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ABSTRACT 

As the world pushes for ‘greener’ technologies and carbon neutrality, efforts have 

focused on creating novel ways to mitigate humankind’s carbon footprint. Carbon capture and 

storage (CCS) has become a prevalent technique that has proven to be an effective long-term 

method to safely relocate excess carbon dioxide (CO2) into subsurface formations. However, 

CCS is a newer technique which requires constant monitoring due to potential leakage pathways 

present in CO2 storage sites; therefore, a preventive approach to seal leakage pathways is 

recommended. This dissertation explores the potential of CO2-sensitive polyacrylamide (CO2-

SPAM) as a novel sealing agent for enhanced oil recovery (EOR) and CCS applications. This 

manuscript explores the strength and weaknesses of various CO2-triggered chemicals and selects 

the appropriate fit for subsurface in-situ sealing. Relevant literature shows that CO2-SPAM can 

significantly reduce permeability in porous media. Additionally, organically cross-linked 

polyacrylamide-based gels, of which CO2-SPAM is one, are thermally stable, resistant to low pH 

levels, highly injectable, and widely used in various industrial processes. These characteristics 

make CO2-SPAM a suitable candidate for in-situ sealing. Further studies were performed to 



 

 

comprehend the chemical mechanism, rheological behavior, and injection effects of CO2-SPAM 

into subsurface formations. Firstly, past literature knowledge and organic chemistry principals 

were used to develop the complete chemical breakdown of CO2-SPAM gel’s synthesis. 

Secondly, the effect of salt and polyacrylamide (PAM) concentrations on gelation time, gel 

strength and viscosity were tested through qualitative (Sydansk gel strength coding system) and 

quantitative methods (rheometer measurement). The results showed that high salinities increase 

gelation time and decrease gel strength and viscosity, while high PAM concentrations do the 

opposite. Lastly, the effects on geomechanical stresses caused by CO2-SPAM injection into the 

subsurface are also addressed by using the image well method for pore pressure estimation, and 

frictional faulting theory. The final results determined that the injection of aqueous CO2-SPAM 

would induce seismicity in normal faulting zones dipping at a large array of angles in the plane 

of failure. These findings are significant as they determine the potential of induced seismicity in 

the area of CCS, which in this case was the Raton basin. 
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CHAPTER I 

INTRODUCTION 

Impacts of Global Warming 

Global warming and ocean acidification are just a few of various environmental issues 

humankind has been facing for the past decades due to the continuous increase of greenhouse 

gases (GHGs) from anthropogenic sources. In 2019, the Environmental Protection Agency 

(EPA) reported 6,558 million metric tons of carbon dioxide (CO2) released into the atmosphere 

which is an increase of 3% since 1990.1,2 Further reports from EPA indicate that excess of 

GHGs, such as CO2, nitrous oxide (NO2) and fluorinated gases, have increased by 3%, 1%, and 

86%, respectively between 1990 and 2019.1 These gases are presently decreasing the amount of 

infrared radiation energy escaping the Earth’s atmosphere and increasing the accumulation of 

heat at the Earth’s surface causing a more severe greenhouse effect.3 

Naturally occurring GHGs from plant respiration/decomposition, volcanic activity, and 

the ocean are crucial to maintain an adequate temperature to sustain life on Earth. The natural 

greenhouse effect happens when infrared (solar) radiation energy enters the Earth’s atmosphere, 

and a percentage of the energy is reflected to space after the rest is absorbed by Earth’s surface.4 

At typical atmospheric levels of GHG, a lesser amount of heat is absorbed by GHGs.4 However, 

due to excess GHGs from man-made sources, a significant amount of infrared radiation is 

accumulating in the lowest layer of the troposphere.3,4 Heat waves that are redirected back to 

space are being intercepted by greenhouse molecules.3,4 When these gas molecules intercept the 
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heat waves, they “vibrate” and reflect the heat wave back to each other or back to the surface of 

the Earth.3 CO2 is known to be denser than most gases, which means that it is closer to the 

Earth’s surface; therefore, the constant redirecting of heat waves in the troposphere is causing the 

Earth’s surface to “warm up”. The continuous increase in temperature causes anthropogenic 

global warming and climate change. The frequency and severity of some weather events such as 

droughts, wildfires, heavier rainstorms, and melting of the glaciers are significantly affected by 

climate change.3 

In 2002 and 2012, the National Oceanic & Atmospheric Administration (NOAA) 

recorded CO2 concentrations of 375.69 ppm and 395.91 ppm respectively for the month of June. 

The CO2 concentration has continuously increased up to 420.51 ppm as of June 2022.5 Excess 

atmospheric CO2 also dissolves into the oceans, threatening marine organisms by causing an 

imbalance in pH and increasing acidity levels.4 As a result of these problems, many scientists 

and engineers have developed several methods and technologies to combat these issues and 

remediate them before it is too late. Carbon capture and storage, also known as carbon 

sequestration, is a relatively new method used to decrease atmospheric CO2 levels and prevent 

future complications.  

Carbon Capture and Storage 

Carbon capture and storage (CCS) is a technology used to reduce the amount of CO2 in 

the atmosphere, and is routinely cited as a feasible tool for climate change mitigation.6–12 CCS is 

able to offset industrial CO2 emissions and is vital for the retention of extracted CO2 from the 

points of production.7 This process involves the capturing of CO2 from power plants that burn 

fossil fuels, and many other CO2-producing sources,7 followed by the injection of highly 

pressurized (supercritical) CO2 into geological formations.7 To be an effective climate change 
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mitigation tool, CO2 must be securely retained for 10,000 years with a leakage rate below 0.01% 

per year of the total amount of CO2 injected.13 Currently, there are limited locations around the 

globe where CO2 injection into subsurface storage sites takes place; therefore, the behavior of 

pressurized CO2 in confined geological formations is still not completely understood. Broadly 

studied storage sites include saline aquifers, coal beds, and depleted oil and gas reservoirs.14 

Petroleum engineers and professional geologists have a significant preference for depleted oil 

and gas reservoirs because they readily provide large storage capacity and strong rock integrity.7 

Additionally, saline aquifers have been often considered a viable option by other authors because 

of their large storing capacity and broad distribution; however, the risk associated with CO2 

leakage into overlaying resource-bearing strata and CO2 contamination of soil, ground potable 

water, and vegetation may outweigh its benefits.15–20  

As mentioned earlier, depleted oil and gas reservoirs are the most common storage sites 

for carbon storage due to their relative stability and massive size.21 These reservoirs are 

composed of sedimentary rocks with a rock composition that varies between fine to coarse 

grained permeable rocks (sandstones, carbonates, etc.).4 Most common oil and gas reservoirs are 

composed of sandstone with an impermeable shale layer that acts as a seal as seen in Fig. 1.122. 

Shale is comprised of clay-sized particles and has extremely low porosity and permeability. The 

cap rock, also known as the trap or seal, prevents the migration of hydrocarbons into the surface 

and keeps them trapped inside the reservoir rock at high pressures and temperatures.23 During 

CCS, CO2 is injected into the reservoir rock where the hydrocarbons used to be present before 

extraction. The impermeable shale layer will act as a seal to keep the CO2 trapped for hundreds 

of years similar to how it previously functioned for crude oil and natural gas. Engineers rely on 
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the impermeable properties of the cap rocks to keep the CO2 stored in the subsurface for a long 

period of time, but in some cases the cap rock can be compromised. 

 

Figure 1.1 Oil and gas trap layers in a faulting zone.  

Note. Reprinted with permission from MagentaGreen (2014). Copyright 2014 by Wikimedia 

Commons CC BY-SA 3.0. No changes or alterations were made to the original work. 

As mentioned before, when the recoverable hydrocarbons are extracted and the reservoir 

is no longer productive, the reservoir can be utilized as a carbon storage site for CCS. During the 

combined CCS and enhanced oil recovery (EOR) process, high purity CO2 is injected into the 

reservoir at high pressures to act as a viscosity reducing agent and provide miscible displacement 

of the remaining oil from the effective pore space.24,25 This practice is an example of an 

enhanced oil recovery technique. EOR is a petroleum recovery process used to extract oil when 

natural or enhanced pressurized methods are no longer viable.26 Many oil and gas corporations 

try to implement CCS during their EOR process as an effort to contribute to air quality 

improvements and to address environmental concerns.27–29 

https://creativecommons.org/licenses/by-sa/3.0
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Sustainability of CO2 Storage 

Chemical reactions that take place inside a reservoir may deteriorate and destabilize the 

structure of the formation by increasing the pore space.30For example, silicate minerals that are 

highly soluble and non-stable (such as plagioclase feldspar, pyroxenes, and amphiboles) may 

dissolve in the presence of organic acids and increasing burial pressure.4 The dissolution of 

grains and cement increases the porosity and permeability of the rock structure. This effect is 

different from diagenesis as, typically, diagenesis is thought to decrease porosity and 

permeability through physical and chemical processes where loose sediments progressively 

compact and lithify to become a cemented rock.4 

Conditions inside a CO2 storage reservoir are in favor of dissolution due to the presence 

of formation fluid and high concentrations of injected CO2, which in return creates carbonic 

acid.4 High temperatures and pressures also play an important role during this chemical reaction. 

The conditions inside the reservoir can reach levels that may affect the mineralogy of the 

sandstone or the stability of the reservoir.14 As mentioned before, it is recommended to 

understand the effects of storing high concentrations of CO2 inside reservoirs in order to 

successfully store it for thousands of years without the potential of leakage. Two main challenges 

that threaten the sustainability of subsurface CO2 storage are chemical weathering, and faults and 

fractures in the geological formation. Both issues are worth mentioning and will be discussed, 

but the underlying mechanisms of chemical weathering fall outside of the scope of this research. 

Chemical Weathering: Simple Solution and Hydrolysis 

Chemical weathering is the change of a rock’s chemical and mineralogical composition 

through chemical reactions.4 Sandstones have silicate minerals that go through a chemical 

weathering process called simple solution.4 Simple solution, also known as carbonation, happens 
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when minerals in sandstones react in an acidic environment and successively break down its 

content into an aqueous solution with no new minerals being created.31 This weathering process 

occurs when minerals go into complete dissolution without the precipitation of other substances. 

The bonds between mineral ions are broken and as a result, the mineral is destroyed and releases 

constituent ions into the water solution.4 As CO2 is injected to a depleted oil and gas reservoir, it 

is expected to slowly diffuse in the formation fluid present in the pore space (i.e., brine and crude 

oil). The following chemical reaction (Eq. 1.1) demonstrates that high concentrations of CO2 

with water will form carbonic acid and subsequently bicarbonate with hydrogen ions H+.  

 

𝐶𝑂2 + 𝐻2𝑂 ↔ 𝐻2𝐶𝑂3 ↔ 𝐻+ + 𝐻𝐶𝑂3
− (1.1) 

 

The increasing production of H+ will contribute to a more acidic setting and will favor a 

more aggressive dissolution of minerals such as calcite, dolomite, gypsum, halite and even 

quartz.4  

Hydrolysis is the most important chemical weathering process where silicate minerals, 

commonly found in sandstones, mix with organic acids and do not culminate into a complete 

dissolution.4 It is the primary process of silicate mineral decomposition during weathering where 

these minerals break down and release metal cations.4 These types of incomplete dissolution 

processes are known as incongruent dissolutions. For example, the presence of a metal in a 

feldspar-rich sand that is going through incongruent dissolution can form clay minerals as a by-

product. High concentrations of CO2 dissolved in water makes the hydrolysis reaction more 

aggressive, but it is important to mention that hydrolysis may also occur in environments 



 

7 

containing little to no quantities of CO2.
4 Moreover, hydrolysis might contribute to reservoir 

deterioration and may affect preventive remediation techniques for carbon storage sites.32 

Simple solution and hydrolysis are two main reactions that are most likely to occur in a 

geological formation meant for carbon storage. These chemical reactions have the potential to 

affect carbon storage sites by destabilizing the formation’s structure and weakening its integrity 

which can cause consequences such as an exorbitant financial loss for industries funding CCS 

pilot projects and environmental concerns if collapsing of the subsurface formations occurs.32 

Although these processes are very common in sedimentary rocks, sandstones are more likely to 

resist these chemical reactions. Sandstones are mostly made of strong and stable mineral quartz. 

Quartz can be subjected to dissolution, but its properties make it strong enough to survive many 

transitions through geological time, also known as rock cycles.4 In contrast, carbonate rocks are 

significantly less mechanically stable and more susceptible to dissolution.4 Significant secondary 

porosity created by dissolution can be beneficial to a certain extent. Secondary porosity is a post-

depositional or subsequent process that creates more pore space through physical or chemical 

processes such as rock fracturing or dissolution of minerals.33 Through this process, more pore 

space for CO2 storage is created, but it may also destabilize reservoir’s structure.34 A continuous 

increase of void space throughout thousands of years might cause a collapse or subsidence in the 

reservoir that may lead to faults or fractures. Thinning of the rock structure weakens the overall 

reservoir and decreases its capacity to support overburden pressures.35 

Mineral dissolution from carbonic acid plays an important role in structural stability of 

depleted oil and gas reservoirs used for carbon storage. Although failure might not occur for 

hundreds of years, it is very important to monitor and continue to study the behavior of 

reservoirs used for carbon storage. Simple solution and hydrolysis can cause secondary porosity 
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(i.e., possible faults and fractures can develop through time in the reservoir.). This consequence 

generates a certain degree of concern among environmentalists, but it is currently safe to 

preserve CO2 in these geological formations without any reservations of future repercussions due 

to sandstone’s resistant framework, especially when reservoirs are spatially isolated. It is still 

believed that CCS is one of the best methods to decrease CO2 concentrations and slow down the 

effects of global warming, but most importantly, it is considered the safest way to dispose of and 

relocate excess CO2. 
6,8,25 

Faults and Fractures 

The injection of large amounts of CO2 in geological formations to offset GHG emissions 

may potentially induce tectonic movement and can consequently activate underground fractures 

in the cap rock.36 The geological formation’s integrity is one of the main concerns for a 

successful CCS process; therefore, the structural condition of the formation’s cap rock is a 

determining factor of whether or not a site is secure for CO2 storage.37 In a geological CO2 

storage site, faults and fractures caused by natural or anthropogenic events can create leakage 

pathways from the reservoir rock layer to the surface, making the efforts of carbon sequestration 

less effective. Fractures are cracks in the rock which open when stresses are sufficient while 

faults are fractures with measurable offset. Either structure can be formed or activated by 

tectonic activity, failure of injection operations, or deep well injections.38 Faults are comprised 

by zones of crushed, sheared and fractured rock that have the potential to influence the migration 

of stored CO2.
39 Locating pre-existing faults in three-dimensional seismic data can be 

challenging. Nonetheless, it is safe to assume that all rocks in the upper lithosphere are fractured. 

Problems arise when these fractures are connected and provide a leakage pathway for CO2. 
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Therefore, it is critical for engineers to determine the probability of CO2 leakage through 

different methods and strategies.  

Several studies have been conducted in the past to estimate the probability of CO2 

leakage through faults and fractures at CO2 storage sites.40–43 Quasi-1D single phase flow 

models, percolations theory, fuzzy rules, and risk assessments are computational simulation 

methods and hazard identification processes that have been used to estimate the connectivity of 

existing conduits at a specific site and the probability of CO2 leakage 41 Conduits refer to the 

underground channels where CO2 may escape. Zhang et al. (2009)41 designed a risk assessment 

project that could fit into the certification framework, developed by Oldenburg et al. (2009),40 of 

a geological CO2 storage with the objective to develop a detailed foundation for evaluating the 

risk of leakage in order to approve CCS operations. The certification framework (CF) is a 

practical risk-based framework used for assessing and approving whether the leakage risk of a 

potential storage site is below an agreed-upon threshold. It proposes a standardized way to 

project proponents, regulators, and the public to analyze and understand risks and uncertainties 

of geological carbon sequestration.40 Safety and effectiveness are achieved if CO2 and displaced 

brine have no significant impact on humans, other living organisms, resources, or the 

environment. It considers physical and chemical impacts as well as loss of emission-reduction 

credits due to movements of injected CO2 and brine.40 The purpose of the CF is to evaluate the 

CO2 leakage risk for each compartment to determine whether the effective trapping threshold 

will be met for a given storage site.40 A compartment is defined as a vulnerable entity such as 

potable groundwater aquifers. Table 1.1 lists the elements of a sample certification framework. 

These elements are factors that are reviewed, assumed, and taken into consideration when 

assessing risk of CO2 and brine leakage. When proposing a preventive permeability reduction 
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method for leakage pathways, certification framework elements are needed and should be taken 

into consideration to store CO2 effectively and safely in geological formations. Fig. 1.2 shows a 

detailed schematic of the workflow in a CF process. 

Table 1.1 Certification framework elements. 

Effective trapping The CF acknowledges that enormous volumes of CO2 will 

be injected into the Earth’s crust, which is not a leak proof 

container. The goal of building the CF upon the effective 

trapping concept is to distinguish benign from harmful 

migration so that the risk assessment can focus on the 

likelihood of the latter.  

Wells and faults are conduits The CF assumes that wells and faults are the only potential 

leakage conduits. 

Impact to compartments The consequences of upward leakage of CO2 or brine are 

impact to compartments which are used as collections of 

related vulnerable entities. 

ECA: Emission credits and atmosphere 

HS: Health and safety 

NSE: Near-surface environment 

USDW: Underground source of drinking water 

HMR: Hydrocarbon and mineral resources 

Likelihood of impact and risk Likelihood of intersection of the CO2 or brine source with a 

conduit. 

Likelihood of intersection of the conduit with a 

compartment. 

The product of both likelihoods is the probability of the 

given source-to-compartment leakage scenario. 

Plume migration The source for the leakage scenario is determined by the 

movement of the CO2 plume during and after injection, and 

by the brine movement associated with the CO2 injection. 

Workflow See Fig. 1.2. 

Note. Adapted with permission from the International Journal of Greenhouse Gas Control by 

Oldenburg et al., 2009, p. 444 - 457. Copyright 2009 by Elsevier. 
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Figure 1.2 Flow chart of the workflow in a CF process where the threshold value is an agreed-

upon value provided by external sources such as regulators or carbon credit 

insurers.  

Note. Reprinted with permission from the International Journal of Greenhouse Gas Control by 

Oldenburg et al., 2009, p. 444 - 457. Copyright 2009 by Elsevier. 

It is imperative to take into consideration the regulations under the USEPA Underground 

Injection Control Class I Program during carbon sequestration to prevent possible migration of 

CO2 because this regulation ensures that carbon storage in geological sites do not negatively 

impact valuable resources and the environment.41 Unfortunately, because of the large volumes of 

CO2 injected, its buoyant nature, and the naturally heavily fractured lithosphere, it is very 

difficult to meet absolute non-migration-requirements.41 
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Figure 1.3 Geological cross section demonstrating conductive faults that may or may not 

intersect as indicated by question marks. Thick black lines depict a connected 

leakage pathway that extends to the shallow aquifer. 

Note. Adapted with permission from Energy Procedia by Y. Zhang et al., 2009, p. 42. Copyright 

2009 by Elsevier. 

Fig. 1.3 demonstrates the cross-sectional view of a CO2 injection well, CO2 plume, 

reservoir formation, overlaying formations, and potable groundwater aquifer along with 

conductive faults that have the potential to intersect as indicated with question marks. The 

probability that the CO2 plume leaks into a compartment through faults or fractures is related to 

the geometric characteristics of distribution and connectivity of conduits between the storage 

reservoir and the compartment, and the size and location of the CO2 plume.41 It is challenging to 

predict whether the conduits are connected and if so, the probability that a CO2 plume will 

encounter the connected pathway because there is limited amount of information in regards to 

the conduit systems.41 In addition, the location and size of the CO2 plume is also highly uncertain 

given the properties of the deep storage reservoir.41  
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A study conducted in 2018 by scientists of the University of Edinburg stated that CO2 

emissions can be captured and securely stored, even if geological faults are present, in a naturally 

occurring carbon storage site.13 Researchers from the Universities of Glasgow, Freiburg, 

Edinburgh, and Heidelberg calculated the natural leakage rates from a 420,000 paleo-record of 

CO2 leakage above a naturally occurring, faulted CO2 reservoir in Arizona, USA.13 The St. Johns 

Dome CO2 reservoir, located on the border of northern Arizona and New Mexico, indicates 

overall leakage rates of up to 2 x 10 5 tons per year, which is an order of magnitude lower than 

annual injection rates at currently operating large-scale carbon storage sites of between 0.7 x 106 

and 1.2 x 106 tons per year.13 It is worth mentioning that faults that provide primary leakage 

pathways are young and have not yet built up the clay that is naturally produced from weathering 

fault breccia. This clay built up limits the permeability of the leakage pathway and restricts CO2 

migration.  

Sealing CO2 Escape Routes by In-Situ Polymerization 

In-situ remediation processes are necessary for undesired CO2 migration. A leakage 

prevention method is recommended in the event of discovering new or undetected leakage 

pathways in carbon storage sites, specifically depleted oil and gas reservoir for this study. In the 

past, CO2 leakage control sealants included cement, geopolymer, foams, biofilm barriers and 

nanoparticles, but new substances that are CO2-responsive have grown in popularity.38 In order 

to seal the leakage pathways through a fractured cap rock or around wellbores, the usage of CO2-

triggered chemicals have been suggested by several researchers in past literature. These chemical 

solutions are substances that precipitate or become a gel when they come in contact with high 

concentrations of CO2 in reservoir-like conditions.44 When the chemical seals the leakage 

pathways in the cap rock, the secondary permeability of this rock layer will decrease 
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significantly, and the CO2 will remain contained inside the reservoir. Although various chemical 

sealing scenarios have been simulated numerically, their effect on reservoir rock for extended 

periods of time is not well understood yet.  

Some of the leakage control sealants mentioned above have been tested for long-term 

sustainability and performance, but CO2-sensitive chemicals have the potential to address 

injectability and mobility issues. Chapter 3 focuses on an in-depth analysis and comparison of a 

wide range of CO2-sensitive chemicals that are suitable candidates for in-situ sealing of leakage 

pathways for CCS applications. It is important that the benefits that come from CCS outweigh 

potential environmental threats that could harm the ecosystem and human health.45,46 Thus, when 

selecting the appropriate CO2-sensitive chemical for leakage prevention, the influence of 

temperature, pressure, salinity and pH on its performance needs to be taken into consideration in 

addition to their chemical properties (i.e., toxicity, injectability, etc.).38 Previous literatures point 

out the advantages of CO2-triggered gel systems over other CO2-triggered chemicals. CO2-

triggered gel systems are thermally stable, resistant to acidic conditions, highly injectable, widely 

applied in various industries, commercially available and have shown a significant reduction in 

permeability in a relatively short amount of time.14,38,47–56 Limitations of this sealing agent 

includes a lack of knowledge on long-term gel degradation at reservoir-like conditions and 

effects of high pressure and salinity on the gel’s rheological behavior. Throughout time and with 

constant high-pressure and elevated temperature conditions, the gel system could potentially 

reduce its stability and slowly decompose.38 The following chapters will expand on why CO2-

SPAM is the most suitable candidate for in-situ permeability reduction for CO2 storage sites by 

comparing it against other CO2-triggered systems through a thorough literature review, its 
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rheological behavior and response to flow and deformation, and its application as a subsurface 

sealant from a structural geology standpoint.
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CHAPTER II 

DISSERTATION FOCUS, PURPOSE, AND RESEARCH OBJECTIVES 

Issue Statement 

Despite extensive research and investigations regarding the possibility of incorporating 

CO2-SPAM in CO2 geological storage operations to prevent CO2 leakage, the available 

knowledge on its chemical mechanisms, rheological behavior, and potential to induce seismicity 

is, to some extent, limited. Firstly, it is important to explore the wide variety of CO2-triggered 

chemicals that could be an adequate candidate for in-situ sealing. Hence, a thorough literature 

review will determine which chemical possesses the required qualities needed for a proper seal 

and why CO2-SPAM is ultimately chosen to be further investigated. Secondly, the sequence of 

reactions that take place in order to synthesize CO2-SPAM is partially unclear. Therefore, a 

breakdown of CO2-SPAM synthesis is done using past findings and organic chemistry principals. 

Thirdly, previous studies have not established patterns in the rheological behavior of CO2-SPAM 

gel as a function of salt concentration in the brine and polyacrylamide (PAM) concentration. 

Gelation time, gel strength, and viscosity are important rheological properties that affect the 

stability and feasibility of incorporating CO2-SPAM in future CCS pilot projects. These factors 

dictate the gel’s mobility across reservoirs, the injection time and injection rate in addition to its 

plugging performance. Lastly, there is minimal information on how CO2-SPAM solution 

injection has the potential to induce seismic activity and what properties of CO2 storage sites 

make them prone to induced seismicity. These gaps in previous investigations call for a 
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comprehensive study of the rheological behavior of CO2-SPAM and its implementation to 

prevent CO2 leakage from storage sites. 

Research Objectives 

The objective of this study is to form a well-established understanding of the necessary 

qualities and characteristics a CO2-sensitive chemical must have to be an ideal sealing agent for 

in-situ permeability reduction. Also, once the CO2-sensitive chemical is determined, a series of 

experiments will determine the material’s properties under reservoir-like conditions to predict its 

behavior once it is injected into a subsurface formation. To do so, this research project focused 

on: 

• Identifying CO2-SPAM’s attributes over other chemicals. 

• Developing CO2-SPAM’s sequence of chemical mechanisms. 

• Determining patterns in the rheological behavior of CO2-SPAM as a function of 

salt and PAM concentration. 

• Estimating the potential of induced seismicity as CO2-SPAM is injected into the 

subsurface. 

Conditions such as temperature, salt concentration, and polymer concentration were taken 

into consideration to establish a realistic working environment. The experimental study provides 

a clearer understanding of the phenomenon of what is expected from CO2-SPAM. This 

dissertation investigates the following research objectives: 

1. Determine the advantages and disadvantages of CO2-triggered chemicals. Through an 

in-depth literature review, several materials that respond to CO2 and may be used as in-situ 

sealing agents were investigated. Chapter 3 is a comprehensive literature review of materials 

tested and used as sealing agents, such as polymer gels, precipitated minerals, resin systems, 

etc., in other research projects. This summary provides a synopsis of the benefits and 
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drawbacks of CO2-triggered reactions and CO2-sensitive materials in the context of in-situ 

sealing of leakage pathways. 

2. Establish the chemical mechanisms of CO2-SPAM gel’s synthesis. CO2-SPAM is a 

resorcinol-methenamine-polyacrylamide gel system that is synthesized in the lab from non-

ionic PAM. The chemical mechanism of this synthesis has not been fully described due to 

various chemical mechanism involved, such as hydrolytic decomposition, neutralization, 

hydrolysis and polymerization. These complex chemical mechanisms are explained in detail 

in Chapter 4. The analysis provided in this chapter helps explain the behavior of CO2-SPAM 

and how salt and PAM concentration influences its gelation time and gel properties. 

3. Analyze the effects of salt concentration from formation fluid and PAM concentration 

on CO2-SPAM gel’s gelation time, strength, and viscosity. Chapter 5 provides a thorough 

analysis of the effects of salt concentration and PAM concentration on gelation time, and gel 

strength and viscosity. The salinity levels vary widely among different oil and gas reservoirs. 

Thus, the effect of these factors on gel behavior must be known for a successful sealing 

scenario.  

4. Estimate the possibility of induced seismicity through CO2-SPAM injection for CCS 

applications. Induced seismicity is not an uncommon tectonic activity in the oil and gas 

industry. Wastewater injections and conventional EOR techniques have caused seismicity for 

half a century. In Chapter 6, the concept of induced seismicity caused by CO2-SPAM 

injection is studied based on well data from the Raton basin. The Raton basin is an oil and 

gas producing depression that has been used as a wastewater disposal structure. Additional 

scenarios will be taken into consideration to clarify the effect of pore pressure incrementation 

on fault activation.  
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Intellectual Merit 

Carbon Capture and Storage (CCS) is a GHG technology aimed to mitigate global 

warming, but it comes with its limitations. The carbon storage phase plays a major role in 

determining the effectiveness of this method; therefore, approaches to prevent CO2 leakage is 

crucial. Studies have been conducted on sealing agents such as cements, foams, geopolymers, 

resin systems, biofilm barriers and gel systems, but their ability to withstand extreme conditions 

is questionable. Although the mentioned materials have their advantages, CO2-SPAM gel’s 

characteristics are better suited for reservoir-like conditions and subsurface injection processes. 

PAM has been used broadly in water treatment processes as flocculent, in the pulp and paper 

industry as pulp fiber binder, and in hydrocarbon production as additive for hydraulic fracturing 

purposes. The testing of PAM’s properties, such as its behavior in highly saline solution, will 

benefit the petroleum and environmental engineering fields and push towards its real-life 

application. Moreover, there has been a growing interest in CO2-SPAM gels due to their 

potential application in CO2 storage sites as sealing agents and as a result, there has been 

extensive research done for this specific material. Researchers have studied the effects of metal 

cross-linkers, temperature, nitrogen, and CO2 on the strength of the resulting PAM gel system. 

However, the effects of salinity and PAM concentration on CO2-sensitive PAM gel’s strength 

and gelation time are not well understood. Additionally, the geomechanics involved in the 

injection of this polymer solution have not been studied in the past. 

Broader Impact 

Due to the rising issue of global warming, climate change, ocean acidification, heat 

waves, and wildfires, researchers have been focusing on methods to reduce the emission of 

GHGs and develop technologies to store these gases in unproductive geological formations. CCS 
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is able to safely store excess CO2 to mitigate global warming. CO2 storage sites are subsurface 

geological formations surrounded by impermeable rock formations. However, leakage pathways 

might exist or develop in this formation’s layers posing a threat to this method. To prevent CO2 

escape through these leakage pathways, the usage of CO2-sensitive PAM gel systems has been 

proposed. These gel systems change from an aqueous solution to a solid or solid-like state upon 

contact with CO2. The procedure blocks the pre-existing escape routes without requiring any 

prior knowledge about the location of those leaking routes. This research focuses on expanding 

the limited knowledge in the carbon storage field by evaluating the effectiveness of CO2-

sensitive PAM gel system as a sealing agent under reservoir-like conditions at different salinity 

levels. This study targets the improvement and optimization of GHG technologies and the overall 

betterment of the environment. 
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CHAPTER III 

EXPLORATION OF CO2-SENSITIVE CHEMICALS AS POTENTIAL SEALING AGENTS 

FOR CO2 STORAGE SITES 

Introduction 

Alarming levels of CO2 have filled the troposphere and is currently threatening life on 

Earth. Climate change, ocean acidification, heat waves, and wildfires are few examples of 

consequences humans are facing due to excess CO2 from anthropogenic sources.57 As a result, 

researchers have investigated the possibility of extracting CO2 from anthropogenic sources and 

storing it in subsurface geological formations such as depleted oil and gas reservoirs, saline 

aquifers, and coal beds.14 This process is referred to as Carbon Capture and Storage (CCS). 

Unfortunately, the CCS process may be compromised when leakage pathways are present in the 

storage sites.7 Leakage pathways include natural or anthropogenic fissures, fractures, and or 

faults in the cap rock. Leakage pathways can be created through time and tectonic plate’s 

movement or during exploration and drilling phase.38 In such cases, remediation processes must 

be implemented to successfully continue the CCS process.7 

Engineers have faced several challenges in regard to CO2 leakage mitigation due to 

limited technologies and access to the leakage pathways. Occasionally, engineers, operators, or 

geoscientists misinterpret 3D seismic data containing pre-existing faults. Thus, a better approach 

to ensure CCS sustainability is leakage prevention. Theoretically, sealing all potential leakage 

pathways before initiating CO2 injection is the most reliable method to prevent CO2 escape. 
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However, locating all leakage pathways in the subsurface is virtually impossible.41 Numerous 

studies have been conducted to estimate the probability of CO2 leakage through faults and 

fractures at CO2 storage sites as mentioned in Chapter 1. 

Even if locating individual leakage pathways is possible, they are nearly impossible to 

access in most cases.41 Sealing subsurface flow paths is commonly carried out by injecting 

polymer solutions along with a cross-linker. An in-situ polymerization reaction will follow the 

injection, resulting in the formation of a polymer gel that seals the flow path.58,59 For an 

environment saturated with CO2, however, most of these polymer gels are unstable and they 

degrade with time, rendering the seal useless.58,59 Using a polymer that is resistant to CO2 or a 

reaction that is triggered by CO2 may lead to durable sealing.58,59 When sealing individual 

leakage pathways is not an option, a more conservative preventive approach might prove 

practical. This solution consists of creating a sealed layer at the top section of the storage 

reservoir as demonstrated in Fig. 3.1. 

 

Figure 3.1 Schematic of CO2-sensitive chemical injection into a depleted oil and gas reservoir 

for the purpose of preventive in-situ sealing of potential leakage pathways. Ratios 

do not reflect actual material volume. 
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In this approach, a CO2-sensitive chemical, which is in liquid form, is injected at the top 

section of the reservoir. CO2-sensitive chemicals are chemical substances such as a polymer, 

resin, microgel, or mineral solution that, under reservoir conditions, react with CO2 and form 

solid or solid-like compounds. Next, CO2 is injected at the bottom section of the reservoir and 

diffuses through the reservoir. CO2 diffusion through porous media is a transport phenomenon 

worth noting as it provides a clear idea of CO2 concentration across the reservoir. (Appendix A 

establishes the governing equations dictating the CO2 diffusion in porous media and the 

concentration profile of CO2 through a CO2 storage site.) The CO2-sensitive chemical will travel 

downwards due to gravity and the CO2 will travel upwards due to buoyancy. When CO2 

encounters the CO2-sensitive chemical, a series of reactions take place and a seal forms, which 

plugs the pore space of the host rock formation. For this specific set up, the relationship between 

density of the material versus the density of supercritical CO2 is an important indicator of the 

feasibility of this application.  

 

Figure 3.2 Carbon dioxide phase diagram with the typical range of reservoir conditions (green 

box). 
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It is expected that the CO2-SPAM will overcome the injected CO2’s density. To examine 

the relative densities of injected solution and CO2, the phase behavior of CO2 and water at CO2 

storage site pressure and temperatures is studied (Fig. 3.2 and Fig. 3.3). Here, the green box 

illustrates reservoir conditions (R.C.) which range from 88°C to 175°C and 61 atm to 245 atm. It 

is clear that under a wide range of pressures and temperatures, water remains in the liquid state 

and CO2 is in supercritical or gas phase. As a result, CO2 will be less dense than the injected 

solution and they will flow towards each other under the proposed injection scenario. 

 

Figure 3.3 Water phase diagram with the typical range of reservoir conditions (green box). 

 

The presence of CO2 and the CO2-sensitive chemical either triggers or catalyzes a 

reaction, which leads to the creation of a solid or solid-like material. A limited number of CO2-

sensitive chemicals have been tested by researchers for the specific purpose of measuring their 

sealing performance under reservoir conditions.14,54,60 On the other hand, CO2 has been used to 

influence reactions such as polymerization, solidification, precipitation, and gelation for various 
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industrial and medical applications. Although these applications might not be directly related to 

CCS, they provide the needed knowledge on which CO2-sensitive chemicals may potentially be 

used for preventive sealing of subsurface CO2 storage reservoirs. 

This chapter explores a wide range of reactions that are influenced or triggered by CO2, 

leading to the formation of a solid or solid-like material that could potentially seal geological 

formations. The reactions are categorized as “solid formation” and “particle growth.” These are 

the mechanisms by which a reaction results in the blockage of the flow paths in porous and/or 

fractured media. Solid formation is the category where chemicals solidify through polymer 

gelation, mineral precipitation, and resin formation. The particle growth category includes 

aggregation and swelling. Particle growth mechanisms go through a particularly different 

chemical reaction were polymer particles’ sizes increase. Consequently, these particles block the 

flow paths in porous media, including fractures and fissures. Ultimately, this study will focus on 

determining the best suited CO2-sensitive material for CCS applications. 

Solid Formation 

Gelation 

CO2 is widely known to be a triggering factor during gelation processes. The mechanisms 

by which CO2 triggers or catalyzes gel formation are diverse. For instance, certain substances are 

influenced by the acidic environment induced by the carbonic acid. As CO2 dissolves into the 

solution, hydrogen ions are formed, causing the pH to drop.14 Other cases are when gelation is 

triggered by cross-linkers that are responsive to or are activated by high concentrations of CO2. 

A cross-linker is a chemical substance that creates a bond or sequence of bonds that link one 

polymer molecule with another. These mechanisms by which CO2 induces gelation are discussed 

in this section. 
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CO2 is known to cross-link molecules with amino groups on their side chains.61 

Exploiting this mechanism, Nagai et al. (2011) synthesized a hydrogel by using CO2 as a gellant. 

The synthesis of the hydrogel was through a cross-linking process using aqueous solution of 

polyallylamine (PAA), a base (1,8-diazabicyclo[5,4,0]‐undec‐7‐ene), and CO2 under high 

pressure and temperature (2.5 – 5 MPa, 170°C) as seen in Fig. 3.4.61  

 

Figure 3.4 Reversible CO2 absorbing hydrogel.  

Note. Reprinted with permission from the Macromolecular Rapid Communications by Nagai et 

al., 2011. Copyright 2010 by John Wiley and Sons. 

 

This reaction is useful for in-situ sealing because the produced hydrogel not only blocks 

the leakage pathways, but it is also capable of absorbing high volumes of CO2.
61 This study also 

reported that the absorption and desorption of CO2 does not negatively impact the hydrogel 

integrity, which is a key property of a potential sealing material. In 2001, another study explored 

the use of aliphatic amines as latent gelators with CO2 as a trigger or gelling agent at room 

temperature.62 The amine solution starts to gel when it is exposed to CO2. The presence of CO2 

in the amine solution creates carbamate salts. This gelation process may be reversed by bubbling 

nitrogen into the heated gel. Additionally, it was found that the ammonium carbamate gelators 
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are better and more stable (for over 3 months) if the n-alkyl chains of the primary amines are 

longer.62 Another amine-CO2 gelation reaction was introduced by Carretti et al. in 2003 where 

they used a polyallylamine-alcohol (PAA-alcohol) solution and CO2 to act as a gellant.63 Their 

findings show that when CO2 is introduced to the PAA-alcohol solution, gelation will take place 

as carbamate groups are formed.63 These carbamate groups act as cross-linkers and a gel-sol 

transition is attained when the temperature is increased enough to release CO2.
63 In other words, 

high temperature environments may destabilize the formed gel. Polyethyleneimine (PEI) was 

also investigated by Carretti et al. (2008) due to its wider commercial availability and greater 

stability compared to PAA.64 This compound follows the same mechanism as the PAA reaction 

with CO2 where the PEI solution creates a gel when it is exposed to CO2, due to the carbamate 

groups.64 Moreover, the addition of amino groups to polysiloxanes leads to polymers that form a 

gel when in contact with CO2. In this process, the cross-links are formed through electrostatic 

interactions between the CO2 and the amine groups. The formed gel is stable at room 

temperature65,66 and adheres strongly to other surfaces.67 

Researchers at the University of Kansas developed an in-situ gel system aimed to control 

the mobility of supercritical CO2 in heterogeneous reservoirs during CO2 injection for EOR.68 

This study’s experiments were conducted on brine-saturated Berea sandstone cores with initial 

permeabilities of 70-700 mD, at temperatures between 32.2ºC and 41ºC. This research used the 

following CO2-sensitive compounds: 

1. KUSP1: This biopolymer is soluble in alkaline solutions above a pH of 10.8 but 

forms a firm gel when the pH is reduced to 10.8 or below. So, by injecting 

supercritical CO2 into the core sample that was saturated with the alkaline 

polymer solution, they induced gelation, which resulted in over 80% reduction in 

the permeability of the core sample. This author did not disclose the chemical 

composition of KUSP1.68 
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2. Sulfomethylated resorcinol and formaldehyde (SMRF): The reaction between 

these two compounds creates a gel in the presence of brine and supercritical CO2. 

This study recorded a permeability reduction of 99% caused by the gelatin 

reaction at atmospheric pressure and 41°C.68 

In 2016, a study investigated the use of modified polyacrylamide-methenamine-

resorcinol gel system to selectively control CO2 channeling and reduce its mobility.48 During this 

in-situ process, a reaction is triggered by the highly acidic environment brought about by 

CO2.
14,48,69 At elevated temperatures and high acidity levels, the methenamine releases 

formaldehyde which can further produce phenolic resin through polycondensation with 

resorcinol.14,48,69 The phenolic resin further reacts with the polyacrylamide and produce strong 

enough linear polymers that are able to seal channels.14,48 This gel system’s gelation initiates 

when CO2 is present; therefore, the aqueous solution will be able to flow for longer distances in 

the reservoir before it settles and fully gels. This study tested the gel system in two testing tubes 

for bottle testing under a constant pressure that varied among the experiments between 0.2 and 1 

MPa, and a gel solution salinity of 20,000 ppm.48 This research concluded that increasing 

pressure decreased the gelation time, although the tested pressures are too low compared to 

typical subsurface pressures.48 Additionally, a sand pack experiment was conducted where CO2-

SPAM gel’s blocking performance was evaluated. It was concluded that at 80ºC the gel solution 

has good CO2 sensitivity and becomes very strong.48 Their findings also indicate that the gelation 

time decreases as temperature increases.48 Furthermore, as the concentration of polyacrylamide 

increases, gel strength increases but its viscosity decreases, however, the viscosity drop can be 

modified by increasing the temperature.48 Finally, this study reported up to 99% of permeability 

reduction in their low-permeability samples, whereas the permeability of the high-permeability 

sand packs decreased by 90%. 
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Poly(ionic liquids) (PILs) are another class of CO2-sensitive chemicals that form a gel 

upon contact with CO2. A recent study developed a PIL through the copolymerization of an 

imidazolium-type ionic liquid monomer at 25ºC and 1200 psi.70 The CO2 was bubbled into the 

PIL solution and changed its rheology, converting it into a stable gel. This PIL gel reverses its 

state back into an aqueous solution when nitrogen is bubbled into it.70  

Han et al. (2012) synthesized a CO2-senstivive hydrogel by incorporating a weak acid 

comonomer into a thermosensitive polymer block.71 After dissolving the synthesized polymer in 

water, the authors bubbled CO2 through the solution and observed a sol-gel transition. They 

stated that the acid comonomer responds to the CO2 and renders the polymer less soluble in 

water. The acid comonomers that were tested were acrylic acid, methacrylic acid, and ethyl 

acrylic acid, which they incorporated into PMEO2MA, a thermosensitive polymer.71 

Electrostatic interactions induced by CO2 is another mechanism by which CO2 may 

trigger gelation. These interactions take place in aqueous solutions of triblock copolymers. One 

study tested an ABA-type triblock copolymer which consisted of a middle block (B), which is 

hydrophilic, and two end blocks (A), which are CO2-responsive.66 Their method consisted on 

mixing two ABA triblock copolymers with the same B block but different A blocks (First 

triblock copolymer was a negatively charged polyelectrolyte and the second one was turned a 

positively charged polyelectrolyte under CO2 conditions). 

Triblock copolymer 1: PMAA--b-PEO-b-PMAA- 

Triblock copolymer 2: PDMAEMA+-b-PEO-b-PDMAEMA+ 

 Gel-sol transition was observed when two ABA triblock copolymer solutions were 

mixed, and CO2 was bubbled through the mixture. The transition to gel is a result of electrostatic 

interaction between the oppositely charged A blocks on the two copolymers.66 CO2 brings about 
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this electrostatic interaction by protonating the A blocks on the CO2-responsive copolymer.66 

This research focused on achieving CO2-induced gelation of polymer aqueous solutions at very 

low polymer concentrations.66 The authors reported that the gel strength is tunable in this 

gelation method, and the gelation reaction is stable within wider temperature ranges compared to 

other methods.66 

Some advantages that gels have are their ability to withstand high temperatures, CO2 

resistance, and the ability to be reversed into an aqueous solution. The reversibility of gel-sol 

conversion has potential applications in EOR and conformance control. In addition, gel solutions 

are ideal for injection processes where the solution needs to be low viscosity.38 Certain 

disadvantages regarding gels include the lack of available information regarding their rheology at 

high pressures and salinity levels. 

Precipitation 

Mineral precipitation is another mechanism that results in solid formation. Mineral 

carbonation is a mechanism by which insoluble salt precipitation is triggered by CO2.
72,73 For 

example, precipitation of calcium carbonate (CaCO3) by bubbling CO2 in an aqueous solution of 

calcium hydroxide (Ca(OH2)) with ammonium hydroxide (NH4OH) acting as a catalyst is a 

significantly fast reaction at room temperature and ambient pressure.74 

Calcium carbonate precipitation for CCS has been proposed as a viable method due to the 

marketability of the final product (e.g., calcite) and the low cost of feed materials that are 

commonly obtained from recycled industrial waste, such as coal fly ash. Studies have shown that 

the process of calcite precipitation may be tuned to control the morphological structure of the 

precipitate.73 Chemical additives, pH, temperature, and the method of introducing CO2 to the 
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aqueous Ca(OH2) solution influence the morphology of the formed crystals (Fig. 3.5).75–77 For 

example, sulphate and magnesium ions are known to inhibit CaCO3 precipitation.78  

 

Figure 3.5 SEM imaging of precipitated powder filtrated from aqueous suspensions. Samples 

were precipitated (a) without organic additive, with (b) butylamine, (c) 

hexylamine, (d) octylamine, (e) 1,2-diaminoethane, (f) 1,4-diaminobutane, (g) 1.6-

diaminohexane, (h) 1,8-diaminooctane, (i) glycine, (j) 4-aminobutyric acid and (k) 

6-aminohexanoic acid.  

Note. Reprinted with permission from the Journal of Crystal Growth by Chuajiw et al., 2014. 

Copyright 2014 by Elsevier. 

 

In addition to calcium carbonate, barium carbonate (BaCO3) and magnesium carbonate 

(MgCO3) are salt precipitates that may be generated by using CO2. A study by Shen et al. (2012) 

focuses on the production of BaCO3 crystal sheaves with carboxymethyl cellulose through a 

carbonation process.79 CO2 aids the crystallization process while the concentration of 
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carboxymethyl cellulose defines the structure of the BaCO3 crystals. This reaction’s pressure was 

at 3.5 MPa and its temperature was at 25ºC.79 

CO2 storage reservoirs’ pressures and temperatures are often favorable for carbonation 

reactions that lead to the formation of magnesite, a mineral that does not form under ambient 

conditions.80 Furthermore, the feed for these reactions (Mg(OH2)) (slurry) may be sourced from 

industrial waste.81 Montes-Hernandez et al. (2012) studied the synthesis of magnesite crystals 

through two sequential reactions. In the first reaction, the authors used CO2 in a very alkaline 

medium to develop the aqueous carbonation of brucite at ambient temperature (20ºC).80 This 

process led to the precipitation of dypingite aggregates (Mg(CO3))4 * 5 H2O after 24 hours of 

reaction.80 This reaction was followed by the transformation of dypingite to magnetite through 

heat aging (going from 20ºC to 90ºC).80 Throughout this process, sodium hydroxide (NaOH) was 

used as a catalyst to accelerate the brucite carbonation reaction, decreasing the reaction time 

from days to hours.80 The increase of carbonate ions caused by sodium hydroxide promotes the 

formation of magnesite in the heat aging process.80 

Employing mineral salt precipitation as a preventive sealing measure leaves the final 

precipitate in the pore space of the subsurface carbon storage formation. The accumulation of the 

precipitated salt in the pore space creates a flow barrier. It is crucial to quantify the alteration of 

formation porosity and permeability due to salt precipitation, under reservoir conditions. In other 

words, engineering the precipitation process enables the prediction of fluid mobility in porous 

and fractured media.82 Porosity change due to precipitation is readily predictable through the 

precipitation reaction kinetics and the density of the precipitate; however, estimating the 

permeability alteration is more involved.82 Permeability alteration is controlled by the location at 

which mineral precipitation takes place at the microscopic level.83,84 Nonetheless, the 
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permeability decrease due to precipitation is commonly estimated by general empirical porosity-

permeability correlations such as Verma‐Pruess or Kozeny-Carmen equations, which might not 

yield the most accurate estimates.82,83 Fig. 3.6 shows the results of a pore-scale study in which 

the size of random throat sizes in a pore-network model was altered and was used to calculate the 

permeability of the network.  

 

Figure 3.6 Changes in the permeability and porosity of a pore network model. Pore size of 

this model were changed to simulate dissolution and precipitation. 

Note. Reprinted with permission from the Water Resources Research by Beckingham et al., 

2017. Copyright 2017 by John Wiley and Sons. 

 

The plot also shows the predicted permeability values by various empirical porosity-

permeability correlations. It is clear that the predicted values show large errors for the majority 

of the simulated cases in this study. Precipitation of minerals have the great advantage of being 
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environmentally friendly, has a low cost associated with it, significantly reduces permeability 

and is a long-term application. Carbonation can easily occur in a reservoir and mineral structures 

can tolerate extreme conditions in comparison to gels. The limitations of this method are that 

mineral precipitation has a very slow chemical process and is highly affected by bacteria, 

temperature, and pH .38  

Resin Systems 

Resins are compounds that are derived from natural or synthetic polymers and form 

complex networks. Synthetic resins such as epoxies, polyurethanes, and phenol formaldehyde are 

thermosets that become cured or rigid upon application of heat. Their remarkable characteristic is 

their ability to change from a viscous liquid to a solid when cured and become less temperature 

sensitive because they form a cross-linked networks structure through chemical bonds.85 Resins 

are particle-free fluids that exhibit low mobility and when cured, they become rigid impermeable 

materials.86 Furan, epoxy, and phenolic resin have been traditionally used as oil field resins to as 

sealing agents for leakage mitigation in the near-wellbore and wellbore regions as it cannot travel 

through farther out due to its low injectability.86 Even though most of them are thermally 

activated, certain resin systems create cross-linked networks under the presence of high 

concentrations of CO2. For example, a study by Li et al. (2014) researched the use of CO2-cured 

resol phenol formaldehyde. This resin undergoes a neutralization process and hydrolysis to 

solidify into a resin under the influence of high concentrations of CO2.
14 The application of the 

resulting resol phenol formaldehyde resin to block CO2 leakage pathways was studied to test its 

blocking performance in a sand pack flooding experimental set up.14 Resin synthesis and sand 

pack flooding took place at 100°C. The results showed that the compressive strength of resin was 
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satisfactory with a maximum plugging rate of approximately 100% due to high bonding strength 

and thermal stability after the resin cured.14,38,86 

Resin systems are known to be chemically resistant, thermally stable, resistant to low pH 

and high salinities, impermeable when cured, and have a high bonding strength.86 They can 

endure extreme temperatures and have a long-life durability. However, resins are relatively 

expensive, brittle (low strain-at-break), toxic, difficult to prepare, and have low injectability 

(same mobility as cement).38,86 It is required to use an economically feasible material that can 

travel long distances through pore space and be non-toxic, therefore resins are not an adequate 

candidate for in-situ CO2 sealing. 

Particle Growth 

Aggregation 

CO2 has been used to change the rheology of some polymer solutions for various 

applications. A novel study used CO2 to alter the viscosity of water‐soluble polymers.87 Lu et al. 

(2014) synthesized PDAMCn (poly(acrylamide)‐co‐poly(N,N‐dimethylaminoethylmethacrylate)‐

co‐poly(N‐cetyl DMAEMA)), with different monomer ratios of acrylamide, N,N-

dimethylaminoethyl methacrylate (DMAEMA), and hydrophobic monomer N-cetyl 

DMAEMA.87 The synthesis of PDAMCn included CO2 bubbling for 10 minutes and was left to 

polymerize under CO2 atmosphere at 45°C for 8 hours. The resulting copolymer demonstrated a 

significant viscosity-response to CO2. It is known that amidine and tertiary amine switchable 

surfactants can bicarbonate when they encounter CO2. PDAMCn could be forming hydrophilic 

ammonium bicarbonate because its tertiary amine groups are being protonated by purging CO2. 

The protonation of the hydrophobic tertiary amide groups causes an increase in electrostatic 

repulsion in the polymer chain’s backbone causing a molecular microstructure change. Their 
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experiments demonstrated that CO2 increased the viscosity of several polymer solutions up to 

two orders of magnitude (Fig. 3.7). 

 

Figure 3.7 The aqueous solutions contain 10mg mL-1of PDAMCn (PDAMC70, PDAMC80, 

and PDAMC90). Viscosity of these solutions increased by bubbling CO2 at 25ºC.  

Note. Adapted with permission from the Journal of Applied Polymer Science by Lu et al., 2014. 

Copyright 2014 by John Wiley and Sons. 

Further polymer size analysis showed that CO2 treatment changed PDAMCn diameters. 

At first glance, PDAMCn does not seem to be a viable candidate for in-situ sealing of CO2 

reservoirs because an increase in polymer solution viscosity does not prevent CO2 escape.87 

However, the increase in polymer chain size may lead to the blockage of the pore space.87 

Table 3.1 Effective diameters of PDAMC70, PDAMC90, PDAM60, and PDAM70 before 

and after contacting with CO2. 

Effective 

Diameter 

(microns) 

 
 

PDAMC70 

 

PDAMC90 

 

PDAM60 

 

PDAM70 

Original 1.203 1.068 0.74 0.798 

After CO2 

addition 
3.189 2.763 7.543 7.816 

Note. Reprinted with permission from the Journal of Applied Polymer Science by Lu et al., 2014. 

Copyright 2014 by John Wiley and Sons. 
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Table 3.1 lists the original and altered diameters of various PDAMCn and PDAM. Note 

that the initial and final size of the polymer particles determine the type of rock formation that 

could be treated by this polymer solution.87 For instance, to continuously inject a polymer 

solution of 1-micron particles into a formation, the mean pore size of the formation must be 

larger than 3 microns. If after contact with CO2, aggregates of 3-micron dimeter form, then these 

aggregates could block pores that are smaller than 9 microns in diameter (according to the 1/3 – 

1/7 rule of thumb).88 Hence, this polymer solution is suitable for treating a formation with a 

mean pore size of 3 microns and a maximum pore size of 9 microns. If injected into a formation 

with smaller mean pore size, permeability will rapidly decline and consequently, the formed seal 

layer will only cover a limited area near the injection well. 

Swelling 

A new study tested the response of P(NIPAM-co-DMAEMA) (N-isopropylacrylamide 

copolymerized with dimethylaminoethyl methacrylate), which is a bulk hydrogel, to CO2.
89 They 

found that at 37°C, the hydrogel swelled by absorbing 4 times more water.89 They suggested that 

the reaction between CO2 and DMAEMA, which is an amine-containing unit, causes the 

swelling.89 Based on this interpretation, they proposed the incorporation of amine-containing 

units into ordinary polymers to synthesize CO2-responsive polymers.89 

A novel research on CO2-triggered liquid-solid switching of a microgel suspension 

(poly(N,N-dimethylaminoethyl methacrylate) was performed in water through a jamming 

mechanism.90 During this process, the PDMAEMA microgel’s amine groups become protonated 

under acidic conditions and as a result, the microgel swells. As the microgel swells, it occupies 

more effective volume fraction which can surpass a critical point for jamming transition. 

Consequently, the microgel will transition from liquid to solid.90 The microgel’s hydrodynamic 
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radius increases abruptly when the solution reaches a pH level of 5. The radius changes from 

480nm at a pH of 6.8 to 1250 nm when the pH decreases to 5. The microgel suspension is able to 

change its physical state from liquid into solid as CO2 is bubbled into it, but it returns to liquid 

after the CO2 is blown away with nitrogen.90 

Recently, water-swelling microgels have been used as a mobility control technique for 

water flooding operations.91 Mobility control is a process through which highly permeable flow 

paths (e.g., fractures) are blocked to increase the hydrocarbon recovery during water, gas, or CO2 

injection.92 The main drawback of water-swelling gels is that they shrink under high 

temperatures. An alternative to water-swelling microgels for high-temperature environments is 

double swelling smart polymer microgels (SPMs).93 Swelling of SPMs is triggered by the 

presence of CO2 and heat. Temperatures higher than 65ºC cause the SPM to swell, which 

counters the shrinking effects of heat-induced dehydration.93 Upon testing the SPM in sand 

packs, a 97% permeability drop under 5 MPa pressure was reported.93 

Evaluation of Potential Sealing Agent 

Researchers have developed several chemical reactions that are triggered or catalyzed by 

CO2. Certain gel polymers, mineral solutions, microgels, and resins demonstrate a change of 

physical properties upon interacting with CO2. Those reactions that lead to a change on their 

physical state (from a liquid to a semi-solid or solid), are particularly useful for preventive 

sealing of subsurface CO2 storage reservoirs. For this purpose, it is important that the ultimate 

sealing material is stable at high temperatures, pressures, acidity levels, and salinity. In addition, 

the long-term stability, cost, injectability, and toxicity of the chemicals are important factors that 

contribute to the appropriate selection of a CO2-triggered chemical for leakage prevention. Table 

3.2 and 3.3 summarize the advantages and drawbacks of each chemical mechanism investigated 
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in Chapter 3 to determine the ideal system which will be further investigated. The ideal 

compound should be cost effective, have a minimal environmental impact, and not require a long 

complex synthesis or slow chemical reaction. The cost of materials cannot be discussed until a 

future study reveals the amount of material that must be injected into the reservoir. However, a 

general chemical cost comparison reveals that mineral precipitation is one of the most 

economical options for preventive sealing of subsurface CO2 storage sites.  

Table 3.2 Summary of advantages and disadvantages for systems undergoing solid 

formation. 

Gel Systems Mineral Precipitation Resin Systems 

Pros Cons Pros Cons Pros Cons 

✓ High 

permeability. 

reduction 

✓ Resistant to 

acidic 

environment 

✓ Adjustable 

and versatile 

✓ Highly 

injectable 

✓ High thermal 

stability 

 Limited 

knowledge 

on long-term 

plugging 

performance 

 Gel 

degradation 

under high 

pressures 

✓ Non-toxic 

✓ Low cost 

✓ High 

permeability 

reduction. 

✓ Long term 

application. 

 Influenced 

by pH 

 Secondary 

reactions can 

increase 

permeability 

 Slow 

chemical 

mechanism 

✓ High 

bonding 

strength. 

✓ High thermal 

stability. 

✓ Adjustable 

viscosity. 

✓ Long term 

application. 

 

 Expensive 

 Complex 

preparation 

 Low 

injectability 

 Brittle 

 Toxic 

 

Table 3.3 Summary of advantages and disadvantages for systems undergoing particle 

growth. 

Aggregation Swelling 

Pros Cons Pros Cons 

✓ High permeability 

reduction. 

✓ Resistant to acidic 

environment. 

✓ Highly injectable. 

 Limited knowledge 

on long-term 

plugging 

performance. 

 Gel degradation 

under high pressures. 

 Not resistant to salt. 

✓ Reversable reaction. 

✓ High permeability 

reduction. 

 

 Shrink under high 

temperatures. 

 Plugging success is 

highly dependent on 

gel particle size. 

 Influenced by acidity. 

 



 

40 

Finally, field-scale simulation studies are necessary to determine the feasibility of the 

proposed preventive treatment using various CO2-sensitive chemicals and under various injection 

conditions. Furthermore, CO2-triggered reactions need to be tested at a wider range of pressures 

and temperatures representative of reservoir-like conditions. A typical oil and gas reservoir has a 

temperature gradient ranging between 0.6°F to 1.6°F per 100 ft of depth and a pressure gradient 

ranging from 0.43 psi/ft to 0.47 psi/ft. Exploratory and production well’s depth can range from a 

couple hundred feet to 20,000 ft, but typically they average between 2,000 ft to 8,000ft.94,95 Oil 

producing reservoirs with a depth between 2,000 ft and 8,000 ft have a temperatures ranging 

from 88°C to 175°C and pressures ranging between 900 psi to 3600 psi (61 atm to 245 atm, 

although much higher pressures are possible).96 Moreover, if an aquifer is considered for CO2 

storage, it is important to note that aquifers have salinities ranging from 7,000 ppm to 340,000 

ppm.97 Fig. 3.8 puts into perspective the range of pressures and temperatures of a typical 

subsurface CO2 storage reservoir contrasted with the pressure and temperature ranges of the 

tested materials mentioned in this chapter. Table 3.4 lists the references and data from previous 

studies used to create Fig 3.8. 

Studies conducted in gelation, precipitation, resin, aggregation, and swelling are coded as 

a green diamond, brown square, red triangle, orange square with asterisk, and blue circle, 

respectively. It is clear from this graph that most of the studied CO2-triggered reactions have not 

been tested in a range of typical reservoir conditions in terms of pressure and temperature. 

Table 3.4 References and parameters from previous studies on CO2-triggered chemicals. 

 Reference Temperature (°C) Pressure (atm) 

Gelation 

Li et al. (2014)14 90 14.8 

Zhang et al. (2016)70 25 81.7 

Nagai et al. (2011)61 170 49.3 

Han et al. (2012)71 37 1 
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Table 3.4 (continued) 

 Reference Temperature (°C) Pressure (atm) 

Precipitation 

Shen et al. (2012)79 25 34.5 

Montes-Hernandez et al. 

(2012)80 
60 39 

Chuajiw et al. (2013)98 30 1 

Domingo et al. (2004)75 25 197.4 

Prigiobbe et al. (2009)32 150 98.7 

Resin System Li et al. (2014)14 100 1 

Aggregation Lu et al. (2015)87 25 1 

Swelling 

Zhao et al. (2013)90 65 1 

Han et al. (2012)89 37 1 

Tian et al. (2019)93 40 1 

 

 

Figure 3.8 Studies performed on CO2-sensitive chemicals as a function of pressure and 

temperature. Typical range of storage reservoirs’ temperature and pressure is 

shown in the blue box. 
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Precipitated minerals and gel systems are the only mechanisms that have been studied 

closer to reservoir-like conditions and demonstrated positive outcomes. Both mechanisms 

exhibited high permeability reduction percentages and appropriate thermal stability. Gel system, 

unlike mineral precipitant, are resistant to low pH levels, have been widely employed in various 

industrial processes, have a faster reaction time, and can travel across the reservoir to address a 

specific target zone. CO2-SPAM proved to be the most suitable candidate for in-situ sealing due 

to its high permeability reduction properties, commercial availability, simple synthesis, high 

resistance to acids, and its less-toxic derivatives. It has been recorded that CO2-SPAM has 

reduced permeability by 92% in core samples with a permeability of 59.6 mD at 80°C while 

being highly injectable.14 Finally, its properties such as viscosity can be easily modified by 

changing the gel’s polymer concentration, cross-linker concentration or by increasing 

temperatures.  

Conclusions and Direction of Future Research 

The sealing materials evaluated and discussed previously have proven to satisfy several 

ideal properties an in-situ sealant is required to have. Mineral precipitants are environmentally 

friendly, non-toxic, stable for long term applications and have shown to reduced permeability 

significantly. Resin systems have demonstrated to have high thermal stability, high bonding 

strength and be ideal for long term applications. Systems undergoing particle growth through 

both swelling and aggregation processes are highly injectable, resistant to acid, and reduced 

permeability in porous media. Nevertheless, all these systems have impactful drawbacks that 

prevent them from being an ideal candidate for in-situ sealing. Mineral precipitants are highly 

influenced by pH levels and have a slow chemical reaction mechanism while resin systems are 
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expensive, toxic and difficult to inject. Systems undergoing particle growth are influenced by 

temperature, particle size and salinity.  

In conclusion, CO2-SPAM has proven to be an exceptional material for in-situ sealing 

purposes due to its versatility, high injectability, thermal stability, resistance to acids, 

commercial availability, and high permeability reduction properties. As a result, future studies in 

this dissertation points to expanding on CO2-SPAM’s synthesis (Chapter 4) and how its 

composition correlates to its behavior under high salinities (Chapter 5) while exploring the 

impact on the geological stresses caused by its injections into the subsurface (Chapter 6). 
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CHAPTER IV 

DEVELOPMENT OF CO2-SENSITIVE POLYACRYLAMIDE GEL: CHEMICAL 

MECHANISM 

Introduction 

CO2-sensitive polyacrylamide (CO2-SPAM) is a polymer that changes its physical 

structure from aqueous to semi-solid gel under the presence of CO2.
99,100 In the past decade, 

CO2-triggered gelation of CO2-SPAM has been studied by a number of research teams but, 

nevertheless, there is not a clear path of the sequence of chemical mechanisms that occur 

throughout its synthesis.67,100–102 CO2-SPAM gel is prepared by using polyacrylamide (PAM), 

methenamine, and resorcinol. PAM [C3H5NO]n is a water-soluble polymer that is widely used in 

various industrial applications and can be found as nonionic (Fig. 4.1a) and hydrolyzed (4.1b). 

PAM is used in various applications such as a drilling fluid viscosifier,103 water treatment 

flocculant,104–106 and pulp fiber binder,107–110 to name a few.  

 

Figure 4.1 (a) Non-ionic polyacrylamide and (b) hydrolyzed polyacrylamide. 
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Polyacrylamide gels and polymers are generally cross-linked with a metal agent111 (e.g., 

Al3+, Cr3+, Ti4+ and Zr4+) or an organic cross-linker (e.g., phenol formaldehyde,112,113 

terephthalaldehyde, hydroquinone-hexamethylenetetramine,114 and polyethyleneimine (PEI)115). 

A cross-linked polymer refers to a polymer network in which adjacent polymer chains are linked 

through covalent bonds (joining molecules by sharing two or more pairs of electrons between 

atoms).116 Different forms of polyacrylamide (e.g., hydrolyzed polyacrylamide,54,111,117 partially 

hydrolyzed polyacrylamide,114,117–121 acrylamide-based copolymer,53,122 and PAM-based 

materials123,124) are used to produce soft materials such as gels. Methenamine [C6H12N4] is a 

heterocyclic organic compound with a cage-like structure that is water soluble and releases 

formaldehyde under acidic conditions (Fig. 4.2).125 Methenamine’s structure comprises of a 

carbon ring with three nitrogen atoms, hence, its classification as a heterocyclic compound.126  

This compound can be found in two additional forms: methenamine hippurate (which contains 

hippuric acid) and methenamine mandelate (which contain mandelic acid).127 Resorcinol 

[C6H4(OH)2] is a crystalline solid organic compound and one of three different isomeric 

benzenediols, specifically the 1,3 isomer (Fig. 4.3).127 This phenol compound is water soluble 

and is used in the manufacturing of resins, plastics, medicine, etc.127  

Methenamine Hydrolytic Decomposition 

Oil and gas reservoirs, where CO2 is used for EOR or stored, are naturally under high 

temperature (>88°C), high pressures (>900 psi) and high salinity brine saturation (>20,000 ppm). 

Injection of CO2 under these conditions provides ideal conditions for an acidic environment.128–

130 CO2 dissolves into the formation water and produces carbonic acid.100  

Acidic environments formed by carbonic or acetic acid have been shown to induce 

polymerization in polyacrylamide-resorcinol-methenamine system, which is the CO2-SPAM 
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under study.131 Polymerization is the process where smaller molecules, such as monomers, 

dimer, and oligomers, are covalently bonded to create longer and larger molecule known as 

polymers. In reservoir-like conditions, high temperatures and low pH levels are expected. These 

conditions are favorable to the breakdown of methenamine into formaldehyde and ammonia as 

seen in Fig. 4.2 

 

Figure 4.2 Hydrolytic decomposition of methenamine into formaldehyde and ammonia. 

 

This process, known as methenamine’s hydrolytic decomposition, is also described as 

methenamines’ hydrolysis.14 Here, methenamine (the reactant) is hydrolyzed and water breaks its 

chemical bonds. This chemical process is well known as it used for several manufacturing 

products such as adhesives, coatings, sealants, rubber, etc. 

Resorcinol and Formaldehyde Addition and Polycondensation 

The released formaldehyde from methenamine’s hydrolytic decomposition reacts with 

resorcinol to form simply, doubly or triply hydroxymethyl derivatives (–CH2OH) by connecting 

in the meta position through an addition reaction that can happen without a catalyst or any 

substance that can accelerate the chemical reaction at ambient conditions as seen in Fig. 4.3.132–

134 Addition reaction is defined as the chemical reaction where two different molecules combine 

to form one (i.e., A + B = C) 



 

47 

  

Figure 4.3 Addition reaction of resorcinol and formaldehyde. 

 

The hydroxymethyl-resorcinol is a monomer that can be covalently bonded to an 

identical molecule to create a macromolecule. In this case, hydroxymethyl-resorcinol may also 

ultimately generate phenol formaldehyde resin network, also known as phenolic resin, through 

polymerization.134 It is conventionally believed this process is the result of polycondensation of 

hydroxymethyl derivatives, but other authors established that the resorcinol-formaldehyde’s 

synthesis consist of a subtle interplay between chemical and physical processes.135 Through 

liquid-phase nuclear magnetic resonance (NMR), they determined that no condensation products 

were produced and that nanoscale clusters assemble.135 NMR is a spectroscopy tool used to 

identify the content or molecular structure in a sample through the use of radiofrequency 

electromagnetic radiations with the nuclei of the molecules in a strong magnetic field.136 The 

polymerization reaction between hydroxymethyl-resorcinol molecules can be acid (carbonic acid 

produced from CO2 and water) or base catalyzed and can lead to the formation of a larger more 

complex structure. The hydroxymethyl groups will release H2O as they create of ether bridges (–

CH2–O–CH2–) or methylene bridges (–CH2–) by reacting with a unsubstituted resorcinol site 

until a three-dimensional cross-linked polymer is formed as seen in Fig. 4.4.132,137 Note that the 
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squiggly lines attached to the ends of the resorcinol-formaldehyde depict the accessible sites for 

further polymer expansion. 

 

Figure 4.4 Resorcinol-formaldehyde polymerization leading to phenolic resin formation. 

 

Hydrolysis of Polyacrylamide and Deprotonation Process 

Polyacrylamide should undergo hydrolysis under acidic conditions as it is known to 

hydrolyze through N-protonation (proton attacking amide group) or O-protonation (proton 

attacking the carbonyl oxygen).138 O-protonation is more energetically favorable than N-

protonation.138 Hydrolyzed polyacrylamide contains chains with carboxylic acid groups (R-

COOH) (Fig. 4.5).139  

The carboxylic acid has a hydroxyl group (-OH) attached to the carbonyl carbon (C=O) 

and due to oxygen’s electronegativity, the carboxyl group undergoes ionization and discharges a 

proton. The deprotonation process creates a carboxylate ion which is stable under the presence of 

the two oxygen atoms as seen in Fig. 4.5.139 
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Figure 4.5 Conjugation and deprotonation of carboxylic acid into carboxylate ions.  

Note. Reprinted with permission from LibreTexts by Kennepohl et al., 2014. Images in Acidity 

of Carboxylic Acid is shared under a not declared license and was authored, remixed, and/or 

curated by LibreTexts. 

Hydrolyzed Polyacrylamide and Hydroxymethyl-Resorcinol Three-Dimensional Network. 

Hydrolyzed PAM’s amide groups further react with formaldehyde to create long polymer chains 

as seen in Fig. 4.6. Furthermore, hydroxymethyl-resorcinol goes through a polycondensation 

process with PAM’s accessible amide groups, which creates a 3-dimensional gel structure (Fig. 

4.7).131 The covalent bonds created by these organic cross-linkers are more stable than ionic 

bonds formed by cross-linking HPAM with metal agents.140 The covalent bonds also provide 

better thermal stability to the gel.56,141,142  
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Figure 4.6 PAM and formaldehyde reaction. 

  

 

 

Figure 4.7 Polymerization reaction of PAM and hydroxymethyl-resorcinol.  
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Network Structure 

Based on past literature and organic chemistry principles, it is believed that the final CO2-

SPAM includes three different polymer structures: resorcinol-formaldehyde resin, PAM-

formaldehyde, and PAM-hydroxymethyl-resorcinol. However, it is unclear whether these 

polymer structures copolymerize or form some type of interpenetrating network. If the former, 

then CO2-SPAM would be a single cross-linked network. If the latter, multiple polymer 

structures will be present and interpenetrating each other.  

An interpenetrating polymer network (IPN) is a polymer system that is comprised of two 

or more cross-linked polymer networks being partially intertwined or entangled but not cross-

linked or covalently bonded with one another.143 Similar to an IPN, a semi-interpenetrated 

polymer network (SIPN) is a polymer system that is comprised of a cross-linked polymer 

network and a linear or branched polymer.144 In this study, phenolic resin, PAM-formaldehyde 

and PAM-hydroxymethyl resorcinol are expected to create polymer networks. Each of these 

polymers could potentially play a role in the final gel structure; however, it is not clear whether 

one or more of these polymers play the main role in forming the gel structure. To understand this 

behavior, the following experiment was conducted to interpret the gelation process of each 

polymer chain. 

Methodology and Experimental Procedure 

Materials 

The materials included methenamine (molecular weight: 140.19 g/mol, grade: USP, 

purity: 99-100.5%, Spectrum Chemical MFG CORP), resorcinol (molecular weight: 110.112 

g/mol, grade: USP, purity: 99-100.5%, Spectrum Chemical MFG COPR), PAM (average MW: 

5,000,000 to 6,000,000, monomer molecular weight: 71.08 g/mol, Thermo Fisher Scientific), 
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sodium chloride (molecular weight: 58.44 g/mol, grade: reagent, Thermo Fischer Scientific), 

distilled water (molecular weight: 18.015, grade: extra pure, Thermo Fisher Scientific) and 

carbon dioxide (Industrial grade gas, Airgas). A mixture was prepared of distilled water and 

sodium chloride with a concentration of 20,000 ppm. PAM, methenamine, and resorcinol’s 

chemical structures can be seen in Fig. 4.1, 4.2 and 4.3. 

Mixture Preparation 

Solution #1 was prepared in a brine solution at 20,000 ppm. The solution contained 0.4 

wt% of methenamine and 0.1 wt% of resorcinol. Firstly, the brine solution was heated and 

maintained at 90°C in a ceramic stirring hotplate in addition to being continuously bubbled with 

CO2 in an Erlenmeyer flask. Methenamine was first added to the brine and stirred (550 rpm) for 

15 minutes until fully dissolved. Resorcinol was successively added to the mixture and reached 

full dissolution after 15 minutes. Fifty milliliters of the dissolved solution were placed in a test 

tube and placed in a water bath at 90°C and under CO2 conditions (CO2 bubbling). The dissolved 

mixture was exposed to CO2 for an additional 30 minutes while visual changes in the sample 

were recorded.  

Secondly, Solution #2 was prepared in a brine solution at 20,000ppm with 0.4 wt% of 

methenamine and 1.0 wt% of PAM. Similar to Solution #1, the brine reached 90°C and was 

subjected to CO2 bubbling before introducing methenamine into the mixture. PAM was added 

into the mixture following methenamine’s dissolution. After complete dissolution of the 

reactants, 50 mL of the mixture was placed into a test tube. The test tube was then placed in a 

water bath at 90°C and subjected to CO2 bubbling for 30 minutes as visual changes were noted. 

Lastly, Solution #3 was prepared in a brine solution at 20,000ppm with 0.4 wt% of 

methenamine, 0.1 wt% of resorcinol and 1.0 wt% of PAM. Solution #3 had the exact same 
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preparation process as Solution #1 with the addition of 1.0 wt% of PAM after resorcinol’s 

complete dissolution. After the complete dissolution of PAM, 50 mL of the mixture was placed 

in a test tube and subjected to 90°C in a water bath and CO2 bubbling for 30 minutes while visual 

changes in the sample were recorded. 

Results and Discussions 

The methenamine and resorcinol mixture ultimately changed from a clear, colorless 

liquid to an opaque, rust-colored liquid (Fig 4.8), indicating that a chemical reaction had 

occurred. The solution appeared to be homogeneous with no solid precipitates, and no visible 

changes in viscosity were noted (compared to the initial aqueous solution) that would indicate 

formation of a network structure.  

 

Figure 4.8 Methenamine and resorcinol mixture under CO2 conditions at 0 minutes, 10 

minutes, 20 minutes, and 30 minutes.  

 

Throughout the entirety of the experiment, Solution #1 remained a flowing liquid, which 

showed that the formation of resorcinol-formaldehyde resin may not contribute to the formation 

of the gel structure due to the absence of rheological changes in the mixture. It is possible that 

only oligomers could be forming in Solution #1. An explanation as to why the phenolic network 
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structure did not form could be attributed to a low fractional monomer conversion. In a step 

polymerization, low monomer conversion results in low degrees of polymerization (molecular 

weight), since only dimers, trimers, etc. are being formed early in the reaction.145 The critical 

conversion for phenolic resin to gel was estimated to be 0.7071 from the following equation (Eq. 

4.1):146 

𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 =
1

√𝑟 + 𝑟(𝑓 − 2)𝑟𝑟
  (4.1) 

 

 Here, it was assumed that the feed ratio (r) of resorcinol and formaldehyde is equal to 1, 

the branching ratio (rr) of the hydroxyl groups is equal to 1, and the functionality of 

hydroxymethyl-resorcinol is 3. This result means that, when the system achieves a critical 

conversion of 0.7071, the crosslinked network is expected to form. Additional experiments 

would be necessary to measure the concentration and conversion of hydroxymethyl-resorcinol 

through NMR spectroscopy and/or the molecular weight of phenolic resin through static light 

scattering or mass spectroscopy.  

Secondly, Solution #2 reflected the formation of PAM-formaldehyde chains from 

methenamine and PAM. This mixture appeared to be homogeneous as well with no solid 

precipitates and did experience an increase in viscosity unlike Solution #1. The majority of the 

viscous fluid flows to bottom of the test tube by gravity upon inversion, and the viscosity 

increased compared to the initial aqueous solution as seen in Fig. 4.9.  
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Figure 4.9 PAM-formaldehyde synthesis from methenamine and PAM in brine at 20,000 ppm 

under CO2 conditions at 0 minutes, 15 minutes, and 30 minutes. 

 

This rheological response suggests that PAM-formaldehyde chains alone do not 

contribute to the formation of a strong gel network, and the increase of viscosity suggests that 

linear chains may be dissolved in the brine. Thus, on average, one formaldehyde appears to be 

reacting per pair of PAM chains, which would account for the linear structure and not a 

crosslinked network. This scenario is likely to occur with low concentrations of formaldehyde, 

so additional experiments are recommended to measure the concentration of formaldehyde in the 

solution through titration or infrared spectroscopy. 

Finally, Solution #3 demonstrated a drastic increase in viscosity. Upon inversion of the 

test tube after 30 minutes of reaction time, the system appeared to be a slightly deformable, non-

flowing gel with a Sydansk gel strength code of H147 (Fig. 4.10). Since the mixture is no longer a 

solution and only contain 5.0 wt% monomeric starting material, it is probable that a cross-linked 

network has been formed and is swollen with the brine solution. 



 

56 

 

Figure 4.10 CO2-SPAM gel synthesis from PAM, resorcinol and methenamine. 

 

Based on these results, it is believed that the polymer created by the formation of 

repeated PAM-hydroxymethyl-resorcinol is the main contributor to the formation of CO2-SPAM 

and responsible for its positive attributes as a sealing agent. From these series of experiments, 

Solutions #1 and #2 demonstrated to be homogeneous solutions with no solid precipitates. 

Solution #1 is believed to have formed oligomers due to low conversion while Solution #2 was 

able to form linear polymer structures soluble in the brine solution. Solution #3 demonstrated to 

be a swollen polymer by increasing its viscosity and expanding its volume through hydrophilic 

interactions between the polymer network and the solvent (brine). The presence of oligomers, 

linear polymers and a cross-linked network suggests that the CO2-SPAM may be semi-

interpenetrated network. Chapter VII explores future work and recommendations on how to 

properly identify a semi-interpenetrated system using Soxhlet extraction and spectroscopy tools. 

Conclusions 

CO2-SPAM is a novel polymer gel system that has demonstrated exceptional in-situ 

sealing capabilities for CCS applications. However, limited knowledge was available on the 

chemical mechanisms that involved its synthesis. The suggested chemical mechanisms that 
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methenamine, resorcinol, and PAM undergo to form the CO2-SPAM were examined. 

Methenamine releases formaldehyde through hydrolytic decomposition, which is further used to 

create resorcinol-formaldehyde, PAM-formaldehyde, and hydroxymethyl-resorcinol-PAM 

chains. Resorcinol and formaldehyde go through a two-step process to create resorcinol-

formaldehyde resin: addition reaction between resorcinol and formaldehyde to create 

hydroxymethyl-resorcinol and polymerization of the hydroxymethyl derivatives to form 

resorcinol-formaldehyde resin. Lastly, PAM’s amide groups react with both unreacted 

formaldehyde and hydroxyl-resorcinol to create a three-dimensional structure. It was found that 

the CO2-SPAM includes the mentioned polymer chains, but it was not clear whether these chains 

were covalently bonded or interpenetrated with each other. A qualitative test was performed to 

form resorcinol-formaldehyde resin, PAM-formaldehyde and CO2-SPAM gel, and identify visual 

changes in their flow characteristics. The methenamine and resorcinol solution reacted (as 

demonstrated by a color change from colorless to red) to for resorcinol-formaldehyde but with no 

change in viscosity.  The PAM and methenamine solution reacted to form PAM-formaldehyde 

polymers that resulted in a slight change in viscosity but not enough to be a non-flowing rigid gel 

for sealing purposes. However, a mixture of all three components (methenamine, resorcinol, and 

PAM) in the brine solution exhibited a drastic change from a liquid to a non-flowing gel. Thus, 

all three components of CO2-SPAM play a significant role in the creation of the 3D swollen, 

cross-linked network structure. 
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CHAPTER V 

INFLUENCE OF NACL BRINE CONCENTRATIONS ON CO2-SENSITIVE 

POLYACRYLAMIDE GEL 

Introduction 

CO2 is known to be a triggering factor for certain gelation processes. These gelation 

mechanisms have applications in EOR to control the mobility of CO2
68 and in subsurface CO2 

storage to prevent leakage from injection-induced fractures.99 For in-situ sealing of leakage 

pathways, the sealing agent must be able to travel through the leakage pathways and create an 

impermeable seal once it encounters CO2. To this end, a CO2-triggered gelation reaction may 

serve as a desired solution. Table 5.1 lists some common CO2-triggered gelation reactions 

reported in the literature, which are also included in Chapter 3.  

Table 5.1 CO2-triggered gelation reactions. 

Wu et al. (2018)148 Silica aerogel formation with CO2 gas 

Floren et al. (2012)149 Silk fibroin hydrogel formation with high pressure CO2 

Gurikov and Smirnova (2018)150 Alginate-lignin aerogels gelation with CO2 

Li et al. (2019)69 CO2-triggered gelation of polyacrylamide-based solution 

Yu et al. (2017)66 CO2-triggered gelation of triblock copolymers 

Tian et al. (2019)93 CO2-triggered microgels 

Carretti et al. (2003)63 Polyallylamine gelation with CO2  

Nguele et al. (2021)151 Evaluation of CO2-triggered silica gel polymer 

Lin and Theato (2013)67 CO2-responsive poly(allylamine) 

 

Li et al.14,69 studied the influence of temperature and concentration on a polyacrylamide-

hexamethylenetetramine-resorcinol solution’s gelation time and its blocking performance. This 
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study used Sydansk147 gel strength code on all samples exposed to nitrogen and CO2 to determine 

the gel strength. They reported a strength code of H for gels exposed to 50°C, 60°C, 70°C, and 

80°C. It was also noted that gelation time decreases as temperature increases but increases as 

polymer concentration increases. Finally, the blocking performance was measured in a sand pack 

and found PAM at 1 wt% to exhibit great sealing capabilities with a plugging rate of 92% and 

higher. This study investigated the effect of high temperature, which is one of the characteristics 

of deep formations. The other common attribute of subsurface CO2 storage, and hydrocarbon 

reservoirs is the presence of high salinity brine. For instance, saline aquifers or salt domes, which 

contain high salt concentrations, can potentially be used to store CO2; therefore, the effects of 

high salt content from the formation fluid on the gel’s sealing properties need to be investigated. 

(Salt domes are impermeable geological structures made out of salt including halite and 

evaporites that intrude and eventually break through overlaying rock reaching towards the 

surface due their greater buoyancy.152) In situations where the cap rock is a salt dome, gel and 

CO2 injection is best done through a directional well (non-vertical well angled towards a specific 

target zone) to avoid the technical drilling challenges that arise from drilling through the salt 

dome, such as a poor cement job, drilling mud losses and wellbore washout.153 Salt domes are 

not likely to be easily fractured due to their ductility and integrity,154 but CO2-SPAM can be 

injected close to the target leakage pathways located between the salt dome and the reservoir 

rock. Geological CO2-storage sites vary in salt content, therefore, the influence of salt on gel 

formation and its sealing performance is crucial. PAM gelation time, its pre-gel solution 

viscosity, and PAM gels mechanical properties are known to be affected by the salt content of 

the solution. 
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Jia et al.55 summarized the results of 11 studies on the effect of salinity on the gelation times of 

various PAM-based gels. According to these studies, gelation time may decrease or increase as a 

result of increased salinity. Table 5.2 lists those studies as well as more recent studies that used 

NaCl as the salt. 

Table 5.2 Studies of salinity effects on PAM-based gels. 

PAM-based Gel Temperature Salt Salinity 
Gelation 

Time 
Reference 

HPAM/Cr3+-

methanal 
25-32C 

NaCl and 

synthetic 

brine 

5000 to 

100,000mg/L 

Decrease 

and then 

increase 

120,155 

HPAM/ZrOCl2 28C 
NaCl,CaCl2, 

MgCl2 

492 to 

13,838 mg/L 
Decrease 156 

HPAM/PEI 40C -65C NaCl 

5,000 to 

100,000 

mg/L 

Increase 119,157 

PAtBA/PEI 120-150C 
NaCl, KCl, 

CaCl2 

1186 to 

58348 mg/L 
Increase 

50,51,118,158,15

9 

HPAM/Resorcinol

/Phenol-

formaldehyde 
65C NaCl 

10,000 to 

30,000 mg/L 
Decrease 112 

HPAM/Resorcinol

/Formaldehyde 

/NH4Cl 
30C NaCl 

10,000 to 

100,000 

mg/L 

Increase 113 

PHPA/Hexamine/

Hydroquinone 
80C -120C NaCl 1 to 4 wt% Increase 114 

PAM/Cr3+ 24C 

NaCl, KCl, 

CaCl2, 

MgCl2 

Na+, K+, 

Ca+2 and 

Mg+2 mass 

ratio 14:1:3:1 

Increase 160 

 

Several of the listed studies show that when hydrolyzed polyacrylamide (HPAM) or 

partially hydrolyzed polyacrylamide (PHPA) is cross-linked with an organic cross-linker, 

gelation time tends to elongate as the solution increases its salinity. Furthermore, the effect of 

monovalent and divalent ions from salts on the elastic properties of the formed gel is undesired 
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as it decreases the gel’s structural stability .114,159,161,162 Monovalent cations are positively 

charged ions with a single charge from the loss of electrons such as Na+1 and K+1. Divalent 

cations, also known as bivalent cations, are also positively charged ions with a valence of 2+ 

such as Ca+2 and Mg+2. Reservoir formation water, has an abundance of cations (Na+1, K+1, Ca+2, 

and Mg+1) present as well as anions (Cl-1, HCO3
-1, and SO4

-1).163 The presence of various salt 

ions have the potential to interfere with gel formations. Jia et al. studied the influence of 

monovalent (NaCl and KCl) and divalent (Ca2Cl) salts in a PAM gel’s gelation time. Their study 

reported that monovalent cations have a retardant effect on gelation time.55 The gelation time 

increase as Na+1 and K+1 concentration increased from 1 to 5 wt% in their respective PAM 

solution, but Na+1 increased gelation time more than K+1 because of sodium’s higher charge 

density.55 Divalent cations on the other hand showed to delay gelation time even more. Ca+2 

showed a higher effect on gelation time than Na+1 and K+1 and it is attributed to its higher ionic 

charge number.55  

Most of the studies reviewed above, focused on the effects of salinity on the gelation of 

HPAM-based solutions via organic or metal cross-linkers. Polyacrylamide has been studied 

thoroughly as it is a highly versatile polymer used widely across many industries, but knowledge 

of its application as a CO2-triggered sealant and its rheological behavior under reservoir like 

condition is still limited. This study targeted the behavior of CO2-SPAM under conditions that 

are expected in depleted oil and gas reservoir and have not been addressed by other studies as 

seen in Fig. 5.1.14,32,61,70,71,75,79,80,87,90,93,98 
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Figure 5.1 Studies performed on PAM-based polymers as a function of temperature and 

salinity. 

 

Research on the effect of high salinity on CO2-triggered gelation of PAM-based solutions 

is lacking. The present work addresses the effect of salinity on the gelation time of CO2-sensitive 

polyacrylamide gel. Furthermore, it outlines the results of rheological tests on CO2-SPAM 

solutions and gels under various NaCl and polyacrylamide concentrations. 

Methodology 

Materials 

Poly(acrylamide) (average MW: 5,000,000 to 6,000,000, monomer molecular weight: 

71.08 g/mol, Thermo Fisher Scientific); methenamine (molecular weight: 140.19 g/mol, grade: 

USP, purity: 99-100.5%, Spectrum Chemical MFG CORP); resorcinol (molecular weight: 

110.112 g/mol, grade: USP, purity: 99-100.5%, Spectrum Chemical MFG COPR); sodium 

chloride (molecular weight: 58.44 g/mol, grade: reagent, Thermo Fischer Scientific); water 
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(molecular weight: 18.015, grade: extra pure, Thermo Fisher Scientific); carbon dioxide 

(Industrial grade gas, Airgas). 

Gel Preparation 

Aqueous CO2-SPAM gel solution consists of 0.4 wt% methenamine, 0.1 wt% resorcinol, 

PAM at different concentrations (0.5 wt%, 1.0 wt%, 1.5 wt%, 2.0 wt% and 3.0 wt%) and brine at 

different salt concentrations. Methenamine and resorcinol’s weight percentage remained constant 

throughout all gel samples while PAM wt% and salinity concentrations were varied as shown in 

Table 5.3. 

Table 5.3 CO2-SPAM samples with constant 0.4 wt% of methenamine and 0.1 wt% of 

resorcinol. 

Sample # PAM wt% Brine (ppm)  Sample # PAM wt% Brine (ppm) 

1 

PAM 0.5 wt% 

20,000 9 

PAM 1.5 wt% 

20,000 

2 100,000 10 100,000 

3 150,000 11 150,000 

4 200,000 12 200,000 

5 

PAM 1.0 wt% 

20,000 13 

PAM 2.0 wt% 

20,000 

6 100,000 14 100,000 

7 150,000 15 150,000 

8 200,000 16 200,000 

 

CO2-SPAM gel samples were prepared using a brine solution as the solvent with a 

salinity level comparable to that of formation water in a depleted oil and gas reservoir.164 Brines 

with salt concentrations of 20,000ppm, 100,000ppm, 150,000ppm and 200,000ppm were tested 

and compared. First, 100mL of brine was heated to 90°C in a conical flask and stirred with a 

magnetic stirrer at 550 rpm at ambient pressure. After it reached the desired temperature, 0.4 

wt% of methenamine was added to the heated brine solution and stirred until fully dissolved 

(~15 minutes). Resorcinol was consecutively added to the mixture and stirred for an additional 
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15 minutes until it fully dissolved. Finally, polyacrylamide was added to the solution, and the 

mixture was agitated for 1 hour to achieve complete dissolution. A sample of approximately 50 

mL from the mixture was transferred to a test tube and placed in a hot water bath at 90°C. After 

the sample reached the set temperature, gaseous CO2 was bubbled into the mixture by inserting a 

silicone tube connected to the CO2 supply as seen in Fig. 5.2. 

 

Figure 5.2 CO2 bubbling into test tube in a hot water bath. 

 CO2 was bubbled into the sample for 30 minutes. Afterwards, the CO2 supply was shut 

off, and the test tube was closed immediately. This technique allowed CO2 gas to remain inside 

the test tube. The solution was left to gel under CO2 condition and at 90°C in the water bath. 

Note that CO2 bubbling is not an accurate representation of the exact CO2 diffusion mechanism 

happening in porous media, but is the standard operating procedure reported in other studies to 

introduce CO2 into samples.100,165,166 In the reservoir, the CO2 will encounter the CO2-SPAM 

layer as a front traveling upwards as mentioned in Chapter 1. A more precise representation of 

CO2 encountering CO2-SPAM will be through a core flooding experiment as seen in Fig. 5.3. 
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Figure 5.3 Schematic of CO2 diffusion through porous media with CO2-SPAM seal. 

 

In this setup, CO2-SPAM is injected into the core followed by the injection of CO2. The 

core will then be sealed off to let the CO2 diffuse into the CO2-SPAM saturated area, react with 

it, and form a gel. This experimental set up would be a better representation of CO2 diffusion and 

gel formation in porous media. Two main drawbacks from this method are: 1) the gelation will 

take longer because CO2 will slowly diffuse into the solution and 2) the formed gel will not be 

retrievable for rheological testing.  

Gelation Time Measurement, tgel 

Gelation time (tgel) is the time required for the aqueous CO2-SPAM solution to change its 

physical properties and become non-flowing/rigid. For this study, the Sydansk gel strength 

coding system147 was used to categorize and describe gel’s physical characteristics as seen in 

Table 5.4. This coding system has been widely used to characterize gels for oilfields wellbore 

operations and for permeability reduction of subterranean hydrocarbon-bearing formations such 

as CO2 storage sites in addition to being convenient and inexpensive.101,131,167–169 Other studies 

have quantified the gelation time by determining the gel’s inflection point on the viscosity vs. 
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time curve as seen in Fig. 5.4 using a viscometer.55,56,131,170 The inflection point is defined as the 

onset of gel formation. The initial and final gelation times are also used as an indicator of 

gelation. The initial gelation time is considered the time needed to see a sudden increase in 

viscosity while the final gelation time is the time needed to achieve a steady viscosity.131 

Quantitative determination of gelation time requires continuous viscosity measurement as the 

solution turns into a gel. A dynamic viscosity measurement was not possible at our facility 

because it was not possible to provide a CO2 atmosphere around the rheometer. Thus, we 

decided to use the qualitative Syndask method similar to other studies that have investigated 

CO2-triggered gelation. 

 

Figure 5.4 Gelation time’s inflection point in a viscosity vs. time plot. 

 

The gel strength descriptions from Table 5.4 are illustrated in Fig. 5.5. The figure depicts 

the gel’s flowing capabilities corresponding to each gel strength code when tested by inverting 

the testing tube containing the gel.  
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Table 5.4 Sydansk gel strength code. 

Gel Strength Code Gel Description 

A 
No detectable gel: No visible change on the gel’s viscosity compared to 

the initial aqueous solution. 

B 
Highly flowing gel: Slight visible change on the gel’s viscosity compared 

to the initial aqueous solution. 

C 
Flowing gel: Majority of the gel flows to bottom of the testing tube by 

gravity upon inversion 

D 
Moderately flowing gel: Only a small portion (5-10%) of the gel does not 

flow to the bottom of the testing tube by gravity upon inversion. 

E 
Barely flowing gel: The gel can barely flow and/or a significant portion 

(>15%) of the gel does not flow by gravity upon inversion. 

F 
Highly deformable non-flowing gel: The gel does not flow to the bottle 

cap by gravity upon inversion. 

G 
Moderately deformable non-flowing gel: The gel deforms about halfway 

down the testing tube by gravity upon inversion. 

H 
Slightly deformable non-flowing gel: Only the gel surface slightly 

deforms by gravity upon inversion. 

I 
Rigid gel: There is no gel surface deformation by gravity upon inversion. 

 

 

 

Figure 5.5 Sydansk gel strength code visualization. 

 

Recording the gelation time was started with the introduction of CO2 into the CO2-SPAM 

aqueous solution (Fig. 5.6a). As CO2 was continuously bubbled into the sample, visual changes 
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were recorded every five minutes to document all aspects of the evolution of the CO2-SPAM. 

Fig. 5.6b shows a CO2-SPAM gel after CO2 shut-off with a gel strength code F, and Fig. 5.6c 

depicts a gel with a gelation time longer than one hour with a gel strength code H. 

 

Figure 5.6 (a) PAM aqueous solution at t = 0. (b) PAM gel solution at t = 40 minutes. (c) 

PAM gel solution at t > 1 hour. 

 

Qualitative characteristics of the gel, such as cloudiness, color, apparent flow behavior, 

bubble’s consistency and size, etc., were documented and used to determine the code based on 

Sydansk’s gel strength code.121,128,147,171 Samples were considered fully gelled when their 

Sydansk’s gel code reached G (moderately deformable non-flowing gel). When the gel reached a 

gel strength code of G, time recording was stopped, and the sample’s tgel was logged with its 

respective PAM concentration and salinity. All samples need to be replicated a minimum of 

three times and demonstrate similar results with minimal variation to validate the results. 
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Rheology Study 

The gel was characterized by utilizing an angular oscillatory rheometer (Discovery 

Hybrid Rheometer) with a stainless-steel parallel Peltier plate. This instrument’s function is to 

apply shear stress and characterize the elastic properties of soft materials such as CO2-SPAM 

gel.172 The rheometer uses a 20mm parallel plate geometry as seen in Fig. 5.7. The gel was 

characterized after gelation time was completed at ambient pressure and 30°C to prevent noise 

interfering with the data collection (the rheometer shows inconsistent and noisy readings at high 

temperatures). Note that the sample is removed from the water bath at 90°C when placed 

immediately in the rheometer for testing. 

 

Figure 5.7 Visualization of upper plate retraction from loaded gel sample on oscillation 

rheometer after testing. 

 

Amplitude sweep. An oscillation amplitude sweep is an oscillatory assay that uses an 

increase in energy input (amplitude) to probe soft materials’ rheological and mechanical 

stability. In this test, the rheometer is set to a loading gap of 45,000 microns and the gel sample 

is placed on the lower plate. The upper plate is lowered to a gap of 800 microns ensuring not 

sample spills over the lower plate. After the sample is loaded to the rheometer, the amplitude 

sweep test is selected in the TRIOS software and initiated with the following parameter: 
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• Environmental Control 

o Soak time: 60 seconds 

• Test Parameters 

o Angular frequency: 1 rad/sec 

o Strain %: 0.1% to 10.0% 

o Points per decade: 10 

The apparatus exerts oscillating angular strain on the gel between the two plates and 

measures the stress. This test determines the material’s ratio of elastic stress to strain at a 

constant frequency with increasing oscillation strain percentage. In other words, the strength of 

the gel is quantified by its ability to withstand stresses before inelastic deformation occurs 

(storage modulus). This measurements are important because they determine the strength of the 

gel which subsequently relates to the gel’s sealing/blocking performance. A high storage 

modulus indicates that the material tested demonstrates more solid-like characteristics and is able 

to withstand higher stresses (higher pressures) before inelastic deformation (seal rupture). The 

amplitude sweep was performed at a constant frequency on gel samples (PAM at 1.0 wt%, 2.0 

wt%, 3.0 wt%) in brine solutions of 20,000ppm and 200,000ppm to identify the change in 

storage modulus (G’) and loss modulus (G’’) as a function of oscillation strain percentage.  

The storage modulus, also known as the elastic modulus, represents the elastic strength of 

a material but in terms of shear deformation, while the loss modulus is the viscous response of a 

material and also a measurement of dissipated energy from shear deformation.173 This analysis 

also determined the linear viscoelastic (LVE) region of the gel and the strain percentage at which 

the frequency sweep was performed. The viscoelastic region is equilibrium state of a material’s 

structure where the ratio between the applied stress and strain percentage is linear. At a constant 
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frequency and temperature, a linear relationship between moduli and strain percentage can be 

measured which results in what is called the LVE region. The viscoelastic properties (i.e., 

storage and loss modulus) are independent of strain within the linear region. At the end of the 

linear region (at the critical strain), the storage modulus becomes strain dependent. It is important 

to note that the material’s temperature can affect the critical strain.174 Temperature’s effect on a 

material’s modulus can be typically classified in four regions of viscoelasticity: glassy region, 

transition region, rubbery plateau region and terminal region (Fig 5.8).174  

 

Figure 5.8 Viscoelastic regions based on storage modulus as a function of temperature. 

Note. Adapted with permission from Acta Astronautica by Kawak et al., 2017. Copyright 2017 

by Elsevier. 

 

These regions can be identified using a temperature ramp test or a frequency sweep. The 

glassy state is often characterized by a high plateau in the storage modulus at lower 

temperatures.174 As the material is heated, the glassy state shifts to the transition region where 

the storage modulus decreases.174 Continuous exposure to higher temperatures leads the material 
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to the rubbery plateau and finally the terminal region also known as the liquid flow region. The 

rubbery plateau in a modulus-temperature plot indicates the presence of entanglement of cross-

links in the sample and is also inversely proportional to the molecular weight between two 

successive entanglements.175 Amplitude sweep’s strain (displacement) or stress (torque) 

amplitude can be varied linearly or logarithmically while data are recorded by the rheometer. 

Flow sweep. A flow sweep illustrates the change in viscosity (Pa.s) as a function of shear 

rate (sec-1). Similar to the amplitude sweep, the gel sample is loaded into the rheometer and the 

Flow Sweep test is selected in the TRIOS software and initiated with the following parameters: 

• Environmental Control 

o Soak time: 60 seconds 

• Test Parameters 

o Shear rate 1.0 sec-1 to 10.0 sec-1 

o Points per decade: 10 

The flow sweep gathers a series of single viscosity data points at each logarithmic stress 

steps when steady state is reached. The resulting data is a viscosity vs. shear rate plot of the 

material’s rheological behavior when subjected to sinusoidal deformation. This viscosity vs. 

shear rate study was conducted on the CO2-SPAM gel sample after CO2 exposure. The flow 

sweep aims to determine the viscosity of the non-flowing gels to identify the effects of PAM 

concentration and salinity. Both flow sweep and amplitude sweep tests are required to be 

replicated on each sample a minimum of four times with minimal variation to corroborate the 

data. 
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Results and Discussions 

Salt Concentration vs. Gelation Time 

Visual changes in the gel demonstrated that gelation time increased as salinity levels 

increased but decreased as PAM concentration increased. During the 60 minutes after CO2 was 

first introduced to the solution, PAM solution at 0.5 wt% did not achieve gel strength beyond 

“F”, which is not sufficient to block subsurface fractures or interstitial pores. As mentioned 

before, the weight percentage of resorcinol and methenamine were kept constant as PAM’s 

weight percentage was varied. This low polymer concentration allowed more brine into the 

sample, which led to the unsuccessful formation of the gel. Also, lower polymer concentration 

(i.e., less polymer chains within the solution) results in low viscosities and low gel strength.176,177 

The rest of the samples did achieve a gel strength of G or higher, which indicates that the PAM 

concentration significantly affects the viscosity of the gel. All CO2-SPAM samples (except for 

the 0.5 wt%) at 20,000ppm became highly deformable non-flowing gels after 35 minutes of CO2 

exposure and achieved a gel strength code I at approximately 45-50 minutes after exposure. 

Samples in a brine solution of 200,000ppm experienced a gelation time longer than 1 hour. Most 

samples achieved a grade D and E after 1 hour of CO2 flooding and achieved a grade G and H 

after ~2 hours.  

The mechanism of gelation retardation at high salinity is explained as follows: 

1. Under acidic and high temperature conditions, PAM undergoes hydrolysis and 

becomes a polyelectrolyte with negative charged carboxylate groups on its 

backbone along the chain.138,178,179.  

2. When salt is added to the mixture, salt cations interact with the carboxylate 

groups. As salt’s cations neutralize negative charges on the molecular chain, the 

repulsion force in the chain lessens and the molecular chain contracts (Fig. 

5.7.180).122,123  
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3. Coiled polymer chains have a lower probability of reacting with other51,161 chains 

and forming a gel.  

4. Sodium cations shield amide groups and block potential cross-linking sites.114 

These processes slow down the gelation and diminish the mechanical strength of 

the gel.161 

For instance, in distilled water, the polymer chain are able to extend due to the 

electrostatic repulsion of the carboxylate ions as seen in Fig. 5.9.180 In the presence of NaCl ions, 

the polymer chain curls and shrinks because of electrostatic shielding.117,122,170,180,181 

Additionally, the shielding effect of the monovalent cations can cause an increase in the 

molecule’s flexibility but a decrease in hydrodynamic volume and number of accessible sites.182 

 

Figure 5.9 (a) Electrostatic repulsion of carboxylate ions in PAM chain in distilled water. (b) 

Electrostatic shielding of PAM chain in brine solution. 

 

The qualitative results from the gelation measurements are shown in Fig. 5.10. PAM at 

0.5 wt% (Fig. 5.10a) did not fully gel after 1 hours of CO2 exposure. In addition to that, the 

qualitative gel strength dipped at 35 minutes. The sudden decrease in gel strength can be 

explained by the constant inversion of the test tube. This particular sample was highly 

deformable and highly flowing; therefore, the constant and repeated inversion of the test tube 
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and force of gravity kept the gel from adhering to the test tube walls and staying in place. PAM 

at 1.0 wt%, 1.5 wt%, and 2.0 wt% (Fig. 5.10b, 5.10c, and 5.10d, respectively) achieved a gel 

strength code of G at a brine concentration of 20,000 ppm within the first hour of CO2 exposure, 

while samples at higher salinity concentrations experienced an elongation in gelation time. As 

mentioned above, this increase in gelation time is caused by the excess amount of charged ions 

interacting with the polyelectrolyte and curling of the polymer backbone that limits access to the 

cross-linking sites. The plateaus areas or step changes depicted in Fig. 5.10 are the result of the 

qualitative and subjective nature of the coding system as well as the lack of resolution in the 

code itself. It also shows how the gel continues to polymerize, and highlighted changes in 

viscosity and gel flow are more visible in intervals. 
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Figure 5.10 Effects of salinity in gelation time for (a) PAM at 0.5 wt%, (b) PAM at 1.0 wt%, 

(c) PAM at 1.5 wt%, and (d) PAM at 2.0 wt%. The red line shows the gel’s 

threshold code (G). 

 

PAM concentration, on the other hand, has the opposite effect on gelation time. Fig. 5.11 

shows how, as PAM concentration increases, gelation time decreases for PAM at 1.0 wt%, 1.5 

wt%, and 2.0 wt%. The effect of increasing salinity on gelation time can also be observed at 

longer times, but it is evident that samples at higher polymer concentration gel faster. Gelation 

time decreases because the increase of polymer concentration increases the amount of accessible 
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cross-linking sites and the likelihood that hydroxymethyl-resorcinol (i.e., the cross-linking 

molecule) will encounter PAM. Hence, the probability of cross-linking reaction increases and 

accelerates the formation of the gel. 

 

Figure 5.11 Gelation time as a function of salinity for PAM at 1.0 wt%, 1.5 wt%, and 2.0 wt%. 

Each sample was replicated a minimum of four times with minimal variation. 

 

Amplitude Sweep 

All samples were replicated a minimum of four times and the average values were used 

to further assess the fluid’s properties and salinity effects. The trials are shown in Fig. 5.12, 5.13 

and 5.14 where error bars show the small variances between samples. The results of the multiple 

tests produced CO2-SPAM’s linear viscoelastic region (LVE) and demonstrated the difference in 

storage moduli between samples at different salinities. The difference in storage moduli shows 

the effect of salinity on gel strength, which correlates to the gel’s sealing capabilities. 
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CO2-SPAM, at different PAM and salt concentrations, demonstrates a LVE region 

ranging from strain of 0.5% to ~20% (highlighted in red bars). The end of the LVE was 

calculated by finding the amplitude at which the initial value of the storage modulus changes by 

5%.183 After 20% strain, the gel becomes strain dependent, and further strain will destroy the 

structure of the sample. 

 
         (a)        (b) 

Figure 5.12 Determination of the LVE region and comparison of storage moduli of samples 

with 1.0 wt% PAM at salinity of (a) 20,000ppm and (b) 200,000ppm. 

 

 
        (a)         (b) 
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Figure 5.13 Determination of the LVE region and comparison of storage moduli of samples 

with 2.0 wt% PAM at salinity of (a) 20,000ppm and (b) 200,000ppm. 

 
        (a)        (b) 

Figure 5.14 Determination of the LVE region and comparison of storage moduli of 3.0 wt% 

PAM at salinity of (a) 20,000ppm and (b) 200,000ppm. 

 

The loss modulus was significantly lower than the storage modulus (G’ > G’’) for all 

samples, which indicates that the CO2-SPAM gel demonstrates more solid-like characteristics 

than fluids and can be termed as a viscoelastic solid material (see Fig. 5.15). The effect of 

salinity on the loss and storage moduli does not remain consistent as PAM concentration 

increases. Finally, the linear viscoelastic region (LVE) was determined to be in between 0.5% 

and 20% oscillation strain. After 20% strain, the sample demonstrates non-linear elastic 

deformation and the breakdown of the superstructure.  
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Figure 5.15 Compilation of PAM and salt concentration effects on (a) storage modulus and (b) 

loss modulus at oscillation strain ranging from 0.1% to 100%. 

 

As PAM concentration increases, the storage modulus increases. The increase in G’ is 

attributed to the increase in cross-linking reactions and cross-linking density when PAM 

concentration is increased. Unlike PAM concentration, salinity decreases the gel’s storage 

modulus. The average percent decrease in storage modulus caused by an increase in salinity for 

PAM at 1.0 wt%, 2.0 wt%, and 3.0 wt% was 35%, 13%, and 38%, respectively at an oscillation 

strain of 5% (see Fig 5.15a). The average percent decrease in loss modulus as a result of 

increasing salt concentration for PAM at 1.0 wt%, 2.0 wt%, and 3.0 wt% was 8%, 18%, and 

27%, respectively (Fig 5.15b). It is evident that salinity diminishes the gel’s strength as salt ions 

hinder the accessibility of cross-linking sites and inhibit the formation of a complete three-

dimensional structure. 

Fig. 5.16 illustrates the effect of increasing PAM concentration on both the storage (G’) 

and loss modulus (G’’) as a function of salt concentration to explore the appropriate PAM 

concentration for a certain storage site at a specific salinity. 
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Figure 5.16 Effects of PAM and salt concentration on (a) storage modulus and (a) loss modulus 

in the LVE region. Values are based on the average storage modulus value 

between an oscillation strain percent of 0.5% and 20%.  

Since the average value of the linear viscoelastic region of each sample was used, the 

results in Fig. 5.16 only reflect the gel being strained 0.5% to 20%. Storage sites with high 

salinity are able to benefit from higher PAM concentrations. Fig. 5.16a shows that a higher 

polymer concentration leads to a higher gel strength (higher G’) and consequently a higher 

sealing performance. Fig. 5.16b puts into perspective low G’’ is compared to G’ and how there is 

a minimal difference between salinities. The slight differences in G’’ between 20,000 ppm and 

200,000 ppm are because the gel exhibits more of an elastic response and can store much more 

energy when subjected to oscillating loads than just dissipating it. 

 

Flow Sweep 

The flow sweep test was utilized to identify the behavior of the fluid’s viscosity as a 

function of shear rate. The results from this study revealed that the CO2-SPAM gel demonstrated 

pseudoplastic behavior. In other words, the gel exhibits both plastic and Newtonian flow 

behaviors due to its low viscosity at high shear rates and high viscosity at low shear rates. Note 
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that all samples were replicated a minimum of four times with minimal variation and the average 

values were used to compare the samples. Fig. 5.17, 5.18, and 5.19 show the shear-dependent 

viscosity equation of all PAM samples at 20,000 ppm compared 200,000 ppm. Here, the power 

law can be obtained from empirical data and is able to predict fluid behavior as a function of 

shear rate. Typically, non-Newtonian fluid behavior can be modeled using the power law model 

(Eq. 5.1): 

𝜇 = 𝐾𝛾𝑛−1 (5.1) 

 

Where µ is the viscosity, K is the flow consistency index, and n is the power law 

constant. Table 5.5 lists the power law constants values from the power law equations obtained 

from empirical data. The approximate percent decrease in flow consistency index for PAM at 1.0 

wt% between 20,000 ppm and 200,000 ppm is 35.8%. A similar behavior was found for PAM at 

2.0 wt%, and 3.0 wt%. The percent decrease in flow consistency index between PAM at 2.0 wt% 

in a brine solution of 20,000 ppm and 200,000ppm is 20.1%, whilst for PAM at 3.0 wt% saw a 

difference of 12.2%. The percentage decrease indicated that excess salt in the solution leads to 

lower viscosity. As PAM concentration increases, the flow consistency index increases, which 

directly impacts the increase in viscosity as seen in Eq. 5.1. Also, the flow consistency index is a 

numerical indicator of shear strength at a shear rate of 1.0 sec-1 and can be used to compare and 

quantify how salinity increases or decreases viscosity as seen in Table 5.5.  
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Figure 5.17 Determination of power law model for solutions with 1.0 wt% PAM at salinity of 

20,000 ppm and (b) 200,000ppm. Regression coefficients are 0.9656 and 0.971 for 

20,000 ppm and 200,000 ppm, respectively. 

 

Figure 5.18 Determination of power law model for solutions with 2.0 wt% PAM at salinity of 

20,000 ppm and (b) 200,000ppm. Regression coefficients are 0.9744 and 0.9438 

for 20,000 ppm and 200,000 ppm, respectively. 
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Figure 5.19 Determination of power law model for solutions with 3.0 wt% PAM at salinity of 

20,000 ppm and (b) 200,000ppm. Regression coefficients are 0.9498 and 0.9964 

for 20,000 ppm and 200,000 ppm, respectively. 

Table 5.5 Power law constants for samples with various PAM concentrations, obtained 

empirically from rheological experiments, demonstrate shear-thinning behavior (n 

< 1). 

 Flow consistency index (K) Power law constant (n) 

PAM (wt%) 20,000 ppm 200,000 ppm 20,000 ppm 200,000ppm 

1 168.97 108.47 -0.09 -0.029 

2 264.48 211.41 -0.048 +0.023 

3 283.15 248.63 +0.052 +0.008 

 

For all six samples, viscosity decreases as shear rate increases. Soft materials with this 

rheological characteristic have an apparent viscosity that decreases with increasing shear rate, 

due to the polymer molecules’ ability to align themselves with the shear field to reduce internal 

friction.179 As expected, PAM concentration and salinity levels have a marked effect on the gel’s 

viscosity. As PAM concentration increases from 1.0 wt% to 3.0 wt%, the viscosity increases. 

The increase in viscosity is attributed to the increase in large molecules interacting with each 

other and exerting drag forces.184 Salinity on the other hand, has the opposite effect on viscosity. 

As salt concentration increases, the viscosity decreases. This behavior is not as noticeable at 

higher PAM concentrations because the increasing amount of polymer chains interacting with 
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each other does not provide sufficient space to flow and salt effects are inconspicuous. Most 

water soluble polymers demonstrate an extreme loss in intrinsic viscosity as salt concentration 

increases in the brine solution.185,186  

The reasoning behind this effect is the decrease of the dielectric constant as salt 

concentration is increased.185 The decrease in the dielectric constant causes the reduction in 

energy of the hydrogen bonds and solvent-power.185,186 Thus, as salt concentration increases the 

viscosity steadily declines because the polymer chain is not as extended in a high-salinity 

solution as in a low-salinity solution. In other word, it is believed that when salt is introduced 

into the solution, the polymer chain coils and the free volume increases as it is occupied by the 

brine, hence viscosity decreases. 

Finally, some of the limitations of this study are as follows: 

1. Study of the effects of high temperatures and high pressures, as well as gel 

degradation are also necessary for a well-rounded evaluation of the performance 

of CO2-SPAM under reservoir-like conditions. These factors were not, however, 

studied due to the lack of adequate equipment. It is recommended that for future 

work, a core flooding experiment is performed to address the effects of high 

pressure and high temperatures on the gel’s sealing performance.  

2. Due to the nature of the gel formation, a dynamic rheological study was not 

possible because CO2 flooding was not viable based on the rheometer’s set up. A 

glovebox or a similar sealed vessel can be attached to the rheometer’s measuring 

assembly (upper and lower plates) and connected to a CO2 supply to perform a 

dynamic rheological study of gel formation under CO2 atmosphere. 

3. Formation water comprises of a mixture of various salts with different ionic 

charge numbers (monovalent or divalent ions). However, the present work only 

addresses the effect of sodium chloride in order to isolate its influence and 

systematically analyze the response of CO2-SPAM to NaCl as the most abundant 

salt in formation water.187 

4. CO2 bubbling as well as complete saturation of CO2 in porous media not realistic. 

Appendix A explores how CO2 diffuses in porous media and even at time = 

infinity, CO2 concentration will not reach 100%. Also, Fig 5.3 demonstrates how 

CO2 does not bubble through the seal but encounters the seal as a front. 
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5. The core flooding experiment needs to address residual oil and gas saturations.  

 

Conclusions 

In conclusion, the effect of salinity and PAM concentration on the polyacrylamide-

methenamine-resorcinol gel strength and viscosity was evident in this study. An increase in PAM 

concentration decreased gelation time and increased the viscosity of the gel as well as its 

strength. The decrease in gelation time and increase in gel strength and viscosity, as a result of 

increasing PAM concentration, is due to the excess amount of long polymer chains interacting 

with each other, increasing cross-linking density and exerting drag. Most of the solutions with 

various levels of salinity and PAM concentrations gelled within an hour of encountering CO2. 

The solution at 0.5 wt% PAM did not achieve the desired gel strength code of H for the duration 

of the experiment (120 min); therefore, it was no longer considered a viable sample. Higher salt 

concentration increased gelation time and decreased gel strength and viscosity. Gelation time 

was elongated because salt ions interact with the polyelectrolyte and hinders its ability to cross-

link by blocking the accessible cross-linking sites. Gel strength and viscosity decrease due to the 

salt ions shielding effects. This shielding effect decreases the electrostatic repulsion that allows 

the polymer chain to expand. Consequently, the polyacrylamide chain shrinks and curls, 

allowing the free volume to be occupied by brine. Note that when selecting an appropriate PAM 

concentration for a specific site, it is important to consider not only the salinity in the formation 

but also the required gel viscosity (for mobility purposes). High salinities have a negatively 

impact on the gel’s sealing performance as it decreases the gel’s strength, but it also benefits gel 

mobility across a reservoir because it reduces its viscosity and elongates gelation time. A longer 
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gelation time and a lower viscosity allow the gel to travel farther distances before becoming a 

non-flowing gel and reaching the desired target zone. 

Now that a clear understanding of the salinity effects on CO2-SPAM have been 

established, a proper assessment on CO2-SPAM injection into subsurface geological formations 

for sealing purposes can be achieved. As concluded, high salinities lead to an increase in gelation 

time and low viscosity and gel strength. Depending on the injection scenario, the high salinities 

can be beneficial or unfavorable. Leakage pathways that are located kilometers away from the 

injection zone require low viscosity polymer gels with longer gelation time because the gel needs 

to travel through the reservoir’s pore space to reach the target zone. Low-viscosity fluids can 

travel more easily through interstitial pores in comparison to high viscous fluids. On the other 

hand, fractures located close to the wellbore or leakage pathways with high permeability can be 

sealed by gel systems with high viscosity and high gel strength. Because injection scenarios vary 

quite often, PAM at 1.0 wt% and PAM at 1.5 wt% are recommended for injection scenarios. 

Both PAM concentrations gelled and reached a minimum Sydansk gel strength code of G at 

20,000ppm, which is the commonly cited oil and gas reservoir salinity. Additionally, their lower 

viscosities, compared to PAM at 2.0 wt% and 3.0 wt%, allows them to move across a reservoir 

without much effort. As a result, these concentrations were selected to further study their 

potential to induce seismicity in the next chapter  
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CHAPTER VI 

INDUCED SEISMICITY BY CO2-SENSITIVE POLYACRYLAMIDE SOLUTION 

INJECTION FOR CCS APPLICATIONS.1 

Introduction 

As global warming remains a constant issue, environmental remediation technologies are 

continuously developed to meet the standards and goals set by the environmental agencies to 

contain the damaging effects of climate change.188,189 Excess GHGs and aerosols in the 

atmosphere cause an imbalance in the Earth’s natural infrared radiation cycle.190 These gases, 

especially CO2, are presently decreasing the amount of infrared radiation energy departing the 

Earth and increasing the accumulation of heat in the Earth’s surface causing a severe greenhouse 

effect.4 As a result, new technologies have been developed to curb CO2 emission into the 

atmosphere. One of these technologies is Carbon Capture and Storage (CCS), in which CO2 is 

captured at its source (e.g. power plant) and is injected into subsurface geological formations.191 

CCS is considered a safe solution to dispose of excess CO2 from anthropogenic sources for long 

periods of time. CO2 is captured from CO2-emitting sources and refined into pure supercritical 

CO2. Highly pressurized CO2 is then injected into the storage site (e.g., saline aquifers, 

unminable coal seams, and depleted oil and gas reservoirs) and is projected to remain 

permanently stored for thousands of years. Despite this technology’s promising solution to 

 
1Article in press. 

Quan, L., K. Crane, and M. Mirabolghasemi, 2022, Induced seismicity by CO2–sensitive polyacrylamide solution 

injection for CCS applications: SAGE Record, v. 1, 2022–049, in press. 



 

89 

dispose CO2, it comes with its own limitations. Leakage pathways are escape routes that have the 

potential to compromise the CCS process by allowing CO2 to migrate back into the 

atmosphere.192–194 These leakage pathways could be nearby faults or fractures created through 

naturally occurring processes or during well drilling.192–194 Similar to any leakage problem, 

sealing appears to be a potential solution to CO2 leakage from subsurface storage sites. One 

chemical that has been studied as a sealing agent is CO2-sensitive polyacrylamide (CO2-SPAM) 

gel.100 CO2-SPAM undergoes gelation when in contact with high concentrations of CO2 in 

reservoir-like conditions. To create an in-situ seal in a CO2 storage reservoir, CO2-SPAM is 

injected into the upper section of the reservoir rock, followed by the injection of CO2 into the 

lower section as seen in Fig. 6.1. The injected aqueous CO2-SPAM as well as CO2 will flow 

towards the least resistant pathways first, such as zones of high permeability and fractures. When 

they meet inside these leakage pathways, the gel forms and seals the pathway. 

 

Figure 6.1 CO2-SPAM injection sequence in depleted oil and gas reservoir. 

Outside of the leakage pathway and in the intact formation, CO2 travels upwards while 

the solution flows downward. Eventually the two fronts meet and upon contact, the CO2-SPAM 
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solution gels, and seals off the area above it. Consequently, some storage pore space is lost due 

to the seal forming lower than the cap rock interface. It is recognized that this technique causes a 

loss of storage space above the seal but the tradeoff of having a reliable seal to prevent future 

leakage is paramount. A way to address and minimize this problem is by using numerical 

multiphase flow simulations in the reservoir to determine an optimum sequence of injections. 

Despite the promising potential of the in-situ sealing approach, concerns arise when the 

pore pressure near a fault zone increases due to the injection of highly viscous gel solution. This 

increased pore pressure changes the effective geomechanical stresses in the fault zone, which 

leads to induced seismicity195,196. In this study, the severity of induced seismicity as a result of 

CO2-SPAM injection into the Raton Basin is investigated. Initially, the geological structure of 

the Raton Basin is examined to select a candidate injection well that is in close proximity to a 

fault. Subsequently, the necessary geological and well data are collected to estimate the pore 

pressure at the nearby fault. Rheological tests were conducted to identify CO2-SPAM’s response 

to shear rate. Finally, the calculated pore pressures are used to determine the variety of angles at 

which fault planes can be reactivated while also deriving a criterion that will indicate the pore 

pressure necessary to induce seismicity in an intact rock mass. 

The Raton Basin 

The Raton Basin is a geological depression or dip with an area of about 4000 mi2 located 

in northern New Mexico and southern Colorado and is known for its gas production (coal-bed 

methane deposits) in the Upper Cretaceous Trinidad Sandstone and Vermejo formation and 

Upper Cretaceous and Paleocene Raton formation.197 Although lithologic ages within the basin 

range from Pennsylvanian to Tertiary (volcanics), the basin deepened during the Cretaceous 

when Laramide compression took place.198,199 Faulting in the basin is characterized by steep, 
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branching thrusts (likely Laramide faulting) and normal to strike-slip faults that align with and 

extend from more recent volcanic dike systems.198 The juxtaposition and opposite senses of 

stress required by these younger structures suggests that the Raton Basin is also at the crossing of 

two significant stress fields, a North-South vertically compressive stress field producing normal 

faults and a horizontally compressive stress field producing East-West strike-slip faults.199,200  

This basin, which experienced minimal seismic activity two decades ago, is now known 

for the high earthquake activity that occurred between 2008 and 2010 that is linked to 

wastewater injection and disposal.201–203 Modern seismic activity in the basin dates back to 1966, 

but a drastic increase of earthquakes in 2001 was correlated to oil and gas wastewater injection203 

and as a result, this area has become of great interest to further study induced seismicity.201,204 In 

2016, a study by Glasgow et al.195 was initiated and four years of continuous seismic data were 

collected. Local arrays detected approximately 38,000 earthquakes located between 2.5 km and 6 

km below sea level with ranges of Richter local magnitude (ML) < -1 to 4.2 between 2016 and 

2020.195 The majority of the earthquakes originated from zones containing short faults (< 3 km) 

with variable orientations.195 The Raton Basin has proven to be a productive region and an area 

where oilfield wastewater is disposed, and therefore, it is possible to utilize this area as a CO2 

storage site.  

In this study, the Dakota formation is the reservoir layer of interest due to its history of 

gas production. In the selected scenario, CO2-SPAM is injected into an existing well near a 

normal faulting zone. The well selected for this study is Dike Mountain Unit #7-7, which is 

currently plugged and abandoned in Huerfano, Colorado. Dike Mountain Unit #7-7 is a natural 

gas producing well, which was operated by Arco Permian (Atlantic Richfield Company) in 1977 

and is located approximately 80 meters from the North Abeyta Creek fault. The solution’s 
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injection zone is within the well’s perforation zone (~6645 ft to 7550 ft) and closest to the top of 

the Dakota formation (~6604 ft). 

Geological data from Dike Mountain Unit #7-7 were retrieved from a conventional core 

analysis, performed by Core Laboratories Inc., of the Dakota formation. A significant deviation 

in permeability values helped determine a possible damaged zone. The suspected damaged zone 

is a small layer of high permeability from 6783 ft to 6787 ft. This damage zone which consists of 

fractured host rock, non-foliated cataclasite and foliated cataclasite is evidence of the damage 

from the seismic activity in the North Abeyta Creek fault. Fig. 6.2a shows the wellbore 

diagram205 and Fig. 6.2b the bulk density log206 at a depth of 6700 ft to 6800 ft. The red arrow on 

Fig. 6.2b signals the abrupt change in bulk density which is evidence of damage caused by the 

nearby fault. 
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Figure 6.2 (a) Well completion diagram, from Dike Mountain Unit #7-7.2 (rb) Simultaneous 

compensated neutron-formation density log at 6700 feet depth.3  

Fig. 6.3a illustrates the U.S. Geological Survey (USGS) 250K geologic map207 and Fig. 6.3b 

shows much higher resolution geologic map (48K)208 of the same area.  

 

Figure 6.3 (a) Geologic map from the USGS (1969) with yellow well markers as 

geographically referenced by the Colorado Oil & Gas Information System 

 
Public records. 
2 Colorado Oil and Gas Information System. (1996). Well Information [Wellbore Completion Diagram]. Retrieved 

from https://cogcc.state.co.us/cogisdb/Facility/FacilityDetail?api=0550604. 
3 Colorado Oil and Gas Information System. (1996). Well Information [Neutron Log]. Retrieved from 

https://cogcc.state.co.us/cogisdb/Facility/FacilityDetail?api=0550604. 

 



 

94 

(COGIS). 4(b) Higher resolution geology map of the Raton Basin (USGS, 1974). 
5Thick black lines in both maps show the North Abeyta Creek fault. Well location 

shown as yellow dot. 

Using these geologic maps and a 1/3 arc second digital elevation model, a three-

dimensional model was produced to demonstrate the exact location of the well and adjacent 

formation layers. This 3D model was developed by utilizing georeferenced geological maps with 

cross section lines and digitized well logs, strikes and dips through a geological modelling 

software, MOVE209. Dike Mountain Unit #7-3 was plotted by several well information from 

Table 6.1 and the well plotting feature in MOVETM. Fig. 6.4 shows the Dike Mountain Unit #7-7 

depth and the drilled-through horizons. 

  

 
Public records. 
4 United States Geological Survey. Geologic map of the Trinidad quadrangle, south-central Colorado [map]. 

Miscellaneous Investigations Series Map I-558. Reston, Va: U.S. Department of the Interior, 1969. 
5 United States Geological Survey. Geologic map and cross sections of the La Veta Pass, La Veta, and Ritter Arroyo 

quadrangles, Huerfano and Costilla Counties, Colorado [map]. Miscellaneous Investigations Series Map I-833. 

Reston, Va: U.S. Department of the Interior, 1974. 
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Table 6.1 Three-dimensional basin model inputs and parameters. 

Well Information Well data 

Location SWSE 7 28S69W 6 

Elevation 8710 ft 

Latitude 37.622 

Longitude -105.149 

Perforation range 6646 ft – 7550 ft 

Formation Log top 

Niobrara 5202 ft 

Fort Hays 6058 ft 

Codell 6118 ft 

Greenhorn 6329 ft 

Graneros 6493 ft 

Dakota 6604 ft 

Morrison 6852 ft 

Entrada 7395 ft 

 

 

Figure 6.4 Three-dimensional model of well location in the Raton Basin. 

Experimental Procedure and Methodology 

The probability of inducing seismicity at the Raton Basin though gel injections is very 

high due to it being already an active faulting zone and its decades-long history of wastewater 



 

96 

injection. Ultimately, it is not a matter of if induced seismicity will occur but at what range of the 

angles of frictional sliding will failure happen. First, the viscosity of the CO2-SPAM was 

measured through a series of rheological tests. Secondly, the pore pressure at the fault was 

calculated based on the measured viscosities and transient solution for radial flow near a sealing 

fault. Additionally, geological reports, core analyses and well data were used to calculate the 

overburden stress (Sv) while the least principal stress was calculated based on the frictional 

faulting criterion. This stress study was then used to plot the Mohr circles and Frictional Failure 

Envelopes and calculate the range of angles at which fault activation and reactivation may occur. 

Materials 

The materials needed to create the CO2-SPAM are polyacrylamide (Nonionic water-

soluble polymer, MW 5x106 – 6x106) provided by Sigma-Aldrich, methenamine (USP, 99-

100.5%, MW 140.19), resorcinol (Crystalline powder, USP, 99-100.5%, MW 110.11), sodium 

chloride (MW 58.44) supplied by Spectrum™, and water (Deionized, extra pure, MW 18.015) 

supplied by Thermo Scientific™. 

Instrumentation 

The Discovery Hybrid Rheometer (Discovery HR-2) with a stainless steel 20mm parallel 

plate geometry (Peltier plate) was utilized to perform a flow sweep on the gel solution to 

determine its viscosity in an aqueous solution. 

CO2-SPAM’s Aqueous Solution Preparation 

Two 100 mL solutions were prepared by mixing NaCl brine solution at 150,000 ppm 

with 0.1 wt% of resorcinol and 0.4 wt% of methenamine, and 1.0 wt% and 1.5 wt% of 

polyacrylamide as seen on Table 6.2. 
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Table 6.2 CO2-SPAM sample composition. 

Sample # Methenamine wt% Resorcinol wt% PAM wt% Salt concentration (ppm) 

1 0.4 0.1 1.0 150,000 

2 0.4 0.1 1.5 150,000 

 

 Firstly, 100 mL of brine was poured into a conical flask and heated to 90°C in a 

magnetic stirring hotplate. After the desired temperature was reached, methenamine was added 

into the solution and stirred at 550 rpm until complete dissolution. Resorcinol was later added to 

the mixture and stirred until fully dissolved. Lastly, polyacrylamide was mixed into the solution 

following resorcinol’s dissolution and stirred for one hour at ambient pressure. After an hour, the 

solution was fully dissolved and ready for testing as seen in Fig. 6.5.  

 

Figure 6.5 CO2-SPAM solution at 1.5 wt% PAM concentration. 

CO2-SPAM Solution Rheological Study 

Rheological studies are often used to characterize fluids or soft materials and their 

response to an applied force. A viscosity vs. shear rate study, also known as flow sweep, is 

performed on two samples of CO2-SPAM using an oscillatory rheometer. The influence of shear 
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rate is investigated on the solution’s viscosity at rates ranging from 0.01 sec-1 to 2500 sec-1 

through a flow sweep procedure. 

 It is known that polyacrylamide exhibits non-Newtonian (shear thinning) properties210–

212 at high shear rates and as a result, a shear rate representative of normal reservoir conditions 

will be selected based on an effective shear rate model developed by Eberhard et al. (2019). 

During subsurface injection processes, the solution travels through the pore space in the rock 

formation at a specified flow rate, therefore; the shear rate is highly dependent on the volume of 

the targeted area, rock porosity and rock permeability. 

Pore Pressure Calculation 

It is assumed that the North Abeyta Creek fault is a sealing fault, i.e., it does not allow 

hydraulic communication through and across it. This assumption leads to a higher estimate for 

pore pressure at the fault, which results in a conservative recommendation for the allowable 

injection rate. In a homogeneous system, pore pressure at a sealing fault may be determined by 

the line source solution for radial transient flow and the principle of superposition in space. In 

this method, a sealing fault may be represented by an image well. The image well is the mirror 

image of the main well (i.e., same production rate, same well characteristics, and same distance 

from the fault). For the resulting two-well system in an infinite-acting reservoir an analytical 

solution exists that expresses the pore pressure at the fault as a function of other system 

properties (Eq. 6.1).  

 

𝑃𝑓 = 𝑃𝑖 − 2(70.6
𝜇𝐵

𝑘ℎ
𝑞𝐸𝑖 (−948

𝜑𝜇𝑐𝑡𝑟𝑓
2

𝑘𝑡
)) (6.1) 
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Pf is the pore pressure at the fault (psia), Pi is the initial pore pressure (psia),  is the rock 

porosity,  is the viscosity of injected fluid (cP), B is the fluid’s formation volume factor in 

reservoir barrels per standard barrels (RB/STB), k is the rock’s permeability in millidarcies 

(mD), h is the thickness of the reservoir layer (ft), q is the fluid’s injection rate (STB/day), Ei is 

the exponential integral function, ct is the total compressibility (psi-1), rf is the distance between 

the well and the fault (ft), rw is the wellbore radius, is the and t is time (hr). The fluid’s injection 

rate is calculated based on the volume of the targeted zone, the rock’s porosity, oil saturation, 

and time of injection. 

 

𝑞 =
4.274(𝜋𝑟𝑠

2ℎ)𝜑(1 − 𝑆𝑜)

𝑡
 (6.2) 

 

Where rs is the radius of the intended sealed. Substitution of Eq. 6.1 into Eq. 6.2, results 

in:  

𝑃𝑓 = 𝑃𝑖 − 2(301.8
𝜇𝐵𝜋𝑟𝑠

2𝜑(1 − 𝑆𝑜)

𝑘𝑡
𝐸𝑖 (−948

𝜑𝜇𝑐𝑡𝑟𝑓
2

𝑘𝑡
)) (6.3) 

Ei is the exponential integral function defined as: 

𝐸𝑖(−𝑥) = −∫
𝑒−𝑦

𝑦
𝑑𝑦

∞

𝑥

 (6.4) 

In this study, an approximation of the exponential integral function from Kizilkan and 

Dincer213 is used to simplify the calculations for the special analytical function on the complex 

plane.214,215  

For 0 < x < 1 

𝐸𝑖(𝑥) = 𝑙𝑛 (𝑥) + 0.57721566 − 0.99999193𝑥 + 0.24991055𝑥2 − 0.05519968𝑥3

+ 0.00976004𝑥4 − 0.00107857𝑥5 

 

(6.5) 
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For x > 1 

𝐸𝑖(𝑥) = −
𝐴

𝐵𝑥𝑒𝑥𝑝(𝑥)
 

 

(6.6) 

 

Where, 

𝐴 = 𝑥4 + 8.5733287𝑥3 + 18.059017𝑥2 + 8.637609𝑥 + 0.2677737 

 
(6.7) 

and, 

𝐵 = 𝑥4 + 9.5733223𝑥3 + 25.6329561𝑥2 + 21.0996531𝑥 + 3.9684969 

 
(6.8) 

According to our findings and other reports216–218, the CO2-SPAM solution is a non-

Newtonian (shear-thinning) fluid. However, for calculating the possible maximum pore pressure 

at the fault, Newtonian behavior is assumed. In this approach, the range of viscosities is first 

calculated for the range of shear rates encountered between r = rw and r = rf. Next, Eq. (6.3) is 

used for each viscosity in this range and the corresponding pore pressure at the fault is 

calculated. Consequently, a range of pore pressures at the fault is obtained to find the lower and 

upper limits of pore pressure at the fault without finding the exact amount of pore pressure at the 

fault (as it entails complicated numerical solution to the non-Newtonian flow equations). This 

approach provides the maximum pore pressure at the fault which is a conservative estimate for 

investigating the worst-case scenario in terms of fault activation. 

First, the power law correlation between the viscosity and shear rate is observed (Eq. 

6.9): 

𝜇(𝛾)̇ = 𝐾�̇�𝑛−1 (6.9) 



 

101 

Where µ is the fluid’s viscosity as a function of shear rate (Pa.s), �̇� is the shear rate (sec-

1), K is the viscosity at �̇� = 1 sec-1 and n is the power-law index.218 This expression is obtained 

empirically from the flow sweep test. 

Based on Cannella et al.’s findings219, effective shear rate in porous media is expressed 

as: 

�̇�𝑒𝑓𝑓 = 𝐶 (
3𝑛 + 1

4𝑛
)

𝑛
𝑛−1 4𝑣

√8𝜅𝜑
 (6.10) 

 

Where v is Darcy velocity (m/s), and κ is rock permeability (m2). Cannella et al.218,219 

discovered the constant C = 6 to be able to describe a great variety of flows in different settings.  

At a constant injection rate, Darcy velocity (m/s), and consequently, effective shear rate 

become functions of the distance to the wellbore (r):  

𝑣 = (1.978 ∗ 10−5)
𝑞

2𝜋𝑟ℎ
 (6.11) 

�̇�𝑒𝑓𝑓 = 𝐶 (
3𝑛 + 1

4𝑛
)

𝑛
𝑛−1 (7.91 ∗ 10−5)𝑞

𝜋𝑟ℎ√8𝜅𝜑
 (6.12) 

 

Hence, the viscosity varies with the distance to the wellbore and minimum viscosity 

occurs at the wellbore sand face. The range of viscosity variation for the injection rate is 

obtained and the resulting range of pore pressures at the fault is calculated using Eq. (6.3) and 

parameters listed in Table 6.3. The maximum pressure at the fault is selected from this range for 

the fault activation study.  
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Table 6.3 Parameters at Dike Mountain Unit #7-7. 

Distance from wellbore to fault 80 meters 

Radius of the sealed zone 262.47 ft 

Thickness of gel layer 5 ft 

Formation volume factor 1.0 RB/STB 

Injection time 30 days 

Rock porosity 0.0867 

Rock Permeability 0.04 mD 

Oil Saturation 0.204 

Total Compressibility 6.39x10-6 psia-1 

 

Stress Calculations 

In normal faulting regimes, the vertical stress, Sv, is the maximum principal stress while 

Shmin is the least horizontal principal stress. The vertical stress is determined by either integrating 

the rock densities ρ(z) from the surface to depth, or the mean overburden density �̅�.  

𝑆𝑣 = ∫ 𝜌(𝑧)𝑔𝑑𝑧
𝑧

0

≈ �̅�𝑔𝑧 (6.13) 

 

Where ρ is rock density (kg/m3), g is standard acceleration of gravity (m/s2), and z is 

thickness of rock layer (m). The density log, obtained from the Colorado Oil and Gas 

Information System’s (COGIS) database, provides continuous record of the rock formation’s 

bulk density along the length of the borehole, which is used to calculate the overburden stress as 

a function of depth. Shmin is calculated using the Frictional Faulting Theory for a normal faulting 

zone described in Eq. 6.15. 

Frictional Faulting Theory 

The Earth’s crust exists at failure equilibrium or a constant state of being just on the edge 

of failure, which indicates that any sudden change or perturbation in the stress regime or pore 

pressure can activate quiescent faults220. Seismic activity is caused by the sudden movement or 
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rupture along a fault plane and raising pore pressure tends to de-stabilize faults and encourage 

slip.220 This phenomenon is explained by the Frictional Failure Criterion (FFC). FFC, is 

commonly used to determine fault sliding:  

𝜏 = �̂�𝜎𝑛 (6.14) 

Where �̂� is the coefficient of sliding friction, and τ and 𝜎𝑛 are the shear and normal 

stresses necessary to cause fault slip. Fault activation in existing faults is normally caused by 

frictional sliding along the plane of failure. Frictional sliding is controlled by the shear and 

normal stress on the fault plane. In other words, fault sliding happens when the ratio between 

shear stress and normal stress is equal or greater than the coefficient of sliding friction. 

Therefore, under high shear stress and low normal stress, fault sliding is expected.  

In practice, effective normal stress (n) is the result of the normal stress minus the pore 

pressure. By allowing a fluid in the faulting plane, the fluid will exert a force against the normal 

stress and decrease the effective stress (the stress pinning the fault closed). Correspondingly, the 

injection of CO2-SPAM into the Raton Basin near a fault increases the pore pressure at the fault 

and may lead to fault slip. A coefficient of sliding friction, �̂�, equal to 0.6 was used to analyze 

fault slip due to the injection of CO2-SPAM221. A choice of �̂� = 0.6 is a conservative estimate 

based on Byerlee’s and Townsend and Zoback’s maximum friction studies221,222. The frictional 

faulting criterion will be used to determine Shmin. For a normal faulting zone, the frictional 

faulting theory is a follow: 

𝜎1

𝜎2
=

𝑆𝑣 − 𝑃𝑓

𝑆ℎ𝑚𝑖𝑛 − 𝑃𝑓
= [√�̂�2 + 1 + �̂�]2         𝑤ℎ𝑒𝑟𝑒 �̂� = 0.6 (6.15) 
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By plotting Mohr circles based on the FFC, it is assumed that faulting is happening at 

some angle. Alpha (α) is the angle between the plane of failure and the maximum principal stress 

while the angle of frictional sliding (dipping plane) is denoted as Beta (β). These angles are 

highly dependent on the orientation of the planes and the principal stress as seen in Fig. 6.6. In 

the final stress studies, two Mohr circles are plotted where one diagram does not consider the 

effects of pore pressure and the other one subtracts pore pressure from the principal stresses. 

These scenarios depict how the Mohr circle will shift to the left and cross the Frictional Failure 

Envelope. As pore pressure increases and the Mohr circle crosses the failure envelope, a range of 

angles will demonstrate the variety of orientations a plane of failure has to be to become 

activated and slip. 

 

Figure 6.6 Mohr diagram corresponding to faulting at different angles, 90 - α = β 
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Results and Discussions 

Polyacrylamide solution demonstrated non-Newtonian fluid behavior as increasing shear 

stress was applied to the samples. Fig. 6.7 demonstrates the pseudoplastic relationship between 

viscosity and shear rate of aqueous CO2-SPAM at 1.0 wt% and 1.5 wt%. Both PAM samples 

experience a decrease in viscosity as shear rate increases. This can be explained by a 

phenomenon called “entanglement of polymer chains.” This phenomenon causes a 

disentanglement of polymer chains as shear rate increases.223,224 The increase of movement or 

flow keeps the polymer from orienting at random and entangling at rest223. As expected, higher 

weight percent of polyacrylamide exhibited higher viscosity than lower weight percent PAM 

sample because of the increase in the molecules’ intermolecular attractions and strong hydrogen 

bonding that ultimately leads to resistance to flow.225 The power law model for both PAM 

concentrations is obtained and will further be used to calculate the effective shear rate.  
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Figure 6.7 Viscosity vs. shear rate study on polyacrylamide with a concentration of 1.0 wt% 

and 1.5 wt%. 

 

 

The pseudoplastic behavior can also be appreciated in Fig. 6.8. Here, the change in 

viscosity and shear rate are identified as the gel solution travels from the well to the fault. High  

shear rates near wellbore results in low gel viscosity near the wellbore. As the gel travels radially 

away from the wellbore, the shear rate decreases and viscosity increases. 
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Figure 6.8 Shear rate and viscosity as a function of distance from wellbore to fault for (a) 

CO2-SPAM at 1.0 wt% and (b) CO2-SPAM at 1.5 wt%. 

 

Pore Pressure at the Fault 

At a depth of approximately ~6754 ft, the maximum pore pressure at the fault (Pf) 

calculated for 1.0 wt% and 1.5 wt% CO2-SPAM solutions are 4,543 psi and 3,135 psi 

respectively as seen in Fig. 6.9. Viscosity increases as it flows radially and shear rate decreases; 

therefore, the pore pressure profile below illustrates the maximum pore pressure that will be 

experienced at a depth of 6754 ft. The increase in pore pressure will induce seismicity in the 

Raton Basin but, the range of angle of frictional sliding, or dipping plane angle, will define what 

planes will be affected or safe from reactivation. 
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Figure 6.9 Pore pressure profile as a function of viscosity and radius. 

 

Mohr Circle – Stress Analysis 

The Mohr circle is a two-dimensional graphical tool that illustrates the normal and shear 

stresses causing failure along a plane at a certain orientation to σ1.
220 These diagrams help 

illustrate the magnitude of the principal stresses at depth where all stresses are assumed to be 

compressive.220 As mentioned before, this study is based on a normal faulting regime and all 

stress calculations are based the vertical (overburden) stress Sv, and the least horizontal stress 

Shmin. The vertical stress and the least horizontal stresses were calculated using Eq. 6.13 and 

6.15, which assume that faulting is happening at a single angle (usually 30 to the maximum 

principal stress). As pore pressure is applied, the stresses (Sn) become effective stresses (σn) and 

are plotted as a new Mohr circle. Eq. 6.16 shows the effective stress formula. 

𝜎1 = 𝑆1 − 𝑃𝑝 (6.16) 
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There are two fractions to understanding pore pressure stress coupling. Fraction A 

discusses how rocks at failure equilibrium can only fail when the Mohr circle meets the failure 

envelope and no additional failure can be indicated (extending past the failure envelope) because 

the tangent point between the Mohr circle and the failure envelope specifies exactly where does 

failure occur.220 A conventional triaxial strength tests on sandstone and limestone was performed 

by Handin et al. (1963)226 and the strength tests data was used to find the dependence of rock 

strength on confining pressure in the absence of pore pressure using the strength at failure (S1) as 

a function of confining pressure (S3) as seen in Eq. 6.17. 

𝑆1 = 𝐶𝑜 + 𝑛𝑆3 (6.17) 

Where Co in cohesion and n is the slope of the failure line. To take pore pressure into 

account, the total stresses will be replaced by the effective stresses and the rearranged equation 

reflects the strength of the rock as a function on the simple form of effective stress (see Eq. 

6.18). 

𝑆1 − 𝑆3 = 𝐶𝑜 + (1 − 𝑛)𝑃𝑝 − (1 − 𝑛)𝑆3 (6.18) 

Where S1-S3 is the differential stress (also referred to as the width of the Mohr circle and 

Pp is pore pressure. Their results showed that the effect of pore pressure on rock strength is 

described by the Terzaghi form of the effective stress.227 Terzaghi (1943) demonstrated that the 

rock strength of saturated rock is controlled by the effective stress.227 Handin et al. (1963) plotted 

the differential pressure (S1 – S3) against Pp, and their results indicated that as pore pressure 

increases, the differential stress decreases.226 This means that when fluid is injected into the 

subsurface, pore pressure increases and slides the Mohr circle to the left but also decreases the 

width of the circle. Fraction B, which is used in this study, focuses on how pore pressure slides 
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the Mohr circle to the left and rock failure can be seen at a wider range of angles. Many fault 

angles are observed to be active in basins; therefore, knowing which faults could be reactivated 

is important.  

Fig. 6.10 illustrates the effect of pore pressure on the stress distribution at a depth of 

approximately 6753.5 ft. The red Mohr Circle (labelled ‘No Pore Pressure’) indicates the stress 

distribution when pore pressure is not being applied. In this scenario, the Mohr circle touched the 

failure envelope (τ = 0.6004σ) at one angle. When pore pressure taken into consideration and is 

reduced from the principal stresses, the Mohr circle shifts to the left (labelled ‘With Pore 

Pressure’) and crosses the failure envelope. The new stress distribution demonstrates an array of 

new angle (2α = 151°) at which the failure will occur for CO2-SPAM solution of 1.0 wt%.  

 

Figure 6.10 Mohr Circle stress distribution from pore pressure influence caused by CO2-SPAM 

at 1.0 wt% injection at ~6753.5 ft depth. 

 

At approximately 6753.5 ft, vertical fault planes (very steep plane) up to planes dipping 

at 14.5° are expected to activate. CO2-SPAM at 1.5 wt% demonstrates very similar behavior in 
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the stress distribution as seen in Fig. 6.11. The range of angle between plane of failure and 

vertical stress indicates that failure is expected in vertical planes and dipping planes up to 27.5°. 

 

Figure 6.11 Mohr Circle stress distribution from pore pressure influence caused by CO2-SPAM 

at 1.5 wt% injection at ~6753.5 ft depth. 

 

 

The range of angles at which the fault can slip has increased significantly as pore 

pressure is increased. Additionally, the dipping angles from CO2-SPAM at 1.0 wt% and 1.5 wt% 

were close due to the similar range of 2α angles. Fig. 6.12 shows a clear schematic of the wide 

range of angles for frictional sliding where the fault slip will occur. In other words, only 

extremely shallow dipping faults are safe from reactivations. Thrust faults have a shallow 

dipping plane and are the only planes that will not fail in this scenario. 
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Figure 6.12 Schematic of the range of dipping angles prone to slippage by the injection of 

CO2-SPAM at (a) 1.0 wt% and (b) 1.5 wt%. Not draw to scale. 

 

Non-Active Faulting Zone Potential Activation from Pore Pressure Incrementation 

As previously mentioned, the Raton Basin is in fact a very active zone with recent 

seismic activity caused by current wastewater injections. This scenario is very common because 

the Earth is at a constant state of failure equilibrium. This mean that any small change in pressure 

will affect the stress state in the subsurface and lead to failure. Nevertheless, there are situations 

where existing faults are not active and would need a significant change in pore pressure to 

reactive the fault. In this scenario, a normal non-active faulting zone will be used to derive an 

expression for the pore pressure necessary to induce faulting. Firstly, the least principal stress 

(Shmin) will need to be measured though different testing methods (e.g., leak-off tests). A non-

active faulting zone is represented in Fig. 6.13. 
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Figure 6.13 Mohr circle shift influenced by increased pore pressure. 

 

 Note that because this zone is intact, cohesion is non-zero and the failure envelope 

passes through the shear axis above the origin. This failure envelope is referred to as the Mohr 

Coulomb Failure Envelope. Pore pressure is deducted from the principal stress magnitudes (S1 

and S3) to show the effective stresses (σ1 and σ3). To find the point at which the Mohr circle 

touches the Mohr Coulomb Failure Envelope, the normal stress and shear stress at failure 

expression is utilized.228 

𝜏 = (𝜎1 − 𝜎3)
𝑠𝑖𝑛2𝛽

2
   (6.19) 

𝜎𝑛 = (
𝜎1 + 𝜎3

2
) + 𝑐𝑜𝑠2𝛽 (

𝜎1 − 𝜎3

2
) (6.20) 

 

In most cases it can be assumed that 2θ = 120° because normal faults are expected to 

form in conjugate pairs that dip approximately 60° and strike parallel to the direction of SHmax.
220 
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Additionally, Anderson et al. (1951) had established the idea that rocks normally fail at 30° to 

σ1; therefore, θ = 60°. Eq. 6.19 and 6.20 can be further simplified to: 

𝜏 = 0.2903(𝑆𝑣 − 𝑆ℎ𝑚𝑖𝑛) (6.21) 

𝜎𝑛 = (
𝑆𝑣 + 𝑆ℎ𝑚𝑖𝑛

2
) + 0.8142 (

𝑆𝑣 − 𝑆ℎ𝑚𝑖𝑛

2
) − 𝑃𝑝 (6.22) 

 

For failure to happen the y-value (shear stress) does not change but normal stress is 

reduced by pore pressure. Additionally, the Mohr Coulomb Failure Criterion can be substituted 

for σn. 

 
𝜏 − 𝐶

𝜇
= (

𝑆𝑣 + 𝑆ℎ𝑚𝑖𝑛

2
) + 0.8142 (

𝑆𝑣 − 𝑆ℎ𝑚𝑖𝑛

2
) − 𝑃𝑝 (6.23) 

 

Eq. 6.20 represents the normal effective stress at failure. Let C = 0 because cohesion 

strength is very low compared to the stresses typically necessary to induce failure, µ = 0.6 

because of extensive relevant data that point to 0.6 as the best fit for coefficient of friction for 

most materials (also known as Byerlee’s law).220,221  

𝜏

0.6
= (

𝑆𝑣 + 𝑆ℎ𝑚𝑖𝑛

2
) + 0.8142 (

𝑆𝑣 − 𝑆ℎ𝑚𝑖𝑛

2
) − 𝑃𝑝 (6.24) 

 

Shear stress (Eq. 6.21) can now be substituted into Eq. 6.24 and further simplification 

leads to the development of a new criterion for normal faulting zones. 

𝑃𝑝 = 0.5(𝑆𝑣 + 𝑆ℎ𝑚𝑖𝑛) − 0.0768(𝑆𝑣 − 𝑆ℎ𝑚𝑖𝑛) (6.25) 
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Eq. 6.25 is a novel and original equation derived from the shear stress and effective 

normal stress on the fault that forms during the failure process in terms of the applied effective 

principal stresses. This is a relationship between the maximum principal stress, the least principal 

stress, and pore pressure from fluid injection. If pore pressure Pp is equal or greater than the 

right-hand side of this equation, in a normal faulting zone, the fault will be reactivated, and 

induced seismicity will occur. Eq. 6.25 can be called the Quan-Crane Criterion. This equation 

can be utilized of predict anthropogenic seismicity in normal faulting zone when geological 

stress values are provided from well data. Dike Mountain Unit #7-7 lacked stress studies and no 

values of the least principal horizontal stress in the area were recorded but based on the results of 

our stress analysis, induced seismicity is projected to occur. 

Conclusions 

Global warming and its ripple effects across the globe has kick-started several initiatives 

that have resulted in new and innovative GHG technologies. Carbon capture and storage has a 

great potential to take on the task of alleviating the excess CO2 from emitting power plants. 

Limitations to CCS arise when the geological storage sites are compromised by leakage 

pathways that serve as escape routes. Sealing agents such as CO2-sensitive polyacrylamide may 

play a role in the sustainability of CO2 storage. The injection of sealing agents into the CO2 

storing site, however, might induce seismic activity; therefore, further stress analyses must be 

performed to understand the extent of fault activation. In this study, a formerly gas-producing 

well located in a normal faulting zone in the Raton Basin was used as the basis of our induced 

seismicity study. The well ‘Dike Mountain Unit #7-7’ is in close proximity to the North Abeyta 

Creek Fault which cuts through the Dakota formation. Pore pressure was calculated based on 

conventional core analysis results and the image well technique. The effect of pore pressure on 
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geological stresses was captured through the stress distribution represented by Mohr circles. The 

Frictional Faulting Criterion was utilized on the Raton Basin and based on the stress distribution 

caused by the gel solution injection. It was found that the increase in pore pressure from gel 

solution injection will cause fault slip at all angles ranging from vertical fractured plane to planes 

dipping 14.5 and 27.5° for a CO2-SPAM concentration of 1.0 wt% and 1.5 wt%, respectively. 

 Based on these results, CO2-SPAM with a PAM concentration of 1.5 wt% would be 

more ideal candidate for injection because of the larger number of dipping angles that are safe 

from reactivation compared to CO2-SPAM at 1.0 wt% as illustrated in Fig. 6.12. In conclusion, 

only very shallow dipping faults, such as thrust faults, will not be activated and are safe from 

fault slip. 
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CHAPTER VII 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

The main focus of this research lies in the advancement of the knowledge in GHG 

technologies, specifically carbon capture and storage. Exploring new methods and technologies 

to remediate CO2 leakage is imperative for future applications and successful storage. Chapter 3 

discussed which CO2-sensitive chemicals have the potential to mitigate CO2 leakage in 

subsurface formations. Gel, precipitated minerals, microgels and resins demonstrate advantages 

and limitations to their usage for CCS applications. Fast precipitation of minerals is desirable to 

seal leakage pathways, but additional studies are required in regards the resistance of these 

minerals to weak acids for long periods of time. Resins are great alternatives because of their 

resistance to weak acids and high concentrations of salt. However, resins are difficult and costly 

to inject, and their subsurface flow and mobility is questionable. Gel and microgels are agile 

blocking agents that have proven to be thermally resistant and salt tolerant. Specifically, CO2-

sensitive polyacrylamide is the suitable compound for CCS applications because it is cost 

effective, does not require an intensive synthesis, is commercially available, and most 

importantly, has been proven to efficiently block porous leakage pathways. 

CO2-sensitive polyacrylamide is a gel system that consists of methenamine, resorcinol 

and polyacrylamide. Under high temperatures and an acidic environment (pH = 5.5) 

methenamine decomposes into formaldehyde and ammonia when water is introduced to the 
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system. The formaldehyde further reacts with the resorcinol and forms hydroxymethyl group and 

ultimately forms phenolic resin. Formaldehyde also further reacts with polyacrylamide through 

polycondensation. Finally, the phenolic resin will further react with the polyacrylamide through 

deeper polycondensation and create the gel. CO2 at reservoir conditions provide the necessary 

environment for CO2-sensitive polyacrylamide to form it into a deformable non-flowing gel. 

As mentioned before, reservoir-like conditions with the addition of CO2 create the 

appropriate environment for the gel to form, but the subsurface also contains harsh substances 

that can possibly affect the gel’s gelation time, strength, and viscosity. Salinity varies amongst 

formations and regions; therefore, understanding its impact is crucial. Based on the studies 

performed in Chapter 5, salt has a retarding effect on gelation time. High concentrations of salt in 

the solution elongate the gelation time. There are several explanations to this phenomenon which 

include the decrease in the dielectric constant and reduction of energy from hydrogen bonds as 

salt content is increased. The electrostatic repulsion of the polymer chain is affected by the 

excess metal ions in the solution which causes the molecular chains to curl and shrink. In other 

words, the negatively charged carboxylate group’s interaction with the dissolved metal ions 

ultimately decreases the hydrodynamic volume of the polymer and decreases viscosity. Also, the 

shrinking and curling of the polymer chain tightens the micro-network structure of the gel which 

is covered by a layer of salt crystals. This interaction prevents the polymer from developing 

faster and therefore increases the gelation time. Lastly, it is also believed that the thickness of the 

electric double layer decreases as salt concentration increases which negatively affects the 

formation of an ordered structure and decreases the viscosity. Additionally, Chapter 5 also 

focuses on the effects of PAM concentrations on gelation time which is quite the opposite from 

salinity. It was found that gelation time, viscosity, and gel strength increase as PAM 
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concentration increases. Viscosity and gel strength increase as PAM concentration increases 

because higher polymer concentration results in a denser structure and higher cross-linking 

density. Also, the increase in viscosity is caused by the increase in drag force exerted by larger 

polymer molecules and the extensive network formed. Moreover, gelation time decreases 

because as PAM concentration increases, so does the number of accessible sites for cross-

linking, which in turn accelerates cross-linking reaction and, hence, speeds up the gel formation. 

Finally, CO2-SPAM is intended to be injected into the subsurface as an aqueous solution 

to seal leakage pathways after CO2 injection. Fluid injection into the subsurface has the potential 

to induce seismicity as it has been recorded in the past with wastewater injections. Chapter 6 

demonstrates that CO2-SPAM will induce seismicity in a normal faulting zone in the Raton basin 

at various angles in plane of failure. It was found that the injection of CO2-SPAM at PAM 

concentration of 1.0 wt% and 1.5 wt %, will increase the pore pressure enough to activate any 

faults with fracture planes dipping 14.5° and 27.5° to 90°, respectively. This means that very 

shallow dipping planes are safe from fault activation and fault slip. Additionally, other scenarios 

were taken into consideration to properly evaluate the necessary pore pressure to activate a non-

active faulting zone. A new equation was derived from the Mohr Coulomb Failure Envelope 

equation in addition to the expression for normal stress and shear stress at failure. The Quan-

Crane Criterion establishes the relationship between the pore pressure needed from fluid 

injection to the maximum principal stress and least principal stress in the region. If the 

relationship is true in a normal faulting zone, then the fault will be reactivated, and seismic 

activity is expected. This is an issue when CCS efforts are undertaken in populated areas. 
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Recommendations 

This dissertation has demonstrated that an in depth understanding of CO2-SPAM’s 

synthesis, rheological behavior and influence on geomechanical stresses due to its injection into 

subsurface formations is critical to the future applications of GHG technologies. The framework 

and findings in this dissertation will enable further expansion of the present knowledge of CO2-

sensitive chemicals and their role in real-life applications. As CCS technologies develop and 

improve, further studies are recommended on improving the mobility and injectivity of CO2-

SPAM in fractured cores. Due to the unforeseen difficulties brought by the SARS-CoV-2 

pandemic, a core flooding experimental set up was not available to evaluate the gel’s sealing 

performance and rheological behavior under high pressures. As a result, this dissertation focused 

mainly on rheological properties of the gel that contribute to adequate sealing properties such a 

high gel strength. Furthermore, permeability reduction in porous media has been reported in the 

past with PAM-based polymers but it is recommended that further studies are performed to 

determine the maximum fracture width this polymer gel system can successfully seal through a 

core flooding experiment with fractured core samples. Lastly, with regards to the relative 

movement of CO2-SPAM and CO2 in the reservoir and potential loss of pore space that could be 

used for CO2 storage, a numerical multiphase flow simulation is the best tool that can accurately 

determine the extents of this loss and the effect of injection parameters on it. Core flooding 

experimental data and results can be used as inputs to determine an optimum sequence of 

injections to minimize lost storage space. 

In Chapter 4, the chemical mechanisms happening during CO2-SPAM synthesis were 

discussed. Even though resorcinol-formaldehyde resin, PAM-formaldehyde, and PAM-

hydroxymethyl-resorcinol are formed during the process, it still unclear whether these polymer 
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chains are copolymerized and creating a complex gel network or physically entangle with one 

another resulting in an interpenetrating network. Copolymerization is when different species of 

monomers polymerize into a multicomponent polymer chain while a semi-interpenetrated 

network involves the penetration or interlacing of polymer networks and linear/branched 

polymers on a molecular scale but are not covalently bonded. A way to determine if 

copolymerization is happening is by using a combination of Soxhlet extraction and Raman 

microscopy or infrared spectroscopy (IR spectroscopy).229 Firstly, the CO2-SPAM gel will be 

subjected to Soxhlet extraction, where the cross-linked (gel) and linear (solvent-soluble) 

fractions will be separated. This method will remove any unreacted monomer and linear polymer 

chains. Secondly, Raman spectroscopy or IR spectroscopy will be used to determine the presence 

of phenolic resin and PAM-formaldehyde before and after Soxhlet extraction. If a 

multifunctional network is formed, the ether functional group (which is unique to the resorcinol-

formaldehyde resin’s ether bridge) (C─O) will show as a strong peak in IR spectra or a moderate 

peak in Raman microscopy between a wavelength of 1000 and 1250 cm-1 and a wavelength of 

932 cm-1, respectively.230–233 If the ether functional group is absent, IF spectrometry can be used 

to identify the phenol group in PAM-hydroxymethyl-resorcinol. The phenol functional group 

will have a medium peak at a frequency between 1390 and 1310 cm-1.234 These functional groups 

will provide a strong marker in the spectra and will demonstrate if the polymer chains 

copolymerize.  

The gel’s rheological behavior was tested before and after gelation in both Chapter 5 and 

6, but a dynamic study of the CO2-SPAM solution as it gels can provide insight of the crossover 

modulus. Due to the nature of the gelation process, a glovebox or a sealed container is needed. 

This apparatus can be attached to the rheometer allowing the testing atmosphere to be flooded 
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with CO2. The crossover modulus is the single point in the material’s viscoelastic spectrum 

where G’ and G’’ cross. Initially, an aqueous solution is prepared and eventually changes into a 

semi-solid. The crossover modulus will be the specific point where the gel becomes less of a 

liquid and more of a solid (G’’ decreases and G’ increases). The crossover point indicates the 

moment the CO2-SPAM gel solution displays more solid-like characteristics after being exposed 

to high concentrations of CO2. This is an important characteristic worth to be noted to improve 

the sequence of injection and the gel’s mobility across the reservoir. Finally, it is necessary to 

expand the study of CO2-SPAM to encompass the full range of pressures, temperatures, and 

salinities encountered in subsurface CO2 storage sites as depicted in Fig. 3.8 and 5.21.  
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 CO2 DIFFUSION IN OIL-SATURATED POROUS MEDIA
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Objective 

To understand the behavior of the CO2-SPAM, it is imperative to understand the transport 

properties of CO2 diffusion. Appendix A focuses on CO2 diffusion in a homogenous rock sample 

and at high pressures and temperatures. The governing equations are derived from the equations 

of continuity and Fick’s Second Law of Diffusion. Furthermore, the concentration profile of CO2 

in the porous media is obtained and discussed further. 

 Introduction 

As mentioned before in Chapter 1 and 3, CO2 is known to be a very influential GHG 

whose excess has had a detrimental effect on the environment. Also, CO2 has been used in the oil 

and gas industry to reduce the oil’s viscosity and enhance oil displacement in EOR practices. 

Redirecting the impact of excess CO2 might be the answer industries are looking for. CO2 

produced from energy plants can be recycled and injected into oil reservoir as a cost-effective oil 

recovery agent. This technique has not only demonstrated to have high oil recovery rates at a 

lesser cost, but it is also actively contributing to long-term CO2 sequestration. Various studies 

demonstrate that the miscibility development between oil and gas and the conventional reservoir 

pressure maintenance has a great impact on the oil recovery performance during injection.235–237 

It is important to note that for both EOR involving the use of CO2, and carbon capture and 

storage, the coefficient of molecular diffusion is paramount to determine mixing rates of injected 

oil and gas as well as the parting rate of lighter gases from both the oil and formation water.238 

Moreover, it is important to develop an adequate method to establish a dependable diffusion 

coefficient because molecular diffusion is a vital recovery mechanism in fractured reeservoirs.239  
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There are two methods that are used to determine the diffusion coefficient. Firstly, a 

direct measurement and analysis of a sample at various distances and times can be used to 

determine the concentration gradient of gas in an oil sample.240,241 An indirect method used 

before focuses on monitoring any changes in the pressure of the diffusing gas,241–246 the liquid 

phase density,247,248 the liquid-gas interface,249,250 the swelling of a pendant droplet,251 and other 

physical properties of the oil-gas system to determine diffusivity. Many technological 

improvements have been made to testing methods for diffusion coefficients and indirect methods 

have gained popularity amongst several research groups. Indirect methods such as the pressure-

decay technique is normally conducted in a PVT cell and has provided great results in 

determining the molecular diffusion coefficient of an oil-gas system.242,244 Challenges arise when 

this study is performed in a porous medium due to the influences of tortuosity. In porous 

mediums, the effective flow paths are much longer than the apparent length. Thus, instead of the 

fluid flowing in a straight path, it flows along tortuous paths which can interfere with the 

diffusion process. Under reservoir-like conditions, the molecular diffusion coefficient of an oil- 

CO2 systems determined using the pressure decay technique in a PVT cell may deviate from 

measured effective diffusion coefficients in sand packs. Although many studies have attempted 

to accurately determine the diffusion coefficient from an oil- CO2 system, few have 

demonstrated the true value of diffusivity in porous media under high pressures.252–256  

Due to the increasing usage of CO2 in several industrial applications, new studies on 

CO2’s behavior under reservoir-like conditions has the potential to advance the knowledge in the 

field and improve fluid mechanics simulators such as OpenFOAM, UTCHEM, ECLIPSE, AD-

GPRS by Stanford University, MRST by Sintef, and Dynamo/MoReS by Shell. Research on the 

mass transport properties of CO2 in porous media is necessary as CCS and EOR project design, 
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risk assessment and performance forecast highly depend on it. Hence, the CO2 concentration 

profile in a porous media using the continuity equation in an unsteady state situation is discussed 

and derived. 

 Oil-Gas System 

For this system, consider a homogeneous core sample of length L. The core sample is 

saturated in diesel (oil phase) and CO2 (gas phase) is being diffused from the top of the core 

sample. It is desired to determine the diffusion of CO2 at high pressures and high temperatures. 

Fig. A.1 demonstrates the schematic of the system where CO2 is species A, and the oil is species 

B.  

For this problem it is desired to use the cartesian coordinate system where CO2 is flowing 

in the z-direction. 

 

Figure A.1 Oil-CO2 system in heterogenous porous medium. 
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 Assumptions 

Several assumptions were made to simplify the mass transport profile for this specific 

problem. The assumptions are as follows: 

1. Velocity is assumed to be zero in the continuity equations. 

2. No chemical reaction is taking place between the oil and CO2. 

3. Natural convection is negligible. 

4. The diffusion coefficient is constant. 

5. Density is constant. 

6. The core sample is homogeneous. 

7. Diffusion is uniform across the core sample. 

These assumptions are justified because based on the experimental set-up (Fig. A.1), the 

oil is at rest inside the core: therefore, velocity is equal to zero. Also, no chemical reaction is 

happening because CO2 is no reacting with the oil but mixes entirely with the oil to form one 

miscible mixture. Natural convection is negligible because this system uses external sources (i.e., 

pump) to generate fluid motion. Petroleum fluids are relatively incompressible fluids but CO2 is 

a highly compressible which can lead in viscosity variations.257,258 Some of the shortcomings of 

these assumptions is that in the field, rock are rarely homogeneous. Additionally, the diffusion 

coefficient is dependent on the molecule’s size and environments’ temperature and pressure. 

Geological formations have temperature and pressure gradients associated with depth, and as a 

result, the diffusion coefficient changes as function of depth as well. 

Other assumptions made by Gao et al. (2019)239 are as follows: 

1. Mass transfer resistance is negligible. 

2. Concentration is constant at the gas-liquid interface. 

3. Volume expansion is negligible. 



 

151 

4. Evaporation of oil into the has phase is negligible. 

 

 Derivation of the Governing Equations 

For this system, the equation of continuity (Eq. A.1) is: 

𝜕𝜌

𝜕𝑡
+ (𝜵 ∙ 𝜌𝒗) = 0 (A.1) 

The equation of continuity can be rewritten in terms of cartesian coordinates (Eq. A.2) to 

fit the Fig. A.1. 

𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑥
(𝜌𝒗𝒙) +

𝜕

𝜕𝑦
(𝜌𝒗𝒚) +

𝜕

𝜕𝑧
(𝜌𝒗𝒛) = 0 (A.2) 

 

Since this is a multi-component system, the equation of continuity is written in terms of 

species A (CO2) and species B (oil). As a result, our two component (binary) system can be 

expressed as: 

Species A:           
𝜕𝜌𝐴

𝜕𝑡
+ (𝛁 ∙ 𝑛𝐴) = 𝑟𝐴 (A.3) 

Species B:           
𝜕𝜌𝐵

𝜕𝑡
+ (𝛁 ∙ 𝑛𝐵) = 𝑟𝐵 (A.4) 

Where 𝑛 is 𝜌𝒗 of its respective species. 

If species A and B are added together, then Eq. A.5 is obtained: 

𝜕𝜌𝐴

𝜕𝑡
+ (𝛁 ∙ (𝑛𝐴 + 𝑛𝐵)) = 𝑟𝐴 + 𝑟𝐵 (A.5) 

 

In this situation, the addition of the reaction rates will be equal to zero because the 

summation is done per mass basis. For most cases, it is preferrable to consider this equation in a 

molar basis. The molar form of the continuity equation is as follow: 
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Species A:           
𝜕𝑐𝐴

𝜕𝑡
+ (𝛁 ∙ 𝑁𝐴) = 𝑅𝐴 (A.6) 

Species B:           
𝜕𝑐𝐵

𝜕𝑡
+ (𝛁 ∙ 𝑁𝐵) = 𝑅𝐵 (A.7) 

When species A and B are added together: 

𝜕𝑐𝐴
𝜕𝑡

+ (𝛁 ∙ (𝑁𝐴 + 𝑁𝐵)) = 𝑅𝐴 + 𝑅𝐵 (A.8) 

 

Unlike in the mass basis, the addition of 𝑅𝐴 𝑎𝑛𝑑 𝑅𝐵 is not always equal to zero. To 

simplify this equation, it is desired to use the molar average velocity. 

𝑣∗ = ∑𝑥𝑖𝑣𝑖 = 𝑥𝐴𝑣𝐴 + 𝑥𝐵𝑣𝐵 (A.9) 

 

Now, the equation of continuity can be rewritten for a constant density and diffusion 

coefficient as: 

 
𝜕𝑐𝐴
𝜕𝑡

+ ∇ ∙ 𝑐𝐴𝑣
∗ = 𝑐𝐷𝐴𝐵 ∙ ∇𝑥𝐴 + 𝑅𝐴 (A.10) 

 

Eq. A.10 is in cartesian coordinates and includes both the velocity and concentration 

components. It also contains the reaction rate, molecular diffusion, and convection due to bulk 

motion. Note that in this system no reaction is taking place, therefore; the term RA will be zero. 

Based on the assumptions made to simplify the oil-CO2 system, the continuity equation is as 

follows: 

𝑑𝑐𝐴
𝑑𝑡

= 𝐷𝐴𝐵 (
𝜕2𝑐𝐴
𝜕𝑥2

+
𝜕2𝑐𝐴
𝜕𝑦2

+
𝜕2𝑐𝐴
𝜕𝑧2

) (A.11) 
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Eq. A.11 is known as Fick’s Second Law of Diffusion, and it can also be written with the 

Laplacian operator. 

𝑑𝑐𝐴
𝑑𝑡

= 𝐷𝐴𝐵(∇2𝑐𝐴) (A.12) 

 

Derivation of the Oil- CO2 System’s Concentration Profile 

The equation of continuity (Eq. A.10) will be expanded to demonstrate in detail what 

elements are discarded, and which ones are being kept. 

𝑑𝑐𝐴
𝑑𝑡

+ (𝑣𝑥

𝜕𝑐𝐴
𝜕𝑥

+ 𝑣𝑦

𝜕𝑐𝐴
𝜕𝑦

+ 𝑣𝑧

𝜕𝑐𝐴
𝜕𝑧

) = 𝐷𝐴𝐵 (
𝜕2𝑐𝐴
𝜕𝑥2

+
𝜕2𝑐𝐴
𝜕𝑦2

+
𝜕2𝑐𝐴
𝜕𝑧2

) + 𝑅𝐴 (A.13) 

 

It is assumed that no fluid flows across the core sample and that the oil is at rest. As a 

result, the velocity gradient in the left-hand side is equal to zero. In addition to that, it is assumed 

that any reaction in the oil-gas interface is so small, it can be neglected. Therefore, the reaction 

rate is equal to zero. Now Eq. A.13 can be reduced to: 

𝑑𝑐𝐴
𝑑𝑡

= 𝐷𝐴𝐵 (
𝜕2𝑐𝐴
𝜕𝑥2

+
𝜕2𝑐𝐴
𝜕𝑦2

+
𝜕2𝑐𝐴
𝜕𝑧2

) (A.14) 

 

Based on the schematic, it is assumed that the concentration of CO2 will be evenly 

distributed across the core sample in the z direction. Thus, concentration variations of CO2 in the 

x and y directions are equal to zero. Eq. A.14 simplifies to the governing equation: 

𝑑𝑐𝐴
𝑑𝑡

= 𝐷𝐴𝐵 (
𝜕2𝑐𝐴
𝜕𝑧2

) (A.15) 
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Before initiating the CO2 diffusion experiment (t = 0), the concentration of CO2 inside the 

core sample will be equal to zero. This is because the core sample is fully saturated with oil and 

no diffusion has happened yet. Hence, the initial condition is as follows: 

I.C.  t < 0  CA = 0  0 < z < L 

As for the boundary conditions, the concentration of CO2 at z = 0 is considered to be the 

concentration in the gas-oil interface and the concentration of CO2 at z = L to be the change in 

concentration as a function of z. 

B.C. 1  t > 0  CA=CAo z = 0 

B.C. 2  t > 0  
𝑑𝑐𝐴

𝑑𝑧
 = 0  z = L 

To simplify the mathematical derivation process, dimensionless values are utilized. 

Dimensionless concentration 

𝑐 =
𝐶𝐴

𝐶𝐴𝑜
 

Dimensionless time 

𝜏 =
𝑡𝐷𝐴𝐵

𝐿2
 

 Dimensionless length 

𝜉 =
𝑧

𝐿
 

After successfully determining the dimensionless values, it is very important to evaluate 

the governing equation (Eq. A.15) and make it dimensionless.  

𝑑𝑐

𝑑𝜏
= (

𝜕2𝑐

𝜕𝜉2
) (A.16) 
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For this type of unsteady state problem, it is convenient to split the solution into two 

terms. These terms are the steady state (c∞) and transient (ct) terms. 

𝑐 = 𝑐∞ − 𝑐𝑡 (A.17) 

 

For the steady state term, τ will go to infinity, therefore: 

𝑑𝑐∞

𝑑𝜏
= (

𝜕2𝑐

𝜕𝜉2
) (A.18) 

0 = (
𝜕2𝑐

𝜕𝜉2
) (A.19) 

 

After differentiating, Eq. A.20 is obtained: 

𝐶∞ = 𝐶1𝜉 + 𝐶2 (A.20) 

 

Once the boundary conditions have been applied, the steady state dimensionless 

concentration of CO2 will be equal to 1. This means that at infinity, the concentration inside the 

core sample will be the same as the concentration of the CO2 in the outside.  

Now for the transient term, the boundary condition are as follows: 

I.C.  τ = 0  c = 0  0 = c∞ - ct  ct = 1 

B.C. 1  ξ = 0  c = 1  1 = c∞ - ct  ct = 0 

B.C. 2  ξ = 1  
𝑑𝑐

𝑑𝜉
 = 0  1 = 

𝑑𝑐∞

𝑑𝜉
 - 

𝑑𝑐𝑡

𝑑𝜉
  

𝑑𝑐∞

𝑑𝜉
 = 

𝑑𝑐𝑡

𝑑𝜉
 

Now, separation of variables (A.21) is used. 

𝑐 =  𝜓(𝜉)𝑇(𝜏) (A.21) 
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𝜓
𝑑𝑇

𝑑𝜏
= 𝑇

𝑑2𝜓

𝑑𝜉2
= −𝜆2 (A.22) 

 

The separation of variables was solved by separating the left-hand side and the right-hand 

side and setting them both equal to the constant. The solutions for the ordinary differential 

equation were found in Appendix C from the book Transport Phenomena 2nd Edition by Bird 

and Stewart.259 The right-hand side was further simplified by using the following boundary 

conditions: 

B.C. 1  ξ = 0  𝑐𝑡 = 1 

B.C. 2  ξ = 1  
𝑑𝑐𝑡

𝑑𝜉
 = 0 

Once the boundary conditions have been applied, the transient concentration of CO2 is 

expressed as: 

𝑐𝑡 = ∑ 𝑐5𝑛 exp(−𝜆𝑛
2𝜏) sin (𝜆𝑛𝜉)

∞

𝑛=0

 (A.23) 

 

Now, the initial condition will be applied. 

I.C.  τ = 0  𝑐𝑡 = 1 

This condition yields to, 

1 = ∑ 𝑐5𝑛sin (𝜆𝑛𝜉)

∞

𝑛=0

 (A.24) 

 

Here, sin (𝜆𝑛𝜉) is the orthogonal function, therefore; sin(𝜆𝑚𝜉) will be multiplied by both 

sides, where m is an integer and integrate from 0 to 1. After integration, there will be two 

conditions: 
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When m = n, then the right-side will equal to zero. 

When m ≠ n, then 𝑐5𝑛 = 2/𝜆𝑚 

These rules yield to our concentration profile, 

𝐶 = 1 − ∑
2

𝜆𝑚
exp(−𝜆𝑚

2 𝜏) sin (𝜆𝑚𝜉) (A.25) 

 

CO2 Concentration Profile 

The final concentration profile (Eq. A.25) was plotted at n = 0, 1 and 3. The 

dimensionless length (𝜉) was varied from zero to one and the dimensionless time (𝜏) was varied 

from several values between 0.05 to 1. All plots exhibited similar behaviors regarding the 

concentration behavior as time progresses along the length of the core sample as seen in Fig A.2, 

A.3, and A.4. For all plots it is observed that the concentration of CO2 at 𝜏 = 0.1 is very low as 𝜉 

reaches 1. This is because al the beginning stages of the experiment the CO2 is just starting to 

diffuse through the core sample. As a result, the amount of CO2 found at the end of the core 

sample will be minimal. As time goes by and the experiments reaches steady state, the 

concentration of CO2 increases significantly. At 𝜏 = 1 to and 𝜉 = 1, the dimensionless 

concentration of CO2 found in the core sample is 0.892. This means that at length L and steady 

state conditions, the concentration of CO2 in the core sample is 89.2% of the CO2 concentration 

being injected.  
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Figure A.2 Dimensionless concentration as a function of dimensionless time vs. dimensionless 

length at n = 0. 

 

Figure A.3 Dimensionless concentration as a function of dimensionless time vs. dimensionless 

length at n = 1. 
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Figure A.4 Dimensionless concentration as a function of dimensionless time vs. dimensionless 

length at n = 3. 

 

 Results and Discussions 

In this effort, the concentration profile of the diffused CO2 in a porous medium was 

derived. According to past literature, it is known that tortuosity can highly deviate the accuracy 

of diffusion calculations. In this method, the tortuosity was not taken into consideration and 

neglecting it, could have influenced our ability to find the effective diffusivity. Porous media 

contains porous space that function as conduits. The total distance of these conduits is much 

longer than the straight paths. Fluid will always travel through tortuous channels and not straight 

lines; therefore, the molecular diffusion can potentially be very different than the effective 

diffusivity.  

In comparison with Gao et al.’s article, the same concentration of CO2 profile was 

derived. Gao et al., took a different approach to this problem and analytically solved the 
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governing equation by applying the Laplace transform. In contrast, dimensionless values were 

used to solve this problem. Additionally, the unsteady state equation was split into two terms 

(steady state and transient) and use both separations of variables and the orthogonal function to 

derive the equation.  

 Conclusions 

In this mass transport study, the diffusion of CO2 in oil-saturated core samples was 

investigated. The governing equation was derived based on the continuity equation on a molar 

basis. Several assumptions were made to simplify and solve the problem analytically. Ultimately, 

the author of this project and Gao et al. (2019) developed and derived the same concentration 

profile for an oil-gas system. Several assumptions where made that can potentially affect the 

outcome of the final derivation. The tortuosity has a great impact in the diffusivity due to the 

apparent and actual path length. Gao et al. (2019) stated that tortuosity has a great impact in 

diffusion of CO2 in porous media. This is due to the increase in mass transfer resistance as 

tortuosity increases. Additionally, future studies should focus on CO2 diffusion in oil-saturated 

porous media measured by utilizing multifunctional core displacement instruments and directly 

used to the results to model CO2 injection. This practice has the potential to provide higher 

quality data that correlates to the practical gas injection procedure as it is also believed that an 

increase in tortuosity in the porous media can limit the CO2 solubility. 
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