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With new 2,4-Dichlorophenoxyacetic acid (2,4-D) tolerant crops, increases in off-target 

movement events are expected. New formulations may mitigate these events, but standard lab 

techniques are ineffective in identifying these 2,4-D formulations. Using Fourier-transform 

infrared spectroscopy and machine learning algorithms, research was conducted to classify 2,4-D 

formulations in treated herbicide-tolerant soybeans and cotton and observe the influence of leaf 

treatment status and collection timing on classification accuracy. Pooled Classification models 

using k-nearest neighbor classified 2,4-D formulations with over 65% accuracy in cotton and 

soybean. Tissue collected 14 DAT and 21 DAT for cotton and soybean respectively produced 

higher accuracies than the pooled model. Tissue directly treated with 2,4-D also performed better 

than the pooled model. Lastly, models using timing and treatment status as factors resulted in 

higher accuracies, with cotton 14 DAT New Growth and Treated models and 28 DAT and 21 

DAT Treated soybean models achieving the best accuracies. 
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CHAPTER I 

THESIS INTRODUCTION 

In 2019, agriculture, food, and other related industries accounted for around 5 percent of 

the United States gross domestic product, or around 1.1 trillion dollars, and food accounts for 

around 12 percent of U.S. household expenses (Ag and Food Statistics Charting the Essentials, 

February 2020, 2020). A significant problem for many farmers and scientists, and particularly 

agriculture, is Herbicide-resistant (HR) weeds (Perotti et al., 2020), which have cost farmers 

$187 million in additional herbicide treatments costs in Australia alone (Llewellyn et al., 2016). 

Herbicide resistance is the inherited ability of a weed or crop to survive a herbicide application. 

This HR can be caused by mutations found in an individual weed that then reproduces and 

produces offspring that are also HR. Using the same mode of action (MOA) without 

consideration of other MOAs or other weed management options can result in more HR weeds in 

a population (Vencill et al., 2022). At the time of writing, there are currently 266 HR weed 

species, with 55 of those HR weed species being resistant to Glyphosate (Heap, 2022). 

Herbicide-tolerant (HT) crops are new biotechnologies that can help mitigate HR. These HT 

cultivars are found in multiple row crops like soybean (Glycine max L.), cotton (Gossypium 

hirsutum L.), and corn (Zea mays L.). These cultivars have been genetically modified to resist 

multiple herbicides like glyphosate, 2,4-D, dicamba, or glufosinate. In 2019, over 90 percent of 

planted U.S. corn, upland cotton, and soybeans were genetically engineered, with 94 percent of 

domestic soybeans, 95 percent of domestic cotton, and 89 percent of domestic corn being 
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herbicide-tolerant (Recent Trends in GE Adoption, 2020). One new line of HT cultivars is the 

Enlist® weed control system (‘Enlist crops’, Corteva Agriscience, Indianapolis, IN 46268) 

which is resistant to 2,4-D and glyphosate in all cultivars, with the addition of glufosinate 

tolerance in the cotton and soybean cultivars. 2,4-D was first discovered in the 1940s and is a 

synthetic auxin herbicide mimicking natural auxins, which are phytohormones that control 

growth (Song, 2014). Although 2,4-D is one of the most commonly used herbicides globally, its 

exact mode of action is not fully understood (Tu et al., 2001). According to the EPA, 2,4-D 

functions by causing unregulated cell division in vascular tissue by increasing the cell wall’s 

plasticity, increasing the biosynthesis of proteins, and increasing ethylene production (2,4-D 

Technical Fact Sheet, n.d.). 2,4-D tolerance is produced by employing transgenes encoding 

aryloxyalkanoate dioxygenase enzymes, or AADs, that can metabolize 2,4-D into its non-active 

metabolites (Wright et al., 2010). These HT crops will allow farmers and applicators to apply 

multiple herbicides with multiple MOAs, which can help mitigate the spread of HR weeds 

(Beckie, 2011; Riar et al., 2013). Farmers and applicators have also implemented Enlist cultivars 

to protect against possible off-target movement (OTM) damage caused by dicamba or 2,4-D, as 

both soybean and cotton are susceptible to auxin herbicides, and for the ability to use 2,4-D as a 

postemergence (POST) herbicide to control weeds that are HR to glyphosate or other MOAs 

(Lyon et al., 1993; Shyam et al., 2021; Singh & Sharma, 2000). Although using 2,4-D as a POST 

herbicide can certainly help farmers combat HR weeds and help mitigate the spread of these 

weeds, a problem has arisen that could negate the potential of 2,4-D: off-target movement 

(OTM). 

Off-target movement is the movement of herbicides from the targeted crop to other off-

target crops, including susceptible crops. Off-target movement mainly occurs because of primary 
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and secondary drift. Primary drift, also known as spray drift, occurs when wind or improper 

application equipment blows the herbicide away from the intended target site. Primary drift is 

mainly influenced by meteorological factors like wind, application factors like nozzle type and 

size, and formulation factors like viscosity (Carlsen et al., 2006). Primary drift can typically be 

minimized by following the guidelines found in many 2,4-D labels, which recommend large 

droplet sizes, applying 2,4-D when wind speeds are below 15 mph, not applying 2,4-D during 

atmospheric inversions, and using the proper equipment (Nufarm Weedar 64 Broadleaf 

Herbicide, n.d.; Unison, n.d.). Secondary drift, or vapor drift, occurs after application when a 

liquid herbicide evaporates and converts into a gaseous vapor that moves off the application site 

into an unknown area. Although many factors influencing secondary drift are still not 

characterized, vapor pressure, temperature, uptake of the chemical, pH of the environment, and 

atmospheric factors all influence secondary drift (Bish et al., 2021). In 2021 alone, there were 

3,461 dicamba incidents, affecting more than 1 million acres of soybean reported in the U.S. 

(Tindall et al., 2021). Dicamba is another synthetic auxin herbicide producing many OTM 

events; however, in a herbicide drift survey of around 300 Midwestern growers, forty-four 

percent named 2,4-D as a herbicide responsible for OTM injury (Tindall et al., 2021). OTM of 

2,4-D produces similar visual symptomology in both soybeans and cotton, including leaf cupping 

and stunting, chlorosis, altered height, epinastic response in both the stem and petiole, and callus 

formation in the stems (Andersen et al., 2004; J. T. Buol et al., 2019; Egan et al., 2014; Marple et 

al., 2008a). During OTM events, small concentrations of the applied herbicides will fall into 

susceptible crops, but even minuscule amounts of 2,4-D can cause injury to susceptible crops 

like non-tolerant soybeans and cotton (Lenny Wells et al., 2019; Marple et al., 2008b; Robinson 

et al., 2013), with some crops like grapes seeing damages with 2,4-D rates of 1/300th of an 
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applied rate (Mohseni-Moghadam et al., 2016). To mitigate the possibility of 2,4-D OTM 

occurring, different formulations of 2,4-D have been constructed to reduce the volatility of 2,4-

D. A herbicide formulation is a compound containing the same parent compound, in this case, 

2,4-D, with different salt groups attached to it, like an ester or choline salt, as well as different 

adjuvants. 2,4-D has many different formulations like 2,4-D choline, 2,4-D acid, and 2,4-D 

dimethylamine, which all have different properties like solubility and vapor pressure (M. A. 

Peterson et al., 2016). The choline formulation of 2,4-D is the only formulation labeled to be 

used in Enlist crops, and it is the least volatile formulation of 2,4-D (Sosnoskie et al., 2015a). 

Although 2,4-D choline is the only formulation labeled for use over HT crops, other formulations 

of 2,4-D can be used for other purposes like rangeland pasture, farmsteads, and burndown 

applications. Because of the readability of other formulations of 2,4-D, the potential use of other 

2,4-D formulations, besides the choline formulation, for controlling broadleaf weeds in Enlist 

crops can become a possible problem. Although these herbicides are still 2,4-D formulations and 

will not damage HT crops, these other formulations are not labeled for usage in HT crops, thus 

making them an illegal application. These other formulations of 2,4-D are also more volatile and 

can potentially damage nearby susceptible crops. Unfortunately, the visual symptomology 

caused by these different 2,4-D formulations is almost identical at field level (J. Buol, 2019), 

meaning one could not visually determine which formulation of 2,4-D caused damage to a crop 

based on the visual symptomology alone. 

Another method of combating HR weeds is using tank mixtures to minimize the over-

reliance of just one MOA and rotating herbicide MOAs (Knezevic et al., 2009; D. E. Peterson, 

1999). Tank mixing is mixing multiple herbicides, typically with different MOAs, in a tank and 

applying that mixture to control weeds. Tank mixtures of 2,4-D formulations and glyphosate are 
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very common and kill weeds more effectively than when using 2,4-D and glyphosate alone 

(Joseph et al., 2018; Merchant et al., 2014). Pre-mixtures (premix) of 2,4-D and glyphosate, 

meaning 2,4-D and glyphosate already mixed in a container instead of tank mixing, have also 

been introduced and can be more effective than tank mixtures (Ford et al., 2014; Palma-Bautista 

et al., 2021). 2,4-D and glyphosate premixes have also produced lower downwind depositions 

when compared to 2,4-D and glyphosate tank mixtures, depending on the nozzle used (Havens et 

al., 2018b). Although these procedures can mitigate OTM, they cannot ultimately eliminate 

OTM. 

 With the introduction of new biotechnologies and formulations, an increase in OTM and 

damage to susceptible crops are likely to occur. Although there is no way to visually distinguish 

between the various 2,4-D formulations in the field via symptomology, recent studies involving 

Fourier transform infrared spectroscopy (FTIR) and chemometric analysis have shown promise 

in identifying 2,4-D formulations in injured plant tissue samples. FTIR spectroscopy and 

principal component analysis-linear discriminant analysis (PCA-LDA) have been used to classify 

different formulations of 2,4-D and dicamba in injured cotton and soybean tissue leaves at a set 

rate mimicking OTM and collected at various days after treatment (Reid, 2017). FTIR and LDA 

alone have also been used to create classification models for 2,4-D and dicamba with various 

rates that mimic OTM and collected various days after treatment in dicamba-tolerant crops (J. 

Buol, 2019). In addition, other machine learning algorithms have been coupled with 

spectrometers to create pesticide classification models. For example, near-infrared spectroscopy 

and support vector machines have been used to create classification models for cypermethrin, 

Matrine, and avermectin residues on purple cabbage with near perfect accuracy (Li et al., 2021).  
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Taking all this information for consideration, the objectives for this thesis are as follows: 

1. The creation of classification models capable of identifying various formulations of 2,4-D 

from HT cotton and HT soybeans using FTIR spectroscopy and machine learning 

algorithms. 

2. To determine which machine learning algorithm is the best in constructing the 

classification models. 

3. To establish if the timing between treatment and collection of the tissue samples and the 

treatment status of the leaf tissue will influence the accuracy of the classification models. 
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CHAPTER II 

DESIGNING CLASSIFICATION MODELS FOR FORMULATIONS OF 2,4-D APPLIED TO 

ENLIST CROPS UTILIZING FOURIER TRANSFORM INFRARED SPECTROSCOPY 

(FTIR) AND MACHINE LEARNING ALGORITHMS 

Introduction 

Herbicide-resistant (HR) weeds have greatly influenced agriculture and are a significant 

problem for farmers and scientists (Perotti et al., 2020). Herbicide-resistant weeds are caused by 

mutations found in an individual weed that makes it resistant to a particular herbicide, and when 

it reproduces, its offspring will also be HR. Using the same mode of action (MOA) without 

pivoting to other MOAs or other weed management options can result in more HR weeds in a 

population (Vencill et al., 2022). Glyphosate-resistant weeds make up a large bulk of the HR 

weeds, with 55 glyphosate-resistant weeds out of 266 HR weed species (Heap, 2022). Herbicide-

tolerant (HT) crops are new biotechnologies that can help mitigate HR. These HT cultivars are 

found in soybean (Glycine max L.), cotton (Gossypium hirsutum L.), and corn (Zea mays L.) 

crops. These cultivars have been genetically modified to resist multiple herbicides like 

glyphosate, 2,4-D, dicamba, or glufosinate. The Enlist® weed control system (‘Enlist 

crops’,Corteva Agriscience, Indianapolis, IN 46268) is a new biotechnology that instills 2,4-D 

and glyphosate tolerance in all cultivars, with the addition of glufosinate tolerance in the cotton 

and soybean cultivars. This 2,4-D tolerance is produced by employing transgenes encoding 

aryloxyalkanoate dioxygenase enzymes, Or AADs, that can metabolize 2,4-D into its non-active 
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metabolites (Wright et al., 2010). These HT biotechnologies will allow farmers and applicators 

to spray 2,4-D post-emergent (POST) to control weeds that are hard to kill or glyphosate-

resistant and protect their crops from 2,4-D OTM (Lyon et al., 1993; Shyam et al., 2021; Singh 

& Sharma, 2000). Off-target movement is the movement of herbicides from the targeted crop to 

other off-target crops, including susceptible crops. With the introduction of these new 2,4-D 

tolerant crops, increased use of 2,4-D is expected, leading to 2,4-D OTM and damage to 

susceptible crops (Mortensen et al., 2012; Sharkey et al., 2021). To reduce the potential of OTM, 

different formulations of 2,4-D have been introduced. These 2,4-D formulations include 2,4-D 

choline, 2,4-D amine, and 2,4-D ester, which all have varying properties, like vapor pressure and 

solubility (Peterson et al., 2016). The choline formulation of 2,4-D is the only 2,4-D formulation 

labeled for POST application in Enlist crops and happens to be the least volatile formulation of 

2,4-D (Sosnoskie et al., 2015a). This 2,4-D choline formulation has also exhibited lower 

downwind and upwind deposition compared to other 2,4-D formulations and 2,4-D glyphosate 

tank mixtures (Havens et al., 2018; Mortensen et al., 2012). Although the less volatile choline 

formulation of 2,4-D is the only labeled 2,4-D formulation for use in Enlist crops, other 

formulations of 2,4-D are still labeled and used in other applications besides row crops, like 

rangeland pasture, farmsteads, and burndown applications. These formulations can still cause 

OTM injury during these applications and threaten non-tolerant crops, as these formulations are 

still more volatile than the choline formulation of 2,4-D. However, these formulations would not 

damage HT crops, introducing the possibility of applicators making illegal applications of off-

labeled 2,4-D formulations as these formulations are also not labeled for use in Enlist crops, thus 

making their application illegal. 
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The OTM damages caused by these various formulations of 2,4-D to non-tolerant crops 

vary slightly if at all, thus making 2,4-D formulation identification via visual symptomology 

almost impossible (Buol, 2019). Sosnoskie et al. (2014) found an increased amount of injury and 

reduced cotton height when exposed to 2,4-D ester compared to 2,4-D amine or 2,4-D choline. In 

soybeans, visual symptomology was very similar regarding 2,4-D amine and 2,4-D ester with 

rates mimicking OTM (Thompson et al., 2007). Standard analytical techniques like high-

performance liquid chromatography and gas chromatography/mass spectroscopy have been used 

to determine 2,4-D acid residue in water samples (Orooji et al., 2021) and determine multiple 

acetanilide herbicides from various cereal crops (Yaping Zhang et al., 2011). Although these 

analytical techniques effectively determine and quantify 2,4-D in samples, they are not effective 

at identifying or classifying specific formulations of the herbicide because the salt group 

(choline, ethylhexyl ester, dimethylamine salt, etc.) will be cleaved from the formulation during 

sample extraction making formulation identification impossible (Reid, 2017). Recent studies 

have shown the feasibility of using Fourier-Transform infrared spectroscopy (FTIR) as an 

alternative analytical tool to identify the specific formulation, as it requires little to no samples 

preparation. 

FTIR spectroscopy is the measurement of the interaction of infrared radiation with 

matter. A broadband light source containing the full spectrum of wavelengths and a Michelson 

interferometer are used to collect spectral data from a wide range of wavelengths. The Michelson 

interferometer comprises two mirrors, one stationary and one moving, and a beamsplitter. Light 

from the source is directed at the beamsplitter, which then splits the light, directing 50% of it to 

the stationary mirror and the other 50% to the moving mirror. The light from both mirrors is then 

reflected back to the beamsplitter, focused on the sample, and refocused to the detector. An 
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interferogram is constructed by altering the optical path length of the two arms and recording the 

signal for the various path lengths. The interferogram plots intensity of the signal vs. the distance 

of the moving mirror. A Fourier transformation is applied to the interferogram to produce a 

spectrum plotting absorbance vs. wavenumber (cm-1), which is reciprocal to wavelength. Many 

bonds and chemical structures have specific peaks and bands that can be compared to unknown 

samples to identify the chemical makeup of a sample. FTIR spectroscopy has been applied to 

many analyses, including waste management, measuring air pollution, and even soil analysis 

(Simonescu, 2012). FTIR spectroscopy can be coupled with supervised machine learning 

algorithms to create classification models to identify various chemicals or samples. Machine 

learning is the automated recognition of patterns in data or the process of programming a 

computer to learn from input data (Shai & Shai, 2014). The input data is considered the training 

dataset, a section of the data used to train machine learning models and determine the best 

parameters for each algorithm. Once the best parameter is found, the models will be tested using 

another data section, called the test dataset. Supervised machine learning is when the training 

dataset contains labels, or the values for the input and output (Shai & Shai, 2014). The test 

dataset is missing this label, allowing the particular algorithm to classify or identify the label 

based on the samples used to train the model, thus producing a machine learning model. 

Principal component analysis with linear discriminant analysis (PCA-LDA) classification models 

have been used with FTIR spectroscopy to classify various 2,4-D formulations from injured 

cotton tissue samples collected at 0, 3, 7, and 28 days after treatment (DAT) that were treated 

with 8 g 2,4-D ae ha-1 with 90% classification accuracy (Reid, 2017). These models used a small 

number of samples for their construction and only at a rate that mimicked a large amount of 

OTM, but they also showed the possibility of coupling FTIR spectroscopy and machine learning 
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to classify 2,4-D formulations. Buol (2019) continued this process by constructing classification 

models using PCA-LDA and LDA only and FTIR spectroscopy to classify various formulations 

of 2,4-D from injured cotton and soybean tissue samples collected 7, 14, 21, 28, and 56 DAT and 

treated with 33, 17, 8, 4, 2, 1 g 2,4-D ae ha-1 with 2,4-D classification accuracies of up to 80%. 

These models helped solidify the feasibility of using FTIR and machine learning to classify 

various formulations of 2,4-D by using hundreds of samples and various concentrations of 2,4-D. 

However, Reid (2017) and Buol (2019) only employed rates that mimic OTM and collected 

tissue samples from non-tolerant soybeans and cotton without examining applied rates in HT 

crops. 

Objective 

To construct classification models for the identification of 2,4-D formulations present in 

HT soybean and cotton tissue samples, experiments were conducted utilizing multiple machine 

learning algorithms and FTIR spectra from tissue samples that were directly treated with an 

applied rate of 2,4-D and tissue samples that grew post-treatment of 2,4-D collected at various 

days after treatment. 

Methods and Materials 

Experimental Design, Treatments, and Data Sampling 

Experiments were conducted in 2020 at the R.R. Foil Plant Science Research center in 

Starkville, Mississippi, to construct classification models to identify 2,4-D formulations found in 

HT cotton and soybean tissue. The soybean variety 481E19 was seeded at 130,000 live plants per 

acre, and the cotton variety PHY 490 W3FE was seeded at 45,000 live plants per acre. 

Treatments were arraigned in a randomized complete block design with six treatments and four 
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replications, including a non-treated check. Experimental units consisted of plots containing two 

76-cm by 12.2-m rows for cotton and four 76-cm by 12.2-m rows for soybean. Samples were 

only collected from the middle two rows. Sampling units consisted of individual leaf tissue 

samples collected from the plot. Experimental factors consisted of 2,4-D formulations, days 

between treatment and collection, and individual leaf tissue treatment status. All treatments 

consisted of a tank mix of glyphosate (Roundup Powermax IITM , Bayer CropSciences) and 2,4-

D formulations except for the non-treated check, which only contained glyphosate, and the 

treatment involving Enlist Duo (Enlist Duo™ herbicide with Colex-D® technology, Corteva 

Agriscience). 2,4-D formulations used included 2,4-D Acid (‘Unison’, Unison® Novel 

Broadleaf, Helena Chemical Company, Collierville, TN 38017), 2,4-D Dimethylamine salt 

(‘Weedar’, Weedar® 64, Nufarm Agricultural Products, Alsip, IL 60803), 2,4-D Ethylhexyl 

Ester (‘Weedone’, Weedone® LV4 EC, Nufarm Agricultural Products, Alsip, IL 60803), 2,4-D 

Choline salt (‘Enlist 1’, Enlist One™ with Colex-D® technology, Corteva Agriscience), and 2,4-

D Choline salt/glyphosate premixture (‘Enlist 2’, Enlist Duo™ herbicide with Colex-D® 

technology, Corteva Agriscience). The chemical structure of 2,4-D and the various 2,4-D 

formulations used in this experiment is shown in figure 2.1. Before the application, wooden 

stakes were inserted into the soil at 2.44-m sections of each plot to mark each temporal section 

period, 0, 7, 14, 21, and 28 days after treatment (DAT). Also, prior to the application, electric 

tape was tied to the highest exposed leaf in ten individual cotton plants in each temporal section 

for each plot. This was also repeated for soybeans, except at the highest exposed. This 

distinguished tissue samples that were directly treated with the 2,4-D formulations and those that 

grew post-treatment and were not directly treated with the 2,4-D formulations. Soybeans and 

cotton grow upwards or up the stem, so leaf treatment status can be determined by tying a piece 
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of electric tape prior to treatment application (Albers, 1993; Purcell et al., 2014). A broadcast 

application of glyphosate at 0.87 kg ae ha-1 was applied to the experimental area to control 

emerging weeds. All active ingredients were applied at a rate of 1.06 kg ae ha-1 except for Enlist 

2, which was applied at 2.19 kg ae ha-1. All herbicides were applied via a compressed air tractor-

mounted research sprayer calibrated at 140 L ha-1. The sprayer boom was equipped with 

TTI11005 (TeeJet Technologies, Glendale Heights, Il 60139) spray tips which were used to 

apply the treatments to the middle two rows of cotton and soybean plots. Treatment application 

occurred at the V3 growth stage in soybeans (McWilliams et al., 1999) and when cotton 

achieved three true leaves. During application, spray equipment was washed with ammonia 

(WipeOut® XS, Helena Chemical Company, Collierville, TN 38017) and water between each 

treatment to prevent any cross-contamination. No OTM damage from 2,4-D was observed 

between the plots at the location. Leaf tissue sample collection occurred at 0, 7, 14, 21, and 28 

DAT in each temporal section period, depending on the sampling date, and samples were 

collected from the middle two rows. Tissue samples were hand-harvested using latex gloves 

which were changed between each plot, and rubber boots to minimize cross-contamination. 

Between 10 and 20 leaf tissue samples were collected from various cotton and soybean plants 

from the various plots per collection. The leaf samples were stored in 3.78 L plastic freezer bags 

(Ziploc®, SC Johnson & Son, Inc., Racine, WI 53403) depending on the treatment status of the 

leaves collected. A third of the bags were labeled as “treated,” meaning only leaf tissue samples 

that were directly treated with the 2,4-D formulations and located below the tied electric tape 

were placed in these bags. Another third of all bags were labeled as “new growth,” and only 

tissue samples that grew post-2,4-D treatment and were located above the tied electric tape were 

placed in these bags. The last third of all bags were labeled as “composite” and comprised a 
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combination of tissue samples that were directly treated with 2,4-D and tissue samples that grew 

post-treatment of 2,4-D. Following the collection, all sample bags were placed into ice-filled 

coolers, transported to the Mississippi State Chemical Laboratory, and stored in a -80°C Thermo 

Scientific (Thermo Fisher Scientific, Waltham, MA 02451) TSC2090D chest freezer. After an 

initial freeze lasting 2 to 3 days, the samples were moved into a -20°C walk-in freezer for long-

term storage. 

Sample Processing, Data Collection, and Data Preprocessing 

Sample processing and data collection followed previous and similar studies (Buol, 2019; 

Reid, 2017). Samples were thawed and processed by grinding the leaf tissue in a mortar and 

pestle. The ground tissue samples were returned to the original sample bag and placed in the -

20°C walk-in freezer. Latex gloves were worn and changed between each sample, and the mortar 

and pestle were rinsed with water and cleaned with a solution of 70% ethanol and 30% water. 

After processing the samples, data collection began by thawing out the samples and analyzing 

them using a Thermo Scientific (Thermo Fisher Scientific) Nicolet 6700 FTIR optical 

spectrometer equipped with a liquid nitrogen-cooled MCT High-D detector, KBr beamsplitter, 

and Smart ARK accessory (Figure 2.2). Roughly 1 g of leaf tissue from each sample bag was 

inserted onto a ZnSe trough plate with an incidence angle of 60°. Ten reflections of infrared light 

were passed through the plate in each scan, and an infrared spectrum was produced from 32 

scans of each tissue sample. The 1 g of tissue sample was returned to the sample bag, which was 

then mixed up, and this process was repeated three more times, producing four spectra generated 

from each sample bag. After a sample bag was used to produce four spectra, the ZnSe plate, 

smart ARK accessory, and scoopula used to place the tissue onto the plate were thoroughly 

cleaned with the ethanol/water solution. Latex gloves were also worn and changed after each 
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sample. A background spectrum with no sample placed onto a clean ZnSe plate was collected 

every hour. All spectra were collected at 4000 to 650 cm-1 frequencies and compared to other 

spectra to ensure proper spectra were collected using Omnic 7.3 (Thermo Fisher Scientific). 

Automatic baseline correction was performed on each spectrum to correct the tilting or slanting 

of the spectra in Omnic 7.3. Following the automatic baseline correction in Omnic 7.3, all 

spectra were exported to The Unscrambler X 10.5 (Camo Analytics, Magnolia, TX 77354) 

software to visualize all the spectra and convert the spectra files into Microsoft Excel (Microsoft 

Corporation, Redmond, WA 98052) files. Once all the spectra files were converted into excel 

files, they were exported into RStudio (RStudio Team, Boston, MA) for preprocessing and 

analysis. RStudio was used instead of Unscrambler X 10.5 because of Unscrambler X’s 

limitations and the lack of machine learning implementation compared to RStudio. All raw 

spectra (Figure 2.3 and figure 2.4) were scaled to a mean of 0 and a standard deviation of 1 after 

importation into RStudio. The spectra were then smoothed and derived using the Savitzky-Golay 

algorithm via the prospectr package (Stevens & Ramirez-Lopez, 2011). The Savitzky-Golay 

filter is used to filter out noise by applying a polynomial to a fixed number of data points, then 

moving the polynomial, thus dropping a data point on one end and adding another data point to 

the other end, until it applies the polynomial to all data points (Savitzky & Golay, 1964). All 

spectra were first smoothed using a first-order polynomial and a window size of 11, then derived 

using a first-order polynomial with a first derivative and a window size of 3 (Figure 2.5-2.8). 

Following the Savitzky-Golay transformation, feature selection was implemented using the 

Boruta package (Kursa & Rudnicki, 2010). Feature selection is used to remove irrelevant and 

unimportant data that can increase run time, reduce accuracy, and interfere with the completion 

of the model (Cai et al., 2018). Boruta functions by creating duplicates of all the features, called 
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shadow features, and shuffles them within columns to remove the association between the 

shadow features and the response variables. Next, a random forest classifier is applied to the data 

with the shadow features included. It will then calculate the importance of each feature by using 

the mean decrease accuracy. The algorithm will then compare the z-scores of the real features 

versus the maximum z-score of the shadow features. If the z-scores of the real features are higher 

than the shadow features, Boruta classifies this as a “hit.”  It repeats the process until the number 

of hits for a feature becomes unlikely to be caused by chance and then assigns the feature as 

important or unimportant. The maximum number of importance source runs was set at 200, and 

the number of trees for the random forest was set at 1000. All of the features labeled as important 

were analyzed using different machine learning algorithms, while the features labeled as not 

important were excluded.  

Data Analysis Using Machine Learning Algorithms 

Data analysis was conducted using the mlr3 package (Lang et al., 2019). Nested cross-

validation with five outer loops with three repeats and five inner loops with three repeats were 

utilized to set the parameters, train, and test all the models. It then went through thirty tuning 

iterations, producing six thousand five hundred fifty models per machine learning algorithm. 

Machine learning algorithms used to construct classification models include Naive Bayes 

(NBayes), principal component analysis-linear discriminant analysis (PCA-LDA), XGBoost 

(XGB), ranger- random forest (Ranger), support vector machines (SVM), and k-nearest 

neighbors (KNN). 

Packages utilized for analysis include readxl (Wickham & Bryan, 2019), ramify 

(Greenwell, 2016), prospectr (Stevens & Ramirez-Lopez, 2021), knitr (Xie, 2021), Boruta 

(Kursa & Rudnicki, 2010), corrplot (Wei & Simko, 2021), summaryplots (Comtois, 2021), 
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futures (Bengtsson, 2021), devtools (Wickham et al., 2021), mlr3 (Lang et al., 2019), mlr3viz 

(Lang et al., 2021), mlr3learners (Lang et al., 2021), mlr3pipelines (Pfisterer et al., 2021), 

mlr3tuning (Becker et al., 2021), ggplot2 (Wickham, 2016), mlr3benchmark (Raphael, 2021), 

mlr3extralearners (Sonabend & Schratz, 2021), mlr3filters (Schratz et al., 2021), tidyverse 

(Wickham et al., 2019), multcomp (Hothorn et al., 2008), data.table (Dowland Srinivasan, 2021), 

flextable (Gohel, 2021), captioner (Alathea, 2015), caret (Kuhn, 2021), e1071 (Meyer et al., 

2021), pROC (Robin et al., 2011), signal (signal developers, 2013), pracma (Borchers, 2021), 

stats (R Core Team, 2020) and emmeans (Length, 2022). 

Naive Bayes 

The Naive Bayes classifier is based on the Bayes theorem and functions by assuming the 

presence of a feature in a class is unrelated to the presence of other features. Naive Bayes mainly 

looks at the probability and likelihood for classification. Naive Bayes functions by finding the 

probability of X occurring if Y has also occurred. Some parameters for Naive Bayes include the 

value of the Laplace smoothing and the probability threshold. 

Linear Discriminant Analysis 

Linear discriminant analysis is used to find a linear combination of features that classifies 

multiple classes or events. It is very similar to linear regression but used for classification instead 

of predictive analysis. Linear discriminant analysis is often paired with principal component 

analysis, which is an unsupervised learning technique used to reduce the dimensions of a dataset. 

The number of principal components used were based on cross-validation rather than variance 

explained. PCA-LDA is also mainly used for dimension reduction, but previous experiments 

using PCA-LDA to correctly classify 2,4-D and dicamba formulations at a concentration 
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mimicking off-target drift from tissue harvested multiple weeks after 2,4-D application produced 

classification models with accuracies of up to 90% (Reid, 2017) 

XGBoost 

XGBoost and random forest are similar algorithms that are both decision-tree-based but 

with some key differences. XGBoost is an ensemble technique that uses the gradient descent 

algorithm to essentially correct the mistakes made by previous trees generated by the model, 

learn from them, and improve the performance of the next step. This allows new models to be 

produced that predict the errors of the previous models and the residuals of the previous models 

and adds them together to make the final prediction. Parameters for XGBoost include the number 

of iterations, controlling the learning rate of the model, and the maximum depth of trees. 

Ranger 

Ranger is a form of the random forest learning method, a supervised decision tree-based 

classification model in which the trees are constructed independently of each other. Decision 

trees are a series of steps that answer questions and provide costs, probabilities, or other 

outcomes based on the question. One key difference between a random forest and a decision tree 

is that the process of finding the root node and the feature splitting node will occur randomly and 

is not based on rules in random forest models. A random subset of features is used at each split in 

the tree and not the entire dataset. Each tree produces a prediction in a random forest model, and 

the class with the most votes becomes part of the prediction model. Ranger parameters include 

Mtry or the number of variables randomly sampled for each tree, the number of possible trees, 

and the minimum size of the terminal node or node size. 
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Support-Vector Machines 

The support-vector machine algorithm will graph a training dataset of two different 

classes and find a hyperplane separating them. SVM will use the points closest to the hyperplane, 

support vectors, to compute the largest distance between the hyperplane and the support vectors, 

with this maximum distance line being labeled the optimal hyperplane. A test set is then graphed 

into the same space as the training set. A prediction is made based on which side of the 

hyperplane the test points fall into. If the dataset is not linearly separable, dimensions can be 

added to help fit the hyperplane. By using a one-to-rest approach, SVM can be used in multi-

class classification. The hyperplane is constructed for each class by maximizing the separation 

between one class and all other classes at once. The cost and gamma parameters are critical 

parameters in SVMs. The cost parameter is used to control the tradeoff between variance and 

bias, where the model can be trained to purposefully misclassify some of the training data to help 

the model classify the test data. A high cost will allow the hyperplane to classify all training 

points correctly, overfitting the model. A lower cost will misclassify some training set points to 

help better classify the test set. Gamma describes the weight of a single training point. A high 

gamma will add more weight to the points closest to the line and ignore points further away, 

while a low gamma will give more weight to points further away, causing the hyperplane to be 

more linear. 

K-Nearest Neighbors 

K-nearest neighbors is a classification method very similar to SVM. KNN marks a 

training data set as belonging to one of two categories. A test set is then introduced and mapped 

into the same place as the training set. Classification will be based on the data points nearest to 

the test dataset, called neighbors. One of the critical differences between SVM and KNN is using 
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a hyperplane to separate the data in SVM, while KNN does not use a hyperplane. A critical 

parameter for KNN is k, the number of neighbors considered. If k is set to one, it will only use 

the closest neighbor to classify the data point. If k is set to three, it will then use the three closest 

neighbors to classify the data points. 

Comparing Machine Learning Models 

All machine learning models will produce a classification matrix containing the predicted 

formulation of 2,4-D versus the actual reference 2,4-D formulation, the sensitivity of all 

formulations, and the positive predictive for all formulations. Following the construction of all 

the classification models, the models were fit into a binomial generalized linear model using the 

stats package (R Core Team, 2020), and mean separated and compared using Tukey’s Honest 

Significance Difference (HSD) test from the emmeans package (Length, 2022) with a 

significance level of 0.05 to determine which model was the most accurate. Tukey HSD is used 

to determine the honest significant difference between two means using a studentized range and 

is a conservative test compared to other comparison methods (Abdi & Williams, 2010). For 

example, Tukey’s HSD has been used to compare multiple machine learning model's abilities to 

estimate the dry biomass weight of wood chip residues (Fuente et al., 2021) and in comparing 

machine learning models performances in assessing triggering factors for debris flow (Yonghong 

Zhang et al., 2019). 

Results and Discussion 

Cotton 

Two thousand four hundred forty-six cotton spectra were used in data analysis. Prior to 

feature selection, absorbance values for 1728 wavenumbers were collected, with 434 



 

25 

wavenumbers being labeled as important and used in machine learning analysis. Reid (2017) and 

Buol (2019) only used wavenumbers found in the “fingerprint region” between 1800 and 800 

cm-1. However, wavenumbers found outside the “fingerprint region” were labeled as important 

following feature selection and included in the analysis. The wavelengths labeled as most 

important from Boruta included wavelengths at around 1620 cm-1, 1695 cm-1, 1320 cm-1, and 

1050 cm-1. The peaks at 1620 cm-1 and 1695 cm-1 are most likely produced from the aromatic 

rings found in auxin herbicides and primary and secondary amines, which have been identified 

as important in previous models (Buol, 2019; Reid, 2017). The peak at 1320 cm-1 most likely 

represents a carboxylic acid group and was also labeled as important in previous models (Buol, 

2019; Reid, 2017). Lastly, the peak at 1050 cm-1 is most likely produced from the alcohol group 

found in 2,4-D. The confusion matrices from classification models generated using cotton 

spectra and various machine learning techniques can be found in tables 2.1 - 2.6. The 

classification model using NBayes produced an overall accuracy of 19% (Table 2.1). The PCA-

LDA classification model produced an overall accuracy of 37% (Table 2.2). The classification 

model using XGBoost resulted in an overall accuracy of 56% (Table 2.3), while the Ranger 

classification model’s overall accuracy was slightly higher than XGBoost, with an overall 

accuracy of 65% (Table 2.4). The SVM classification model resulted in an overall accuracy 

of 73% (Table 2.5). Lastly, the classification model using KNN resulted in the highest overall 

accuracy, with an overall accuracy of 81% (Table 2.6). The classification model using KNN 

produced the highest overall accuracy, and the classification model using Nbayes produced the 

worst accuracy, while the classification model using PCA-LDA resulted in the second least 

accurate model (Figure 2.9). Reid (2017) and Buol (2019) used another variety of soybean and 

cotton while only selecting tissue samples that exhibited damage, tissue most likely directly 
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applied with 2,4-D, which could explain the differences in accuracy comparing their LDA 

classification and the LDA classification model presented here. The KNN classification model 

best classified the control (85%) and performed inadequately when classifying Enlist 1 (78%), 

but all formulation sensitivities were above 70%. 

Soybean 

Two thousand four hundred seventy-five soybean spectra were used in data analysis. 

Prior to feature selection, absorbance values for 1728 wavenumbers were collected, with 331 

wavenumbers being labeled as important and used in machine learning analysis. Reid (2017) and 

Buol (2019) only used wavenumbers found in the “fingerprint region” between 1800 and 800 

cm-1. However, wavenumbers found outside the “fingerprint region” were labeled as important 

following feature selection and included in the analysis. The wavelengths labeled as most 

important from Boruta included wavelengths at 1550 cm-1, 1500 cm-1, and 1670 cm-1. These 

peaks are most likely produced from the aromatic rings found in auxin herbicides and primary 

and secondary amines, which have also been identified as important in previous models (Buol, 

2019; Reid, 2017). The confusion matrices from classification models generated using cotton 

spectra and various machine learning techniques can be found in tables 2.7-2.12. The 

classification model using NBayes produced an overall accuracy of 18% (Table 2.7). The 

classification model using PCA-LDA also performed poorly, producing an overall accuracy 

of 32% (Table 2.8). The classification model using XGBoost resulted in an overall accuracy 

of 49% (Table 2.9), while the Ranger classification model’s overall accuracy was slightly higher 

than XGBoost, with an overall accuracy of 54% (Table 2.10). The SVM classification model 

resulted in an overall accuracy of 60% (Table 2.11). Lastly, the classification model using KNN 

resulted in the highest overall accuracy, with an overall accuracy of 68% (Table 2.12). The 
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classification model using KNN produced the highest overall accuracy, and the classification 

model using Nbayes performed the worst, while the classification model using PCA-LDA 

resulted in the second least accurate model (Figure 2.10). Reid (2017) and Buol (2019) used 

another variety of soybean and cotton while only selecting tissue samples that exhibited damage, 

tissue most likely directly applied with 2,4-D, which could explain the differences in accuracy 

comparing their LDA classification and the LDA classification model presented here. The KNN 

classification model performed best in classifying Unison (71%) and worst when classifying 

Weedar (66%) and the control (67%), but all formulation sensitivities were above 60%. 

Conclusions and Regulatory Implications 

With the introduction and implementation of the Enlist weed control system, an increase 

in 2,4-D applications will likely occur; for example, the usage of 2,4-D has steadily increased 

since 2012 (Estimated Annual Agricultural Pesticide Use, 2021). With this increase in 2,4-D 

usage, damage to susceptible crops from OTM will almost certainly increase. This increase in 

OTM damage will likely be caused by an off-labeled application of a more volatile yet cheaper 

formulation of 2,4-D instead of the Enlist formulations. The choline formulation of 2,4-D is 

significantly less volatile than other 2,4-D formulations and produces little to no damage to 

susceptible row crops upwind or downwind of a treated plot (Kalsing et al., 2018; Sosnoskie et 

al., 2015b; Werle et al., 2021), but is typically more expensive than other formulations of 2,4-D. 

This difference in cost can lead to applicators spraying other more volatile, less stable, and 

illegal formulations of 2,4-D onto their crops to save money, increasing the probability of an 

OTM drift event occurring. The lack of proper analytical tools to correctly identify formulations 

of 2,4-D rapidly and at a low cost has hampered the ability to manage these OTM drift events. 

These classification models are meant to fix these problems and better manage these events. 
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These classification models were constructed only using one year’s worth of data at one location, 

so more locations and years are most likely needed to observe if location and year influence 

accuracy. Next, the difference in classification accuracies of 2,4-D in the soybean and cotton 

models could be caused by physiological differences in the different crops, but more research 

involving 2,4-D and HT crops is needed. Also, for the construction of the models, all the leaf 

tissue samples were used to train and test the models, but none were used to validate the model. 

Previous models built using a single concentration of 2,4-D on susceptible cotton produced high 

accuracies with unknown samples (Reid, 2017), but these models were built with susceptible 

cotton tissue with a rate mimicking a large OTM drift event. Other models built using multiple 

concentrations of 2,4-D mimicking drift events and multiple timing evaluations produced lower 

accuracies with unknown samples (Buol, 2019). However, the models were built using another 

type of resistant row crop and only using the wavelengths constituting the fingerprint regions, 

1800 to 800 cm-1. In the following chapter, models will be built evaluating the effect of 

evaluation timing and treatment status of tissue on the accuracy of the classification models 

presented here.  

 This study shows how, with reasonable accuracy, using FTIR spectroscopy and 

machine learning models to classify various 2,4-D formulations found in 2,4-D tolerant soybeans 

and cotton leaf tissue samples is possible. Out of all machine learning algorithms examined, k-

nearest neighbor produced the highest overall accuracy, with 80% formulation classification 

accuracy in cotton tissue treated with 2,4-D and 67% formulation classification accuracy in 

soybean tissue treated with 2,4-D. While 80% accuracy for a cotton classification model and 

67% accuracy for a soybean classification model does not seem exceptional, a no-information 

model or if the model was guessing the formulation of 2,4-D found in the samples produced an 
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accuracy of 17%. This displays the possibility of using FTIR spectroscopy and machine learning 

models to correctly identify various formulations of 2,4-D from HT cotton and soybean tissue 

samples. 

Finally, these models are also meant to be used alongside other investigative tools like 

sales records, application records, and other models used to mimic OTM drift damage. For 

example, during an investigative examining an OTM drift event, leaf tissue samples from that 

drift event will be collected and analyzed using previously constructed models that mimic drift 

damage to determine which formulation of 2,4-D, if any, caused that damage. Following that 

analysis, leaf tissue samples from neighboring farms and locations would be analyzed using the 

models presented here to determine which formulation of 2,4-D farmers and applicators used 

near the drift event and if any of those formulations found using this model match the 

formulation that caused the drift damage. Additionally, in many states, application records are 

required or at least recommended when applying 2,4-D or any other auxin herbicides, and those 

application records will also be used as an investigative tool. Lastly, many states also require 

sellers to keep sales receipts of regulated herbicides, including 2,4-D, for multiple years. Using 

the models constructed here, previously constructed models mimicking OTM drift, sales receipts, 

and application records, OTM drift events involving 2,4-D can be better monitored and 

investigated. 
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Tables 

Table 2.1 Confusion matrix generated from the classification model using Naïve Bayes and 

transformed cotton spectra produced from tissue treated with No 2,4-D, Unison, 

Weedar, Weedone, Enlist 1, and Enlist 2 pooled over sampling timing (0, 7, 14, 21, 

and 28 DAT) and tissue treatment status (Treated, New Growth, and Composite).a,b 

   

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone  PPV 

Enlist 1 99 107 89 100 109 110 16% 

Enlist 2 223 289 248 237 278 268 19% 

No 2,4-D 58 53 80 72 82 76 19% 

Unison 421 369 423 452 333 317 20% 

Weedar 95 134 134 129 156 129 20% 

Weedone 280 296 250 243 254 348 21% 

 Sensitivity 8% 23% 7% 37% 13% 28% 19%† 

 

Hyperparameters: Naïve Bayes Threshold= 0.09928702; Epsilon= 0.08752653 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter 
†Overall accuracy of the classification model 
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Table 2.2 Confusion matrix generated from the classification model using PCA-LDA and 

transformed cotton spectra produced from tissue treated with No 2,4-D, Unison, 

Weedar, Weedone, Enlist 1, and Enlist 2 pooled over sampling timing (0, 7, 14, 21, 

and 28 DAT) and tissue treatment status (Treated, New Growth, and Composite) a,b 

   

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone PPV  

Enlist 1 463 208 108 196 142 154 36% 

Enlist 2 177 428 133 141 158 175 35% 

No 2,4-D 100 97 458 162 167 128 41% 

Unison 166 184 187 438 131 189 34% 

Weedar 131 172 199 117 448 115 38% 

Weedone 139 159 139 179 166 487 38% 

 Sensitivity 39% 34% 37% 36% 37% 39% 37%† 

 

Hyperparameters: ldapca.rank= 196.7904 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Table 2.3 Confusion matrix generated from the classification model using XGBoost and 

transformed cotton spectra produced from tissue treated with No 2,4-D, Unison, 

Weedar, Weedone, Enlist 1, and Enlist 2 pooled over sampling timing (0, 7, 14, 21, 

and 28 DAT) and tissue treatment status (Treated, New Growth, and Composite) a,b 

   

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone PPV  

Enlist 1 640 131 83 150 72 70 56% 

Enlist 2 127 695 71 103 121 154 55% 

No 2,4-D 99 76 727 96 131 104 59% 

Unison 149 66 130 699 119 74 57% 

Weedar 62 112 109 105 650 116 56% 

Weedone 99 168 104 80 119 730 56% 

Sensitivity  54% 56% 59% 57% 54% 58% 56%† 

 

Hyperparameters: Alpha= 1.386928; Eta=0.1784706; colsample_bytree= 0.196827; Lambda= 

3.823641; nrounds= 573.525; subsample= 0.8062951; max_depth=49.72615; 

colsample_bylevel= 0.5393224 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Table 2.4 Confusion matrix generated from the classification model using Ranger and 

transformed cotton spectra produced from tissue treated with No 2,4-D, Unison, 

Weedar, Weedone, Enlist 1, and Enlist 2 pooled over sampling timing (0, 7, 14, 21, 

and 28 DAT) and tissue treatment status (Treated, New Growth, and Composite) a,b 

   

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone  PPV 

Enlist 1 704 88 48 114 61 73 65% 

Enlist 2 122 826 52 89 103 146 62% 

No 2,4-D 79 37 852 79 97 82 69% 

Unison 129 45 96 790 90 49 66% 

Weedar 56 108 71 65 761 88 66% 

Weedone 86 144 105 96 100 810 60% 

 Sensitivity 60% 66% 70% 64% 63% 65% 65%† 

 

Hyperparameters: Mtry=5.825705 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value  
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Table 2.5 Confusion matrix generated from the classification model using SVM and 

transformed cotton spectra produced from tissue treated with No 2,4-D, Unison, 

Weedar, Weedone, Enlist 1, and Enlist 2 pooled over sampling timing (0, 7, 14, 21, 

and 28 DAT) and tissue treatment status (Treated, New Growth, and Composite) a,b 

   

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone  PPV 

Enlist 1 803 70 33 87 43 48 74% 

Enlist 2 87 898 38 67 67 99 71% 

No 2,4-D 82 86 979 104 91 82 69% 

Unison 93 32 70 854 54 53 74% 

Weedar 51 67 53 61 899 73 75% 

Weedone 60 95 51 60 58 893 73% 

Sensitivity  68% 72% 80% 69% 74% 72% 73%† 

 

Hyperparameters: filt2.filter.nfeat= 379.1929; SVM cost= 5.758028; SVM gamma= -1.850011 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Table 2.6 Confusion matrix generated from the classification model using KNN and 

transformed cotton spectra produced from tissue treated with No 2,4-D, Unison, 

Weedar, Weedone, Enlist 1, and Enlist 2 pooled over sampling timing (0, 7, 14, 21, 

and 28 DAT) and tissue treatment status (Treated, New Growth, and Composite) a,b 

      

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone  PPV 

Enlist 1 919 50 37 70 45 70 77% 

Enlist 2 55 1006 32 43 45 66 81% 

No 2,4-D 37 34 1038 47 39 18 86% 

Unison 77 47 55 1000 70 38 78% 

Weedar 45 39 30 38 977 47 83% 

Weedone 43 72 32 35 36 1009 82% 

Sensitivity  78% 81% 85% 81% 81% 81% 81%† 

 

Hyperparameters: filt2.filter.nfeat= 372.861; k= 2.544557 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Table 2.7 Confusion matrix generated from the classification model using Naïve Bayes and 

transformed soybean spectra produced from tissue treated with No 2,4-D, Unison, 

Weedar, Weedone, Enlist 1, and Enlist 2 pooled over sampling timing (0, 7, 14, 21, 

and 28 DAT) and tissue treatment status (Treated, New Growth, and Composite).a,b 

   

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone PPV  

Enlist 1 473 430 463 471 425 389 18% 

Enlist 2 187 160 163 179 152 150 16% 

No 2,4-D 64 88 80 92 75 83 17% 

Unison 69 69 63 81 77 72 19% 

Weedar 114 131 114 106 154 126 21% 

Weedone 341 373 359 319 323 413 19% 

Sensitivity  38% 13% 6% 6% 13% 33% 18%† 

 

Hyperparameters: Naïve Bayes Threshold= 0.123539; Epsilon= 0.3138411 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter       
†Overall accuracy of the classification model 

  



 

37 

Table 2.8 Confusion matrix generated from the classification model using PCA-LDA and 

transformed soybean spectra produced from tissue treated with No 2,4-D, Unison, 

Weedar, Weedone, Enlist 1, and Enlist 2 pooled over sampling timing (0, 7, 14, 21, 

and 28 DAT) and tissue treatment status (Treated, New Growth, and Composite).a,b 

   

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone PPV  

Enlist 1 443 164 171 137 186 193 34% 

Enlist 2 196 377 194 163 152 222 29% 

No 2,4-D 157 145 348 183 135 167 31% 

Unison 177 220 205 496 144 183 35% 

Weedar 123 149 147 121 418 146 38% 

Weedone 152 196 177 148 171 322 28% 

Sensitivity  35% 30% 28% 40% 35% 26% 32%† 

 

Hyperparameters: ldapca.rank= 232.2527 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Table 2.9 Confusion matrix generated from the classification model using XGBoost and 

transformed soybean spectra produced from tissue treated with No 2,4-D, Unison, 

Weedar, Weedone, Enlist 1, and Enlist 2 pooled over sampling timing (0, 7, 14, 21, 

and 28 DAT) and tissue treatment status (Treated, New Growth, and Composite).a,b 

   

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone PPV  

Enlist 1 621 152 144 106 121 113 49% 

Enlist 2 125 561 137 134 122 106 47% 

No 2,4-D 129 110 525 138 100 117 47% 

Unison 123 167 146 622 86 83 51% 

Weedar 132 141 134 139 674 182 48% 

Weedone 118 120 156 109 103 632 51% 

 Sensitivity 50% 45% 42% 50% 56% 51% 49%† 

 

Hyperparameters: Alpha= 1.47321; Eta= 0.05576059; colsample_bytree= 0.1659995; Lambda= 

8.531977; nrounds= 989.3554; subsample= 0.960932; max_depth= 25.18549; 

colsample_bylevel= 0.0386287 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Table 2.10 Confusion matrix generated from the classification model using Ranger and 

transformed soybean spectra produced from tissue treated with No 2,4-D, Unison, 

Weedar, Weedone, Enlist 1, and Enlist 2 pooled over sampling timing (0, 7, 14, 21, 

and 28 DAT) and tissue treatment status (Treated, New Growth, and Composite).a,b 

   

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone  PPV 

Enlist 1 726 179 161 132 122 110 51% 

Enlist 2 95 593 115 105 92 90 54% 

No 2,4-D 108 103 606 123 71 95 55% 

Unison 81 132 95 634 71 66 59% 

Weedar 140 140 120 137 756 179 51% 

Weedone 98 104 145 117 94 693 55% 

Sensitivity  58% 47% 49% 51% 63% 56% 54%† 

 

Hyperparameters: Mtry= 2 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Table 2.11 Confusion matrix generated from the classification model using SVM and 

transformed soybean spectra produced from tissue treated with No 2,4-D, Unison, 

Weedar, Weedone, Enlist 1, and Enlist 2 pooled over sampling timing (0, 7, 14, 21, 

and 28 DAT) and tissue treatment status (Treated, New Growth, and Composite).a,b 

   

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone PPV  

Enlist 1 745 128 95 91 74 71 62% 

Enlist 2 117 740 98 83 92 96 60% 

No 2,4-D 117 106 696 114 86 120 56% 

Unison 80 107 121 771 104 72 61% 

Weedar 123 108 104 106 783 133 58% 

Weedone 66 62 128 83 67 741 65% 

Sensitivity  60% 59% 56% 62% 65% 60% 60%† 

 

Hyperparameters: filt2.filter.nfeat= 315.9735; SVM cost= 6.373757; SVM gamma= -1.922477 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Table 2.12 Confusion matrix generated from the classification model using KNN and 

transformed soybean spectra produced from tissue treated with No 2,4-D, Unison, 

Weedar, Weedone, Enlist 1, and Enlist 2 pooled over sampling timing (0, 7, 14, 21, 

and 28 DAT) and tissue treatment status (Treated, New Growth, and Composite).a,b 

      

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone PPV  

Enlist 1 859 109 65 90 88 67 67% 

Enlist 2 94 846 82 64 70 61 70% 

No 2,4-D 93 107 829 76 74 118 64% 

Unison 76 71 101 880 97 61 68% 

Weedar 59 60 65 62 799 78 71% 

Weedone 67 58 100 76 78 848 69% 

Sensitivity  69% 68% 67% 71% 66% 69% 68%† 

 

Hyperparameters: filt2.filter.nfeat= 324.4514; k= 4.020513 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Figures 

 

Figure 2.1 Chemical structures of 2,4-D and formulated salts (Unison, Weedar, Weedone, 

Enlist 1, and Enlist 2).a 

aAbbreviations: Unison, 2,4-D acid; Weedar, 2,4-D dimethylamine salt; Weedone, 2,4-D 

ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-D/glyphosate premixture 
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Figure 2.2 Nicolet 6700 FTIR optical spectrometer equipped with a liquid nitrogen-cooled 

MCT High-D detector, KBr beamsplitter, and Smart ARK accessory 
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Figure 2.3 Raw spectra (4000 to 650 cm-1) from cotton tissue treated with no 2,4-D, Unison, Weedar, Weedone, Enlist 1 or Enlist 

2, pooled over sample timing (0, 7, 14, 21, and 28 DAT) and treatment status (Treated, New Growth, and Composite).a 

aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D dimethylamine salt; Weedone, 2,4-D ethylhexyl 

ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-D/glyphosate premixture
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Figure 2.4 Raw spectra (4000 to 650 cm-1) from soybean tissue treated with no 2,4-D, Unison, Weedar, Weedone, Enlist 1 or Enlist 

2, pooled over sample timing (0, 7, 14, 21, and 28 DAT) and treatment status (Treated, New Growth, and Composite).a 

aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D dimethylamine salt; Weedone, 2,4-D ethylhexyl 

ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-D/glyphosate premixture



 

46 

 

Figure 2.5 Transformed spectra (4000 to 650 cm-1) from cotton tissue treated with no 2,4-D, Unison, Weedar, Weedone, Enlist 1 or 

Enlist 2, pooled over sample timing (0, 7, 14, 21, and 28 DAT) and treatment status (Treated, New Growth, and 

Composite).a,b 

aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D dimethylamine salt; Weedone, 2,4-D ethylhexyl 

ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-D/glyphosate premixture 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and smoothed and derived using the Savitzky-

Golay filter
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Figure 2.6 Transformed fingerprint (1800-800 cm-1) spectra from cotton tissue treated with no 2,4-D, Unison, Weedar, Weedone, 

Enlist 1 or Enlist 2, pooled over sample timing (0, 7, 14, 21, and 28 DAT) and treatment status (Treated, New Growth, 

and Composite).a,b 

aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D dimethylamine salt; Weedone, 2,4-D ethylhexyl 

ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-D/glyphosate premixture 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and smoothed and derived using the Savitzky-

Golay filter
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Figure 2.7 Transformed spectra (4000 to 650 cm-1) from soybean tissue treated with no 2,4-D, Unison, Weedar, Weedone, Enlist 1 

or Enlist 2, pooled over sample timing (0, 7, 14, 21, and 28 DAT) and treatment status (Treated, New Growth, and 

Composite).a,b 

aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D dimethylamine salt; Weedone, 2,4-D ethylhexyl 

ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-D/glyphosate premixture 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and smoothed and derived using the Savitzky-

Golay filter
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Figure 2.8 Transformed fingerprint (1800-800 cm-1) spectra from soybean tissue treated with no 2,4-D, Unison, Weedar, Weedone, 

Enlist 1 or Enlist 2, pooled over sample timing (0, 7, 14, 21, and 28 DAT) and treatment status (Treated, New Growth, 

and Composite).a,b 

aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D dimethylamine salt; Weedone, 2,4-D ethylhexyl 

ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-D/glyphosate premixture 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and smoothed and derived using the Savitzky-

Golay filter
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Figure 2.9 Comparison of supervised machine learning models using Tukey’s honest 

significance difference test with transformed cotton spectra pooled over sampling 

timing (0, 7, 14, 21, and 28 DAT) and treatment status (Treated, Composite, and 

New Growth).a,b 

aAbbreviations: knn, k-nearest neighbor; lda, principal component analysis-linear discriminant 

analysis; nbayes, Naïve Bayes; rf, Ranger; svm, support vector machine; xgb, XGBoost 
b Lowercase letters indicate significant differences between treatments based on Tukey’s honest 

significant difference (p < 0.05) 

  



 

51 

 

Figure 2.10 Comparison of supervised machine learning models using Tukey’s honest 

significance difference test with transformed soybean spectra pooled over 

sampling timing (0, 7, 14, 21, and 28 DAT) and treatment status (Treated, 

Composite, and New Growth).a,b 

aAbbreviations: knn, k-nearest neighbor; lda, principal component analysis-linear discriminant 

analysis; nbayes, Naïve Bayes; rf, Ranger; svm, support vector machine; xgb, XGBoost 
b Lowercase letters indicate significant differences between treatments based on Tukey’s honest 

significant difference (p < 0.05) 
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CHAPTER III 

THE INFLUENCE OF THE TIMING BETWEEN APPLICATION AND COLLECTION AND 

APPLICATION STATUS OF LEAF TISSUE IN 2,4-D CLASSIFICATION ACCURACY 

Introduction 

2,4-D was discovered by both British and American scientists in the 1940s and remained 

a secret due to World War II until its commercialization in 1945 (G. E. Peterson, 1967; M. A. 

Peterson et al., 2016). 2,4-D mimics phytohormones that control growth, called auxins, and is 

structurally similar to indole-3-acetic acid (IAA), the leading natural auxin (Song, 2014) (Figure 

3.1). Despite the longevity of 2,4-D, the exact mode of action is not entirely understood (Tu et 

al., 2001). According to the EPA, 2,4-D functions by causing unregulated cell division in 

vascular tissue by increasing the cell wall’s plasticity, increasing the biosynthesis of proteins, 

and increasing ethylene production (2,4-D Technical Fact Sheet, n.d.).  However, recent studies 

have brought insight into the mode of action of 2,4-D at the molecular level. Song (2017) 

determined that at low concentrations of auxin, Aux/IAA proteins, which are negative regulators 

of auxin-responsive genes (Mockaitis & Estelle, 2008; Tiwari et al., 2001), will bind to ARF, 

which then binds to auxin response elements and inhibit auxin response genes (Guilfoyle et al., 

2007). These auxin response genes play roles in plant development and have been differently 

expressed during abiotic and biotic stress, showing a connection between auxin and stress 

signaling pathways (Ghanashyam & Jain, 2009). At high concentrations of natural IAA, or when 

exposed to synthetic auxins, auxin will enter the cell and bind Aux/IAA proteins to F-box protein 



 

58 

TIR1, which acts as auxin receptors and mediates the degradation of Aux/IAA (Song, 2014). This 

will then free up ARF and cause the activation of auxin response genes (Tan et al., 2007). With 

the activation of auxin response genes, an overproduction of chemicals will occur, like ethylene, 

abscisic acid (ABA), reactive oxygen species, and a decreased production of nitric oxide (Song, 

2014). Ethylene is a plant hormone that mediates plant growth and development and adaptive 

responses to different stresses like drought, floods, and pathogen attacks (Chang, 2016). 

However, an overproduction of ethylene may produce herbicide-related responses like epinasty 

and senescence, and the production of ABA (Song, 2014). Abscisic acid is another plant 

hormone with roles in stress response and pathogen defense (Alazem & Lin, 2017), but an 

overproduction of ABA will lead to stomatal closure and plant death (Song, 2014). Lastly, 2,4-D 

application leads to an overproduction of reactive oxygen species, which could cause epinasty 

and senescence as well as activating responses against stress conditions (Pazmiño et al., 2011), 

and a reduction in nitric oxide, although the molecular mechanism of reduced nitric oxide by 2,4-

D is unknown (Song, 2014).  

The process of auxin overdose, like when a synthetic auxin herbicide is applied to a plant, 

occurs in three phases; stimulation, inhibition, and decay (Grossmann, 2010). In the stimulation 

phase, which occurs within the first hours of application, metabolic pathways activate, like the 

stimulation of ethylene biosynthesis, followed by unregulated growth and the build-up of 

abscisic acid (Grossmann, 2010). Following the stimulation phase, the inhibition phase occurs 

within 24 hours of application and contains the growth inhibition of roots and the shoot, 

decreased internode elongation, stomatal closure, and an overproduction of reactive oxygen 

species (Grossmann, 2010). Lastly, the decay phase occurs, characterized by chloroplast damage 

and chlorosis, destruction of the membrane and vascular system integrity, causing necrosis and 
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plant death (Grossmann, 2010). During 2,4-D OTM events, small concentrations of 2,4-D will 

move and damage susceptible crops, with even 1/300th of an applied rate of 2,4-D damaging 

grapes (Mohseni-Moghadam et al., 2016). As previously mentioned, OTM of 2,4-D produces 

similar visual symptomology in both soybeans and cotton, including leaf cupping and stunting, 

chlorosis, altered height, epinastic response in both the stem and petiole, and callus formation in 

the stems (Andersen et al., 2004; Buol et al., 2019; Egan et al., 2014; Marple et al., 2008a). 

These visual 2,4-D OTM symptomologies can occur within hours if the plants are proliferating 

or within a few days if the plants are growing more slowly (Brown et al., n.d.). Reid (2017) 

found differing accuracies of 2,4-D classification models, depending on the timing between 

treatment and application, with classification models constructed using samples collected 7 DAT 

and immediately after application, producing 90% accuracy. Buol (2019) concluded that 

developing various classification models based on the timing between treatment and collection 

could produce better accuracy than a pooled general model.  

2,4-D translocation and uptake in herbicide-tolerant (HT) crops like cotton and soybean 

have recently been examined. Skelton et al. (2017) conducted experiments comparing the 

translocation, uptake, and metabolism of 2,4-D in HT and non-HT soybeans. Skelton et al. 

(2017) found no significant difference in the amount or rate of uptake of 2,4-D in HT and non-

HT soybeans. Skelton et al. (2017) also examined if adjuvants (ADJ) and glyphosate influenced 

uptake in HT and non-HT soybeans. Treatments containing ADJ, including Enlist 2, had greater 

uptake of 2,4-D than treatments not containing ADJ, including 2,4-D + glyphosate. Enlist 2 had 

greater uptake compared to 2,4-D + glyphosate at 1 hour after application, but uptake was the 

same from 3 to 24 hours after application. Enlist 2 had a lower uptake than 2,4-D + ADJ and 2,4-

D + ADJ + glyphosate but a faster rate of uptake. A significant difference in the translocation of 
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radiolabeled 2,4-D was observed for the different soybean lines, with more radiolabeled 2,4-D 

remaining in the treated leaf in HT soybeans compared to non-HT soybeans. In both HT and 

non-HT soybean lines, a majority (>90%) of radiolabeled 2,4-D remained in the treated leaf from 

1 hour after application to 24 hours after application (Table 3.1). Skelton et al. (2017) also 

compared 2,4-D acid and 2,4-D-ethylhexyl ester uptake in HT soybeans. They found the amount 

of uptake to be equivalent for both formulations, but the rate of uptake of the ethylhexyl ester 

formulation to be much higher than the acid formulation at 1 and 3 hours after application but 

equivalent at 6 and 24 hours after application. Once again, less radiolabeled 2,4-D translocated 

out of treated leaves in HT soybeans than non-HT soybeans. Skelton et al. (2017) theorized that 

this difference could be physiologically connected to the detoxification of 2,4-D and the storage 

of metabolites in treated leaves of HT soybeans, while non-HT soybeans are not able to detoxify 

or sequester 2,4-D irreversibly. 

Perez et al. (2021) conducted experiments on the translocation and uptake of 2,4-D in HT 

chromosome substitution (CS) lines of cotton versus a susceptible parent cotton line (TM-1). The 

CS lines' uptake was 15-23%, while the TM-1 line produced an uptake of around 1% 24 hours 

after treatment. When examining the translocation of 2,4-D in these different cotton lines, the CS 

lines all produced a similar pattern, in which a vast majority of 2,4-D (>90%) remained in the 

treated leaf, while only 23% of the radiolabeled 2,4-D remained in the treated leaf in the TM-1 

line (Figure 3.2). The remaining 77% of the radiolabeled 2,4-D translocated above and below the 

treated leaf in TM-1 cotton, while only about 5% of 2,4-D left the treated leaf in CS cotton 

(Table 3.1). A greater amount of 2,4-D was transported below the treated leaf (42%) than above 

the treated leaf (35%) in the TM-1 line, while a majority of the CS lines had roughly the same 

amount of 2,4-D transported above and below the treated leaf (5%). When measuring the amount 
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of movement of 2,4-D every twelve hours for forty-eight hours using all four cotton lines tested, 

each line produced different results. In the CS-T04-15 line, 2,4-D movement into the tissue 

above the treated leaf increased between 12 and 24 hours and stagnated between 24 and 48 

hours. Regarding the movement of 2,4-D to below the treated leaf, there was no significant 

change in the movement of 2,4-D throughout the time interval. For CS-T07 and TM-1, 

radiolabeled 2,4-D slowly moved to tissue above and below the treated leaf at the same rate. 

Lastly, in the CS-B15sh line, the radiolabeled 2,4-D movement was similar to CS-T07 and TM-1 

for the first 24 hours, but movement from the treated leaf to above the treated leaf increased after 

24 hours. Perez et al. believed the differences in uptake from the CS lines and TM-1 might be 

caused by the cells at the treatment site dying quickly and influencing the movement of 2,4-D 

from the treated area. Perez et al. concluded that the small amount of radiolabeled 2,4-D 

translocation could be caused by the treated leaf sequestering 2,4-D and its derived metabolites.  

Previous classification models constructed by Reid (2017) and Buol (2019) were built 

using leaf tissue samples that were “damaged” and did not examine whether the application 

status of the “damaged” leaf samples would affect the accuracy of their classification models. 

However, recent research has shown that in HT soybeans and cotton, most of the radiolabeled 

2,4-D remains in the treated leaf and a minimal amount moved above or below the treated tissue 

(Perez et al., 2021; Skelton et al., 2017).  

Objective 

To ascertain the influence of leaf tissue treatment status and the timing between treatment 

and collection of leaf tissue samples in correctly classifying 2,4-D formulations, experiments 

were conducted utilizing KNN classification models and FTIR spectrometry of soybean and 

cotton tissue samples that were directly treated with, not directly treated with, or a combination 
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of both treated with and not directly treated with, various formulations of 2,4-D and collected at 

multiple sample timing periods. 

Methods and Materials 

Experimental Design, Treatments, and Data Sampling 

The same leaf tissue samples used in the previous chapter were used in this chapter. All 

experimental Design, treatment, and data sampling were the same. 

Sample Processing, Data Collection, and Data Preprocessing 

The same leaf tissue samples used in the previous chapter were used in this chapter. All 

sample processing, data collection, and Data preprocessing were the same. 

Data Analysis Using Machine Learning Algorithms 

The same leaf tissue samples used in the previous chapter were used in this chapter. Data 

analysis was conducted using the mlr3 package (Lang et al., 2019). Nested cross-validation with 

five outer loops with three repeats and five inner loops with three repeats were used to set the 

parameters, train, and test all the models. It then went through thirty tuning iterations, producing 

six thousand five hundred fifty models per machine learning algorithm. After creating a general 

pooled model in the previous chapter, showing the possibility of using machine learning 

algorithms and FTIR spectroscopy to classify 2,4-D formulations, multiple classification models 

were constructed using subsets of the data depending on the timing and treatment status of the 

tissue. Only the k-nearest neighbor algorithm was used in constructing these models, as it 

produced the highest accuracy in constructing the pooled general model. Before constructing the 

models, the subset function found in the base RStudio package was used to subset the data based 
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on leaf tissue sample timing and treatment status. Succeeding this sub-setting, multiple k-nearest 

neighbor models were constructed using these various filtered data frames. 

Comparing Machine Learning Models 

All machine learning models will produce a classification matrix containing the predicted 

formulation of 2,4-D versus the actual reference 2,4-D formulation, the sensitivity of all 

formulations, and the positive predictive for all formulations. Following the construction of all 

the classification models, the models were fit into a binomial generalized linear model using the 

stats package (R Core Team, 2020), mean separated and compared using Tukey’s Honest 

Significance Difference (HSD) test from the emmeans package (Length, 2022) with a 

significance level of 0.05 to determine if timing and treatment status influence the models' 

accuracy. Tukey HSD is used to determine the honest significant difference between two means 

using a studentized range and is a conservative test compared to other comparison methods 

(Abdi & Williams, 2010). For example, Tukey’s HSD has been used to compare multiple 

machine learning model's abilities to estimate the dry biomass weight of wood chip residues 

(Fuente et al., 2021) and in comparing machine learning models performances in assessing 

triggering factors for debris flow (Yonghong Zhang et al., 2019). 

Results and Discussion 

Cotton 

Two thousand four hundred forty-six cotton spectra were used in data analysis. Prior to 

feature selection, absorbance values for 1728 wavenumbers were collected, with 434 

wavenumbers being labeled as important and used in machine learning analysis. The general 
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pooled classification model, using all cotton tissue samples without subsampling, produced an 

overall accuracy of 80%, with all formulation sensitivities being above 75% (Table 3.2). 

Timing Model Comparisons 

One hundred ninety-two spectra resulting from tissue samples collected immediately 

following treatment were used to construct a 0 DAT classification model. The model performed 

best when identifying Weedone (85%) and performed worst when identifying Unison (64%), 

resulting in an overall accuracy of 76% (Table 3.3). A classification model built using tissue 

samples collected 7 days after initial treatment was used to construct a 7 DAT classification 

model with 567 spectra. This model produced an overall accuracy of 83% and achieved the worst 

accuracy in identifying Enlist 1 and the control (80%) and achieved the best accuracy in 

identifying Weedone (88%) (Table 3.4). A subset of 564 spectra produced using tissue samples 

collected 14 days after treatment was utilized to construct a 14 DAT classification model 

resulting in an overall accuracy of 88% (Table 3.5). Enlist 1 was best classified (91%), and 

Weedone resulted in the worst classification accuracy (85%) (Table 3.5). A 21 DAT 

classification model was built employing 561 spectra produced from tissue samples collected 21 

days after treatment. The classification model performed the best classifying the 

control (91%) and worst when classifying Enlist 1 (74%), resulting in an overall classification 

accuracy of 81% (Table 3.6). Lastly, 563 spectra from tissue samples collected 28 days after 

treatment were utilized to construct a 28 DAT classification model, resulting in an overall 

accuracy of 78%, with all formulation sensitivities being above 75% (Table 3.7).  
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Treatment Status Model Comparisons 

A total of 953 spectra produced by tissue samples directly treated with 2,4-D were used 

to construct a Treated classification model. This model produced an overall accuracy of 86%, 

performing worst when classifying Enlist 1 (84%) and best when classifying Weedar (89%) 

(Table 3.8). Seven hundred fifty-five cotton spectra were used to create the New Growth 

classification model, using tissue samples that grew post-treatment and were not directly treated 

with 2,4-D. This model performed best when classifying the control (93%) and worst when 

classifying Unison (80%) and resulted in an overall accuracy of 85% (Table 3.9). Finally, for the 

classification model built using a combination of tissue samples directly treated with 2,4-D and 

tissue samples that grew post-treatment and were not directly treated with 2,4-D, 739 spectra 

were used to construct the Composite classification model. The overall accuracy for the 

composite model is 79%, and the model classified Weedone with the highest accuracy (84%) and 

classified Enlist 1 with the lowest accuracy (74%) (Table 3.10).  

Timing and Treatment Status Model comparisons 

7 DAT Model Results 

A classification model constructed from 192 spectra produced by tissue samples collected 

7 days after treatment and directly treated with 2,4-D was used to construct a 7 DAT Treated 

classification model. The overall accuracy of the classification model was 83%, with the model 

best-classifying Weedone (90%) and inadequately classifying Enlist 2 (80%) (Table 3.11). A 

subset of 192 spectra collected from tissue samples that were collected 7 days after treatment and 

were a combination of tissue samples that were directly treated with 2,4-D and tissue samples 

that grew post-treatment was used to construct a 7 DAT Composite classification model. This 

model’s overall classification accuracy was 80%, and the model poorly identified the 



 

66 

control (63%) and best identified Weedone (90%) (Table 3.12). One hundred eighty-three 

spectra produced from tissue samples collected 7 days after treatment that grew post-treatment 

and were not directly treated with 2,4-D were used to construct a 7 DAT New Growth 

classification model. The model achieved the best classification accuracy when identifying the 

control (96%) and achieved the worst classification accuracy when identifying Unison and Enlist 

1 (80%), thus resulting in an overall accuracy of 87% (Table 3.13). 

14 DAT Model Results 

A subset of 188 spectra collected from tissue samples directly treated with 2,4-D and 

collected 14 days after treatment was used to construct a 14 DAT Treated classification model 

producing an overall accuracy of 96% (Table 3.14). This model performed best when classifying 

Weedone (100%) and worst when classifying Unison (90%) (Table 3.14). Next, a classification 

model was constructed using 188 spectra produced from tissue samples collected 14 days after 

treatment and a combination of tissue samples directly treated with 2,4-D and tissue samples that 

grew post-treatment and not directly treated with 2,4-D. This model, labeled as 14 DAT 

Composite classification model, resulted in an overall accuracy of 82% and best classified Enlist 

1 (88%) while poorly classifying Unison and the control (76%) (Table 3.15). Finally, Tissue 

samples were collected 14 days after treatment and grew post-treatment and were not directly 

applied with 2,4-D generated 188 spectra that were utilized to construct a 14 DAT New Growth 

classification model. This classification model resulted in an overall accuracy of 97% and 

perfectly classified the control and Unison (100%) and inadequately classified Weedar (93%) 

(Table 3.16). 
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21 DAT Model Results 

A subset of 189 spectra, generated from tissue samples collected 21 days after treatment 

and directly treated with 2,4-D, were used to create a 21 DAT Treated classification model 

producing an overall accuracy of 92%, with all formulation sensitivities being over 85% (Table 

3.17). A classification model using tissue samples collected 21 days after treatment and a 

combination of tissue directly treated with 2,4-D and tissue that grew post-treatment produced 

180 spectra that were used to construct a 21 DAT Composite classification model. This model 

resulted in an overall accuracy of 81% and performed best when classifying the 

control (90%) and worst when classifying Enlist 2 (67%) (Table 3.18). Finally, tissue samples 

collected 21 days after treatment that grew post-treatment of 2,4-D generated 192 spectra which 

were then used to construct a 21 DAT New Growth classification model. This model best 

classified the control (97%) and Weedar (93%) while poorly classifying Weedone (80%) and 

Enlist 1 (78%), resulting in an overall accuracy of 86% (Table 3.19). 

28 DAT Model Results 

A subset of 192 spectra generated from tissue samples collected 28 days after treatment 

and directly treated with 2,4-D was used to develop a 28 DAT Treated classification model. This 

model achieved an overall accuracy of 92% and best identified Unison (100%), Enlist 1 (100%), 

and Weedar (97%) while poorly identifying Weedone (81%) and Enlist 2 (83%) (Table 3.20). 

Next, a 28 Composite classification model was constructed using 179 spectra generated from 

tissue samples collected 28 days after treatment that were both directly treated with 2,4-D and 

grew post-treatment. This classification model best classified the control (91%) and poorly 

classified Enlist 1 (60%), resulting in an overall accuracy of 77% (Table 3.21). Lastly, Tissue 

samples collected 28 days after treatment that grew post-treatment produced 192 spectra were 
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used to construct a 28 DAT New Growth classification model. This classification model 

achieved an overall accuracy of 81% while best classifying the control (85%) and poorly 

classifying Weedar (59%) (Table 3.22). 

Model Comparison Results 

Using Tukey’s HSD, the various timing, treatment status, and general pooled models 

were compared. Regarding timing model comparison, the 14 DAT classification model was more 

accurate than all other models, including the pooled general model (Figure 3.3). These findings 

are similar to Reid (2017), in which the classification models using tissue samples collected 14 

and 28 DAT produced higher classification accuracies than other models using earlier collected 

tissue samples. For treatment status model comparison, the Treated classification and New 

Growth models were more accurate than the Composite classification and the general pooled 

model (Figure 3.4). Research conducted by Skelton (2017) and Perez (2021) displayed that for 

HT soybeans and cotton, a vast majority of 2,4-D remains in the treated leaf, at least for the first 

24 hours. This could explain why the treated model performed better than the pooled general 

model. However, Skelton (2017) and Perez (2021) did not observe 2,4-D in those crops past two 

days, so more 2,4-D could translocate after two days to tissue that grew after treatment, which 

could explain why the model built using new growth tissue also performed better than the pooled 

general model. Lastly, when comparing timing and treatment status models, five classification 

models were more accurate than the pooled overall general model, including the 7 DAT New 

Growth model, 14 DAT New Growth model, 14 DAT Treated model, 21 DAT Treated model, 

and 28 DAT Treated model, with the 14 DAT New Growth model and the 14 DAT Treated 

model producing the highest accuracies (Figure 3.5). Three out of the five models that produced 

higher accuracy than the pooled general model were models constructed using tissue samples 
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directly treated with 2,4-D. Once again, these results are more likely caused by a majority of the 

2,4-D remaining in the treated tissue rather than translocating to other plant areas. 

Soybean 

Two thousand four hundred forty-six cotton spectra were used in data analysis. Prior to 

feature selection, absorbance values for 1728 wavenumbers were collected, with 331 

wavenumbers being labeled as important and used in machine learning analysis. The general 

pooled classification model, using all cotton tissue samples without subsampling, produced an 

overall accuracy of 68%, with all formulation sensitivities being above 65% (Table 3.23). 

Timing Model Comparisons 

One hundred ninety-two spectra resulting from tissue samples collected immediately 

following treatment were used to construct a 0 DAT classification model. The model performed 

best when identifying Enlist 1 (88%) and performed worst when identifying Weedar (48%), 

resulting in an overall accuracy of 71% (Table 3.24). Five hundred sixty-seven spectra produced 

from tissue samples collected 7 days after initial treatment were used to construct a 7 DAT 

classification model. This model produced an overall accuracy of 69% and achieved the worst 

accuracy in identifying Enlist 1 (64%) and the best accuracy in identifying Unison (77%) (Table 

3.25). A subset of 564 spectra produced using tissue samples collected 14 days after treatment 

was utilized to construct a 14 DAT classification model resulting in an overall accuracy of 68% 

(Table 3.26). Unison resulted in the best classification accuracy (72%) and Enlist 2 resulted in 

the worst classification accuracy (65%) (Table 3.26). A classification model employing 561 

spectra created from tissue samples collected 21 days after treatment was used to build a 21 DAT 

classification model. The classification model performed best when classifying 
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Weedone (86%) and worst when classifying Enlist 2 and Weedar (72%), resulting in an overall 

classification accuracy of 77% (Table 3.27). Lastly, 563 spectra from tissue samples collected 28 

days after treatment were used to construct a 28 DAT classification model, resulting in an overall 

accuracy of 70%, with the model best classifying Weedar (82%) and poorly classifying the 

control (66%) (Table 3.28). 

Treatment Status Model Comparisons 

Nine hundred fifty-three spectra produced by tissue samples directly treated with 2,4-D 

were used to construct a Treated classification model. This model produced an overall accuracy 

of 80%, performing poorly when classifying Weedar (72%) and best when classifying Enlist 

2 (84%) (Table 3.29). Seven hundred fifty-five cotton spectra were used to create the New 

Growth classification model, using tissue samples that grew post-treatment and were not directly 

treated with 2,4-D. This model performed best when classifying Enlist 1 (81%) and worst when 

classifying the control (70%), resulting in an overall accuracy of 75% (Table 3.30). Finally, 

tissue samples directly treated with 2,4-D and tissue samples that grew post-treatment and were 

not directly treated with 2,4-D generated 739 spectra which were utilized to construct the 

Composite classification model. The overall accuracy for the composite model was 74%, with 

the model classifying Enlist 1 with the highest accuracy (86%) and poorly classifying the control 

(69%) (Table 3.31).  

Timing and Treatment Status Model comparisons 

7 DAT Model Results 

A classification model constructed from 192 spectra produced by tissue samples collected 

7 days after treatment and directly treated with 2,4-D was used to construct a 7 DAT Treated 
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classification model. The overall accuracy of the classification model was 79%, with the model 

best-classifying Unison (94%) and poorly classifying Weedar (64%) (Table 3.32). A subset of 

192 spectra manufactured from tissue samples collected 7 days after treatment and were a 

combination of tissue samples that were directly treated with 2,4-D and tissue samples that grew 

post-treatment were used to construct a 7 DAT Composite classification model. This model’s 

overall classification accuracy was also 79%, and the model poorly identified the control and 

Weedone (74%) while correctly identifying Enlist 1 (89%) and Unison (88%) best (Table 

3.33). Tissue samples collected 7 days after treatment that grew post-treatment and were not 

directly treated with 2,4-D yielded 183 spectra which were used to construct a 7 DAT New 

Growth classification model. The model achieved the best classification accuracy when 

identifying Weedone (81%) and Enlist 1 (80%) and achieved the worst classification accuracy 

when identifying Enlist 2 (66%), resulting in an overall accuracy of 74% (Table 3.34). 

14 DAT Model Results 

A subset of 188 spectra induced from tissue samples directly treated with 2,4-D and 

collected 14 days after treatment was utilized to assemble a 14 DAT Treated classification model 

producing an overall accuracy of 83% (Table 3.35). This model performed best when classifying 

Weedone and Enlist 1 (89%) and worst when classifying Enlist 2 (76%) (Table 3.35). Next, a 

classification model was erected using 188 spectra produced from tissue samples collected 14 

days after treatment and a combination of tissue samples directly treated with 2,4-D and tissue 

samples that grew post-treatment and not directly treated with 2,4-D. This model, labeled as 14 

DAT Composite classification model, resulted in an overall accuracy of 72% and best classified 

the control (86%) while poorly classifying Unison (59%) (Table 3.36). Lastly, tissue samples 

harvested 14 days after treatment and were not directly applied with 2,4-D generated 188 spectra 
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and were utilized to construct a 14 DAT New Growth classification model. This classification 

model resulted in an overall accuracy of 74% and best classified the control (82%) and poorly 

classified Weedone (63%) (Table 3.37). 

21 DAT Model Results 

A subset of 189 spectra, generated from tissue samples that were collected 21 days after 

treatment and directly treated with 2,4-D, were used to assemble a 21 DAT Treated classification 

model producing an overall accuracy of 89%, with the model best classifying Enlist 2 (97%) and 

inadequately classifying Enlist 1 (80%) (Table 3.38). A classification model using 180 spectra 

produced via tissue samples harvested 21 days after treatment and containing tissue directly 

treated with 2,4-D and tissue that grew post-treatment were utilized to build a 21 DAT 

Composite classification model. This model resulted in an overall accuracy of 82% and 

performed best when classifying Unison (92%) and worst when classifying Enlist 2 and 

Weedar (77%) (Table 3.39). Tissue samples collected 21 days after treatment that grew post-

treatment of 2,4-D generated 192 spectra were used to construct a 21 DAT New Growth 

classification model. This model best classified Enlist 1 (89%) and Weedar (88%) while poorly 

classifying Enlist 2 (75%) and the control (76%), resulting in an overall accuracy of 80% (Table 

3.40). 

28 DAT Model Results 

A subset of 192 spectra generated from tissue samples collected 28 days after treatment 

that were directly treated with 2,4-D was used to develop a 28 DAT Treated classification model. 

This model achieved an overall accuracy of 92% and best identified Weedar (100%) and 

Unison (94%), with all formulation sensitivities being at or above 90% (Table 3.41). Next, a 28 
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Composite classification model was assembled employing 179 spectra generated from tissue 

samples collected 28 days after treatment that were both directly treated with 2,4-D and grew 

post-treatment. This classification model best classified Enlist 1 (83%) and poorly classified the 

control (62%), resulting in an overall accuracy of 76% (Table 3.42). Lastly, Tissue samples 

harvested 28 days after treatment that grew post-treatment produced 192 spectra which were 

used to build a 28 DAT New Growth classification model. This classification model achieved an 

overall accuracy of 79% while best classifying Weedar (89%) and poorly classifying the 

control (69%) (Table 3.43). 

Model Comparison Results 

Using Tukey’s HSD, the various timing, treatment status, and general pooled models 

were compared. Regarding timing model comparison, the 21 DAT classification model was more 

accurate than all other models, including the pooled general model (Figure 3.6). Unfortunately, 

Reid (2017) did not harvest samples 21 DAT, so a comparison cannot be made. For the treatment 

status model comparison, the Treated classification model was more accurate than all other 

treatment status models, including the general model (Figure 3.7). Research conducted by 

Skelton (2017) and Perez (2021) showed that for HT soybeans and cotton, a vast majority of 2,4-

D remains in the treated leaf, at least for the first 24 hours. This could explain why the treated 

model performed better than all other treatment status models. In addition, the model assembled 

using treated cotton tissue also performed better than the pooled general model and composite 

model, similar to the soybean results. Lastly, when comparing timing and treatment status 

models, all the classification models were more accurate than the pooled overall general model, 

except for the 14 DAT composite model, 14 DAT New Growth model, and 7 DAT New Growth 

model, with the 21 DAT Treated and 28 DAT Treated models producing the highest overall 
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accuracies (Figure 3.8). While most classification models produced higher accuracy than the 

pooled general model, the models with the highest overall accuracy were constructed with tissue 

directly treated with 2,4-D. These results could be caused by a majority of the 2,4-D remaining 

in the treated tissue rather than translocating to other plant areas. However, more studies on 2,4-

D translocation in HT crops must be completed for a definitive cause. 

Conclusions and Regulatory Implications 

As previously stated, OTM drift events are more than likely going to increase with the 

mass adoption of the Enlist weed control systems and the increase in 2,4-D application, 

particularly off-labeled 2,4-D formulations that are generally cheaper than labeled 2,4-D 

formulations but much more volatile. These OTM drift events can decrease yields depending on 

growth stage, the amount of herbicide that drifted, and the number of times that an OTM drift 

event occurred (Everitt & Keeling, 2009; Marple et al., 2008b; Oakley, 2021). The general 

pooled model constructed in the previous displays how effective FTIR spectroscopy and machine 

learning algorithms could be in construction classification models to identify 2,4-D formulations. 

With the various classification models constructed, farmers and regulators can collect the most 

optimized leaf tissue samples for greater accuracy than other models. In addition, with a majority 

of timing and treatment status models producing higher accuracies than the general pooled 

model, the timing between treatment and harvest and the treatment status of the leaf tissue both 

influence the accuracy of a 2,4-D formulation classification model. These findings concur 

with Buol (2019), who theorized that producing multiple classification models based on timing 

would produce high accuracies than an overall model and better classify 2,4-D formulations.  

Similar to the general pooled models constructed in the previous chapter, these models 

only used one year and one location's worth of data. More research is needed to evaluate for a 
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possible yearly or location interaction. More samples could also be utilized to validate the 

accuracy of these models, as no validation was conducted for the timing and treatment status 

models. Lastly, this experiment could also be reproduced on a smaller scale to precisely monitor 

which leaf tissue was applied with herbicide. It could also be reproduced with treatments 

involving 2,4-D formulations without the active ingredient to determine whether the models use 

the active ingredient or adjuvant when classifying 2,4-D formulations. 

 When investigating a possible 2,4-D OTM event and attempting to achieve the most 

optimal results, regulators and investigators should collect tissue 21 & 28 days after treatment in 

soybean and 14 days after treatment in cotton, from petioles at the bottom of the plant and from 

multiple individuals to avoid collecting tissue samples with different treatment statuses for both 

soybeans and cotton. With this new information, 2,4-D formulations can be identified accurately 

and coupled with previous models constructed to determine which 2,4-D formulation caused a 

specific 2,4-D OTM drift event, sales receipts, and application records, 2,4-D OTM drift events 

can be better monitored and investigated. 
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Tables 

Table 3.1 Translocation of 14C material from whole plant assay in Enlist and non-transgenic 

(NT) soybean lines.a 

 
 Hours after application 

 1 3 6 24 

Soybean line Plant portion % 14C-material in plant portion 

NT Treated leaf 99.5 c 98.8 c 96.4 d 93.0 d 

 above 0.2 0.8 2.5 3.6 

 below 0.3 0.4 1.0 3.5 

Enlist Treated leaf 99.6 c 99.3 c 98.9 c 98.3 c 

 above 0.1 0.2 0.4 0.6 

 below 0.3 0.4 0.6 1.2 

 

 aSignificant differences were determined between soybean lines in the amount 14C-material 

remaining in the treated leaf (p = <0.0001), while no significant differences were found in either 

soybean line between amounts of 14C found above or below the treated leaf (p =0.56). 
14C-material is expressed as a percentage of 2,4-D uptake. Lowercase letters indicate significant 

differences between treatments based on Tukey’s honest significant difference (p < 0.05) 

 

Adapted with permission from Skelton, J. J., Simpson, D. M., Peterson, M. A., & Riechers, D. E. 

(2017). Biokinetic Analysis and Metabolic Fate of 2,4-D in 2,4-D-Resistant Soybean (Glycine 

max). Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/acs.jafc.7b00796 . 

Copyright 2017 American Chemical Society 
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Table 3.2 Confusion matrix generated from the classification model using KNN and 

transformed cotton spectra produced from tissue treated with No 2,4-D, Unison, 

Weedar, Weedone, Enlist 1, and Enlist 2 pooled over sampling timing (0, 7, 14, 21, 

and 28 DAT) and tissue treatment status (Treated, New Growth, and Composite).a,b 

   

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone PPV 

Enlist 1 886 46 47 70 50 65 76% 

Enlist 2 64 1017 25 46 43 66 81% 

No 2,4-D 47 34 1026 54 35 19 84% 

Unison 80 37 60 987 68 37 78% 

Weedar 50 44 32 34 975 57 82% 

Weedone 49 70 34 42 41 1004 81% 

Sensitivity 75% 81% 84% 80% 80% 80% 80%† 

 

Hyperparameters: filt2.filter.nfeat= 426.8003; k= 5.031281 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Table 3.3 Confusion matrix generated from the classification model using KNN and 

transformed cotton spectra produced from tissue collected at 0 DAT and treated 

with No 2,4-D, Unison, Weedar, Weedone, Enlist 1, and Enlist 2 pooled over 

tissue treatment status (Treated, New Growth, and Composite).a,b 

      

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone PPV  

Enlist 1 68 5 5 6 3 1 77% 

Enlist 2 5 78 0 5 13 0 77% 

No 2,4-D 1 0 81 4 0 0 94% 

Unison 16 2 4 61 7 3 66% 

Weedar 6 9 3 8 68 10 65% 

Weedone 0 2 3 12 5 82 79% 

 Sensitivity 71% 81% 84% 64% 71% 85% 76%† 

 

Hyperparameters: filt2.filter.nfeat= 353.9535; k= 2.368775 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Table 3.4 Confusion matrix generated from the classification model using KNN and 

transformed cotton spectra produced from tissue collected at 7 DAT and treated 

with No 2,4-D, Unison, Weedar, Weedone, Enlist 1, and Enlist 2 pooled over 

tissue treatment status (Treated, New Growth, and Composite).a,b 

      

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone  PPV 

Enlist 1 229 8 12 13 3 7 84% 

Enlist 2 13 234 12 3 5 18 82% 

No 2,4-D 10 4 227 14 8 3 85% 

Unison 10 17 13 239 24 4 78% 

Weedar 15 7 11 11 224 3 83% 

Weedone 11 18 10 5 3 253 84% 

Sensitivity  80% 81% 80% 84% 84% 88% 83%† 

 

Hyperparameters: filt2.filter.nfeat= 421.5464; k= 1.61777 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value  
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Table 3.5 Confusion matrix generated from the classification model using KNN and 

transformed cotton spectra produced from tissue collected at 14 DAT and treated 

with No 2,4-D, Unison, Weedar, Weedone, Enlist 1, and Enlist 2 pooled over 

tissue treatment status (Treated, New Growth, and Composite).a,b 

      

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone PPV  

Enlist 1 230 4 11 7 8 8 86% 

Enlist 2 3 258 0 9 8 24 85% 

No 2,4-D 5 2 249 11 9 4 89% 

Unison 6 6 17 256 4 4 87% 

Weedar 6 4 8 5 255 4 90% 

Weedone 2 14 0 0 7 244 91% 

Sensitivity  91% 90% 87% 89% 88% 85% 88%† 

 

Hyperparameters: filt2.filter.nfeat= 421.8581; k= 1.550807 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Table 3.6 Confusion matrix generated from the classification model using KNN and 

transformed cotton spectra produced from tissue collected at 21 DAT and treated 

with No 2,4-D, Unison, Weedar, Weedone, Enlist 1, and Enlist 2 pooled over 

tissue treatment status (Treated, New Growth, and Composite).a,b 

      

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone  PPV 

Enlist 1 195 20 12 6 6 23 74% 

Enlist 2 20 225 1 12 10 9 81% 

No 2,4-D 11 2 258 6 6 8 89% 

Unison 13 10 6 236 9 17 81% 

Weedar 6 13 7 0 230 8 87% 

Weedone 19 18 1 28 6 226 76% 

 Sensitivity 74% 78% 91% 82% 86% 78% 81%† 

 

Hyperparameters: filt2.filter.nfeat= 261.7887; k= 3.748688 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Table 3.7 Confusion matrix generated from the classification model using KNN and 

transformed cotton spectra produced from tissue collected at 28 DAT and treated 

with No 2,4-D, Unison, Weedar, Weedone, Enlist 1, and Enlist 2 pooled over 

tissue treatment status (Treated, New Growth, and Composite).a,b 

      

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone  PPV 

Enlist 1 215 12 6 34 10 17 73% 

Enlist 2 12 225 11 8 6 6 84% 

No 2,4-D 0 16 219 0 18 10 83% 

Unison 37 8 13 217 28 11 69% 

Weedar 6 8 12 9 220 15 81% 

Weedone 6 19 12 8 9 226 81% 

Sensitivity  78% 78% 80% 79% 76% 79% 78%† 

 

Hyperparameters: filt2.filter.nfeat= 358.0201; k= 5.32356 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Table 3.8 Confusion matrix generated from the classification model using KNN and 

transformed cotton spectra produced from tissue directly treated with No 2,4-D, 

Unison, Weedar, Weedone, Enlist 1, and Enlist 2 pooled over sampling timing (0, 

7, 14, 21, and 28 DAT).a,b 

      

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone PPV  

Enlist 1 385 18 12 5 10 14 87% 

Enlist 2 13 411 11 10 9 16 87% 

No 2,4-D 9 9 418 25 13 4 87% 

Unison 26 15 16 413 11 13 84% 

Weedar 20 9 14 11 428 19 85% 

Weedone 6 18 9 16 9 414 88% 

Sensitivity  84% 86% 87% 86% 89% 86% 86%† 

 

Hyperparameters: filt2.filter.nfeat= 316.6248; k= 4.372543 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Table 3.9 Confusion matrix generated from the classification model using KNN and 

transformed cotton spectra produced from tissue that grew post-treatment of No 

2,4-D, Unison, Weedar, Weedone, Enlist 1, and Enlist 2 pooled over sampling 

timing (0, 7, 14, 21, and 28 DAT).a,b 

      

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone   

Enlist 1 306 11 8 14 10 21 83% 

Enlist 2 23 332 4 12 6 21 83% 

No 2,4-D 11 11 357 12 0 5 90% 

Unison 13 8 7 305 28 11 82% 

Weedar 5 6 4 21 311 5 88% 

Weedone 14 16 4 17 5 321 85% 

  82% 86% 93% 80% 86% 84% 85%† 

 

Hyperparameters: filt2.filter.nfeat= 205.0934; k= 2.54763 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Table 3.10 Confusion matrix generated from the classification model using KNN and 

transformed cotton spectra produced from tissue both directly treated with and 

grew post-treatment of No 2,4-D, Unison, Weedar, Weedone, Enlist 1, and Enlist 2 

pooled over sampling timing (0, 7, 14, 21, and 28 DAT).a,b 

      

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone PPV  

Enlist 1 256 21 16 23 17 10 75% 

Enlist 2 23 308 11 19 16 23 77% 

No 2,4-D 15 3 293 13 34 7 80% 

Unison 28 22 15 298 10 10 78% 

Weedar 13 12 13 11 280 10 83% 

Weedone 10 18 12 8 15 324 84% 

Sensitivity  74% 80% 81% 80% 75% 84% 79%† 

 

Hyperparameters: filt2.filter.nfeat= 210.1004; k= 2.64406 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Table 3.11 Confusion matrix generated from the classification model using KNN and 

transformed cotton spectra produced from tissue directly treated with No 2,4-D, 

Unison, Weedar, Weedone, Enlist 1, and Enlist 2 and collected 7 DAT.a,b 

      

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone PPV  

Enlist 1 79 1 2 2 4 0 90% 

Enlist 2 1 77 6 5 2 5 80% 

No 2,4-D 4 5 80 4 1 1 84% 

Unison 3 6 8 80 3 2 78% 

Weedar 9 5 0 2 78 2 81% 

Weedone 0 2 0 3 8 86 87% 

Sensitivity  82% 80% 83% 83% 81% 90% 83%† 

 

Hyperparameters: filt2.filter.nfeat= 414.2801; k= 3.063691 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Table 3.12 Confusion matrix generated from the classification model using KNN and 

transformed cotton spectra produced from tissue both directly treated with and 

grew post-treatment of No 2,4-D, Unison, Weedar, Weedone, Enlist 1, and Enlist 2 

and collected 7 DAT.a,b 

      

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone  PPV 

Enlist 1 68 3 8 11 2 0 74% 

Enlist 2 0 81 4 2 1 5 87% 

No 2,4-D 7 3 59 3 3 2 77% 

Unison 18 5 6 78 6 0 69% 

Weedar 3 2 9 1 87 3 83% 

Weedone 0 2 7 1 0 86 90% 

Sensitivity  71% 84% 63% 81% 88% 90% 80%† 

 

Hyperparameters: filt2.filter.nfeat= 179.2818; k= 2.723594 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value  
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Table 3.13 Confusion matrix generated from the classification model using KNN and 

transformed cotton spectra produced from tissue that grew post-treatment of No 

2,4-D, Unison, Weedar, Weedone, Enlist 1, and Enlist 2 and collected 7 DAT.a,b 

      

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone PPV  

Enlist 1 77 0 0 3 0 6 90% 

Enlist 2 9 85 0 1 3 3 84% 

No 2,4-D 0 0 92 9 0 1 90% 

Unison 3 7 4 74 6 0 79% 

Weedar 4 0 0 4 63 2 86% 

Weedone 3 4 0 2 0 84 90% 

Sensitivity  80% 89% 96% 80% 88% 88% 87%† 

 

Hyperparameters: filt2.filter.nfeat= 261.4763; k= 3.492143 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Table 3.14 Confusion matrix generated from the classification model using KNN and 

transformed cotton spectra produced from tissue directly treated with No 2,4-D, 

Unison, Weedar, Weedone, Enlist 1, and Enlist 2 and collected 14 DAT.a,b 

      

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone  PPV 

Enlist 1 83 0 0 0 0 0 100% 

Enlist 2 0 90 0 4 2 0 94% 

No 2,4-D 0 0 94 0 2 0 98% 

Unison 0 2 0 86 0 0 98% 

Weedar 0 4 2 5 92 0 89% 

Weedone 1 0 0 1 0 96 98% 

 Sensitivity 99% 94% 98% 90% 96% 100% 96%† 

 

Hyperparameters: filt2.filter.nfeat= 374.7596; k= 1.775486 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Table 3.15 Confusion matrix generated from the classification model using KNN and 

transformed cotton spectra produced from tissue both directly treated with and 

grew post-treatment of No 2,4-D, Unison, Weedar, Weedone, Enlist 1, and Enlist 2 

and collected 14 DAT.a,b 

      

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone PPV  

Enlist 1 74 0 5 0 3 2 88% 

Enlist 2 4 82 0 6 3 10 78% 

No 2,4-D 1 0 71 10 5 0 82% 

Unison 0 5 13 73 2 0 78% 

Weedar 3 1 4 7 86 6 80% 

Weedone 2 8 0 0 0 78 89% 

Sensitivity  88% 85% 76% 76% 87% 81% 82%† 

 

Hyperparameters: filt2.filter.nfeat= 168.1977; k= 3.945832 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Table 3.16 Confusion matrix generated from the classification model using KNN and 

transformed cotton spectra produced from tissue that grew post-treatment of No 

2,4-D, Unison, Weedar, Weedone, Enlist 1, and Enlist 2 and collected 14 DAT.a,b 

      

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone PPV  

Enlist 1 83 0 0 0 1 1 98% 

Enlist 2 1 90 0 0 0 3 96% 

No 2,4-D 0 0 96 0 0 0 100% 

Unison 0 0 0 96 3 0 97% 

Weedar 0 0 0 0 89 0 100% 

Weedone 0 6 0 0 3 92 91% 

Sensitivity  99% 94% 100% 100% 93% 96% 97%† 

 

Hyperparameters: filt2.filter.nfeat= 175.8271; k= 2.450246 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Table 3.17 Confusion matrix generated from the classification model using KNN and 

transformed cotton spectra produced from tissue directly treated with No 2,4-D, 

Unison, Weedar, Weedone, Enlist 1, and Enlist 2 and collected 21 DAT.a,b 

      

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone PPV  

Enlist 1 81 8 3 1 2 3 83% 

Enlist 2 0 85 1 0 0 3 96% 

No 2,4-D 3 1 85 4 3 0 89% 

Unison 0 2 0 91 0 0 98% 

Weedar 0 0 4 0 91 4 92% 

Weedone 3 0 3 0 0 86 93% 

Sensitivity  93% 89% 89% 95% 95% 90% 92%† 

 

Hyperparameters: filt2.filter.nfeat= 252.8226; k= 3.926834 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Table 3.18 Confusion matrix generated from the classification model using KNN and 

transformed cotton spectra produced from tissue both directly treated with and 

grew post-treatment of No 2,4-D, Unison, Weedar, Weedone, Enlist 1, and Enlist 2 

and collected 21 DAT.a,b 

      

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone  PPV 

Enlist 1 64 12 3 1 0 4 76% 

Enlist 2 13 64 3 5 1 2 73% 

No 2,4-D 0 0 84 0 3 0 97% 

Unison 0 10 2 81 10 10 72% 

Weedar 2 8 1 3 61 1 80% 

Weedone 2 2 0 6 0 82 89% 

 Sensitivity 79% 67% 90% 84% 81% 83% 81%† 

 

Hyperparameters: filt2.filter.nfeat= 348.6883; k= 1.377049 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Table 3.19 Confusion matrix generated from the classification model using KNN and 

transformed cotton spectra produced from tissue that grew post-treatment of No 

2,4-D, Unison, Weedar, Weedone, Enlist 1, and Enlist 2 and collected 21 DAT.a,b 

      

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone PPV  

Enlist 1 75 5 1 1 6 7 79% 

Enlist 2 0 81 0 3 0 2 94% 

No 2,4-D 0 0 93 3 0 0 97% 

Unison 1 3 2 78 0 7 86% 

Weedar 4 1 0 0 89 3 92% 

Weedone 16 6 0 11 1 77 69% 

Sensitivity  78% 84% 97% 81% 93% 80% 86%† 

 

Hyperparameters: filt2.filter.nfeat= 234.7751; k= 4.999414 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Table 3.20 Confusion matrix generated from the classification model using KNN and 

transformed cotton spectra produced from tissue directly treated with No 2,4-D, 

Unison, Weedar, Weedone, Enlist 1, and Enlist 2 and collected 28 DAT.a,b 

      

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone PPV  

Enlist 1 96 0 3 0 0 3 94% 

Enlist 2 0 80 3 0 0 5 91% 

No 2,4-D 0 5 86 0 3 0 91% 

Unison 0 0 1 96 0 2 97% 

Weedar 0 1 3 0 93 8 89% 

Weedone 0 10 0 0 0 78 89% 

 Sensitivity 100% 83% 90% 100% 97% 81% 92%† 

 

Hyperparameters: filt2.filter.nfeat= 415.3922; k= 5.491673 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Table 3.21 Confusion matrix generated from the classification model using KNN and 

transformed cotton spectra produced from tissue both directly treated with and 

grew post-treatment of No 2,4-D, Unison, Weedar, Weedone, Enlist 1, and Enlist 2 

and collected 28 DAT.a,b 

      

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone PPV  

Enlist 1 50 4 3 10 5 5 65% 

Enlist 2 7 80 0 0 4 1 87% 

No 2,4-D 0 0 74 0 10 0 88% 

Unison 23 8 3 70 9 7 58% 

Weedar 2 0 0 3 65 3 89% 

Weedone 2 4 1 1 6 77 85% 

Sensitivity  60% 83% 91% 83% 66% 83% 77%† 

 

Hyperparameters: filt2.filter.nfeat= 210.4421; k= 2.281379 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Table 3.22 Confusion matrix generated from the classification model using KNN and 

transformed cotton spectra produced from tissue that grew post-treatment of No 

2,4-D, Unison, Weedar, Weedone, Enlist 1, and Enlist 2 and collected 28 DAT.a,b 

      

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone PPV  

Enlist 1 80 4 0 4 5 12 76% 

Enlist 2 7 79 6 1 3 0 82% 

No 2,4-D 0 10 82 1 0 0 88% 

Unison 4 0 3 77 17 3 74% 

Weedar 3 3 4 10 71 1 77% 

Weedone 2 0 1 3 0 80 93% 

Sensitivity  83% 82% 85% 80% 74% 83% 81%† 

 

Hyperparameters: filt2.filter.nfeat= 357.5847; k= 2.685309 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Table 3.23 Confusion matrix generated from the classification model using KNN and 

transformed soybean spectra produced from tissue treated with No 2,4-D, Unison, 

Weedar, Weedone, Enlist 1, and Enlist 2 pooled over sampling timing (0, 7, 14, 21, 

and 28 DAT) and tissue treatment status (Treated, New Growth, and Composite).a,b 

   

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone PPV 

Enlist 1 851 107 71 76 82 73 68% 

Enlist 2 93 826 93 75 72 65 67% 

No 2,4-D 100 103 830 85 63 100 65% 

Unison 81 73 101 883 99 64 68% 

Weedar 66 72 57 68 809 85 70% 

Weedone 57 70 90 61 81 846 70% 

Sensitivity 68% 66% 67% 71% 67% 69% 68%† 

 

Hyperparameters: filt2.filter.nfeat= 307.4615; k= 4.810381 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Table 3.24 Confusion matrix generated from the classification model using KNN and 

transformed soybean spectra produced from tissue collected at 0 DAT and treated 

with No 2,4-D, Unison, Weedar, Weedone, Enlist 1, and Enlist 2 pooled over 

tissue treatment status (Treated, New Growth, and Composite).a,b 

      

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone PPV  

Enlist 1 84 0 12 4 17 1 71% 

Enlist 2 0 75 8 11 0 3 77% 

No 2,4-D 2 2 50 1 7 6 74% 

Unison 2 16 6 79 13 6 65% 

Weedar 7 3 9 1 46 4 66% 

Weedone 1 0 11 0 13 76 75% 

Sensitivity  88% 78% 52% 82% 48% 79% 71%† 

 

Hyperparameters: filt2.filter.nfeat= 214.7996; k= 2.465622 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Table 3.25 Confusion matrix generated from the classification model using KNN and 

transformed soybean spectra produced from tissue collected at 7 DAT and treated 

with No 2,4-D, Unison, Weedar, Weedone, Enlist 1, and Enlist 2 pooled over 

tissue treatment status (Treated, New Growth, and Composite).a,b 

      

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone PPV  

Enlist 1 200 30 11 12 28 18 67% 

Enlist 2 27 186 13 8 15 13 71% 

No 2,4-D 24 24 197 20 15 26 64% 

Unison 3 6 20 222 21 8 79% 

Weedar 19 24 21 17 197 24 65% 

Weedone 15 21 26 9 9 196 71% 

Sensitivity  69% 64% 68% 77% 69% 69% 69%† 

 

Hyperparameters: filt2.filter.nfeat= 235.2964; k= 3.732914 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Table 3.26 Confusion matrix generated from the classification model using KNN and 

transformed soybean spectra produced from tissue collected at 14 DAT and treated 

with No 2,4-D, Unison, Weedar, Weedone, Enlist 1, and Enlist 2 pooled over 

tissue treatment status (Treated, New Growth, and Composite).a,b 

      

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone PPV  

Enlist 1 204 43 20 22 21 15 63% 

Enlist 2 32 187 20 16 10 23 65% 

No 2,4-D 13 18 180 14 18 27 67% 

Unison 23 13 17 208 23 5 72% 

Weedar 8 13 14 21 204 19 73% 

Weedone 8 14 31 7 12 187 72% 

Sensitivity  71% 65% 64% 72% 71% 68% 68%† 

 

Hyperparameters: filt2.filter.nfeat= 292.8866; k= 4.183178 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Table 3.27 Confusion matrix generated from the classification model using KNN and 

transformed soybean spectra produced from tissue collected at 21 DAT and treated 

with No 2,4-D, Unison, Weedar, Weedone, Enlist 1, and Enlist 2 pooled over 

tissue treatment status (Treated, New Growth, and Composite).a,b 

      

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone PPV  

Enlist 1 225 18 10 12 8 3 82% 

Enlist 2 32 206 5 15 24 9 71% 

No 2,4-D 9 13 231 21 13 13 77% 

Unison 13 24 20 219 7 9 75% 

Weedar 8 17 6 6 179 6 81% 

Weedone 1 10 16 15 18 248 81% 

 Sensitivity 78% 72% 80% 76% 72% 86% 77%† 

 

Hyperparameters: filt2.filter.nfeat= 247.7708; k= 5.228313 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Table 3.28 Confusion matrix generated from the classification model using KNN and 

transformed soybean spectra produced from tissue collected at 28 DAT and treated 

with No 2,4-D, Unison, Weedar, Weedone, Enlist 1, and Enlist 2 pooled over 

tissue treatment status (Treated, New Growth, and Composite).a,b 

      

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone PPV  

Enlist 1 201 14 17 14 13 20 72% 

Enlist 2 24 193 29 13 14 8 69% 

No 2,4-D 16 42 189 10 6 29 65% 

Unison 11 15 27 200 13 18 70% 

Weedar 14 13 1 19 235 13 80% 

Weedone 22 11 25 32 7 200 67% 

 Sensitivity 70% 67% 66% 69% 82% 69% 70%† 

 

Hyperparameters: filt2.filter.nfeat= 275.2221; k= 2.435127 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Table 3.29 Confusion matrix generated from the classification model using KNN and 

transformed soybean spectra produced from tissue directly treated with No 2,4-D, 

Unison, Weedar, Weedone, Enlist 1, and Enlist 2 pooled over sampling timing (0, 

7, 14, 21, and 28 DAT).a,b 

      

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone PPV  

Enlist 1 378 30 23 25 40 8 75% 

Enlist 2 20 402 12 24 17 15 82% 

No 2,4-D 27 7 377 16 16 15 82% 

Unison 26 23 19 396 27 10 79% 

Weedar 17 7 18 11 340 40 79% 

Weedone 12 8 25 8 31 392 82% 

Sensitivity  79% 84% 80% 82% 72% 82% 80%† 

 

Hyperparameters: filt2.filter.nfeat= 318.1033; k= 2.954399 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Table 3.30 Confusion matrix generated from the classification model using KNN and 

transformed soybean spectra produced from tissue that grew post-treatment of No 

2,4-D, Unison, Weedar, Weedone, Enlist 1, and Enlist 2 pooled over sampling 

timing (0, 7, 14, 21, and 28 DAT).a,b 

      

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone PPV  

Enlist 1 311 23 18 16 17 9 79% 

Enlist 2 24 275 20 16 19 20 74% 

No 2,4-D 12 30 267 19 14 20 74% 

Unison 10 12 17 283 16 14 80% 

Weedar 18 21 20 21 280 15 75% 

Weedone 9 23 42 29 20 291 70% 

 Sensitivity 81% 72% 70% 74% 77% 79% 75%† 

 

Hyperparameters: filt2.filter.nfeat= 272.4868; k= 2.796651 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Table 3.31 Confusion matrix generated from the classification model using KNN and 

transformed soybean spectra produced from tissue both directly treated with and 

grew post-treatment of No 2,4-D, Unison, Weedar, Weedone, Enlist 1, and Enlist 2 

pooled over sampling timing (0, 7, 14, 21, and 28 DAT).a,b 

      

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone PPV  

Enlist 1 330 50 11 28 27 27 70% 

Enlist 2 21 281 14 8 10 12 81% 

No 2,4-D 1 14 266 33 26 21 74% 

Unison 9 9 42 287 15 17 76% 

Weedar 11 19 25 18 259 26 72% 

Weedone 12 17 26 10 32 281 74% 

Sensitivity  86% 72% 69% 75% 70% 73% 74%† 

 

Hyperparameters: filt2.filter.nfeat= 251.5531; k= 4.005087 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Table 3.32 Confusion matrix generated from the classification model using KNN and 

transformed soybean spectra produced from tissue directly treated with No 2,4-D, 

Unison, Weedar, Weedone, Enlist 1, and Enlist 2 and collected 7 DAT.a,b 

      

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone PPV  

Enlist 1 64 14 6 0 12 2 65% 

Enlist 2 6 79 5 0 5 3 81% 

No 2,4-D 9 2 80 0 7 5 78% 

Unison 6 1 0 90 4 3 87% 

Weedar 11 0 0 3 63 2 80% 

Weedone 0 0 5 3 8 81 84% 

Sensitivity  67% 82% 83% 94% 64% 84% 79%† 

 

Hyperparameters: filt2.filter.nfeat= 305.7559; k= 5.311139 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Table 3.33 Confusion matrix generated from the classification model using KNN and 

transformed soybean spectra produced from tissue both directly treated with and 

grew post-treatment of No 2,4-D, Unison, Weedar, Weedone, Enlist 1, and Enlist 2 

and collected 7 DAT.a,b 

      

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone PPV  

Enlist 1 85 4 0 0 3 7 86% 

Enlist 2 4 69 4 0 3 3 83% 

No 2,4-D 0 10 71 9 4 7 70% 

Unison 0 2 8 84 3 0 87% 

Weedar 5 9 7 0 77 8 73% 

Weedone 2 5 6 3 3 71 79% 

Sensitivity  89% 70% 74% 88% 83% 74% 79%† 

 

Hyperparameters: filt2.filter.nfeat= 316.0921; k= 4.982105 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Table 3.34 Confusion matrix generated from the classification model using KNN and 

transformed soybean spectra produced from tissue that grew post-treatment of No 

2,4-D, Unison, Weedar, Weedone, Enlist 1, and Enlist 2 and collected 7 DAT.a,b 

      

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone PPV  

Enlist 1 77 0 7 8 2 4 79% 

Enlist 2 2 63 8 1 1 0 84% 

No 2,4-D 9 18 68 3 4 8 62% 

Unison 3 4 2 68 7 0 81% 

Weedar 5 4 6 14 73 6 68% 

Weedone 0 7 5 2 6 75 79% 

Sensitivity  80% 66% 71% 71% 78% 81% 74%† 

 

Hyperparameters: filt2.filter.nfeat= 174.713; k= 5.187904 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Table 3.35 Confusion matrix generated from the classification model using KNN and 

transformed soybean spectra produced from tissue directly treated with No 2,4-D, 

Unison, Weedar, Weedone, Enlist 1, and Enlist 2 and collected 14 DAT.a,b 

      

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone  PPV 

Enlist 1 85 3 6 12 2 3 77% 

Enlist 2 0 73 0 3 1 4 90% 

No 2,4-D 0 2 79 0 6 0 91% 

Unison 11 2 0 77 6 1 79% 

Weedar 0 11 5 4 75 3 77% 

Weedone 0 5 0 0 6 85 89% 

Sensitivity  89% 76% 88% 80% 78% 89% 83%† 

 

Hyperparameters: filt2.filter.nfeat= 295.7347; k= 1.800445 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Table 3.36 Confusion matrix generated from the classification model using KNN and 

transformed soybean spectra produced from tissue both directly treated with and 

grew post-treatment of No 2,4-D, Unison, Weedar, Weedone, Enlist 1, and Enlist 2 

and collected 14 DAT.a,b 

      

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone PPV  

Enlist 1 66 23 6 13 16 9 50% 

Enlist 2 15 69 0 8 4 2 70% 

No 2,4-D 2 2 83 9 0 2 85% 

Unison 3 1 5 57 6 0 79% 

Weedar 4 0 0 9 69 10 75% 

Weedone 6 1 2 0 1 73 88% 

 Sensitivity 69% 72% 86% 59% 72% 76% 72%† 

 

Hyperparameters: filt2.filter.nfeat= 240.3397; k= 3.235399 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Table 3.37 Confusion matrix generated from the classification model using KNN and 

transformed soybean spectra produced from tissue that grew post-treatment of No 

2,4-D, Unison, Weedar, Weedone, Enlist 1, and Enlist 2 and collected 14 DAT.a,b 

      

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone  PPV 

Enlist 1 74 8 4 11 0 2 75% 

Enlist 2 14 69 3 5 5 9 66% 

No 2,4-D 8 9 68 0 6 7 69% 

Unison 0 7 2 79 0 2 88% 

Weedar 0 0 4 1 76 11 83% 

Weedone 0 3 15 0 9 53 66% 

Sensitivity  77% 72% 71% 82% 79% 63% 74%† 

 

Hyperparameters: filt2.filter.nfeat= 314.8957; k= 4.029961 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Table 3.38 Confusion matrix generated from the classification model using KNN and 

transformed soybean spectra produced from tissue directly treated with No 2,4-D, 

Unison, Weedar, Weedone, Enlist 1, and Enlist 2 and collected 21 DAT.a,b 

      

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone PPV  

Enlist 1 77 1 0 1 0 0 97% 

Enlist 2 7 90 0 0 3 1 89% 

No 2,4-D 1 0 85 9 0 0 89% 

Unison 8 0 11 81 1 0 80% 

Weedar 1 0 0 0 75 6 91% 

Weedone 2 2 0 5 5 89 86% 

 Sensitivity 80% 97% 89% 84% 89% 93% 89%† 

 

Hyperparameters: filt2.filter.nfeat= 249.2773; k= 4.08888 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Table 3.39 Confusion matrix generated from the classification model using KNN and 

transformed soybean spectra produced from tissue both directly treated with and 

grew post-treatment of No 2,4-D, Unison, Weedar, Weedone, Enlist 1, and Enlist 2 

and collected 21 DAT.a,b 

      

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone PPV  

Enlist 1 75 6 1 0 0 0 91% 

Enlist 2 15 76 3 2 1 3 76% 

No 2,4-D 3 3 77 0 9 3 81% 

Unison 0 1 2 88 0 0 97% 

Weedar 0 9 5 1 65 6 76% 

Weedone 3 4 8 5 9 84 74% 

Sensitivity  78% 77% 80% 92% 77% 88% 82%† 

 

Hyperparameters: filt2.filter.nfeat= 195.3071; k= 4.066186 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Table 3.40 Confusion matrix generated from the classification model using KNN and 

transformed soybean spectra produced from tissue that grew post-treatment of No 

2,4-D, Unison, Weedar, Weedone, Enlist 1, and Enlist 2 and collected 21 DAT.a,b 

      

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone PPV  

Enlist 1 85 8 2 1 4 0 85% 

Enlist 2 2 72 0 3 3 12 78% 

No 2,4-D 3 7 73 12 2 5 72% 

Unison 0 2 6 74 1 3 86% 

Weedar 6 2 3 0 71 0 87% 

Weedone 0 5 12 6 0 76 77% 

Sensitivity  89% 75% 76% 77% 88% 79% 80%† 

 

Hyperparameters: filt2.filter.nfeat= 204.5759; k= 3.212075 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Table 3.41 Confusion matrix generated from the classification model using KNN and 

transformed soybean spectra produced from tissue directly treated with No 2,4-D, 

Unison, Weedar, Weedone, Enlist 1, and Enlist 2 and collected 28 DAT.a,b 

      

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone  PPV 

Enlist 1 86 3 0 0 0 0 97% 

Enlist 2 5 86 0 0 0 1 93% 

No 2,4-D 0 0 86 2 0 1 97% 

Unison 5 4 3 90 0 0 88% 

Weedar 0 3 0 3 96 7 88% 

Weedone 0 0 7 1 0 87 92% 

Sensitivity  90% 90% 90% 94% 100% 91% 92%† 

 

Hyperparameters: filt2.filter.nfeat= 328.9369; k= 3.498013 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Table 3.42 Confusion matrix generated from the classification model using KNN and 

transformed soybean spectra produced from tissue both directly treated with and 

grew post-treatment of No 2,4-D, Unison, Weedar, Weedone, Enlist 1, and Enlist 2 

and collected 28 DAT.a,b 

      

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone PPV  

Enlist 1 80 3 1 0 6 4 85% 

Enlist 2 1 76 5 1 3 4 84% 

No 2,4-D 1 8 60 7 0 15 66% 

Unison 3 5 17 79 4 6 69% 

Weedar 8 0 2 5 77 4 80% 

Weedone 3 4 11 4 6 63 69% 

Sensitivity  83% 79% 62% 82% 80% 66% 76%† 

 

Hyperparameters: filt2.filter.nfeat= 315.2236; k= 4.820841 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Table 3.43 Confusion matrix generated from the classification model using KNN and 

transformed soybean spectra produced from tissue that grew post-treatment of No 

2,4-D, Unison, Weedar, Weedone, Enlist 1, and Enlist 2 and collected 28 DAT.a,b 

      

Prediction Enlist 1 Enlist 2 No 2,4-D Unison Weedar Weedone PPV  

Enlist 1 79 0 9 3 3 4 81% 

Enlist 2 4 73 13 0 2 4 76% 

No 2,4-D 7 12 66 4 2 5 69% 

Unison 2 0 1 75 4 5 86% 

Weedar 1 8 1 2 85 2 86% 

Weedone 3 3 6 12 0 76 76% 

 Sensitivity 82% 76% 69% 78% 89% 79% 79%† 

 

Hyperparameters: filt2.filter.nfeat= 255.4232; k= 3.141905 
aAbbreviations: No 2,4-D, non-treated control; Unison, 2,4-D acid; Weedar, 2,4-D 

dimethylamine salt; Weedone, 2,4-D ethylhexyl ester; Enlist 1, 2,4-D choline; Enlist 2, 2,4-

D/glyphosate premixture; PPV, positive predictive value 
bTransformed spectral data were scaled to a mean of zero and standard deviation of 1, and 

smoothed and derived using the Savitzky-Golay filter      
†Overall accuracy of the classification model 
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Figures 

 

Figure 3.1 Proposed molecular mechanism of 2,4-D.a,b 

aAbbreviations: IAA, Indole-3-acetic acid; Aux/IAA, Auxin/IAA active repressor protein 

complex; ARF, Auxin Response Factor; SCFTIR1, Skp-Cullin,-F-box TRANSPORT INHIBITOR 

RESISTANT1 complex 

 

Reprinted with permission from Song, Y. (2014). Insight into the mode of action of 2,4-

dichlorophenoxyacetic acid (2,4-D) as an herbicide. Journal of Integrative Plant Biology, 56(2), 

106–113. https://doi.org/10.1111/JIPB.12131. Copyright 2014 John Wiley and Sons. 
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Figure 3.2 Translocation of 14C-2,4-D on cotton seedlings of CS-B15sh (31-4), CS-T07 (206-

2), CS-T04-15 (301-8), and TM-1 at 24 hours after treatment 

Type of tissue: AT, above the treated leaf; BT, below the treated leaf; T, treated leaf. 

 

Reprinted with permission from Perez, L. M., Yue, Z., Saha, S., Dean, J. F. D., Jenkins, J. N., 

Stelly, D. M., & Tseng, T. M. (2021). Absorption and Translocation of [14c]2,4-

Dichlorophenoxyacetic Scid in Herbicide-tolerant Chromosome Substitution Lines of 

Gossypium Hirsutum L. Preprints. https://doi.org/10.20944/PREPRINTS202109.0395.V1 . 

Copyright 2021 Preprints. 
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Figure 3.3 Comparison of supervised machine learning models utilizing Tukey’s honest 

significance difference test with transformed cotton spectra pooled over sampling 

timing (0, 7, 14, 21, and 28 DAT).a,b 

aAbbreviations: DAT; days after treatment; 0 DAT; classification model built using tissue 

samples collected 0 DAT; 7 DAT, classification model built using tissue samples collected 7 

DAT; 14 DAT, classification model built using tissue samples collected 14 DAT; 21 DAT, 

classification model built using tissue samples collected 21 DAT; 28 DAT, classification model 

built using tissue samples collected 28 DAT; General, classification model built using all tissue 

samples collected. 
b Lowercase letters indicate significant differences between treatments based on Tukey’s honest 

significant difference (p < 0.05) 
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Figure 3.4 Comparison of supervised machine learning models utilizing Tukey’s honest 

significance difference test with transformed cotton spectra pooled over treatment 

status (Treated, New Growth, and Composite).a,b 

aAbbreviations: Composite; classification model built using tissue samples both directly treated 

with and which grew post-treatment of 2,4-D application; New, classification model built using 

tissue samples which grew post-treatment of 2,4-D application; Treated, classification model 

built using tissue samples directly treated with 2,4-D applications; General, classification model 

built using all tissue samples collected. 
b Lowercase letters indicate significant differences between treatments based on Tukey’s honest 

significant difference (p < 0.05) 
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Figure 3.5 Comparison of supervised machine learning models utilizing Tukey’s honest 

significance difference test with transformed cotton spectra pooled over sampling 

timing (0, 7, 14, 21, and 28 DAT) and treatment status (Treated, New Growth, and 

Composite).a,b 

aAbbreviations: 14 C; 14 composite classification model; 14 N, 14 DAT New Growth 

classification model; 14 T, 14 DAT Treated classification model; 21 C, 21 DAT Composite 

classification model; 21 N, 21 DAT New Growth classification model; 21 T, 21 DAT Treated 

classification model; 28 C, 28 DAT Composite classification model; 28 N, 28 New Growth 

classification model; 28 T, 28 DAT Treated classification model; 7 C, 7 DAT Composite 

classification model; 7 N, 7 DAT New Growth classification model; 7 T; 7 DAT Treated 

classification model; General; classification model built using all tissue samples collected. 
b Lowercase letters indicate significant differences between treatments based on Tukey’s honest 

significant difference (p < 0.05) 
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Figure 3.6 Comparison of supervised machine learning models utilizing Tukey’s honest 

significance difference test with transformed soybean spectra pooled over 

sampling timing (0, 7, 14, 21, and 28 DAT).a,b 

 aAbbreviations: DAT; days after treatment; 0 DAT; classification model built using tissue 

samples collected 0 DAT; 7 DAT, classification model built using tissue samples collected 7 

DAT; 14 DAT, classification model built using tissue samples collected 14 DAT; 21 DAT, 

classification model built using tissue samples collected 21 DAT; 28 DAT, classification model 

built using tissue samples collected 28 DAT; General, classification model built using all tissue 

samples collected. 
b Lowercase letters indicate significant differences between treatments based on Tukey’s honest 

significant difference (p < 0.05) 

 

 

 

 

 

 

 



 

125 

 

Figure 3.7 Comparison of supervised machine learning models utilizing Tukey’s honest 

significance difference test with transformed soybean spectra pooled over 

treatment status (Treated, New Growth, and Composite).a,b 

aAbbreviations: Composite; classification model built using tissue samples both directly treated 

with and which grew post-treatment of 2,4-D application; New, classification model built using 

tissue samples which grew post-treatment of 2,4-D application; Treated, classification model 

built using tissue samples directly treated with 2,4-D applications; General, classification model 

built using all tissue samples collected. 
b Lowercase letters indicate significant differences between treatments based on Tukey’s honest 

significant difference (p < 0.05) 
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Figure 3.8 Comparison of supervised machine leanring models utilizing Tukey’s honest 

significance difference test with transformed soybean spectra pooled over 

sampling timing (0, 7, 14, 21, and 28 DAT) and treatment status (Treated, New 

Growth, and Composite).a,b 

aAbbreviations: 14 C; 14 composite classification model; 14 N, 14 DAT New Growth 

classification model; 14 T, 14 DAT Treated classification model; 21 C, 21 DAT Composite 

classification model; 21 N, 21 DAT New Growth classification model; 21 T, 21 DAT Treated 

classification model; 28 C, 28 DAT Composite classification model; 28 N, 28 New Growth 

classification model; 28 T, 28 DAT Treated classification model; 7 C, 7 DAT Composite 

classification model; 7 N, 7 DAT New Growth classification model; 7 T; 7 DAT Treated 

classification model; General; classification model built using all tissue samples collected. 
b Lowercase letters indicate significant differences between treatments based on Tukey’s honest 

significant difference (p < 0.05) 
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