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This thesis proposes a set of methods for the purpose of improving the calibration of 

three-axis magnetometers. Specifically, these methods aim to improve the accuracy of the bias 

estimation methods currently in use. The first proposed method utilizes a constrained 

optimization problem based on norm preserving. The second proposed method finds the same 

bias estimate as the first method, but in a computationally more efficient manner. The last 

proposed method tackles the case where the value of the local geomagnetic field is only 

imprecisely known. Computer simulations demonstrate the viability of the proposed methods. 
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CHAPTER I 

INTRODUCTION 

Three-Axis Magnetometers (TAM) are sensors that measure the strength and direction of 

a surrounding local magnetic field. A major application of magnetometers is the calculation of an 

object’s attitude or orientation based on the data provided by magnetometers. Many platforms 

such as satellites, airplanes, and submarines are equipped with magnetometers because these 

platforms use attitude determination systems to assist in navigation, and magnetometers 

contribute heavily to those systems. [1] [2] [3] [4] [5]  In multi-sensor systems, the data taken 

from TAM sensors can be used in conjunction with other sensors like accelerometers, 

gyroscopes, and GPS in order to improve the accuracy of an attitude determination system. In 

situations where other sensors are not performing properly, the presence of a magnetometer can 

become essential to the vehicle’s ability to function. [1] [2] [3] [5] [6] 

When analyzing the results taken from magnetometer readings, it is important to 

recognize that those results can be distorted by internal and environmental factors. The 

distortions caused by a sensor’s internal makeup can appear as consistent biases, while the 

distortions caused by environmental factors can appear when there is a significant change in the 

natural electromagnetic environment around the sensor. [4] [6] [7] Those distorted readings can 

cause the attitude of the vehicle to be miscalculated, and an incorrect attitude determination can 

negatively impact the performance of a vehicle. [2] [8] The bias can be minimized by using 
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sensors that maintain a very small error tolerance or by calibrating a sensor by applying an 

optimization algorithm that filters the bias from the measured data of a sensor. 

In this thesis, new methods of sensor calibration are developed with the goal of 

improving the accuracy of sensor calibration as well as improving the speed with which the 

calibration is implemented. Similar to other well-established calibration methods, these methods 

utilize an optimization algorithm in order to estimate bias. Uniquely, these methods apply a 

specific norm-preservation as a constrain to the optimization algorithm. This constraint reduces 

the quantity of computations required and reduces the opportunity for error to enter the system. 

Literature Review 

The simplest way to add external sensors is to use a high-quality apparatus such as 

Inertial Navigation Systems (INS) or Attitude Heading Reference Systems (AHRS) that 

minimize the sensor bias created. However, this option is accompanied by two potential 

problems. As a product, magnetometers can become much more expensive and much heavier as 

their quality increases. The high cost of top-of-the-line magnetometers can deter researchers 

from investing in them without additional funding. The increased weight of high-quality 

magnetometers can disqualify them as an option in situations where space and weight is limited. 

For example, micro aerial vehicles (MAVs) and small satellites (CubeSats) both require 

magnetometers, but MAVs and CubeSats both have very strict weight requirements. [1] [3] [4] 

[6] .  

Some hybrid attitude determination methods use optimization algorithms and utilize 

external sensors at the same time. They propose the installation of smaller external sensors in an 

attempt to replicate the accuracy of AHRS while avoiding the higher cost and weight of AHRS. 

A number of these methods attempt to combine Micro-electromechanical Systems (MEMS) 
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based inertial sensors which provide short-term accuracy with a magnetometer and GPS which 

provide long-term accuracy. This setup has two major flaws. First, there is consistent inability to 

track the vector of acceleration due to gravity when maneuvers with high attitude dynamics are 

employed over an extended period of time. Second, reliance on GPS becomes a liability in 

locations that don’t consistently provide a strong GPS signal. [3] [4] [5]  

One method attempts to address these flaws by installing an accelerometer along with the 

other sensors. Another method uses visual sensors called Visual Odometry (VO) navigation 

systems to take relative rotation measurements which contribute to attitude determination. These 

methods can improve the overall accuracy of the system. However, every method that relies 

heavily on external sensors draws closer to sharing the same limitations of cost and weight 

associated with INS and AHRS. [3] [4] [5] The best way to avoid those limitation is to apply an 

optimization algorithm that calculates the bias from the measured data of a sensor without adding 

external sensors.  

Because so many calibration algorithms have been developed, it is helpful to separate 

them into groups. Every method falls within one of the following two categories. The first 

category includes Attitude-dependent algorithms, and the second category includes Attitude-

independent algorithms. Both categories require that measurements of the local magnetic field be 

taken, and both categories rely on a predetermined model of the magnetic field to be used as 

reference.  

Attitude-dependent methods are distinctive in that they depend on additional attitude 

information such as attitude rates. [9] Attitude rates can be determined from the measurements 

taken from gyroscopes. This is why methods that rely on external sensors such as gyroscopes are 

often Attitude-dependent methods. For applications such as airplanes and cars, Attitude-
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dependence can be beneficial because there is an assumed baseline attitude of zero roll angle and 

zero pitch angle. [4] For other applications, attitude information is not as easily accessible. [10] 

Calibration algorithms have evolved from Attitude-dependent to Attitude-independent 

methods. This transition became possible when researchers realized that the magnitude of sensor 

data is constant no matter how the magnetometer is oriented within a specific location. [7]  

Attitude-independent methods maintain the advantage of versatility. While Attitude-dependent 

schemes require that additional sensors be installed on the platform in order for the attitude 

determination system to work properly, Attitude-independent schemes do not require any 

external sensors. If attitude determination is required in situations where external sensors are 

unavailable, malfunctioning, or prone to error, an Attitude-independent method is necessary. [10] 

The use of attitude-independent methods also has disadvantages. Some Attitude-

independent methods require the magnetometer sensor to be rotated in every direction within a 

uniform magnetic field in order for the calibration to work. [8] Also, depending on the 

application, results taken from Attitude-dependent methods can reach a higher degree of 

accuracy than results taken from Attitude-independent methods. [10] Finally, while this is not a 

weakness unique to Attitude-independent methods, in order to use attitude-independent 

calibration successfully, external resources such as geomagnetic models are required. [4]  

Without the additional data taken from the visual sensors, any attempt to find the sensor 

bias becomes a minimization problem which necessitates an iterative solution. There are a 

number of valid iterative methods, but they require knowledge regarding the magnitude of the 

magnetic field in a specific geographical location (usually provided by a model) in order to work. 

If there are any disruptions in that magnetic field, and those disruptions are not shown in the 

model, significant error will occur during the bias estimation process. [6] 
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Within the category of Attitude-independent calibration algorithms, it is helpful to 

distinguish between two subcategories. Attitude-independent calibration algorithms can be 

applied through two methods. The first method is called the batch approach, and the second 

method is called the real-time approach. The two methods are distinguishable from each other 

based on how they process results. The batch approach analyzes an array of data representing 

measurements recorded over a length of time, and it produces an array of estimations 

representing a calibration over that length of time. The real-time approach analyzes a point of 

data representing a moment in time, it produces a point of estimation representing the calibration 

for that moment in time, and it repeats the process for the next relevant point in time.  

The advantages of the batch approach are dependent on the requirements of its 

application. For example, the batch approach is effective when it is used to calibrate the sensors 

of a satellite because satellites do not require moment-to-moment attitude calibrations in order to 

function. Here, computational efficiency even increases when data is processed in batches rather 

than each individual packet of data processed separately. However, this long-term efficiency is 

negated in other situations. Vehicles like UAVs are capable of executing attitude dynamic 

maneuvers, and the success of those maneuvers can depend on maintaining constant attitude 

awareness. The batch-processing method would not be capable of providing continual sensor 

calibration in this case, as it requires additional time to process each batch of data. 

The advantages of the real-time approach are simply the opposite of the advantages of the 

batch approach. The real-time approach is effective in situations that require maintaining 

constant attitude awareness. However, when constant attitude awareness is not required, the 

computational efficiency of the real-time approach is lower than the computational efficiency of 

the batch approach. Because our research focuses on the batch approach, it is important to look at 
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the advantages and disadvantages of Attitude-independent calibration methods based on their 

ability to produce batch results rather than real-time results. [1] [6] [7] 

Because our research focuses on Attitude-independent batch-processing methods, it is 

important to discuss some of the most common Attitude-independent methods capable of batch-

processing. The first method presented is the Kalman Filter. The Kalman Filter is a linear 

quadratic estimation algorithm that employs a joint probability distribution to estimate results. 

This filter is often adjusted to one of two settings. The first setting is called an Extended Kalman 

Filter (EKF). This filter produces results quickly, but it employs a first order linearization which 

often oversimplifies those results. The second setting is called an Unscented Kalman Filter 

(UKF). The UKF produces a higher level of accuracy than the EKF, but the cost of that accuracy 

is a significantly longer computational timeframe. The delay makes the UKF infeasible for 

applications that require real-time attitude updates. [2] [10] 

 The next method presented is called an approximate Maximum Likelihood (ML) 

estimation. This method maximizes a likelihood function by using a centering approximation. 

The resulting approximation produces a reasonable value for a preliminary estimate, and this 

estimate is used to solve the resulting fourth order objective function. This algorithm also has 

notable flaws. Other methods regularly outperform the approximate ML estimation in situations 

where the range of attitude-affecting maneuvers is limited. Also, results taken from an 

approximate ML estimation are highly sensitive to changes in the initial conditions used. If those 

initial conditions include even small amounts of error, the results can be significantly altered. [7] 

The final method presented is the Least Square (LS) method. Similar to the ML 

estimation, the LS method maximizes a likelihood function by using a centering approximation. 

When linearized, the LS method incorporates a pseudo-linear equation within intermediate 
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variables in order to provide a preliminary estimate. [7] A new method is derived when a second 

step is added to the LS method which employs the Gauss-Newton iterative process. This new 

method is aptly named TWOSTEP and will be discussed in further detail. [2] 

Here we focus on common Attitude-independent calibration models that specifically use 

numerical iterations to calculate the internal bias of Three-Axis Magnetometers. The first 

relevant calibration model is called Naïve Quartic Scoring (NQS). NQS is usually derived from a 

standard Newton-Raphson approximation. While NQS is a functional method of calibration, it 

also occasionally generates numerical inconsistencies. These inconsistencies can create situations 

where the calculated minimum is local rather than global. [1] The next relevant calibration model 

is called the Fixed-Point method. This method converts the calibration problem into a Fixed-

Point problem where the sensor bias is defined as a fixed point within the loss function. The 

convergences calculated from this method are frequently inferior to the results from other 

models. [1] 

One of the most accurate calibration models available is called TWOSTEP. As described 

previously, the TWOSTEP model calculates an initial approximation by using the centered 

estimate method. TWOSTEP then calculates an iterative approximation based first on the 

centered estimate and then on each iteration of the Gauss-Newton process. Before applying the 

Gauss-Newton process, TWOSTEP analyzes the centered estimate to determine if the 

optimization conditions have already been met. If not, that second step is implemented.  

A flaw in the TWOSTEP model originates from the way that the effective measurement 

is calculated through a concept called scalar checking. This concept capitalizes on the 

understanding that when a local magnetic field is measured from the body coordinates as well as 

the reference coordinates, the magnitude of those two measurements are equal. However, this 
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assumption is only correct in cases where the magnitude of noise is zero. When noise is added to 

the measurements, the variation of error for the effective measurement becomes a function of 

bias. That variation caused by bias is disregarded when the second step is implemented. This can 

lead to inaccurate measurements of bias.  

The final relevant model is called Total Least Squares (TLS). The TLS method is based 

on the same assumptions as the TWOSTEP method, but TLS attempts to improve on the success 

of TWOSTEP by producing a precise Newton-Raphson algorithm that replaces the centered 

estimate from TWOSTEP. Based on the statistical evidence, resulting TLS convergences are 

more consistent that TWOSTEP convergences. [1] 

While the TLS method is a significant improvement to other methods, the goal of our 

research is to explain a weakness within the TLS method, propose a solution to that weakness, 

and analyze the effectiveness of that solution. The issue with the Total Least Square method that 

we examine can be described as “Constraint-preservation error”. Through the formulation of the 

TLS algorithm in Reference [1], a particular mathematical relationship between three variables is 

derived. These three variables are the measurement of the magnetic field by the magnetometer, 

the constant bias vector of the sensor (including the estimate error of the bias), and the value of 

the geomagnetic field with respect to an Earth-fixed coordinate system.  

While this relationship is discussed in Reference [1], it is not utilized as a constraint when 

the TLS loss function is optimized. When the TLS results are calculated, those three variables 

can be compared to each other to determine whether or not this mathematical relationship is 

maintained. As is demonstrated in our research, the results provide an approximation of the exact 

value predicted by this relationship, but there is a measurable error between this approximation 
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and the exact value. Therein lies an opportunity to improve the TLS method by enforcing this 

relationship as a constraint rather than allowing the error to remain. 

The method proposed within our research attempts to improve the effectiveness of the 

TLS method by using the mathematical relationship discussed in Reference [1] as a constraint 

that must be preserved while the loss function is being optimized. This strategy is implemented 

through our newly designed Norm-Preserving (NP) algorithm. This algorithm will ensure that 

the constraint error equals zero by applying the mathematical relationship as a nonlinear 

constraint function. The goal of our research is based on the premise that adding this constraint 

to the optimization function for the TLS problem improves the effectiveness of the optimization 

function and the accuracy of the calibration. Our results confirm that premise.  

Additionally, we propose an improvement to our own NP algorithm with the explicit 

purpose of reducing the computational time needed to calculate sensor bias. This strategy is 

implemented through our Fast Norm-Preserving (FNP) algorithm.  This algorithm will preserve 

the improved accuracy of the NP algorithm while reducing the time needed to optimize the TLS 

loss function. The goal of this FNP algorithm is based on the premise that by incorporating the 

mathematical relationship into the loss function rather than making it be a separate nonlinear 

constraint function will increase the speed of the optimization function. Our results confirm that 

premise. 

Organization of Thesis 

This thesis is organized as follows. Following the introduction and literature review in 

this chapter, the methodology behind our new approach is defined in Chapter 2. Next, our new 

methods are compared to the TLS method. The results of this comparison are presented in 

Chapter 3 as well as the conclusion based on those results. 
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CHAPTER II 

METHODOLOGY 

This chapter describes the methodology of our experiment. This includes the setup and 

the reasoning behind our setup. We will first describe the process of creating simulated 

magnetometer readings. Next, we will present the derivation of the TLS function as well as our 

new functions. Finally, we will provide a proof for the measurement of our new constraint. The 

application of this constraint is what will differentiate our new calibration functions from the 

TLS calibration function. 

Before discussing the formulation and comparison of the calibration methods, those 

methods will be assigned specific nomenclature. The previous Total Least Squares method from 

which our new methods are derived will continue to be called the TLS Method. The first new 

method which seeks to improve upon the accuracy of the TLS Method through the preservation 

of a nonlinear constraint will be simply called Method 1. The second new method which seeks to 

improve upon the computation speed of Method 1 by reducing the size and number of 

parameters required within the optimization function will be called Method 2. The final new 

method assumes that the value of the geomagnetic field with respect to earth is unknown. This 

method will be labeled Method 3.  

Simulation of Magnetometer Readings 

For the purposes of testing our new calibration methods, it is necessary for us to have 

access to true or simulated sensor readings. The origin of those readings is not relevant to the 
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testing phase of our research. It only matters that the data used reasonably represents the possible 

motion of an object through space without the distortion of magnetic bias caused by an actual 

magnetometer already included in the data. By using a gyroscope to help simulate readings, we 

can control the “true” bias of the readings and compare the accuracy of different bias filtering 

methods. For the purposes of our experiment, gyroscopic sensor data was recorded from the 

arbitrary circular motion of a smartphone. That gyroscopic data was then converted to a variable 

called the Unknown Attitude Matrix with respect to Earth-fixed coordinates. [11]  

From there, a local geomagnetic reference value, sensor bias values, and external noise 

values were artificially introduced to the data. The output of this process was then used as 

simulated raw magnetometer input. This input was then calibrated by the TLS method, method 1, 

method 2 and method 3. While this is the approach chosen for our research, it is by no means the 

only way to test our new methods of calibration. Whatever approach is used must provide a 

researcher with the ability to regulate the true simulated bias and compare it to the bias measured 

by a calibration method. As long as this requirement is met, it should not matter if the simulated 

magnetometer readings are derived from real data or if they are generated from computer code. 

The results of our comparison will be repeatable. The next subheading provides details of our 

approach to create simulated magnetometer readings, beginning with the formulation of the 

attitude matrix. 

Definition of an Attitude Matrix 

Before attempting to calculate the attitude matrix, it is important to understand what 

attitude means. In the realm of navigation, the attitude of an object is its orientation in space. For 

an aircraft, that is often described by the angles of roll, pitch, and yaw. Later on, we will discuss 

different conventions that are used to quantify the attitude of an object such as quaternions and 
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Euler’s angles. In order to calculate an attitude matrix, we chose to record data from a gyroscope. 

A gyroscope is a sensor that measures the angular velocity of an object.  

Processing Raw Gyroscope Data 

The purpose of this subheading is to provide background on gyroscopes, describe how 

our gyroscopic data is collected and explain how that data is then used. Essentially all satellites 

utilize gyroscopes, and the vast majority of aerial vehicles have gyroscopes built into them. [12] 

They often have an apparatus called a Micro-electromechanical system (MEMS). MEMS based 

sensors are utilized as a way to reduce the size and cost compared to more complex Inertial 

Navigation Systems (INS) or Attitude Heading Reference Systems (AHRS). [3] While 

gyroscopes can have their own errors and biases, these inaccuracies do not affect how we are 

using gyroscopic data for our research. Our data is not meant to be a perfectly accurate sample, 

but rather it is meant to be a way to produce a realistic simulated attitude matrix that can later be 

applied to an optimization algorithm.  

Conversion of Data into Quaternions 

Here, we convert the angular velocities found in the last section to quaternions. Before 

describing the steps involved in that conversion, it’s important to explain what a quaternion is 

and why it is used here. 

Methods of Measuring Attitude 

There are a couple common methods that can be used to describe the attitude of an 

object. One is the set of Euler angles. There are three Euler angles, and as mentioned earlier, they 

are easy to visualize on an aircraft with roll, pitch, and yaw. However, the Euler angles have 

flaws. First, the way that Euler angles are set up with three angles in 3-d space allows for errors 
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to occur when one of those angles gets close to a specific value. This error is called singularity. 

Second, because Euler angles are used to integrate incremental changes of attitude over time, 

they do not have the highest levels of accuracy. [13] 

Another method we can use is the quaternions. This parameter uses four values: a scalar 

(real) value that is the first or last term depending on notation, and the three vector (imaginary) 

values. An initial quaternion that shows zero rotation would have a scalar value of 1, and a 

vector value of 0i + 0j + 0k. This method avoids the drawbacks of the Euler angles because it 

never reaches the singularity error, and it has a higher level of accuracy when integrating an 

object’s angular velocity over time. For these reasons, the quaternion is used in our research. 

Finding the Time Derivative of a Quaternion 

The next step is to find a method for converting angular velocities into quaternions. We 

develop zeroth and first order integration methods based on the Tayler series of quaternions (q) 

over time, but we first provide a proof for a quaternion representing incremental rotation as 

shown in this subheading. Our formulations here are derived from the work presented in Joan 

Sola’s “Quaternion kinematics for the error-state Kalman filter.” [14] 

Conversion of Rotation Vectors to Quaternions 

As shown in the Equation 2.1 below, a quaternion can be defined as a scalar value and 

three vector values bounded within the space of quaternions ℍ. [14, p. 4] Additionally, Equation 

2.2 defines the following constraints on the vector values. [14, p. 4] This is illustrated practically 

in Equation 2.3 in the form of a quaternion vector. 

 

𝑄 = 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘 ∈ ℍ  (2.1) 
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𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 = −1 (2.2) 

 

𝐪 ≜ [
𝑞𝑤

𝐪𝑣
] = [

𝑞𝑤

𝑞𝑥

𝑞𝑦

𝑞𝑧

] (2.3) 

 

From here we proceed to the topic of Quaternions with respect to rotation vectors. 

Reference [14] provides a proof of the following: If ϕ represents a rotation around an axis u, a 

quaternion translates only one half of that rotation. By accepting the proof for this statement, we 

derive a formula for the conversion from rotation vectors to quaternions that is presented in 

Equation 2.4 below. [14, p. 22] 

 

𝐪 ≜ Exp(𝜙𝐮) = 𝑒𝜙𝐮/2 = cos
𝜙

2
+ 𝐮 sin

𝜙

2
= [

cos(𝜙/2)
𝐮 sin(𝜙/2)

] (2.4) 

 

An Expression for Local Perturbation 

We will apply Equation 2.4 shortly, but first we must present the topic of time-integration 

of rotation rates. The rate of time-integration can be measured from the differential equation that 

is applied to our specific definition of the rotation rate. This definition can be either local or 

global. Based on the fact that our experimental method is based on local measurements, we will 

be focusing only on the local definition. This is denoted by the cursive L subscript. 

The variable q̃ represents the perturbed orientation of a quaternion. This variable can be 

defined as the quaternion product of an unperturbed orientation q and a small local perturbation. 

The small local perturbation angle Δϕ can be calculated through a relationship between the 
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perturbed orientation of a quaternion and the conjugate of the unperturbed orientation q* as 

shown in Equation 2.5 below. [14, p. 44] 

 

Δ𝜙ℒ = Log(𝐪ℒ
∗  ⨂ �̃�ℒ) (2.5) 

 

The Exponential Map 

 Because we assume that the perturbation angle Δϕ is small, then we can approximate the 

small perturbation quaternion Δq using a Taylor expansion. Here, we introduce the exponential 

function of the skew-symmetric 3x3 matrix e[ϕ]×. This matrix is constrained by its Taylor series. 

The relationship between a rotation matrix R and the skew-symmetric matrix is known as the 

exponential map, which is shown in Equation 2.6 below. [14, p. 17] 

 

𝐑 = 𝑒[𝜙]× (2.6) 

 

Time Derivative of a Quaternion 

At this point we can apply the Taylor expansions of quaternions and rotation matrices of 

Equation 2.6 and Equation 2.4 to the small perturbation angle of Equation 2.5 and end up with 

the following linear approximations in Equation 2.7. [14, p. 45] 

 

Δ𝐪ℒ ≈ [
1

1

2
Δ𝜙ℒ

] (2.7) 

 

Now we can introduce time derivatives in our efforts to derive an equation for time-

integration of rotation. By starting with the definition of a time derivative, we perform a number 
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of steps including the substitution of Equation 2.7. All of these steps are illustrated in Equation 

2.8 shown below. [14, p. 46] 

 

�̇� ≜ lim
Δ𝑡→0

𝒒(𝑡 + Δ𝑡) − 𝒒(𝑡)

Δ𝑡
 

    = lim
Δ𝑡→0

𝒒 ⨂ Δ 𝒒ℒ − 𝒒

Δ𝑡
 

    = lim
Δ𝑡→0

𝒒 ⨂ ([
1

1
2 Δ𝜙ℒ

] − [
1
0

])

Δ𝑡
 

    = lim
Δ𝑡→0

𝒒 ⨂ [
0

1
2 Δ𝜙ℒ

]

Δ𝑡
 

    =
1

2
𝒒 ⨂ [

0
𝛚ℒ

] 

 

(2.8) 

Finally, we have the information necessary to create the differential equation that will be 

used to integrate local rotation rates over time. This is shown through Equation 2.9 below. 

 

�̇�(𝑡) =
1

2
𝒒(𝑡) ⨂ 𝝎(𝑡)  (2.9) 

 

Conversion of Angular Velocity to Quaternions 

As shown in section 4.6 of Reference [14], two different approximations of time-

integration of rotation rates are given. The zeroth order integration assumes that the angular 

velocity is constant over the period [tn, tn+1], while the first order integration assumes that the 

angular velocity is linear over the period [tn, tn+1]. For our experiment, we will be using this 

more accurate first order integration. Here, the approximation we make is that for each time step, 

the angular rate ωn is linear, meaning that the first derivative of the angular rate is constant, and 
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that the second (or any higher) derivative is equal to zero. If we define a median angular rate in 

terms of ωn and the first time-derivative of ω, we get Equation 2.10.  

 

�̅� =
𝝎𝑛+1 + 𝝎𝑛

2
= 𝝎𝑛 +

1

2
�̇�Δ𝑡 (2.10) 

 

Based on Equation 2.4 (discussed earlier), the right-hand side can be further calculated 

(also shown below). This relationship will be helpful later on. 

 

𝐪{�̅�Δ𝑡} = [

cos(‖�̅�‖Δ𝑡/2)
�̅�

‖�̅�‖
sin(‖�̅�‖Δ𝑡/2)

] (2.11) 

 

By substituting the variables of the first order time-derivative of angular velocity and the 

median angular rate for their definitions, we reach Equation 2.12. Based on the commuter 

properties of the quaternion, we can present Equation 2.12 in a more concise form. This finally 

leads us to Equation 2.13 shown below. 

 

𝐪𝑛+1 = 𝐪𝑛 ⨂ 𝐪{�̅�Δ𝑡} +
Δ𝑡2

48
𝐪𝑛⨂ (𝝎𝑛 ⨂ 𝝎𝑛+1 − 𝝎𝑛+1⨂ 𝝎𝑛) + ⋯ (2.12) 

 

𝐪𝑛+1 ≈ 𝐪𝑛 ⨂ (𝐪{�̅�Δ𝑡} +
Δ𝑡2

24
[

0
𝝎𝑛 × 𝝎𝑛+1

]) (2.13) 

 

The summation equation 2.13 can be broken into two parts. The first term represents the 

zeroth order midward integration. The second term represents a second-order correction which 

disappears when there is no change between ωn and ωn+1. Once those two terms of the 
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summation have been calculated, the next step is to find the cross-product of two quaternions. 

Reference [15] provides that formulation.  

However, before we present the equation, the topic of notation needs to be discussed. 

There are two conventions for presenting a quaternion’s order of elements. Either the real 

element is listed first, or it is listed last. Neither of the notations has an effect on the fundamental 

principles of quaternions, but the formulations derived from each notation are different. It is very 

important for us to not use one notation and then attempt to apply it to an equation based on the 

other notation without first completing a notation conversion.  

This exact situation is relevant to our next step. The equation from reference [14] lists the 

scalar value first, while the equation from reference [15] lists the scalar value last. This 

complication is fixed by adjusting the arrays in equation 2.13 to list the first term fourth, as well 

as insuring that the initial quaternion also lists its scalar value last. With this completed we can 

now apply the quaternion cross-product as shown in the next section. This gives us a list of 

quaternions in matrix form with a number of columns (each column a quaternion in 

chronological order) equal to the number of angular velocity data points used for the experiment. 

Conversion of Quaternions to Attitude Matrix 

In this section we will present the formula for converting a quaternion to an attitude 

matrix. This formula returns the direction cosine matrix in terms of the 4x1 Euler parameter 

vector q. The first element is the non-dimensional Euler parameter, while the remaining three 

elements form the Euler-parameter vector. Here, we explain how that function is derived. 

Reference [15] builds the foundation for this proof when discussing vectors in Three 

Dimensions. At this point we discuss the Euler Axis/Angle Representation of Attitude. Figure 

2.1 will be an important visualization of the process discussed in the equations below.  
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Figure 2.1 Euler axis/angle rotation 

Reference [15, p. 41] Figure 2.6 

 
𝐱 ≡ 𝐴𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑣𝑒𝑐𝑡𝑜𝑟 
𝐞 ≡ 𝐸𝑢𝑙𝑒𝑟 𝑎𝑥𝑖𝑠 (𝑢𝑛𝑖𝑡 𝑣𝑒𝑐𝑡𝑜𝑟) 
𝓋 ≡ 𝐸𝑢𝑙𝑒𝑟 𝑎𝑛𝑔𝑙𝑒 𝑜𝑓 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 
𝐴 ≡ 𝑅𝑜𝑡𝑎𝑡𝑒𝑑 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑓𝑟𝑎𝑚𝑒 

(2.14) 

 

Finally, Reference [15] defines the attitude matrix in Equation 2.15, with the following 

trigonometric terms labeled:  

 
 

𝐴(𝐞, 𝓋) = [

𝑐 + (1 − 𝑐)𝑒1
2 (1 − 𝑐)𝑒1𝑒2 − 𝑠𝑒3 (1 − 𝑐)𝑒1𝑒3 − 𝑠𝑒2

(1 − 𝑐)𝑒2𝑒1 − 𝑠𝑒3 𝑐 + (1 − 𝑐)𝑒2
2 (1 − 𝑐)𝑒2𝑒3 − 𝑠𝑒1

(1 − 𝑐)𝑒3𝑒1 − 𝑠𝑒2 (1 − 𝑐)𝑒3𝑒2 − 𝑠𝑒1 𝑐 + (1 − 𝑐)𝑒3
2

] 

 
𝑐 ≡ cos 𝓋      and     𝑠 ≡ sin 𝓋 

 

(2.15) 

 

Here it appears that there are four independent variables that affect the attitude matrix (e1, 

e2, e3, and the Euler angle of rotation), but because the magnitude of e is constrained to equal 

one, this equation only depends on three parameters. This combined with the definition of the 
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unit quaternion, finally gives the quaternion representation of the attitude matrix. This is shown 

below in equation 2.16. 

 

𝐴(𝒒) = (𝑞4
2 − ‖𝒒1:3‖2)𝑰3 − 2𝑞4[𝒒1:3 ×] + 2𝒒1:3𝒒1:3

T  

           = [

𝑞1
2 − 𝑞2

2 − 𝑞3
2 + 𝑞4

2 2(𝑞1𝑞2 + 𝑞3𝑞4) 2(𝑞1𝑞3 − 𝑞2𝑞4)

2(𝑞2𝑞1 − 𝑞3𝑞4) −𝑞1
2 + 𝑞2

2 − 𝑞3
2 + 𝑞4

2 2(𝑞2𝑞3 + 𝑞1𝑞4)

2(𝑞3𝑞1 + 𝑞2𝑞4) 2(𝑞3𝑞2 − 𝑞1𝑞4) −𝑞1
2 − 𝑞2

2 + 𝑞3
2 + 𝑞4

2

] 

 

(2.16) 

This is the equation that is used to convert quaternions into attitude matrices in our 

conversion function. 

Data Simulation Function 

At this point we discuss the process of designing a data simulation function. This is the 

function that takes the calculated quaternion data, applies that data to the conversion function 

discussed earlier, and builds an equation in Refence [11] which calculates the simulation-based 

(or data-based) measurement of the magnetic field by a magnetometer, otherwise known as the 

variable B̃k. But before we can reach that point, there are a number of intermediate steps that we 

must cover. First, we analyze the variable labeled as Hk in the Equation 2.17 shown below. 

 

�̃�𝑘 = 𝑨𝑘𝑯𝑘 + 𝒃 + 𝝐𝑘,     𝑘 = 1, 2, … , 𝑚 (2.17) 

 

Using reference [11], we can define Hk as the value of the geomagnetic field with respect 

to the Earth-fixed coordinate system. This geomagnetic field can be assumed to be 

approximately constant for certain types of measurements where the range of motion of the 

sensor is limited to a local area. This geomagnetic field can also be assumed to fluctuate 
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significantly over time. This assumption can be most easily validated by the application of 

satellites orbiting Earth. The values of Hk used for our research will be provided in Chapter 3. 

Once the value of Hk is determined, the next piece of step of the data simulation function 

is the incorporation of a norm preserving redundancy. As explained earlier, one of the attributes 

of a correctly calculated quaternion is that the magnitude of its norm is always equal to 1. The 

equations used to calculate the unit quaternions are based on that premise. However, there are 

opportunities for error. If the computer calculations give a quaternion a norm that is very slightly 

different than 1 because of rounding, and if that quaternion is used to help calculate the next 

quaternion, their individual errors have the ability to compound. This increases the chances for 

future error in the code. However, there is a simple solution to this opportunity for error. 

Reference [16] explains that the easiest way to make sure that all of the attitude quaternions have 

a magnitude of 1 is to normalize each quaternion before they are used to calculate another 

variable. Normalizing a quaternion converts it into a unit quaternion. Reference [16] shows that 

this is accomplished by dividing the quaternion by the norm of itself as shown in Equation 2.18 

below. 

 

𝐪𝑢𝑛𝑖𝑡 =
𝐪

‖𝐪‖
 (2.18) 

 

Now we can be confident that every quaternion that is used to determine an attitude 

matrix is a unit quaternion.  

The next step within the data simulation function is to convert the quaternions to the 

attitude matrix. This is achieved by using the conversion function that was described earlier. 

After determining the attitude matrices for each moment in time, we then define the following 
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variable Bk using an equation from Reference [11] shown below. Bk requires three variables in 

order to find its value. First it needs the attitude matrix Ak which we just calculated using the 

conversion function. Next it needs the value of the geomagnetic field Hk which we will 

approximate in Chapter 3. Finally, it needs a value for the magnetometer’s bias b. In another 

section we approximate the bias of the smartphone’s magnetometer that was used in our local 

experiment. However, for the purpose of this data simulation function, we must be able to use 

this function as a template no matter what the value of the bias is. 

 

𝑩𝑘 ≜ 𝑨𝑘𝑯𝑘 + 𝒃 (2.19) 

 

 So, similarly to the way that the variable Hk can be calculated we can now use a 

random value generator and multiply it by an order of magnitude scaling value for bias which 

can be found as values within the range of ±0.8 as shown in the equation below. This proof for 

this estimated range will be provided in the following subheading. The main difference between 

the random value function used to determine Hk and the random value function used to find b is 

that b is defined to have the same random number generated at every iteration of an experiment, 

while Hk is defined so that different random numbers can be generated at every iteration of the 

experiment. This is important because while both variables need to be able to take any value 

based on the needs of the experiment, over the course of the experiment, the value for b should 

always remain constant, while the value for Hk must be able to change for each iteration. This is 

because aside from any large changes in external bias (such as solar flares), the bias of a 

magnetometer is relatively constant, while the value of the geomagnetic field can have the 
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potential to change very quickly over small changes in distance. An approximation for the bias 

will be presented in Chapter 3.  

Output of the Data Simulation Function 

Once we determine a range of values for Bk in Chapter 3, we can use a relationship 

provided by Reference [11] to find the variable B̃k discussed at the beginning of this section. This 

relationship is derived from Equation 2.17 and Equation 2.19. It is illustrated in Equation 2.20 

shown below. The only additional variable is the measurement noise vector ϵk. The measurement 

noise vector is also calculated by using the random value function. 

 

�̃�𝑘 = 𝑩𝑘 + 𝝐𝑘 (2.20) 

 

According to Reference [11], the measurement noise vector is calculated with the 

assumption that it is zero-mean Gaussian. The term Gaussian is simply another way of saying the 

distribution should be normal, and the term zero-mean indicates that the average of the 

distribution should be zero. Fortunately, the random value function meets both of those 

requirements perfectly. The other factor in determining the measurement noise vector is the 

scaling value that the random value function is multiplied by. In our experiment we assign a 

value of 5 mG to the scaling value, as that provides a reasonable resulting noise vector. 

However, the average scale for magnetic noise can vary significantly on the location of 

measurement. Because of this, it is important to be able to quickly modify the scale value of the 

measurement noise based on the needs of the experiment. 

At this point the process for completing an iteration within the data simulation function is 

finished. The number of iterations chosen to run in the function is equal to the number of 
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quaternion vectors in the run, also known as the variable n. This means that with the input of the 

number of quaternion vectors n, the values of the quaternion vectors, the value of the constant 

bias b, and the scaling values for both the value of the geomagnetic field and the measurement 

noise, we end up with the output of the value of the geomagnetic field Hk and the measurement 

of the magnetic field B̃k. 

Comparing the Calibration Methods 

This is the section that discusses the calibration methods that optimize the bias 

measurements. The accuracy of these functions will be compared to one another in the results 

chapter. As far as similarities go, all of the functions list the same inputs of B̃k, Hk, σ, and n. Each 

of these methods use a Matlab optimization function called fmincon.  

Before applying the minimization function, we define the option settings of this function. 

First, we define the algorithm that will be used. Here we pick the Interior Point Algorithm. This 

algorithm is discussed in detail in Reference [17]. Next, we define the maximum number of 

iterations allowed before termination, the maximum number of function evaluations before 

termination, and the termination tolerance on the function value. Here we set the maximum 

number of iterations at 5,000. We set the maximum number of function evaluations at 50,000. 

We set the termination tolerance at 1e-6.  

The next step is to set up the optimization function. Before we describe the optimization 

function, we should derive those algorithms built specifically for the TLS method, the Method 1 

function, and the Method 2 function. This begins by defining the measurement model as shown 

in Equation 2.17. It should be noted here that bias and noise are not the only factors relevant to 

sensor calibration. There are other elements as well, including scale factors and nonorthogonality 

corrections. These misalignment matrix elements are not considered in our comparison of the 



 

25 

TLS method and our new methods. For our purposes, the bias vector b and the measurement 

noise vector ϵk are the only calibration parameters.  

Next, we present a simplified model for the noise variable. As discussed previously, the 

first characteristic of the noise variable is that it is zero mean. This property is conveyed by the 

equation below. 

 

𝐸{𝝐𝒌} = 0 (2.21) 

 

The second characteristic of the noise variable is that it has a covariance as shown in the 

equation below.  

 

𝐸{𝝐𝒌𝝐𝒌
𝑇} = 𝜎𝒌

2𝐼 (2.22) 

 

The final characteristic of the noise variable is that it is classified as white noise. This 

means that the variables contributing to the noise are independent and there is no correlation 

between the magnitude of the noise at one point and the magnitude of the noise at any other 

point. This concept is illustrated in the equation below. 

 

𝐸{𝝐𝑗𝝐𝑘
𝑻} = 𝟎 (2.23) 

 

It should be noted that the literature supporting the TLS method in Reference [11] 

assumes a more general form of the covariance matrix than the one used here. Also, an important 

distinction regarding notation must be made. The noiseless measurement of the magnetic field is 

labeled Bk. The definition of this variable was presented in Equation 2.19. Depending on the 
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convention used, the variable Bk can also represent the “True” measurement of the magnetic 

field, that is, what the value of the measurement would be without noise or bias. This alternative 

definition is shown below. 

 

𝑩𝑘(Alt) ≜ 𝑨𝑘𝑯𝑘 (2.24) 

 

This different definition is acceptable to use, but it is important to be consistent and not to 

start with one definition and then switch to the other definition when comparing the different 

algorithms. Based on our convention, there are two resulting estimated quantities. The first 

estimated quantity is the bias itself, and the second estimated quantity is the measurement of the 

magnetic field. The presence of an estimated variable is denoted by a hat symbol above the 

variable names b̂ and B̂k. 

Next, it should be noted that the proofs of the TLS Method, Method 1, Method 2 and 

Method 3 all assume that the value of the geomagnetic field defined by the Earth-based 

coordinate system Hk is known. This is not necessarily true in the real world, but it is a useful 

approximation when comparing calibration methods. Finally, it is helpful view each algorithm as 

a corresponding optimization problem. In the next subsections, we provide the proofs for those 

optimization problems.  

The TLS Method Function 

This first function has already been derived in Reference [11]. It uses the Total Least 

Square method. The cost function is shown in the Equation below. 

 



 

27 

𝐽(𝒃, 𝑩𝑘) =
1

2
∑ [

2(�̃�𝑘 − 𝑩𝑘)

‖�̃�𝑘‖
2

− ‖𝑩𝑘‖2 − 2𝑩𝑘
T𝒃 + 𝒃T𝒃 − 𝜇𝑘

]

T𝑚

𝑘=1

 

𝚺𝑘
−1 [

2(�̃�𝑘 − 𝑩𝑘)

‖�̃�𝑘‖
2

− ‖𝑩𝑘‖2 − 2𝑩𝑘
T𝒃 + 𝒃T𝒃 − 𝜇𝑘

] 

(2.25) 

 

The variables µk and Σk are defined in Reference [11]. In this thesis we are using a 

simplified version of these variables because we have assumed the covariance of Equation 2.22. 

This optimization problem does not have any constraint. In all attitude-independent algorithms, 

the following relationship is used to eliminate the variable “Ak” from the calculations.  

 

‖𝑨𝑘𝑯𝑘‖ = ‖𝑯𝑘‖ (2.26) 

 

The TLS algorithm uses this relationship as an effective measurement through the 

following interpretation of Equation 2.17.  

 

𝑨𝑘𝑯𝑘 = �̃�𝑘 − 𝒃 − 𝝐𝑘 (2.27) 

 

‖𝑨𝑘𝑯𝑘‖ = ‖�̃�𝑘 − 𝒃 − 𝝐𝑘‖ (2.28) 

 

‖𝑯𝑘‖ = ‖�̃�𝑘 − 𝒃 − 𝝐𝑘‖ (2.29) 

 

By continuing to apply Equation 17 from Reference [11], Equation 2.29 can be used to 

derive the following equation.  

 

‖�̃�𝑘‖
2

− ‖𝑯𝑘‖2 = 2𝑩𝑘
T𝒃 − 𝒃T𝒃 + (2�̃�𝑘

T𝝐𝑘 − 𝝐𝑘
T𝝐𝑘) (2.30) 
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The TLS estimates b̂ and B̂k are what minimize the cost function. The minimization 

problem can be made simpler based on the relationship between B̂k and b̂, which is obtained 

from the necessary condition for optimality. Next, we apply the estimate for Bk from Reference 

[11] to Equation 2.30 which is presented here.  

 

�̂�𝑘 = �̃�𝑘 −
(�̃�𝑘 − �̂�)

T
(�̃�𝑘 − �̂�) − 𝑯𝑘

T𝑯𝑘 − 𝜇𝑘

2(𝑩𝑘 − �̂�)
T

𝚺𝑘(𝑩𝑘 − 𝒃) + tr(𝚺𝑘)2
× 𝚺𝑘(�̃�𝑘 − �̂�) (2.31) 

 

Every value of the variable B̂k can be determined once the value of the variable b̂ has 

been found. With this relationship, we can have an equivalent way of finding the estimates. At 

this point, we solve the equivalent optimization problem with the following cost function for the 

variable b̂. From there, we calculate B̂k. This equation is important because it will be used later to 

derive a formula which will calculate the constraint error of the different functions.  

 

𝐽(𝒃) =
1

2
∑

[(�̃�𝑘 − 𝒃)
T

(�̃�𝑘 − 𝒃) − 𝑯𝑘
T𝑯𝑘 − 𝜇𝑘]

2

4(�̃�𝑘 − 𝒃)
T

𝚺𝑘(�̃�𝑘 − 𝒃) + 2tr(𝚺𝑘)2

𝑚

𝑘=1

 (2.32) 

 

The Method 1 Function 

The goal of this new function, as presented in this thesis, is to be a norm-preserving 

function. What this means is that when the constraint error discussed in a previous section is 

measured after the bias is estimated, that constraint error should not simply approximately equal 

zero (as is the case with the TLS estimate) but that constraint error should exactly equal zero to 

the smallest order of magnitude available to the computing device used. The purpose of 
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including this constraint is to improve the accuracy of the bias estimation by limiting the 

opportunity for the minimization function to converge to a point further away from the true bias. 

 It should be pointed out that for this method there is not only one cost function but a 

nonlinear constraint function as well. The first difference between the TLS method and Method 1 

is that Method 1 does not utilize the effective measurement in Equation 2.30. Instead, it solves a 

constrained optimization problem which ensures the following relationship. 

 

‖𝑯𝑘‖ = ‖�̂�𝑘 − �̂�‖ (2.33) 

 

The cost function of Method 1 is shown in the equation below. 

 

𝐽(𝒃, 𝑩𝑘) =
1

2
∑

1

𝝈𝑘
2 (�̃�𝑘 − 𝑩𝑘)

T
(�̃�𝑘 − 𝑩𝑘)

𝑚

𝑘=1

 

 
(2.34) 

Here, we present the nonlinear constraint and equivalent forms of the same constraint. 

The last equation is the form that will be used within the optimization algorithm. 

 

‖𝑩𝑘 − 𝒃‖ = ‖𝑯𝑘‖ (2.35) 

 

‖𝑩𝑘 − 𝒃‖2 = ‖𝑯𝑘‖2 (2.36) 

 

(𝑩𝑘 − 𝒃)T(𝑩𝑘 − 𝒃) = 𝑯𝑘
T𝑯𝑘 (2.37) 
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The Method 2 Function 

The third function that we will discuss is the Method 2 function. The goal of this new 

function is to maintain the norm-preserving attribute of the Method 1 function while producing 

those resulting estimates within an objectively shorter period of time. With Method 2, we only 

build one cost function before applying it to the optimization function. Doing this will allow 

Method 2 to maintain simplicity and hopefully achieve results faster than Method 1. It should 

also be noted that Method 2 yields the exact same estimates as Method 1 

The goal of Method 2 is to find the estimated bias b̂ that minimizes the cost function J(b) 

and calculate the estimated measurement B̂k from the estimated bias b̂. Here we use the method 

of Lagrange multipliers as shown in the equation below. 

 

𝐽(𝒃, 𝑩𝑘) =
1

2
∑ [

1

𝝈𝑘
2 (�̃�𝑘 − 𝑩𝑘)

T
(�̃�𝑘 − 𝑩𝑘)]

𝑚

𝑘=1

+
1

2
∑ 𝜆𝑘[(𝑩𝑘 − 𝒃)T(𝑩𝑘 − 𝒃) − 𝑯𝑘

T𝑯𝑘]

𝑚

𝑘=1

 

 

(2.38) 

In this case there is a set of three optimality conditions based on the following three 

partial derivatives. 

 
𝜕𝐽

𝜕𝑩𝑘
= 0 (2.39) 

 
𝜕𝐽

𝜕𝒃
= 0 (2.40) 

 
𝜕𝐽

𝜕𝜆𝑘
= 0 (2.41) 

 

Based on those three partial derivatives, the three optimality conditions are as follows. 
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−𝝈𝑘
−2(�̃�𝑘 − �̂�𝑘) + 𝜆𝑘(�̂�𝑘 − �̂�) = 0 (2.42) 

 

∑ 𝜆𝑘(�̂�𝑘 − �̂�)

𝑚

𝑘=1

= 0 (2.43) 

 

(�̂�𝑘 − �̂�)
T

(�̂�𝑘 − �̂�) − 𝑯𝑘
T𝑯𝑘 = 0 (2.44) 

 

Based on the first optimality condition, we derive the following equation.  

 

�̂�𝑘 − �̂� =
�̃�𝑘 − �̂�

(1 + 𝜆𝑘𝝈𝑘
2)

 (2.45) 

 

The Lagrange Multiplier can be calculated based on this newly defined relationship in 

Equation 2.46 below. By setting Equation 2.45 and 2.46 equal to each other, we derive Equation 

2.47. At this point, we can keep the Lagrange Multiplier on the left side of the equation and 

move all the other terms to the right side of the equation. This leaves us with a solution for the 

Lagrange Multiplier in Equation 2.48 below. 

 

�̂�𝑘 − �̂� =
�̃�𝑘 − �̂�

‖�̃�𝑘 − �̂�‖ 
‖𝑯𝑘‖ (2.46) 
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1 + 𝜆𝑘𝝈𝑘
2 =

‖�̃�𝑘 − �̂�‖

‖𝑯𝑘‖
 (2.47) 

 

𝜆𝑘 = 𝝈𝑘
−2 (

‖�̃�𝑘 − �̂�‖

‖𝑯𝑘‖
− 1) (2.48) 

 

At this point, we calculate the cost function J(b). Our first step is to rearrange the 

variables in Equation 2.46 and perform a number of algebraic operations. Through this process 

we arrive at Equation 2.51. 

 

�̂�𝑘 − �̂� =
‖𝑯𝑘‖

‖�̃�𝑘 − �̂�‖
(�̃�𝑘 − �̂�) (2.49) 

 

�̂�𝑘 =
‖𝑯𝑘‖

‖�̃�𝑘 − �̂�‖
(�̃�𝑘 − �̂�) + �̂� (2.50) 

 

�̃�𝑘 − �̂�𝑘 =
‖�̃�𝑘 − �̂�‖ − ‖𝑯𝑘‖

‖�̃�𝑘 − �̂�‖
(�̃�𝑘 − �̂�) (2.51) 

 

The next step is to include the variance of the noise on both sides of the equation. This is 

accomplished in Equation 2.52 and that equation is further simplified as shown in Equation 2.53 

below.  
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𝝈𝑘
−2(�̃�𝑘 − �̂�𝑘)

T
(�̃�𝑘 − �̂�𝑘) = 𝝈𝑘

−2
(‖�̃�𝑘 − �̂�‖ − ‖𝑯𝑘‖)

2

‖�̃�𝑘 − �̂�‖
2 (�̃�𝑘 − �̂�)

T
(�̃�𝑘 − �̂�) (2.52) 

 

𝝈𝑘
−2(�̃�𝑘 − �̂�𝑘)

T
(�̃�𝑘 − �̂�𝑘) = 𝝈𝑘

−2(‖�̃�𝑘 − �̂�‖ − ‖𝑯𝑘‖)
2
 (2.53) 

 

This means that when the estimated measurement B̂k and the estimated bias b̂ are related 

through the newly defined Equation 2.46, the cost functions can be determined as shown below. 

The cost function as a function of both measurement and bias is determined by the left side of 

Equation 2.53. The cost function as a function of only bias is determined by the right side of 

Equation 2.53 as shown below. 

 

𝐽(𝒃, 𝑩𝑘) =
1

2
∑ 𝝈𝑘

−2(�̃�𝑘 − 𝑩𝑘)
T

(�̃�𝑘 − 𝑩𝑘)

𝑚

𝑘=1

 (2.54) 

 

𝐽(𝒃) ≜ 𝐽(𝒃, 𝑩𝑘(𝒃𝑘)) =
1

2
∑ 𝝈𝑘

−2(‖�̃�𝑘 − 𝒃‖ − ‖𝑯𝑘‖)
2

𝑚

𝑘=1

 (2.55) 

 

The Method 3 Function 

With the new Method 3 function, there is a very important distinction that must be made 

when compared to the other methods. The goal of this method is not to improve the general 

accuracy or computation speed of the other methods. Here, we attempt to solve a specific 

minimization problem where we assume that the value of the geomagnetic field with respect to 
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the Earth-based coordinate system is unavailable. What is available is a measurement of that 

field H̃k. This measurement varies over time regardless of the location being measured, and it is 

defined in the equation below. Here, the geomagnetic field noise is defined as zero-mean 

Gaussian with a variance also identified below. 

 

𝝐𝑯,𝑘 = Geomagnetic Field Noise (2.56) 

 

𝝈𝑯,𝑘
2 = Variance of 𝝐𝑯,𝑘 (2.57) 

 

�̃�𝑘 = 𝑯𝑘 + 𝝐𝑯,𝑘 (2.58) 

 

Aside from addition of the relationship above, the measurement model for Method 3 is 

the same as the measurement model for the other methods presented in Equation 2.17. 

Additionally, the noiseless measurement Bk has the same definition as previously shown in 

Equation 2.19. The norm constraint for Method 3 is defined by Equation 2.59 below.  

 

‖𝑩𝑘 − 𝒃‖ = ‖𝑯𝑘‖ (2.59) 

 

Based on Equation 2.58, the following identity can be derived and algebraically 

manipulated as shown in the equations below.  

 

�̃�𝑘
T�̃�𝑘 = (𝑯𝑘 + 𝝐𝑯,𝑘)

T
(𝑯𝑘 + 𝝐𝑯,𝑘) (2.60) 
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�̃�𝑘
T�̃�𝑘 = 𝑯𝑘

T𝑯𝑘 + [2𝑯𝑘
T𝝐𝑯,𝑘 + 𝝐𝑯,𝑘

T 𝝐𝑯,𝑘] (2.61) 

 

Based on the constraint defined in Equation 2.59, the following relationship can also be 

derived through Equation 2.61.  

 

�̃�𝑘�̃�𝑘 = (𝑩𝑘 − 𝒃)T(𝑩𝑘 − 𝒃) + [2𝑯𝑘
T𝝐𝑯,𝑘 + 𝝐𝑯,𝑘

T 𝝐𝑯,𝑘] (2.62) 

 

Next, we define the mean and the variance of the noise as shown in the equations below. 

 

𝜇𝑁,𝑘 ≜ 𝐸{2𝑯𝑘
T𝝐𝑯,𝑘 + 𝝐𝑯,𝑘

T 𝝐𝑯,𝑘} = 3𝝈𝐻,𝑘
2  (2.63) 

 

𝝈𝑁,𝑘
2 ≜ 𝐸 {(2𝑯𝑘

T𝝐𝑯,𝑘 + 𝝐𝑯,𝑘
T 𝝐𝑯,𝑘)

2
} = 4𝑯𝑘

T𝑯𝑘𝝈𝐻,𝑘
2 + 6𝝈𝐻,𝑘

4  (2.64) 

 

𝝈𝑁,𝑘
2 = 4(𝑩𝑘 − 𝒃)T(𝑩𝑘 − 𝒃)𝝈𝐻,𝑘

2 + 6𝝈𝐻,𝑘
4  (2.65) 

 

The equations for the mean and the variance of the noise can now be approximated as 

shown in the equations below. 

 

𝜇𝑁,𝑘 ≈ 0 (2.66) 
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𝝈𝑁,𝑘
2 ≈ 4(𝑩𝑘 − 𝒃)T(𝑩𝑘 − 𝒃)𝝈𝐻,𝑘

2  (2.67) 

 

The cost function as a function of both measurement and bias is set equal to the following 

equation. 

 

𝐽(𝒃, 𝑩𝑘) =
1

2
∑ 𝝈𝑘

−2(�̃�𝑘 − 𝑩𝑘)
T

(�̃�𝑘 − 𝑩𝑘)

𝑚

𝑘=1

 

                 +
1

2
∑ 𝝈𝑁,𝑘

−2 [�̃�𝑘�̃�𝑘 − (𝑩𝑘 − 𝒃)T(𝑩𝑘 − 𝒃) − 𝜇𝑁,𝑘]
2

𝑚

𝑘=1

 

(2.68) 

 

This cost function can be simplified by applying the approximations for the mean and 

variance of the noise as shown in the equation below. 

 

 

𝐽(𝒃, 𝑩𝑘) =
1

2
∑ 𝝈𝑘

−2(�̃�𝑘 − 𝑩𝑘)
T

(�̃�𝑘 − 𝑩𝑘)

𝑚

𝑘=1

 

                 +
1

2
∑ 𝝈𝑁,𝑘

−2 [�̃�𝑘
T�̃�𝑘 − (𝑩𝑘 − 𝒃)T(𝑩𝑘 − 𝒃)]

2
𝑚

𝑘=1

 

(2.69) 

 

For the sake of simplicity, the inverse of the variance is being treated as a constant. No 

simple solution is found because the cost function J is now quartic in Bk and b. For the purpose 

of finding an approximate solution to this quartic problem, we introduce the following equation 

and estimate the variables Bʹk and b. 



 

37 

𝑩𝑘
′ = 𝑩𝑘 − 𝒃 (2.70) 

 

The cost function J is quartic with respect to Bʹk, but it is quadratic with respect to b. This 

brings us to a new cost function that is a function of Bʹk and b.    

 

𝐽(𝒃, 𝑩𝑘
′ ) =

1

2
∑ 𝜎𝑘

−2(�̃�𝑘 − 𝑩𝑘
′ − 𝒃)

T
(�̃�𝑘 − 𝑩𝑘

′ − 𝒃)

𝑚

𝑘=1

 

                 +
1

2
∑ 𝜎𝑁,𝑘

−2 [�̃�𝑘�̃�𝑘 − (𝑩𝑘
′ )T(𝑩𝑘

′ )]
2

𝑚

𝑘=1

 

(2.71) 

 

Finally, we construct a loop which produces updated values for B̂ʹk and b̂ alternately. In 

the first step of the loop, we define the following relationship with respect to the cost function in 

Equation 2.102. We then use the optimization algorithm to find the B̂ʹk that minimizes the cost 

function J(b̂, Bʹk). 

 

𝒃 = �̂� (2.72) 

 

In the second step of the loop, we solve for the estimated bias b̂ with a fixed value of B̂ʹk 

by using the equation below. We apply the loop continuously until a stable value for the 

estimated bias has been achieved. 

 

�̂� =
(∑ 𝜎𝑘

−2(�̃�𝑘 − �̂�𝑘
′ )𝑚

𝑘=1 )

∑ 𝜎𝑘
−2𝑚

𝑘=1

 (2.73) 



 

38 

Deriving the Measurement of Constraint Error 

This is the section that covers the derivation of the constraint error equation after the 

calibration methods are implemented. This section largely discusses work completed in 

Reference [11]. Specifically, we analyze how the constraint error of the TLS method is 

calculated and compare the resulting constraint error with the constraint error of our other 

methods. The TLS estimate is found by minimizing a loss function. Here we may apply an 

unconstrained optimization algorithm that is standard in order to calculate the optimal b̂. This 

loss function is derived from Equation 2.32. 

 

𝐽(�̂�) =
1

2
∑

[(�̃�𝑘 − �̂�)
𝑇

(�̃�𝑘 − �̂�) − 𝑯𝑘
𝑇𝑯𝑘 − 𝜇𝑘]

2

4(�̃�𝑘 − �̂�)
𝑇

𝚺𝑘(�̃�𝑘 − �̂�) + 2tr(𝚺𝑘
2)

𝒎

𝑘=1

 (2.74) 

 

Next, the partial derivative with respect to b̂ of Equation 2.74 is presented as Equation 

2.75 shown below. Here the variable sk is also defined below as one half of the trace operator 

applied to the covariance squared in the Equation below. 

 

𝒈 ≜
𝜕𝐽

𝜕�̂�
=

1

4
∑ −

2 [(�̃�𝑘 − �̂�)
𝑇

(�̃�𝑘 − �̂�) − 𝑯𝑘
𝑇𝑯𝑘 − 𝜇𝑘]

(�̃�𝑘 − �̂�)
𝑇

𝚺𝑘(�̃�𝑘 − �̂�) + 𝑠𝑘

(�̃�𝑘 − �̂�)

𝑚

𝑘=1

+
[(�̃�𝑘 − �̂�)

𝑇
(�̃�𝑘 − �̂�) − 𝑯𝑘

𝑇𝑯𝑘 − 𝜇𝑘]
2

[(�̃�𝑘 − �̂�)
𝑇

𝚺𝑘(�̃�𝑘 − �̂�) + 𝑠𝑘]
2 𝚺𝑘(�̃�𝑘 − �̂�) 

(2.75) 

 

𝑠𝑘 ≜ 0.5tr(𝚺𝑘
2) (2.76) 

 

Here, Reference [11] provides the estimate of Bk as shown in Equation 2.31 earlier. 

below. This is based upon the results taken from the partial derivative in Equation 2.75. Next, we 
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reiterate the definition of the error-model for the bias estimate. This is provided in Equations 

2.77 shown below. 

 

�̂� = 𝒃 + 𝚫𝒃 (2.77) 

 

If we substitute the definitions of B̃k and b̂ from Equations 2.20 and 2.78 respectively into 

the numerator of Equation 2.31, and if we approximate the result by ignore any higher order 

terms, we arrive at Equation 2.78 shown below. 

 

(�̃�𝑘 − �̂�)
𝑇

(�̃�𝑘 − �̂�) − 𝑯𝑘
𝑇𝑯𝑘 − 𝜇𝑘 ≈ 2(𝑩𝑘 − 𝒃)𝑇(𝝐𝑘 − 𝚫𝒃) (2.78) 

 

This finally brings us to the equation we have been looking for. Here we ignore the 

smallest terms and set the rest equal to zero. The equation shown below is a measurement of the 

constraint approximation results used in the TLS method. Here we will also measure the 

constraint results of our new method and compare those results to the TLS method. 

 

(�̃�𝑘 − �̂�)
𝑇

(�̃�𝑘 − �̂�) − 𝑯𝑘
𝑇𝑯𝑘 = 0 (2.79) 

 

The Optimization Function 

In this subheading we discuss MATLAB’s optimization function. As explained in 

Reference [17], the function is a nonlinear capable solver built into the Matlab optimization 

toolbox. It can serve a number of purposes, as well as process a number of inputs. The first input 

that it reads is the function being minimized. For our purposes, the functions to minimize are the 
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cost functions derived from the TLS Method, Method 1, and Method 2 functions. The next input 

that the function reads is the Initial point. For our new Method 1 and Method 2 functions, this 

initial point is set at an array of zeros. For the TLS Method function, the initial point is set at an 

array with the first three values represented by zero, and the remaining values represented by the 

variable B̃k.  

After the input of the initial point, there are a number of inputs available but most of them 

will be left unused by our functions. These include inputs for linear inequality constraints, linear 

equality constraints, lower bounds, and upper bounds. The last input that the optimization 

function reads is the nonlinear constraints. For the TLS Method and our Method 2 functions, we 

use no nonlinear constraints. For the Method 1 function, we do have a nonlinear constraint input 

as described earlier. With all the inputs filled, the Optimization function provides an output of 

the variable b̂. The variable b̂ transposed translates to the estimated bias. At this point, we have 

reached the end of our setup, and we are ready to produce results.
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CHAPTER III 

RESULTS 

Here we discuss the results. First, we will reproduce baseline magnetometer readings in 

order to verify our initial setup, and we will approximate a range of sensor biases that we will be 

applying to our optimization algorithms. Then, we will test our measurement verification 

formula. Next, we will compare the accuracy of our optimization functions. Finally, we will 

compare the speed in which those functions complete their calculations. Before providing results, 

we should note that all measurements of magnetic field are in units of milligauss (mG) unless 

otherwise specified.  

Creating a Baseline Reading 

The purpose of this first subheading within Chapter 3 is to present the results that lead to 

a simulated “true” magnetometer reading that will be used to compare the different calibration 

methods. The first factor to be presented will be the gyroscopic data that will be converted to 

quaternions. The second factor to be presented will be the magnitude of the local magnetic field. 

Together, these two factors will provide a zero-bias, noiseless simulation of magnetometer data. 

Source of the Attitude Data 

Our team decided to use the gyroscope built into a smartphone. The specifications of this 

gyroscope are as follows: Its manufacturer is STMicroelectronics. Its product number is 
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L3G4200D. It is described as a 3-Axis MEMS Gyroscope, and its axis, range and sensitivity are 

shown in the figure below. [18]  

 

Table 3.1 Gyroscope Product Attributes 

Axis X (Pitch), Y (Roll), Z (Yaw) 
Range ◦/s ±250, 500, 2000 
Sensitivity (LSB/(◦/s)) 8.75 ~ 70 

Reference [18] 

 

The name of the smartphone application used to record the gyroscopic data from the 

sensor is PHYPHOX. It was developed by RWTH Aachen University for the following function: 

to document the raw data from the phone’s gyroscope. While the specs are given in units of 

degrees/s, the output of the application is a rotation rate given in units of radians/s. [19] Here, we 

applied a rotational motion to the phone and recorded the angular velocity for a period of time 

sufficient to generate and capture regular periodic motion. Within our sample, just under two 

thousand points of data were recorded at a rate of 0.01 seconds between each gyroscopic 

measurement. A link to the raw gyroscopic data used for our research is provided in Reference 

[20]. 

 Here we observe that there are two factors pertaining to the gyroscopic data that will 

affect the accuracy of our results. First, there is the size of our sample. This is obvious for a 

couple reasons. The more data we record, the less likely that error such as bias will have a 

significant impact on the data. Also, we can observe that the quantities of vectors n used should 

reflect a change in the direction of the vectors. If a change in direction is not visible, that would 

indicate that the size of the sample is not sufficiently large. Second, there is the rate of our 
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sample. The affect of this variable on accuracy is dependent on the angular acceleration of the 

object itself. For example, in the case of a phone sensor completing many revolutions in a 

minute, the angular acceleration is high, and the sampling rate must also be relatively high. If it 

is not, the accurate motion of the sensor will not be accurately captured. However, in the case of 

a satellite completing few revolutions in a day, the angular acceleration is lower, and the 

sampling rate can remain relatively low. The accurate motion of the satellite will still be 

captured. At higher resolutions, the sample rate can effectively remove noise from the results.  

The potential impact of this sample size and sample rate that is noted in this section can 

be addressed in further detail through future research. With this data from the gyroscope saved, 

the next step was to convert the data to quaternions through the computation programing 

platform called Matlab that we use for the duration of the experiment. The remaining steps in our 

experiment can be found within our Matlab code. [21]  

Value of the Local Magnetic Field 

For the purposes of estimating the magnetic values of our smartphone-sensor experiment, 

we used value of Hk found in reference [23]. In order to calculate the estimated magnetic field 

through this reference, we had to first provide the latitude, longitude, and elevation of the 

experiment’s location. After that we had to pick a specific model that would calculate the results. 

There were three options for modeling to choose from: the World Magnetic Model (WMM), the 

International Geomagnetic Reference Field (IGRF), and the Enhanced Magnetic Model (EMM).  

According to Reference [24], there is notable differences between the IGRF model and 

the other models. The WMM model and the EMM model are what are called predictive-only 

models. This means that those models take measurements at a specific time and calculate 

predictions for what the future measurements would be. These predictions can be very accurate, 
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but the longer amount of time the calculations predict from the original measurements, the more 

inaccurate those predictions become. Because of this, the WMM model has an expiration date for 

each set of predictions, in this case 5 years. Five years after each set of measurements and 

predictions, the WMM model has to complete a new set of measurements and predictions.  

So, what makes the IGRF model different? In terms of future predictions, the IGRF 

model has a comparable level of accuracy to the WMM model. The main difference is that the 

IGRF model is retrospectively updated. This means that once the prediction becomes outdated, 

the IGRF researchers go back and replace the prediction value with a calculated approximation 

of the actual magnetic field in a given location at that given time. It should be noted that IGRF 

update covers any time between the years 1900 and 2000. This is not necessarily applicable to an 

experiment done in the Fall of 2021, but the IGRF method’s usefulness extends to an algorithm 

that should be versatile if a future researcher needs it to use recorded values of past magnetic 

field calculations. For this reason, we will be using the IGRF method. After picking the IGRF 

model, the menu of Reference [23] asks for a start date, an end date the step size between points. 

However, for the purposes of building the data simulation function, it should not matter 

what the value of Hk is as long as the magnitudes are a reasonable size. Regardless of the 

location of an experiment relative to the Earth’s magnetic field, part of the goal of our research is 

to create a data simulation function that will be a versatile template for any researcher in any 

situation. For this reason, we created an option to test results with the variable Hk by using a 

function that generates random values. This function is described in Reference [21] as a random 

scalar value taken from a standard normal distribution. The output of this function is multiplied 

by the normal order of magnitude for values of the geomagnetic field with respect to Earth. This 

magnitude can be approximated to equal 45 micro-tesla as shown in Reference [24]. For the 
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purposes of our experiment, we use the approximated values of Hk in the x, y, and z directions 

from Reference [23] as an array equal to north, east, and vertical components of the magnetic 

field in the table shown below at the date 2022-01-01. 

 

Table 3.2 Local Magnetic Field – Starkville, MS 

Model Used: WMM-2020 
Latitude: 33° 26’ 52” N 
Longitude: 88° 48’ 40” W 
Elevation: 0.0 km Mean Sea Level 
Date Declination Inclination Horizontal 

Intensity 

North 

Comp 

East 

Comp 

Vertical 

Comp 

Total 

Field 

2022-01-01 -2° 19’ 22” 62° 1’ 22” 22,873.6  
nT 

22,854.8 
nT 

-927.0 
nT 

43,060.4 
nT 

48,758.6 
nT 

Change/ 

Year 

-0° 5’ 11” 
/yr 

-0° 4’ 41” 
/yr 

5.5  
nT/yr 

4.1 
nT/yr 

-34.7 
nT/yr 

-131.0 
nT/yr 

-113.1 
nT/yr 

Uncertainty 0° 22’ 0° 13’ 128  
nT 

131  
nT 

94 
nT 

157 
nT 

145 
nT 

Reference [23] 

 

This magnitude of the magnetic field can be converted from Nanotesla (nT) to Milligauss 

(mG) through a toolset provided by Reference [25]. The value of the total magnetic field is now 

presented as approximately 490 mG. This will be important information when we confirm the 

baseline readings and apply the optimization algorithms. 

Baseline Readings 

Now that we have the necessary information, we can simulate the baseline readings. The 

first results are the baseline magnetometer readings taken from the initial gyroscopic data. The 

purpose of these readings is not to replicate realistic magnetometer data, but rather to verify the 

initial conditions, and to allow us to control variables such as the true bias. The experimental 
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magnetometer readings are shown in Figure 3.1 below. The result reflects the circular motion of 

the sensor during testing. 

 

Figure 3.1 Simulated Magnetometer Readings (Zero-Bias, Noiseless) 

 

Realistic Range for Bias Testing 

In this section we will determine a proper approximation for the bias of the magnetometer 

used in our local experiment. The sensor used to measure the magnetic field of our experiment is 

a component included in Apple’s iPhone 6. While much of the information regarding internal 

technology of the iPhone is proprietary, based on the research done, we have determined that it is 

likely an AK8963 3-axis magnetometer device. This device is developed by the Asahi Kasei 

Microdevices Corporation (AKM), and as shown in Reference [26], it is used by the 

smartphone’s operating system as an electronic compass IC with high sensitivity Hall sensor 
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technology. It has an output data resolution of 0.15 µT/LSB (least-significant bit). It has a 

measurement range of ±4900 µT.  

Since the documentation within Reference [26] does not provide any specific details 

regarding the bias of the smartphone sensor, we want to find a way to approximate the bias 

through analogy. The closest comparison that we were able to find is found in the research 

completed in Reference [6]. Here is used the smartphone called an LG Nexus 4. It precedes the 

iPhone used in our local experiment by only a couple years. It should be noted that while it is 

helpful to our experiment to find a reasonable approximation for the magnetometer’s bias, it is 

not required for our goal of creating a templet to measure bias in any situation. The equations 

should be designed to run successfully regardless of the expected bias.  

As shown in the Tables 2.3 and 2.4 from Reference [6], when the value of the heading 

estimation σ is lowest, the results for the bias estimation are the most accurate. By analyzing the 

columns of data under the EXP1L and EXP2S headings, we can find a consistent approximation 

for the bias of a laboratory sensor. By analyzing the columns of data under the EXP3L and 

EXP4S headings, we can find a consistent approximation for the bias of a smartphone sensor. 

Table 3.3 Estimated Bias of a Laboratory Sensor 

 EXP1L - LABORATORY EXP2S - LABORATORY 
 b̂x  

[mG] 
b̂y  

[mG] 
b̂z  

[mG] 
σ(hE) 
[deg] 

b̂x  
[mG] 

b̂y  
[mG] 

b̂z  
[mG] 

σ(hE) 
[deg] 

Raw -0.0 -0.0 -0.0 8.5 -0.0 -0.0 -0.0 8.5 
Centered -35.1 -45.3 -59.7 3.1 -11.5 -61.7 -61.2 4.0 
TWOSTEP -34.8 -43.2 -59.8 3.1 26.0 32.5 -57.6 8.0 
TWOSTEP* -35.1 -45.0 -59.7 3.1 -4.2 -43.4 -60.5 4.3 
VMC-LS -24.6 -33.7 -49.7 2.5 -17.0 -33.2 -49.5 2.8 

AI-EKF -20.2 62.8 -63.0 6.2 26.6 39.6 -56.7 8.2 
VMC-KF -30.3 -43.1 -43.1 2.7 -11.7 -30.9 -41.1 3.4 

Calculated bias of laboratory sensor in Reference [6]. 
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Table 3.4 Estimated Bias of a Phone Sensor 

 EXP3L - PHONE EXP4S - PHONE 
 b̂x  

[mG] 
b̂y  

[mG] 
b̂z  

[mG] 
σ(hE) 
[deg] 

b̂x  
[mG] 

b̂y  
[mG] 

b̂z  
[mG] 

σ(hE) 
[deg] 

Raw 0.0 0.0 -0.0 100.5 0.0 0.0 -0.0 100.5 
Centered 67.0 801.5 -622.0 4.2 79.8 760.8 -584.8 6.0 
TWOSTEP 67.7 817.6 -713.4 6.2 12.7 949.5 -762.5 28.4 
TWOSTEP* 67.1 802.8 -629.1 4.3 59.9 817.2 -637.9 5.3 
VMC-LS 85.7 800.3 -597.8 4.2 86.6 789.4 -603.8 4.5 
AI-EKF 228.2 427.9 194.5 206.8 192.3 102.5 24.7 111.8 
VMC-KF 84.6 804.3 -599.7 4.2 87.4 795.5 -592.6 4.3 

Calculated bias of phone sensor in Reference [6]. 

The magnitudes of these estimated biases range from 0 mG to almost 1,000 mG. When 

measuring the accuracy of the optimization methods, it will be important to compare the methods 

over a range of biases to see how changing the magnitude of bias affects the accuracy of the 

optimization differently for each method. This table will be helpful when determining what 

realistic range of bias should be used. It is also important to note that depending on the local 

value of the magnetic field Hk, when the magnitude of the bias becomes too large, the results of 

the optimization algorithms will not provide useful information. We must be careful to verify 

that the range of bias chosen does not exceed that threshold. This will be tested in the 

Observability Section of Chapter 3. 

Verification of Bias Measurement 

Baseline examples of the TLS Method and Method 2 function readings are shown in the 

figures below. Here we run the full sample size of data point vectors n at one thousand Monte 

Carlo runs M with a fixed value of the geomagnetic field Hk, the reasonably assigned bias b, and 

the noise σ. The purpose of these readings is to confirm the successful function of these methods 

under normal conditions before comparing these methods over a wide range of conditions 
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Figure 3.2 Estimated and True Biases from TLS Method Function 

Number of vectors (n) is 226; Number of Monte Carlo simulations (M) is 500; Value of the 
geomagnetic field (Hk) is [228.55;-9.27;430.60] mG; Assigned values of bias (bx,y,z) [50;50;50] 
mG; Assigned value of noise (σ) is 5 mG. 
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Figure 3.3 Estimated and True Biases from Method 2 Function 

Number of vectors (n) is 226; Number of Monte Carlo simulations (M) is 500; Value of the 
geomagnetic field (Hk) is [228.55;-9.27;430.60] mG; Assigned values of bias (bx,y,z) [50;50;50] 
mG; Assigned value of noise (σ) is 5 mG. 

As shown above, the estimated bias from the TLS Method and the estimated bias from 

Method 2 both accurately calculate the true bias. The error between the true bias and average 

estimated bias for the TLS Method is [0.0374;-0.0411;-0.0397] mG. The error between the true 

bias and average estimated bias for Method 2 is [0.0344;-0.0407;-0.0363] mG. These results are 

important because they support our assumption that the number of vectors (n) and the number of 

Monte Carlo simulations (M) are sufficiently high to continue testing. However, more 

verification tests will be conducted. It should be noted that the estimated bias from Method 1 was 

found to be equal to the estimated bias from Method 2. The results from Method 2 were chosen 
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to be representative of the results from these two new methods. The results from Method 3 will 

be discussed in a later section. 

Constraint Error Measurements 

In Chapter 2 we presented the optimization constraint that would be enforced through 

Method 1, 2, and 3. In this section we will verify enforcement of that constraint by comparing 

the constraint errors. The expected value of the constraint error for the TLS calibration method 

should be small, but it should be noticeably larger than the constraint error found within the other 

calibration methods.  

 

Figure 3.4 Constraint Error from TLS Method 

Number of vectors (n) is 226; Number of Monte Carlo simulations (M) is 500; Value of the 
geomagnetic field (Hk) is [228.55;-9.27;430.60] mG; Assigned values of bias (bx,y,z) [50;50;50] 
mG; Assigned value of noise (σ) is 5 mG. 
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Figure 3.5 Constraint Error from Method 2 

Number of vectors (n) is 226; Number of Monte Carlo simulations (M) is 500; Value of the 
geomagnetic field (Hk) is [228.55;-9.27;430.60] mG; Assigned values of bias (bx,y,z) [50;50;50] 
mG; Assigned value of noise (σ) is 5 mG. 

As calculated, the constraint error from the TLS Method calibration is significantly 

higher than the constraint error from the Method 2 calibration. The order of magnitude of the 

TLS Method constraint error is 10-2. The order of magnitude of Method 2 constraint error is 10-

14. This result was expected. It should be noted that the constraint errors from Method 1 was 

found to be equal to the constraint error from Method 2. The results from Method 2 were chosen 

to be representative of the results from these two new methods. 

Comparison of Algorithm Accuracy 

The variables that we will be changing through each test are as follows. The TLS Method 

and the new methods are compared over a range of magnitudes of biases and noise. We will 

observe whether or not there are trends of higher, lower, or constant accuracy as noise increases 
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and as bias increases for each of these methods. Additionally, we must verify that the bias 

estimation at the worst cases is still accurate. However, before presenting these comparisons, it is 

important to define the standard that will be used to determine which method is superior. 

SSE Function 

This heading explains the formula used to compare algorithms. The formula we are using 

is call the Sum of Squared Errors (SSE). At each axis, we will measure the difference between 

the points of estimated bias and the true bias. The resulting error can be a combination of 

positive and negative values. In order to create the consistency of absolute values at every point, 

we will square the values of error. Finally, we add the squared values together into a single sum 

at each point along the range of noise or bias. This is the SSE formula. The calibration method 

with the lower SSE error is the more accurate method.  

SSE over Range of Noise 

We will start by presenting the SSE results over a range of noise as shown in the figure 

below. Again, it should be noted that the resulting accuracy of the three new methods was found 

to be equivalent. The most relevant differences between the three new methods will be 

highlighted when comparing the speed of calibration. In this case, we will use the results from 

Method 2 to again represent the accuracy of all three new methods.  
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Figure 3.6 Comparison of Accuracy for Methods over Range of Noise 

Assigned values of bias (bx,y,z) [50;50;50] mG; Assigned range of noise (σ) is 5 mG to 50 mG. 

 

As shown above, the accuracy of the TLS Method and Method 2 both decrease as the 

magnitude of the noise increase. At lower values of noise, the difference between the TLS 

Method SSE and the Method 2 SSE are very small. However, as the magnitude of the noise 
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grows, the TLS Method SSE grows higher than the Method 2 SSE. This would indicate that 

Method 2 becomes more accurate than the TLS Method as the magnitude of noise increases. In 

order to verify that conclusion, we present the difference in SSE between the TLS Method and 

Method 2 in the figure below.  

 

Figure 3.7 Difference between TLS Method SSE and Method 2 SSE 

Calculated from data in Figure 3.6. 

 

Once again, at lower levels of noise, it is difficult to distinguish between the SSE value of 

the TLS Method and the SSE value of Method 2. To this end, we present a sample of the same 

plot at the z-axis with the SSE label formatted to track logarithmic growth. Here we see the 

difference in SSE more clearly at all points along the range of noise.  
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Figure 3.8 Sample of the Difference in SSE at Z-Axis 

Calculated from data in Figure 3.7 

 

Before definitively stating that Method 2 is more accurate than the TLS Method under 

this set of conditions, there is one more step that must be taken. We must verify that the resulting 

bias estimation is reasonably accurate at the highest value of noise within the range.  

Verification of Bias Estimation 

We have shown that Method 2 is more accurate than the TLS Method at higher levels of 

noise. However, this conclusion is irrelevant if neither method can produce a reasonably accurate 

estimation of the bias at all points along the range of noise. Here, we test the bias estimation of 

Method 2 when the magnitude of noise is 50 mG. The result of this test is presented in the figure 

below.  
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Figure 3.9 Verification of Method 2 Bias Estimation at Highest Magnitude of Noise 

Number of vectors (n) is 226; Number of Monte Carlo simulations (M) is 500; Value of the 
geomagnetic field (Hk) is [228.55;-9.27;430.60] mG; Assigned values of bias (bx,y,z) [50;50;50] 
mG; Assigned value of noise (σ) is 50 mG 

 

As shown above, the estimated bias at this magnitude of noise does not perfectly reflect 

the true bias. However, over the course of Monte Carlo simulations, the bias estimations fall on 

both sides of the true bias. This ensures that the average bias estimation is still relatively 

accurate. Compared to the average bias estimation from the TLS Method at this magnitude of 

noise we calculated the following results. At the x-axis Method 2 was 7.2% more accurate. At 

the y-axis, Method 2 was 6.0% more accurate. At the z-axis. Method 2 was 6.7% more accurate. 

At this point, we contend that under the set conditions, Method 2 is more accurate than the TLS 

Method. 
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SSE over Range of Bias 

We will now present the SSE results over a range of bias as shown in the Figure 3.10 

below. Here we come across an unanticipated result. While the change in SSE was gradual for all 

methods over the range of noise, the change in SSE is much more abrupt at specific points over 

the range of bias. This outcome requires more analysis. To that end, we present the difference in 

SSE between the TLS Method and Method 2 in the Figure 3.11 below.  

Once again, at most of the points with lower levels of noise, the SSE value of the TLS 

Method and the SSE value of Method 2 are virtually identical, while at specific points, either the 

TLS Method, Method 2, or both methods show a sharp increase in SSE error. The expected 

result was that the estimated bias of all methods would be very close to each other with a gradual 

increase in SSE as bias increases. We instead see large disparity between estimations of different 

methods and abrupt rather than gradual increases in SSE. Because of this, it would be 

inadvisable for use to make a judgement of accuracy between the methods based on the data 

found.  
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Figure 3.10 Comparison of Accuracy for Methods over Range of Bias 

Assigned range of bias (bx,y,z) is 5 mG to 50 mG; Assigned magnitude of noise (σ) is 5 mG 
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Figure 3.11 Difference between TLS Method SSE and Method 2 SSE 

Calculated from data in Figure 3.10 

 

One could argue that SSE spikes at lower values of bias only occur within the TLS 

Method, making Method 2 more reliable within the range of 5 mG to 314 mG of bias. One could 

also argue that the average SSE value over the total range of bias is higher within Method 2, 

making the TLS Method more reliable on average. We hold that these claims are premature 

based on the irregular data. These spikes in SSE error could more likely be attributed to 

complications within MATLAB’s fmincon optimization function. Where the SSE spikes, our 

research shows that the bad estimates have a lower cost function. This could indicate an error 

within the dataset. At this point, the comparison of accuracy between the methods over the range 

of bias is inconclusive. These large, non-uniform spikes in SSE should be investigated further.  



 

61 

Accuracy when Hk is not Constant 

There is one final case in which we compare the accuracy of the calibration methods. 

There are many situations where it is not reasonable to assume that the value of the local 

magnetic field Hk is constant over time. For example, the magnetometer within a satellite does 

not remain in a specific locality for an extended period of time, and the magnetic field 

surrounding satellites is constantly changing. In the case of the TLS Method, Method 1, and 

Method 2, these calibration methods are not equipped to estimate the bias under the condition of 

an Hk that is not constant. However, Method 3 has been specifically designed to estimate the bias 

under this condition while preserving the accuracy of Method 1 and Method 2. For this reason, a 

comparison of the calibration methods under this condition is not competitive.  
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Figure 3.12 Estimated and True Biases from Method 3 Function 

Number of vectors (n) is 226; Number of Monte Carlo simulations (M) is 50; Value of the 
geomagnetic field (Hk) is [228.55;-9.27;430.60] mG; Assigned values of bias (bx,y,z) [50;50;50] 
mG; Assigned value of noise (σ) is 5 mG. 

 

Method 3 is not the most accurate method when the local value of the magnetic field is 

consistent, but it is the most accurate method here because it is simply the only method that is 

capable of estimating the bias under this condition. 
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Comparison of Algorithm Speed 

The final comparison within this thesis is a comparison of computation speed Between 

the TLS Method, and our newly developed Method 1, Method 2, and Method 3. Here it should 

be noted that Method 2 was specifically designed to improve upon the computation speed of 

Method 1 while retaining the accuracy of Method 1. In this regard, the development of Method 2 

was completely successful. Over the course of testing, simulations of Method 1 could take hours 

to resolve while simulations of Method 2 under the same condition would be completed within 2 

minutes. Additionally, simulations of Method 3 were recorded as taking even longer than 

Method 2. This should not be surprising as the goal of Method 3 is to meet the requirement of 

estimating bias under the condition of a changing value of Hk. Method 3 sacrificed efficiency in 

order to meet this requirement. It should be noted that the possibility remains that Method 3 

could be implemented more effectively than the manner conducted in our experiment, and we 

must give allowance for the possibility of differing results based on a more effective 

implementation of Method 3. Based on our tests, the two most important speeds to compare are 

the speed of the TLS Method and the speed of Method 2. This is what will be presented in the 

figure below. 
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Figure 3.13  Comparison of Computational Speed between Method 2 and the TLS Method 

Assigned range of bias (bx,y,z) is 5 mG to 50 mG; Assigned magnitude of noise (σ) is 5 mG 

 

As shown in the experiment above, Method 2 is on average at least 30% faster than the 

TLS Method. It should be noted that the MATLAB unit of measurement cputime is not perfectly 

consistent depending on the environment of the computer calculating the speed. The TLS 

Method and Method 2 appeared to have competitive computational expenses, and the possibility 

remains that the TLS Method could be implemented more effectively than the manner conducted 

in our experiment. There are also external factors built into the testing computer itself that could 

change the speed of any of the methods on any given day. However, with some external factors 

removed, and repetitive testing conducted, Method 2 still appears to consistently outperform the 

TLS method in terms of speed. Based on this data, we assert that the new Calibration Method 2 

is likely more efficient and therefor computationally faster than the TLS Calibration Method. 
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Conclusion 

A simulation of a zero-bias, noiseless magnetometer reading was developed through the 

use of gyroscopic data and the local value of the geomagnetic field with respect to Earth. This 

simulation allowed us to test different calibration methods and their ability to estimate a chosen 

“true” bias. Based on the literature review, the Total Least Square (TLS) Method showed 

improvement when compared to other methods of calibration. Over the course of this thesis, we 

developed a method with the goal of improving the accuracy of the TLS Method by defining a 

constraint within the optimization algorithm that reflects a norm preserving relationship. We 

named this development Method 1.  

Next, we developed a method with the goal of improving the computational speed of 

Method 1 while maintaining the accuracy based on the norm-preserving constraint of Method 1. 

We accomplish this by only building one cost function before applying it to the optimization 

function, rather than forcing the optimization function to build the cost function at every 

iteration. We named this development Method 2. 

Next, we developed a method with a unique goal. Rather than attempting to improve the 

general accuracy or computational speed of the other methods, we attempted to solve a specific 

minimization problem where the exact value of the geomagnetic field with respect to the Earth-

based coordinate system is inconsistent. We accomplished this by taking a quartic cost function 

and composing a variation in which the cost function is quadratic with respect to bias. We named 

this development Method 3. 

We then compared the accuracy of the TLS Method and the new methods represented by 

Method 2.  We based this comparison on the variability of noise and the variability of sensor 

bias. In the case of variable noise, Method 2 showed improved accuracy in comparison to the 
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TLS Method as the magnitude of the noise increased. At the highest level of noise, Method 2 

provided at least 6% improvement in accuracy when compared to the TLS Method.  

In the case of the variable bias, both the TLS Method and Method 2 produced 

inconsistent results. Over a wide range of bias, both methods performed with equally consistent 

levels of accuracy. However, at specific points of bias, one or both of the methods produced very 

high levels of SSE error. This magnitude of error caused any resulting bias estimations to 

become entirely useless. The TLS Method showed high levels of SSE error at an earlier point in 

the bias range than Method 2. Method 2 produces higher average levels of SSE error over the 

bias range than the TLS Method. These are reasons to consider either method to be more 

accurate. However, because the results are so inconsistent, more research should be completed 

before a definitive statement is made regarding the accuracy of these methods over a bias range. 

In the specific case where the value of the local magnetic field Hk with respect to Earth is 

not constant over time, there is only one method that produces accurate results. That method is 

Method 3. Here, there is no comparison between Method 3 and the other methods, because the 

other methods cannot function properly without either the Hk value or some other modification. 

Finally, we compared the computational speed of the TLS Method to Method 2. Method 

2 performed over 30% faster than the TLS Method over a range of tests. Based on this result and 

Method 2’s higher accuracy over a range of noise, we assert that a substantial goal of our thesis, 

to create a calibration method that improves the TLS Method, has been achieved. As far as 

Method 1 and 3 are concerned, their accuracy is equivalent to Method 2, and their computational 

speeds are significantly lower. Method 2 is superior to the TLS Method and Method 1. Unless 

dealing with the specific case of a non-constant value of Hk, Method 2 is also superior to Method 

3. 
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A Note Regarding Complexity 

Based on the results of previous sections, it is important reiterate an important point. 

There are a number of variables that contribute to the accuracy of the calibration methods. Our 

thesis tests changes in the magnitude of the noise and changes in the magnitude of the bias. 

There are opportunities outside of our thesis for further testing of other variables. These include 

researching the exit flags of the fmincon function to find an explanation for the SSE error over 

the range of bias, changing to an optimization function besides fmincon, increasing the number 

of Monte Carlo simulations to improve accuracy, and increasing the number of vectors (n) to 

improve accuracy. Due to this complexity, there are a number of paths that could be taken to 

build upon the research completed in our thesis. 
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