
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

8-9-2022

Methods and tools to improve performance of plant genome Methods and tools to improve performance of plant genome

analysis analysis

Drew Ferrell
Mississippi State University, af1065@msstate.edu

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

 Part of the Bioinformatics Commons, Computational Biology Commons, Genomics Commons, and

the Systems Biology Commons

Recommended Citation Recommended Citation
Ferrell, Drew, "Methods and tools to improve performance of plant genome analysis" (2022). Theses and
Dissertations. 5552.
https://scholarsjunction.msstate.edu/td/5552

This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F5552&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/110?utm_source=scholarsjunction.msstate.edu%2Ftd%2F5552&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/28?utm_source=scholarsjunction.msstate.edu%2Ftd%2F5552&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/30?utm_source=scholarsjunction.msstate.edu%2Ftd%2F5552&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/112?utm_source=scholarsjunction.msstate.edu%2Ftd%2F5552&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/5552?utm_source=scholarsjunction.msstate.edu%2Ftd%2F5552&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

Methods and tools to improve performance of plant

genome analysis

By

Drew Ferrell

Approved by:

George V. Popescu (Major Professor)
Federico G. Hoffmann

Daniel G. Peterson
Andy D. Perkins (Graduate Coordinator)

Scott T. Willard (Dean, College of Agriculture and Life Sciences)

A Thesis
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
for the Degree of Master of Science

in Computational Biology
in the Department of Computer Science and Engineering

Mississippi State, Mississippi

August 2022

Copyright by

Drew Ferrell

2022

Name: Drew Ferrell

Date of Degree: August 9, 2022

Institution: Mississippi State University

Major Field: Computational Biology

Major Professor: George V. Popescu

Title of Study: Methods and tools to improve performance of plant genome analysis

Pages of Study: 179

Candidate for Degree of Master of Science

Multi -omics data analysis and integration facilitates hypothesis building toward an understand-

ing of genes and pathway responses driven by environments. Methods designed to estimate and

analyze gene expression, with regard to treatments or conditions, can be leveraged to understand

gene-level responses in the cell. However, genes often interact and signal within larger struc-

tures such as pathways and networks. Complex studies guided toward describing dynamic genetic

pathways and networks require algorithms or methods designed for inference based on gene interac-

tions and related topologies. Classes of algorithms and methods may be integrated into generalized

workflows for comparative genomics studies, as multi -omics data can be standardized between

contact points in various software applications. Further, network inference or network comparison

algorithmic designs may involve interchangeable operations given the structure of their implemen-

tations. Network comparison and inference methods can also guide transfer-of-knowledge between

model organisms and those with less knowledge base.

DEDICATION

I dedicate this thesis to the friends and family who have meant and continue to mean so much

to me. I have great appreciation and admiration for those who have continued to give seemingly

boundless love and support for me and my endeavors. I especially thank Sydney, Marco, Victor,

and my Aunt Ann and Uncle Brent for all their understanding and encouragement.

ii

ACKNOWLEDGEMENTS

I acknowledge everyone on my committee – George V. Popescu, Federico G. Hoffmann, and

Daniel G. Peterson – for all their individual efforts to guide and support my academic work. I also

acknowledge those who have procured the data and software I have had the opportunity to learn

and use; I am truly standing on the shoulders of giants.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . vi

LIST OF FIGURES . viii

CHAPTER

I. SWEETPOTATO TRANSCRIPTOME ANALYSIS: CHALLENGES OF COM-
PARATIVE GENOMICS IN HEXAPLOIDS 1

1.1 Introduction . 1
1.2 Transcriptomic Analysis . 2
1.3 Functional Annotation . 7
1.4 Sweetpotato RNA-Seq Data Analysis 11
1.5 Alignment Performance . 12
1.6 Differential Gene Expression Analysis 17
1.7 Significant Enrichment and Annotation Analyses 25
1.8 Conclusion . 37

II. ADVANCED GENOMIC NETWORKS ANALYSIS 39

2.1 Introduction . 39
2.2 NetSeekR Pipeline Implementation . 41
2.3 RNA-seq Analysis with NetSeekR . 54
2.4 Kallisto/Sleuth GRN . 59
2.5 Conclusion . 63

III. NETWORK ANALYSIS DESIGN METHODS 65

3.1 Introduction . 65
3.2 Simulated Annealing . 66
3.3 Network Inference with SA . 70

iv

3.4 Network Alignment with SA . 77
3.5 Conclusion . 78

REFERENCES . 79

APPENDIX

A. SUPPLEMENTS FOR CHAPTER I . 83

A.1 Sample Variability Correction . 84

B. SUPPLEMENTS FOR CHAPTER II . 91

B.1 NetSeekR Tutorial . 92
B.2 NetSeekR Code . 96

C. SUPPLEMENTS FOR CHAPTER III . 171

C.1 Network Inference with SA . 172
C.2 Edge Inclusion Pseudocode . 176
C.3 Edge Exclusion Pseudocode . 178
C.4 Objective Function . 179

v

LIST OF TABLES

1.1 Chromosome Size and Transcript Count per Chromosome of I. trifida and I. triloba 3

1.2 Chromosome Size and Transcript Count per Chromosome of I. batatas (IpoBat4) . 4

1.3 Percent of A. thaliana, I. nil, and S. lycopersicum Proteomes Covered with Orthol-
ogous I. trifida and I. triloba Peptides . 6

1.4 Hisat2 Alignment Percentages for I. batatas Alignment to Progenitors I. trifida and
I. triloba with Read Recall Parameter Values . 14

1.5 Experimental Design with I. batatas Drought-stressed and Control Library Sample
Definitions . 18

1.6 Total Numbers of Differentially Expressed Genes From EdgeR and Voom with
Quality Weights for Genotypic Comparisons . 21

1.7 Significant GO Term Enrichment with OMA Predicted Terms and Voom with Qual-
ity Weights Significant Genes . 26

1.8 Significant GO Term Enrichment with gProfiler I. triloba Orthologs and Voom with
Quality Weights Significant Genes . 30

1.9 Significant GO Term Enrichment with Orthofinder Results and Voom with Quality
Weights Significant Genes . 31

2.1 NetSeekR Function Names and Descriptions . 49

2.6 Unique TFs Identified in DREM Analyses . 63

vi

LIST OF FIGURES

1.1 Inferred Species Tree from OrthoFinder Orthology Searches Between I. trifida, I.
triloba, A. thaliana, I. nil, S. lycopersicum, C. annuum, S. tuberosum, N. attenuata,
S. pennellii, and N. tomentosiformis . 5

1.2 I. trifida and I. triloba Protein Intersection Across Orthology Searches to A. thaliana,
I. nil, and S. lycopersicum with OrthoFinder . 7

1.3 Transcription Factor Counts per Transcription Factor Family for I. trifida, I. triloba
and A. thaliana . 9

1.4 Kinase Counts per TAIR10 Kinase Family for I. trifida, I. triloba and A. thaliana . 10

1.5 Overall Alignment (Hisat2) and Mapping (Salmon) Rates to Progenitors I. trifida
and I. triloba, and IpoBat4 I. batatas Reference Sequences. 13

1.6 MA Graph for Beauregard Leaves Vs. Hatteras Leaves (Drought Stress 3rd Time
Point) with Voom with Quality Weights Results 23

1.7 MA Graph for Beauregard Roots Vs. Hatteras Roots (Drought Stress 4th Time
Point) with Voom with Quality Weights Results 24

1.8 Heatmap of Significant I. trifida and I. triloba Genes Orthologous to TAIR10 TFs . 35

1.9 Heatmap of Significant I. trifida and I. triloba Genes Orthologous to TAIR10 Kinases 36

2.1 Workflow of the NetSeekR Pipeline . 44

2.2 A) PCA plot from Sleuth analysis of time-series of RNA-Seq data; B) UpSetR
comparison of time series of RNA-Seq data; C) Dendrogram from WGCNA analysis
of time series of RNA-Seq data; D) DREM analysis of time series of RNA-Seq data. 47

2.3 Wild-type FLG22 DREM Regulatory Map for Kallisto/Sleuth Significant Hits . . . 61

2.4 ILK1 FLG22 DREM Regulatory Map for Kallisto/Sleuth Significant Hits 62

vii

A.1 I. batatas cv. Beauregard and I. batatas cv. Hatteras Leaves Raw Counts PCA. . . 85

A.2 I. batatas cv. Beauregard and I. batatas cv. Hatteras Roots Raw Counts PCA. . . . 86

A.3 I. batatas cv. Hatteras Biological Replicate Sample Weights for Control Leaves at
the Second Time Point. 87

A.4 I. batatas cv. Beauregard Biological Replicate Sample Weights for Control Leaves
at the Second Time Point. 88

A.5 I. batatas cv. Beauregard and I. batatas cv. Hatteras Leaves Normalized and
Weighted Counts PCA. 89

A.6 I. batatas cv. Beauregard and I. batatas cv. Hatteras Roots Normalized and Weighted
Counts PCA. 90

viii

CHAPTER I

SWEETPOTATO TRANSCRIPTOME ANALYSIS: CHALLENGES OF COMPARATIVE

GENOMICS IN HEXAPLOIDS

1.1 Introduction

Sweetpotato (Ipomoea batatas) is a nutrient-dense food crop with productivity constraints

imposed by drought stress in agricultural ecosystems. Molecular regulatory mechanisms underlying

adaptive responses to drought stress have not been well-characterized for I. batatas. Identification

of candidate genes related to drought tolerance is critical for developing new varieties tolerant to

drought stress through genetic engineering. A comparative genomic analysis was conducted to

understand regulatory mechanisms underlying adaptive response to drought stress in I. batatas. The

differential response to drought-stress was assessed between two genotypes for leaf and storage

root tissues. Differentially expressed genes (DEGs) identified in the analysis were functionally

annotated to understand their potential roles in regulating adaptive responses to drought stress.

RNA-Sequencing (RNA-Seq) data analysis was conducted with existing genomic resources.

Reference genomes and annotated transcripts were used to conduct alignment of sequence reads.

The reference genome for I. batatas, recently made available [44], was used in the analysis.

Additionally, reference genomes for two diploid wild relatives of I. batatas, publicly released

in 2017 [43], were used in the analysis. Higher alignment rates were reported for aligning

reads to the two diploid wild relatives versus the I. batatas reference genome. Orthology search

1

against A. thaliana identified transcription factors (TFs) and kinases in the I. batatas relatives.

Differential expression analyses identified 27,976 significantly differentially expressed genes across

two genotypes, two tissues and four time points. TFs and kinase orthologs involved in immune

response were significantly differentially expressed in the I. batatas drought-stressed tissues.

1.2 Transcriptomic Analysis

Genomic Resources The Sweetpotato Genomics Resource at Michigan State University released

genome assemblies and genome annotations in 2017 for two diploid wild relatives of I. batatas:

Ipomoea trifida and Ipomoea triloba. We accessed the genomics resources for the two diploid

wild relatives to conduct transcriptomic profiling. Genome assemblies were chromosome-scale,

and were generated with a combination of long-read PacBio sequence data and de-novo-assembled

BioNano genome maps. Assemblies were demonstrated to be high-quality by developmental tissue

RNA-seq read alignment and BUSCO gene content assessment. Genome annotations included

transcript sequences, coding sequences, amino acid sequences, general feature format (GFF3)

annotations, putative functional annotations, and representative (longest coding DNA sequence)

gene models.

Annotated transcript sequences and genome assemblies were downloaded in FASTA format.

44,158 transcript sequences were from I. trifida, and 47,091 transcript sequences were from I.

triloba. The genome assemblies for I. trifida and I. triloba each consisted of 16 chromosomes.

The first chromosome for both genome assemblies (Chr00) corresponded to gene models in the

concatenated unanchored scaffolds. The mean difference in number of transcripts between I. trifida

and I. triloba annotations was 403 transcripts (Table 1.1).

2

Table 1.1

Chromosome Size and Transcript Count per Chromosome of I. trifida and I. triloba

I. trifida I. triloba
Chromosome Size (bp) Transcripts Size (bp) Transcripts
Chr00 1.2 × 108 1, 847 1.8 × 107 86
Chr01 3.2 × 107 3, 925 3.8 × 107 4, 349
Chr02 2.8 × 107 2, 939 2.7 × 107 3, 232
Chr03 2.9 × 107 3, 408 3.3 × 107 3, 684
Chr04 3.3 × 107 3, 603 3.6 × 107 4, 027
Chr05 2.6 × 107 2, 958 3.3 × 107 3, 295
Chr06 2.6 × 107 2, 800 2.8 × 107 2, 986
Chr07 2.4 × 107 2, 444 2.9 × 107 2, 836
Chr08 2 × 107 1, 936 2.1 × 107 2, 046
Chr09 2.3 × 107 3, 136 3.2 × 107 3, 561
Chr10 2.5 × 107 2, 536 3 × 107 2, 953
Chr11 1.9 × 107 2, 426 2.6 × 107 2, 776
Chr12 2.4 × 107 3, 147 2.8 × 107 3, 322
Chr13 2.3 × 107 2, 267 3.2 × 107 2, 797
Chr14 1.9 × 107 2, 230 2.4 × 107 2, 458
Chr15 2.3 × 107 2, 556 2.7 × 107 2, 683

Total 4.92 × 108 44, 158 4.62 × 108 47, 091

Max Planck Institute for Molecular Genetics released a genome assembly and annotation for

I. batatas (IpoBat4). The 15 pseudochromosomes were resolved by a novel haplotyping method

using paired-end sequences from cv. Taizhong6. Transcript sequences were downloaded in

FASTA format from the National Center for Biotechnology Information (NCBI). There were a

total of 71,320 annotated transcripts, and the chromosome assembly consisted of 15 chromosomes,

with an extra chromosome (Chr00) for the unanchored scaffolds (Table 1.2).

3

Table 1.2

Chromosome Size and Transcript Count per Chromosome of I. batatas (IpoBat4)

Chromosome Size (bp) Transcripts
Chr00 1.1 × 108 10, 860
Chr01 3.6 × 107 3, 848
Chr02 4.9 × 107 4, 778
Chr03 3.5 × 107 3, 879
Chr04 4.8 × 107 4, 576
Chr05 4.5 × 107 4, 492
Chr06 4.3 × 107 3, 908
Chr07 3.5 × 107 3, 140
Chr08 4.1 × 107 3, 839
Chr09 3.8 × 107 3, 671
Chr10 4.3 × 107 3, 613
Chr11 4.2 × 107 3, 835
Chr12 5.3 × 107 5, 558
Chr13 4.2 × 107 3, 307
Chr14 5.1 × 107 5, 308
Chr15 3.2 × 107 2, 708

Total 7.4 × 108 71, 320

Orthology Search Two orthology search methods were applied to retrieve orthologs between

the I. batatas progenitor peptides and the proteins of eight other species. The gProfiler [20] R

package was used to extract A. thaliana proteins orthologous to I. triloba peptides. The gProfiler

orthology search resulted in a total of 30,767 I. triloba peptides orthologous to 18,032 A. thaliana

proteins. The gProfiler orthology search accesses Ensembl [45], which does not currently have

the curated I. trifida annotations. OrthoFinder [14] was applied to retrieve I. batatas progenitor

peptides orthologous to proteins in A. thaliana, Ipomoea nil, Solanum lycopersicum, Capsicum

annuum, Solanum tuberosum, Nicotiana attenuata, Solanum pennellii, and Nicotiana tomentosi-

4

formis. OrthoFinder inferred A. thaliana as the outgroup species, and I. nil as the closest relative to

I. trifida and I. triloba (Figure 1.1). I. trifida and I. triloba peptides identified in orthology searches

to the proteomes of A. thaliana, I. nil, and S. lycopersicum were selected for analysis of ortholog

coverage. The percent coverages of progenitor peptide orthologs to each of the A. thaliana, I. nil,

and S. lycopersicum proteomes were calculated (Table 1.3).

Figure 1.1

Inferred Species Tree from OrthoFinder Orthology Searches Between I. trifida, I. triloba, A.
thaliana, I. nil, S. lycopersicum, C. annuum, S. tuberosum, N. attenuata, S. pennellii, and N.

tomentosiformis

5

Table 1.3

Percent of A. thaliana, I. nil, and S. lycopersicum Proteomes Covered with Orthologous I. trifida
and I. triloba Peptides

A. thaliana I. nil S. lycopersicum

I. trifida 45% 77% 77%
I. triloba 45% 78% 77%

Progenitor peptides orthologous to each of the A. thaliana, I. nil, and S. lycopersicum proteomes

were converted to protein identifiers for intersection analysis with UpSetR [11]. The largest sets of

orthologous sequences consisted of progenitor proteins orthologous to the I. nil proteome. Further,

the largest sets of distinct progenitor proteins orthologous to any proteome pertained to I. nil:

4,238 distinct I. trifida orthologs, and 4,067 distinct I. triloba orthologs. The next largest sets

of orthologous sequences consisted of the progenitor proteins orthologous to the S. lycopersicum

proteome. The fewest orthologs were identified between progenitor proteins and the A. thaliana

proteome. 14,176 distinct I. trifida orthologs, and 13,966 distinct I. triloba orthologs were identified

in each of the analyses of A. thaliana, I. nil, and S. lycopersicum (Figure 1.2).

6

Figure 1.2

I. trifida and I. triloba Protein Intersection Across Orthology Searches to A. thaliana, I. nil, and S.
lycopersicum with OrthoFinder

1.3 Functional Annotation

Gene Ontology (GO) functional annotations for progenitor proteins were retrieved using the GO

functional prediction tool provided by Orthologous Matrix (OMA) [3]. OMA predicts GO functions

for sequences based on sequence similarity with all the sequences in the OMA database. FASTA

Splitter (https://kirill-kryukov.com/study/tools/fasta-splitter) was used to separate the sets of I. tri-

fida and I. triloba peptide sequences since the OMA functional prediction tool has size limits on

input files. Eight sets of peptide sequences in FASTA format were submitted to the OMA browser.

Gene Association File (GAF) 2.1 format files containing GO annotations were then retrieved

from OMA. OMA predicted 8,144 GO terms to 85,164 I. trifida and I. triloba peptide sequences.

7

The predicted GO terms were linked to GO term descriptions using ontology in Open Biomed-

ical Ontologies (OBO) format from GO Consortium (http://geneontology.org/docs/download-

ontology/#go_obo_and_owl). Three GO terms predicted by OMA were not present in the down-

loaded OBO file (GO:0140684, GO:0140680, GO:0106388), and were added after searching for

the descriptions with QuickGO (https://www.ebi.ac.uk/QuickGO/). The identifiers for peptide se-

quences annotated to each GO term bin were converted to gene identifiers. A custom Gene Matrix

Transposed (GMT) file was generated using predicted GO terms with descriptions, and groups of

annotated I. trifida and I. triloba gene identifiers associated with each GO term.

I. trifida and I. triloba orthologs to A. thaliana were annotated to TAIR10 [22] GO categories

with the org.At.tair.db R package [8]. I. trifida and I. triloba orthologs identified with gProfiler

and OrthoFinder were linked to A. thaliana GO terms using the orthologous relationships to A.

thaliana. Further, the A. thaliana GO terms were mapped to GO term descriptions using the GO

Consortium OBO file. The gProfiler I. triloba orthologs to A. thaliana were associated with 7,160

GO terms. 6,537 GO terms were associated with OrthoFinder I. trifida and I. triloba orthologs. A

custom GMT file was constructed per set of GO terms.

TF and Kinase Annotation with OrthoFinder Results The OrthoFinder I. trifida and I. triloba

orthologs to A. thaliana were annotated with TFs. A. thaliana TFs were downloaded from Plant-

TFDB 5.0 [15] and used to identify I. trifida and I. triloba gene sequences orthologous to A.

thaliana TFs. PlantTFDB 5.0 contains 1,726 TAIR10 TF annotations for genes classified into 58

families. There were 1,093 I. trifida gene sequences orthologous to 790 A. thaliana TF sequences.

1,057 I. triloba gene sequences were orthologous to 789 A. thaliana TF sequences. 10% of TFs

8

identified in I. trifida and I. triloba were within the Basic Helix-Loop-Helix (bHLH) transcription

factor family (Figure 1.3).

Figure 1.3

Transcription Factor Counts per Transcription Factor Family for I. trifida, I. triloba and A. thaliana

9

I. trifida and I. triloba gene sequences orthologous to A. thaliana gene sequences were annotated

with kinases. A. thaliana kinases [47] were used to identify I. trifida and I. triloba gene sequences

orthologous to A. thaliana kinases. There were 1,053 kinases annotated with TAIR10 identifiers.

176 A. thaliana kinase sequences were orthologous to 239 I. trifida gene sequences. 174 A. thaliana

kinase sequences were orthologous to 232 I. triloba gene sequences. 12% of kinases identified

in I. trifida and I. triloba were annotated with calcium-dependent protein kinases (CDPK) (Figure

1.4).

Figure 1.4

Kinase Counts per TAIR10 Kinase Family for I. trifida, I. triloba and A. thaliana

10

1.4 Sweetpotato RNA-Seq Data Analysis

RNA-Seq Data Quality Control Illumina libraries were trimmed using Trimmomatic [5]. Reads

shorter than 36 bases were removed from the libraries. Paired-end mode was used with Phred +33

quality scores, and adapter sequences were cut. Low quality bases with Phred +33 quality scores

below 3 were removed from the beginnings and ends of the reads. Multiple bases were considered

at a time using sliding window trimming with a window size of 4. The sliding window trimming

cut bases where the average Phred +33 quality score was below 15 for each window.

Alignment and Mapping Quality controlled RNA-seq library reads were aligned with Hisat2

(version 2.1.0) [19] and mapped with Salmon (version 1.3.0) [30]. Two sets of reference transcript

sequences were aligned and mapped to: 1) the combined I. trifida and I. triloba transcript sequences,

and 2) the ipoBat4 I. batatas transcript sequences. Three procedures were implemented per set of

reference transcript sequences: one procedure applying Salmon alone (mapping-based mode) with

the selective alignment procedure [41], a second procedure using Hisat2 with default parameters,

and a third procedure using Hisat2 with parameters chosen for their impact on correctly aligning

reads and bases (read recall parameter values) [4]. The application of Salmon in mapping-

based mode produced transcript abundance estimates per transcript per sample. The two Hisat2

approaches produced intermediate alignment files processed with SAMtools [25] and Salmon to

obtain transcript abundance estimates per transcript per sample.

11

1.5 Alignment Performance

The quality of alignment and mapping results varied depending on software and reference

transcriptome used, as well as the chosen parameter values. Overall alignment and mapping

percentages were used as measurements of performance per strategy. The least performant align-

ment and mapping strategies involved the ipoBat4 I. batatas transcript sequences. Mapping I.

batatas paired-end reads to ipoBat4 I. batatas transcript sequences with Salmon in mapping-based

mode resulted in the lowest overall mapping percentages. Hisat2 alignment to ipoBat4 I. batatas

transcript sequences with default parameters resulted in overall alignment percentages similar to

Salmon mapping to ipoBat4 I. batatas transcript sequences. Hisat2 alignment to ipoBat4 I. batatas

transcript sequences with read recall parameter values had the highest performance compared

to other mapping and alignment strategies involving the ipoBat4 I. batatas transcript sequences.

Hisat2 alignment to I. trifida and I. triloba transcript sequences with read recall parameter values

had the highest performance among mapping and alignment strategies to the I. trifida and I. triloba

transcript sequences. Hisat2 alignment to I. trifida and I. triloba transcript sequences with default

parameters resulted in the lowest overall alignment among mapping and alignment strategies to

I. trifida and I. triloba transcript sequences. Mapping with Salmon to I. trifida and I. triloba

transcript sequences resulted in overall mapping performance between the two applications of

Hisat2 alignment to I. trifida and I. triloba transcript sequences. The highest overall alignment

percentages corresponded to Hisat2 alignments to I. trifida and I. triloba transcript sequences with

read recall parameter values (Figure 1.3, Table 1.4).

12

IpoBat4 Default Alignment

IpoBat4 Mapping

IpoBat4 Read Recall Alignment

Progenitor Default Alignment

Progenitor Mapping

Progenitor Read Recall Alignment

60 70 80 90
Rate

Figure 1.5

Overall Alignment (Hisat2) and Mapping (Salmon) Rates to Progenitors I. trifida and I. triloba,
and IpoBat4 I. batatas Reference Sequences.

13

Table 1.4

Hisat2 Alignment Percentages for I. batatas Alignment to Progenitors I. trifida and I. triloba with
Read Recall Parameter Values

Genotype Tissue Condition Time-point Replicate Alignment (%)

Beauregard
Leaf

Drought Stress
1 92, 92, 93
2 92, 90, 92
3 93, 94, 93

Wild-Type
1 94, 95, 93
2 91, 93, 92
3 90, 93, 89

Root Drought Stress 4 93, 91, 91
Wild-Type 4 90, 91, 90

Hatteras
Leaf

Drought Stress
1 93, 92, 94
2 92, 88, 91
3 90, 92, 91

Wild-Type
1 94, 94, 92
2 93, 91, 91
3 91, 88, 88

Root Drought Stress 4 93, 91, 91
Wild-Type 4 91, 90, 91

14

Salmon in Mapping-based mode Mapping I. batatas sequence reads using the selective align-

ment procedure from Salmon required transcriptome index preparation to be conducted with

genome assemblies, transcript sequences, and lists of decoys. Lists of decoys were produced by

extracting unique chromosome identifiers from the sequence headers of genome assemblies. The

selective alignment procedure was applied to map I. batatas sequence reads to I. trifida and I. triloba

transcript sequences, and the ipoBat4 I. batatas transcript sequences. The I. trifida and I. triloba

transcript sequences were sourced from the high-confidence transcript sequence sets. Mapping I.

batatas sequence reads with Salmon produced estimated transcript abundance per transcript per

sample.

Mapping I. batatas sequence reads to I. trifida and I. triloba transcript sequences consisted

of pre-processing steps which enables use of Salmon with the selective alignment procedure.

Genome assemblies for progenitors I. trifida and I. triloba did not initially contain species-specific

identifiers in the chromosome sequence headers. Inserting species identifiers into chromosome

sequence headers allows Salmon to differentiate between genome assemblies when indexing mul-

tiple genomes in a single execution. Therefore, chromosome sequence headers in the I. trifida

and I. triloba genome assemblies were flagged with species-specific identifiers (itf for trifida,

and itb for triloba). Flagging chromosome sequence headers with species-specific identifiers was

conducted such that the original chromosome identifiers remained in the chromosome sequence

headers once flagged with species identifiers. The I. trifida and I. triloba genome assemblies with

species-specific identifiers were concatenated together into a single genome assembly file. The

decoy list was extracted from the combined I. trifida and I. triloba genome assembly file. A total of

15

32 decoys were present, one for each chromosome from each species. The I. trifida and I. triloba

transcript sequences were concatenated with the I. trifida and I. triloba genome assembly file.

The ipoBat4 I. batatas genomic resources were processed separately from I. trifida and I. triloba

genomic resources. The ipoBat4 transcriptome index was constructed to map I. batatas sequence

reads to the ipoBat4 I. batatas reference transcript sequences. The ipoBat4 I. batatas decoy list

was produced by extracting sequence headers from the ipoBat4 I. batatas genome assembly file.

The decoy list consisted of 15 chromosomes and 4,467 scaffolds. The ipoBat4 I. batatas transcript

sequences were concatenated to the ipoBat4 I. batatas genome assembly file.

Two transcriptome indices, one for each set of reference sequences, were constructed using

lists of decoys and the transcript sequences concatenated to genome assemblies. Forward and

reverse I. batatas sequence reads were mapped against either index separately, using Salmon in

mapping-based mode with default parameters to estimate transcript abundance. The parameters

used in transcript abundance estimation were reflective of the prep kit used, and were set to indicate

that input reads were of inward orientation, stranded, and the reverse reads preceded forward reads

in the FASTQ formatted files.

Hisat2 Alignment Aligning I. batatas sequence reads with Hisat2 involved applying two align-

ment strategies to each of the two transcript sequence sets. Two transcriptome indices were

constructed, one for combined I. trifida and I. triloba transcript sequences, and the other for ipo-

Bat4 I. batatas transcript sequences. Transcript sequences for I. trifida and I. triloba transcriptome

index construction were sourced from the high-confidence transcript sequence sets. The two sets of

parameter values used to configure Hisat2 alignment procedures were: 1) default parameter values,

16

and 2) parameter values which increase correctly aligned reads and bases (read recall parameter

values). Four sets of read alignment files were produced by sequence alignment with Hisat2, one

set of alignment files for each combination of alignment procedure and transcript sequence set.

There were several differences between Hisat2 read recall parameter values and Hisat2 default

parameter values. The read recall parameter values sacrificed alignment speed for increased

sensitivity, compared to the default parameter values. More sensitive alignments were generated

by 1) selecting shorter seeds in multiseed alignment, 2) decreasing the interval between seeds

in multiseed alignment, 3) increasing the upper limit on how many seed extensions could fail to

align, 4) setting number of allowed mismatches in each seed alignment to the maximum value, 5)

increasing the number of times reads with repetitive seeds could be re-seeded.

Sequence Alignment Map (SAM) files were generated by Hisat2 per sample for each of the four

combinations of alignment procedures and transcript sequences. SAMTools was used to sort the

SAM files, and convert the sorted SAM files to Binary Alignment Map (BAM) files. All four sets of

samples from the four alignment strategies were processed with Salmon in alignment-based mode.

The processing with Salmon in alignment-based mode resulted in estimated transcript abundance

values per transcript per sample.

1.6 Differential Gene Expression Analysis

Experimental Design Forty-eight RNA-seq libraries were generated by sequencing I. batatas

cv. Beauregard and I. batatas cv. Hatteras total RNA samples. RNA samples were extracted

from the two cultivars across two tissues, two treatments, and four time points. Three biological

replicates were collected per time point. Half the samples per genotype were collected from well-

17

watered control plants (wild-type), and the other half were collected from drought stressed plants.

Biological replicates were collected from leaf tissues at the first three time points, and biological

replicates were collected from storage roots at the fourth time point. Thirty-six of the samples

were collected from leaf tissues, and the remaining twelve samples were collected from storage

root tissues (Table 1.5). Total RNA samples were converted from mRNA with the Illumina TruSeq

Stranded mRNA Library Prep Kit, and sequenced with the Illumina HiSeqTM 3000 system.

Table 1.5

Experimental Design with I. batatas Drought-stressed and Control Library Sample Definitions

Genotype Tissue Condition Time-point(s) Replicates

Beauregard
Leaf Drought Stress 1-3 9

Wild-Type 1-3 9

Storage Root Drought Stress 4 3
Wild-Type 4 3

Hatteras
Leaf Drought Stress 1-3 9

Wild-Type 1-3 9

Storage Root Drought Stress 4 3
Wild-Type 4 3

From Counts to Differentially Expressed Genes Transcript abundance estimates corresponding

to the set of samples with highest overall alignment rates were used in testing for differential

gene expression. The Tximport [40] software package was used to import transcript abundance

estimates and conduct gene-level summarization. Two matrices were constructed for the gene-level

estimated counts, one for each set of leaf and storage root RNA-seq libraries. Gene-level estimated

counts matrices were each processed with the same filtration and normalization methods. High

18

sample variability within groups of biological replicates motivated application of a methodology

implemented in the limma package [35] which retained robust statistical testing power without the

removal of high variation samples. Eight lists of ranked genes with associated p-values and fold

changes resulted from differential testing between genotypes for each tissue, condition and time

point.

Gene-level summarization with Tximport was applied with the use of a transcript-to-gene

mapping file. The transcript-to-mapping file consisted of one column for transcript sequence iden-

tifiers, and one other column for gene identifiers corresponding to transcript sequence identifiers.

Gene-level summarization of transcript abundance estimates provided estimated counts per gene

per sample. Estimated gene counts were grouped with respect to tissue and counts matrices were

constructed per set of samples corresponding to leaf and root tissues. The tissue-specific gene

counts matrices were used to construct separate DGEList [36] objects. Design matrices were

defined for each DGEList object with an experimental description vector encoding per design

matrix. Experimental description vector encodings were extracted from experimental descriptions

for the RNA-seq libraries. Design matrices constructed with experimental descriptions linked the

gene-level response variables with explanatory variables. The first terms in each design matrix

were set to zero. Comparison contrasts were decided between I. batatas cv. Beauregard and I.

batatas cv. Hatteras coefficients.

EdgeR filtration and normalization methods were applied to the counts matrices. Gene iden-

tifiers were listed in the first columns of each counts matrix, followed by columns of estimated

gene counts per sample. Genes with less than 20 counts were discarded if significant differences

between tissue-specific samples could not be identified. The counts matrix containing estimated

19

gene counts to leaf samples retained 43,502 genes after filtering, and the counts matrix containing

estimated gene counts to storage root samples retained 40,371 genes after filtering. Library sizes

were re-calculated once counts matrices were filtered. Normalization factors were calculated by

trimmed mean of M values (TMM) [37] per library to eliminate composition biases between li-

braries. The products of normalization factors and library sizes were used to scale library sizes

with respect to tissue.

Counts matrices with normalization factors calculated by TMM were processed with the limma

method for modeling heterogeneity at both the sample and observational levels. Gene counts were

converted to log counts-per-million (CPM) values, after adding a value of 0.5 to all estimated

gene counts. LogCPM gene counts were normalized with the normalization factors calculated

prior with TMM. Precision weights were calculated for observations based on estimates from

mean-variance relationships. Libraries were assessed for quality in terms of relative reliability of

expression values to follow a linear model, and weighted according to residual sizes. Samples

were weighted with values inversely proportional to residual sizes, and moved slightly towards

equality with one another. Observational weights and sample weights were re-calculated. Linear

models were fit for each gene. Contrast matrices were constructed using coefficients from fit linear

models as parameters. Coefficients, unscaled standard deviations, and correlation matrices were

re-computed using the contrasts. Empirical Bayes was used to rank DEGs, and p-value adjustment

was conducted with false discovery rate (FDR) correction.

Genes determined to be significantly differentially expressed in leaves were those with an FDR

adjusted p-value of 0.05; whereas genes determined to be significantly differentially expressed

in roots were those with absolute log-fold-change (LFC) values greater than 1, and unadjusted

20

p-values less than 0.05. A comparison between EdgeR and Limma-Voom with quality weights

results revealed EdgeR had less ability to detect differences between samples (Table 1.6). The sets

of DEGs used in further analysis were those from the Limma-Voom with quality weights pipeline,

using the adjustment and LFC threshold for leaves and roots discussed prior.

The amount of DEGs decreased from the first time point to the third time point for wild-type leaf

comparisons. In contrast, drought-stressed leaf comparisons resulted in an increase in the amounts

of DEGs from the first time point to the third time point. The number of up-regulated genes was

higher than down-regulated genes for comparisons between wild-type leaves at the second and third

time points, and the wild-type roots comparison. Comparisons between drought-stressed leaves

and drought-stressed roots resulted in higher numbers of down-regulated genes than up-regulated

genes (Table 1.6).

Table 1.6

Total Numbers of Differentially Expressed Genes From EdgeR and Voom with Quality Weights
for Genotypic Comparisons

Condition Tissue Time-point
EdgeR Voom with Quality Weights
Up Down Up Down

Wild-Type Leaves
1st 75 84 4198 4890
2nd 138 109 2982 2497
3rd 9 11 92 66

Roots 4th 255 179 428 284

Drought-Stress
Leaves

1st 0 0 615 964
2nd 171 208 762 1110
3rd 161 274 2399 3138

Roots 4th 1320 840 1264 2287

21

Significant and non-significant DEGs were graphed on MA plots using the ggmaplot function

from ggpubr [17]. Significant DEGs were opaque, while non-significant DEGs were transparent.

Up-regulated genes were represented as red points, while down-regulated genes were represented

as blue points. The MA graphs show the relationships per gene between log mean expression

values and LFC values. DEGs with relatively lower log mean expression values tended to have

higher LFC values. DEGs with relatively higher log mean expression values tended to have lower

LFC values (Figure 1.4, Figure 1.5).

22

Figure 1.6

MA Graph for Beauregard Leaves Vs. Hatteras Leaves (Drought Stress 3rd Time Point) with
Voom with Quality Weights Results

23

Figure 1.7

MA Graph for Beauregard Roots Vs. Hatteras Roots (Drought Stress 4th Time Point) with Voom
with Quality Weights Results

24

1.7 Significant Enrichment and Annotation Analyses

Significant Enrichment of DEGs The three separate GMT files for predicted OMA GO terms,

gProfiler I. triloba orthologs, and OrthoFinder I. trifida and I. triloba orthologs were uploaded

to gProfiler to conduct GO term enrichment tests. The DEGs from drought stress analyses were

tested for significant GO term enrichment against each of the three background GO term sets.

The enrichment analysis with gProfiler I. triloba orthologs was conducted using only the I. triloba

DEGs for drought stress analyses. Multiple testing correction was conducted with gSCS, the

ontology-based method provided by gProfiler. Terms significantly enriched from testing drought

stress DEGs with OMA results included heat shock protein binding, defense response, and immune

response terms (Table 1.7). Drought stress DEGs tested for significant enrichment with gProfiler I.

triloba orthologs resulted in terms related to protein folding, intracellular anatomical structure, and

external encapsulating structure (1.8). Terms related to protein folding were significantly enriched

in tests between drought stress DEGs and OrthoFinder results (Table 1.9).

25

Table 1.7

Significant GO Term Enrichment with OMA Predicted Terms and Voom with Quality Weights
Significant Genes

Condition Tissue Time-point Term ID P-value

Drought Stress Leaves

1st

ADP binding 2.88e-17
protein folding chaperone 5.21e-12
defense response 1.35e-07
cytoplasm 1.37e-07
misfolded protein binding 5.6e-07
cellular response to unfolded protein 1.25e-06
unfolded protein binding 4.5e-04
heat shock protein binding 1.61e-03
protein refolding 1.66e-03
protein folding 5.46e-03
chaperone cofactor-dependent protein 7.1e-03
refolding

2nd

ADP binding 1.5e-17
defense response 1.29e-08
nucleotide binding 6.99e-05
cytoplasm 3.83e-04
recognition of pollen 2.26e-03
ATP binding 1.88e-02
membrane 3.03e-02

3rd

ADP binding 7.86e-28
transferase activity 5.34e-11
membrane 1.3e-10
defense response 8.27e-10
integral component of membrane 1.39e-09
cytoplasm 2.01e-09
nucleotide binding 1.62e-08
proteasome complex 4.89e-08
UDP-glycosyltransferase activity 2.52e-07
endoplasmic reticulum 5.17e-06
quercetin 7-O-glucosyltransferase activity 6.06e-06
quercetin 3-O-glucosyltransferase activity 6.06e-06
proteasome core complex 2.79e-05
ATP binding 3.43e-04

26

Table 1.7

(continued)

Condition Tissue Time-point Term ID P-value

Drought Stress

Leaves 3rd

multicellular organism development 4.26e-04
protein binding 5.61e-04
defense response to fungus 8.11e-04
ADP binding 2.88e-17
cytosol 4.13e-03
RNA binding 6.52e-03
translation 7.77e-03
catalytic activity 1.53e-02
proteasomal protein catabolic process 1.71e-02
proteasome core complex, alpha-subunit 1.96e-02
complex
ribosome 2e-02
ceramide metabolic process 2.57e-02
immune response 2.95e-02
spliceosomal complex 3.63e-02
plasma membrane 3.65e-02
structural constituent of ribosome 4.01e-02
mRNA splicing, via spliceosome 4.76e-02

Roots 4th

photosynthesis 2.61e-15
membrane 4.71e-15
oxidoreductase activity 1.62e-12
integral component of membrane 2.23e-12
water channel activity 3.25e-10
chloroplast thylakoid membrane 3.42e-10
photosystem II 4.43e-10
UDP-glycosyltransferase activity 2.51e-09
oxidoreductase activity, acting on paired 7.41e-09
donors, with incorporation or reduction
of molecular oxygen
heme binding 9.25e-09
ADP binding 1.37e-08
photosystem I 7.46e-08
defense response 1.31e-07

27

Table 1.7

(continued)

Condition Tissue Time-point Term ID P-value

Drought Stress Roots 4th

channel activity 2.06e-07
purine nucleoside transmembrane 2.42e-07
transporter activity
purine nucleoside transmembrane 2.67e-07
transport
monooxygenase activity 3.05e-07
iron ion binding 3.32e-07
purine nucleobase transmembrane 5.2e-07
transporter activity
purine nucleobase transport 6.02e-07
purine nucleobase transmembrane 1.3e-06
transport
apoplast 2.18e-06
plasma membrane 4.16e-06
transmembrane transport 1.95e-05
oxidoreductase activity, acting on paired 6.27e-05
donors, with incorporation or reduction 6.45e-05
of molecular oxygen, reduced flavin or
flavoprotein as one donor, and
incorporation of one atom of oxygen
hexosyltransferase activity
phloem development 8.77e-05
thylakoid 1.67e-04
manganese ion binding 4.04e-04
serine-type peptidase activity 4.7e-04
sulfotransferase activity 5.97e-04
oxidoreductase activity, acting on the 1.18e-03
H-OH group of donors, NAD or NADP as 1.25e-03
acceptor protein complex oligomerization
photosystem II oxygen evolving complex 1.58e-03
extracellular region 3.24e-03
polysaccharide binding 4.63e-03
abscisic acid binding 5.47e-03

28

Table 1.7

(continued)

Condition Tissue Time-point Term ID P-value

Drought Stress Roots 4th

FAD binding 5.94e-03
chloroplast 6.15e-03
photosynthesis, light harvesting 6.87e-03
photosynthesis, light harvesting in 6.87e-03
photosystem I
transmembrane transporter activity 8.66e-03
serine-type endopeptidase activity 1.09e-02
hydrolase activity 1.49e-02
phosphate ion transport 1.53e-02
hydrolase activity, hydrolyzing O-glycosyl 1.54e-02
compounds
response to hydrogen peroxide 1.67e-02
nucleoside diphosphate catabolic process 1.86e-02
sulfate transmembrane transporter activity 3.54e-02

29

Table 1.8

Significant GO Term Enrichment with gProfiler I. triloba Orthologs and Voom with Quality
Weights Significant Genes

Condition Tissue Time-point Term ID P-value

Drought-Stress

Leaves

1st
protein folding 1.12e-02
unfolded protein binding 1.74e-02
misfolded protein binding 2.36e-02

2nd intracellular anatomical structure 5.92e-03

3rd

protein-containing complex 4.12e-06
intracellular anatomical structure 1.12e-04
cytosol 1.39e-04
organelle 4.44e-04
intracellular organelle 1.13e-03
catalytic complex 2.09e-03
membrane-bounded organelle 2.9e-03
intracellular membrane-bounded organelle 6.59e-03
intracellular protein-containing complex 1.09e-02
ribonucleoprotein complex 1.16e-02
cytoplasm 2.11e-02
proteasome complex 3.35e-02
proteasomal ubiquitin-independent 4.57e-02
protein catabolic process

Roots 4th

external encapsulating structure 9.31e-04
cell wall 2.22e-03
plant-type vacuole 7.21e-03
thylakoid 8.78e-03
anion transmembrane transporter activity 9.14e-03
cell periphery 1.16e-02
transmembrane transporter activity 1.61e-02
vacuole 1.67e-02
extracellular region 1.78e-02
inorganic anion transport 2.16e-02
transmembrane transport 3.83e-02
transporter activity 3.83e-02
chloroplast 4.59e-02

30

Table 1.9

Significant GO Term Enrichment with Orthofinder Results and Voom with Quality Weights
Significant Genes

Condition Tissue Time-point Term ID P-value

Drought Stress Leaves

1st

nucleus 2.49e-08
cytoplasm 3.05e-07
cytosol 1.65e-06
protein refolding 5.68e-06
cellular response to unfolded protein 1.42e-05
misfolded protein binding 7.38e-04
protein folding 1.08e-03
chloroplast 1.15e-03
mitochondrion 1.32e-03
unfolded protein binding 1.36e-03
quercetin 3-O-glucosyltransferase 7.65e-03
activity
chloroplast stroma 1.03e-02
protein heterodimerization activity 2.46e-02
heat shock protein binding 2.85e-02
flavonol 3-O-glucosyltransferase 4.89e-02
activity
daphnetin 3-O-glucosyltransferase 4.89e-02
activity
myricetin 3-O-glucosyltransferase 4.89e-02
activity

2nd

cytoplasm 2.24e-08
nucleus 2.29e-07
cytosol 3.01e-05
Golgi apparatus 7.48e-03
root epidermal cell differentiation 1.65e-02

3rd

cytosol 9.17e-25
nucleus 2.01e-19
cytoplasm 3.87e-18
endoplasmic reticulum 1.04e-08
chloroplast 1.04e-07
proteasome complex 4.55e-07
plasma membrane 8.89e-07

31

Table 1.9

(continued)

Condition Tissue Time-point Term ID P-value

Drought Stress

Leaves 3rd

acetyl CoA:(Z)-3-hexen-1-ol 2.49e-05
acetyltransferase activity
(Z)-3-hexen-1-ol acetyltransferase 2.49e-05
activity
green leaf volatile biosynthetic process 1.39e-04
endopeptidase activity 1.12e-03
proteasomal ubiquitin-independent 1.5e-03
protein catabolic process
Golgi apparatus 1.6e-03
mRNA splicing, via spliceosome 1.89e-03
vacuolar membrane 5.48e-03
vacuole 5.66e-03
RNA binding 1.17e-02
chaperone-mediated protein folding 1.43e-02
protein threonine phosphatase activity 1.59e-02
protein serine phosphatase activity 1.59e-02
signal transduction 2.12e-02
proteasome core complex 2.88e-02
ubiquitin-dependent protein catabolic 2.9e-02
process
response to oomycetes 3.11e-02
cytosolic ribosome 3.35e-02
nucleolus 3.46e-02
sulfotransferase activity 3.64e-02
mitochondrion 3.73e-02
structural constituent of ribosome 4.16e-02

Roots 4th

extracellular region 6.17e-19
chloroplast thylakoid 1.09e-16
chloroplast 8.28e-15
chloroplast thylakoid membrane 1.28e-13
thylakoid 2.14e-13
cell wall 7.46e-12
manganese ion binding 3.37e-08

32

Table 1.9

(continued)

Condition Tissue Time-point Term ID P-value

Drought Stress Roots 4th

secretory vesicle 7.88e-08
water channel activity 2.47e-07
water transport 2.93e-07
vacuole 5.41e-07
response to salicylic acid 6.89e-07
plastoglobule 1.24e-06
plasma membrane 1.99e-06
UDP-glycosyltransferase activity 6.91e-06
response to fructose 8.59e-06
transmembrane transport 1.91e-05
apoplast 2e-05
flavonol 3-O-glucosyltransferase 3.15e-05
activity
daphnetin 3-O-glucosyltransferase 3.15e-05
activity
photosynthesis, light harvesting in 3.15e-05
photosystem I
myricetin 3-O-glucosyltransferase 3.15e-05
activity
sulfotransferase activity 3.73e-05
chloroplast thylakoid lumen 3.85e-05
purine nucleoside transmembrane 5.72e-05
transporter activity
sulfation 1.02e-04
photosynthesis, light harvesting in 1.28e-04
photosystem II
cytosol 1.43e-04
flavonoid sulfotransferase activity 2.08e-04
brassinosteroid sulfotransferase activity 2.08e-04
flavonoid metabolic process 2.08e-04
abscisic acid glucosyltransferase 2.64e-04
activity
brassinosteroid metabolic process 2.8e-04

33

Table 1.9

(continued)

Condition Tissue Time-point Term ID P-value

Drought Stress Roots 4th

hydrolase activity, hydrolyzing 2.9e-04
O-glycosyl compounds
purine nucleobase transmembrane 2.96e-04
transporter activity
purine nucleobase transport 2.96e-04
heme binding 4.41e-04
thylakoid lumen 7.65e-04
oxidoreductase activity, acting on 9.43e-04
paired donors,with incorporation or
reduction of molecular oxygen
chlorophyll binding 1.16e-03
photosystem II oxygen evolving complex 1.57e-03
abscisic acid catabolic process 1.59e-03
quercetin 3-O-glucosyltransferase activity 3.43e-03
defense response to bacterium 4.1e-03
defense response 4.35e-03
sinapyl alcohol dehydrogenase activity 4.46e-03
cinnamyl-alcohol dehydrogenase activity 4.46e-03
plant-type vacuole 1.02e-02
photosystem I reaction center 1.07e-02
quercetin 4’-O-glucosyltransferase activity 1.17e-02
channel activity 1.26e-02
chloroplast envelope 1.42e-02
ATPase-coupled transmembrane 2.33e-02
transporter activity
glutathione transferase activity 2.77e-02
xyloglucan:xyloglucosyl 2.85e-02
transferase activity
thylakoid membrane 2.95e-02
O-methyltransferase activity 3.19e-02
UDP-glucosyltransferase activity 3.2e-02
anion:anion antiporter activity 3.51e-02
glycosyltransferase activity 4.05e-02
response to virus 4.17e-02

34

Significant TFs and Kinases The lists of DEGs from genotypic comparisons were used to extract

the significant I. trifida and I. triloba TFs. TFs were identified from the orthologous relationships

to A. thaliana using OrthoFinder results. Significant TFs were graphed with heat plots using the

LFC values from differential expression analyses. The lists of DEGs with the highest coverage of

TFs were for comparisons between genotypes for leaves control 1st time point, leaves control 2nd

time point, and drought-stressed leaves third time point. TFs with consistent significant expression

across comparisons include those in the WRKY, MYB, and ERF TF families. The WRKY TF

family exhibited elevated LFC values in drought-stressed leaves for the first two time points and

roots compared to control groups.

Figure 1.8

Heatmap of Significant I. trifida and I. triloba Genes Orthologous to TAIR10 TFs

35

DEG lists from genotypic comparisons were also used to extract the significant I. trifida and

I. triloba kinases. Kinases were identified from the orthologous relationships to A. thaliana using

OrthoFinder results. Significant kinases were graphed with heat plots using the LFC values from

differential expression analyses. The comparison between control leaves in the 3rd time point did

not have significant kinases. Kinases with consistent significant expression across comparisons

include those with AGC, CDPK, WNK, and WAK kinase families.

Figure 1.9

Heatmap of Significant I. trifida and I. triloba Genes Orthologous to TAIR10 Kinases

36

1.8 Conclusion

Despite recent genome sequencing efforts, genomic resources for sweetpotato are still limited

because of its complex hexaploid genome. Here we designed a strategy to analyze the transcriptome

of I. batatas using the available genome annotations of two diploid wild relatives: Ipomoea trifida

and Ipomoea triloba.

We performed a comparative genome analysis using RNA-seq to identify transcriptome changes

between two breeding lines, Beauregard and Hatteras, at three time points during vegetative growth,

and in storage roots under normal physiological conditions and in drought stress. To analyze the

sequenced transcriptomes, we optimized the read alignment strategy to a joined I. trifida/I. triloba

reference genome to obtain a high read mapping rate (greater than 91% on average). A comparative

study of alignment methodology using joined progenitor and haploid sequenced reference genomes

indicated large differences in average mapping rates (65% to 91%) among multiple strategies using

two leading aligners (Salmon and Hisat2).

We assessed orthology of I. batatas progenitors with eight plant genomes using OrthoFinder,

and were able to show that our COG covers 77% of the NCBI annotated genome of I. nil and

similar large percentage from S. lycopersicum (77%), but only 45% of A. thaliana gene annotations.

Using the inferred orthology, we analyzed the kinase and transcription factor gene families in our

joint Ipomea genome annotations, and the gene set enrichment in our differential transcriptome.

Significant TFs were part of WRKY, MYB, and ERF TF families, while significant kinases were

part of AGC, CDPK, WNK, and WAK kinase families. Significant gene set enrichment using OMA,

gProfiler, and OrthoFinder results indicated significant terms for genes responding differentially to

37

heat shock protein binding, defense response, immune response terms, protein folding, intracellular

anatomical structure, and external encapsulating structure.

We conducted a comparative genomic analysis to understand regulatory mechanisms underlying

adaptive response to drought stress in I. batatas. The differential response to drought-stress at the

molecular level in leaf and storage root tissues was compared between the two genotypes. We

observed large transcriptional changes between the two genotypes during vegetative growth, but

reduced gene expression changes in storage roots under normal conditions. However, during

drought stress the dynamics of transcriptomes changed significantly, progressively accumulating

genes with modified expression, leading to large transcriptional changes in storage roots.

Finally, we conducted functional analysis of annotated DEG using OMA tools. Differentially

expressed genes (DEGs) identified in the analysis were functionally annotated to understand their

potential roles in regulating adaptive responses to drought stress. A gProfiler functional analysis

using a I. triloba reference identified stress related functional enrichment in roots while a complete

picture of functional enrichment using the orthology classification provided by OrthoFinder uncov-

ered a large set of stress-related categories. Additional work is required to understand biochemical

pathway changes associated with drought stress in the two genotypes.

38

CHAPTER II

ADVANCED GENOMIC NETWORKS ANALYSIS

2.1 Introduction

Multiple RNA-Seq data analysis pipelines with increased performance have been developed

over the past decade, prompted by the availability of NGS data (i.e. STAR [13], HISAT [33]).

Combining RNA-Seq analysis pipelines with network inference tools can lead to powerful method-

ologies for mining genomics data. Development of network analysis routines for mining genomics

data from large-scale experimental designs involves connecting sequence reads mapping pipelines

to network inference methods [9]. Large-scale experimental designs guide genomics research by

providing opportunities for complex analysis schemes. Experimental designs often include tens to

hundreds of samples, with multiple conditions and time-points. NGS data analyses can be executed

efficiently with tools and software packages designed to run on high performance computing plat-

forms. NetSeekR [42] is an RNA-Seq R package aimed at analyzing the transcriptome dynamics

for inferring networks of differentially expressed genes associated with experimental treatments

measured at multiple time points.

RNA-Seq data analysis pipelines typically run on large scale computing platforms available in

research centers or on cloud computing servers. Alternative, faster pipelines have been developed

recently, consisting of pseudo-aligners or alignment-free tools (Kallisto [7], Salmon [30]) and

associated statistical data analysis platforms (i.e. Sleuth [34]). With the increasing performance of

39

the RNA-Seq data analysis tools comes the opportunity to create larger scale designs that include

temporal dynamics of observed biological processes, and the capacity to integrate network biology

tools to analyze gene expression dynamics.

A typical RNA-Seq data analysis pipeline consists of data preprocessing (quality control of

sequencing data, reads trimming), reads mapping and gene expression quantification. Data summa-

rization from millions of reads to thousands of gene expression estimates enable statistical analysis

of gene expression changes associated with experimental treatments (edgeR [36], DESeq2 [28]).

An assessment of differentially expressed genes aims to evaluate factors that control gene tran-

scription. The statistical analysis is derived from the experimental design that describes treatment

and control samples. In addition to identifying sets of differentially expressed genes, subsequent

analyses aim at using functional and cell system information in order to identify networks and

pathways associated with treatments.

The NetSeekR pipeline vertically integrates several reads mapping and analysis tools with

regulatory and correlation network tools, and provides additional network analysis, performance

analysis and network visualization. The application of network analysis and simulation tools

on genomics data leads to system level descriptions. Inference of networks of differentially

expressed genes associated with experimental conditions at multiple time points was conducted

with NetSeekR. NetSeekR was applied to ILK1 gene-knockdown A. thaliana RNA-seq data. The

identification of differentially expressed genes was conducted to assess transcriptional changes

with regard to ILK1 gene-knockdown and wild-type A. thaliana RNA-seq data. Two options are

available for differential testing — edgeR [36] and Sleuth [34] — offering two options for gene

40

expression modeling. The Sleuth software was applied for analysis of ILK1 gene-knockdown

RNA-seq data.

2.2 NetSeekR Pipeline Implementation

The NetSeekR software pipeline performs alignment of reads, differential expression analysis,

gene ontology enrichment analysis and network analysis of differentially expressed genes. The

input of the pipeline are sets of files containing raw reads from the high throughput sequencing step.

These reads were previously processed with a quality control check using FastQC [1], and trimmed

using Trimmomatic [5] software. The first step of the pipeline is the alignment of processed reads to

genome positions using the gene annotation file. NetSeekR currently implements two read mapping

tools — STAR and Kallisto — in order to allow comparative evaluation of transcript quantification.

The next stage of the pipeline aims to use statistical tools to predict gene networks and to compute

functional overrepresentation of differentially expressed genes obtained in the previous step. We

have currently included two methods to create and analyze correlated gene expression networks and

to infer regulatory networks. The aim of gene network analysis is to identify pathways associated

with the experimental treatment by mining differential gene expression patterns. To accomplish

this task, we use the Weighted Correlation Network Analysis (WGCNA) [23] to identify patterns

or clusters in gene expression data and the Dynamic Regulatory Events Miner (DREM) [38] to

identify regulatory patterns that drive the observed gene expression. The NetSeekR pipeline

uses the functionality provided by WGCNA package to perform network construction, module

detection and topological overlap matrix construction of gene expression. The output of the

pipeline can be used to find out biologically interesting modules by correlating gene expression

41

changes with phenotype changes when provided by the experimental design. The pipeline also

uses GO enrichment analysis to mine the functionality of gene expression data on selected sets

of genes identified in our analysis. The pipeline implements DREM to infer regulatory networks

from time series of gene expression or from series of treatments and/or genotype variation data.

Finally, the igraph[12] and tidygraph [32] R packages are used to conduct network analysis on the

differentially expressed gene (DEG) networks using custom scripts, for mapping overlapping nodes

between DEG sets and gene networks from public data sources and for visualization of network

analyses results.

The pipeline processing begins by reading in several arguments from a configuration file and

making a directory tree to store data. Arguments to the pipeline include: a string specifying the

analysis type, covariates to account for differential testing, a path to a differential gene expression

sample comparison matrix (DGECM), a path to an experimental design matrix on which DGECM

is based, parameters for differential gene expression analysis (a significance level for statistical

testing of differential gene expression), a path to a directory containing raw read sequences, a

path to a selected output directory, a path to a reference genome, and Boolean flags for specifying

whether to implement Kallisto or STAR pipelines, or both. The directory tree is structured such

that the current working directory is the top-most node, with subdirectories within the tree for

DREM, edgeR, Kallisto, network analysis, Sleuth, and WGCNA data.

The first two steps of the pipeline consist of building a transcriptome index and quantifying

reads. Both STAR and Kallisto operations are executed from the R environment through the Linux

terminal by passing a bash script, assembled from arguments. Arguments are passed to NetSeekR

from the configuration file to match the type of pipeline (STAR or Kallisto) being executed. The

42

R-implemented bash scripts for index-building operations use a genome annotation file reference

in the configuration file (using the path as an input argument) to generate the transcriptome index

for Kallisto/STAR in the specified data storage directory created in the directory tree.

The read quantification step is also directed to the Linux terminal from within the R code.

The quantification commands sent to the terminal are concatenated together in a bash script

using variables given to the function from the configuration file. The bash script for running the

STAR/Kallisto quantification method is called from within the R environment. The STAR/Kallisto

quantification method creates a directory for each sample quantified with directory names derived

from sample identifiers. Arguments to the command include: the shell script name, the read data

directory path, the path to the Kallisto or STAR index file, a directory path for storing quantification

results, and the log file directory path. Running a bash script from within the R environment has

the advantage that large datasets (mRNA sequencing read data files) do not need to be loaded into

the memory of R, saving time and avoiding memory size issues.

Quantification data and the design matrix are both accessed in the next step for DGE com-

putation. The experimental design matrix (DM) is a file which consists of paths to samples, and

respective characteristics defined in the experimental design prior to sequencing. The experimental

design file is string-processed to provide a dataset with references to variables for DGE software to

use. The design matrix used as input has to conform to a specified format and can be edited with

a file editing program. The DM is used in tandem with the DGECM supplied to the pipeline; the

DGECM groups together the samples from the DM to be compared when testing for differential

gene expression. The DGECM columns are combined together in the R code row-wise with a

‘logical or’ string between each sample identifier to select test samples. The number of rows in the

43

DGECM corresponds to the total number of sample comparisons in the analysis, each row corre-

sponding to one comparison instance. The cells contain sample identifiers matching the samples

described in the experimental design file.

The last component of the pipeline is network analysis of the data. This involves processing

of WGCNA input (differentially expressed genes obtained from edgeR/Sleuth and their estimated

expression values) to generate correlation networks. Next, we carry out GO enrichment analysis

on the same set of rearranged data using topGo software [2]. The last step is network construction

and visualization using igraph. The pipeline’s workflow is shown in Figure 2.1.

Figure 2.1

Workflow of the NetSeekR Pipeline

44

NetSeekR allows integrated management of the RNA-Seq tools, comparative analysis of gene

expression implemented using multiple pipelines and network analysis. It can provide support for

sample comparison using PCA and MDS analyses, comparative analysis of DEG gene sets using

UpSetR [11], visualization and analysis of gene correlation networks and visualization and analysis

of gene regulatory networks. In Figure 2 we enumerate visualization capabilities related to network

analysis for an experimental design that includes time series data of four selected timepoints, two

stress factors and two genotypes. Comparisons on statistics of gene expression estimates between

a spliced read aligner and a pseudo-aligner can be used to better understand the dynamics of

gene expression. The PCA and MDS plots show the sample correlation and its dynamics as a

function of treatment and genotype as calculated with STAR-edgeR (SE) and Kallisto-Sleuth (KS)

pipelines respectively (a sample PCA plot is shown in Figure 2.2A). The UpSetR analysis allows

DEG comparison between the SE and KS pipelines (Figure 2.2B). Next, we perform construction

of correlation networks in order to analyze the dynamics of differentially expressed genes and to

correlate this dynamic with observed phenotypes. Parametrization of WGCNA controls the scale

free topology constraints that shape the structure of the correlation network. In addition, network

constraints derived from publicly available interactome data can be superimposed to the resulting

topology using network analysis software.

Figure 2.2C shows an example of a cluster dendrogram created by the average linkage hierar-

chical clustering obtained after merging the modules with similar co-expression profiles. Further

development of the network analysis package includes graph motif frequency calculation across

various sequences of data with regard to genotypes, time points or conditions. Methods to analyze

sub-networks formed across gene-sets in series of time points, or across networks of genes that are

45

differentially expressed can also be designed using this R package. Another dimension of analysis

provided by our pipeline is represented by the regulatory network analysis. Figure 2.D illustrates

the dynamics of driver TF genes in the time series design with two treatments and two genotypes

obtained with DREM 2.0. Further network analysis performed with the igraph and tidygraph pack-

ages allows the creation of network objects, computation of statistics describing network structure

(node degree distribution, network clustering, betweenness, closeness, and eigenvector centrality

and identification of network hubs) as well as network visualization. In addition, the NetSeekR

pipeline provides integration with several GO analysis R packages which can be used for assess-

ing overexpression of differentially expressed genes, of clusters/modules of genes with correlated

gene expression, or to perform GO analysis of other combinations of gene sets obtained from the

pipeline.

46

Figure 2.2

A) PCA plot from Sleuth analysis of time-series of RNA-Seq data; B) UpSetR comparison of
time series of RNA-Seq data; C) Dendrogram from WGCNA analysis of time series of RNA-Seq

data; D) DREM analysis of time series of RNA-Seq data.

47

The functions implemented by NetSeekR are briefly described in Table 2.1. The NetSeekR

code and tutorial are included in the Appendix 2.

48

Table 2.1

NetSeekR Function Names and Descriptions

Function Name Description
align_tool_bool Extract which alignment/pseudo-alignment

was used.
assemble_alignment_arguments Combines required and optional arguments

for a selected alignment/pseudo-alignment
tool.

associate_comparison_elements Group the sample identifiers based on (for
example) their respective genotype,
conditions and time point.

associate_expression_to_comparison_elements Associate the grouped replicate count data
with which comparison they were used for
in differential analysis.

associate_replicate_sets_to_conditions Group replicate count data with (for
example) their respective genotype,
condition and time point.

average_counts_across_comparison_sets Take mean of grouped replicate count
means for comparison sets.

average_est_counts_for_replicates Take mean of replicate counts.
beta_and_read_mapping_to_nodes Assign logFC and mean read counts to nodes.
clean_design_matrix Split covariates in experimental design

matrix into columns.
clustering Perform clustering and saves result in their

respective directory.
counts_keep Load the count data into the environment.
decide_alignment_tool Write directory trees for the selected

alignment tool.
differentially_expressed_genes_keep Find the count data of differentially

expressed genes from TSV files of EdgeR/
Sleuth results regardless of which tool
was used.

DREM_main Driver function for DREM data formatting
and execution.

DREM_network_overlap Generate graphs for differential gene
expression.
sets with logFC/beta values and replicate
count means.

49

Table 2.2

(continued)

Function Name Description
edgeR_preliminary Process input data for Edge R analysis

followed by the analysis and set the directory
where data has to be saved.

enrichment Checks the DEG data on which GO analysis
to be performed and performs GO analysis.

extract_comparison Identify a current comparison set for data
operations.

extract_condition_column_number Number of columns for a differential gene
expression comparison set (from file names).

extract_edges Split source and target identifiers on pipe
symbol.

extract_filename_go Extracts the comparision set for which
GO enrichment and network analysis to be
performed.

extract_pipeline_input_from_configuration Convert arguments from configuration file
into a named list data structure.

extract_sample_comparison_sets Associate sample sets with sample
comparisons from comparison set file.

extract_single_testing_condition Select a single covariate to test with by
identifying the condition column with
varying contents across samples.

extract_sleuth_lrt_results Extract Likelihood Ratio test results from a
sleuth object.

extract_title_from_file_name Remove file name extension.
filter_counts_data Filter the lowly expressed genes for edgeR

analysis.
filter_counts_data_wgcna Filter the lowly expressed genes for WGCNA.
gene_level_analysis_data_structure Removes splicing notation from one

quantification file result to use for gene level
Sleuth analysis.

gene_prep A sleuth::sleuth_prep implementation specific
to gene analysis.

gene_tf_network_analysis Draw bipartite graph.
get_adjacency_matrix Extract adjacency matrix for source and target

nodes.

50

Table 2.3

(continued)

Function Name Description
graph_differential_gene_expression_network Plot the graph from overlapping

differentially expressed genes and counts
with those present in the network provided
by DREM.

hclust_distance_matrix Find the distance matrix to perform
clustering.

implement_alignment Driver function for alignment/pseudo-
alignment

implement_differential_gene_expression Driver function for differential gene
expression.

implement_edgeR Conduct differential testing on STAR
mapped reads with edgeR.

implement_feature_counts Write bash script for feature counts to execute.
implement_GO_enrichment Checks the DEG data on which GO analysis

to be performed and performs GO analysis.
implement_kallisto Write bash scripts for Kallisto index building

and quantification, then execute them.
implement_network_analysis Driver function for network analysis.
implement_sleuth Run Sleuth on one sample comparison set

at a time.
implement_STAR Write bash scripts for STAR index building

and mapping, then execute them.
insert_DREM_input_to_defaults Create default files to execute DREM

for samples.
label_and_rescale_mapped_values Relabel each node as either source or target.
load_read_data Load the count data.
map_gene_tf_network_analysis Driver function for TF to gene network

analysis and bipartite graph creation.
mapping_network_analysis Driver function for alignment/pseudo-

alignment.
mean_replicate_est_counts Take mean of counts for group of replicates.

51

Table 2.4

(continued)

Function Name Description
network_analysis Finds the network of differentially

expressed genes and collect the hub
genes of each comparison.

overlap_sources Join source nodes with expressed genes.
paste_and_save Create .png to save node overlap graphs to.
paste_groups_to_join_with_title_extract Combine comparison set names for naming

expression graphs.
plot_power_histogram Plot to choose the correct power from scale

free topology for all the comparisons.
plot_power_results Histogram plot to analyze and choose correct

power value.
plot_sample_tree Plot to find any outlier sample in the data.
post_process_GO_results Associate file names with GO results.
read_and_filter Filter differentially expressed genes by p value

in NetSeekR configuration file.
read_tsv_filter_extraneous Remove extraneous characters in gene column.
rearrange_count_data Formats count data into DREM time series

format.
relabel_local_nodes Map node identifiers to gene identifiers.
reset_splice_variants Remove splice variant notation.
run_sleuth_fit Measurement error model fitting with Sleuth.
run_sleuth_lrt Perform Likelihood Ratio Test.
run_sleuth_pca Plot PCA plots for a comparison.
save_sleuth_pca Save PCA plots for a comparison.
save_sleuth_results Save LRT results to a file for a comparison.
select_sleuth_mode Determine at what level to run Sleuth: gene,

transcript, or both.
separate_conditions Separate condition column into multiple

columns based on the covariates provided.
split_and_unlist_conditions Separate covariates from list of conditions.
structure_covariates_for_DGE_testing Search for conditions in the comparison

sets which vary in a column.

52

Table 2.5

(continued)

Function Name Description
subset_tool_arguments Subset tool arguments from decision data

structure and pass them to tool-specific
command processing functions.

summarise_differential_expression Remove extraneous characters in gene
column.
Summarise chosen column by mean of values
in column.

transcript_prep A Sleuth_prep implementation specific to
transcript analysis.

unique_and_relabel Rename source and target columns to common
name and extract distinct elements of each.

wgcna_clustering Perform clustering and saves result in their
respective directory.

wgcna_data_processing Preprocess the input data for WGCNA.
wgcna_input_data Takes the input data and convert it into

differentially expressed expression data for
WGCNA analysis.

wgcna_plot_power_histogram Plot to choose the correct power from
scale free topology for all the comparisons.

wgcna_plot_power_results Histogram plot to analyze and choose correct
power value for all the comparisons.

wgcna_plot_sample_tree Plot to find any outlier sample in the data.
write_default_files Create DREM configuration file and write data.
write_differential_testing_file_name Combine conditions from each sample comparison

set to create a file name with.
write_DREM_time_series_data Write DREM-formatted data sets to files.
write_kallisto_directory_tree Create directory tree for Kallisto results.
write_new_default_file_name Create a file name to write DREM defaults script.
write_STAR_directory_tree Create directory tree for STAR results.

53

2.3 RNA-seq Analysis with NetSeekR

An analysis was conducted with NetSeekR to predict temporal gene regulatory networks

(GRNs) involved in two A. thaliana genotypes. The temporal GRNs were predicted with the

application of the DREM software package, implemented in the NetSeekR pipeline. The NetSeekR

pipeline formats time-series RNA-Seq analysis results from complex experimental designs for

input to DREM. Significant regulatory TFs are identified with the application of DREM using

static protein-DNA interaction data and time-series RNA-seq data. RNA-seq data from wild-type

and ILK1 gene-knockdown A. thaliana genotypes were used to construct the temporal GRNs.

Significant regulatory TFs were identified at particular bifurcation events in the predicted dynamic

GRNs for each genotype.

Estimating Transcript Abundance The Kallisto pseudo-aligner was applied to estimate tran-

script abundance from sequence reads. The NetSeekR pipeline enables execution of the Kallisto

RNA-seq analysis pipeline from within the R environment. NetSeekR writes the scripts necessary

for the application of Kallisto index building and quantification procedures. The transcriptome

index enables mapping of sequence read fragments, while accounting for read orientation. The

Kallisto index building operation is executed by passing a bash script from the R environment

through the Linux terminal. A transcriptome index was built with the Araport11 A. thaliana

transcript sequences [10]. The arguments for constructing the transcriptome index with Kallisto

are passed to NetSeekR from the configuration file. The transcriptome index building arguments

provided in the configuration file include: 1) location to write transcriptome index file, 2) location

of annotation file with transcript sequences, 3) k-mer length, and 4) a boolean value determining

54

whether to replace repeated transcript sequence identifiers with unique names. The Kallisto quan-

tification procedure is executed once the transcriptome index is constructed. NetSeekR accesses

Kallisto read quantification arguments from the configuration file and executes read quantification

from within the R environment. The quantification command sent to the terminal is concatenated

together in a bash script using variables given from the configuration file. Arguments to the com-

mand include: 1) the Kallisto transcriptome index file location, 2) strand-specific read orientation,

3) GTF file location, and 4) number of threads to use. The bash script for running the Kallisto

read quantification method is called from the R environment. The Kallisto read quantification

method creates a directory for each sample quantified with directory names derived from sample

identifiers. Transcript abundances estimated by Kallisto were reported in log files, and saved for

accessing with NetSeekR.

Experimental Design and Differential Analysis Transcript abundance estimation results were

analyzed with Sleuth, the RNA-Seq experiment analysis program for transcript abundances quan-

tified with Kallisto. DGE computation with NetSeekR takes advantage of the experimental design

matrix (DM) and differential gene expression sample comparison matrix (DGECM). The DM is a

file which consists of paths to samples, and respective characteristics defined in the experimental

design prior to sequencing. The DM is used to map the files of transcript abundance estimates to

treatment and control sample descriptions. The DGECM groups together the samples from the

DM to be compared when testing for differential gene expression. The number of rows in the

DGECM corresponds to the total number of sample comparisons in the analysis, and each row

55

corresponds to one comparison instance. The differential testing with Sleuth was conducted for

the FLG22 treated wild-type and ILK1 gene-knockdown RNA-seq samples.

The DM for FLG22 treated wild-type and ILK1 gene-knockdown A. thaliana samples consisted

of 24 RNA samples total. RNA samples were extracted from wild-type and ILK1 gene-knockdown

A. thaliana plants across four time points per genotype. Three biological replicates were collected

per time point. Half of the RNA samples were collected from wild-type plants, and the other

half were collected from ILK1 gene-knockdown plants. Each group of wild-type and ILK1 gene-

knockdown RNA-seq samples consisted of a group of biological replicates per time point. The

RNA-seq samples were collected in a time series across intervals in hours – zero hours, three hours,

six hours, and twelve hours.

Differential testing was conducted with Sleuth over six groups of samples. Each comparison

instance tested for differential gene expression with reference to time point zero. The time series

differential gene expression analysis was conducted separately for the sets of wild-type and ILK1

gene-knockdown samples.

Gene Regulatory Network Prediction with NetSeekR Transcript abundance estimation data

from the time series RNA-seq analysis were used as input for DREM to infer GRNs. DREM 2.0

was used to carry out the GRN prediction. A dataset rearrangement is performed with NetSeekR

to ensure the data series structure associates with the GRN analysis design. Transcript abundance

estimation data were arranged in a time series format for each genotype, condition, and replicate.

The time series rearrangement results are stored in uniquely named files in a directory accessed

by DREM. DREM is executed for each dataset corresponding to a time series for a genotype and

56

condition. Further, the time series dataset for input to DREM consists of transcript abundance

estimates for the DEGs identified in the analysis. Technical replicates are included together in an

execution of DREM, though the replicate time series datasets are separate. Time series datasets

discussed prior are accessed iteratively for analysis; the argument defaults file provided by DREM

(defaults.txt) is accessed and edited in the NetSeekR code by inserting paths to the time series

datasets into the proper cells, accounting for technical replicates. All arguments to DREM other

than those used for iterating over time series datasets were specified in the DREM defaults template

file prior to running the NetSeekR pipeline. NetSeekR calls an instance of the DREM GUI for

each genotype, condition and set of technical replicate time series datasets. NetSeekR calls the

GUI for DREM for each set of input files generated by joining significant hits to the expression

data. Once a single execution is complete, NetSeekR calls the next instance of DREM for the next

set of significant hits in the analysis.

Temporal expression data and static interaction data are accessed with NetSeekR to iteratively

execute DREM over significant hits from differential testing. The significant hits are mapped to

their respective estimated transcript abundance using the Kallisto expression values. Significant

hits from the Sleuth analysis are mapped to the estimated transcript abundance data from the

Kallisto expression data. Gene regulatory network (GRN) prediction with DREM is applied in

batches over the sets of significant hits from differential analysis testing. A protein-DNA file is

also supplied as input. The ILK1 analysis was conducted with the use of a TF-gene mapping file.

The TF-gene mapping file describes the activation and coordination of genes by TFs. The TF-gene

mapping file is an input to DREM that is provided in the NetSeekR configuration file, and can be

sourced from a TF database or generated by TF prediction algorithms. NetSeekR allows custom

57

configuration for NGS pipelines and DREM static interaction dataset input. The Kallisto ILK1

analysis with DREM 2.0 was conducted with the AGRIS Arabidopsis transcription factor database

(AtTFDB) [46].

Expression values to significant hits are extracted by first grouping samples together which

were used in differential testing. Each set of samples used in differential tests were supplied to

NetSeekR in the DGECM file. The gene identifiers in the sets of significant hits from differential

test results are used to get matching gene names in the samples from which the significant hits were

called. The matching gene names in the sample expression sets have the associated expression

values. Expression values for significant hits are restructured as counts matrices corresponding

to each time series dataset. Counts matrices are separated by genotype, condition, and replicate.

The experimental descriptions for genotype, condition, and replicate used to separate time series

datasets are specified in the NetSeekR configuration file. Groups of replicates are included in each

execution of the DREM software.

DREM 2.0 output graphs represent nodes associated with a Gaussian distribution. The y-axes

are Guassian distributions associated with nodes. Node sizes are proportional to the Gaussian’s

standard deviation. Expression of genes going through relatively small nodes imply gene expression

of those genes is tightly centered around the node; whereas, the genes assigned to paths through

relatively large nodes are not passing closely through the nodes. Green nodes are nodes that split

into multiple paths in the following time point. The splits are bifurcation events, which an attempt

is made to explain using TFs regulating certain subsets of genes.

58

2.4 Kallisto/Sleuth GRN

Significant hits from the Sleuth analysis pipeline were analyzed with DREM 2.0. In the

analysis, reads were mapped to the Araport11 transcriptome [10]. To allow gene regulatory

network prediction with DREM, NetSeekR summarizes transcripts with mapped reads to the

gene-level before constructing a time-series counts matrix for input to DREM. The gene-level

summarization is important for allowing DREM to use the TF-gene mapping file, since the AGRIS

AtTFDB TF-gene mapping maps TFs to genes instead of transcripts. The gene-level summarization

for DREM analysis post-differential analysis is not necessary when one specifies to conduct gene-

level differential testing with Sleuth in the NetSeekR configuration file. DREM analysis with time

series counts matrices corresponding to Sleuth significant hits identified two sets of TFs controlling

genes at two time points. One set corresponded to the wild-type FLG22 analysis, while the other set

corresponded to the ILK1 FLG22 analysis. Bifurcation events were parameterized such that at most

three new edges could exit a node. Both wild-type and ILK1 analyses exhibited five bifurcation

events each. Expression profiles with regard to Gaussian distributions are in the range -10 to 20.

The AT5G65310 TF (homeobox protein 5) was identified as a regulator of genes from time

point zero to time point one for wild-type FLG22 analysis. Homeobox protein 5 encodes the

homeodomain-leucine zipper protein, which regulates the control abscisic acid (ABA) has on

inhibiting seedling growth. The remaining TFs regulating expression patterns were associated

with change from time point one to time point two. AT1G49720 (abscisic acid responsive element-

binding factor 1) was over-expressed in both wild-type FLG22 and ILK1 FLG22 analyses, and

encodes a protein which may control ABA signaling responses by binding to response elements.

AT4G01120 (G-box binding factor 2) was under-expressed in both wild-type FLG22 and ILK1

59

FLG22 analyses, and binds within plant promoters to the G-box regulatory element. AT1G77450

(NAC domain containing protein 32) was identified as over-expressed in wild-type FLG22 analysis,

and neither over-expressed nor under-expressed in ILK1 FLG22 analysis. Three unique TFs were

identified as under-expressed in wild-type FLG22 analysis. Three unique TFs were identified as

neither over-expressed nor under-expressed in wild-type FLG22 analysis. One unique TF was

identified as neither over-expressed nor under-expressed in ILK1 FGL22 analysis (Figure 2.3,

Figure 2.4, Table 2.5).

60

Figure 2.3

Wild-type FLG22 DREM Regulatory Map for Kallisto/Sleuth Significant Hits

61

Figure 2.4

ILK1 FLG22 DREM Regulatory Map for Kallisto/Sleuth Significant Hits

62

Table 2.6

Unique TFs Identified in DREM Analyses

Analysis TF Description
Wild-type AT2G46680 (Under-expressed) Arabidopsis thaliana homeobox 7.

ABA-dependent regulation.
Wild-type AT5G47640 (Under-expressed) Nuclear factor Y. Regulates response

to nutrient levels.
Wild-type AT4G34000 (Under-expressed) ABA responsive elements-binding

factor 3. Encodes protein which binds to an
ABA-responsive element.

Wild-type AT2G22430 Homeobox protein 6. Encodes protein (HD-Zip I) that
regulates hormone responses.

Wild-type AT4G37790 ABA insensitive growth 1. Encodes an HD-Zip II protein
(HAT22)

Wild-type AT3G19290 ABA-responsive element binding protein 2. Binds to
promoters in ABA-response elements.

ILK1 AT2G46270 Encodes bZIP G-box binding protein which is induced
by ABA.

2.5 Conclusion

We have designed NetSeekR, a new integrated pipeline for large scale experimental designs

that include RNA-Seq time series observations of gene expression dynamics of multiple treatments

and multiple genotypes. The pipeline vertically integrates several reads mapping and analysis

tools with regulatory and correlation network tools and provides additional network analysis,

performance analysis and network visualization. Our methodology takes advantage of increasing

availability of efficient data analysis pipelines to generate a flexible integration of genomics analysis

tools from reads mapping to gene network analysis. This integration allows rapid design of gene

expression analyses, easy comparison of several pipelines (using reads alignment and pseudo-

alignment), differential gene expression analysis, network analysis, facilitating genomics discovery

63

from large scale NGS data. The pipeline provides network prediction and analysis capabilities by

integrating the inference of regulatory and correlation networks with network structure analysis

and visualization tools. In this way the pipeline bridges the results of genomics data analysis to

systems biology modeling and simulation.

We illustrate the functionality of our genomics analysis pipeline by mining the differential

transcriptome of RAF-like Integrin-Linked Kinase 1 (ILK1) [6]. Our global transcriptomic analysis

revealed the temporal dynamics of transcriptional re-programming post-flg22 and NaCl challenge

under the control of ILK1. We performed the analysis using a pseudo-alignment and statistical

analysis pipeline (for near-optimal probabilistic quantification) using the Kallisto and sleuth tools.

The Principal Components Analysis of data indicate that the experimental groups cluster well along

two directions capturing one third of the total data variation, with in-group (biological replicates)

much smaller than between-groups (treatments) variation. Finally, we used the DREM component

of NetSeekR pipeline to identify key regulatory TFs that control the observed transcriptome

dynamics.

64

CHAPTER III

NETWORK ANALYSIS DESIGN METHODS

3.1 Introduction

High-throughput technologies are routinely used to map interactions between protein molecules.

The mapped interactions are represented as network structures and used to describe interaction

types among collections of proteins. Interaction networks collected by high-throughput tech-

nologies are compared with one another to understand evolution and disease. Further, structural

organization of biological features, such as proteins in protein-protein interaction networks (PPI),

in well-annotated organisms are used to understand features in organisms with less initiatives

for study. Protein interactions allow cells to signal and respond adaptively to their surrounding

environments through regulatory mechanisms. One network comparison technique, network align-

ment, aims to identify conserved network structures among PPI networks. Conserved regulatory

mechanisms can therefore be inferred through an alignment of PPIs between species.

PPI networks are represented as graph data structures in analyses [31]. A graph 𝐺 (𝑉, 𝐸)

consists of node (𝑉) and edge (𝐸) collections, where edges connect nodes together, and may have

associated values, or weights (𝑤). Proteins are represented as nodes in PPI networks, and the

edges represent physical binding between proteins. The network alignment problem originated

in the field of Compuatational Biology, and is a generalization of the NP-complete subgraph

isomorphism problem. Subgraph isomorphism aims to find an exact matching of nodes and edges

65

in 𝐺1 to nodes and edges in 𝐺2; a successful network alignment produces a fitting of 𝐺1 into 𝐺2

which is optimal, though 𝐺1 does not need to be an exact subgraph of 𝐺2. NP-complete problems

cannot be solved in polynomial time and are therefore computationally intractable. Algorithms

are applied with heuristics to solve problems in polynomial time, with respect to the size of the

input. Finding a network alignment 𝛼, where nodes from 𝐺1 map to 𝐺2 optimally would give the

mapping 𝑓 : 𝑉1 → 𝑉2 , where 𝑉1 are nodes from 𝐺1 and 𝑉2 are nodes from 𝐺2.

Functional Conservation Determining the relationships among groups of evolutionarily con-

served proteins is one aim of network alignment. Evolutionarily conserved protein pairs between

two or more species are orthologous. Further, functionally orthologous proteins have functions that

are evolutionarily conserved. Deeming a pair of proteins to be functionally orthologous based on

nucleic acid or amino acid sequence similarity alone is not robust. Combining sequence similarity

with the surrounding network topology of PPIs has been applied in network alignment algorithms

([21], [39]). Introducing network topology removes ambiguities when a protein maps to multiple

proteins in another organism based on sequence similarity. Orthologous proteins may be identified

as a result of a successful network alignment between a well-studied model organism, and a non-

model organism. The functions of proteins in the non-model organism identified in the alignment

would then be considered functionally conserved.

3.2 Simulated Annealing

SA is a probabilistic technique used to find an approximation for the global optimum in an

amount of time controlled by a schedule (Algorithm 1). Probabilistic techniques are implemented

as algorithms, where random bits are introduced during run times. Probabilistic, or randomized,

66

algorithms may be prefered over deterministic for their ease of implementation, and for their ability

to outperform deterministic algorithms. The optimum may be either a global minimum or a global

maximum, depending on the nature of the problem. An optimum is found by exploring a search

space, defined as an energy landscape of all possible points that satisfy the constraints on a problem.

SA incorporates random bits in the decision to search the energy landscape at positions that do not

fully satisfy the constraints imposed by an objective function. That is, SA allows the acceptance

of less than optimal solutions at incremental steps, lending opportunity to escape local minima.

Defining a schedule for the algorithm to traverse the search space involves setting an array of values

to iterate over until the array is exhausted. A schedule can take on values from large positives

to zero; beginning at relatively larger values gives more time for the search space to be covered.

An approximation to the global optimum may be reached when the schedule ends. Further, the

schedule has an impact on the probabilistic nature of the technique in that higher values allow for

selection of less than optimal intermediate solutions toward a global optimum.

Search Procedure A procedure relied on for generating network alignment solutions is the search

procedure. Search procedures rely on multi-omic data considerations, and structural constraints

related to how networks are generated and perturbed while a solution is searched for. Many network

alignment algorithms depend on biological and topological data about input graphs, while variations

on these methods may forgo one or the other data type entirely. Variations among algorithms

also exist with regard to how sequence information is used (if at all), neighborhood topologies

summarized, or how edge weights define alignments or relationships among genes. PathBLAST

considers only two paths in two networks at a time, producing a local alignment [18]. Similar nodes

67

Algorithm 1 Simulated Annealing
procedure Simulated Annealing

Current← GenerateInitialSolution()

Best← Current

𝑇0 ← 𝑇𝑚𝑎𝑥

while 𝑇0 > 0 do

Proposed← Proposal(Current)

if Objective(Proposed) ≥ Objective(Current) then

Current← Proposed

if Objective(Proposed) ≥ Objective(Best) then

Best← Proposed

end if

else if exp((Objective(Proposed) - Objective(Current))/Temperature) > Uniform(0,1) then

Current← Proposed

end if

Temperature← T0 exp
{
− i

T0

}
i← i + 1

end while

return Best

end procedure

68

between two graphs are aligned based on simple assumptions about protein sequence similarity

and the order they occur within a path in their respective graphs. The search method involves

considering orthologous sequences to produce alignments. IsoRank considers gene clusters in

the search for alignments, relying on assumptions about collective gene-gene interaction evolution

[39]. GRAAL considers only the network topology, and addresses the search for an alignment by

prioritizing highly connected nodes based on graphlet degree vectors [21]. Randomized search

procedures can also be applied to network alignment; Simulated Annealing Network Aligner

(SANA) explores potential solutions to the network alignment problem by applying Simulated

Annealing (SA) [29]. The constraints on the search in SANA are based on switching a single

connection between two graphs, or performing the 2-opt operation between two graphs, during one

iteration.

Objective Function Network alignment algorithms use the values associated with nodes and

edges to score alignments with an objective (or scoring) function. Formulating an objective

function to score with is an important step in algorithm design. An appropriate scoring function

may depend heavily on source of data, and data types used. There is PPI data generated by

yeast two-hybrid technology, gene co-expression networks, gene regulatory networks, metabolic

networks, and signal transduction networks. Given that many algorithms involve biological data,

they are not typically applicable to a wide array of datasets outside biology. Objective functions

may be maximized or minimized, and may involve local minima, local maxima, global minima and

global maxima within a search space. A search space consists of all the possible configurations an

alignment may take; while for gene regulatory networks, the search space includes sets of potential

69

regulators and their gene subsets controlled. Given that the number of edges which could be drawn

in one network is exponential in the number of nodes, the sheer size of potential alignments between

two or graphs is also staggering in size. If maximizing with an objective function, the goal would

be to find the global maxima in the search space; inversely, minimizing the objective function

would be to find the global minima in the search space. The search space may contain many local

maxima, and local minima, and these are to be avoided to converge on a true solution. Whether

deterministic or randomized algorithms are used, the vast amount of possible configurations means

that either approach faces finding the global maxima or minima.

Schedule The annealing schedule allows time for determining the optimum of any objective

function. The SA implementation considers the schedule as a diminishing of temperature over

time, reflecting origins of the technique in metallurgy. Reaching the global minimum in annealing

molten metal is a result of decreasing thermodynamic energy over time to reach a crystalline state.

In terms of the simulated annealing algorithm, the temperature is a variable that provides stochasity

to the search. High dimensional problems have several local optima, and introducing stochasity

enables local optima to be escaped. Hill climbing techniques differ in that local optima may be

entered, and never left. In contrast with deterministic algorithms, which may be faster, stochastic

algorithms do not come at the cost of settling for local optima.

3.3 Network Inference with SA

Network inference conducted by building a network from a larger network structure involved

applying procedures dependent on stochasticity, and the states defining transitory network config-

urations through iterations. The state of the network configuration at any iteration was determined

70

by edge inclusion or exclusion. An ability for an edge set to be included or excluded at an iteration

also guided how procedures were applied. Network configuration perturbations were induced from

one iteration to the next, taking into account structural and sampling constraints. Values were

associated with edges included in the inferred network to enable scoring and evaluating of inferred

networks to maximize an objective function.

Several 1-dimensional data structures (arrays) were populated with Boolean variables and

integer values to track nodes and edges available or not available for inclusion into the inferred

network structure. The inferred network structure was kept as a configuration consisting of a subset

of nodes and edges from the larger input network. The input network includes all possible nodes

and edges the inferred network can contain. The state of the inferred network configuration at an

iteration was defined by populated arrays. The 1-dimensional array tracking the inferred network

across iterations was assigned True at the indices representing edges included in the inferred network

configuration. Other 1-dimensional arrays tracked: individual nodes, and nodes incident to edges

available for inclusion; edges available for removal from the network; node degrees incremented

upon adding the node to the inferred network; and edge counts incremented upon adding the

edge to the inferred network. Arrays were dynamically altered depending on the type of network

perturbation procedure applied at an iteration. Upon network perturbation, sampling weights were

calculated and kept in additional arrays specific to the type of network perturbation. Network

structure perturbation is linked to a procedure for updating scores associated with phenotypic data;

including an edge imposed an update to the score table such that the new value was added to the

existing score table; excluding an edge imposed the inverse operation.

71

One of the three procedures is applied at a single iteration, followed with extraction of phe-

notypic values and a score table update for the new network configuration state. The score table

representing the state of the network is then tested for correlation with the global phenotypic values.

Pearson product-moment correlation coefficients between the inferred network phenotypic values

and global phenotypic values were used as a score for the inferred network. Pearson product-

moment correlation was effectively used as an objective function to maximize. An objective score

for an inferred network configuration at an iteration was compared to an objective score from

an inferred network configuration found prior, taking advantage of the SA procedure. Trading a

network configuration found prior for a better scoring network configuration required updating

The three major procedures for network perturbation operate mainly on edges, and are con-

trolled by stochasticity, and the network configuration state as defined by the edges in the inferred

network. A network initialization procedure occurs when there are not any edges marked with the

ability to be included or excluded from the inferred network; or when the inferred network is of

size 0. The inclusion procedure is a set of operations which occur when there are edges considered

to be available for inclusion into the inferred network. Finally, the exclusion procedure is applied

when there exist edges within the inferred network which may be excluded. Each network pertur-

bation procedure considers the sampling space from which it may draw an edge. The initializing

procedure considers all edges from the input network, while the inclusion procedure considers

edges containing nodes incident to a particular edge, and the exclusion procedure considers edges

included prior. The choice whether to check if there are edges available for inclusion or exclusion

is based on a random uniform sample between 0 and 1.

72

Initializing a network configuration involved assigning all edges an ability to be chosen in a

random draw. An additional constraint on the random draw was imposed by assigning sampling

weights to all edges considered for inclusion to the inferred network. Sampling weights for network

configuration initialization were calculated for every edge since all edges have the potential to be

drawn from the entire network initially. Sampling weights were calculated for every edge by first

assigning a value of one to each edge, then normalizing each value by the total number of edges.

Edges were therefore assigned a sampling weight which would result in sampling with uniform

probability. The sampling weights being assigned to a separate data structure allowed for the ability

to assign custom sampling weights to edges at network initialization. A single new edge was drawn

from the set of possible edges with uniform probability. The drawn edge was then considered

to be included in the inferred network by changing its Boolean value in the indexed edges array.

Nodes incident to the drawn edge than had their degrees incremented to reflect the edge inclusion.

Edges incident to the drawn edge were also considered to be available for inclusion to the inferred

network at the next iteration (Algorithm 2).

Edges incident to an edge included in the inferred network may be considered for inclusion

once a network is initialized. The sampling space includes the edges incident to edges included in

the inferred network. A random draw was conducted, taking into account sampling weights for the

sample space. Sampling weights were calculated for all edges in the sample space by assigning a

value of one to each edge, then normalizing each value by the total number of edges in the sample

space. An edge was drawn from the edges in the sample space with uniform probability. The drawn

edge was then considered to be included in the inferred network by changing its Boolean value

in the indexed edges array. Edges incident to the new edge were then considered to be available

73

Algorithm 2 State Transition
function Proposal(Current)

Gate← Uniform(0, 1)

if Gate > 0.5 then

if edges available to include then Inclusion(Current)

else Exclusion(Current)

end if

else

if edges available to exclude then Exclusion(Current)

else Inclusion(Current)

end if

end if

end function

74

for inclusion in future iterations if their nodes were not already connected in the inferred network.

Once incident edges were included in the inferred network, their respective node degrees were

incremented (Algorithm 3).

Edge exclusion from an inferred network configuration involved defining the sample space to

include all edges included in the inferred network at an iteration. Sampling weights were calculated

taking their difference from 1, and normalizing by the total number of edges in the sample space.

An edge drawn with uniform probability from the sample space was then excluded from the inferred

network. Nodes incident to the draw edge had their node degrees decremented by 1. If an incident

node to the drawn edge had node degree of 0 after decrementing, their respective edge counts were

decremented. Further, edges incident to the drawn edge without other connections to the inferred

network were considered not available for inclusion at least in the following iteration.

The objective function applied in comparing a single configuration involves Pearson correlation

coefficient to phenotypic values. Network configurations are scored iteratively as edges are either

included or excluded from the current configuration. The network with the highest correlation to

phenotypic values is tracked, and only replaced if a better approximate solution is found through

scoring. Otherwise, either the new proposed configuration scores higher than the previous, or

a move was made that takes a lower scoring state. Additionally, the evaluation of the objective

function on network configurations allows for reversion to the previous state given that the two

cases described prior are not met. Reversion to a previous state flags the edge which was either

included or excluded to a tabu list until the search finds a better scoring network configuration.

75

Algorithm 3 Initial Solution
function GenerateInitialSolution(𝐺𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

E← edges ∉ 𝐺𝑐𝑢𝑟𝑟𝑒𝑛𝑡

sampling weights←
[
1, 1, 1...|𝐸 |

]
/∑|𝐸 |

𝑛=1

new_edge← Sample(𝑒 ∈ 𝐸, 𝑝 ∈ sampling weights)

for 𝑛𝑜𝑑𝑒 ∈ 𝑁 (new_edge) do

if intialized_nodes[𝑛𝑜𝑑𝑒] == 𝐹𝑎𝑙𝑠𝑒 then

initialized_nodes[𝑛𝑜𝑑𝑒] == 𝑇𝑟𝑢𝑒

connections← 𝑁 (𝑛𝑜𝑑𝑒)

add_list[connections] == 𝑇𝑟𝑢𝑒

edge_count[connections] = edge_count[connections] + 1

end if

end for

end function

76

3.4 Network Alignment with SA

The SA implementation for network alignment consists of the procedure for generating many

network alignments in a short time such that the global optima might be found. The goal of the

network alignment implementation is to identify similar structures among two graphs. Given two

graphs, 𝐺1 = 𝐺 (𝑉1, 𝐸1) and 𝐺2 = 𝐺 (𝑉2, 𝐸2), each graph contains a number of ordered nodes, 𝑛1

and 𝑛2. Each graph also has an ordered set of edges, 𝐸1 and 𝐸2. A node 𝑣 ∈ 𝑉𝑖 represents each

node in 𝐺𝑖. The best possible alignment among many alignments is searched for. All possible

alignments are within the search space, 𝐴; converging to the best possible alignment is conducted

with a scoring function 𝑆. The optimal fitting of 𝐺1 into 𝐺2 is 𝑎 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑖∈𝐴𝑆(𝑎𝑖).

An intial alignment is generated by mapping nodes randomly from 𝐺1 to 𝐺2. Following

iterations perturb the intial alignment by randomly switching a connections between 𝐺1 and 𝐺2.

The implementation conducts global network alignment (GNA) so that the number of mapped

nodes is maximized between the two graphs. Nodes in neither 𝑉1 nor 𝑉2 can align to more than

one node. The result is one final aligned network with one-to-one mappings for nodes. Moving

from one mapping configuration to the next across iterations therefore allows search for the best fit

of 𝐺1 into 𝐺2. A set of node pairs between the graphs is the result, where orthologs are inferred

from the nodes aligned.

Alignment Quality Evaluation Several metrics have been developed for evaluating the quality of

an alignment. Edge correctness is an alignment quality evaluation metric which is not consistently

sufficient. Edge correctness measures the percentage of edges aligned from 𝐺1 in 𝐺2. This metric

does not account for sparsity in 𝐺2 , since all nodes may align from 𝐺1 and the nodes they align

77

to in 𝐺2 may have greater distances between them as compared to distances of aligned nodes from

𝐺1. A high EC score may indicate a good mapping from 𝐺1 to 𝐺2, but in actuality, a mapping from

a dense to sparse region is not indicative of a quality alignment. The induced conserved structure

metric (𝑆3) includes a penalty for these situations, and is the alignment quality evaluation metric

implemented for network alignment. Evaluating an alignment with 𝑆3 gives 𝑆3(𝛼) = |𝐸 |𝛼
|𝐸1 |+|�̂�𝛼 |−|𝐸𝛼 |

,

where �̂�𝛼 = {(𝑢′, 𝑣′) ∈ 𝐸2 |∃𝑢, 𝑣 ∈ 𝑉1 ∧ 𝛼(𝑢) = 𝑢′ ∧ 𝛼(𝑣) = 𝑣′}.

3.5 Conclusion

The modular SA framework allows for applying search methods and objective functions to

large network-structured data. The search and scoring procedures may be swapped depending

on the problem being solved. In the implementation, the operations which conduct solution

visitation and objective function evaluation can be interchanged to find approximations to either

network alignment or network inference problems. Though network alignment and network

inference are applied to vastly different problems, their approximate solutions can be found with

the application of the SA probabilistic procedure. The method described here for network inference

is an implementation of SA which guides the search toward inferred networks using phenotypic

association scores. The implementation allows opportunity to introduce and test new search

strategies in addition to the underlying SA procedure. Though our method applies SA to infer

networks, changes to the objective function and solution space generation can be conducted to

achieve approximate solutions for other problems guided toward network structured data.

78

REFERENCES

[1] “FastQC. A quality control tool for high throughput sequence data,” .

[2] A. Alexa and J. Rahnenfuhrer, “topGO: topGO: Enrichment analysis for Gene Ontology. R
package version 2.18. 0,”, 2010.

[3] A. M. Altenhoff, N. M. Glover, C.-M. Train, K. Kaleb, A. Warwick Vesztrocy, D. Dylus,
T. M. De Farias, K. Zile, C. Stevenson, J. Long, et al., “The OMA orthology database in
2018: retrieving evolutionary relationships among all domains of life through richer web and
programmatic interfaces,” Nucleic acids research, vol. 46, no. D1, 2018, pp. D477–D485.

[4] G. Baruzzo, K. E. Hayer, E. J. Kim, B. Di Camillo, G. A. FitzGerald, and G. R. Grant,
“Simulation-based comprehensive benchmarking of RNA-seq aligners,” Nature methods,
vol. 14, no. 2, 2017, pp. 135–139.

[5] A. M. Bolger, M. Lohse, and B. Usadel, “Trimmomatic: a flexible trimmer for Illumina
sequence data,” Bioinformatics, vol. 30, no. 15, 2014, pp. 2114–2120.

[6] E. K. Brauer, G. V. Popescu, D. K. Singh, M. Calviño, K. Gupta, B. Gupta, S. Chakravarthy,
and S. C. Popescu, “Integrative network-centric approach reveals signaling pathways associ-
ated with plant resistance and susceptibility to Pseudomonas syringae,” PLoS biology, vol.
16, no. 12, 2018, p. e2005956.

[7] N. L. Bray, H. Pimentel, P. Melsted, and L. Pachter, “Near-optimal probabilistic RNA-seq
quantification,” Nature biotechnology, vol. 34, no. 5, 2016, pp. 525–527.

[8] M. Carlson, org.At.tair.db: Genome wide annotation for Arabidopsis, 2021, R package
version 3.13.0.

[9] O. Cassan, S. Lèbre, and A. Martin, “Inferring and analyzing gene regulatory networks from
multi-factorial expression data: a complete and interactive suite,” BMC genomics, vol. 22,
no. 1, 2021, pp. 1–15.

[10] C.-Y. Cheng, V. Krishnakumar, A. P. Chan, F. Thibaud-Nissen, S. Schobel, and C. D. Town,
“Araport11: a complete reannotation of the Arabidopsis thaliana reference genome,” The
Plant Journal, vol. 89, no. 4, 2017, pp. 789–804.

[11] J. R. Conway, A. Lex, and N. Gehlenborg, “UpSetR: an R package for the visualization of
intersecting sets and their properties,” Bioinformatics, 2017.

79

[12] G. Csardi, T. Nepusz, et al., “The igraph software package for complex network research,”
InterJournal, complex systems, vol. 1695, no. 5, 2006, pp. 1–9.

[13] A. Dobin, C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut, M. Chaisson,
and T. R. Gingeras, “STAR: ultrafast universal RNA-seq aligner,” Bioinformatics, vol. 29,
no. 1, 2013, pp. 15–21.

[14] D. M. Emms and S. Kelly, “OrthoFinder: phylogenetic orthology inference for comparative
genomics,” Genome biology, vol. 20, no. 1, 2019, pp. 1–14.

[15] A.-Y. Guo, X. Chen, G. Gao, H. Zhang, Q.-H. Zhu, X.-C. Liu, Y.-F. Zhong, X. Gu, K. He,
and J. Luo, “PlantTFDB: a comprehensive plant transcription factor database,” Nucleic Acids
Research, vol. 36, no. suppl_1, 2007, pp. D966–D969.

[16] M. Kalaev, M. Smoot, T. Ideker, and R. Sharan, “NetworkBLAST: comparative analysis of
protein networks,” Bioinformatics, vol. 24, no. 4, 2008, pp. 594–596.

[17] A. Kassambara and M. A. Kassambara, “Package ‘ggpubr’,” R package version 0.1, vol. 6,
2020.

[18] B. P. Kelley, B. Yuan, F. Lewitter, R. Sharan, B. R. Stockwell, and T. Ideker, “PathBLAST:
a tool for alignment of protein interaction networks,” Nucleic acids research, vol. 32, no.
suppl_2, 2004, pp. W83–W88.

[19] D. Kim, J. M. Paggi, C. Park, C. Bennett, and S. L. Salzberg, “Graph-based genome alignment
and genotyping with HISAT2 and HISAT-genotype,” Nature biotechnology, vol. 37, no. 8,
2019, pp. 907–915.

[20] L. Kolberg, U. Raudvere, I. Kuzmin, J. Vilo, and H. Peterson, “gprofiler2–an R package
for gene list functional enrichment analysis and namespace conversion toolset g: Profiler,”
F1000Research, vol. 9, 2020.

[21] O. Kuchaiev, T. Milenković, V. Memišević, W. Hayes, and N. Pržulj, “Topological network
alignment uncovers biological function and phylogeny,” Journal of the Royal Society Interface,
vol. 7, no. 50, 2010, pp. 1341–1354.

[22] P. Lamesch, T. Z. Berardini, D. Li, D. Swarbreck, C. Wilks, R. Sasidharan, R. Muller,
K. Dreher, D. L. Alexander, M. Garcia-Hernandez, et al., “The Arabidopsis Information
Resource (TAIR): improved gene annotation and new tools,” Nucleic acids research, vol. 40,
no. D1, 2012, pp. D1202–D1210.

[23] P. Langfelder and S. Horvath, “WGCNA: an R package for weighted correlation network
analysis,” BMC bioinformatics, vol. 9, no. 1, 2008, pp. 1–13.

[24] I. Leybovich, R. Puzis, R. Stern, and M. Reuben, “Focused SANA: Speeding Up Network
Alignment,” Eleventh Annual Symposium on Combinatorial Search, 2018.

80

[25] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, and
R. Durbin, “The sequence alignment/map format and SAMtools,” Bioinformatics, vol. 25,
no. 16, 2009, pp. 2078–2079.

[26] Y. Li, S. A. Pearl, and S. A. Jackson, “Gene networks in plant biology: approaches in
reconstruction and analysis,” Trends in plant science, vol. 20, no. 10, 2015, pp. 664–675.

[27] R. Liu, A. Z. Holik, S. Su, N. Jansz, K. Chen, H. S. Leong, M. E. Blewitt, M.-L. Asselin-
Labat, G. K. Smyth, and M. E. Ritchie, “Why weight? Modelling sample and observational
level variability improves power in RNA-seq analyses,” Nucleic acids research, vol. 43, no.
15, 2015, pp. e97–e97.

[28] M. I. Love, W. Huber, and S. Anders, “Moderated estimation of fold change and dispersion
for RNA-seq data with DESeq2,” Genome biology, vol. 15, no. 12, 2014, pp. 1–21.

[29] N. Mamano and W. B. Hayes, “SANA: simulated annealing far outperforms many other
search algorithms for biological network alignment,” Bioinformatics, vol. 33, no. 14, 2017,
pp. 2156–2164.

[30] R. Patro, G. Duggal, and C. Kingsford, “Salmon: accurate, versatile and ultrafast quantifica-
tion from RNA-seq data using lightweight-alignment,” 2015.

[31] G. A. Pavlopoulos, M. Secrier, C. N. Moschopoulos, T. G. Soldatos, S. Kossida, J. Aerts,
R. Schneider, and P. G. Bagos, “Using graph theory to analyze biological networks,” BioData
mining, vol. 4, no. 1, 2011, pp. 1–27.

[32] T. L. Pedersen, “tidygraph: a tidy API for graph manipulation,” R package version, vol. 1,
no. 0, 2018.

[33] M. Pertea, D. Kim, G. M. Pertea, J. T. Leek, and S. L. Salzberg, “Transcript-level expression
analysis of RNA-seq experiments with HISAT, StringTie and Ballgown,” Nature protocols,
vol. 11, no. 9, 2016, pp. 1650–1667.

[34] H. Pimentel, N. L. Bray, S. Puente, P. Melsted, and L. Pachter, “Differential analysis of
RNA-seq incorporating quantification uncertainty,” Nature methods, vol. 14, no. 7, 2017, pp.
687–690.

[35] M. E. Ritchie, B. Phipson, D. Wu, Y. Hu, C. W. Law, W. Shi, and G. K. Smyth, “limma
powers differential expression analyses for RNA-sequencing and microarray studies,” Nucleic
acids research, vol. 43, no. 7, 2015, pp. e47–e47.

[36] M. D. Robinson, D. J. McCarthy, and G. K. Smyth, “edgeR: a Bioconductor package for
differential expression analysis of digital gene expression data,” Bioinformatics, vol. 26, no.
1, 2010, pp. 139–140.

[37] M. D. Robinson and A. Oshlack, “A scaling normalization method for differential expression
analysis of RNA-seq data,” Genome biology, vol. 11, no. 3, 2010, pp. 1–9.

81

[38] M. H. Schulz, W. E. Devanny, A. Gitter, S. Zhong, J. Ernst, and Z. Bar-Joseph, “DREM 2.0:
Improved reconstruction of dynamic regulatory networks from time-series expression data,”
BMC systems biology, vol. 6, no. 1, 2012, pp. 1–9.

[39] R. Singh, J. Xu, and B. Berger, “Global alignment of multiple protein interaction networks
with application to functional orthology detection,” Proceedings of the National Academy of
Sciences, vol. 105, no. 35, 2008, pp. 12763–12768.

[40] C. Soneson, M. I. Love, and M. D. Robinson, “Differential analyses for RNA-seq: transcript-
level estimates improve gene-level inferences,” F1000Research, vol. 4, 2015.

[41] A. Srivastava, L. Malik, H. Sarkar, M. Zakeri, F. Almodaresi, C. Soneson, M. I. Love,
C. Kingsford, and R. Patro, “Alignment and mapping methodology influence transcript
abundance estimation,” Genome biology, vol. 21, no. 1, 2020, pp. 1–29.

[42] H. Srivastava, D. Ferrell, and G. V. Popescu, “NetSeekR: a network analysis pipeline for
RNA-Seq time series data,” BMC bioinformatics, vol. 23, no. 1, 2022, pp. 1–14.

[43] S. Wu, K. H. Lau, Q. Cao, J. P. Hamilton, H. Sun, C. Zhou, L. Eserman, D. C. Gemenet,
B. A. Olukolu, H. Wang, et al., “Genome sequences of two diploid wild relatives of cultivated
sweetpotato reveal targets for genetic improvement,” Nature communications, vol. 9, no. 1,
2018, pp. 1–12.

[44] J. Yang, M. Moeinzadeh, H. Kuhl, J. Helmuth, P. Xiao, S. Haas, G. Liu, J. Zheng, Z. Sun,
W. Fan, et al., “Haplotype-resolved sweet potato genome traces back its hexaploidization
history,” Nature plants, vol. 3, no. 9, 2017, pp. 696–703.

[45] A. D. Yates, P. Achuthan, W. Akanni, J. Allen, J. Allen, J. Alvarez-Jarreta, M. R. Amode,
I. M. Armean, A. G. Azov, R. Bennett, et al., “Ensembl 2020,” Nucleic acids research, vol.
48, no. D1, 2020, pp. D682–D688.

[46] A. Yilmaz, M. K. Mejia-Guerra, K. Kurz, X. Liang, L. Welch, and E. Grotewold, “AGRIS:
the Arabidopsis gene regulatory information server, an update,” Nucleic acids research, vol.
39, no. suppl_1, 2010, pp. D1118–D1122.

[47] M. Zulawski, G. Schulze, R. Braginets, S. Hartmann, and W. X. Schulze, “The Arabidopsis
Kinome: phylogeny and evolutionary insights into functional diversification,” BMC genomics,
vol. 15, no. 1, 2014, pp. 1–15.

82

APPENDIX A

SUPPLEMENTS FOR CHAPTER I

83

A.1 Sample Variability Correction

Transcript abundance estimates used in analyses were extracted from the set of aligned and

quantified sequence reads with highest overall alignment rates per sample. Variations in sam-

ple quality were observed among biological replicates after applying linear regression and PCA

methods to estimated transcript abundance data. The transcript abundance estimates for biological

replicates were regressed in groups with respect to genotype, condition and time point. Further,

transcript abundance estimates for biological replicates were regressed against one another in the

following combinations: replicate 1 vs. replicate 2, replicate 1 vs. replicate 3, and replicate 2 vs.

replicate 3. PCA was also applied to transcript abundance estimates in two batches, one each for

leaf tissue transcript abundance estimates, and storage root transcript abundance estimates. Sample

variability observed from the applied linear regression and PCA methods motivated application

of a methodology implemented in the limma package which allowed for avoiding removal of high

variation samples, while retaining robust statistical testing power [27].

The first two dimensions from PCA were graphed for leaves and roots separately, before and

after applying the sample and observational level weighting strategy. Before normalization and

weighting, the first dimension explained 19.82% of the variation for leaves, and 24.16% for the

roots; while the second dimension explained 12.83% of the variation for leaves, and 19.74% for the

roots (Figure A.1, Figure A.2). Control samples in leaves fell on either side of a clear separation

line in the first two time points with regard to genotype. In contrast, control samples in the third

time point do not follow clear lines of separation with respect to genotypic origin; replicate 1 from

I. batatas cv Beauregard clusters more toward the I. batatas cv Hatteras control samples. A similar

84

pattern was observed in control samples in roots; replicates 1 and 2 for I. batatas cv Hatteras

cluster more closely with I. batatas cv Beauregard contorl samples in the second dimension. As for

drought stressed samples, the replicates from leaves cluster within respective genotypic groups for

the second and third time points with regard to the second dimension. The drought stressed samples

in the first time point, however, exhibit clustering patterns such that samples from I. batatas cv

Hatteras cluster more closely with samples from I. batatas cv Beauregard. The first two I. batatas

cv Hatteras replcates cluster closely with replicate 1 from I. batatas cv Beauregard in the second

dimension. The third I. batatas cv Hatteras replicate clusters closely with the third I. batatas cv

Beauregard replicate in the first and second dimensions.

1

2

3

1 2

3

1

2

3

1

2

3

1 2
3

1

2

3

1
2

3
1

2

3

1

2

3

1

2

3
1

2

3
1 2

3

1st 2nd 3rd

−0.2 0.0 0.2 0.4−0.2 0.0 0.2 0.4−0.2 0.0 0.2 0.4−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

PC1 (19.82%)

P
C

2
(1

2.
83

%
) Condition

Control
Drought Stress

Cultivar

cv. beauregard
cv. hatteras

Figure A.1

I. batatas cv. Beauregard and I. batatas cv. Hatteras Leaves Raw Counts PCA.

85

1

2
3

1

23

1

2

3

1

2

3

4th

−0.6 −0.3 0.0 0.3

−0.4

−0.2

0.0

0.2

PC1 (24.16%)

P
C

2
(1

9.
74

%
) Condition

Control
Drought Stress

Cultivar

cv. beauregard
cv. hatteras

Figure A.2

I. batatas cv. Beauregard and I. batatas cv. Hatteras Roots Raw Counts PCA.

One set of biological replicate samples which exhibited larger spread in regression plots were

I. batatas cv Hatteras leaf samples collected from second time point controls. Though there was

spread about the regression lines among replicate comparisons, there was less spread about the

regression line when the third replicate was considered. The compromise made in deciding not to

remove high variation samples is to down-weight the samples with less repeatability. Replicates

1 and 2 were the samples considered to exhibit less variation, thus less repeatable, and the down-

weighting calculations were observed (Figure A.3). A similar down-weighting was observed for

the set of samples used for comparison between genotypes for controls at the second time point:

I. batatas cv Beauregard leaf samples collected from second time point controls (Figure A.4).

Subsequent comparison of differential gene expression results between edgeR and limma voom

86

with the weighting strategy indicated a higher ability for statistically significant differences to be

detected with weighting.

0

1

2

3

4

Replicate 1 Replicate 2 Replicate 3

S
am

pl
e

W
ei

gh
t

Figure A.3

I. batatas cv. Hatteras Biological Replicate Sample Weights for Control Leaves at the Second
Time Point.

87

0.0

0.5

1.0

1.5

2.0

Replicate 1 Replicate 2 Replicate 3

S
am

pl
e

W
ei

gh
t

Figure A.4

I. batatas cv. Beauregard Biological Replicate Sample Weights for Control Leaves at the Second
Time Point.

The third replicate from drought stressed I. batatas cv Hatteras in the first time point aligned

with I. batatas cv Beauregard replicates in the first dimension. The first two replicates from both

genotypic controls clustered closer to each other than their respective third replicate counterparts in

the second dimension. Drought stressed storage root samples separated with respect to genotype,

however the first replicate from I. batatas cv Beauregard crossed the I. batatas cv Hatteras group

in the second dimension.

Filtering and normalizing was conducted on samples with respect to tissue to reduce variability

among tissue samples, however, these approaches did not account for sample-specific variability

observed in PCA. Indeed, storage root samples exhibited patterns of variation more dramatic than

all other groups of biological replicates regressed. PCA after filtering, normalizing and sample

weighting, showed increases in the amount of variation explained in the first dimensions, and a

88

decrease in the second dimensions, compared to raw counts. The first dimension explained 87.66%

of the variation for leaves, and 93.44% for the roots, while the second dimension explained 3.51%

of the variation for leaves, and 4.84% for the roots (Figure A.5, Figure A.6).

1

2

3
1

2
3

1

23 1

2
3

1 2

3

1

2

3
1

2

3
1

2

3

1 23

12

3

123
12

3

1st 2nd 3rd

−0.2 0.0 0.2 0.4 −0.2 0.0 0.2 0.4 −0.2 0.0 0.2 0.4
−0.6

−0.4

−0.2

0.0

0.2

0.4

PC1 (87.66%)

P
C

2
(3

.5
1%

) Condition

Control
Drought Stress

Cultivar

cv. beauregard
cv. hatteras

Figure A.5

I. batatas cv. Beauregard and I. batatas cv. Hatteras Leaves Normalized and Weighted Counts
PCA.

89

1

2

3
1

2

3

12 3

1

2

3

4th

−0.25 0.00 0.25 0.50
−0.6

−0.3

0.0

0.3

PC1 (93.44%)

P
C

2
(4

.8
4%

) Condition

Control
Drought Stress

Cultivar

cv. beauregard
cv. hatteras

Figure A.6

I. batatas cv. Beauregard and I. batatas cv. Hatteras Roots Normalized and Weighted Counts
PCA.

90

APPENDIX B

SUPPLEMENTS FOR CHAPTER II

91

B.1 NetSeekR Tutorial

Below is the tutorial for using NetSeekR. An example configuration file is given, and each

major function in the software package is used in the tutorial.

92

NetSeekR
Set the working directory to the NetSeekR path.

#setwd(<<path/to/NetSeekR>>)

Unzip the NetSeekR file if necessary.

#unzip('NetSeekR.zip')

Load packages and source functions for NetSeekR.

Below is a template configuration file which needs to be edited per usage.

── Column specification ──

cols(

Argument_Type = col_character(),

Argument = col_character()

)

A tibble: 46 x 2

Argument_Type Argument

<chr> <chr>

1 analysis_type transcriptional_effect_treatment_10_16_19

2 design_matrix data/filenames_CA42AANXX_edit_conditions.csv

3 DREM data/software/drem2/

4 edger_adjustment_method fdr

5 edger_lfc 0.05

6 edger_method separate

7 feature_counts_path software/subread-1.6.5-Linux-x86_64/bin/featureCo…

8 kallisto TRUE

9 kallisto_bias <NA>

10 kallisto_bootstrap_samples 10

11 kallisto_chromosomes <NA>

12 kallisto_fasta_files data/Araport11_genes.201606.cds.fasta.gz

13 kallisto_fastq_files data/fastam/

14 kallisto_fr_stranded <NA>

15 kallisto_fragment_length <NA>

16 kallisto_fusion <NA>

17 kallisto_genomebam <NA>

18 kallisto_gtf <NA>

19 kallisto_index data/Araport11_genes.201606.cds.idx

20 kallisto_kmer_size 11

21 kallisto_make_unique <NA>

93

22 kallisto_output_dir data/Kallisto/

23 kallisto_path kallisto

24 kallisto_plaintext <NA>

25 kallisto_pseudobam <NA>

26 kallisto_rf_stranded <NA>

27 kallisto_sd <NA>

28 kallisto_seed <NA>

29 kallisto_single <NA>

30 kallisto_single_overhang <NA>

31 kallisto_threads <NA>

32 sample_comparisons_file data/treatment_comparisons.tsv

33 sample_covariates genotype, condition, hour

34 significance_cutoff 0.05

35 sleuth_gene_mode FALSE

36 sleuth_transcript_mode TRUE

37 star TRUE

38 star_genomeDir data/STAR/genome_Dir

39 star_genomeFastaFiles data/Araport11_genes.201606.cds.fasta

40 star_path software/STAR

41 star_readFilesIn data/fastam/

42 star_runMode <NA>

43 star_runThreadN 12

44 star_sjdbGTFfile data/Athaliana_447_Araport11.gene.gtf

45 star_sjdbOverhang <NA>

46 tf_list data/Ath_TF_list.txt

Executing alignment with NetSeekR is completed with one function.

Ubuntu is required for the alignment function to conduct alignment since STAR and Kallisto are

Linux tools.

Save objects from the alignment function to a variable.

The execute_script argument should be T (TRUE) on an Ubuntu machine

if one wishes to execute the alignment tools.

alignment_results <- implement_alignment(arguments_file =

'data/transcriptional_effect_treatment_arguments.tsv', execute_script = F)

Differential gene expression software packages are executed next.

implement_differential_gene_expression(alignment_results)

Network analysis is then conducted assuming sets of differentially expressed genes are available.

Here, the edgeR results are analyzed as per the alignment_tool argument to the following function

call:

Network analysis for edgeR results.

94

implement_network_analysis(alignment_tool = 'edgeR', alignment_results =

alignment_results)

95

B.2 NetSeekR Code

The entire code archive for the NetSeekR software package is below.

96

NetSeekR.R

Load all packages and source all functions.
if (!'pacman' %in% installed.packages()){
 install.packages('pacman')
}

library(pacman)

p_load(stringi, BiocManager, magrittr, readr, rlang, purrr, stringr,
ggplot2, devtools,
 flashClust, tidyr, networkD3, igraph, vroom, scales, reshape,
tibble, ggraph,
 tidygraph, dplyr, purrr)

Install packages from Bioconductor.
bioconductor_packages <- c('limma', 'edgeR', 'topGO','WGCNA', 'biomaRt',
'Rgraphviz', 'STRINGdb', 'BiocManager')

for (package in bioconductor_packages){
 if (!package %in% installed.packages()){
 BiocManager::install(package, update = F)
 }
}

p_load(char = bioconductor_packages, install = F)

rm(bioconductor_packages)

BiocManager::install('pachterlab/sleuth')

Prevent conflict of 'select' function in AnnotationDBi.
p_load(dplyr)

Source all necessary scripts.
list.files('./scripts/', pattern = 'implement.*R$', full.names = TRUE)
%>%
 walk(source)

97

implement_alignment.R

Function name: implement_alignment
Purpose: Extract all arguments from the configuration file, decide
which
pipeline(s) to run, assemble arguments and implement each
decided pipeline.
Input: Arguments file path.
Output: Alignment decision data structure and processed configuration
file.
implement_alignment <- function(arguments_file, execute_script){

 # Convert arguments from configuration file
 # into a named list data structure.
 pipeline_input <- arguments_file %>%
 extract_pipeline_input_from_configuration()

 # Determine which pipeline(s) to execute,
 # and write directory trees for each tool
 # chosen.
 alignment_decision <- pipeline_input %>%
 decide_alignment_tool()

 # Extract paths to all written directories.
 alignment_directories <- alignment_decision %>%
 dplyr::select(directories) %>%
 unlist(use.names = FALSE)

 # Map over elements and create each directory.
 alignment_directories %>%
 map(dir.create,
 recursive = TRUE,
 showWarnings = FALSE)

 # Subset arguments from the configuration file
 # that are specific to an alignment tool.
 alignment_decision <- alignment_decision %>%

 mutate(
 arguments = map(key,
 assemble_alignment_arguments,
 pipeline_input
)
)

 # Set Boolean values for tools to be executed.
 Kallisto <- alignment_decision %>%
 align_tool_bool('key', 'kallisto')

 STAR <- alignment_decision %>%
 align_tool_bool('key', 'star')

 # Implement the selected alignment tool(s).

 # Kallisto
 if(Kallisto){

98

implement_alignment.R

 # Subset arguments specific to Kallisto.
 alignment_decision %>%
 subset_tool_arguments('kallisto') %>%
 implement_kallisto(Kallisto_arguments = ., directories =
alignment_directories, execute_script)
 }

 # STAR
 if(STAR){

 # Subset arguments
 args <- alignment_decision %>%
 filter(str_detect(key, 'star')) %>%
 dplyr::select(arguments) %>%
 unnest(arguments)

 # Write bash scripts for STAR pipeline tools (STAR, Feature counts).
 star <- implement_STAR(STAR_arguments = args, directories =
alignment_directories, execute_script)

 # feature counts
 feature_counts_output <- star %>%
 str_replace('genome_Dir', 'Feature_counts')

 dir.create(feature_counts_output, showWarnings = FALSE)

 gtf <- pipeline_input %>%
 extract2('star_sjdbGTFfile')

 path_to_feature_counts <- pipeline_input %>%
 str_subset('.*bin/featureCounts.*')

 implement_feature_counts(output_dir = feature_counts_output,
annotation = gtf, feature_counts = path_to_feature_counts, genome_Dir =
star, execute_script)
 }
 return(list(alignment_decision, pipeline_input))
}

Function name: extract_pipeline_input_from_configuration
Purpose: Create a named list data structure for storing
and accessing arguments from the configuration file.
Input: Arguments file path.
Output: Arguments to pipeline in a named list.
extract_pipeline_input_from_configuration <- function(arguments_file){

 # Remove non-existant configurations.
 arg_file <- arguments_file %>%
 read_tsv(col_types = cols()) %>%
 filter(!(Argument_Type %>% is.na & Argument %>% is.na))

99

implement_alignment.R

 # Extract argument types.
 arg_type <- arg_file %>%
 dplyr::select(Argument_Type) %>%
 unlist(use.names = F)

 # Link argument to argument type in a named list data structure.
 arg_file %>%
 dplyr::select(Argument) %>%
 unlist(use.names = F) %>%
 as.list() %>%
 set_names(arg_type)
}

Function name: decide_alignment_tool
Purpose: Write directory trees for decided tool.
Input: processed configuration file (arguments list).
Output: Tibble from which decisions on which downstream pipeline
decisions are to be made.
decide_alignment_tool <- function(pipeline_input){

 tibble(kallisto = pipeline_input %>% extract2('kallisto'),
 star = pipeline_input %>% extract2('star')
) %>%

 gather() %>%

 # Remove alignment tool which is not selected for implementing.
 filter(value == 'TRUE') %>%
 mutate(

 directories = map2(key, value,

 # Determine which directory tree(s) to create.
 ~dplyr::case_when(.x == 'kallisto' ~
pipeline_input %>%
 extract2('kallisto_output_dir') %>%
 write_kallisto_directory_tree,

 .x == 'star' ~ pipeline_input %>%
 extract2('star_genomeDir') %>%
 write_STAR_directory_tree
)
)
)
}

Function name: write_kallisto_directory_tree
Purpose: Create directory tree for Kallisto results.

100

implement_alignment.R

Input: Alignment pipeline-specific output directory.
Output: Kallisto path list.
write_kallisto_directory_tree <- function(output_directory){

 # Attach output directories to the Kallisto directory created.
 Kallisto_paths <- tibble(kallisto = output_directory) %>%

 mutate(

 kallisto_quantifications = kallisto %>%
 str_replace(pattern = '$', replacement =
'Kallisto_quantifications/'
),

 kallisto_log_files = kallisto %>%
 str_replace(pattern = '$', replacement = 'Kallisto_log_files/')

) %>%
 gather() %>%
 dplyr::select(value) %>%
 list()
}

Function name: write_STAR_directory_tree
Purpose: Create directory tree for STAR results.
Input: Alignment pipeline-specific output directory.
Output: STAR path list.
write_STAR_directory_tree <- function(output_directory){

 # Save output directory basename to replace with pattern matching.
 STAR_node <- output_directory %>%
 basename()

 STAR_paths <- tibble(STAR = output_directory) %>%

 mutate(

 star_log_files = STAR %>%
 str_replace(pattern = STAR_node, replacement = 'STAR_log_files/'
),

 feature_counts = STAR %>%
 str_replace(pattern = STAR_node, replacement = 'Feature_counts/')

) %>%
 gather() %>%
 dplyr::select(value) %>%
 list()
}

101

implement_alignment.R

Function name: assemble_alignment_arguments
Purpose: Subset arguments particular to an alignment tool
and ensure proper command formatting.
Input: Alignment tool name and processed configuration file.
Output: Formatted arguments for STAR or Kallisto in a tibble
data structure.
assemble_alignment_arguments <- function(alignment, pipeline_input){

 # These commands need an equals sign after the command.
 k_equals <-
'index|bootstrap_samples|seed|fragment_length|sd|threads|output_dir|kmer_
size' %>%
 str_replace_all(pattern = '\\|', replacement = '|kallisto_') %>%
 str_replace(pattern = '^', 'kallisto_') %>%
 str_split(pattern = '\\|') %>%
 unlist()

 # Subset arguments based on which tools they belong.
 arguments <- pipeline_input[grep(pattern = alignment, x =
names(pipeline_input))] %>%
 as_tibble() %>%
 gather() %>%
 drop_na() %>%
 filter(key != alignment) %>%

 # Place equal signs in command where appropriate.
 mutate_at(
 vars(key),
 list(
 ~(dplyr::if_else(condition = .x %>% is_in(k_equals),
 true = .x %>% paste0('='),
 false = .x)
)
)
) %>%
 mutate(
 # Reformat pipeline arguments to be usable by the alignment tool in
the command line.
 key = key %>%
 str_replace(pattern = paste0(alignment, '_'),
 replacement = '--')
)
}

Function name: align_tool_bool
Purpose: Check for tool existence in the decision data structure.
Input: Alignment decision tibble, key with alignment tool name,
and a string for the alignment name.
Output: Boolean value.

102

implement_alignment.R

align_tool_bool <- function(tib, column_name, str_to_detect){
 tib %>%
 dplyr::select(column_name) %>%
 unlist() %>%
 str_detect(str_to_detect) %>%
 any()
}

Function name: subset_tool_arguments
Purpose: Subset tool arguments from decision data structure
and pass them to tool-specific command processing functions.
Input: Alignment decision data structure, tool name.
Output: Tibble of arguments from selected tools.
subset_tool_arguments <- function(alignment_decision, tool_name){
 alignment_decision %>%
 filter(
 str_detect(key, !!tool_name)
) %>%
 dplyr::select(arguments) %>%
 unnest(cols = arguments)
}

Function name: implement_kallisto
Purpose: Write bash scripts for Kallisto index building and
quantification,
then execute them.
Input: Arguments to Kallisto from configuration file, and all
directories
created.
implement_kallisto <- function(Kallisto_arguments, directories,
execute_script){

 # Separate indexing from quantifying arguments.
 index_arguments <- 'index|fasta|kmer|unique'

 organize_kallisto_arguments <- Kallisto_arguments %>%

 mutate(
 key = map_chr(key,
 str_replace_all,
 '_',
 '-'
),
 index = map_lgl(key,
 str_detect,
 index_arguments
),
 quant = map_lgl(key,

103

implement_alignment.R

 str_detect,
 index_arguments,
 negate = TRUE
)
) %>%

 # Mark arguments needed for both indexing and quantifying.
 mutate_at(
 vars(quant, index),
 list(
 ~dplyr::if_else(condition = str_detect(key, 'index'), true =
TRUE, false = .x)
)
) %>%
 mutate_at(
 vars(index),
 list(
 ~dplyr::if_else(condition = str_detect(key, 'path'), true = TRUE,
false = .x)
)
)

 # Extract output directory for quantifications.
 output_dir <- organize_kallisto_arguments %>%
 filter(
 str_detect(key, 'output')
) %>%
 dplyr::select(value) %>%
 unlist(use.names = FALSE)

 # Extract output directory for log files.
 log_file_dir <- directories %>%
 str_subset('Kallisto_log_files')

 # Subset indexing-building arguments.
 arguments_to_build_index <- organize_kallisto_arguments %>%
 filter(index == TRUE) %>%
 dplyr::select(key, value)

 # Use fasta pattern to move fasta reference to end of command.
 fasta <- arguments_to_build_index %>%
 filter(
 str_detect(key, 'fasta-files')
) %>%
 dplyr::select(value) %>%
 unlist(use.names = FALSE)

 # Identify non-optional arguments.
 arg_core <- arguments_to_build_index %>%
 filter(
 str_detect(key, pattern = 'path|fasta|index')
)

104

implement_alignment.R

 # Identify optional arguments using already identified non-optional
arguments.
 extraneous_args <- anti_join(arguments_to_build_index, arg_core, by =
c('key', 'value')) %>%
 spread(key, value)

 # Assemble optional arguments.
 extraneous_args_type <- extraneous_args %>%
 colnames()

 extraneous_args_arg <- extraneous_args %>%
 unlist(use.names = FALSE)

 extraneous_args <- rbind(extraneous_args_type, extraneous_args_arg) %>%
 str_c(collapse = ' ') %>%
 str_remove(' TRUE')

 # Assemble non-optional arguments.
 arg_core <- arg_core %>%
 spread(key, value)

 arg_core_type <- arg_core %>%
 colnames()

 arg_core_arg <- arg_core %>%
 unlist(use.names = FALSE)

 # Assemble index-building shell script.
 build_index <- rbind(arg_core_type, arg_core_arg) %>%
 str_c(collapse = ' ') %>%

 # Move path to Kallisto the the start of the command.
 str_replace(pattern = '^',
 replacement = str_match(string = ., pattern = '--path.*')
%>% paste(' ', sep = '')
) %>%

 # Remove unnecessary arguments used as flags before.
 str_remove(pattern = ' --path.*'
) %>%

 str_replace('--fasta-files', replacement = str_match(string = .,
pattern = '--index.*'
) %>%
 str_replace(pattern = '= ', replacement = '=')
) %>%

 str_replace('--index=', 'index --index='
) %>%

 str_remove(' --index= .*'
) %>%

 paste(extraneous_args, collapse = ''

105

implement_alignment.R

) %>%

 str_replace(pattern = '= ', replacement = '='
) %>%

 str_replace(pattern = '$', replacement = str_match(string = .,
pattern = fasta)
) %>%

 str_remove(pattern = str_match(string = ., pattern = paste0(' ' ,
fasta))
) %>%

 str_replace(pattern = fasta, replacement = paste0(' ', fasta)
) %>%

 str_replace('--kmer', ' --kmer'
) %>%

 paste('2>&1 | tee -a', paste0(log_file_dir, 'indexing.log')
) %>%

 str_remove('^--path ')

 # Write index building commands to file.
 indexing_script_location <- getwd() %>%
 paste0(., '/scripts/Kallisto_build_index.sh')

 indexing_script <- indexing_script_location %>%
 file()

 writeLines(build_index, indexing_script)

 close(indexing_script)

 FASTQ <- organize_kallisto_arguments %>%
 filter(
 str_detect(key, 'fastq')
) %>%
 dplyr::select(value) %>%
 unlist(use.names = FALSE)

 FASTQ_files <- tibble(forward = list.files(FASTQ, full.names = TRUE,
pattern = '*_1'),
 reverse = list.files(FASTQ, full.names = TRUE,
pattern = '*_2')
) %>%
 mutate(
 sample = forward %>%
 basename %>%
 str_remove('_.*')
)

 arguments_to_quantify_reads <- organize_kallisto_arguments %>%

106

implement_alignment.R

 filter(quant == TRUE) %>%
 dplyr::select(key, value)

 arg_core <- arguments_to_quantify_reads %>%
 filter(
 str_detect(key, pattern = 'path|fastq|index|output')
)

 extraneous_args <- anti_join(arguments_to_quantify_reads, arg_core, by
= c('key', 'value')) %>%
 spread(key, value)

 extraneous_args_type <- extraneous_args %>%
 colnames()

 extraneous_args_arg <- extraneous_args %>%
 unlist(use.names = FALSE)

 extraneous_args <- rbind(extraneous_args_type, extraneous_args_arg) %>%
 str_c(collapse = ' ') %>%
 str_replace_all('= ', '=')

 arg_core <- arg_core %>%
 spread(key, value)

 arg_core_type <- arg_core %>%
 colnames()

 arg_core_arg <- arg_core %>%
 unlist(use.names = FALSE)

 quant_paired_end_reads <- rbind(arg_core_type, arg_core_arg) %>%
str_c(collapse = ' ') %>% str_replace_all('= ', '=') %>%
 str_replace('^', replacement = str_match(string = ., pattern = '--
path.*') %>% paste(' ', sep = '')) %>%
 str_remove(' --path.*') %>%
 str_replace(pattern = '$', replacement = paste(' ', extraneous_args))
%>%
 str_remove('--path ') %>%
 str_remove('--fastq-files') %>%
 str_remove(FASTQ) %>%
 str_replace('$', paste(' ', FASTQ)) %>%
 str_replace_all(pattern = '[:space:]{2,}', replacement = ' ') %>%
 str_replace('--index', 'quant --index') %>%
 paste('2>&1 | tee ', log_file_dir %>% paste0('quant.log'))

 read_tib_to_save <- FASTQ_files %>%
 mutate(
 quantify_pe = quant_paired_end_reads,
 forard_and_reverse = map2(forward,
 reverse,
 paste
),
 quantify = pmap_chr(

107

implement_alignment.R

 list(forward, reverse, sample, quantify_pe),
 ~str_replace(string = ..4, pattern = FASTQ, replacement =
paste(..1, ..2, sep = ' ')
) %>%
 str_replace(string = ., pattern = output_dir, replacement =
paste0(output_dir, 'Kallisto_quantifications/', ..3)) %>%
 str_replace(string = ., pattern = '$', replacement = ' &')
)
) %>%
 dplyr::select(quantify) %>%
 # Place she-bang at top of file.
 add_row(quantify = '#!/bin/bash', .before = .1) %>%
 unlist(use.names = FALSE)

 quant_script_location <- output_dir %>%
 str_replace('data.*', 'scripts/') %>%
 paste0(., 'Kallisto_quantify.sh')

 quant_script <- quant_script_location %>%
 file()

 writeLines(read_tib_to_save, quant_script)

 close(quant_script)

 if (execute_script){
 system(indexing_script_location)
 system(quant_script_location)
 }

}

Function name: implement_STAR
Purpose: Write bash scripts for STAR index building and mapping,
then execute them.
Input: Arguments to Kallisto from config file, and all directories
created.
implement_STAR <- function(STAR_arguments, directories, execute_script){

 index_arguments <-
'fasta|runThread|genomeDir|genomeFastaFiles|sjdbGTFfile|sjdbOverhang'

 organize_STAR_arguments <- STAR_arguments %>%
 mutate(
 index = map_lgl(key,
 str_detect,
 index_arguments
),
 mapping = map_lgl(key,
 str_detect,

108

implement_alignment.R

 index_arguments,
 negate = TRUE
)
)

 path <- organize_STAR_arguments %>%
 filter(
 str_detect(key, 'path')
) %>%
 dplyr::select(value) %>%
 unlist(use.names = FALSE)

 genome_dir <- organize_STAR_arguments %>%
 filter(
 str_detect(key, 'genomeDir')
) %>%
 dplyr::select(key, value) %>%
 unlist(use.names = FALSE) %>%
 str_c(collapse = ' ')

 output_dir <- directories %>%
 str_subset('STAR_log_files') %>%
 str_replace(pattern = 'data.*', 'scripts/')

 runThread <- organize_STAR_arguments %>%
 filter(
 str_detect(key, 'runThread')
) %>%
 dplyr::select(key, value) %>%
 unlist(use.names = FALSE) %>%
 str_c(collapse = ' ')

 reads <- STAR_arguments %>%
 filter(
 str_detect(key, 'readFilesIn')
) %>%
 dplyr::select(value) %>%
 unlist(use.names = FALSE) %>%
 list.files(full.names = T)

 # Check if fastq files are zipped.
 reads_zipped <- reads %>%
 first() %>%
 str_detect('.gz$')

 read_tib <- tibble(
 forward = reads %>% str_subset(pattern = '_1'),
 reverse = reads %>% str_subset(pattern = '_2'),
 sample = map_chr(forward,
 ~basename(.x) %>%
 str_remove('_.*')
)
)

109

implement_alignment.R

 arguments_to_build_index <- organize_STAR_arguments %>%
 filter(index == TRUE) %>%
 dplyr::select(key, value) %>%
 spread(key, value)

 index_argument_type <- arguments_to_build_index %>%
 colnames()

 index_arguments <- arguments_to_build_index %>%
 unlist(use.names = FALSE)

 build_index_with <- rbind(index_argument_type, index_arguments) %>%
 str_c(collapse = ' ') %>%
 paste(path, '--runMode genomeGenerate', ., '2>&1 | tee -a ',
directories %>% str_subset('STAR_log_files/') %>%
paste0('STAR_index.log')) %>%
 str_replace(pattern = '$', replacement = ' &') %>%
 str_replace_all(pattern = '[:space:]{2,}', replacement = ' ')

 # Write bash script to build the index to a file in the scripts
directory.
 build_index_with <- paste('#!/bin/bash', build_index_with, sep = '\n')

 indexing_script <- paste0(output_dir, 'STAR_build_index.sh')

 indexing_script_file <- indexing_script %>%
 file()

 writeLines(build_index_with, indexing_script_file)

 close(indexing_script_file)

 FASTQ <- organize_STAR_arguments %>%
 filter(
 str_detect(key, 'readFilesIn')
) %>%
 dplyr::select(value) %>%
 unlist(use.names = FALSE)

 FASTQ_files <- FASTQ %>%
 list.files(full.names = TRUE) %>%
 str_c(collapse = ' ')

 arguments_to_map_reads <- organize_STAR_arguments %>%
 filter(mapping == TRUE) %>%
 dplyr::select(key, value) %>%
 spread(key, value)

 map_argument_type <- arguments_to_map_reads %>%
 colnames()

 map_arguments <- arguments_to_map_reads %>%
 unlist(use.names = FALSE)

110

implement_alignment.R

 out_file_prefix <- directories %>%
 str_subset('genome_Dir')

 map_reads_with <- rbind(map_argument_type, map_arguments) %>%
 str_c(collapse = ' ') %>%
 str_remove('--path ') %>%
 paste(genome_dir) %>%
 paste(runThread)

 # Insert unzipping command if FASTQ files are zipped.
 if(reads_zipped){
 map_reads_with <- map_reads_with %>%
 paste('--readFilesCommand zcat')
 }

 map_reads_with <- map_reads_with %>%
 paste('--outFileNamePrefix', out_file_prefix) %>%
 paste(
 paste(' 2>&1 | tee -a ', directories %>%
 str_subset('STAR_log_files/') %>%
 paste0('STAR_mapping.log')
)
) %>%
 str_replace_all(pattern = '[:space:]{2,}', replacement = ' ') %>%
 str_replace('$', ' &')

 read_tib_to_save <- read_tib %>%
 mutate(
 # Base command.
 map_reads_with = map_reads_with,

 # Combine forward with reverse read.
 forward_and_reverse = map2_chr(forward,
 reverse,
 paste
),

 # Write path to sample genome_dir for accessing sample-specific
mapped reads.
 sample_genome_dir = map_chr(sample,
 ~paste0(genome_dir %>% str_remove('^.*
'), '/', .x) %>%
 str_replace('//', '/')
),

 # Create sample genome directories for mapped reads.
 write_sample_genome_dir = map(sample_genome_dir,
 dir.create,
 recursive = TRUE,
 showWarnings = FALSE
),

 # Concatenate and string replace for writing full commands for
mapping with STAR.

111

implement_alignment.R

 map_reads = pmap_chr(
 list(map_reads_with, forward_and_reverse, sample_genome_dir),
 ~str_replace(string = ..1, pattern = FASTQ, replacement = ..2)
%>%
 str_replace_all(string = ., pattern = genome_dir %>%
str_remove('^.* '), replacement = ..3 %>% paste0(., '/')) %>%
 str_replace(string = ., pattern = ..3, replacement = genome_dir
%>% str_remove('^.* ') %>% paste0(., '/')) %>%
 str_replace_all(string = ., pattern = '//', replacement = '/')
)
) %>%
 dplyr::select(map_reads) %>%
 # Place shebang at top of file.
 add_row(map_reads = '#!/bin/bash', .before = 1) %>%
 unlist(use.names = FALSE)

 mapping_script_location <- paste0(output_dir %>% str_replace('data.*',
'scripts/'), 'STAR_map_reads.sh')

 mapping_script <- mapping_script_location %>%
 file()

 writeLines(read_tib_to_save, mapping_script)

 close(mapping_script)

 if (execute_script){
 system(indexing_script)
 system(mapping_script_location)
 }

 return(out_file_prefix)
}

Function name: implement_feature_counts
Purpose: Write bash script for feature counts to execute.
Input: path to feature counts output, gtf, genome directory containing
sam files,
and path to the feature counts program.
implement_feature_counts <- function(output_dir, annotation, genome_Dir,
feature_counts, execute_script){

 feature_counts_command <- paste(feature_counts, '-a', annotation, '-o
x') %>%
 str_replace('x$', paste0(output_dir, 'clean_counts.txt'))

 # Format feature counts arguments using samples from STAR output.
 feature_counts_commands <- genome_Dir %>%

112

implement_alignment.R

 list.files(recursive = T, full.names = TRUE) %>%
 tibble(sam_output = .) %>%
 mutate(

 sample = map_chr(sam_output,
 ~dirname(.x) %>%
 basename()
),

 feature_counts = feature_counts_command,

 fc = map2_chr(feature_counts,
 sample,
 ~str_replace(string = .x,
 pattern = 'clean_counts.txt',
 replacement = paste(.y,
'clean_counts.tsv', sep = '_')
)
),

 fc_output = map2_chr(fc,
 sam_output,
 ~paste(.x, .y)
)
) %>%
 dplyr::select(fc_output) %>%
 add_row(fc_output = '#!/bin/bash', .before = 1) %>%
 unlist(use.names = FALSE)

 feature_counts_script_location <- genome_Dir %>%
 str_replace('data.*', 'scripts/') %>%
 paste0(., 'feature_counts.sh')

 feature_counts_script <- feature_counts_script_location %>%
 file()

 writeLines(feature_counts_commands, feature_counts_script)

 close(feature_counts_script)

 if (execute_script){
 system(feature_counts_script_location)
 }
}

113

implement_differential_gene_expression.R

Function name: implement_differential_gene_expression
Purpose: Extract alignment function output and execute differential
gene
expression testing depending on the upstream alignment or
pseudo-alignment
software used.
Input: Alignment function results.
Output: Alignment function results and processed configuration file.
implement_differential_gene_expression <- function(alignment_results){

 # Separate alignment results (tibble with tool commands
 # and directories) from the pipeline input (configuration
 # file exraction).
 alignment <- alignment_results %>%
 dplyr::first()

 pipeline_input <- alignment_results %>%
 dplyr::last()

 # Load experimental design matrix file.
 design_matrix <- pipeline_input %>%
 extract2('design_matrix') %>%
 read_csv(col_types = cols())

 # Separate covariates for column selection.
 sample_covariates <- pipeline_input %>%
 extract2('sample_covariates') %>%
 split_and_unlist_conditions()

 # Map design matrix contents with sets of samples to
 # compare in differential expression testing.
 sample_comparisons <- pipeline_input %>%
 extract2('sample_comparisons_file') %>%
 read_tsv(col_names = FALSE, col_types = cols()) %>%
 extract_sample_comparison_sets(design_matrix, sample_covariates)

 kallisto <- alignment %>%
 extract2('key') %>%
 str_detect('kallisto') %>%
 any()

 STAR <- alignment %>%
 extract2('key') %>%
 str_detect('star') %>%
 any()

 ## Sleuth non-functional.
 if(kallisto){

 #readline(prompt="Enter name: ")
 implement_sleuth(alignment, pipeline_input, design_matrix,
sample_comparisons, sample_covariates)
 }

114

implement_differential_gene_expression.R

 if(STAR){
 implement_edgeR(alignment, pipeline_input, design_matrix,
sample_comparisons)
 }

}

Function name: split_and_unlist_conditions
Purpose: Separate covariates from list of conditions.
Input: Condition names from experimental design matrix and
configuration file.
Output: Split list with spaces removed.
split_and_unlist_conditions <- function(covariate_character_vector){
 covariate_character_vector %>%
 str_split(pattern = ',') %>%
 unlist(use.names = FALSE) %>%
 str_remove('[:space:]')
}

Function name: extract_sample_comparison_sets
Purpose: Associate sample sets with sample comparisons.
Input: Sample comparisons file, experimental design matrix,
and the split sample conditions.
Output: Comparison sets associated with file names.
extract_sample_comparison_sets <- function(comparison_sets,
design_matrix, sample_conditions){
 comparison_sets %>%

 # Combine sample identifiers in sample comparisons file with
 # a pipe for searching the experimental design matrix with.
 unite(col = samples,
 sep = '|') %>%

 dplyr::transmute(
 comparison_set = map(samples,
 ~dplyr::filter(design_matrix,
 stringr::str_detect(!!sym('sample'),
.x)
)
),

 file_name = purrr::map_chr(comparison_set,

~write_differential_testing_file_name(comparison_set = .x,

sample_conditions)
)
)
}

115

implement_differential_gene_expression.R

Function name: write_differential_testing_file_name
Purpose: Combine conditions from each sample comparison
set to create a file name with.
Input: Comparison set, and split conditions.
Output: A file name with '_vs_' between conditions compared.
write_differential_testing_file_name <- function(comparison_set,
sample_conditions){
 comparison_set %>%
 dplyr::select(condition) %>%
 unique() %>%
 arrange(desc(condition)) %>%
 unlist(use.names = FALSE) %>%
 str_c(collapse = '_vs_') %>%
 str_replace_all(pattern = ' ', replacement = '_')
}

Function name: implement_sleuth
Purpose: Run Sleuth on one sample comparison set at a time.
Input: Alignment results data structure, processed configuration file,
experimental design matrix, sample comparison sets, and split
sample comparisons.
implement_sleuth <- function(alignment, pipeline_input, design_matrix,
sample_comparisons, sample_covariates){

 # Provide access to Kallisto directories.
 kallisto_directories <- alignment %>%
 filter(key == 'kallisto') %>%
 dplyr::select(directories) %>%
 unlist(use.names = F)

 # List sample quantification results.
 quantification_files <- kallisto_directories %>%
 str_subset('Kallisto_quantifications') %>%
 list.files(full.names = TRUE) %>%
 tibble(path = .) %>%
 mutate(
 # Ensure no double forward-slash.
 path = map_chr(path,
 str_replace,
 '//',
 '/'),
 # Give sample name.
 sample = map_chr(path,
 str_remove,
 '.*/'
)
)

116

implement_differential_gene_expression.R

 # Reset quantification file paths in design matrix and comparison sets
 # from the original design matrix to the sample quantification results.
 design_matrix <- design_matrix %>%
 mutate(
 path = quantification_files %>%
 dplyr::select(path) %>%
 unlist(use.names = F)
)

 #
 sample_comparisons <- sample_comparisons %>%
 unnest(cols = comparison_set) %>%
 left_join(quantification_files, by = 'sample') %>%
 dplyr::select(-path.x) %>%
 dplyr::rename(path = path.y) %>%
 drop_na() %>%
 nest(comparison_set = -file_name) %>%
 #nest(data = c(sample, genotype, condition, hour, which_replicate,
testing_condition, path)) %>%
 mutate(
 testing_condition = map(comparison_set,
 structure_covariates_for_DGE_testing,
 sample_covariates
),
 comparison_set = map(comparison_set,
 separate_conditions,
 sample_covariates
)
)

 # Determine which mode(s) to execute Sleuth in.
 gene_mode <- pipeline_input %>%
 extract2('sleuth_gene_mode')

 transcript_mode <- pipeline_input %>%
 extract2('sleuth_transcript_mode')

 sleuth_mode <- gene_mode %>%
 select_sleuth_mode(transcript_mode)

 # Place Sleuth results next to Kallisto.
 sleuth_path <- kallisto_directories %>%
 str_subset(pattern = 'Kallisto/$') %>%
 str_replace('Kallisto', 'Sleuth')

 transcript_level <- str_detect(sleuth_mode, 'transcript')

 gene_level <- str_detect(sleuth_mode, 'gene')

 transcript_and_gene_level <- str_detect(sleuth_mode,
'transcript_and_gene_level')

 analysis_type <- pipeline_input %>%

117

implement_differential_gene_expression.R

 extract2('analysis_type')

 sleuth_level_directories <- tibble(sleuth_path, transcript_level,
gene_level, transcript_and_gene_level) %>%
 mutate(
 transcript_level = case_when(transcript_level ~ paste0(sleuth_path,
analysis_type, '/transcript_level/')
),
 gene_level = case_when(gene_level ~ paste0(sleuth_path,
analysis_type, '/gene_level/')
)
) %>%
 gather() %>%
 filter(
 str_detect(value, paste0('Sleuth/', analysis_type)
)
) %>%
 mutate(
 write_directory = map(value,
 dir.create,
 recursive = TRUE,
 showWarnings = FALSE
)
) %>%
 dplyr::select(-write_directory)

 if(transcript_and_gene_level | gene_level){
 target_mapping <- design_matrix %>%
 slice(1) %>%
 gene_level_analysis_data_structure() %>%
 dplyr::select(ttg) %>%
 unnest()
 }

 sample_comparisons <- sample_comparisons %>%
 mutate(
 testing_condition_formula = map(testing_condition,
 extract_single_testing_condition
)
)

 if(transcript_and_gene_level){
 transcript_comparisons <- sample_comparisons %>%
 transcript_prep()

 gene_comparisons <- sample_comparisons %>%
 gene_prep(target_mapping)

 comparisons <- bind_rows(transcript_comparisons, gene_comparisons)
 }

 if(gene_level & !(transcript_and_gene_level | transcript_level)){
 comparisons <- sample_comparisons %>%
 gene_prep(target_mapping)

118

implement_differential_gene_expression.R

 }

 if(transcript_level & !(gene_level | transcript_and_gene_level)){
 comparisons <- sample_comparisons %>%
 transcript_prep()
 }

 rm(sample_comparisons)

 comparisons <- comparisons %>%
 left_join(sleuth_level_directories) %>%
 dplyr::rename(level_directory = value) %>%
 dplyr::select(-key)

 comparisons <- comparisons %>%
 mutate(
 pca = map2(prep,
 testing_condition_formula,
 run_sleuth_pca
),
 pca_save = pmap(
 list(pca, level_directory, file_name),
 save_sleuth_pca
),
 fit = map2(prep,
 testing_condition_formula,
 run_sleuth_fit
),
 lrt = map(fit,
 run_sleuth_lrt
),
 lrt_results = map(lrt,
 extract_sleuth_lrt_results
),
 save_lrt_results = pmap(
 list(lrt_results, level_directory, file_name),
 save_sleuth_results
)
)
}

Function name: structure_covariates_for_DGE_testing
Purpose: Search for conditions in the comparison sets which vary in a
column.
Input: Comparison set and split sample conditions.
Output: Unique key, value pairs for conditions.
structure_covariates_for_DGE_testing <- function(comparison_set,
sample_conditions){
 condition_count <- sample_conditions %>%
 length()

119

implement_differential_gene_expression.R

 comparison_set <- comparison_set %>%
 extract(col = condition,
 into = sample_conditions,
 regex = rep('(.*)', times = condition_count) %>%
 paste(collapse = ' ')
) %>%
 dplyr::select(
 all_of(sample_conditions)
) %>%
 distinct()

 row_num <- comparison_set %>%
 nrow()

 comparison_set %>%
 gather() %>%
 group_by(key) %>%
 mutate(
 variant = value %>% n_distinct
) %>%
 filter(variant > 1) %>%
 mutate(
 test = map2_chr(key,
 value,
 paste0)
) %>%
 dplyr::select(key,
 test
) %>%
 distinct()
}

Function name: separate_conditions
Purpose: Separate condition column into multiple columns based on the
covariates.
Input: Sample comparison set and split condition list.
Output: A sample comparison set with one column for each covariate.
separate_conditions <- function(clean_design_matrix, conditions){
 condition_count <- conditions %>%
 length()

 clean_design_matrix %>%
 tidyr::extract(col = condition,
 into = conditions,
 regex = rep('(.*)', times = condition_count) %>%
 paste(collapse = ' ')
)
}

120

implement_differential_gene_expression.R

Function name: select_sleuth_mode
Purpose: Determine at what level to run Sleuth: gene, transcript, or
both.
Input: Boolean values for gene mode and transcript mode.
Output: A mode to run Sleuth in.
select_sleuth_mode <- function(gene_mode, transcript_mode){
 if_else(condition = (gene_mode == 'TRUE'),
 true = if_else(condition = (transcript_mode == 'TRUE'),
 true = 'transcript_and_gene_level',
 false = 'gene_level'),
 false = if_else(condition = (transcript_mode == 'TRUE'),
 true = 'transcript_level',
 false = 'NULL')
)
}

Function name: gene_level_analysis_data_structure
Purpose: Removes splicing notation from one quantification file result
to use for gene level Sleuth analysis.
Input: Experimental design matrix.
Output: Gene to transcript mapping.
gene_level_analysis_data_structure <- function(design_matrix){
 design_matrix <- design_matrix %>%
 mutate(
 path = map_chr(path,
 list.files,
 '^abundance.tsv$',
 full.names = TRUE,
 recursive = T
),
 reads = map(path,
 read_tsv,
 col_types = cols())
) %>%
 unnest()

 # Check if the gene names have been extracted from
 # transcripts for the first quantification dataset.
 gene_column_existent <- design_matrix %>%
 colnames() %>%
 str_detect('gene') %>%
 any()

 if(!gene_column_existent){
 design_matrix <- design_matrix %>%
 group_by(target_id) %>%
 nest() %>%
 mutate(
 gene = target_id %>%
 str_remove('[[:punct:]].*')

121

implement_differential_gene_expression.R

) %>%
 unnest()

 } else{
 design_matrix <- design_matrix
 }

 design_matrix %>%
 group_by(sample,
 path,
 condition,
 which_replicate
) %>%
 nest() %>%
 mutate(
 data = map2(data,
 path,
 write_tsv
),
 ttg = map(data,
 dplyr::select,
 gene,
 target_id
),
 path = map_chr(path,
 dirname)
) %>%
 dplyr::select(-data)
}

Function name: extract_single_testing_condition
Purpose: Select a single covariate to test with by
identifying the condition column with varying
contents across samples.
Input: Split sample conditions.
Output: Covariate which varies in its contents.
extract_single_testing_condition <- function(sample_conditions){

 count_comparisons <- sample_conditions %>%
 dplyr::select(key) %>%
 plyr::count()

 key_no_variance <- count_comparisons %>%
 filter(freq < 2) %>%
 dplyr::select(key)

 if(nrow(key_no_variance) >=1){
 no_variance_warning <- key_no_variance %>%
 unlist(use.names = FALSE) %>%
 str_c(collapse = ' and ') %>%

122

implement_differential_gene_expression.R

 paste0('Warning: Removing ', ., '. Sleuth needs two comparisons in
each category.')

 message(no_variance_warning)
 }

 sample_conditions %>%
 anti_join(key_no_variance, by = 'key') %>%
 ungroup() %>%
 dplyr::select(key) %>%
 unlist(use.names = FALSE) %>%
 paste0('~', .) %>%
 unique()
}

Function name: transcript_prep
Purpose: A Sleuth_prep implementation specific
to transcript analysis.
Input: A sample comparison set.
Output: Sleuth prep object.
transcript_prep <- function(comparisons){
 comparisons %>%
 mutate(
 prep = map2(comparison_set,
 testing_condition_formula,
 ~sleuth::sleuth_prep(sample_to_covariates = .x,
 full_model = .y %>%
 unique() %>%
 as.formula(),
 gene_mode = FALSE)
),
 key = 'transcript_level'
)
}

Function name: gene_prep
Purpose: A Sleuth_prep implementation specific to gene analaysis.
Input: A sample comparison set.
Output: Sleuth prep object.
gene_prep <- function(comparisons, mapped_targets){
 comparisons %>%
 mutate(
 testing_condition_formula = map(testing_condition_formula,
 as.formula
),
 prep = map2(comparison_set,
 testing_condition_formula,

123

implement_differential_gene_expression.R

 sleuth::sleuth_prep,
 target_mapping = mapped_targets,
 aggregation_column = 'gene',
 extra_bootstrap = TRUE,
 gene_mode = TRUE
),
 key = 'gene_level'
)
}

Function name: run_sleuth_pca
Purpose: Plot PCA plots for a comparison.
Input: Sleuth prep object and a covariate to
color with.
Output: PCA plot for comparison.
run_sleuth_pca <- function(prep, covariate_color){
 covariate_color <- covariate_color %>%
 str_remove('^~')

 prep %>%
 sleuth::plot_pca(color_by = covariate_color, text_labels = FALSE)
}

Function name: save_sleuth_pca
Purpose: Save PCA plots for a comparison.
Input: PCA plot to save, Parent directory, and file name.
Output: ggsave object.
save_sleuth_pca <- function(pca_plot, level_path, file_name){
 level_path <- level_path %>%
 basename() %>%
 paste0(level_path, ., '_PCA')

 dir.create(level_path, showWarnings = FALSE, recursive = TRUE)

 pca_plot %>%
 ggsave(filename = paste0(file_name, '.pdf'), path = level_path,
device = 'pdf')
}

Function name: run_sleuth_fit
Purpose: Measurement error model fitting with Sleuth.
Input: Sleuth prep object and testing formula.
Output: Sleuth fit object.
run_sleuth_fit <- function(prep, formula_string){
 prep %>%

124

implement_differential_gene_expression.R

 sleuth::sleuth_fit(obj = .,
 formula = formula_string %>%
 as.formula,
 'full'
) %>%
 sleuth::sleuth_fit(obj = .,
 formula = ~1,
 'reduced')
}

Function name: run_sleuth_lrt
Purpose: Perform Likelihood Ratio Test.
Input: Sleuth fit object.
Output: LRT results.
run_sleuth_lrt <- function(fit){
 fit %>%
 sleuth::sleuth_lrt(obj = .,
 'reduced',
 'full')
}

Function name: extract_sleuth_lrt_results
Purpose: Extract Likelihood Ratio test results from a sleuth object.
Input: Sleuth object
Output: Likelihood ratio test results.
extract_sleuth_lrt_results <- function(lrt){
 lrt %>%
 sleuth::sleuth_results(test = 'reduced:full',
 test_type = 'lrt')
}

Function name: save_sleuth_results
Purpose: Save LRT results to a file for a comparison.
Input: LRT results, analysis level, file name.
Output: None.
save_sleuth_results <- function(results, level_path, file_name){
 level_path <- level_path %>%
 basename() %>%
 paste0(level_path, ., '_results/')
 dir.create(level_path, showWarnings = FALSE, recursive = TRUE)

 results %>%
 write_tsv(path = paste0(level_path, file_name, '.tsv'))
}

125

implement_differential_gene_expression.R

Function name: implement_edgeR
Purpose: Conduct differential testing on STAR
mapped reads with edgeR.
Input: Alignment decision data structure, processed configuration
file, experimental design matrix, and sample comparison sets.
implement_edgeR <- function(alignment, pipeline_input, design_matrix,
sample_comparisons){
 STAR_counts_path <- alignment %>%
 filter(key == 'star') %>%
 dplyr::select(directories) %>%
 unlist(use.names = FALSE) %>%
 str_subset(pattern = 'Feature_counts') %>%
 list.files(full.names = TRUE)

 design_matrix <- design_matrix %>%
 mutate(
 path = STAR_counts_path
)

 no_return <- STAR_counts_path %>%
 tibble(files = .) %>%
 mutate(
 # Select the column one and column two from feature counts data; to
be ran with submitted data.
 counts_data = map(files, ~read_tsv(.x, col_names = TRUE, skip = 1,
col_types = cols()) %>% dplyr::select(1, 2)
)
) %>%
 filter_counts_data(design_matrix = design_matrix) %>%
 edgeR_preliminary(count_keeps = ., samplename = design_matrix,
edgeR_directory = STAR_counts_path, comparisons = sample_comparisons,
pipeline_input)
}

Function name: filter_counts_data
Purpose: filter the lowly expressed genes for edgeR analysis.
Input: counts, experimental design matrix.
Output: data frame of counts for each sample.
filter_counts_data <- function(counts, design_matrix){
 data <- data.frame(counts$counts_data)

 # storing data as data frame
 total_samples <- nrow(counts)*2
 ans <- seq(2,total_samples,2)
 data <- data[c(1, ans)]

 # Load the sample information and include the header.
 samplename <- design_matrix

126

implement_differential_gene_expression.R

 #(optional) naming the samples
 #d=colnames(sleuth_table)[1]
 d="target_id"
 x <- samplename$`sample`
 a <- c(d,x)
 colnames(data) <- a
 rowname<-data[c(1)]

 #filterng the data
 keep <- rowSums(cpm(data[,2:length(data)]) > 0.5) >= 2
 data[keep,]
}

Function name: edgeR_preliminary
Purpose: process input data for Edge R analysis followed by the
analysis and set the directory where data has to be saved
Input: kept counts, a sample name, edgeR directory,
comparison matrix, and the extracted configuration
data structure.
edgeR_preliminary <- function(count_keeps, samplename, edgeR_directory,
comparisons, pipeline_input){

 edgeR_output_directory <- edgeR_directory %>%
 dplyr::first() %>%
 str_replace(pattern = 'STAR.*', replacement = 'edgeR/') %>%
 paste0(pipeline_input$analysis_type, '/')

 dir.create(edgeR_output_directory, recursive = TRUE, showWarnings =
FALSE)

 # grouping the samples
 edgeR_comparision_set1 <- gsub(" ","_",samplename$condition)
 group <- factor(edgeR_comparision_set1)
 y <-
DGEList(count_keeps[,2:length(count_keeps)],group=group,genes=count_keeps
[c(1)])
 logcounts <- cpm(y,log=TRUE)
 y <- calcNormFactors(y, method='TMM')
 logcounts <- cpm(y,log=TRUE)
 ###
 # forming the design matrix from DGE list generated before
 design.mat <- model.matrix(~ 0 + y$samples$group)

 colnames(design.mat) <- levels(y$samples$group)
 v <- voom(y,design.mat)
 #fitting the model
 vfit <- lmFit(v, design.mat)
 ###############contrast matrix1#######################################
 #can be of any choice
 comparisons$file_name %>%

127

implement_differential_gene_expression.R

 tibble(C = .) %>%
 mutate(
 B = map_chr(C, ~str_remove(string = .x, pattern = '_vs.*')),
 A = map_chr(C, ~str_remove(string = .x, pattern = '.*vs_')),
 all = pmap(list(C, A, B), ~paste0(..1, ' = ', ..2, ' - ', ..3))
) %>%
 mutate(
 make_contrasts = map(all, ~makeContrasts(contrasts = .x, levels =
group)),
 vfit = map(make_contrasts, ~contrasts.fit(fit = vfit, contrasts =
.x)),
 tfit = map(vfit, ~treat(fit = .x, lfc = pipeline_input$edger_lfc
%>% as.numeric())),
 dt = map(tfit, ~decideTests(object = .x, adjust.method =
pipeline_input$edger_adjustment_method, p.value =
pipeline_input$significance_cutoff)),
 top_tables = map2(tfit, all, ~topTable(fit = .x, coef = .y, sort.by
= 'p', n = 'Inf')),
 write_out = map2(top_tables, C, ~write_tsv(x = .x, path =
paste0(edgeR_output_directory, .y, '.tsv')))
)
}

128

implement_network_analysis.R

Function name: implement_network_analysis
Purpose: Performs network visualization and find hubbed genes
in the network using Go enrichment analysis also.
Input: A string specifying which differential gene expression
was used upstream.
Output: Network visualization and GO terms associated with
significant genes.
implement_network_analysis <- function(alignment_tool, alignment_results,
exectute){

 alignment_decision <- alignment_results %>%
 dplyr::first()
 pipeline_input <- alignment_results %>%
 dplyr::last()

 # WGCNA
 if(alignment_tool %>% str_detect('kallisto|KALLISTO|Kallisto')){
 wgcna_input <- alignment_decision %>%
 filter(key == 'kallisto') %>%
 dplyr::select(directories) %>%
 unlist(use.names = FALSE) %>%
 first() %>%
 str_replace('Kallisto', paste0('Sleuth/', pipeline_input %>%
extract2('analysis_type'), '/gene_level/gene_level_results'))
 }

 if(alignment_tool %>% str_detect('STAR|star|Star')){
 wgcna_input <- pipeline_input %>%
 extract2('star_genomeDir') %>%
 str_replace('STAR.*', paste0('edgeR/',
pipeline_input$analysis_type, '/')) %>%
 str_replace(pattern = '//', replacement = '/')

 # Remove tags after gene names in edgeR results.
 deg_files <- wgcna_input %>%
 list.files(path = ., pattern = '.tsv$', full.names = TRUE,
recursive = FALSE) %>%
 tibble(deg_file = .)

 test_for_extraneous <- deg_files %>%
 use_series(deg_file) %>%
 dplyr::first() %>%
 read_tsv(col_types = cols()) %>%
 use_series(target_id) %>%
 dplyr::first() %>%
 unlist(use.names = FALSE)

 # str matching specific to test data.
 if(test_for_extraneous %>% str_detect('\\..*')){
 deg_files_remove <- deg_files %>%
 mutate(
 deg_data = map(deg_file,
 ~read_tsv(.x, col_types = cols()) %>%

129

implement_network_analysis.R

 mutate(
 target_id = map_chr(target_id,
 ~gsub(pattern = '\\..*',
replacement = '', x = .x)
)
)
),
 save_deg_data = map2(deg_data,
 deg_file,
 write_tsv
)
)
 }
 }

 message('Running WGCNA.')

 expr2 <- wgcna_input_data(wgcna_input, pipeline_input)

 significant_hits <- expr2 %>%
 dplyr::select(original_filter) %>%
 unnest(cols = original_filter) %>%
 distinct()

 expr2 <- expr2 %>%
 wgcna_plot_sample_tree() %>%
 wgcna_plot_power_results() %>%
 wgcna_plot_power_histogram() %>%
 wgcna_clustering()

 message('Performing GO enrichment.')
 GO_results <- implement_GO_enrichment(deg_tool = wgcna_input,
alignment_results = alignment_results) %>%
 post_process_GO_results()

 expr2 <- expr2 %>%
 mutate(
 GO_results = GO_results
)

 # DREM
 message('Writing executable files for DREM.')
 time_series_count_data <- DREM_main(pipeline_input = pipeline_input,
wgcna_input = wgcna_input, significant_hits, execute)
 # Overlap differentially expressed genes with network
 DREM_network_overlap(pipeline_input, deg_files)

 message('Conducting network analysis.')
 network_analysis_results <- mapping_network_analysis(expr2)

 adjacency_matrices <- expr2 %>%
 mutate(
 comparison_adj_mat = map(clustering_res, ~.x$adjacency)

130

implement_network_analysis.R

) %>%
 dplyr::select(comparison, comparison_adj_mat) %>%
 mutate(
 gene_tf = map(comparison_adj_mat, map_gene_tf_network_analysis,
pipeline_input)
)
}

map_gene_tf_network_analysis <- function(adj_mat, pipeline_input){

 previous <- getwd()
 setwd(paste0(getwd(), '/data/DREM/', pipeline_input$analysis_type))

 paths <- getwd() %>%
 list.files(pattern = 'path', full.names = T) %>%
 tibble(path_file = .) %>%
 dplyr::mutate(
 path_data = map(path_file, vroom, col_types = cols()),
 path_data = map(path_data, ~dplyr::select(.x, !contains('SPOT') &
!starts_with('H'))),
 path_data = map(path_data, ~set_colnames(.x, gsub("\\|.*","",
colnames(.x))))
) %>%
 use_series(path_data) %>%
 map(make_unique) %>%
 bind_rows()

 tf_list <- pipeline_input$tf_list

 gene_tf_network_analysis(paths, adj_mat, tf_list)

 setwd(previous)
}

make_unique <- function(tib){
 new_names <- tib %>%
 names() %>%
 make.unique('_')
 names(tib) <- new_names
 return(tib)

}

gene_tf_network_analysis <- function(drem_gene_tf, adj_mat, tf_list){

131

implement_network_analysis.R

 ids = drem_gene_tf %>%
 use_series(target_id) %>%
 make.names(unique = T)

 drem_gene_tf <- as.data.frame(drem_gene_tf)
 #new_names <- drem_gene_tf[,1] %>% unique()
 rownames(drem_gene_tf) = ids
 drem_gene_tf <- drem_gene_tf[,-1]
 rr=drem_gene_tf[rowSums(drem_gene_tf)>2,]
 rr=rr[,colSums(rr)>2]

 g <- graph.incidence(rr)
 V(g)$color <- V(g)$type
 V(g)$color=gsub("FALSE","red",V(g)$color)
 V(g)$color=gsub("TRUE","blue",V(g)$color)
 tkp.id<-tkplot(g, edge.color="gray30", layout=layout_as_bipartite)

 tk_center(tkp.id)
 #tk_fit(tkp.id, width = 467, height = 567)
 #tk_rotate(tkp.id, degree = -90, rad = NULL)

 #centrality_drem[order(centrality_drem$types_drem, decreasing = TRUE),]

 #adj_m <- adj_mat[(rownames(adj_mat)%in% ids),]

 adjacancy_matrix_of_drem_TF <- adj_mat[(rownames(adj_mat) %in% ids),]

 #adjacency mtrix for drem TF data that matches with genes
 adjacancy_matrix_of_drem_TF =
adj_mat[,colnames(adj_mat)[colnames(adj_mat) %in%
colnames(drem_gene_tf)]]

 ath_tf_list=read.table(tf_list, header = TRUE)
 ath_tf_list=gsub("\\..*","",ath_tf_list$TF_ID)
 ath_tf_list=as.data.frame(unique(ath_tf_list))
 #colnames(ath_tf_list)="TFs"
 #adjacancy matrix of database TF data that matches with genes

adjacancy_matrix_of_database_TF=adj_mat[,colnames(adj_mat)[colnames(adj_m
at) %in% ath_tf_list]]

 data_tf_gene_corr <-
unique(cbind(adjacancy_matrix_of_database_TF,adjacancy_matrix_of_drem_TF)
)

132

implement_network_analysis.R

 m <- data_tf_gene_corr
 source_node=c()
 target_node=c()
 correlation<-c()
 genes_names <- rownames(data_tf_gene_corr)
 tf_names<-colnames(data_tf_gene_corr)
 i<-genes_names[1:dim(m)[1]]
 j<-tf_names[1:dim(m)[2]]

 for(gene in i)
 {
 for(gen in j)
 {
 if(m[gene,gen]>0.5){
 source_node<-c(source_node,gene)
 target_node<-c(target_node,gen)
 correlation<-c(correlation,m[gene,gen])
 }
 }
 }

 NetworkData <- data.frame(source_node, target_node, correlation)

 net=NetworkData %>% filter(correlation > 0.5)
 net=net %>% filter(correlation != 1)

 net=unique(net)

 g <- graph.empty(directed = F)
 node.out <- unique(net$target_node) #stringsAsFactor = F in data frame
 node.in <- unique(net$source_node) #stringsAsFactor = F in data frame
 g <- graph.data.frame(net, directed = F)
 V(g)$type <- V(g)$name %in% net[,2] #the second column of edges is TRUE
type
 E(g)$weight <- as.numeric(net[,3])
 g

 rr=get.incidence(g,attr = "weight")

 V(g)$color <- V(g)$type
 V(g)$color=gsub("FALSE","red",V(g)$color)
 V(g)$shape=gsub("FALSE","square",V(g)$shape)
 V(g)$color=gsub("TRUE","blue",V(g)$color)
 tkplot(g, edge.color="gray30",edge.width=E(g)$weight,
layout=layout_as_bipartite)

 #finding histogram of node gree
 degree_nodes <- degree(g, mode="all")
 V(g)$size <- degree_nodes
 hist(degree_nodes, breaks=1:150, main="Histogram of node degree")
 degree.distribution <- degree_distribution(g, cumulative=T, mode="all")

133

implement_network_analysis.R

 plot(x=0:max(degree_nodes), y=1-degree.distribution, pch=19, cex=1.2,
col="orange",

 xlab="Degree_of_nodes", ylab="Cumulative Frequency")

 #finding centralities
 types_drem <- V(g)$type
 deg_drem <- igraph::degree(g)
 bet_drem <- betweenness(g)
 clos_drem <- closeness(g)
 eig_drem <- eigen_centrality(g)$vector

 cent_df_drem <- data.frame(types_drem, deg_drem, bet_drem, clos_drem,
eig_drem)

 cent_df_drem[order(cent_df_drem$type_drem, decreasing = TRUE),]
 #finding clusters based on Edge betweenness
 ceb <- cluster_edge_betweenness(g)
 #finding hubs score of each gene
 hs <- hub_score(g, weights=NA)$vector

}

DREM_network_overlap <- function(p, d){
 # p: pipeline input
 # d: DEG file tibble

 # point to network directory
 nets <- p %>%
 extract2('DREM') %>%
 paste0('TFInput')
 # list potential networks to access

 net_full <- nets %>%
 list.files(full.names = T)
 # files without source target filtered away.
 net_full_tib <- net_full %>%
 tibble(f = .) %>%
 mutate(
 x = map_lgl(f, ~readLines(.x, n = 1) %>%
 str_detect('TF\tGene\tInput')

134

implement_network_analysis.R

)
) %>%
 filter(x)

 nets <- net_full_tib %>%
 dplyr::select(f) %>%
 unlist(use.names = F)

 # invite user to select network
 message('Please pick an item (corresponding to a network) to overlap
differentially expressed genes with: ')
 # format menu to select from
 net_select <- nets %>%
 as_tibble(.) %>%
 rownames_to_column() %>%
 dplyr::rename('item' = rowname, 'network' = value)
 # print selection menu
 print(net_select)
 # input selection item
 chosen_item <- readline('Type item number: ')

 # extract network file name
 net <- net_select %>%
 spread(item, network) %>%
 dplyr::select(all_of(chosen_item))

 # extract full path to network chosen
 path_to_chosen_net <- net_full[str_detect(net_full, net %>%
unlist(use.names = F))]
 # check which tool
 edgeR_tool <- d %>%
 unlist(use.names = F) %>%
 first() %>%
 str_detect(pattern = 'edgeR')
 if (edgeR_tool){
 pval_filter <- 'adj.P.Val'
 summarise_by <- 'logFC'
 file_name_pattern <- 'clean_counts'

 # Select the directory which contains the count data from STAR.
 counts_data <- d %>%
 dplyr::slice(1) %>%
 first() %>%
 str_replace(pattern = 'edgeR.*', replacement =
'STAR/Feature_counts/')

 sk <- 1

 }
 if (!edgeR_tool){
 message('Unable to analyze Sleuth results.')
 #pval_filter <- 'qval'
 #summarise_by <- 'b'

135

implement_network_analysis.R

 }
 # column id for removing extraneous chars.
 gene_col <- 'target_id'
 # source and target definitions as in network files.
 target_source <- 'TF'
 target <- 'Gene'
 clean_dm <- p %>%
 extract2('design_matrix') %>%
 clean_design_matrix(., p)
 # load deg files
 summarised_differentially_expressed_gene_sets <- d %>%
 mutate(

 # Read in differentially expressed gene sets; filter based on p-val
cut-off
 de_gene_sets = map(deg_file, ~read_tsv(.x, col_types = cols()) %>%
 drop_na() %>%
 filter(!!sym(pval_filter) <= p %>%
extract2('significance_cutoff'))

),
 summarised_de_gene_sets = map(de_gene_sets,

~summarise_differential_expression(differential_expression_gene_set = .x,
gene_column = gene_col, mean_summerize = summarise_by)
),
 extract_title = map_chr(deg_file, extract_title_from_file_name)
) %>%
 dplyr::select(-de_gene_sets)
 # unzip if needed
 # if (str_detect(string = path_to_chosen_net, '.gz$')){
 # unzip(zipfile = path_to_chosen_net)
 # path_to_chosen_net <- path_to_chosen_net %>% str_remove('.gz')
 # }

 network <- read.delim(path_to_chosen_net) %>%
 dplyr::select(all_of(target_source), all_of(target))
 # Make network edges unique.
 edge_list <- network %>%
 mutate(
 !!target_source := !!sym(target_source) %>% map(extract_edges)
) %>%
 unnest(cols = c(target_source)) %>%
 mutate(
 !!target := !!sym(target) %>% map_chr(extract_edges)
)

 # Extract unique source nodes.
 unique_sources <- edge_list %>%
 unique_and_relabel('label_name' = target_source)

 # Extract unique target nodes.
 unique_targets <- edge_list %>%
 unique_and_relabel(label_name = target)

136

implement_network_analysis.R

 # Combine all unique sources and all unique targets and label each a
unique identifier.
 all_nodes <- full_join(unique_sources, unique_targets, by = 'label')
%>%
 rowid_to_column('id')

 # Associate unique gene ids with edges.
 edge_list_ids <- edge_list %>%
 left_join(all_nodes, by = setNames(nm = target_source, 'label')) %>%
 dplyr::rename(from = id) %>%
 left_join(all_nodes, by = setNames(nm = target, 'label')) %>%
 dplyr::rename(to = id)

 # Number of columns the extracted title can be divided into.
 column_number <-
extract_condition_column_number(extracted_title_dataset =
summarised_differentially_expressed_gene_sets)

 # Group comparison set elements.
 comparison_elements <-
associate_comparison_elements(extracted_title_dataset =
summarised_differentially_expressed_gene_sets, number_of_columns =
column_number)

 # Associate expression data (counts) replicate sets with conditions.
 associate_expression_replicates <-
associate_replicate_sets_to_conditions(expression_data_location =
counts_data, clean_dm, sk, p)

 # Associate replicate sets to differential gene expression comparison
sets.
 associate_expression_values_to_comparison_sets <-
associate_expression_to_comparison_elements(replicate_set_association =
associate_expression_replicates, comparisons = comparison_elements)

 # Uniquely name the column in the large tibble to contain overlapped
nodes.
 overlap_sources_and_targets_column <- paste(target_source, target, sep
= '_and_')

 # Associate read count data (expression data) with comparison sets
(comparison elements).
 comparison_set_expression <-
associate_expression_values_to_comparison_sets %>%
 mutate(

 # Paste groups together to join with extract_title column in
node_overlap variable.
 extract_title = map2_chr(group1, group2,
paste_groups_to_join_with_title_extract),

137

implement_network_analysis.R

 # Take the mean expression value for replicates, and the mean
expression value across each comparison.
 gene_expression = map2(group1_replicate_data,
group2_replicate_data, mean_replicate_est_counts)
)

 # Overlap differentially expressed genes with network edges.
 node_overlap <- summarised_differentially_expressed_gene_sets %>%

 # remove '.tsv'

 mutate(
 extract_title = str_remove(extract_title, pattern = '\\..*') %>%
 str_remove('_vs')
) %>%

 dplyr::right_join(comparison_set_expression, by = 'extract_title')
%>%

 dplyr::select(-contains('group')) %>%

 mutate(

 # Extract read count data to associate along side differential
expression measurement.
 summarised_de_gene_sets = map2(summarised_de_gene_sets,
gene_expression, ~inner_join(.x, .y, by = gene_col)),

 # Collect target sources found in each differentially expressed
gene set.
 !!overlap_sources_and_targets_column :=
map(summarised_de_gene_sets,
~overlap_sources(differential_gene_expression_set = .x, edges =
edge_list_ids, node_type = target_source, summarise_col = summarise_by)),

 # Collect target measurements similarly.
 !!overlap_sources_and_targets_column :=
map2(summarised_de_gene_sets, !!sym(overlap_sources_and_targets_column),
~overlap_targets(differential_gene_expression_set = .x, target_sources =
.y, node_type = target, summarise_col = summarise_by)),

 # Adjacency matrix for each network.
 adjacency_matrix = map(!!sym(overlap_sources_and_targets_column),
get_adjacency_matrix),

 # Collect edge information.
 edges = map(!!sym(overlap_sources_and_targets_column),
~dplyr::select(.x, matches('from|to'))),

138

implement_network_analysis.R

 # ID the nodes within each set.
 relabel_nodes = map(!!sym(overlap_sources_and_targets_column),
~relabel_local_nodes(local_edges = .x, target_sources = target_source,
targets = target)),

 # Map beta values to unique genes.
 map_betas_to_nodes = map(!!sym(overlap_sources_and_targets_column),
~beta_and_read_mapping_to_nodes(target_source_set = .x, node_type_1 =
target_source, node_type_2 = target, summarise_col = summarise_by)),

 # Label each identifier as either target or source.
 label_type = map(map_betas_to_nodes,
~label_and_rescale_mapped_values(mapped_values_set = .x, edges =
edge_list, first_label = target_source, second_label = target))

 # Extract in-degree and out-degree for each node in a network.
 #node_degree = map2(label_type, adjacency_matrix,
~map_degrees_to_nodes(node_information = .x, adj_matrix = .y,
node_universe = all_nodes))

)

 tmp <- getwd() %>% paste0('/data/', p$analysis_type, '_DEG_networks')
 dir.create(tmp, recursive = T)

 expression_networks <- node_overlap %>%
 mutate(
 #
 graph_data = pmap(list(map_betas_to_nodes, edges, label_type,
extract_title), graph_differential_gene_expression_network),

 #
 write_graph_data = map2(extract_title, graph_data,
~paste_and_save(output_directory = tmp, file_name_to_paste = .x, graph =
.y))
)
}

graph_differential_gene_expression_network <- function(nodes, edges,
label_types, titles_extracted) {

 as_tbl_graph(nodes, edges %>% unlist()) %>%
 activate(nodes) %>%
 left_join(label_types, by = 'name') %>%

139

implement_network_analysis.R

 dplyr::rename('Identifier' = name) %>%
 dplyr::rename('Class' = label) %>%
 ggraph(layout = 'kk') +
 geom_edge_link(arrow = arrow(length = unit(3, 'mm'))) +
 geom_node_point(aes(alpha = scaled_beta, colour = Identifier, size =
reads, shape = Beta_coefficient)) +
 geom_node_text(aes(label = Class), color = 'black', size = 2, vjust =
2, show.legend = FALSE) +
 theme_graph() +
 ggtitle(titles_extracted) +
 labs(alpha = 'Scaled LFC value', size = 'Mean of counts', shape =
'LFC') +
 guides(color = FALSE)
}

paste_and_save <- function(output_directory, file_name_to_paste, graph){
 output_directory <- output_directory %>%
 paste0('/', file_name_to_paste, '.png')

 graph %>%
 ggsave(filename = output_directory, device = 'png', dpi = 320, width
= 10.00, height = 10.00, units = 'in')

}

label_and_rescale_mapped_values <- function(mapped_values_set, edges,
first_label, second_label){

 # Extract value range for scaling.
 rescale_set <- mapped_values_set %>%
 dplyr::select(beta) %>%
 range()

 mapped_values_set <- mapped_values_set %>%
 mutate(

 # Rescale values for graphing with alpha.
 scaled_beta = map_dbl(beta, ~rescale(x = .x, from = rescale_set, to
= c(0,1))),

 # Label beta coefficient.
 Beta_coefficient = map_chr(beta, ~if_else(condition = (.x < 0),
 true = '-',
 false = '+'))

)

 mapped_values_set %>%
 left_join(x = ., y = edges, by = c('name' = first_label)) %>%

140

implement_network_analysis.R

 dplyr::rename(!!first_label := second_label) %>%

 mutate_at(first_label, ~if_else(condition = is.na(.),
 true = replace(x = ., values =
second_label),
 false = replace(x = ., values =
first_label)
)
) %>%
 dplyr::rename(label := !!first_label) %>%
 distinct()
}

beta_and_read_mapping_to_nodes <- function(target_source_set,
node_type_1, node_type_2, summarise_col){
 node_type_1_set <- c(node_type_1, paste0(node_type_1, '_',
summarise_col), paste0(node_type_1, '_mean_counts'))
 node_type_2_set <- c(node_type_2, paste0(node_type_2, '_',
summarise_col), paste0(node_type_2, '_mean_counts'))

 target_source_set %>%
 nest(data = c(node_type_1_set, node_type_2_set)) %>%
 dplyr::rename(tmp := data) %>%
 dplyr::select(tmp) %>%
 mutate(
 tmp = map(tmp, gather)
) %>%
 unnest(cols = c(tmp)) %>%
 dplyr::select(value) %>%
 mutate(
 ind = rep(c(1,2,3), length.out = n())
) %>%
 group_by(ind) %>%
 mutate(
 id = row_number()
) %>%
 spread(ind, value) %>%
 dplyr::select(-id) %>%
 dplyr::rename(name = '1', beta = '2', reads = '3') %>%
 mutate_at(vars(beta, reads), as.numeric) %>%
 distinct()
}

relabel_local_nodes <- function(local_edges, target_sources, targets){

141

implement_network_analysis.R

 local_edges %>%
 dplyr::select(target_sources, targets) %>%
 unlist(use.names = FALSE) %>%
 tibble(name = .) %>%
 distinct() %>%
 rowid_to_column('id')
}

get_adjacency_matrix <- function(overlap_sources_and_targets_column){
 overlap_sources_and_targets_column %>%
 dplyr::select(to, from) %>%
 as.data.frame() %>%
 graph.data.frame() %>%
 get.adjacency() %>%
 as.matrix()
}

overlap_targets <- function(differential_gene_expression_set,
target_sources, node_type, summarise_col){
 differential_gene_expression_set %>%
 dplyr::rename(!!node_type := target_id) %>%
 right_join(target_sources, by = node_type) %>%
 drop_na() %>%
 dplyr::rename(!!paste0(node_type, '_', summarise_col) :=
paste0(summarise_col, '_mean')) %>%
 dplyr::rename(!!paste0(node_type, '_mean_counts') := mean_counts)
}

overlap_sources <- function(differential_gene_expression_set, edges,
node_type, summarise_col){
 differential_gene_expression_set %>%
 dplyr::rename(!!node_type := target_id) %>%
 left_join(edges, by = node_type) %>%
 drop_na() %>%
 dplyr::rename(!!paste0(node_type, '_', summarise_col) :=
paste0(summarise_col, '_mean')) %>%
 dplyr::rename(!!paste0(node_type, '_mean_counts') := mean_counts)
}

average_counts_across_comparison_sets <- function(est_count_set){
 est_count_set %>%
 dplyr::rename(target_id = 1, counts = 2, counts1 = 4) %>%
 dplyr::select(ends_with('id'), contains('counts')) %>%
 mutate(
 mean_counts = map2_dbl(counts, counts1, ~mean(x = c(.x, .y)))

142

implement_network_analysis.R

) %>%
 dplyr::select(target_id, mean_counts)
}

average_est_counts_for_replicates <- function(group){
 group %>%
 unnest(cols = c(count_data)) %>%
 group_by(target_id) %>%
 summarise(
 counts = mean(counts, na.rm = TRUE)
)
}

mean_replicate_est_counts <- function(column_one, column_two){

 column_one <- column_one %>% average_est_counts_for_replicates()
 column_two <- column_two %>% average_est_counts_for_replicates()
 bind_cols(column_one, column_two) %>%
 average_counts_across_comparison_sets(est_count_set = .)
}

paste_groups_to_join_with_title_extract <- function(column_one,
column_two){
 column_one %>%
 paste(column_two, sep = ' ') %>%
 str_replace_all(pattern = ' ', replacement = '_')
}

associate_expression_to_comparison_elements <-
function(replicate_set_association, comparisons){
 comparisons %>%
 inner_join(replicate_set_association, by = c('group1' = 'condition'))
%>%
 dplyr::rename(group1_replicate_data = replicate_data) %>%

 left_join(replicate_set_association, by = c('group2' = 'condition'))
%>%
 dplyr::rename(group2_replicate_data = replicate_data)
}

associate_comparison_elements <- function(extracted_title_dataset,
number_of_columns){

 start <- (number_of_columns - number_of_columns) + 1
 mid <- number_of_columns/2
 mid_right <- round(mid) + 1

143

implement_network_analysis.R

 extracted_title_dataset %>%
 dplyr::select(extract_title) %>%
 tidyr::extract(col = extract_title,
 into = rep('id', times = number_of_columns) %>%
paste(1:number_of_columns, sep = ''),
 regex = rep('(.*)', times = number_of_columns) %>%
paste(collapse = '_')) %>%

 unite(col = group1, rep('id', times = (mid)) %>% paste0(start:mid),
sep = ' ') %>%
 unite(col = group2, rep('id', times = (mid)) %>%
paste0(mid_right:number_of_columns), sep = ' ') %>%
 mutate(
 group2 = str_remove(group2, '.tsv')
)
}

clean_design_matrix <- function(dm, p){
 #p: pipeline input
 covars <- p$sample_covariates
 dm %>%
 read_csv(col_types = cols()) %>%
 tidyr::extract(condition,
 into = str_split(pattern = ', ', covars) %>% unlist(),
 regex = '(.*) (.*) ([[:digit:]].*)')
}

associate_replicate_sets_to_conditions <-
function(expression_data_location, clean_dm, sk, p){
 tmp <- str_split(pattern = ', ', p$sample_covariates) %>% unlist()
 expression_data <- expression_data_location %>%
 tibble(files = list.files(path = ., full.names = TRUE, recursive =
TRUE)) %>%

 mutate(

 files = map_chr(files, ~str_replace(.x, pattern = '//', replacement
= '/')),
 count_data = map(files,
 read_tsv_filter_extraneous,
 sk
),
 sample = map_chr(files, ~basename(.x) %>% str_remove('_.*'))
) %>%

 # Join by sample identifiers.
 left_join(y = clean_dm, by = 'sample') %>%
 dplyr::select(files, count_data, sample, all_of(tmp)) %>%
 tidyr::unite(col = condition, tmp, sep = ' ') %>%
 dplyr::select(count_data, condition) %>%
 group_by(condition) %>%

144

implement_network_analysis.R

 nest() %>%
 dplyr::rename(replicate_data = data)
}

read_tsv_filter_extraneous <- function(current, s){
 # current: current counts file
 # s: skip lines
 current %>%
 read_tsv(file = ., col_names = T, skip = s, col_types = cols()) %>%
 dplyr::rename(target_id = 1, est_counts = 2) %>%
 mutate(
 target_id = str_remove(string = target_id, '\\..*')
) %>%
 group_by(target_id) %>%
 summarise(counts = mean(est_counts)) %>%
 ungroup()
}

associate_expression_to_comparison_elements <-
function(replicate_set_association, comparisons){
 comparisons %>%
 inner_join(replicate_set_association, by = c('group1' = 'condition'))
%>%
 dplyr::rename(group1_replicate_data = replicate_data) %>%

 left_join(replicate_set_association, by = c('group2' = 'condition'))
%>%
 dplyr::rename(group2_replicate_data = replicate_data)
}

extract_condition_column_number <- function(extracted_title_dataset){
 extracted_title_dataset %>%
 dplyr::select(extract_title) %>%
 mutate(
 column_number = map_dbl(extract_title, ~str_count(.x, '_') %>%
add(1) %>% as.numeric())
) %>%
 dplyr::select(column_number) %>%
 unlist(use.names = FALSE) %>%
 unique()
}

unique_and_relabel <- function(edges, label_name){
 edges %>%
 distinct(!!sym(label_name)) %>%
 dplyr::rename(label = !!label_name)

145

implement_network_analysis.R

}

extract_edges <- function(field){
 field %>%
 str_split(pattern = '\\|') %>%
 unlist() %>%
 unique()
}

remove extraneous chars in gene column. summarise chosen column by mean
of values in column.
summarise_differential_expression <-
function(differential_expression_gene_set, gene_column, mean_summerize){
 differential_expression_gene_set %>%
 mutate(
 !!gene_column := map_chr(!!sym(gene_column), ~str_remove(.x,
pattern = '\\..*'))
) %>%
 group_by(!!sym(gene_column)) %>%
 summarize(!!sym(paste0(mean_summerize, '_mean')) :=
mean(!!sym(mean_summerize), na.rm = T))
}

extract_title_from_file_name <- function(file_name){
 file_name %>%
 basename() %>%
 str_remove('_results[[:punct:]].*')
}

Function name: wgcna_input_data
Purpose: Takes the input data and convert it into
differentially expreesed expression data for wgcna analysis.
Input: path to differentially expressed genes and pipeline input.
Output: filtered count data.
wgcna_input_data <- function(differentialy_expressed_genes,
pipeline_input){

 # Load design matrix into environment.
 design_matrix <- pipeline_input$design_matrix %>%
 read_csv(col_types = cols())

 # Detect whether analyzing differentially expressed genes from
 # edgeR or Sleuth.
 edgeR_tool <- differentialy_expressed_genes %>%
 str_detect(pattern = 'edgeR')

 # Select the column which contains the p-values or q-values
 # depending on which differential expression tool was selected.
 if(edgeR_tool){

146

implement_network_analysis.R

 # The edgeR analysis output has 'adj.P.Val' as the p-value
 # column name.
 filter_value <- 'adj.P.Val'

 # Counts data from feature counts contains the 'clean_counts'
 # string in the nane.
 file_name_pattern <- 'clean_counts'

 # Select the directory which contains the count data from STAR.
 counts_data <- differentialy_expressed_genes %>%
 str_replace('edgeR.*', 'STAR/Feature_counts/')

 }
 else if(!edgeR_tool){

 # Sleuth has q-values in the 'qval' column.
 filter_value <- 'qval'

 # Counts data are in TSV files from Kallisto.
 file_name_pattern <- '^abundance.tsv$'

 counts_data <- differentialy_expressed_genes %>%
 str_replace('Sleuth.*', 'Kallisto/Kallisto_quantifications/')
 }

 # Load read count data and filter lowly expressed genes.
 keep_counts <- counts_data %>%

 # Read count data into environment; use explicit patterns
 # which allow distinctions between counts datasets.
 counts_keep(file_name_pattern, recurse_subdirectories = !edgeR_tool)
%>%

 # Map count data to sample names from design matrix.
 #associate_counts_with_sample_names(design_matrix) %>%

 # Filter lowly expressed genes from count data.
 filter_counts_data_wgcna(counts = ., design_matrix = design_matrix)
%>%

 mutate(
 target_id = map(target_id,
 ~gsub(pattern = '\\..*', replacement = '', x = .x)
),

 target_id = target_id %>%
 as.character()
)

 # Load differential gene expression data.

147

implement_network_analysis.R

 differentially_expressed_genes_keep(differentialy_expressed_genes,
filter_value, pipeline_input) %>%
 mutate(
 original_filter = deg_data2,
 deg_data2 = map(deg_data2,
 ~suppressMessages(semi_join(keep_counts, .x))
),
 preprocess_wgcna_input = map(deg_data2,
 wgcna_data_processing
)
)

}

Function name: counts_keep
Purpose: Load the count data into the environment using decisions
from which count data type is being sourced.
Input: Counts data, file name regex, Boolean value.
Output: Counts data from files.
counts_keep <- function(feature_counts, file_name_pattern,
recurse_subdirectories){

 # Skip lines for feature counts data, but not for Kallisto data.
 if(recurse_subdirectories){
 nrow_skip <- 0
 } else{
 nrow_skip <- 1
 }

 # Load count data into environment based on the file name pattern.
 list.files(feature_counts, pattern = file_name_pattern, full.names =
TRUE, recursive = recurse_subdirectories) %>%
 tibble(files = .) %>%

 # Allow column names to be passed from data source and skip a number
of rows.
 mutate(
 sample_count_data = map(files, read_tsv, skip = nrow_skip,
col_names = TRUE, col_types = cols())
)
}

Function name: filter_counts_data_wgcna
Purpose: Filter the lowly expressed genes from the data
obtained from feature counts.
Input: Counts data and the experimental design matrix.
Output: Counts mapped to sample in a dataframe.

148

implement_network_analysis.R

filter_counts_data_wgcna <- function(counts, design_matrix){

 # Check for Kallisto data.
 is_kallisto <- counts %>%
 dplyr::slice(1) %>%
 dplyr::select(files) %>%
 str_detect('Kallisto_quantifications')

 # Cut extra statistics, leaving only the count data
 # for genes.
 if(is_kallisto){
 gene_names <- counts %>%
 dplyr::slice(1) %>%
 dplyr::select(sample_count_data) %>%
 unnest(sample_count_data) %>%
 dplyr::select(gene)

 counts <- counts %>%
 mutate(
 sample_count_data = purrr::map(sample_count_data,
reset_splice_variants, gene_names = gene_names)
)
 }

 samplename <- design_matrix

 data <- data.frame(counts$sample_count_data)

 # Storing data as data frame.
 total_samples <- nrow(counts)*2
 ans <- seq(2,total_samples,2)
 data = data[c(1,ans)]

 #(optional) naming the samples
 #d=colnames(sleuth_table)[1]
 d = "target_id"
 x <- samplename$sample
 a <- c(d,x)
 colnames(data) <- a
 rowname <- data[c(1)]

 #filterng the data
 keep <- rowSums(cpm(data[,2:length(data)]) > 0.5) >= 2

 data[keep,]
}

Function name: reset_splice_variants
Purpose: Remove splice variant notation.
Input: Count data and unique gene names.
Output: Gene names without spliced notation.

149

implement_network_analysis.R

reset_splice_variants <- function(sample_counts, gene_names){
 sample_counts %>%
 mutate(
 target_id = gene_names %>%
 unlist(use.names = F)
) %>%
 dplyr::select(target_id, est_counts)
}

Function name: wgcna_data_processing
Purpose: Preprocess the input data for wgcna.
Input: Count data specific to a comparison set from
differential gene expression testing.
Output: Transposed count data.
wgcna_data_processing <- function(comparison_set_counts){

 Expression_data0 <- comparison_set_counts[, -c(1)]
 Expression_data0 <- as.data.frame(t(Expression_data0))
 names(Expression_data0) = comparison_set_counts$target_id
 goodsamples = goodSamplesGenes(Expression_data0, verbose = 0)
 if (!goodsamples$allOK)
 {
 if (sum(!goodsamples$goodGenes)>0)
 printFlush(paste("Removing genes:",
paste(names(Expression_data0)[!goodsamples$goodGenes], collapse = ",
")));
 if (sum(!goodsamples$goodSamples)>0)
 printFlush(paste("Removing samples:",
paste(rownames(Expression_data0)[!goodsamples$goodSamples], collapse = ",
")));
 Expression_data0 = Expression_data0[goodsamples$goodSamples,
goodsamples$goodGenes]
 }
 Expression_data0 <- as.data.frame(Expression_data0)
 return(Expression_data0)
}

Function name: differentially_expressed_genes_keep
Purpose: Find the count data of differentially expressed
genes from TSV files of EdgeR/ Sleuth results
regardless of which tool was used.
Input: DGE data directory, p-value, and pipeline input structure.
Output: Genes filtered with the cut-off (p-value).
differentially_expressed_genes_keep <- function(deg_directory,
filter_value, pipeline_input){
 # Count data files are TSV files regardless of which tool was used.

150

implement_network_analysis.R

 tibble(files = list.files(deg_directory, pattern = '.tsv', full.names =
TRUE)) %>%
 mutate(
 comparison = map_chr(files,
 extract_comparison
),
 deg_data2 = map(files,
 read_and_filter,
 filter_value,
 pipeline_input
)
)
}

Function name: extract_comparison
Purpose: Find the comparision file name and remove .tsv string pattern
Input: Filename for a differential gene expression test result.
Output: Input without .tsv extension.
extract_comparison <- function(comparison_filename){
 comparison_filename %>%
 basename() %>%
 str_remove('.tsv')
}

Function name: read_and_filter
Purpose: Reads the data from Sleuth/ EdgeR and
filters out the differentially expressed genes.
Input: Set of differentially expressed genes, cut-off value,
and pipeline input structure.
Output: The input set filtered on the cut-off value.
read_and_filter <- function(differentialy_expressed_genes_sets,
filter_value, pipeline_input){
 differentialy_expressed_genes_sets %>%
 read_tsv(col_types = cols()) %>%
 drop_na() %>%
 filter(!!sym(filter_value) <= pipeline_input$significance_cutoff) %>%
 dplyr::select(target_id)
}

Function name: wgcna_plot_sample_tree
Purpose: Plot to find any outlier sample in the data
for all the comparisions.
Input: Expression_data0.

151

implement_network_analysis.R

Output: Plotted sample tree.
wgcna_plot_sample_tree <- function(Expression_data0){
 Expression_data0 %>%
 mutate(
 sample_tree = map(preprocess_wgcna_input,
 hclust_distance_matrix,
 'average'
),

 # Plot the sample tree:
 sample_clustering = purrr::pmap(
 list(sample_tree,
 preprocess_wgcna_input,
 files,
 comparison),
 plot_sample_tree
)
)
}

Function name: hclust_distance_matrix
Purpose: Find the distance matrix to perform clustering.
Input: Preprocessed WGCNA data and the 'average' method.
Output: Analyzed hierarchical cluster.
hclust_distance_matrix <- function(Expression_data0, method){
 Expression_data0 %>%
 dist() %>%
 hclust(method)
}

Function name: plot_sample_tree
Purpose: Plot to find any outlier sample in the data .
Input: hclust result, preprocessed WGCNA data, file name from
differential gene expression test, and the names of
comparisons made.
Output: List: datExp, sft, power, and k values.
plot_sample_tree <- function(sample_tree, Expression_data0, file_name,
comparison){
 sizeGrWindow(12,9)
 par(cex = 0.6);
 par(mar = c(0,4,2,0))

 p.plot <- sample_tree %>% plot(main = "Sample clustering to detect
outliers", sub="", xlab="", cex.lab = 1.5, cex.axis = 1.5, cex.main = 2)

 choose_line <- readline(prompt = "Enter the number at which the limit
that shoud be cut or remove the outlier Hint:the sample that seems to be
the outlier: ")

152

implement_network_analysis.R

 choose_line <- as.integer(choose_line)

 if (is.na(choose_line)){
 print("Enter a valid number.")
 }

 sample_clust <- sample_tree %>%
 cutreeStatic(cutHeight = choose_line, minSize = 10)

 keepSamples <- (sample_clust==1)

 datExpr <- Expression_data0[keepSamples,]
 powers <- c(c(1:10), seq(from = 12, to=100, by=2))
 invisible(capture.output(sft <- pickSoftThreshold(datExpr, powerVector
= powers, verbose = 0, networkType = "signed")))
 power <-
sft$fitIndices$Power[which(sft$fitIndices$SFT.R.sq==max(sft$fitIndices$SF
T.R.sq))]
 k <- softConnectivity(datE = datExpr, power = power, verbose = 0)

 return(list(datExpr = datExpr, sft = sft, power = power, k = k))
}

Function name: wgcna_plot_power_results
Purpose: Histogram plot to analyse and choose
correct power value for all the comparisions
Input: Column which contains the sft values.
Output: Plot in Rstudio Plots pane.
wgcna_plot_power_results <- function(contains_sft){
 contains_sft %>%
 mutate(
 power_results = map2(sample_clustering,
 comparison,
 plot_power_results)
)
}

Function name: plot_power_results
Purpose: Histogram plot to analyse and choose correct power value.
Input: datExp, sft, power, and k values; comparison names.
Output: Analysis for scale-free topology and mean connectivity.
plot_power_results <- function(sample_clustering, comparison){
 comparison <- comparison %>%
 str_replace_all('_', ' ') %>%
 paste('Analyzing', .)

 print(comparison)

153

implement_network_analysis.R

 sft <- sample_clustering %>%
 use_series(sft)

 sizeGrWindow(9, 5)
 par(mfrow = c(1,2));
 cex1 = 0.9;
 powers = c(c(1:10), seq(from = 12, to=100, by=2))
 plot(sft$fitIndices[,1], -sign(sft$fitIndices[,3])*sft$fitIndices[,2],
 xlab="Soft Threshold (power)",ylab="Scale Free Topology Model
Fit,signed R^2",type="n",
 main = paste("Scale independence"));
 text(sft$fitIndices[,1], -sign(sft$fitIndices[,3])*sft$fitIndices[,2],
 labels=powers,cex=cex1,col="red");

 abline(h=0.90,col="red")

 p1.plot<-plot(sft$fitIndices[,1], sft$fitIndices[,5],
 xlab="Soft Threshold (power)",ylab="Mean Connectivity",
type="n",
 main = paste("Mean connectivity"))
 text(sft$fitIndices[,1], sft$fitIndices[,5], labels=powers,
cex=cex1,col="red")

 readline(prompt="Press [enter] to see next figure. ")
}

Function name: wgcna_plot_power_histogram
Purpose: Plot to choose the correct power
from scale free topology for all the comparisions.
Input: Column with k values.
Output: Plot in Rstudio Plots pane.
wgcna_plot_power_histogram <- function(contains_k){
 contains_k %>%
 mutate(
 power_histogram_results = map2(sample_clustering,
 comparison,
 plot_power_histogram)
)
}

Function name: plot_power_histogram
Purpose: Plot to choose the correct power
from sclae free topology.
Input: datExp, sft, power, and k values; comparison names.
Output: Scale free topology plot.
plot_power_histogram <- function(sample_clustering, comparison){

154

implement_network_analysis.R

 comparison <- comparison %>%
 str_replace_all('_', ' ') %>%
 paste('Analyzing', .)

 print(comparison)

 k <- sample_clustering %>%
 use_series(k)

 sizeGrWindow(10,5)
 par(mfrow=c(1,2))
 p3.plot<-hist(k)
 p4.plot<-scaleFreePlot(k, main="Check scale free topology\n")

 readline(prompt = "Press [enter] to see next figure. ")

 return(list(p3.plot, p4.plot))

}

Function name: wgcna_clustering
Purpose: Perform clustering and saves result in their respective
directory.
Input: datExp, sft, power, and k values.
Output: Plot in Rstudio Plots pane.
wgcna_clustering <- function(sample_clustering){
 sample_clustering %>%
 mutate(
 clustering_res = map2(sample_clustering,
 files,
 clustering)
)

}

Function name: wgcna_clustering
Purpose: Perform clustering and saves result in their respective
directory.
Input: datExp, sft, power, and k values; file path to write dendrograms
to.
Output: datExp, dynamic_Modules, adjacency, and dynamic_Colors values.
clustering <- function(sample_clustering, file_path){

 cluster_dend_dir <- file_path %>%
 dirname() %>%
 paste0('/cluster_dendrograms/') %>%
 str_replace(pattern = '//', replacement = '/')

155

implement_network_analysis.R

 dir.create(cluster_dend_dir, showWarnings = FALSE, recursive = TRUE)

 file_path <- file_path %>%
 basename() %>%
 paste0(cluster_dend_dir, .) %>%
 str_replace('.tsv$', '.pdf')

 datExpr <- sample_clustering %>%
 use_series(datExp)

 sft <- sample_clustering %>%
 use_series(sft)

 softPower <- sample_clustering %>%
 use_series(softPower)

 k <- sample_clustering %>%
 use_series(k)

 adjacency = adjacency(datExpr, power = 12)

 # topological overlap matrix
 TOM = TOMsimilarity(adjacency, verbose = 0)
 dissTOM = 1-TOM

 # hierarchical clustering function
 geneTree = hclust(as.dist(dissTOM), method = "average")
 minModuleSize = 30
 dynamic_Modules = cutreeDynamic(dendro = geneTree, distM = dissTOM,
 deepSplit = 2, pamRespectsDendro =
FALSE,
 minClusterSize = minModuleSize, verbose
= 0)
 #convert colors

 dynamic_Colors = labels2colors(dynamic_Modules)

 Module_eigenList = moduleEigengenes(datExpr, colors = dynamic_Colors)
 Module_eigenvals = Module_eigenList$eigengenes
 Module_eigenDiss = 1-cor(Module_eigenvals)

 module_eigenTree = flashClust(as.dist(Module_eigenDiss), method =
"average");
 Module_eigenDissThres = 0.25

 merge = mergeCloseModules(datExpr, dynamic_Colors, cutHeight =
Module_eigenDissThres, verbose = 0)

 mergedColors = merge$colors;

156

implement_network_analysis.R

 sizeGrWindow(12, 9)
 pdf(file = file_path, wi = 9, he = 6)
 p.plot <- plotDendroAndColors(geneTree, cbind(dynamic_Colors,
mergedColors),
 c("Dynamic Tree Cut", "Merged dynamic"),
 dendroLabels = FALSE, hang = 0.03,
 addGuide = TRUE, guideHang = 0.05)
 dev.off()

 mergedMEs = merge$newMEs

 return(list(datExpr = datExpr,
 dynamic_Modules = dynamic_Modules,
 adjacency = adjacency,
 dynamic_Colors = dynamic_Colors))

}

Function name: implement_GO_enrichment
Purpose: Checks the DEG data on which GO analysis to be performed
and performs GO analysis.
Input: String specifying which tool was used; alignment results
structure.
Output: GO enrichment results.
implement_GO_enrichment <- function(deg_tool, alignment_results){

 alignment_decision <- alignment_results %>%
 dplyr::first()

 pipeline_input <- alignment_results %>%
 dplyr::last()

 if(deg_tool %>% str_detect('Sleuth')){
 deg_input <- alignment_decision %>%
 filter(key == 'kallisto') %>%
 dplyr::select(directories) %>%
 unlist(use.names = FALSE) %>%
 first() %>%
 str_replace('Kallisto', paste0('Sleuth/',
pipeline_input$analysis_type, '/gene_level/gene_level_results'))

 pattern <- '.tsv$'

 filter_value <- 'qval'

 GO_enrichment <- enrichment(deg_directory = deg_input, pattern =
pattern)
 }

 if(deg_tool %>% str_detect('edgeR')){

157

implement_network_analysis.R

 deg_input <- pipeline_input$star_genomeDir %>%
 str_replace('STAR.*', paste0('edgeR/',
pipeline_input$analysis_type, '/')) %>%
 str_replace(pattern = '//', replacement = '/')

 pattern <- '.tsv$'

 filter_value <- 'adj.P.Val'

 GO_enrichment <- enrichment(deg_directory = deg_input, pattern =
pattern, pipeline_input, filter_value)

 }

}

Function name: enrichment
Purpose: Test for significantly enriched genes in the deg gene sets.
Input: Directory to deg files, file name pattern, pipeline input, and
filter value.
Output: Go enrichment.
enrichment <- function(deg_directory, pattern, pipeline_input,
filter_value){

 deg_file_tib <- list.files(path = deg_directory, pattern = pattern,
full.names = TRUE, recursive = TRUE) %>%
 tibble(deg_file = .) %>%
 mutate(
 deg_data = map(deg_file,
 read_tsv,
 col_types = cols()
)
)

 mart_arabdopsis <- biomaRt::useMart(biomart = "plants_mart",
 dataset = "athaliana_eg_gene",
 host = 'plants.ensembl.org',
 verbose = FALSE)

 Gene_go <- suppressMessages(biomaRt::getBM(attributes = c(
"ensembl_gene_id", "go_id"), mart = mart_arabdopsis, verbose = F))

 geneID2GO <- by(Gene_go$go_id,
 Gene_go$ensembl_gene_id,
 function(x) as.character(x))

 filename_for_go <- extract_filename_go(deg_file_tib)
 go_input <- deg_file_tib$deg_data

158

implement_network_analysis.R

 tmp <- list()
 gene_name <- list()
 result_GO_gene <- list()
 for (i in 1:length(go_input))
 {
 tmp[[i]] <- go_input[[i]] %>%
 filter(!!sym(filter_value) <= pipeline_input$significance_cutoff)

 gene_name[[i]] <- tmp[[i]] %>%
 dplyr::select("target_id")

 if (filter_value == 'pval') {
 tmp[[i]] <- tmp[[i]] %>%
 dplyr::select('pval')
 } else {
 tmp[[i]] <- tmp[[i]] %>%
 dplyr::select('adj.P.Val')
 }

 geneList <- as.numeric(unlist(tmp[[i]]))
 names(geneList) <- as.character(unlist(gene_name[[i]]))

 # Create topGOData object
 GOdata <- suppressMessages(
 new("topGOdata",
 ontology = "BP",
 allGenes = geneList,
 geneSelectionFun = function(x)(x == 1),
 annot = annFUN.gene2GO, gene2GO = geneID2GO)
)

 # Kolmogorov-Smirnov testing
 result_KS <- suppressMessages(
 runTest(GOdata, algorithm = "weight01", statistic = "ks")
)

 GO_result_tab <- GenTable(GOdata, raw.p.value = result_KS, topNodes =
length(result_KS@score), numChar = 120)

 par(cex = 1)

 showSigOfNodes(GOdata, score(result_KS), firstSigNodes = 10, useInfo
= "def")

 print(head(GO_result_tab))

 printGraph(GOdata, result_KS, firstSigNodes = 10, fn.prefix = "tGO",
useInfo = "all", pdfSW = TRUE)

 my_GO_term <- c(GO_result_tab$GO.ID[1])
 my_genes <- genesInTerm(GOdata, my_GO_term)

159

implement_network_analysis.R

 for (j in 1:length(my_GO_term))
 {
 my_GO_term2 <- my_GO_term[j]
 my_genes_GO_term <- my_genes[my_GO_term2][[1]]
 my_genes_GO_term <- paste(my_genes_GO_term, collapse=',')
 print(paste("Term",my_GO_term,"genes:", my_genes_GO_term))

 }
 result_GO_gene[i] <- my_genes_GO_term
 }
 return(list(result_GO_gene = result_GO_gene, filename_for_go =
filename_for_go))
}

Function name: extract_filename_go
Purpose: Extracts the comparision set for which
GO enrichmen and network analysisi to be performed.
Input: Tibble with differentially expressed genes.
Output: Edited file name.
extract_filename_go <- function(deg_file_tib){
 filename <- deg_file_tib$deg_file
 filename<-filename %>%
 str_remove('.tsv')
 filename<-sub(".*/", "", filename)
}

Function name: post_process_GO_results
Purpose: Assosiate file names with GO results.
Input: GO results.
Output: Named list.
post_process_GO_results <- function(GO_results){
 file_names <- GO_results[length(GO_results)] %>%
 unlist(use.names = FALSE)
 GO_results[length(GO_results)] <- NULL
 names(GO_results$result_GO_gene) <- file_names
 GO_results <- GO_results %>%
 flatten()
}

Function name: DREM_main
Purpose: Extract required data for executing DREM.
Input: Pipeline input structure, wgcna_input.
Output: None

160

implement_network_analysis.R

DREM_main <- function(pipeline_input, wgcna_input, sig, exec){

 analysis_type <- pipeline_input %>%
 extract2('analysis_type')

 if(wgcna_input %>% str_detect('Sleuth')){
 map_dir <- pipeline_input %>%
 extract2('kallisto_output_dir') %>%
 paste0('Kallisto_quantifications/')

 dataset <- 'kallisto'
 }

 if(wgcna_input %>% str_detect('edgeR')){
 map_dir <- pipeline_input %>%
 extract2('star_genomeDir') %>%
 str_replace('genome_Dir', 'Feature_counts/')

 dataset <- 'Feature_counts'
 }

 # Set paths to DREM input data to be created.
 design_matrix <- pipeline_input %>%
 extract2('design_matrix')

 drem_time_series_input_path <- getwd() %>%
 paste0('/data/DREM/', analysis_type, '/')

 dir.create(drem_time_series_input_path, recursive = TRUE, showWarnings
= FALSE)

 drem_defaults_template <- pipeline_input %>%
 extract2('DREM') %>%
 paste0('/defaults.txt') %>%
 str_replace('//', '/')

 design_matrix <- design_matrix %>%
 read_csv(col_types = cols()) %>%
 dplyr::select(sample, condition, which_replicate)

 loaded_read_data <- load_read_data(map_dir, design_matrix, dataset)

 tmp <- rearrange_count_data(loaded_read_data,
pipeline_input$sample_covariates) %>%
 # reduce by sig hits
 mutate(
 reads = map(data, right_join, sig, by = 'target_id')
)

 time_series_count_data <- tmp %>%

161

implement_network_analysis.R

 write_DREM_time_series_data(., pipeline_input,
drem_time_series_input_path) %>%
 write_default_files(defaults_template = drem_defaults_template) %>%
 ungroup()

 DREM <- pipeline_input %>%
 extract2('DREM') %>%
 list.files(pattern = '*.jar', full.names = T)

 # Execute DREM script.
 DREM_command_line <- paste('java -mx1024M -jar', DREM, '-b')

 # Write batch DREM to script.
 DREM_execute <- time_series_count_data %>%
 dplyr::select(new_default_file_name) %>%
 mutate(
 command = map_chr(new_default_file_name,
 ~paste(DREM_command_line, .x)
),
 file = str_replace(command, '^.* (.*)$', '\\1') %>%
 str_replace('.txt$', '_outfile.txt'),
 command_complete = paste(command, file)
) %>%
 dplyr::select(command_complete) %>%
 unlist(use.names = F)

 drem_script_location <- getwd() %>%
 paste0('/scripts/DREM_', pipeline_input %>%
extract2('analysis_type'), '.sh')

 drem_script <- drem_script_location %>%
 file()

 writeLines(DREM_execute, drem_script)

 close(drem_script)

 previous_dir <- getwd()
 setwd(pipeline_input$DREM)

 message('Currently running DREM. \n')

 for(i in seq_along(DREM_execute)){
 current <- DREM_execute[[i]] %>%
 str_extract('-b .*defaults.txt') %>%
 basename() %>%
 paste0('Generated defaults file: ', .)

 out <- DREM_execute[[i]] %>%
 stri_reverse() %>%
 gsub(pattern = ' .*', replacement = '') %>%
 stri_reverse() %>%
 basename()

162

implement_network_analysis.R

 message(current)
 message('DREM configuration file: ', out)
 system(DREM_execute[[i]], show.output.on.console = T)
 }

 for(i in seq_along(DREM_execute)){
 current <- DREM_execute[[i]] %>%
 str_extract('-b .*defaults.txt') %>%
 basename()
 system(paste0('java -mx1024M -jar drem.jar'))

 }

 #if (exec){
 # system(drem_script_location)
 #}
 setwd(previous_dir)
 return(tmp)

}

Function name: load_read_data
Purpose: Load count data.
Input: Directory with reads, experimental design
matrix, and flag.
Output: Loaded read data.
load_read_data <- function(map_dir, dm, dataset){
 if(dataset == 'Feature_counts'){
 SKIP <- 1
 TARGETS <- c(1, 2)
 } else{
 SKIP = 0
 TARGETS <- c('target_id', 'est_counts')
 }

 # manipulate read data to be input to DREM.
 reads <- list.files(map_dir, full.names = TRUE, recursive = T, pattern
= '.txt$') %>%
 str_replace(pattern = '//', '/') %>%
 tibble(file = .) %>%
 mutate(
 reads = map(file, ~read_tsv(.x, skip = SKIP, col_types = cols())
%>% dplyr::select(!!!TARGETS)
)
) %>%
 bind_cols(dm)
}

163

implement_network_analysis.R

clean_target_id <- function(data){
 data %>%
 dplyr::select(target_id = 1, counts = 2) %>%
 mutate(
 target_id = str_remove(target_id, '\\..*')
)
}

Function name: rearrange_count_data
Purpose: Create data sets formatted for DREM.
Input: Counts.
Output: Time series count data.
rearrange_count_data <- function(reads, covars){

 reads2 <- reads %>%
 tidyr::extract(condition,
 into = str_split(pattern = ', ', covars) %>% unlist(),
 regex = '(.*) (.*) ([[:digit:]].*)') %>%
 mutate(
 reads = purrr::map(reads,
 clean_target_id
)
)

 time_series_spread <- reads2 %T>%
 {
 # extract and sort numeric time series points.
 hour_vector <<- reads2 %>%
 use_series(hour) %>%
 unique() %>%
 str_remove(pattern = '[A-Za-z]') %>%
 as.numeric() %>%
 sort.int() %>%
 paste0('H', .)

 } %>%

 # Match hour vector element structures to the hour column in the
data.
 mutate(
 hour = hour %>%
 str_remove('[a-zA-Z]') %>%
 str_replace('^', 'H')
) %>%
 dplyr::select(-file, -sample) %>%

 # Associate each condition with a time series from the expression
data.
 unnest(reads) %>%

164

implement_network_analysis.R

 group_by(genotype,
 condition,
 which_replicate,
 target_id) %>%
 spread(hour,
 counts) %>%
 ungroup() %>%
 dplyr::select(genotype,
 condition,
 which_replicate,
 target_id,
 hour_vector) %>%
 group_by(genotype,
 condition,
 which_replicate) %>%
 nest()

 return(time_series_spread)
}

Function name: write_DREM_time_series_data
Purpose: Write DREM-formatted data sets to files.
Input: Reformatted counts, pipeline input structure,
path to each individual reformatted count data
set.
Output: Reformatted counts.
write_DREM_time_series_data <- function(time_series_spread,
pipeline_input, drem_time_series_input_path){
 # create path to time series data.
 time_series_spread <- time_series_spread %>%
 mutate(
 file_name = paste(genotype, condition, which_replicate, sep = '_')
%>%
 paste0(drem_time_series_input_path, ., '.tsv')
)
 # write time series counts to tsv files.
 time_series_spread %$%
 walk2(data,
 file_name,
 write_tsv)

 return(time_series_spread)
}

Function name: write_default_files
Purpose: Create DREM configuration file and write data.
Input: Reformatted counts, and a configuration file template.
Output: Reformatted counts nested on genotype.

165

implement_network_analysis.R

write_default_files <- function(reformatted_counts, defaults_template){

 # load original defaults file from DREM2.
 defaults_file <- defaults_template %>%
 read.delim(row.names = NULL) %>%
 as_tibble() %>%
 mutate_if(is.factor, as.character)

 nest_on_genotype <- reformatted_counts %>%

 dplyr::select(genotype, condition, which_replicate, file_name) %>%
 group_by(genotype, condition) %>%
 nest() %>%
 dplyr::select(write_data = data) %>%
 ungroup() %>%

 mutate(
 new_default_file = map(write_data,
 insert_DREM_input_to_defaults,
 defaults_file
),
 new_default_file_name = pmap_chr(
 list(genotype, condition, write_data),
 write_new_default_file_name
)
)

 nest_on_genotype %$%
 walk2(new_default_file,
 new_default_file_name,
 write_tsv,
 col_names = FALSE)
 return(nest_on_genotype)

}

Function name: insert_DREM_input_to_defaults
Purpose: Create default files to execute DREM
for samples.
insert_DREM_input_to_defaults <- function(condition_data, defaults_file){

 # Max replicates.
 total_replicates <- condition_data %>%
 dplyr::select(which_replicate) %>%
 max()

 replicate_file <- condition_data %>%

166

implement_network_analysis.R

 ungroup() %>%
 dplyr::select(file_name)

 defaults_file <- defaults_file %>%
 dplyr::select(a = 1, b = 2)

 defaults_file$b[3] <- replicate_file[1, 1] %>%
 pull()

 defaults_file$b[12] <- replicate_file[c(2:total_replicates), 1] %>%
 pull() %>%
 str_c(collapse = ',')

 return(defaults_file %>% unnest(b))
}

Function name: write_new_default_file_name
Purpose: Create a file name to write DREM defaults script.
Input: Sample characteristics (genotype, condition).
Output: Tibble for collecting DREM.
write_new_default_file_name <- function(genotype, condition, drem_data){

 file_name <- drem_data %>%
 ungroup() %>%
 dplyr::select(file_name) %>%
 first() %>%
 str_replace('.tsv$', 'defaults.txt') %>%
 first()

 return(file_name)
}

Function name: mapping_network_analysis
Purpose: Apply network analysis to each comparison dataset.
Input: expr2.
Output: Top genes or intersection with top GO results.
mapping_network_analysis <- function(expr2){
 expr2 %>%
 mutate(
 network_analsis = map2(clustering,
 GO_results,
 network_analysis)
)
}

167

implement_network_analysis.R

Function name: network_analysis
Purpose: finds the network of differentialy expressed genes and collect
the hubbed genes of each comaprisions
Input: adjacency matrix, expression data, Go results , Dynamic modules
Output: network graph, most important genes
network_analysis <- function(expr2, GO_results){

 m <- expr2$adjacency
 source_node = c()
 target_node = c()
 correlation <- c()
 genes_names <- names(expr2$datExpr)
 i <- genes_names[1:dim(m)[1]]
 j <- i

 for(gene in i)
 {
 for(gen in j)
 {
 if(m[gene,gen] < 0.9999 & m[gene,gen] > 0.3){
 source_node <- c(source_node, gene)
 target_node <- c(target_node, gen)
 correlation <- c(correlation, m[gene,gen])
 }
 }
 }

 NetworkData <- data.frame(source_node, target_node, correlation)

 network_dataframe <- data.frame(source_node,target_node,correlation)

 # cluster membership info from WCGNA
 nodes <- as.data.frame(cbind(genes_names, expr2$dynamic_Modules))
 rownames(nodes)<-NULL
 colnames(nodes) <- c("genes","cluster")

 # igraph_network dataset
 igraph_network_dataframe <- network_dataframe
 igraph_network_dataframe <- aggregate(igraph_network_dataframe[,3],
igraph_network_dataframe[,-3], sum)
 igraph_network_dataframe <-
igraph_network_dataframe[order(igraph_network_dataframe$source_node,
igraph_network_dataframe$target_node),]
 colnames(igraph_network_dataframe)[3] <- "weight"
 rownames(igraph_network_dataframe) <- NULL

 # igraph object:
 net <- graph.data.frame(igraph_network_dataframe, directed=F)

 # Generate colors base on clustering done by WGCNA:

168

implement_network_analysis.R

 nodeIndex<-c()
 for(name in V(net)$name){
 nodeIndex<-c(nodeIndex,which(nodes$genes==name))
 }
 colors <- expr2$dynamic_Colors[nodeIndex]

 V(net)$color <- colors

 degree_nodes <- igraph::degree(net, mode ="total")
 V(net)$size <- degree_nodes

 #ching arrow width , label color, edge width etc.
 V(net)$label.color <- "black"
 E(net)$width <- E(net)$weight*2

 E(net)$arrow.size <- 10
 edge_width <-(E(net)$weight-mean(E(net)$weight))*5+1

 #ploting the graph

tkplot(net,edge.arrow.size=1,edge.curved=0,edge.width=edge_width,edge.col
or="gray80")

 #taking the cluster color
 cluster_colors<-unique(V(net)$color)

 #making an empty list of hubbed genes
 genes_hubbed<-list()

 #finding out the node centrality score of all the clusters and
therefore finding out the hubbed genes
 for(i in 1: length(unique(V(net)$color))){
 #finding nodes for the particlular cluster
 nodes_of_interest <- V(net)[which(V(net)$color == cluster_colors[i])]
 #finding the subgraph for the cluster nodes
 selgraph <- ego(net, order = 1, nodes =nodes_of_interest , mode =
"all",
 mindist = 0)
 subgraph_cluster <- induced_subgraph(net,unlist(selgraph))

 #find the centrality score of each node in that cluster
 centarlity_score <- hub_score(subgraph_cluster , scale = TRUE,
weights = NULL,
 options = arpack_defaults)

 #find out the hubbed genes based on centrality score
 hubbed_genes <-
names(centarlity_score$vector[which(centarlity_score$vector >=
quantile(centarlity_score$vector,.95))])
 hubbed_genes<-as.data.frame(hubbed_genes)
 genes_hubbed[i]<-hubbed_genes

169

implement_network_analysis.R

 rm(hubbed_genes)
 rm(nodes_of_interest)
 rm(selgraph)
 rm(selegoG)
 rm(centarlity_score)

 }

 hubbed_genes_in_total <- as.data.frame(levels(unlist(genes_hubbed)))
 colnames(hubbed_genes_in_total)<-"hubbed_genes"

 #selecting important genes on the basis of node degree
 top_node_dgree_genes<-
as.data.frame(names(V(net)[which(V(net)$size>=quantile(V(net)$size,0.95))
]))
 colnames(top_node_dgree_genes)<-"hubbed_genes"

 #merging the important genes from the node degree and hubbed genes and
finding top genes from Network Analysis
 top_genes<-merge(x = hubbed_genes_in_total, y = top_node_dgree_genes,
by = "hubbed_genes", all = TRUE) %>%
 unlist(use.names = FALSE)

 #finding the TOP hubbed genes frm the GO results and network anlysis
 hub_go_intersection <- intersect(GO_results, top_genes)

 if(length(hub_go_intersection) > 0){
 print('Hub genes intersected with top GO genes.')
 return(hub_go_intersection)
 } else{
 print('Hub genes do not intersect with top GO genes.')
 return(top_genes)
 }
}

170

APPENDIX C

SUPPLEMENTS FOR CHAPTER III

171

C.1 Network Inference with SA

from random impo r t un i fo rm

from math impo r t e

from numpy impo r t any , where , sum , c o r r c o e f , bool , o n e s _ l i k e

from numpy . random impo r t c h o i c e

from copy impo r t copy

from g e n e r a t o r _ e d i t impo r t g e n e r a t o r

from pheno type s impo r t s e t _ p h e n o t y p e

pheno = s e t _ p h e n o t y p e ()

c l a s s g e n e r a t o r _ a c c e s s :

d e f _ _ i n i t _ _ (s e l f) :

s e l f . pheno , s e l f . a c c e s s i o n _ s c o r e _ t a b l e , s e l f . f t _ s a _ a c c e s s i o n s , s e l f . node_da ta , \

s e l f . node_d i c t , s e l f . edge_da ta , s e l f . s amp l e_we igh t s = g e n e r a t o r (pheno)

gen = g e n e r a t o r _ a c c e s s ()

c l a s s s i m u l a t e d _ a n n e a l i n g :

de f _ _ i n i t _ _ (s e l f , T_0 , a l p h a) :

s e l f . c u r r e n t _ s c o r e = −1

s e l f . b e s t _ s c o r e = −1

s e l f . T_0 = T_0

s e l f . a l p h a = a l ph a

de f r un s a (s e l f , i t e r a t i o n _ l e n g t h) :

s e l f . T = s e l f . T_0

c o o l i n g _ i = 1

run = True

wh i l e run :

f o r i i n r ange (0 , i t e r a t i o n _ l e n g t h) :

s e l f . p r o p o s a l ()

s e l f . e v a l u a t e _ s c o r e ()

i f s e l f . T == 0 :

b r eak

s e l f . c o o l i n g (c o o l i n g _ i)

c o o l i n g _ i = c o o l i n g _ i + 1

i f s e l f . T == 0 :

run = F a l s e

r e t u r n

172

de f p r o p o s a l (s e l f) :

g a t e = un i fo rm (0 , 1)

s e l f . p r o p o s e d _ a c c e s s i o n _ s c o r e _ t a b l e = copy (gen . a c c e s s i o n _ s c o r e _ t a b l e)

s e l f . n e g a t e d _ s p a c e = ~gen . edge_da t a . open_and_c lo s ed

s e l f . add_check = s e l f . n e g a t e d_ s p a c e ∗gen . edge_da t a . add_space ∗gen . edge_da t a . a d d _ l i s t

s e l f . remove_check = gen . edge_da t a . open_and_c lo s ed ∗gen . edge_da t a . remove_space

i f g a t e > 0 . 5 :

i f any (s e l f . add_check) :

s e l f . a dd i ng_p r o c edu r e ()

e l i f any (s e l f . remove_check) :

s e l f . r emov ing_p rocedu r e ()

e l s e :

s e l f . i n i t i a l i z i n g _ p r o c e d u r e ()

e l s e :

i f any (s e l f . remove_check) :

s e l f . r emov ing_p rocedu r e ()

e l i f any (s e l f . add_check) :

s e l f . a dd i ng_p r o c edu r e ()

e l s e :

s e l f . i n i t i a l i z i n g _ p r o c e d u r e ()

s e l f . p a i r = gen . f t _ s a _ a c c e s s i o n s . g e t (gen . edge_da t a . e d g e _ l i s t [s e l f . new_edge])

s e l f . u p d a t e _ s c o r e _ t a b l e ()

s e l f . p r o p o s e d _ s c o r e = s e l f . o b j e c t i v e ()

r e t u r n

de f a dd i ng_p r o c edu r e (s e l f) :

s e l f . o p e r a t i o n = 1

s amp l i ng_ space = where (s e l f . n e g a t e d_ s p a c e ∗gen . edge_da t a . add_space ∗gen . edge_da t a . a d d _ l i s t) [0]

s amp l e_we igh t s = gen . s amp l e_we igh t s [s amp l i ng_ spa ce]

s amp l e_we igh t s = samp l e_we igh t s / sum (s amp l e_we igh t s)

s e l f . new_edge = c h o i c e (s amp l ing_space , 1 , p = samp l e_we igh t s) [0]

gen . edge_da t a . open_and_c lo s ed [s e l f . new_edge] = True

edges i n c i d e n t t o new edge may be i n c l u d e d nex t i t e r a t i o n

s e l f . a t t a c h _ i n c i d e n t _ e d g e s ()

r e t u r n

de f r emov ing_p rocedu r e (s e l f) :

s e l f . o p e r a t i o n = None

s amp l i ng_ spa ce = where (gen . edge_da t a . open_and_c lo s ed ∗gen . edge_da t a . remove_space) [0]

173

s amp l e_we igh t s = gen . s amp l e_we igh t s [s amp l i ng_ spa ce]

d i f f e r e n c e = 1 − s amp l e_we igh t s

s amp l e_we igh t s = d i f f e r e n c e / sum (d i f f e r e n c e)

s e l f . new_edge = c h o i c e (s amp l ing_space , 1 , p = samp l e_we igh t s) [0]

gen . edge_da t a . open_and_c lo s ed [s e l f . new_edge] = F a l s e

i n c i d e n t edges a r e no t c o n s i d e r e d i n nex t i t e r a t i o n

s e l f . d e t a c h _ i n c i d e n t _ e d g e s ()

r e t u r n

de f i n i t i a l i z i n g _ p r o c e d u r e (s e l f) :

s e l f . o p e r a t i o n = 1

s amp l i ng_ spa ce = where (s e l f . n e g a t e d_ s p a c e) [0]

s amp l e_we igh t s = gen . s amp l e_we igh t s [s amp l i ng_ spa ce]

s amp l e_we igh t s = samp l e_we igh t s / sum (s amp l e_we igh t s)

s e l f . new_edge = c h o i c e (s amp l ing_space , s i z e = 1 , p = samp l e_we igh t s) [0]

gen . edge_da t a . open_and_c lo s ed [s e l f . new_edge] = True

f o r i i n gen . edge_da t a . e d g e _ l i s t 1 [s e l f . new_edge] :

node_ index = where (gen . node_da t a . n o d e _ l i s t == i) [0]

gen . node_da t a . node_deg ree [node_ index] += 1

i f ~gen . node_da t a . node_space [node_ index] :

gen . node_da t a . node_space [node_ index] == True

a d d i t i o n a l _ c o n n e c t i o n s = gen . n o d e _ d i c t [i]

gen . edge_da t a . a d d _ l i s t [a d d i t i o n a l _ c o n n e c t i o n s] = True

gen . edge_da t a . edge_coun t [a d d i t i o n a l _ c o n n e c t i o n s] += 1

de f u p d a t e _ s c o r e _ t a b l e (s e l f) :

i f s e l f . o p e r a t i o n == 1 :

s e l f . p r o p o s e d _ a c c e s s i o n _ s c o r e _ t a b l e [s e l f . p a i r [1]] += s e l f . p a i r [0]

e l s e :

s e l f . p r o p o s e d _ a c s c e s s i o n _ s c o r e _ t a b l e [s e l f . p a i r [1]] −= s e l f . p a i r [0]

r e t u r n

de f o b j e c t i v e (s e l f) :

c o r r e l a t i o n = c o r r c o e f (s e l f . p r o p o s e d _ a c c e s s i o n _ s c o r e _ t a b l e , gen . pheno) [0 , 1]

r e t u r n c o r r e l a t i o n

de f e v a l u a t e _ s c o r e (s e l f) :

p roposed c o n f i g u r a t i o n has b e t t e r s c o r e t h an c u r r e n t

i f s e l f . p r o p o s e d _ s c o r e >= s e l f . c u r r e n t _ s c o r e :

s e l f . c u r r e n t _ s c o r e = copy (s e l f . p r o p o s e d _ s c o r e)

gen . a c c e s s i o n _ s c o r e _ t a b l e = copy (s e l f . p r o p o s e d _ a c c e s s i o n _ s c o r e _ t a b l e)

174

a l l ow any edges t o be i n c l u d e d or exc l uded ag a i n .

gen . edge_da t a . add_space = o n e s _ l i k e (gen . edge_da t a . e d g e _ l i s t , d t ype = boo l)

gen . edge_da t a . remove_space = o n e s _ l i k e (gen . edge_da t a . e d g e _ l i s t , d t ype = boo l)

p roposed c o n f i g u r a t i o n has b e t t e r s c o r e t h an b e s t

i f s e l f . p r o p o s e d _ s c o r e >= s e l f . b e s t _ s c o r e :

s e l f . b e s t _ s c o r e = copy (s e l f . p r o p o s e d _ s c o r e)

s e l f . b e s t _ a c c e s s i o n _ s c o r e = copy (s e l f . p r o p o s e d _ a c c e s s i o n _ s c o r e _ t a b l e)

s e l f . b e s t _ o p e n _ a n d _ c l o s e d _ l i s t = copy (gen . edge_da t a . open_and_c lo sed)

a c c e p t a non−b e n e f i c i a l move

e l i f e ∗∗ ((s e l f . p r o p o s e d _ s c o r e − s e l f . c u r r e n t _ s c o r e) / s e l f . T) > un i fo rm (0 , 1) :

s e l f . c u r r e n t _ s c o r e = copy (s e l f . p r o p o s e d _ s c o r e)

gen . a c c e s s i o n _ s c o r e _ t a b l e = copy (s e l f . p r o p o s e d _ a c c e s s i o n _ s c o r e _ t a b l e)

gen . edge_da t a . add_space = o n e s _ l i k e (gen . edge_da t a . e d g e _ l i s t , d t ype = boo l)

gen . edge_da t a . remove_space = o n e s _ l i k e (gen . edge_da t a . e d g e _ l i s t , d t ype = boo l)

r e v e r t t h e move t a k en

e l s e :

an edge was i n c l u d e d i n c u r r e n t c o n f i g u r a t i o n

i f s e l f . o p e r a t i o n == 1 :

tmp = F a l s e

gen . edge_da t a . add_space [s e l f . new_edge] = F a l s e

s e l f . d e t a c h _ i n c i d e n t _ e d g e s ()

an edge was exc l uded from c u r r e n t c o n f i g u r a t i o n

e l s e :

tmp = True

gen . edge_da t a . add_space [s e l f . new_edge] = F a l s e

s e l f . a t t a c h _ i n c i d e n t _ e d g e s ()

gen . edge_da t a . open_and_c lo sed [s e l f . new_edge] = tmp

s e l f . n e g a t e d _ s p a c e = ~gen . edge_da t a . open_and_c lo s ed

s e l f . add_check = s e l f . n e g a t e d_ s p a c e ∗ gen . edge_da t a . add_space ∗ gen . edge_da t a . a d d _ l i s t

s e l f . remove_check = gen . edge_da t a . open_and_c lo s ed ∗ gen . edge_da t a . remove_space

i f no t (any (s e l f . add_check) o r any (s e l f . remove_check)) :

s e l f . T = 0

r e t u r n

de f a t t a c h _ i n c i d e n t _ e d g e s (s e l f) :

edges i n c i d e n t t o drawn edge may be drawn i n f u t u r e i t e r a t i o n

f o r i i n gen . edge_da t a . e d g e _ l i s t 1 [s e l f . new_edge] :

node_ index = where (gen . node_da t a . n o d e _ l i s t == i) [0]

i f gen . node_da t a . node_deg ree [node_ index] == 0 :

a d d i t i o n a l _ c o n n e c t i o n s = gen . n o d e _ d i c t [i]

175

gen . edge_da t a . a d d _ l i s t [a d d i t i o n a l _ c o n n e c t i o n s] = True

gen . edge_da t a . edge_coun t [a d d i t i o n a l _ c o n n e c t i o n s] += 1

i n c r e men t node deg r e e (s) a f t e r add ing i n c i d e n t edges

gen . node_da t a . node_deg ree [node_ index] += 1

r e t u r n

de f d e t a c h _ i n c i d e n t _ e d g e s (s e l f) :

edges i n c i d e n t t o drawn edge a r e exc l uded from sampl ing

f o r i i n gen . edge_da t a . e d g e _ l i s t 1 [s e l f . new_edge] :

node_ index = where (gen . node_da t a . n o d e _ l i s t == i) [0]

gen . node_da t a . node_deg ree [node_ index] −= 1

i f gen . node_da t a . node_deg ree [node_ index] == 0 :

a d d i t i o n a l _ c o n n e c t i o n s = gen . n o d e _ d i c t [i]

gen . edge_da t a . edge_coun t [a d d i t i o n a l _ c o n n e c t i o n s] −= 1

gen . edge_da t a . a d d _ l i s t [where (gen . edge_da t a . edge_coun t == 0) [0]] = F a l s e

r e t u r n

de f c o o l i n g (s e l f , i) :

i f s e l f . T != 0 :

s e l f . T = s e l f . T_0 ∗ s e l f . a l p h a ∗∗ i

e l s e :

s e l f . T = 0

r e t u r n

i t e r _ l e n g t h = 500 ∗ (10)∗∗4

sa = s i m u l a t e d _ a n n e a l i n g (1 , 0 . 5)

sa . r u n s a (1 0)

C.2 Edge Inclusion Pseudocode

The procedure implemented for including edges once an initial solution is found.

176

Algorithm 4 Edge Inclusion
function Inclusion(𝐺𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

E← edges ∉ 𝐺𝑐𝑢𝑟𝑟𝑒𝑛𝑡

for 𝑒𝑑𝑔𝑒 ∈ add_space do

if 𝑒𝑑𝑔𝑒 has been reverted then

if add_space[𝑒𝑑𝑔𝑒] == 𝐹𝑎𝑙𝑠𝑒 then

E[𝑒𝑑𝑔𝑒] == 𝐹𝑎𝑙𝑠𝑒

end if

end if

end for

sampling weights←
[
1, 1, 1...|𝐸 |

]
/∑|𝐸 |

𝑛=1

new_edge← Sample(𝑒 ∈ 𝐸, 𝑝 ∈ sampling weights)

E[new_edge] == 𝑇𝑟𝑢𝑒

AddIncidentEdges(new_edge) ⊲ consider incident edges

end function

177

C.3 Edge Exclusion Pseudocode

The procedure implemented for excluding edges once an initial solution is found.

Algorithm 5 Edge Exclusion
function Exclusion(𝐺𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

E← edges ∈ 𝐺𝑐𝑢𝑟𝑟𝑒𝑛𝑡

sampling weights←
[
1, 1, 1...|𝐸 |

]
/∑|𝐸 |

𝑛=1

for 𝑣𝑎𝑙𝑢𝑒 ∈ sampling weights do sampling weights[𝑣𝑎𝑙𝑢𝑒] ← (1 − 𝑣𝑎𝑙𝑢𝑒)

end for

new_edge← Sample(𝑒 ∈ 𝐸, 𝑝 ∈ sampling weights)

E[new_edge] == 𝐹𝑎𝑙𝑠𝑒

RemoveIncidentEdges(new_edge) ⊲ do not consider incident edges

end function

178

C.4 Objective Function

The function implemented for scoring network configurations to reach the approximate

solution.

Algorithm 6 Objective
function Objective(𝐺𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

E← edges ∈ 𝐺𝑐𝑢𝑟𝑟𝑒𝑛𝑡

sampling weights←
[
1, 1, 1...|𝐸 |

]
/∑|𝐸 |

𝑛=1

for 𝑣𝑎𝑙𝑢𝑒 ∈ sampling weights do sampling weights[𝑣𝑎𝑙𝑢𝑒] ← (1 − 𝑣𝑎𝑙𝑢𝑒)

end for

new_edge← Sample(𝑒 ∈ 𝐸, 𝑝 ∈ sampling weights)

E[new_edge] == 𝐹𝑎𝑙𝑠𝑒

RemoveIncidentEdges(new_edge) ⊲ do not consider incident edges

end function

179

	Methods and tools to improve performance of plant genome analysis
	Recommended Citation

	tmp.1658937285.pdf.HpZ0F

