uaupensis Virola elongata 
 

X 

Virola Virola venosa Virola venosa X 
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A.2 Supplementary Material for Chapter 3 

A.2.1 Supplementary Material 3: Class Composition Details 

The 105 unique taxa were assigned to 22 anatomically relevant classes. The table below 

lists the taxa used and their class membership, along with their inclusion in the training/testing 

data set. With the exception of \Fruitwood", all other classes contain species from exactly one 

genus. The genus Acer was split into two classes, namely \AcerH" and \AcerS". 

Table A.4 The class labels and their constituent taxa. 

Label Taxon Train Test 

AcerH Acer saccharum  X X  

AcerS Acer macrophyllum  X X  

AcerS Acer negundo  X X  

AcerS Acer rubrum  X X  

AcerS Acer saccharinum  X X  

Aesculus Aesculus californica  X X  

Aesculus Aesculus glabra  X X  

Aesculus Aesculus hippocastanum  X   

Aesculus Aesculus octandra  X X  

Alnus Alnus incana   X  

Alnus Alnus rhombifolia X X  

Alnus Alnus rubra X X  

Alnus Alnus rugosa X   

Alnus Alnus serrulata X   

Alnus Alnus tenuifolia X   

Arbutus Arbutus menziesii X X  

Arbutus Arbutus texana X   

Arbutus Arbutus xalapensis   X  

Betula Betula alleghaniensis X   

Betula Betula lenta X X  

Betula Betula nigra X X  

Betula Betula occidentalis X X  

Betula Betula papyrifera X X  

Betula Betula populifolia X X  

Carpinus Carpinus caroliniana X X  

Fagus Fagus grandifolia X X  

Frangula Frangula purshiana   X  
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Table A.4 (continued) 

Label Taxon Train Test 

Frangula Rhamnus californica X   

Frangula Rhamnus caroliniana  X   

Frangula Rhamnus frangula  X   

Frangula Rhamnus lanceolata  X   

Frangula Rhamnus purshiana  X   

Fruitwood Rhamnus tomentella  X   

Fruitwood Crataegus aestivalis  X X  

Fruitwood Crataegus assurgens  X   

Fruitwood Crataegus calpodendron    X  

Fruitwood Crataegus compacti  X   

Fruitwood Crataegus cordata  X   

Fruitwood Crataegus cuneiformis  X   

Fruitwood Crataegus douglasii  X X  

Fruitwood Crataegus macracantha  X   

Fruitwood Crataegus mollis  X X  

Fruitwood Crataegus nitida  X   

Fruitwood Crataegus rivularis  X X  

Fruitwood Crataegus rotundifolia  X   

Fruitwood Crataegus spathulata  X X  

Fruitwood Crataegus succulenta  X   

Fruitwood Crataegus tomentosa  X   

Fruitwood Malus angustifolia  X X  

Fruitwood Malus baccata  X   

Fruitwood Malus coronaria  X X  

Fruitwood Malus domestica  X   

Fruitwood Malus fusca   X  

Fruitwood Malus pumila  X X  

Fruitwood Malus rivularis  X   

Fruitwood Malus sp  X   

Fruitwood Prunus americana X X  

Fruitwood Prunus angustifolia  X X  

Fruitwood Prunus avium  X   

Fruitwood Prunus caroliniana  X X  

Fruitwood Prunus emarginata  X X  

Fruitwood Prunus myrtifolia  X X  

Fruitwood Prunus nigra  X   

Fruitwood Pyrus ioensis  X   

Table A.4 (continued) 
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Label Taxon Train Test 

Fruitwood Sorbus americana  X X  

Fruitwood Sorbus aucuparia  X   

Fruitwood Sorbus decora X X  

Liquidambar  Liquidambar styraciflua  X X  

Liriodendron  Liriodendron tulipifera  X X  

Magnolia Magnolia acuminata X X  

Magnolia Magnolia fraseri X X  

Magnolia Magnolia grandiflora  X X  

Magnolia Magnolia macrophylla  X X  

Magnolia Magnolia tripetala  X X  

Magnolia Magnolia virginiana  X X  

Nyssa Nyssa aquatica X X  

Nyssa Nyssa biflora X   

Nyssa Nyssa ogeche X X  

Nyssa Nyssa sylvatica X X  

Nyssa Nyssa sylvatica-var-biflora    X  

Ostrya  Ostrya virginiana  X X  

Oxydendrum Oxydendrum arboreum  X X  

Platanus Platanus occidentalis  X X  

Populus Populus angustifolia  X X  

Populus Populus balsamifera  X X  

Populus Populus deltoides X X  

Populus Populus fremontii X X  

Populus Populus grandidentata  X X  

Populus Populus heterophylla  X X  

Populus Populus tremuloides  X X  

Populus Populus trichocarpa  X X  

Prunus Prunus serotina  X X  

Rhamnus Rhamnus cathartica  X   

Rhamnus Rhamnus crocea X X  

Salix Salix laevigata  X X  

Salix Salix lasiandra  X X  

Salix Salix nigra  X X  

Salix Salix nuttellii X   

Salix Salix scouleriana X X  

Tilia  Tilia  americana X X  

Tilia  Tilia  americana-var-heterophylla   X  

Table A.4 (continued) 
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Label Taxon Train Test 

Tilia  Tilia  caroliniana  X   

Tilia  Tilia  floridana  X   

Tilia  Tilia  heterophylla  X   

Tilia  Tilia  pubescens X   

 

A.2.2 Supplementary Material 4: Further Results 

Effect of images per specimen on specimen level accuracy: 

In the PACw (test) dataset, the number of images provided by any specimen ranged from 

1 to 5 depending on the physical dimensions of the wood specimen. A specimen-level prediction 

was obtained by applying a majority voting rule to the model predictions on the images 

contributed by the specimen. In the main manuscript we reported the specimen level accuracy 

using up to 𝑛 = 5 images per specimen – if a specimen contributed, say, 3 images then the 

majority rule was applied to the 3 image level predictions. Here we provide additional results of 

an experiment that explored the impact of 𝑛 images (for the values 1, 2, 3, 4, 5) on specimen-

level predictive accuracy of the model.  

Specifically: 

For 𝑛 in [1,2,3,4]: 

 For 𝑟 in [1,2,3, … ,10]: 

  𝐷(𝑛, 𝑟)  =  ∅ 

  For each specimen 𝑆(𝑖) in PACw:  

   𝑆(𝑖, 𝑛, 𝑟) = Randomly select 𝑛 images from specimen 𝑆(𝑖). 

   𝐷(𝑛, 𝑟) ← 𝐷(𝑛, 𝑟) ∪ 𝑆(𝑖, 𝑛, 𝑟) 

 

  Compute 𝐴𝑐𝑐(𝑛, 𝑟) = Prediction accuracy of field model on 𝐷(𝑛, 𝑟). 
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In Figure A.1, for each value of 𝑛 the mean, minimum and maximum accuracies over the 

ten repeats (i.e., over the values 𝐴𝑐𝑐(𝑛, 1), 𝐴𝑐𝑐(𝑛, 2), 𝐴𝑐𝑐(𝑛, 3), … , 𝐴𝑐𝑐(𝑛, 10)) are plotted.  

For 𝑛 =  5, the dataset remains the same over all the 10 repeats, as that is the maximum 

number of images per specimen, so all 10 repeats are identical. The performance metrics are also 

reported in Table A.5. For a particular value of 𝑛, the accuracy range is 5%.  

 
 

Figure A.1 Accuracy as a function of the number of images used to obtain a specimen-level 

prediction.  

 

Table A.5  The mean, standard deviation, minimum, and maximum specimen level accuracies 

as the number of images per specimen varies. 

n Mean 
Standard 

deviation 
Minimum Maximum 

1 77.9 1.5 75 80.3 

2 83.3 1.1 80.6 85.2 

3 80.3 1.2 78.5 82.4 

4 81.5 0.71 80.3 82.4 

5 80.6 0.0 80.6 80.6 

All values are percentages.   

Performance of model with a ResNet50 backbone: 

A model with a ResNet50 backbone was trained with the same methodology used for the 

ResNet34 based model described in the manuscript. The confusion matrices for the cross-

validation analysis and for the prediction of the field model on the PACw specimens are 
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presented in figures A.2 and A.3 respectively. The prediction accuracies are presented in Table 

A.6. The accuracy of the ResNet50 field model is ~5% points lower than the ResNet34 model.   

 
Figure A.2 Cross validation confusion matrix for the ResNet50-backbone based model.  
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Figure A.3 Confusion matrix of predictions from the ResNet50 based model on PACw data. 
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Table A.6 Specimen level prediction accuracies of ResNet50 based model. 

Training and evaluation 

details 
Top-k Accuracy (%) 

Five-fold cross-validation k=1 96.43 

Trained using four folds, 

tested on PACw 

k=1 76.13* 

k=2 86.83* 

Trained using all five folds, 

tested on PACw 

k=1 75 

k=2 85.56 

Note: * Mean accuracies over the 5 cross-validation models. 

Performance of ResNet34 and ResNet50 models after stage 1 of transfer learning: 

 

A 2-stage transfer learning methodology was adopted for training the models presented in 

the manuscript. The results presented in Tables 3.3 (in main manuscript) and A.6 (in this 

supplement) are for the ResNet34 and ResNet50 models at the end of two stages of the training.    

In the first stage of our transfer learning training methodology only the weights of the 

custom head are trained (i.e., the backbone layers initialized with ImageNet pre-trained weights 

are frozen). Here we present the performance of the ResNet34 and ResNet50 models at the end 

of the first stage of training in the same format as in Tables A.7 and A.8. 

Table A.7 Specimen level prediction accuracies of ResNet34 based model at the end of first 

training stage 

Training and evaluation details Top-k Accuracy (%) 

Five-fold cross-validation k=1 94.25 

Trained using four folds,  

tested on PACw 

k=1 71.62* 

k=2 84.01* 

Trained using all five folds,  

tested on PACw 

k=1 79.93 

k=2 89.08 

Note:  * Mean accuracies over the 5 cross-validation models. 

 

 



 

127 

Table A.8 Specimen level prediction accuracies of ResNet50 based model at the end of first 

training stage 

Training and evaluation details Top-k Accuracy (%) 

Five-fold cross-validation k=1 95.63 

Trained using four folds,  

tested on PACw 

k=1 76.83* 

k=2 86.97* 

Trained using all five folds,  

tested on PACw 

k=1 73.24 

k=2 82.39 

Note: * Mean accuracies over the 5 cross-validation models. 

Fine tuning (i.e., the second stage of training) improves the performance of the model by 

up to 3% points. It is of interest that as the amount of data is increased by 20%, the performance 

of the ResNet50 drops – a behavior that may be attributed to the higher capacity of the ResNet50 

(more weights) in the context of the relatively limited number of specimens in our dataset 

compared to other machine learning datasets in biology (e.g., Horn et al. 2018). Despite our 

dataset tapping into one of the richest collections of North American diffuse porous specimens, it 

may be the case that larger high-quality datasets may be needed to leverage the increased 

capacity of the ResNet50 for improved predictive performance. Another option to explore is to 

unfreeze only the top layers of the ResNet50 backbone in stage 2 and try to estimate a sweet spot 

between the available dataset and the (trained) capacity of the architecture. In this work we have 

explored both the ResNet34 and ResNet50 architectures under an “equal epoch budget” regime 

and we leave the exploration of the capacity-dataset size tradeoff, fine-grade hyperparameter 

optimization, and field deployment of the model presented here to future work.  
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A.3 Supplementary Material for Chapter 4 

A.3.1 Supplementary Material 5: Class Composition Details 

The 68 unique taxa were assigned to 17 anatomically relevant classes. The table below 

lists the taxa used and their class membership, along with their inclusion in the training/testing 

data set. The manuscript provides details for the label space design. 

Table A.9 The class labels and their constituent taxa. 

Label Taxon Train Test 

Asimina Asimina triloba X X 

Carya Carya aquatica X X 

Carya Carya cordiformis X X 

Carya Carya glabra X X 

Carya Carya illinoensis X 
 

Carya Carya illinoinensis 
 

X 

Carya Carya laciniosa X X 

Carya Carya myristiciformis X 
 

Carya Carya ovata X X 

Carya Carya texana X 
 

Carya Carya tomentosa X X 

Castanea Castanea dentata X X 

Castanea Castanea pumila X 
 

Catalpa Catalpa bignonioides X 
 

Catalpa Catalpa speciosa X X 

Celtis Celtis laevigata X 
 

Celtis Celtis occidentalis X X 

Celtis Celtis reticulata X 
 

Celtis Celtis sp 
 

X 

Cladrastis Cladrastis kentukea X 
 

Cladrastis Cladrastis lutea X X 

Fraxinus Fraxinus americana X 
 

Fraxinus Fraxinus nigra X X 

Fraxinus Fraxinus oregona X 
 

Fraxinus Fraxinus pennsylvanica X X 

Fraxinus Fraxinus quadrangulata X X 

Gleditsia Gleditsia aquatica X 
 

Gleditsia Gleditsia triacanthos X X 

Gymnocladus Gymnocladus dioica X X 

Maclura Maclura pomifera X X 
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Table A.9 (continued) 

Label Taxon Train Test 

Maclura Maclura sp   X 

Morus Morus alba X X 

Morus Morus rubra X X 

QuercusR Quercus arkansana X   

QuercusR Quercus coccinea X X 

QuercusR Quercus ellipsoidalis X   

QuercusR Quercus falcata X X 

QuercusR Quercus georgiana X   

QuercusR Quercus ilicifolia X   

QuercusR Quercus incana X   

QuercusR Quercus laevis X   

QuercusR Quercus laurifolia X X 

QuercusR Quercus marilandica X X 

QuercusR Quercus myrtifolia X   

QuercusR Quercus nigra X X 

QuercusR Quercus palustris X   

QuercusR Quercus phellos X X 

QuercusR Quercus rubra X   

QuercusR Quercus shumardii X X 

QuercusR Quercus texana X   

QuercusR Quercus velutina X X 

QuercusW Quercus alba X X 

QuercusW Quercus bicolor X X 

QuercusW Quercus lyrata X X 

QuercusW Quercus macrocarpa X X 

QuercusW Quercus michauxii X   

QuercusW Quercus montana X X 

QuercusW Quercus stellata X   

Robinia Robinia neo-mexicana X   

Robinia Robinia pseudoacacia X X 

Sassafras Sassafras albidum X X 

Sassafras Sassafras sp   X 

UlmusH Ulmus alata X   

UlmusH Ulmus crassifolia X   

UlmusH Ulmus serotina X   

UlmusH Ulmus thomasii X X 

UlmusS Ulmus americana X X 

Table A.9 (continued) 
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Label Taxon Train Test 

UlmusS Ulmus rubra X   

 

A.3.2 Supplementary Material 6: Further Results 

Performance of model with a ResNet50 backbone: 

A model with a ResNet50 backbone was trained with the same methodology used for the 

ResNet34 based model described in the manuscript. The confusion matrices for the cross-

validation analysis and for the prediction of the field model on the PACw specimens are 

presented in figures A.4 and A.5 respectively. The prediction accuracies are presented in Table 

A.10. 
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Figure A.4 Cross validation confusion matrix for the ResNet50-backbone based model. 
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Figure A.5 Confusion matrix of predictions from the ResNet50 based model on PACw data. 
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Table A.10 Specimen level prediction accuracies of ResNet50 based model. * Mean accuracies 

over the 5 cross-validation models 

Training and evaluation 

details 
Top-k Accuracy (%) 

Five-fold cross-validation k=1 94.47 

Trained using four folds, 

tested on PACw 

k=1 88.38* 

k=2 95.35* 

Trained using all five folds, 

tested on PACw 

k=1 92.42 

k=2 97.47 
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