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Land surfaces have changed as a result of human and natural processes, such as 

deforestation, urbanization, desertification and natural disasters like wildfires. Land use and land 

cover change impacts local and regional climates through various bio geophysical processes across 

many time scales. More realistic representation of land surface parameters within the land surface 

models are essential to for climate models to accurately simulate the effects of past, current and 

future land surface processes. In this study, we evaluated the sensitivity and accuracy of the 

Weather Research and Forecasting (WRF) model though the default MODIS land cover data and 

annually updated land cover data over southeast of United States. Findings of this study indicated 

that the land surface fluxes, and moisture simulations are more sensitive to the surface 

characteristics over the southeast US. Consequently, we evaluated the WRF temperature and 

precipitation simulations with more accurate observations of land surface parameters over the 

study area. We evaluate the model performance for the default and updated land cover simulations 

against observational datasets. Results of the study showed that updating land cover resulted in 

substantial variations in surface heat fluxes and moisture balances. Despite updated land use and 

land cover data provided more representative land surface characteristics, the WRF simulated 2-



 

 

m temperature and precipitation did not improved due to use of updated land cover data. Further, 

we conducted machine learning experiments to post-process the Noah-MP land surface model 

simulations to determine if post processing the model outputs can improve the land surface 

parameters. The results indicate that the Noah-MP simulations using machine learning remarkably 

improved simulation accuracy and gradient boosting, and random forest model had smaller mean 

error bias values and larger coefficient of determination over the majority of stations. Moreover, 

the findings of the current study showed that the accuracy of surface heat flux simulations by 

Noah-MP are influenced by land cover and vegetation type. 
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CHAPTER I 

INTRODUCTION 

Physical characteristics of the land surface have various impacts on climate by altering land 

surface albedo, evapotranspiration, and surface roughness that in turn alter atmospheric 

circulations, energy budgets, and hydrologic cycles. Thus, in atmospheric modeling, land surface 

characteristics play a key role in partitioning the energy and moisture fluxes between the land and 

atmosphere. As a result, improved characterizations of land surface characteristics within 

numerical weather prediction (NWP) models should lead to increased accuracy of simulations. 

This is especially true during the growing season over agricultural areas, when increased 

vegetation coverage enhances evapotranspiration and associated processes such as convective 

rainfall. Results from global modeling studies indicate a change in surface temperatures due to 

deforestation, but the impacts of land use and land cover (LULC) vary by region and season. In 

addition, studies showed the impacts of land cover modification on the spatiotemporal changes of 

precipitation, air temperature, surface heat fluxes and moisture flux (Bin Li & Avissar, 1994; 

Jianduo Li et al., 2018; Qu, Weiqing, 1998; Z. Yang & Dominguez, 2019; W. Zhang et al., 2016). 

Although many investigations assessed the sensitivity of dominant land cover changes to 

numerical weather models such as the Weather and Forecasting (WRF) model (Bin Li & Avissar, 

1994; J. Dyer, 2011; Paul et al., 2016), it is important to also consider the percent coverage of all 

land cover categories to provide a robust analysis of the impacts of real-world land cover and 

vegetation types on land surface processes. In comparison with the current land cover data in the 
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WRF model (Al, 2017; Kirthiga & Patel, 2018; Jiayang Li et al., 2018; Schneider et al., 2004), the 

near-real-time land cover data add more representative land surface characteristics to the model 

simulations. This study evaluates the impact of the near real-time LULC data derived from the 

Moderate Resolution Imaging Spectroradiometer (MODIS) observations on the performance of 

the WRF model to clearly understand the influence of land use on surface processes with the aim 

of improving surface-related weather simulations over the southeast United States. The simulation 

experiments involve two independent model runs: (1) standard WRF land cover (default 

simulation), and (2) updated land cover from MODIS (updated simulation) for a dry year (2007), 

a normal year (2014), and a wet year (2018). Further, all simulations were performed over the 

growing season (April 15 – October 1), with data from May 1 – October 1 being used for analysis 

(15-day model spin-up) over a 4-km nested domain. 

Numerical weather prediction models simulate atmospheric and surface parameters using 

dynamic mechanisms between the land and atmosphere (Yoon et al., 2021). However, course 

horizontal resolution of these models often introduces prediction error into the model simulations. 

In addition, errors and uncertainties in NWP models occur in response to errors in land surface 

model (LSM) outputs, which are used to simulate land surface processes within numerical weather 

and climate models. Although updated LULC can provide more representative land surface 

properties, there are other unknown factors (Liu et al., 2016; G. Niu et al., 2011) in land-

atmosphere systems that affect the accuracy of the simulations in both magnitude and sign. The 

relationship between NWP simulation and observed historical data at weather stations is used to 

calibrate the weather simulations. In recent years, statistical learning model are used to leverage 

accuracy of numerical land surface model simulations. Machine learning models are used to post-

process Noah-MP land surface model outputs for improved hourly surface heat fluxes, soil 
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moisture, and soil temperature at AmeriFlux (Workshop, 2015) towers across the continental 

United States. The Noah-MP (Levis et al., 2012; Liu et al., 2016; Tsvetsinskaya et al., 2001) is a 

physics-based land-atmosphere simulator which is used within the NWP and climate models. The 

Noah-MP model outputs were used as input variables, and observed sensible heat flux, latent heat 

flux, soil moisture and soil temperature data were used as target features to train the ML models. 

Noah-MP model outputs, Noah-MP bias corrected outputs, and machine learning estimations were 

compared against the AmeriFlux observations. 

Overall, the key objectives of this study are to investigate the importance of the LULC 

change within the WRF simulations to better understand the surface processes and its interactions 

with the near surface atmosphere. Since the land surface processes are the most challenging parts 

of regional climate modeling, better understanding of sensitivity of the surface heat and moisture 

flux simulations to land surface characteristics can be used to improve the weather predictions. 

Therefore, the potential improvements in WRF-simulated temperature and precipitation skills as a 

result of updating LULC was investigated. In addition, machine learning models were used to 

improve Noah-MP surface heat fluxes, soil moisture and soil temperature simulations relative to 

available surface observations. Although the findings of this study showed strong sensitivity of 

WRF simulations towards the representation of surface characteristics, updating LULC did not 

improved the temperature and precipitation simulations over all stations. Results indicated that 

post-processing Noah-MP simulations using machine learning substantial improved simulation 

accuracy. The findings of this study can be used to improve the NWP and land surface model 

simulations to and enhance numerical weather predictions. 
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CHAPTER II 

EVALUATING THE SENSITIVITY OF SURFACE-ATMOSPHERE INTERACTIONS TO 

 LAND USE AND LAND COVER CHANGES USING WRF SIMULATIONS 

Introduction 

The Weather Research and Forecasting (WRF) model (Janjic et al., 2010) is an open-source 

atmospheric modeling system that is widely used for simulating and understanding land-

atmosphere interactions (Al, 2017; Kirthiga & Patel, 2018; Jiayang Li et al., 2018; Schneider et 

al., 2004). Despite its popularity in dynamic downscaling of regional climate, the model utilizes a 

long-term average of land cover data as a static input for surface boundary conditions. In addition, 

the land-atmosphere simulations by the land surface models within the WRF system mostly rely 

on the dominant land use category or the land use fraction, which are used as static inputs in the 

WRF simulations (Mallard et al., 2018). The details of the land surface models are discussed in 

Chen & Dudhia (2001a). Land cover characteristics play a key role in controlling surface energy 

partitioning in the earth-atmosphere interactions, hence, this input can have an impact on 

convective precipitation generation (Holt et al., 2006). Vegetation type, for example, is one of the 

parameters that defines the canopy resistance in the WRF Noah land surface model (Noilhan, J., 

1989), and Kishtawal et al. (2010) showed that changes in surface roughness and stomatal 

resistance caused 2-m air temperature to increase by 0.3° – 0.4°C in the eastern United states. 

Hence, accurate and more realistic representation of the physical characteristics of the land surface 

is critical for simulating land-atmosphere exchanges of heat and moisture fluxes within numerical 
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weather simulation models. This is especially important for agricultural areas, such as the Lower 

Mississippi River alluvial valley, where land cover fractions may change in the region due to 

variations in the distribution of active agricultural land, natural grasslands, and forested area.  

Several researchers have presented evidence of land cover modification on the 

spatiotemporal changes of precipitation, air temperature, surface heat fluxes and moisture flux (Bin 

Li & Avissar, 1994; Jianduo Li et al., 2018; Qu, Weiqing, 1998; Z. Yang & Dominguez, 2019; W. 

Zhang et al., 2016). Although many investigations assessed the sensitivity of the WRF model to 

dominant land cover changes (Bin Li & Avissar, 1994; J. Dyer, 2011; Paul et al., 2016), it is 

important to also consider the percent coverage of all land cover categories to provide a robust 

analysis of the impacts of real-world land cover and vegetation types on land surface processes. 

The current land use data set used in the WRF model is based on a long-term climatological 

dataset (Kumar et al., 2014), which cannot well represent the annual changes of land use and land 

cover (LULC) and therefore can negatively impacts the accuracy of regional-scale simulations (H. 

Li et al., 2020). The Moderate Resolution Imaging Spectroradiometer (MODIS), a multispectral 

sensor mounted on the AQUA and TERRA satellites, provides detailed information of the land 

surface that enables the weather research community to address a much larger range of research 

questions associated with surface biochemical cycling and land cover change (Justice et al., 2002). 

High spatial and temporal resolution, as well as the variables included in the MODIS land products, 

such as land cover, vegetation, and albedo, make it a valuable sensor in land-atmosphere studies 

(A. Kumar, et al., 2014). 

The impact of LULC changes on regional and global climate is one of the most challenging 

aspects of understanding anthropogenic climate change (Trail et al., 2013). The specific effects of 

land cover change also depend on the type of change, the spatial scale of assessment, the size of 
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the area under consideration, and the region where the change occurs (Pielke et al., 2011). Land 

use and land cover change involve changes in the biophysics of the terrestrial surface, and therefore 

can impact regional climate through direct alternations in surface radiation and boundary layer 

turbulence. These factors then result in changes in the fluxes of momentum, heat, water vapor, and 

carbon dioxide between the surface and the atmosphere. Even small-scale changes in land cover 

due to agricultural activities (J. L. Dyer & Rigby, 2020) and urbanization (X. Li et al., 2018) can 

influence energy and moisture balance at the surface and consequently atmospheric processes. As 

a result, to incorporate the effects of the interannual and seasonal changes in land cover within 

numerical weather prediction (NWP) models, utilizing near real-time land cover data within the 

weather simulations is critical to properly evaluate land surface-atmosphere interactions.  

Previous studies have attempted to enhance the skill of WRF forecasts by modifying land 

use and vegetation data using improved satellite products (Kumar et al., 2014; J. Yang et al., 2018); 

however, it is important to recognize the specific influence of LULC changes on model simulations 

to better understand the role of LULC over regions sensitive to surface characteristics. As a result, 

the objective of this study is to quantify the sensitivity of surface heat fluxes and moisture fluxes 

using a high-resolution numerical weather simulation framework with updated land cover 

(dominant and fractions) over the Continental US (CONUS), with a focus on regional patterns 

over the Southeastern US. Spatial and temporal analysis will be caried out to compare the regional 

weather simulations with default and updated land cover to evaluate the impacts of integration of 

the MODIS real-time land cover on the WRF simulations. The results of the study will provide 

valuable information to quantify the impacts of using up-to-date satellite-derived information in 

weather simulations focused on surface-atmosphere interactions and processes. 
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Data and Methods 

MODIS land cover data 

The combined Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) 

land cover data (MCD12Q1; Version 6) product was used to update the WRF default land cover 

types at annual time steps. These data were derived from MODIS reflectance data at 500-m spatial 

resolution using the random forest supervised classification method (S. Cai et al., 2014; Friedl et 

al., 2010). In addition to the reflectance dataset, the MODIS land-water mask product (MCD44W), 

vegetation continuous fields product (MCD44B), global cover type map, MODIS global map of 

urban areas, and land surface temperature were included as the input features to produce the 

MODIS land cover product (Sulla-Menashe et al., 2019). Random forest classifier, like its name 

implies, contains many individual decision trees that function as an ensemble. It creates a set of 

decision trees from randomly selected subsets of the training set, then performs a vote for each 

predicted result and aggregates the votes to decide the final class of the test set. The class with the 

most votes become the final prediction. The MCD12Q1 product provides annually updated land 

cover type since 2001, which is immensely important for a variety of regional and global studies 

(Aylas et al., 2020; Gogoi et al., 2019; H. Li et al., 2020). To quantify the uncertainties in MODIS 

land cover data, a set of validation sites across the world have been used, which covers a range of 

climate zones and major biomes (Myneni et al., 2002; Running et al., 1999). Moreover, high-

resolution imagery data such as Landsat, ETM+, and Advanced Spaceborne Thermal Emission 

and Reflection Radiometer (ASTER) are used to validate MODIS land data (Morisette et al., 

2002). 

The MODIS land cover product provides five classification schemes including 

International Geosphere-Biosphere Programme (IGBP), University of Maryland (UMD), Leaf 
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area index (LAI), BIOME-Biogeochemical Cycles (BGC), Plant Functional Types (PFT), and 

Land Cover Classification System (LCCS) whereby land cover was mapped using different 

classification systems. Table 2.1 shows five different classifications of the MCD12Q1 product and 

associated land cover types for each classification along with the WRF default IGBP MODIS land 

use classes. More details can be found in the user guide to collection six of the MCD12Q1 product 

(Sulla-Menashe, et al., 2018). Compared with MODIS IGBP land use classification, there are four 

more land use classes in the WRF IGBP land use classification including wooded tundra, mixed 

tundra, barren tundra, and lakes (Table 2.1). The WRF simulations were divided into two groups; 

the first simulation, referred to as “default”, is conducted with the WRF default IGBP MODIS land 

cover data, and the latter, referred to as “updated”, is conducted with the MODIS-derived IGBP 

annual land cover data. 
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Table 2.1 MODIS MCD12Q1 product classifications compared with the WRF IGBP MODIS land use classifications. 

 WRF MODIS 

Class 

number 
IGBP  IGBP UMD LAI/FPAR BGC PFT 

1 
Evergreen 

needleleaf forest 

Evergreen 

needleleaf forest 

Evergreen 

needleleaf forest 

Evergreen needleleaf 

forest 

Evergreen 

needleleaf forest 

Evergreen 

needleleaf forest 

2 
Deciduous 

needleleaf forest 

Deciduous 

needleleaf forest 

Deciduous 

needleleaf forest 

Deciduous needleleaf 

forest 

Deciduous 

needleleaf forest 

Deciduous 

needleleaf forest 

3 
Evergreen 

broadleaf forest 

Evergreen 

broadleaf forest 

Evergreen 

broadleaf forest 

Evergreen broadleaf 

forest 

Evergreen 

broadleaf forest 

Evergreen 

broadleaf forest 

4 
Deciduous 

broadleaf forest 

Deciduous 

broadleaf forest 

Deciduous 

broadleaf forest 

Deciduous broadleaf 

forest 

Deciduous 

broadleaf forest 

Deciduous 

broadleaf forest 

5 Mixed forest Mixed forest Mixed forest - - - 

6 
Closed 

shrublands 
Closed shrublands 

Closed 

shrublands 
Shrublands - Shrub 

7 Open shrublands Open shrublands Open shrublands Shrublands - Shrub 

8 Woody Savannas Woody Savannas Woody Savannas 
Savannas 

- - 

9 Savannas Savannas Savannas - - 

10 

 
Grasslands Grasslands Grasslands Grasses/ cereal crop 

Annual grass 

vegetation 
Grass 

11 
Permanent 

wetlands 
Permanent wetlands - - - - 

12 Croplands Croplands Croplands Broadleaf crops 

Annual 

broadleaf 

vegetation 

Cereal crop 

13 
Urban and build-

up land 

Urban and build-up 

land 

Urban and build-

up land 
Urban Urban Urban 

14 

Cropland/natural 

vegetation 

mosaics 

Cropland/natural 

vegetation mosaics 
- - - Broadleaf crop 
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Table 2.1 (continued) 

15 
Permanent snow 

and ice 
Permanent snow and ice - - - Snow and ice 

16 
Barren or sparsely 

vegetated 

Barren or sparsely 

vegetated 

Barren or 

sparsely 

vegetated 

Unvegetated Unvegetated 

Barren or 

sparsely 

vegetated 

17 Water Water Water Water Water Water 

18 Wooded Tundra - - - - - 

19 Mixed Tundra - - - - - 

20 Barren Tundra - - - - - 

21 Lake - - - - - 

 

 



 

11 

The MODIS data was used since one of the land cover data ingested by the WRF model is 

based on MODIS land cover classification scheme. The MCD12Q1 data was downloaded from 

the NASA Earth sciences data and information service center (GES DISC) website 

(https://earthdata.nasa.gov), which provides annual MODIS land cover data at 500-m on a 

sinusoidal grid. This product was then reprojected to the WGS84 geographic projection, and then 

exported in binary format so that they could be used by the WRF Preprocessing System (WPS) 

and transferred to the WRF grid. The majority resampling method (mode) was used because the 

land cover data are categorical data. Along with the other gridded geostatic data, such as soil type, 

soil temperature, terrain height, vegetation fraction, leaf area index, and albedo, the WPS uses 

dominant land cover category and land cover fractions to represent the land surface physical 

characteristics in the WRF simulation grid. After generating WPS geogrid files for updated and 

default data, all grids containing the wooded tundra, mixed tundra, barren tundra, and lake 

categories in the default data were modified to have the same number of categories in the updated 

data to be consistent between simulations. It should be noted that although there are three 

additional vegetation categories (wooded tundra, mixed tundra, and barren tundra) in the WRF 

default IGBP global land cover data, the WPS generated files did not contain these three land cover 

types within the southeast US study area; therefore, only the lake grids (category 21) within the 

default data were updated to category 17 (water) in the updated land cover data.  

WRF setup and study area 

To identify the impacts of land cover changes on surface-atmosphere interactions and near-

surface atmospheric conditions, the Advanced Research WRF (ARW) model, v.4-3 (Skamarock 

et al., 2021) was used to simulate meteorological conditions over the southeast and continental 

United States using 4-km (380 × 380 grids) and 12-km (230 × 390 grids) spatial resolution for the 

https://earthdata.nasa.gov/
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nested and parent domains, respectively (Fig. 2.1). A 4-km spatial resolution was chosen as it 

provides adequate detail of land use variability and changes in the default and updated simulations 

while allowing convection to be directly simulated. The options used were 45 vertical levels 

arranged along a logarithmic profile with the following parameterizations: Rapid Radiative 

Transfer Model for GCMs (RRTMG) for longwave and shortwave radiation (Iacono et al., 2008); 

Noah land surface model (F. Chen & Dudhia, 2001a, 2001b); New Thompson scheme for 

microphysics (Thompson et al., 2008); and Mellor-Yamada-Janjic scheme (Janjić, 1994) for 

planetary boundary layer. Further references for these parameterization schemes can be found in 

(Dyer & Rigby, 2020; Skamarock et al., 2021) 

Focusing on the annual percent precipitation over the southeast, the simulations were 

carried out separately for a dry year (2007), a normal year (2014), and a wet year (2018) from 1 

May through 30 September, with the model runs starting on 15 April to allow proper spin-up time 

for the WRF momentum variables. A year whose annual precipitation was greater than the percent 

of normal precipitation (defined as average precipitation since 2005; NOAA 2022) were identified 

as wet year, while a year that was less than the percent of normal precipitation was identified as 

dry year (Fig. 2.2). The wet and dry years were selected to examine how the WRF-simulated 

surface heat fluxes and soil moisture are influenced by variable hydrologic conditions. In addition, 

the simulation period was selected since it covers the majority of the growing season for warm-

season crops, which is when surface conditions have the largest impact on lower atmospheric 

processes. The initial and boundary atmospheric and soil conditions were provided by the National 

Center for Environmental Prediction (NCEP) 0.5-degree Global Forecasting System (GFS) 

analysis fields, from which the daily 0000 UTC data were utilized. These data are commonly used 
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for regional weather studies (López-Bravo et al., 2018; Ngan et al., 2015) over different locations, 

and are therefore considered appropriate for this study. 

 

Figure 2.1 WRF model domains with 12-km spatial resolution and 230 × 390 grid points in 

the north-east and east-west, respectively, for the parent domain (blue), and 4-km 

resolution and 380 × 380 grid points for the nested domain (black). 
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Figure 2.2 Percent of normal precipitation (defined as average precipitation since 2005; NOAA 

2022) that occurred for the calendar year in each simulation year, departure from the 

climatological average. 
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For quantification of the impacts of updated LULC on 2-m average air temperature (T2), 

2-m water vapor mixing ratio (Q2), and soil moisture at 30-cm, the default simulation was 

subtracted from the updated simulation of each variable over all grid points for all forecast hours. 

Along with the spatial pattern showing differences in the magnitude of the updated and default 

runs, the mean was used to evaluate the difference between the two simulations. Moreover, 

Kolmogorov-Smirnov (K-S) test was applied to determine if output from the updated WRF 

simulation was significantly different (p < 0.05) than output using the updated land cover. The K-

S test was used as it does not assume a normal distribution, with the test statistic calculated under 

the hypothesis that the two samples being compared are from the same distribution. The two-

sample K-S test is one of the most useful and general non-parametric methods for comparing two 

samples, as it is sensitive to differences in both the location and shape of the empirical cumulative 

distribution functions of the two samples. The analysis was performed over the 4-km nested 

domain and associated area of 12-km parent domain over the southeast to determine the impact of 

horizontal spatial resolution of LULC on the land surface simulations. To determine the difference 

in the actual values of the updated and default WRF model simulations, histograms were generated 

from the temporally accumulated precipitation, surface heat fluxes, and temporally averaged of air 

temperature, soil moisture and mixing ratio to represent the difference between the distribution of 

each variable over the study area. Along with comparing histograms of select variables between 

the default and updated WRF model simulations, the two-sample Kolmogorov-Smirnov (K-S) test 

was applied to determine if output from the updated WRF simulation framework was significantly 

different (p < 0.05) than output using the updated land cover. The K-S test was used as it does not 

assume a normal distribution, with the test statistic calculated under the hypothesis that the two 

samples being compared are from the same distribution. The two-sample K-S test is one of the 
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most useful and general non-parametric methods for comparing two samples, as it is sensitive to 

differences in both the location and shape of the empirical cumulative distribution functions of the 

two samples. The analysis was focused on the southeast because of the substantial changes in the 

dominant LULC observed over this region in the updated MODIS LULC data relative to the 

default data (Fig. 2.3-c, -d). In addition, the widespread agricultural activities in the area as well 

as the multiple transitions to (and variation in) forested and natural landscapes make LULC 

changes a potential driving factor in local-scale weather processes.  

 

Results and discussions 

Land cover changes 

The area under different LULC categories showed noticeable changes between the updated 

and default land cover grids (Fig. 2.3-a, -b), where reductions were observed for Cropland/Natural 

Vegetation Mosaics (Southeast, Northeast, Great Lakes), Evergreen Needleleaf Forests (Florida), 

Mixed forests (Southeast, New England, and Great Lakes) and Open Shrublands (Southeast) in 

the updated LULC data compared with default WRF land cover data. In addition, the updated 

LULC data showed increases over some regions in Grasslands (Nevada, Utah, New Mexico), 

savannas (California), and woody savannas (California, East Texas, South Mississippi and 

Alabama). It should be noted that these patterns were consistent for all years. Areas where woody 

Savannas increased in the updated data (~1,300,000 km2) were covered mostly by Cropland 

(360,000 km2), Evergreen Needleleaf Forests (340,000 km2), and Mixed Forests (310,000 km2) in 

the default data. According to the attribute table of the WRF vegetation parameters, the magnitude 

of the maximum albedo values associated with these land cover categories are 0.23, 0.12, and 0.25, 

respectively, which are less than the value of the albedo associated with woody Savannas (0.3). 
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Furthermore, the maximum leaf area index (LAI) of woody Savannas (3.6) is less than the other 

three land cover categories (5.7, 5.5, and 6.4, respectively). Since albedo and LAI are correlated 

variables (Trail et al., 2013), the higher the LAI, the more green area to absorb sunlight. 

Investigating the combined effects of the LAI and stomatal resistance is beyond the scope of this 

study; however, it plays an important role in the near-surface atmosphere (Jefferson et al., 2017; 

Martin et al., 1999; Niyogi et al., 1998); therefore, changes in vegetation cover can act as direct 

controls on the other parameters at the Earth’s surface such as evaporation and soil moisture 

content. The area covered by each land use category in the updated data compared with the default 

LULC over the nested domain (Fig. 2.3-c, -d) showed that Croplands/Natural vegetation Mosaics, 

Grasslands, and Mixed Forest decreased in the updated data relative to the default data. 
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Figure 2.3 Maps of MODIS 2018 land use (a, c) and WRF default MODIS land use (b, d) data 

(right) for 12-km parent domain (a, b), and 4-km nested domain (c, d). 
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The study area is a region of approximately 1,617,984 km2 covering the southeast US 

(29.0° - 42° N, 94° - 82°W) and characterized by rapid transitions from Cropland/Natural 

Vegetation Mosaics and mixed forests to woody savannas and savannas. In addition, LULC 

changes in this area are evident due to the widespread agricultural activities. Although the updated 

LULC grids from 2007, 2014, and 2018 did not show appreciable differences in dominant land 

cover between years (figures not shown), changes were detected for woody savannas (-36,000 

km2), and Mixed Forests (+29,000 km2) from 2007 through 2018 in the updated data over the 

nested domain. Figure 2.4 shows the area of each LULC in the parent domain (a) and nested 

domain (b) in the default and updated data. It should be noted that these results are based on the 

12-km and 4-km spatial resolution of the WRF domains; however, generating higher spatial 

resolution, for example 1km, of WPS geostatic data may represent detailed information about 

local-scale land cover changes due to agricultural activities, deforestation, construction, and 

wildfire events. Further comparison was performed on the area of dominant LULC over the nested 

domain and associated areas in the parent domain in the default data to show how the dominant 

land cover are represented at various spatial resolutions. As shown in Fig. 2.4-c, the area of the 

Cropland/Natural Vegetation Mosaics (16,752 km2), Croplands (13,856 km2), Deciduous 

Broadleaf Forests (11,680 km2), Evergreen Broadleaf Forests (3,136 km2), and Mixed forests 

(7,136 km2) is higher in the 12-km domain relative to the 4-km domain; however, the areas of 

Evergreen Needleleaf Forests, Grasslands, and Lakes (~10,000 km2), and woody savannas (17,600 

km2) is lower in the parent domain compared with the associated areas in the nested domain. 

Although the difference of areas of the various LULC categories at the different spatial resolutions 

is roughly 1% relative to the total area of the nested domain, 4-km land use provides much finer 

details for the Noah land surface model used in the WRF simulations. 
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Figure 2.4 Differences between the WRF default MODIS land cover and 2018 MODIS land 

cover data in the parent domain (a) and nested domain (b). Panel (c) shows the 

difference (parent - nested) of area (km2) of each land cover category over the nested 

domain relative to the associated area of the parent domain. 
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Surface heat fluxes 

The average changes in sensible heat flux (HFX) between the updated and default (updated 

- default) LULC over the parent 12×12-km domain and nested 4×4-km domain (Fig. 2.5-a and 5-

b, respectively) from May through September indicated that the updated simulation has a higher 

sensible heat flux relative to the default simulations over the southern portion of the area for the 

three study years. The spatial variability of sensible heat flux is high over the domains, 

approximately 30 W/m2 increase was evident over the Ozarks in 2007, and Alabama, Georgia, and 

South Carolina at 12-km simulations during all three study years. These areas mostly correspond 

to woody savannas and cropland in the updated and default LULC respectively (Fig. 2.3-c, -d). 

The result indicated an area of maximum decrease (> 5 W/m2) in southeast Missouri, south Indiana, 

and Ohio in 2014, and over the northern portions of the lower Mississippi River alluvial valley 

(LMRAV) in 2018 in the parent and nested domains. Time series of sensible heat flux were 

extracted from WRF updated and default simulations over the grid points and a two-sample K-S 

test was then applied to the extracted time series to determine if the sensible heat flux changes is 

statistically different. Results indicated that the decreased sensible heat flux simulations as a result 

of LULC change was statistically significant (p < 0.05) in many grids across the study area (Fig. 

2.6-a). In contrast to the 12-km nested domain, sensible heat flux differences were smaller in 4-

km simulation, and in the updated 4-km simulation relative to the default 4-km simulation the 

simulation was by approximately -20 W/m2 smaller over central Kentucky in 2014; however, it 

was larger in the updated data in the 12-km simulation.  

The results show that the spatial extent of average HFX from the 4-km simulations was 

relatively lower in all years south of 35°N. For instance, there is a noticeable increase (> 25 W/m2) 

in the HFX over central and southern Georgia within the 12-km model output in 2014; however, 
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an area of increased sensible heat flux greater than 25 W/m2 is apparent only along central and into 

northeast Georgia within the 4-km simulation. Comparing the default and updated LULC showed 

that the extreme negative values of the HFX differences were associated with changes from open 

shrublands (default) to barren (updated). Figure 2.5-b shows more localized average changes in 

sensible heat flux between the updated and default LULC from May through September for the 

three study years. In addition, the sensible heat flux based on the WRF simulations for dry, normal, 

and wet years indicated that the difference between the default and updated simulations is 

maximized in both intensity and spatial extent for the dry year (2007) relative to the wet year 

(2018) over the Ozarks and Southeast United States. One possible explanation for the changes in 

the surface heat flux is that the changes in LULC lead to changes in soil moisture availability and 

surface heat capacity, which are two main factors that influence sensible heat flux (Esteve, 2015). 

For example, according to the WRF land use table, the magnitude of soil moisture percentage and 

surface heat capacity for open shrublands are 0.15% and 20.8×105 J m-3 K-1, respectively, and 

associated values for the barren or sparsely vegetated land cover are 0.02% and 12.0×105 J m-3 K-

1. As a result, decreasing soil heat capacity and soil moisture availability would result in reducing 

evapotranspiration and increasing surface temperature. 

The changed surface physical characteristics based on the updated MODIS land cover data 

within the WRF simulations leads to ~30W/m2 decreases in the mean surface latent heat fluxes 

during the years studied (Fig. 2.5-c, -d). Similar to HFX, the areas with higher decreases in latent 

heat flux (>30 W/m2) were mostly seen over the southern portion of the 4-km nested domain, 

which is mostly associated with transitions from croplands in the default data to woody savannas 

in the updated land use data. A two-sample K-S test results indicated that the changes in latent heat 

flux as a result of LULC change was statistically significant (p < 0.05), specially over the 
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Mississippi, Alabama, and Georgia (Fig. 2.6-b). Moreover, areas in south Illinois and Indiana 

showed an increase (>10 W/m2) in latent heat flux in the 4-km simulation in 2014, and there was 

an additional increase over southeast Missouri in 2018. The areas with higher decreases in latent 

heat flux (<30 W/m2) are associated primarily with transitions from cropland/natural vegetation 

mosaic and mixed forests land use categories in the default LULC to woody savannas in the 

updated LULC (Fig. 2.3). In general, modeled latent heat fluxes with updated LULC were lower 

relative to those with default LULC by approximately 14% through the whole nested domain. As 

a result, according to the WRF vegetation attributes table, decrease in the latent heat flux could be 

due to decrease in the leaf area index for woody savannas (min=0.5, max=3.6) compared with 

cropland/natural vegetation mosaic (min=2.3, max=4.3) and Mixed Forests (min=2.8, max=5.5). 

The stomatal resistance of woody savannas (300 s/m) is higher than the associated value for 

cropland/natural vegetation mosaic (40 s/m), which should act to decrease the magnitude of 

evapotranspiration; however, it should be noted that canopy resistance is affected by the other 

environmental parameters such as incoming solar radiation, air temperature, and vapor pressure 

(Chang et al., 2020). Another possibility for the increase in the latent heat flux could be due to a 

horizontal temperature gradient resulting from the sharp spatial transition in LULC (Dyer and 

Rigby, 2020). Further analysis of leaf area index, stomatal resistance, and green vegetation fraction 

is needed to provide additional interpretation of this process. 
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Figure 2.5 Average of sensible heat flux (a-b) and latent heat flux (c-d) differences across the 

three simulation years analyzed over 12-km nested domain (a and c) and 4-km parent 

domain (b and d). Differences were calculated as time series of the updated 

simulations minus the default simulations over the period from May – August. 
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Figure 2.6 K-S two-sample test results of sensible heat flux (a) and latent heat flux (b) in 2007 

analyzed over 4-km nested domain. This test applied on the timeseries of each grid 

individually. 
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Given the variability of surface heat fluxes between the default and updated simulations 

over the southeast, additional comparisons were performed on the daily maximum values of the 

surface heat fluxes for the 2014 simulation to highlight the impact of LULC changes on extreme 

values. Results indicated that the average of maximum sensible heat fluxes was 306 W/m2 and 330 

W/m2 in the default and updated simulations, respectively. Figure 2.6a shows the difference of 

spatially averaged daily maximum sensible heat flux over the southeast in 2014, where from May 

through July, daily maximum sensible heat flux with the updated LULC was approximately 20 

W/m2 (±20 W/m2) higher relative to the default case. From May through July, the standard 

deviation of differences was lower relative to the period from July through September; however, 

from July through September the differences had an average of 0 W/m2. In addition, the simulated 

latent heat flux (updated) was approximately -50 W/m2 lower than the default simulation during 

May and July (Fig. 2.6b) which was statistically significant (p < 0.05), and the standard deviation 

of differences between the simulations was relatively high. After this period, the difference 

between the simulations was lower than the period of May through July. During June and July 

when insolation is maximized and potential evapotranspiration is high, leaf area index and the 

availability of soil moisture are primary factors in defining the intensity of the latent heat flux. 

During September, as sun angle decreases and available surface energy goes down, and leaf area 

index also decrease due to seasonal vegetation patterns, the potential evapotranspiration is lower 

relative to June and July. Therefore, seasonal variability of vegetation and land surface 

representation can modulate the partitioning of available energy between the land surface and 

atmosphere (Matsui et al., 2005).  
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Figure 2.7 Time series of spatially averaged of daily maximum sensible heat flux (a) and latent 

heat flux (b) for updated and default simulations over the 4-km resolution 

simulation. The red line represents the difference of the simulations which were 

calculated as time series of the updated simulation minus the default simulation over the 

study period (1-May-30-September 2014). The gray areas represent ±1 standard deviation 

of the differences. 

 

Air temperature and mixing ratio 

The change of land cover from the default dataset to the updated data caused increased 2-

m temperature (T2) in the southeastern United States by approximately 0.65 °C and 0.4 °C in the 

12-km and 4-km simulations, respectively (Fig. 2.7-a, -b). A widespread increase (1 °C – 2 °C) in 

T2 was observed through the southern Midwest in 2007 as well as across central Georgia in the 
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12-km simulations across the three study years. These areas correspond to locations where 

dominant land use is changed from Croplands in the default data to woody Savannas in the updated 

LULC data (Fig. 2.3). Additionally, the results showed that T2 simulation at 12-km horizontal 

resolution was approximately 1°C higher than the associated simulation at 4-km resolution. This 

result shows how the weather simulations could be influenced by the horizontal spatial resolution 

of the LULC grids, which can be critical for downscaling weather predictions and climate model 

simulations such as the Coupled Model Intercomparison Project phase 6 (CMIP6) projections (M. 

Chen et al., 2020; Jianduo Li et al., 2021). Additionally, the results showed that the spatial extent 

of the areas with an increased air temperature was higher in 2007 relative to the 2014 and 2018 

simulations. The greatest spatial extent of the area with decreased (0.5-1°C) air temperature was 

seen over south Illinois in 2014 at 12-km and 4-km resolutions, although updated WRF simulations 

indicated an increased temperature over this area in 2007. Additional decrease of T2 by roughly 

0.5 °C was evident over southwest Texas in 2007 and 2018. The spatial extent and the intensity of 

the decreased T2 over south Illinois was higher in the 4-km simulation relative to the 12-km 

simulation (Fig. 2.7b). Focusing on temporal variation of air temperature simulations, a two-

sample K-S test indicates that there are significant differences (p < 0.05) between the updated and 

default simulations. This result suggests that if more recent MODIS land cover data are used, the 

WRF simulations show slightly higher daily maximum temperature (+0.8 °C). The 0.5-1°C 

increase in the magnitude of 2-m air temperature over the southeast as a result of land cover change 

indicates the considerable impact of the land surface characteristics on regional climate conditions 

and associated model simulations. 

Similar results were noted for 2-m water vapor mixing ratio (Q2) as for T2 variation 

patterns, with decreases of approximately 1-2 g/kg over the southern part of the nested domain 
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within the 12-km simulations (Fig. 2.7-a, -c). The difference of the two model runs showed an 

approximately 1-2 g/kg decrease in Q2 across the three simulation years, although in 2007 Q2 

decreased by 1-1.5 g/kg across the Ozarks and into the northeast US. Results also showed that the 

Q2 increased by 0.5 g/kg over south Illinois and Indiana in 2014, indicating that transitioning from 

evergreen needleleaf forests, mixed forests, and open shrublands (default data), to woody savannas 

(updated data) had a noticeable impact on the amount of water vapor released to the atmosphere. 

Woody savannas (updated case) have a lower LAI (3.6) than the evergreen needleleaf forests and 

mixed forests (6.4, and 5.16 respectively); therefore, more surface radiation is partitioned into 

sensible heat and less into latent heat resulting in higher T2 and lower Q2 (Ran et al., 2015). As a 

result, decreasing LAI due to changes in LULC results in higher T2 and lower Q2.  
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Figure 2.8 Average of 2-m air temperature (a-b) and water vapor mixing ratio (c-d) differences 

across the three simulation years analyzed over the nested domain at 12-km (a and 

c) and 4-km (b and d) spatial resolutions. Differences were calculated as time series 

of the updated simulations minus the default simulations over the period from May 

– August. 
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Soil moisture and precipitation 

Analysis of the difference of WRF-simulated soil moisture with updated and default land 

cover indicated that modification of land surface physical characteristics can influence the root 

zone soil moisture. Figure 2.8-a shows the 30-cm volumetric soil moisture differences of updated 

and default simulations over the 12-km simulation across the three simulation years. As illustrated, 

the highest decreases (>10%) of 30-cm soil moisture occurred along the Ozarks and into the 

northeast (Illinois and Indiana) in 2007. The intensity of decreased 30-cm soil moisture in these 

areas was lower over the nested 4-km domain. Additional decreases (5-10%) in 30-cm soil 

moisture captured were seen over the center of the LMRAV, north Alabama, and eastern 

Tennessee in 2014, and north Georgia in 2018 in the parent 12-km domain; however, decreased 

30-cm soil moisture content due to updated 4-km LULC was lower than associated areas in the 

12-km simulation. Moreover, results showed the sensitivity of 30-cm soil moisture content to land 

cover change led to a roughly 10% increase in the over the northeast LMRAV, Kentucky in 2014, 

southeast Alabama, and Georgia in 2014 over the nested domain (Fig. 2.8-b).  

These results indicated that soil moisture simulations are sensitive to LULC, because since 

within the Noah land surface model LSM used in the WRF simulations there are two primary 

variables - including vegetation type and the soil texture - upon which other secondary parameters 

such as minimal canopy resistance and soil hydraulic properties are determined (F. Chen & 

Dudhia, 2001b). As a result, changing the land cover type modifies the aerodynamic roughness 

length (m), thereby affecting the exchange coefficient (Ch) within the land surface model (Eq. 1). 
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where ψm and ψh are the integrated similarity functions for momentum and heat, 

respectively, L is the Monin Obukhov length (m), k is the von Kármán constant (equal to 0.4), z0m 

is the aerodynamic roughness length (m), and z is the measurement height (m). In this equation, 

the parameter z0m is controlled by the LULC category. The areas of increased 100 cm soil moisture 

are associated primarily with mixed forests (z0m = 50), deciduous broadleaf forests (z0m = 50), and 

cropland (z0m = 14) in the default LULC data, which were changed to woody savannas (z0m = 5) 

in the 2018 LULCs. The Ch parameter directly affects the latent heat flux (Eq. 2), as a result, 

reduction in z0m due to changes in land cover will lead to a lower Ch, and hence a decreased latent 

heat flux.  

 

𝐿𝐸 =  𝜌𝑠 𝑐𝑝 𝐶ℎ(𝑞𝐺 −  𝑞𝐴) 

 
(2.2) 

where ρs is the density of the surface air (kg m−3), Ch is the surface exchange coefficient 

for heat and moisture (m s−1), qG is the water vapor mixing ratio (kg kg−1) at the surface, and qA is 

the water vapor mixing ratio of the air at 2 m (more details are provided in Temimi et al., 2020). 

As a result, reducing the Ch factor and increasing stomatal resistance in woody savannas (300 s/m) 

relative to forests (125 s/m) can reduce the evapotranspiration, which works to maintain soil 

moisture content. 

The accumulated precipitation between May-1 through September-30 in the default 12-km 

(4-km) LULC simulation exceeded the updated LULC simulation by approximately 100 mm (45 

mm) over the whole nested domain across the three study years. As shown in Figures 2.9 c-d, the 

areal extent and magnitude of increased precipitation (green shaded colors) was less than the 

decreased precipitation (red shaded colors) across the years studied. In addition, WRF simulated 

precipitation with the 12-km updated LULC was greater in dry and wet year, with increased 
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precipitation observed north of roughly 35°N in the 2014 simulation. The spatial pattern of the 

precipitation variations due to LULC changes showed that there is a general area of reduced 

precipitation over Mississippi, Alabama, Tennessee, and north Georgia in 2007 and 2014. These 

areas are mostly associated with decreases in mixed forests and cropland/natural vegetation 

mosaics and increases in woody savannas and savannas in the MODIS updated land cover data. 

Moreover, in northern regions of the LMRAV there was an area of increased precipitation, 

especially in 2014 and 2018, where the latent heat fluxes showed highest regional increases. 

Although the precipitation generation is a complex process and it is difficult to precisely define 

the causes, Dyer (2011) suggests that soil and vegetation characteristics may lead to substantial 

sensible and latent heat flux gradients that effectively generate and drive mesoscale convective 

circulations. 
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Figure 2.9 Average of 30-cm soil moisture (a-b), and accumulated precipitation (c-d) 

differences between the updated and default WRF land use cases (updated - default) 

across the three simulation years analyzed over 12-km nested domain (a and c) and 

4-km parent domain (b and d). Differences were calculated as time series of the 

updated simulations minus the default simulations over the period from May – 

August. 
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To evaluate the temporal variability of precipitation over the study area, two subregions 

were selected within the study region where the difference between the accumulated precipitation 

with the updated and default cases was relatively high in each simulation year (Fig. 2.9). The 

spatially averaged precipitation was extracted for each simulation time over each sub region to 

create precipitation timeseries from May through September. Figure 2.9 a-f shows the cumulative 

probability density functions (CDF) plots of modeled precipitation for the updated and default 

simulations for the selected subregions. Figures 2.9-a, c, e show the CDF plots for the areas where 

the modeled precipitation with updated land cover is higher than the modeled precipitation with 

default land cover. Similarly, figures 2.9-b, d, f were generated for the areas where the WRF-

simulated precipitation with the updated LULC was lower relative to the default simulation. 

Results indicated that above 50-mm accumulated precipitation the updated simulations showed 

higher precipitation relative to default cases, whereas under 50-mm the magnitude of precipitation 

from the updated simulation was equal or less than the precipitation from the default simulation. 

Similar patterns with opposite direction are shown for the CDFs of the areas where the updated 

simulation showed lower precipitation relative to default simulation. It is interesting to note that 

the detected change point around 50-mm accumulated precipitation was generally consistent 

across all simulations. 
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Figure 2.10 Left: same as figure 2.8d. boxes were used to extract precipitation timeseries for the 

areas of decreased (red) and increased (blue) precipitation due to LULC change. 

Right: cumulative distributed function (CDF) for each box over the study period (1-

May-30-September). 

 

To show the actual value of the model outputs for default and updated cases, histograms 

were plotted for each variable assessed in the study. As illustrated in the average maps, Fig. 2.10-

a-b also represent an increased (decreased) accumulated sensible (latent) heat flux over the 

southeast. Results showed that the frequency of the sensible (latent) heat fluxes above (below) the 

average is shifted to the right (left) in the updated simulations. In addition, K-S test was applied 
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on temporally accumulated sensible heat flux to evaluate if there is difference between the updated 

and default simulations in spatial scale. Fig. 2.10-b shows that the histograms of accumulated latent 

heat fluxes for two simulations and associated average (vertical lines) which was significantly (p 

< 0.05) shifted to the left in the updated simulations. Similarly, the frequency of 2-m temperature 

above 27°C increased, whereas the frequency of 2-m temperature values less than ~22°C and 

greater than ~29°C did not substantially change between the default and updated simulations (Fig. 

2.10-c-d). In addition, results showed that decreased water vapor mixing ratio by approximately 

0.5 g/kg over the nested domain was obvious, and Fig. 2.10-d shows that the frequency of the 

extreme values (>13 g/kg) of mixing ratio is reduced. Finally, Fig. 2.10-e-d shows the average soil 

moisture and the accumulated precipitation for the default and updated WRF runs over the study 

area. Most importantly, LULC changes confirm that the extreme precipitation values were reduced 

in the updated simulation compared with the default simulation. These results indicate that the 

updated LULC may improve the bias values of the heavy rainfall simulations over the southeast; 

however, verification of the WRF simulations using observed precipitation is required to justify 

this statement. 
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Figure 2.11 Histogram plots over the nested domain for the 4km updated and default 

simulations. a: accumulated sensible heat flux (W/m2), b: accumulated latent heat 

flux (W/m2), c: average 2-m air temperature (°C), d: average water vapor mixing 

ratio (gr/kg), e: average soil moisture content, f: accumulated precipitation (mm). 

Vertical lines indicate mean values for each case. 
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Conclusion 

This study evaluated the impact of LULC changes on land surface-atmosphere interactions 

using WRF model simulations. Land cover is a critical factor in numerical weather simulations 

and land surface models; therefore, it is also important to assess the sensitivity of land surface 

simulations to changes in the dominant and fraction of land covers within the WRF modeling 

framework. This is especially important over vegetated areas and agricultural areas where land 

cover type is considerably affected by human activities and climate variability. Long-term 

averaged historical land cover data can lead to substantial uncertainty in capturing the interaction 

between the land surface and the atmosphere. As such, it is important to incorporate the variation 

of land use and land cover in weather simulations by utilizing near-real time remotely sensed land 

surface products such as MODIS land cover data. Results of this not only show how updated land 

cover information from the environmental satellites can impact mesoscale NWP model 

simulations, but also how important surface-based processes are on lower-atmospheric 

characteristics over areas with a mix of agricultural regions, natural landscapes, and human-

modified environments, such as the southeast US. 

The effects of spatial resolution of LULC on model-simulated surface heat fluxes, 

temperature, moisture, and precipitation have been examined by comparing model outputs at two 

different LULC horizontal resolutions. Model results showed strong sensitivity towards the model 

resolution and representation of surface characteristics, emphasizing the need to evaluate various 

horizontal resolutions of LULC over the southeast. These results indicate that modifying the 

dominant land use and land cover in the WRF simulations does not fully represent the impact of 

modifications to land use on land-atmosphere interactions independently. As a result, it is 

necessary to update land use fractions along with dominant land cover to understand the role of 
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gridded LULC information on NWP model simulations. The findings of the study are important 

in terms of evaluating the impacts of the land cover change on the surface heat fluxes, near surface 

temperature, and moisture modification at local and regional scales. This is also important in 

regional scale convective processes because as horizontal resolution goes higher (smaller grid 

spacing), more detailed LULC information is introduced to the model simulation.   

Although the results of this study indicated that lower atmospheric patterns are influenced 

by changes in land surface properties, those influences are a result of complex interactions between 

surface heat fluxes, moisture variability and other land-atmosphere interactions. Thus, clearly 

understanding the influence of land use on specific atmospheric processes needs a comprehensive 

sensitivity analysis of different land surface models to define appropriate model parametrizations 

to improve weather predictions. By improving both model accuracy and the general scientific 

understanding of the role of land use on atmospheric properties, future predictions can be improved 

to benefit agricultural productivity and water resource management.  

Future work should focus on annually updated land cover within the model to account for 

climate impacts such as wildfires and drought, deforestation, and urbanization at regional scales. 

Inclusion of other agricultural-related activities such as plant phenology and irrigation time, which 

represents more realistic land information and processes, would allow for improved and/or more 

representative land surface simulations. Finally, including high resolution land cover data and 

producing simulations at high spatial resolution would allow for analysis of deep soil moisture 

variations at local scales and consequent surface impacts such as landslides, drought evolution, 

and surface water resources. This may also be beneficial for accurately resolving local 

meteorological variability in complex terrains.  
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CHAPTER III 

IMPROVING WRF SIMULATIONS THROUGH NEAR REAL-TIME REMOTELY SENSED 

 LAND USE AND LAND COVER DATA OVER THE SOUTHEAST-UNITED STATES 

Introduction 

Physical characteristics of the land surface are a critical component of weather and climate 

models, contributing to a large variety of land surface processes. Dominant land use and land cover 

(LULC) and land use fractions play a major role in the exchange of heat and moisture between the 

land surface and atmosphere by influencing evapotranspiration (ET). Accurate representation of 

LULC within the Weather Research and Forecast (WRF) model is critically important for an 

accurate simulation of the near-surface fields since LULC essentially determines the surface’s 

physical properties within the Noah land surface model used in the WRF simulations. Due to the 

link between LULC, soil water content and evapotranspiration, the stability and structure of the 

atmospheric boundary layer is directly influenced by characteristics of the earth’s surface (Dyer, 

2021), which can then lead to a modification of clouds and precipitation. However, evaluating the 

intensity and sign of this process over the southeast United States is important due to the 

predominance of local-scale variations in the surface heat fluxes that play a major role in 

convective patterns and precipitation generation (Dyer, 2011). The accuracy of the numerical 

weather predictions is generally limited by imperfect initial conditions, improper representation of 

land surface characteristics, and simplified model approximations (J. Zhang, 2018). Accurate 
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representation of the physical characteristics of the land surface is important to correctly partition 

the energy and moisture fluxes between the land and atmosphere. 

Impacts of LULC changes within numerical weather prediction (NWP) models are 

simulated through the land surface model; therefore, differences in land surface model 

parameterizations can significantly impact the simulated land surface parameters in both 

magnitude and spatial extent (Boisier et al., 2012). Errors and uncertainties in land surface 

simulations occur in response to errors in LULC classification and in associated properties such as 

vegetation distributions and surface albedo (Bright et al., 2018; Hartley et al., 2017). Accurate 

representations of these land surface parameters are especially important in regions such as 

southeast U.S. where regional changes in LULC due to agricultural activities and transitions to or 

from active agricultural land. The impact of land cover type and soil water on precipitation is also 

important on shorter time scales for numerical weather prediction from nowcasting to the medium 

range. Significant influences of land cover type on surface energy balance components and 

convective indices and precipitation were found due to various complex processes (Jianduo Li et 

al., 2018; Pérez et al., 2017; Y. Yang et al., 2019). 

For the purposes of this study, we investigate whether the use of MODIS-derived annual 

LULC data improve the accuracy of WRF simulations and whether the 2-m temperature and 

precipitation are well presented and could possibly be improved by using the updated surface 

characteristics. The model simulated air temperature and precipitation will be compared with in-

situ observations to evaluate the performance of the WRF model simulations in spatial and 

temporal scales with default and updated land cover. Additionally, it is important to understand 

the importance of the updated LULC in the WRF model to potentially improve precipitation 
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simulations, which are important for many topics ranging from hydrological, agricultural 

applications, and climate change. 

Data and Methods 

The Advanced Research WRF (ARW) model version 4.3 (Skamarock et al., 2021) is used 

in this study for evaluation of LULC changes covering the period of May through September for 

2007, 2014, and 2018 over the southeast United States. The WRF domain resolutions are 12-km 

and 4-km spatial resolution for the parent and nested domains with the XY number of grid points 

as 230 × 390 grids and 380 × 380 grids, respectively (Fig. 1). A 4-km spatial resolution was chosen 

to provide adequate detail of LULC variability in the default and updated model runs. The model 

vertical grid was configured with 42 vertical levels that are logarithmically stretched to provide 

enhanced resolution within the PBL. The 0.5-degree Global Forecasting System (GFS) analysis 

forcing data provided by the National Center for Environmental Prediction (NCEP) was used to 

initialize the boundary conditions, which were updated every six hours. These data are used for 

regional weather studies (López-Bravo et al., 2018; Ngan et al., 2015) over various locations, and 

are available at different temporal and horizontal resolutions (i.e. 0.25, 0.5, and 1 degree); 

therefore, they were considered as an appropriate forcing dataset for this study. 

MODIS 500-m annual LULC data was obtained from the NASA Earth sciences data and 

information service center website (https://earthdata.nasa.gov) for the study area over the three 

study years. The LULC tiles were reprojected to the WGS84 geographic projection using majority 

resampling (mode) method, which is commonly used for discrete data such as LULC 

classifications. The reprojected data then converted to binary format so that they could be used by 

the WRF Preprocessing System (WPS). For the control simulations, WRF 4.3 geostatic surface 

characteristics from the 1-km MODIS historically averaged LULC data (Kumar et al., 2014) were 

https://earthdata.nasa.gov/
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used. For reference, an analysis of the differences between the default and updated LULC WRF 

simulations over the nested domain are provided in Chapter 2.  

The simulation period was set as 1 May through 30 Sep. 2007, 2014, and 2018, with the 

simulation starting on 15 April to allow for proper spin-up of physical parameters within the model. 

This period was chosen to evaluate the potential improvements of the WRF simulations due to 

updated LULC over a dry year (2007), a normal year (2014), and a wet year (2018) during the 

growing season. In a dry (wet) year, which received substantially less (more) precipitation than a 

normal year during the growing season, it is expected that the surface hydrologic conditions can 

affect agricultural activities, such as irrigation intensity and type of crops that are cultivated; 

therefore, LULC characteristics can be influenced by annual precipitation conditions.  

The WRF simulations were evaluated against in-situ observations to quantify the accuracy 

of the model results. Daily averaged 2-m air temperature and daily precipitation observations from 

National Weather Service (NWS) global historical climatology network (GHCN; Fig 3.1-a, -b) 

were used for point-scale comparison against WRF-simulated 2-m temperature and precipitation 

for both the updated and default simulations. GHCN data is a daily quality-controlled database 

that addresses the critical need for historical daily temperature and precipitation, and snow records 

over global land areas.  GHCN-Daily is composed of daily weather observation from numerous 

sources that have been merged and subjected to a common suite of quality assurance (QA) reviews 

(Menne et al., 2012). 

Validation of the WRF simulations was performed to assess the ability of the updated 

LULC to enhance the model simulations. To quantify the performance of the model, four statistical 

evaluation metrics (Parajuli et al., 2020) including mean error bias (MEB), root mean squared error 

(RMSE), Nash-Sutcliff Efficiency (NSE) (Knoben et al., 2019), and coefficient of determination 
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(R2) were computed to ascertain whether the updated LULC is able to improve the simulations 

relative to default simulations. The use of NSE as a statistical evaluation metric recommended 

(Xiaohui Zhong & Utpal Dutta, 2015) since one drawback in using RMSE is that it can be very 

large in magnitude depending on the units of the predicted values; however, all of these evaluation 

statistics were used to provide a comprehensive model evaluation. The mean error bias represents 

the average of differences between the WRF simulated variable and associated in-situ observed 

values, where positive values indicate that the observed values are higher than the associated 

simulation results and negative values indicate that the observed values are lower than simulation 

results. The NSE is a normalized statistic that determines the relative magnitude of the residual 

variance compared to the measured data variance. This evaluation metric ranges from -Inf to 1, 

indicating how well the plot of observed versus simulated data fits the 1:1 line. The optimal value 

for NSE is 1.0 and therefore for a “minimally acceptable” performance of the model, values should 

be larger than 0.0 (Naabil et al., 2017). NSE equal to 1 corresponds to a perfect match of WRF 

simulations to the observed weather data, and a value of 0 indicates that the WRF simulations are 

as accurate as the mean of the observed data. NSE values less than 0 indicate that the observed 

mean is a better predictor than the WRF-simulated outputs. The R2 explains the goodness of fit 

between the modeled and associated observed variables. This evaluation metric is a common 

statistical technique used to measure the correlation between the observed and model-simulated 

values. Values of R2 vary from 0 to 1 with higher values indicating a higher correlation (given as 

explained variance) between the modeled and observed variables. 
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Figure 3.1 Spatial distribution of the 1300 rain gauges (a) and 151 2-m temperature observation 

sites (b) considered in this study for model evaluation. 

 

Results and discussion  

Updated LULC information did not improve WRF prediction performance in predicting 

air temperature over majority of stations.  

Table 3.1 presents the RMSE, average bias, NSE, and R2 computed between the hourly 2-

m air temperature of measured with those of the default and updated simulations. Smaller RMSE 

values represent better agreement between measured and modeled values, whereas NSE values 

closer to 1 infer better model prediction. Table 3 shows that default simulation provided better 

result when compared with measured 2-m air temperature in 151 stations. WRF-simulated 2-m 

temperature values for the updated simulations showed a general warm bias compared with the 

associated observed data, with an average MEB of -2.24 K and a RMSE of 3.46 K.  Similar results 

are shown for the 2-m temperature bias for the default WRF simulations, with similar MEB and 
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RMSE values compared with the updated simulation. This implies that the change in land use from 

default to updated has minimal effect on overall near-surface temperature patterns. The RMSE 

was relatively consistent across all stations and all simulation years, with a standard deviation less 

than one. For the 2-m temperature, results indicated that the RMSE values ranged from 1.9 K to 

4.7 K, with the lowest (highest) RMSE occurring in May (July). Although updating LULC reduced 

mean error bias of WRF-simulated daily temperature by 0.1°C at 8%, 18%, and 9% of stations in 

2007, 2014, and 2018, respectively. Overall, at 25 of the total 151 stations mean error bias of the 

updated simulations was less than the mean error bias of the default simulations. The cumulative 

distribution of NSE statistics were also plotted to summarize the model performance across all 

three simulation years for the updated and default WRF runs. Verification of WRF-simulated daily 

average 2-m temperature (Fig. 3.2-a) at selected stations over the study region showed that the 

updated LULC within the WRF simulation decreased the NSE values of temperature simulation 

relative to the default case. This indicates that by updating LULC, the overall performance of the 

temperature simulations over the southeast did not improve.  

Results of the mean error bias evaluation of precipitation simulations showed that using 

updated LULC did not reduce the total bias of precipitation simulations relative to the default 

simulations over many study sites. The increased mean error bias and RMSE values in 

precipitation simulation due to updated LULC was relatively higher in 2007 and 2018, compared 

with the modeled precipitation in 2014. As shown in Fig. 3.2-b, the magnitude of the NSE values 

is negative in most of the stations. Further, although the updated LULC did not improve the 

precipitation simulation over the whole region, it decreased the frequency of the negative NSE 

values. Furthermore, the R2 values of updated simulations are slightly less than the associated 

values of default simulations. As a result, updating LULC may not be the best way to improve the 
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performance of the WRF model simulations, and post processing the model outputs using 

statistical learning models may be a better alternative for enhancing the NWP simulations.  

Table 3.1 Average values of four statistical evaluation metrics of updated (up) and default 

(def) WRF-simulated variables relative to 151 temperature stations across the three 

simulation years 

Year RMSEdef RMSEup MBEdef MBEup R2
def R2

up NSEdef NSEup 

2007 2.94 3.28 -1.61 -2.04 0.66 0.64 -0.01 -0.23 

2014 3.03 3.24 -1.88 -2.05 0.70 0.68 0.03 -0.12 

2018 3.48 3.87 -2.33 -2.62 0.47 0.45 -1.35 -2.09 

Mean 3.26 3.46 -1.94 -2.24 0.61 0.59 -0.44 -0.81 
 

 

 

Figure 3.2 Cumulative distribution of WRF simulation performance calculated as Nash-

Sutcliffe Efficiency (NSE) over 3-year simulations in 151 2-meter temperature 

stations (a) and 2400 rain gauge sites (b). 

 

Performance comparison between the updated and the default WRF simulations for all 

stations are plotted in Figure 3.3-a, -b, -c. Difference of the RMSE values between updated and 

default (updated - default) simulations were calculated at each station. Negative values of change 

in RMSE represent improvement in temperature simulations due to updated LULC and positive 
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values show that decreased temperature accuracy in the updated WRF simulations. Based on the 

RMSE difference values at each site, the accuracy of temperature simulations decreased at almost 

all stations, however, over southwest Mississippi and central Texas in 2007, Missouri, Illinois, and 

Ohio in 2014, and Mississippi and Texas in 2018 simulations. Moreover, across many sites the 

magnitude of the R2 metric decreased by approximately 2-6% due to using updated LULC. Even 

though the R2 was not improved in many sites, mean error bias was reduced due to updating the 

land cover within the model simulations. For example, difference of the mean error bias between 

the updated and default simulation showed that the bias associated with the updated LULC is 0.5-

1 °C less than the default temperature simulation over south Georgia in 2007; however, the R2 

values did not improve. The spatial pattern of differences in simulated temperature between the 

updated and default simulations over south Georgia showed that decreased RMSE and R2 values 

are mostly associated with transition from croplands in the default to woody savannas in the 

updated LULC data (Fig. 2.3). The spatial extent of changes in LULC form the default dataset to 

the updated data was almost consistent across all simulations, but the change in model performance 

was not consistent across all simulations; therefore, it is difficult to find spatial relationships 

between LULC and changes in model performance.  

Precipitation observations and WRF simulated precipitation were compared at each 

measurement point over the nested domain across the three study years (Fig. 3.3-d, -e, -f). The 

negative RMSE values (RMSEupdate - RMSEdefault) suggested that WRF simulation of precipitation 

can be improved considerably with the updated information of LULC at many stations. 

Nevertheless, R2 values between the observed and simulated precipitation showed that the model 

performance was reduced by approximately 2-6% over many other stations. Overall, the number 

of stations with improved simulated precipitation was higher in 2014. One reason could be because 
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the model struggle in simulating extreme (in dry and wet years) rainfall events, however, different 

microphysics and parameterizations should be evaluated with the updated LULC data. As shown 

in Fig. 3.2-b, the change of the NSE values between the updated and default simulations was 

relatively lower than the 2007 and 2018 simulations. Given the noted sensitivity in the magnitude 

and spatial patterns of the sensible and latent heat fluxes as a result of the updated land use (Chapter 

2), results indicated that there was not an apparent spatial pattern in improved precipitation 

simulation over the study area. 
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Figure 3.3 Per-station performance change between the updated and default simulations in 151 

temperature stations and 2400 rain gauge sites across the southeast US. Negative 

values indicate stations where updated LULC improved RMSE values relative to 

default simulations. The first (second) column shows temperature (precipitation) 

stations. a, b, and c (d, e, f) are associated with 2007, 2014, and 2018 simulations. 
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We further investigated the performance of daily precipitation simulations by comparing 

the RMSE values for the updated and default model runs. Three different threshold levels (<0-, 

<1-, and <2-mm) were considered to compare the differences between two simulations and 

determine the number of stations in which the model accuracy was increased.  Table 3.2 summarize 

the RMSE values of the default, and updated simulations in each simulation year. The percentage 

of number of rain gauge stations (out of 1300 sites) where the difference of the RMSE of the 

updated and default simulations are less than 0, 1, and 2-mm is shown. The geographical location 

of stations where the updated LULC increased precipitation simulations by 2-RMSE or more, is 

shown in Fig. 3.4. Although the number of stations in which the simulated precipitation improved 

by 2-mm or more according to the RMSE metric were about 15% percent of the total stations 

(Table 3.1), a geographical pattern was observed for each simulation year. For example, an 

increased precipitation simulation performance was observed over the south Great Plains and 

along the Arkansas into northeast in 2014 simulation, where 16% of the stations were located. 

Similarly, in a large area over the south Mississippi, Alabama, and north Georgia relative 

improvement were made in WRF precipitation simulation due to updating LULC in 2007. 

Additionally, almost in 10% of the stations which were located over Indiana, Illinois, and 

Kentucky, the model performance improved in the updated LULC simulation in 2018.  

 

Table 3.2 Percent of rain gauge stations showed an improvement due to updated LULC 

Year RMSEdefault RMSEupdated RMSEupdated - RMSEdefault 

   < 0 < -1 < -2 

2007 10.4 9.8 65% 32% 15% 

2014 12.1 11.7 60% 30% 16% 

2018 12.0 11.6 63% 28% 12% 
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Figure 3.4 Geographical location of stations where the updated LULC increased performance 

of the precipitation simulations. Shading represents the spatial pattern (roughly) of 

enhanced precipitation simulation for each year. 

 

 

Conclusion 

The aim of this this work was to quantify the change in model accuracy by updating the 

LULC fields within the WRF modeling framework, and whether these updates might be beneficial 

in terms of improving regional weather predictions. In this study, the accuracy of a 4-km WRF 

simulation using default and updated LULC information was quantified through evaluation of 2-

m temperature and precipitation predicted by the WRF model for representative wet, dry, and 

normal years.  Simulations were conducted during the warm season (May-1 – September-30) over 

the Southeast US, where LULC showed substantial changes between the default and updated data. 
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Overall, the NSE evaluation metrics between daily observed and simulated data indicated that the 

2-m temperature and precipitation forecast error from the WRF model increased due to updated 

LULC data across the area. Results indicated that the bias of the precipitation simulations was high 

in the dry year (2007) relative to the normal and wet years; however, there was not a consistent 

spatial pattern in model performance change for precipitation simulations. Although the 

performance of the temperature simulations weakened due to updated LULC across many sites, 

the performance of the model showed an improvement over the Southern Appalachians in 2018. 

Results indicated the potential importance of land cover characteristics on regional scale 

simulations, particularly for the precipitation estimations; therefore, future investigations should 

involve an ensemble simulation whereby a multi-physics ensemble is generated with updated land 

use to quantify potential improvements more clearly in the model simulations especially for 

extreme rainfall events. LULC change were proven to have substantial impacts on the 

inhomogeneity of climatic variables (Zhao & Wu, 2017), which was the primary objective of the 

research. However, other parameters such as cumulus parameterization schemes might also have 

influences on the simulated values, such as the cloud fractions at different levels, for which results 

from ensemble simulations using different parameterization schemes will be more objective. In 

addition, evaluating the performance of the Noah land surface model can have substantial 

contribution in understanding and realizing the scientific reasons of the decreased WRF 

performance due to providing more realistic land surface characteristics. 
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CHAPTER IV 

IMPROVING NOAH-MP LAND SURFACE MODEL SIMULATIONS USING MACHINE 

LEARNING MODELS 

Introduction 

The land surface plays an important role in the Earth’s climate system due to the exchange 

of energy, mass, and momentum between the land surface and atmosphere (Chang et al. 2020). 

These processes directly determine the repartitioning of net radiation into sensible and latent heat 

fluxes, thereby influencing other variables such as precipitation, evapotranspiration, soil moisture, 

runoff, and groundwater storage. Accurate estimation of the surface heat and moisture fluxes is a 

particularly challenging task for numerical weather models. On one hand, the accuracy of the 

geostatic information such as land cover, vegetation density, and soil texture must be sufficiently 

fine to adequately describe physical characteristics of the land surface (Tomasi et al. 2017; Dennis 

and Berbery 2020); however, due to difficulties in capturing near-real-time vegetation status and 

land surface conditions, multiannual means of these static fields have been used in numerical 

weather models (Yin et al. 2016). Research has shown that introducing dynamic crop models and 

prescribing more accurate vegetation information within the Noah multi-parameterization (Noah-

MP) land surface model (LSM) improved the simulations of the land-atmosphere interactions 

(Tsvetsinskaya et al. 2001; Levis et al. 2012; Liu et al. 2016). On the other hand, the accuracy of 

the forcing data into such models, such as from the North American Land Data Assimilation 

System (NLDAS), strongly influences the regional distribution of soil moisture, atmospheric water 
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vapor, and surface heat fluxes (Levis et al. 2012; Pilotto et al. 2015). As a result, uncertainty in 

accurately capturing the land-atmosphere interactions in LSM simulations is associated with the 

quality of the forcing data, prescribed land surface properties, and boundary conditions (Huang et 

al. 2013).  

Building on the Noah land surface model (Ek et al., 2003), Noah-MP has improved 

substantially during recent years (Godfrey & Stensrud, 2010; Mahrt & Pan, 1984; G. Niu et al., 

2011; P. Wang et al., 2018). For example, some improvements include: (1) evolving snow sub-

models from simple bulk-layer models to multilayer models to incorporate more physical 

processes (R. Yang & Friedl, 2003), (2) considering the effects of sub-grid topography on soil 

water distribution and runoff generation (G. Y. Niu et al., 2005), (3) including the exchange of 

water between an unconfined aquifer and the overlying soil column in the soil hydrology schemes, 

and (4) considering plant photosynthesis, respiration, and the related nitrogen cycle (Dickinson et 

al., 1998, 2002). Moreover, the improved physics within the Noah-NP model includes a dynamic 

groundwater component, an interactive vegetation canopy, and a multilayer snowpack (X. Cai, 

Yang, David, et al., 2014). Additionally, the multi-parameterization options allow users to choose 

multiple parameters in leaf dynamics, soil moisture factor for stomatal resistance, canopy stomatal 

resistance, runoff, and groundwater. A comprehensive description of the model improvements are 

given in (X. Cai, Yang, Xia, et al., 2014; Ek et al., 2003). Among the most important boundary 

conditions affecting partitioning the surface latent and sensible heat fluxes is soil moisture, which 

is one of the largest sources of uncertainty in LSM simulations (Koukoula et al. 2019). Soil 

moisture, which may affect precipitation and runoff simulations, can provide a “memory” of past 

precipitation events (Wang et al. 2018b). As a result, the lower the uncertainty of precipitation 

forcing data, the more accurately the LSMs can estimate soil moisture. Tuttle and Salvucci (2016) 
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studied the influence of soil moisture anomalies on rainfall in the United States and found a 

positive relationship between soil moisture and precipitation over the western United States, 

concluding that the relationship between these variables depends on the regional aridity; however, 

to date, simulated fields of soil moisture remain unreliable and the ability to observe soil moisture 

over large scales is limited. Fortunately, the rising interest in the LSM user’s community in 

improving land - atmosphere interaction simulations (García-garcía et al. 2020) has coincided with 

an unprecedented improvement of machine learning models and availability of surface heat flux 

and soil moisture flux field measurements, particularly due to the efforts of the FluxNet community 

(Workshop 2015).  

Over recent decades, the FluxNet micrometeorological tower sites have been used to 

measure the land surface exchange of carbon, water, and energy using eddy covariance techniques 

(Williams et al. 2009). The AmeriFlux network (https://ameriflux.lbl.gov) of carbon and water 

flux tower sites was formed more than 20 years ago by a group of scientists who were separately 

monitoring these fluxes at individual sites (Novick et al. 2018). With the development and 

introduction of a dense network of FluxNet stations with a high temporal measurement resolution, 

detailed observations of the surface heat and moisture fluxes are available to give more information 

regarding the variations in surface energy exchanges. These data have been available since roughly 

1994 as 30-min quality-controlled values (Chaney et al. 2016; Pastorello et al. 2020) for studying 

land-atmosphere interactions and exchange of CO2 and water and energy (K. Wang & Liang, 2009) 

in the biosphere-atmosphere system the to minimize the uncertainties of LSM simulations. 

Information about the surface heat fluxes, soil moisture fluxes, and evapotranspiration is essential 

for numerical weather prediction since these variables are important parameters in lower boundary 

layer conditions, convective processes, and precipitation generation. This network has been 
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considered the most reliable data source to verify LSM outputs including latent heat, sensible heat, 

net radiation, ground heat flux, surface friction velocity, and outgoing longwave radiation, among 

others (see Section 2.3).  

Sensible and latent heat fluxes and radiative processes transfer heat between the air and the 

land surface, which are essential terms describing the physical feedbacks in coupled land-

atmosphere models. Together with evaporation, precipitation, and runoff, these energy and mass 

exchanges modify air and water at the surface (Li et al., 2017). Diurnal variations of surface heat 

fluxes and energy partitioning by LSMs show systematic deviations from observations that were 

reported in early (Yang et al. 2015) and more recent model studies (Best et al. 2005). Consequently, 

the imperfect simulation of the land-atmosphere feedbacks in LSMs has been suggested as a main 

reason why sub-seasonal and seasonal operational weather models fail to predict extreme weather 

events such as extreme runoff events (Dirmeyer and Halder 2017). This is important because land-

atmosphere interactions propagate to larger scales and may finally affect the model sensitivity to 

global changes (Renner et al. 2020). 

Land surface models are developed to provide lower boundary conditions for climate and 

weather prediction models, which simulate partitioning of energy and moisture at the Earth’s 

surface-atmosphere interface (Pitman 2003). Despite advancements in LSM complexity – having 

developed from simple bucket models to multilayer hydrology and canopy models (Liu et al. 2016; 

Niu et al. 2011) – they continue to struggle to accurately represent land-atmosphere processes 

(Dirmeyer et al. 2006). Much research has been done to optimize LSM parameters (Chaney et al. 

2016; Godfrey and Stensrud 2010; Nasonova et al. 2015). Researchers usually choose the physical 

land surface processes options in the LSMs based on their expert knowledge, experience, and the 

literature, or by adopting the default values given in the manual (Chang et al. 2020). It is difficult 
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to use an appropriate parameterization scheme for a heterogeneous landscape due to the 

incompatibility of the chosen scheme for some of the various surface environments. In addition, 

one of the main obstacles in the parameter optimization of LSMs is that the nonlinear interactions 

among model parameters that are unresolvable by current LSM understanding (Sawada 2020). To 

improve the model estimations, an alternative is a combination of dynamical and statistical 

learning models for practical forecasting. For example, model output statistics (MOS) is an 

approach that utilizes statistical relationships between the predictand and variables from the 

numerical models at some projection times (Glahn and Lowry 1972) to improve model accuracy. 

Despite efforts to improve LSM simulations (Zhang et al. 2020; Yin et al. 2016; Chaney et al. 

2016), no major study has attempted to evaluate how well different machine learning models are 

performing for post processing surface heat flux and moisture flux simulations of Noah-MP model. 

The main objective of this study is to utilize machine learning models to improve Noah-

MP surface heat flux, soil moisture and soil temperature simulations relative to available surface 

observations. The manuscript is organized in the following manner: Data and methods section 

(Section 2) will describe the dataset that has been used to force the Noah-MP model and train 

different machine learning models, as well as the observed surface data. In the results and 

discussion (Section 3), the Noah-MP simulations and associated machine learning estimations will 

be compared using statistical evaluation metrics for sensible and latent heat as well as soil moisture 

and temperature, followed by a discussion of the improvement and validity of our proposed 

method. The conclusions, which summarize the findings and outline future research, are provided 

in Section 4. 
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Data and Methods 

Noah-MP model 

Noah-MP has been developed to run in association with gridded models such as the 

Weather Research and Forecasting (WRF) model, or over individual site locations. Since the 

objective of this study is evaluating the accuracy of the simulated surface heat and moisture flux 

simulations in comparison with observed data, the Noah-MP model is run in a single site 

configuration over the AmeriFlux sites. The model was forced with 1/8° by 1/8° (roughly 11 km) 

hourly weather data derived from NLDAS-2 (Luo et al., 2003; Xia et al., 2012), including 

precipitation, air temperature, specific humidity, surface air pressure, wind speed, and incoming 

shortwave and longwave radiation. The superior spatiotemporal resolution of the NLDAS-2 data 

makes it more applicable for evaluating surface heat flux and moisture fluxes at AmeriFlux sites. 

In addition, Noah-MP static input data such as land surface characteristics (Strack et al., 2003; 

Talib et al., 2020) and soil texture data extracted from MODIS annual land cover and WRF static 

soil texture data, respectively. Noah-MP simulations were performed for each AmeriFlux site 

individually (single point) for an 18-year period (2001 – 2018) with one hour temporal resolution. 

Given the atmospheric forcing and static inputs (e.g., soil and land cover type), land surface models 

need to find their own equilibrium state before the output can be compared to actual observations; 

therefore, the Noah-MP simulations were initialized by running the model from 2001 through 2005 

to reach an equilibrium state. More details about the spin-up time for LSMs can be found in Yang 

et al. (1995).  
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FluxNet observations and site selection 

The AmeriFlux dataset (Novick et al., 2018) provides critical linkages between terrestrial 

ecosystem processes and climate-relevant responses at regional and continental scales, and there 

are more than 260 flux tower sites in the U.S. that support continuous observations of water and 

energy fluxes and ecosystem carbon exchanges between the Earth’s surface and atmosphere. 

Alongside many other meteorological variables, the AmeriFlux eddy covariance sites measure 

latent heat flux (W/m2), sensible heat flux (W/m2), soil moisture content (gr/m3), and soil 

temperature at 30-minute intervals. Two main factors limited the number of sites to be used to 

evaluate LSM simulations: (1) the available period of record of observations and (2) the height of 

the sensors collecting the data at each station. To ensure that the seasonal cycles of surface heat 

fluxes are captured, the years of near-continuous observed data were kept. Therefore, the sites used 

for this study were selected based on the availability of the surface heat flux measurements and 

the depth of soil moisture and soil temperature observations at 0.1, 0.3, 0.6, and 1 meter to align 

with the Noah-MP simulation model levels. For example, for developing machine learning models 

for 0.1-m soil moisture, all sites that had at least 3 years consecutive years observed soil moisture 

data at 0.1m were selected, because a separate model for each site were developed. The selected 

sites were representative of 11 land cover types (Fig. 4.1) according to the International Geosphere-

Biosphere Program (IGBP) classification and different climate conditions. Due to complexity of 

temporal autocorrelation of time series data, the temporal structure of the data should be considered 

in machine learning model development. In other words, consistency of the time series data 

provides additional structure like trends and seasonality that can be leveraged to improve the skill 

of the machine learning models. Figure 4.1 shows the geolocation of AmeriFlux sites which were 

used for evaluating the Noah-MP and machine learning estimations in this study. Further, Table 
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4.1 and 4.2 show the AmeriFlux sites measuring soil moisture content and soil temperature and 

their respective dates at which the data are available.  

 

Table 4.1 AmeriFlux sites measuring soil moisture content and their respective dates 

at which the data are available. 

  Observation period  Observation period 

Site ID Start End Site ID Start End 

US-A32 2015 2017 US-Me2 2007 2019 

US-A74 2016 2017 US-Me6 2011 2019 

US-AR1 2009 2012 US-MMS 2001 2015 

US-AR2 2009 2012 US-Moz 2004 2017 

US-Aud 2003 2008 US-MRf 2006 2012 

US-Bar 2005 2017 US-NC2 2005 2019 

US-Bkg 2004 2010 US-NR1 2002 2005 

US-Blk 2004 2008 US-Rwf 2014 2018 

US-Dk1 2001 2007 US-SdH 2004 2010 

US-Dk2 2001 2007 US-Snd 2007 2015 

US-FmF 2005 2010 US-SRG 2008 2019 

US-FR3 2004 2012 US-SRM 2004 2019 

US-Fuf 2005 2010 US-Tw3 2013 2018 

US-Fwf 2005 2010 US-UMB 2009 2019 

US-GLE 2001 2014 US-Whs 2007 2019 

US-IB1 2005 2018 US-Wkg 2004 2019 

US-IB2 2004 2018 US-Wrc 2001 2018 
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Table 4.2 AmeriFlux sites measuring soil temperature content and their respective 

dates at which the data are available. 

  Observation period  Observation period 

Site ID Start End Site ID Start End 

US-Cop 2001 2007 US-MOz 2004 2017 

US-CPk 2009 2013 US-NC2 2005 2019 

US-Dk2 2001 2005 US-Ne1 2001 2019 

US-Elm 2008 2014 US-Ne2 2001 2019 

US-Esm 2008 2015 US-Ne3 2001 2019 

US-Fmf 2005 2010 US-Ro1 2004 2012 

US-FR3 2004 2012 US-Ro4 2015 2019 

US-Fuf 2005 2010 US-Rwf 2014 2018 

US-Fwf 2005 2010 US-SdH 2004 2009 

US-GLE 2001 2014 US-Skr 2004 2011 

US-Ha2 2004 2019 US-SRM 2004 2019 

US-IB1 2005 2018 US-Syv 2001 2008 

US-IB2 2004 2018 US-WCr 2001 2019 
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Figure 4.1 Map of AmeriFlux sites over the United States used in this study to evaluate surface 

heat flux simulations. Stations are colored according to the length of the period of 

record. 

 

Preprocessing data 

Prediction of surface heat and moisture flux (predictands) was essentially a supervised 

regression problem in which the predictand (i.e., latent heat flux) was a continuous variable. For 

the first step in the study, the data were sectioned into k-folds (time-splitting) to perform K-fold-

Cross-Validation. The train-test split is a technique for evaluating the performance a machine 

learning algorithm, which can be used for classification or regression problem and can be used for 

any supervised learning algorithm. The models were trained on a subset of folds as training set 

(e.g., 3 years out of 5 years), validated on a small subset of folds as validation fold (e.g., year 3 out 

of 5 years), and test on remaining folds as test set (e.g., last year). It should be noted that the 

validation and test data sets were completely withheld from the entire data process and only the 

training segment was used to fit the model, and then evaluated on the validation set. The validation 
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data points are then included as part of the next training dataset, so the length of training data set 

growth over time, and subsequent folds were divided into a new validation and test sets (Fig. 4.2). 

Precisely, the workflow of how the data is being used to train the models, tune the hyperparameters 

and select the best model is as below: 

1- Training dataset is used to train models for each hyperparameter. 

2- Validation dataset is used to evaluate the models. 

3- One of the models is chosen based on adjusted R2. 

4- The trained model is evaluated with the test dataset. 

These steps were repeated to test the model on each training fold (Fig. 4.2), and the skill 

of the model predictions was assessed based on the average of evaluation statistics obtained in 

every holdout testing segment. The number of folds (K) was different for each site depending on 

the number of available data at each site. It should be noted that splitting timeseries data is different 

from non-time series data, since the characteristics of time series data, such as autoregressive 

nature, trend and seasonality would not allow to randomly shuffle the data and split into training 

and testing groups. Instead, the data must be split with respect to the temporal order (blocks of 

time) in which values were observed. Additionally, since seasonal patterns are inherent in the data, 

the data were grouped into annual sets to avoid introducing bias for a particular season, so the size 

of blocks of time for each segment (train, validation, and test) was at least one year.  

Training data sets were standardized using the z-score technique such that each new feature 

had a zero-mean and unit-variance distribution. The mean and standard deviation of the training 

set were then used to standardize the validation and test data frames. Noah-MP-simulated 

Shortwave downward radiation, total absorbed solar radiation at ground, sensible heat flux, latent 

heat flux, ground heat flux, canopy sensible heat flux, water vapor pressure, evaporation, soil 
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moisture, and soil temperature were used as input features, and AmeriFlux observations (e.g. latent 

heat flux) were used as dependent variable (predictand) for the machine learning models.   

Feature selection is primarily focused on removing non-informative or redundant 

predictors from the machine learning model and maximizing the adjusted R2 for the training phase.  

The selection methodology utilized Recursive Feature Elimination (RFE) method as a 

baseline/control methodology, which has been shown to be a useful approach  (B. Zhang et al., 

2022) to isolating important predictors before optimizing machine learning configurations. This 

method is a sequential backward selection algorithm which uses a specific underlying algorithm 

to select features by evaluating the association between each variable with the target variable and 

removing non-informative predictors from the model and reducing the size of the feature set. This 

is a useful approach to isolating important predictors before optimizing machine learning 

configurations (Mercer, 2020). Having irrelevant features can decrease the accuracy of the model; 

therefore, feature selection can reduce overfitting, reduce computation time, and improve the 

accuracy of the model. It should be notice that the chosen predictors were different for each ML 

model configuration at a given site. Table 4.3 summarize the frequency (%) of the kept predictors 

for sensible heat flux (H), latent heat flux (LE), soil moisture at 0.1m, and 0.3m (SWC_10, 

SWC_30, respectively) and soil temperature at 0.1m (TS_10) across all sites.  

 

Figure 4.2 Flowchart illustrating cross-validation procedure used for training machine learning 

models to post-process time series of Noah-MP model outputs in Ameriflux sites. 
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Table 4.3 Percent of kept predictors for all 5 variables (predictands) in the stations 

based on the best selected model at each site. 

Noah-MP-simulated variables (Predictors) AmeriFlux observed variables (Predictands) 

Variable  long name  H LE SWC_10 SWC_30 TS_10 

HFX sensible heat flux (W/m2) 100 100 0 0 4 

LH latent heat flux (W/m2) 100 100 24 36 7 

LWFORC         shortwave radiation (W/m2) 18 0 0 0 0 

SWFORC         longwave radiation (W/m2) 0 73 28 14 0 

SOIL_M10       0.1m soil moisture (%) 36 36 100 57 14 

SOIL_M30       0.3m soil moisture (%) 9 36 92 100 4 

SOIL_T10       0.1m soil temperature (K) 0 27 32 36 100 

SOIL_T30       0.3m soil temperature (K) 9 0 44 50 100 

EVG ground evaporation heat (W/m2) 0 0 32 36 11 

EAH             canopy air vapor pressure (Pa) 0 0 20 7 4 

GRDFLX         ground heat flux (W/m2) 82 24 24 21 0 

FSA total absorbed solar radiation 64 64 0 0 0 

SHC Canopy sensible heat (W/m2) 45 27 0 0 0 

CHLEAF leaf exchange coefficient 18 55 0 0 0 

CANLIQ intercepted liquid water (mm) 0 0 16 21 4 

 

 

Machine learning models 

In this study, five machine learning algorithms were tested, including: (1) penalized 

regression (Ridge regression), (2) support vector regression (SVR), (3) random forest, (4) gradient 

boosting and (5) neural network. The standard linear model (or the ordinary least squares method) 

performs poorly in a situation where there is high complexity in a large multivariate data set. An 

alternative is the regularized regression (or penalized regression) (DelSole & Banerjee, 2017) 

allowing for the generation of a penalized linear regression model by adding a constraint in the 

equation, referred to as regularization. This penalty forces the model to reduce (i.e., shrink) the 
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coefficient values towards zero, which allows the less contributive variables to have a coefficient 

close to zero or equal zero. 

The Support Vector Regression (SVR) gives the flexibility of defining how much error is 

acceptable in the model and will find an appropriate line (or hyperplane in higher dimensions) to 

fit the data. The SVR model has parameters that requires a robust optimization methodology to 

obtain the best possible configuration. Both radial basis function and polynomial kernels were 

tuned where polynomial kernel degree from 1 to 4, and the γ values on the radial basis function 

kernels included 0.001, 0.01, 0.05, 0.1, 0.2, and 0.3. Further, the cost function was tested for 1, 10, 

100, and 500 and tested values for the ε-loss function included 0.1, 0.05, and 0.01 (which were 

tested for every kernel configuration).  

A random forest (RF) is a machine learning technique that is widely used to solve real-

world problems (Wu & Li, 2019; Xu et al., 2018). The backbone of the random forest method is 

decision trees, with each of the data partitions in classification or regression trees based on if-else 

rules (Liaw & Wiener, 2002). The aggregate of the results of multiple predictors gives a better 

prediction than the best individual predictor. There is a strategy to predict the response variable by 

getting them from the predictions of all individual trees. The Random Forest model works based 

on the strategy of the mean ensemble technique (Liaw & Wiener, 2002). The Gini index or the 

Entropy index are used for splitting or partitioning the data into regression or classification trees. 

In practice, the Gini index measures the purity of each node, such that the value of the Gini index 

for a child node should be less than the parent node in order to predict the class. Conversely, the 

Entropy index is a measure of node impurity. For the RF model number of predictors (2, 3, 4, and 

5), number of trees (5, 10, 15, 100, 500, and 1000), and maximum number of levels in each 

decision tree (2, 3, 4, 5, and 6) were used to grow each tree.  
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Gradient boosting (GB) is another method of converting weak learners into strong learners, 

the same strategy as random forest, but with a different method to train the model. In a random 

forest the trees are trained independently of each other, but in gradient boosting the 𝑘𝑡ℎ tree is 

trained from the first k-1 trees and update the residual for the 𝑖𝑡ℎ example of difference between 

prediction and target (real value) (Friedman, 2002). There are several ways to control the 

overfitting problem in random forest and gradient boosting models, such as limiting the depth of 

trees for splitting the input samples and finding the optimal number of samples for each node and 

each leaf for each tree. 

The artificial neural network (ANN) is a powerful data modeling tool that can capture 

complex relationships between inputs and outputs, which is developed by the motivation of 

implementing artificial systems that can perform intelligent tasks similar to those performed by 

the human brain. In general, ANN can approximate any nonlinear relationship between the 

predictors and predictand variables. Neural networks map output variable to input features by 

propagating the input through a net of nodes. Next to the input layer with the input nodes, several 

hidden layers with various numbers of nodes and an output layer can be set up. At each node, an 

activation function is applied to modify the incoming signal. Along each path between two nodes 

a weight factor is applied to the signal. These weights are modified during the training process in 

a way to minimize a defined loss function (Lecun et al., 2015). The loss function provides a 

measure of error by comparing the final output of the network and the target values. 

Hyperparameters including different combination of hidden layers ([32, 32, 32], [15, 10, 5], [32, 

16, 8]), activation function (Hyperbolic tangent or Tanh, sigmoid or logistic, and Rectified Linear 

Unit or Relu), L1 and L2 (0.0001, 0.001, 0.01) regularization which add stability and improve 

generalization, were used to tune the model.   
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Evaluation metrics 

To quantify the performance of the Noah-MP model and machine learning models, mean 

error bias (MEB), and coefficient of determination (R2) were used to compare the model outputs 

for both the Noah-MP simulations and machine learning models. In addition, MEB of Noah-MP 

outputs was calculated for the training set, then it was used to correct the Noah-MP simulations in 

the testing sets (Noah-MP_BC). Same evaluation metrics (MEB and R2) were then used to assess 

how well the bias correction can improve the Noah-MP simulations. The MEB represents the 

average of differences between the Noah-MP simulated (and machine learning estimations) 

variable and associated Fluxnet observations and in which positive values indicate that the 

observed values are higher than the associated model outputs and negative values indicate that the 

observed values are lower than model results. The R2 describes the goodness of fit between the 

modeled and observed variables and the magnitude of R2 varying from 0 to 1 and the higher values 

indicates a closer association between the modeled and observed variables.  

 

Results and discussion 

Sensible heat flux 

Figure 4.3-a shows the mean error bias values of cross validation of sensible heat flux 

simulations derived from Noah-MP model, bias-corrected Noah-MP (Noah-MP_BC), and the four 

different machine learning models. Results showed that the sensible heat flux residuals associated 

with Noah-MP simulations vary between -75.2 to 64.4 (W/m2) and the Noah-MP_BC residuals 

vary between -61 to 53 (W/m2) over the 69 different stations. The machine learning models 

substantially reduce the sensible heat flux residuals in most of the stations. The mean error bias 

was relatively consistent across all stations for the random forest and gradient boosting than the 
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Noah-MP_BC. Figure 4.3-b compare the cumulative distribution of coefficient of determinations 

(R2) for the machine learning models versus Noah-MP simulations in AmeriFlux sites, with 

average R2 values of 0.74, 0.77, 0.78 and 0.76 between the true values and predicted values for 

regularized regression, random forest, gradient boosting, and neural network models, respectively. 

For comparison, this value is 0.64 for the Noah-MP simulations. This result indicate that machine 

learning improved the R2 score of the Noah-MP hourly sensible heat flux simulation and reduced 

the mean error bias in most of the Ameriflux sites. According to the mean error bias evaluation 

metric, results revealed that an average, the regularized regression, random forest, and gradient 

boosting outperformed with respect to the neural network, Noah-MP and bias corrected Noah-MP 

results. In addition, the average of R2 values associated with neural network models (0.76) was 

relatively higher than the regularized regression models (0.74). Random forest, gradient boosting 

and neural network models’ performance was similar according to the average of R2 evaluation 

metric in all Ameriflux sites. 
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Figure 4.3 Results showing the cumulative distributions of model performance calculated as 

mean error bias (a) and coefficient of determinations (b) of sensible heat flux of 

Noah-MP, Noah-MP bias corrected (NoahMP_BC), and five machine learning 

models in Ameriflux sites. 
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Although reducing bias does not mean an improvement necessarily, to illustrate spatial 

pattern of the Noah-MP simulation bias versus Gradient Boosting bias, Figure 4.4 presents the 

mean error bias values of cross validations over all the AmericFlux sites. It should be noted that, 

these values were obtained from evaluating the models on validation sets. High bias values in arid 

regions over the southwest represent the underestimations of sensible heat fluxes at these sites (red 

color). Low mean error bias values indicate that the Noah-MP overestimates sensible heat fluxes 

at some stations such as eastern U.S. and California (green color). Furthermore, results indicated 

that the gradient boosting, and random forest models not only improved the R2 metric, but the 

models also substantially reduced the mean error bias values (3.4 W/m2 compared with 14.9 W/m2) 

at most of the FluxNet stations. In general, findings suggested that model results with machine 

learning post-processing are an improvement over raw Noah-MP simulations at nearly all stations.  
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Figure 4.4 Mean residuals of sensible heat flux (W/m2) of bias corrected NoahMP 

(NoahMP_BC) and gradient boosting in AmeriFlux sites across the Continental U.S. 

Colors indicates the residuals of NoahMP_BC and shapes indicate the residuals of 

gradient boosting model. 

 

Latent heat flux 

Analysis of Noah-MP-simulated latent heat flux versus observed values at the 96 FluxNet 

stations showed that the magnitude of mean error bias values varied between -44 to 137 (W/m2), 

with the associated bias-corrected residuals (Noah-MP_BC) varying between -37 to 91 (W/m2). 

The machine learning estimations show that the magnitude of biases range from -34 to 71 over the 

64 FluxNet sites. Although the magnitude of the latent heat flux residuals are small at some 

stations, it does not necessarily indicate that the hourly and diurnal variability of latent heat flux is 

well-captured by the Noah-MP model. Instead, it can be related to the lower annual mean and 

standard deviation of latent heat flux at those specific stations. For example, the US-Rwf and US-
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Aud sites, which show lower simulation bias among the other stations, have lower annual 

vegetation coverage and the maximum value of the normalized difference vegetation index 

(NDVI) is less than 0.4 in both stations (0.1<NDVI<0.4). As a result, the magnitude of annual 

mean latent heat flux is lower at these sites (40 and 20 W/m2, respectively) and the standard 

deviation is about 60 W/m2 and 38 W/m2 at US-Rwf site and US-Aud, respectively. In contrast, in 

the US-Twt site the higher annual mean (83 W/m2) and standard deviation (112 W/m2) of latent 

heat flux is associated with high annual vegetation coverage and variability (0.25<NDVI<0.75). 

The machine learning models improved the Noah-MP-simulated latent heat fluxes over the 

AmeriFlux sites. Mean error bias (Fig. 4.5-a) of regularized regression, random forest, and gradient 

boosting models were relatively lower than the mean error bias associated with neural network, 

Noah-MP, and Noah-MP_BC models. This improvement was substantial at some stations such as 

US-Twt, US-Tw4, US-Tw3, US-Tw1, US-Myb, and US-Snd; Although neural network with 

tangent hyperbolic activation function, and 3 hidden layers and 0.01 of L1 configuration showed 

better performance (lower mean error bias and higher R-squared) relative to other configurations, 

the estimated error tend to slightly larger (6.4 W/m2) relative to the other machine learning models 

(4.5 W/m2). Figure 4.5-b summarizes the cumulative R2 values for each model for over the 

AmeriFlux stations, representing how well model estimates agree with hourly surface flux 

observations at each station. Overall, according to the R2 of testing data set, Noah-MP simulations 

adequately captured the latent heat fluxes with average R2 value of 0.57. At the US-Var, US-Ton, 

US-Whs, US-SRG, US-Ho1 sites, the Noah-MP simulations show larger (>0.7) R2 values, whereas 

at the US-Tw1, US-Tw4, US-Myb, US-GLE, and US-GBT sites this evaluation metric was lower 

than 0.3. The dominant soil class in these sites are Silty and Organic Materials, and results showed 

that Noah-MP surface heat flux estimates are highly biased in these soil types. Investigating the 
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effects of soil texture or error associated with the forcing data is beyond the scope of current study; 

however, soil texture can potentially plays an important role in driving this bias. Overall, these 

results suggested that, relative to the Noah-MP model outputs, the gradient boosting machine 

learning model was able to explain much of the variance of latent heat fluxes at all stations with 

average R2 values of 0.77. 
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Figure 4.5 Results showing the cumulative distributions of model performance calculated as 

mean error bias (a) and coefficient of determinations (b) of latent heat flux of Noah-

MP, Noah-MP bias corrected (NoahMP_BC), and five machine learning models in 

Ameriflux sites. These results are based on the average of evaluation statistics 

obtained in every holdout testing segment. 
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To represent the spatial distribution of bias associated with Noah-MP_BC and gradient 

boosting models, Fig. 4.6 shows the spatial distribution of latent heat flux biases for these two 

models. Noah-MP shows the larger overestimation (green shaded) of latent heat fluxes at the 

northeast sites. This is not surprising because this area is covered by vegetation and the 

evapotranspiration is higher in this area, therefore the residual values are relatively higher. In 

addition, the underestimations are shown at the central region, mountain region, Florida, 

California, and New Jersey. Most notably, the bias values of latent heat flux can be larger than the 

55 (W/m2) during the daytime. (Zheng et al., 2015) found similar results for Noah model 

simulations, which verifies that within the model simulations the largest amount of latent heat is 

released to the atmosphere during the daytime. 

 

Figure 4.6 Mean residuals of latent heat flux (W/m2) of bias corrected NoahMP (NoahMP_BC) 

and gradient boosting in AmeriFlux sites across the Continental U.S. Colors 

indicates the residuals of NoahMP_BC and shapes indicate the residuals of gradient 

boosting model. 
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It can be concluded that, compared with Noah-MP bias-corrected latent heat flux estimates, 

the gradient boosting models have lower mean error bias values over all 64 stations used for 

evaluating latent heat flux simulations. Considering mean error bias values and R2 altogether, 

between the four machine learning models used, the gradient boosting, and random forest models 

provided the best fit to observations, meaning that these models are capable of reducing Noah-

MP-simulated latent heat flux bias in terms of diurnal and seasonal variability over all stations. On 

the whole, latent heat mean error bias values averaged across all stations for the Noah-MP, Noah-

MP bias corrected, and gradient boosting models were 1.64, 1.56, and -0.06 (W/m2) respectively. 

As a result, in the majority of stations, machine learning provides a substantial improvement over 

the Noah-MP surface heat flux simulations, which are important for the other numerical modeling 

frameworks such as Weather Research and Forecasting (WRF) and WRF-Hydro model, the latter 

of which forms the basis for the National Water Model (NWM).  

 

Analyzing Noah-MP simulation bias 

Noah-MP-modeled surface heat fluxes are compared with the observed values at 

AmeriFlux sites. To explore the Noah-MP simulation biases associated with each land use and 

land cover, we further analyzed the magnitude of surface heat flux simulations at different land 

cover types. Table 4.4 summarizes the average of bias values of surface heat flux simulations for 

different land use and land cover types over all the FluxNet sites. Results indicated that, on 

average, Noah-MP overestimates sensible heat fluxes with the mean error bias values of -12.5 and 

-11.8 (W/m2) for Deciduous Broadleaf Forest and Evergreen Needleleaf Forest land covers 

respectively, but underestimates by 17.4 (W/m2) at Woody Savannas land cover. Furthermore, the 

largest amount of latent heat overestimation is shown at the Mixed Forest (-12.3 W/m2) sites and 
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the highest values of underestimations were observed over Evergreen Broadleaf Forest (24.3 

W/m2). The results show that the magnitude of the bias values associated with sensible heat fluxes 

are larger at Deciduous Broadleaf Forest, Evergreen Needleleaf Forest, and Woody Savannas, and 

the latent heat flux bias values are larger at the permanent wetlands and mixed forest sites. It should 

be noted that only one site is located at permanent wetlands land cover which is not satisfactory 

for statistical evaluation of the Noah-MP simulations. Figure 4.7 shows cumulative distributions 

of mean error bias (W/m2) comparing the performance of the Noah-MP sensible heat flux (Fig. 

4.7-a) and latent heat flux (Fig. 4.7-b) simulations associated with different land use and land cover 

(LULC) classes across the AmeriFlux sites. Overall, the cumulative plots show that how negative 

and positive values of residuals of surface heat flux simulations distributed at each LULC types. 

For instance, approximately at 35% (80%) of the sites, sensible (latent) heat flux simulations 

showed bias values less than or equal zero in croplands LULC (Fig. 4.7-a, -b, respectively). 

 

Table 4.4 Average mean error bias values of sensible and latent heat flux 

simulations at different land use and land covers over the AmeriFlux sites. 

n represents the number of years used for cross validation at all sites 

associated with each land cover type. 

Land Use and Land Cover Sensible Heat (W/m2) Latent Heat Flux (W/m2) 

 Mean n Mean n 

Deciduous Broadleaf Forest -12.5 75 -0.1 24 

Evergreen Needleleaf Forest -11.5 26 -10.0 82 

Savannas -7.2 96 -11.1 94 

Evergreen Broadleaf Forest -6.8 4 -10.0 4 

Croplands -2.1 206 -2.9 255 

Mixed Forests -2.0 81 -12.3 30 

Grasslands 7.4 240 9.5 273 

Open Shrublands 13.6 46 -2.0 46 

Woody Savannas 17.4 71 6.1 65 

Permanent wetlands -- -- 22.0 5 
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Figure 4.7 Cumulative mean error bias (W/m2) values of sensible heat flux (a) and latent heat 

flux (b) of Noah-MP simulations at different land use land covers (LULC). 
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To explore the possible reasons for the range in bias of the surface heat flux simulations, 

we further investigated the Noah-MP simulation bias values at different soil categories (Table 4.4). 

Results indicate that the higher values of overestimations (approximately -44.5 W/m2) are 

associated with Organic Material and the model underestimates the sensible heat fluxes by 14.5 

(W/m2) at the Sandy Loam soil type. Similarly, latent heat fluxes are overestimated by 19.1 (W/m2) 

at silty Clay Loam soil type but underestimated by approximately 55.7 (W/m2) at the Organic 

Material soil type. The lowest values of sensible heat fluxes are shown at Silt Loam (-2.4 W/m2) 

and Clay (+2.4 W/m2). Likewise, the lowest values of latent heat fluxes are linked to Loam soil 

category (~ 0.0 W/m2). To summarize these results, Table 4.4 illustrates the mean error bias of 

Noah-MP simulation for different soil classes. To illustrate the distribution of Noah-MP-simulated 

surface heat fluxes at different soil categories, figure 4.8 summarize cumulative residuals 

comparing the performance of sensible and latent heat flux simulations across all sites.  

 

Table 4.5 Average mean error bias values of surface heat flux simulations at 

different soil classes over the AmeriFlux sites. n represents the number of 

years used for cross validation at all sites associated with each soil type. 

Soil Categories Sensible Heat (W/m2) Latent Heat Flux (W/m2) 

 Mean n Mean n 

Organic Materials -44.5 33 -19.1 36 

Sand -10.2 74 -9.4 406 

Silt Loam -2.4 355 0.0 133 

Clay 2.4 12 6.8 12 

Silty Clay Loam 6.3 31 9.0 159 

Loam 6.8 130 17.6 79 

Sandy Loam 14.5 210 55.7 53 
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Figure 4.8 Cumulative distribution of mean error bias (W/m2) of sensible heat flux (a) and 

latent heat flux (b) of Noah-MP simulations associated with different soil 

categories. 
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As the data used in this study are time series, it is critically important to capture the timing 

of extreme events. As timing information is not represented in metrics showing central tendency, 

other statistical evaluation metrics should be considered that account for the time component of 

the data. We further investigated the time series of surface heat flux observations and associated 

model output bias at different sites to explore the discrepancy of sensible and latent heat flux 

simulations at different land cover types (Fig. 4.9). Time series of the AmeriFlux observations and 

associated simulation’s bias values show different patterns during different seasons and over 

different vegetation types. During the warm season, the Noah-MP sensible and latent heat flux 

simulations are substantially higher (>200 W/m2) than the associated AmeriFlux observations at 

Woody Savannas vegetation type (Fig. 4.9i-j). In addition, in cropland and close shrubland sites 

(Fig. 4.9a-h), when surface heat flux magnitudes are higher than roughly 200 (W/m2), Noah-MP 

yields lower sensible heat flux estimations (positive bias values), indicating that Noah-MP 

underestimates the maximum values (Pilotto et al., 2015). Similarly, Noah-MP yields larger 

sensible heat values resulting in negative bias values where the surface heat fluxes are lower than 

~200 (W/m2), such as from January through July in the CRT site (Fig. 4.9a-h), and from July 

through September at the Ro1 site (Fig. 4.9c), The pattern of the surface heat fluxes changes around 

July, and consequently the Noah-MP bias is shifted at this time (Fig. 4.9a-d). These results suggest 

that surface energy partitioning and associated land-atmosphere interaction are more strongly 

controlled by the state of the vegetation at cropland areas. This is an important result because if 

vegetation characteristics forcing the atmosphere and near surface atmosphere are connected to 

land cover and vegetation type, then we can conclude that land management and crop-growth 

timing could play a significant role in the strength of that forcing (Bagley et al., 2017).  



 

85 

 

Figure 4.9 Time series of NoahMP-simulated sensible heat flux (left) and latent heat flux 

(right), observed (orange), and associated bias (blue) of surface heat fluxes at 

different AmeriFlux sites with different vegetation types. 
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Soil Moisture 

Noah-MP simulations and AmeriFlux observations have coinciding soil data at 0.1, and 

0.3 meters. As a result, following the observed data availability, the model’s outputs verified at 

only 0.1-, and 0.3-, depths. Fig. 4.10 presents the root mean squared error (RMSE) values 

associated with the Noah-MP simulations, and five machine learning models at 0.1-m, and root 

zone (0.3-m). Among the 36 stations observing soil moisture at 0.1-m, 25 stations were used to 

evaluate 0.1-m soil moisture model outputs and 11 stations were used to assess soil moisture 

simulations at 0.3-m soil depth. The difference between the number of stations for each depth was 

due to the availability of the data at that site. Results from the Noah-MP model in association with 

data from soil moisture observations shows that the error of 0.1-m soil moisture simulations varies 

between -10% to 10% over all stations, with values being slightly higher at 0.3-m (figures not 

shown). Overall, results showed that the lowest errors (as quantified by RMSE) were seen in 

machine learning models (5%) relative to Noah-MP simulations (9.2%) over all stations.  

In addition, comparing observed and simulated soil moisture by Noah-MP and the five 

machine learning models indicate that the machine learning estimations agree well with the 

observed maximum and minimum soil moisture values. Since the soil moisture time series are not 

fluctuating substantially in hourly and daily scale, especially at the 0.3-m layers, the machine 

learning models show smaller bias values at most of the sites. At lower depths the soil moisture 

estimations show lower bias values and generally agree well with that of the observed data; 

however, the performance of the machine learning models can be affected by the lack of the hydro-

climate diversity in the training data (O & Orth, 2021). As a result, evaluating the trained machine 

learning models for the next years with different hydro-climate conditions could be a promising 

solution to estimate more reliable soil moisture data. Additionally, comparing the Noah-MP 
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simulation versus observed data indicated that the simulated volumetric soil moisture at 0.3-m is 

overpredicted. For example, at the Ar2, Ar1, Wkg, SRG, SRM, and Blk sites, the mean values of 

Noah-MP model outputs were two times higher than the observations; however, the machine 

learning-based estimations, especially neural network, and gradient boosting models tended to 

capture the minimum, maximum values better than Noah-MP. In some stations (i.e., AR2, Me6, 

Blk, and UMd sites), neural network outputs stand out with higher coefficients of determination 

and lower RMSE values compared to the Noah-MP outputs.  
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Figure 4.10 Accumulated RMSE values of Noah-MP-simulated soil moisture content (%) and 

associated estimations from five machine learning models at 0.1m (a) and 0.3m (b) 

depths. 
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In this study five machine learning models were evaluated vs. the Noah-MP-simulated soil 

moisture content at different AmeriFlux sites. Comparing to observed soil moisture content, Noah-

MP simulations show an overall better agreement with the observed soil moisture data over the 

study stations (X. Cai, Yang, Xia, et al., 2014). Machine learning provided improved soil moisture 

estimations in each site. The error associated with the Noah-MP simulations could be due to error 

in NLDAS forcing data, systematic error in the observed data, and complexity of physical 

processes involved in the Noah-MP model that makes it difficult to identify the interaction effects 

within the model simulations. Furthermore, the Noah-MP surface heat flux simulations showed 

higher discrepancy at some land covers and soil categories; therefore, the errors associated with 

the partitioning of moisture fluxes could potentially be due to inconsistency in latent heat flux 

simulations.  

Soil Temperature 

Figure 4.11 shows the results of accumulated RMSE values of simulated soil temperature 

at 0.1 meter using Noah-MP and five machine learning models against observations. Results 

indicate that the post-processing Noah-MP-estimated soil temperature data using machine learning 

models well agreed with observed data at 0.1-m. Although the mean error bias values show that 

the Noah-MP model overpredicts by approximately -1.5 C° at most locations, overall, results 

highlight the impressive performance of temperature simulations by Noah-MP model. Likewise, 

all machine learning models yield lower mean error bias values (-0.03 – 0.05 C°) than Noah-MP 

for all the study sites. Compared with observed values, results indicate that Noah-MP overpredicts 

soil temperature values across almost all the study sites, where the post-processing results showed 

a good match with observed temperatures, especially at minimum and maximum soil temperate 

values. These results show that overestimating high temperatures and underestimating low 
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temperatures within the model simulations could be the main source of the biases in the Noah-MP 

model estimations. The lower RMSE values, especially for gradient boosting model, reveal the 

performance of machine learning models in post processing soil temperature predictions. 

 

Figure 4.11 Illustration of accumulated RMSE of 0.1-m soil temperature of Noah-MP 

simulations and five machine learning model estimations.  

 

Conclusion 

This paper focuses on estimation of surface heat flues and soil moisture and temperature at 

selected AmeriFlux sites using the Noah-MP land surface model and post-processing Noah-MP 

outputs using five machine learning models, including: (1) penalized regression (Ridge 

regression), (2) support vector regression (SVR), (3) random forest, (4) gradient boosting, and (5) 

neural network. The Noah-MP simulations were forced by NLDAS-2 data and the simulation 

outputs were subsequently used as input features for the machine learning models. The best 
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machine learning model for surface heat flux estimates was found to be gradient boosting, based 

on the high coefficient of determination for sensible heat flux and latent heat flux (R2=0.75 for 

both variables) over all sites, along with lower bias values (-0.1 W/m2 for both latent heat flux and 

sensible heat flux, respectively). On average, residuals of Noah-MP bias corrected values were -

3.7 W/m2 for the latent heat flux and 2.8 W/m2 for the sensible heat flux. In addition, results 

indicate that stand-alone machine learning algorithms were capable of estimating the surface heat 

fluxes with a higher level of accuracy compared with the Noah-MP model; however, unlike the 

Noah-MP simulations of extreme values, the machine learning models were not able to capture 

the extreme values of surface heat fluxes. This result is opposite for soil temperature simulations, 

which reveal a potential misrepresentation of soil temperature processes by the Noah-MP model. 

Among the five machine learning models, gradient boosting resulted in higher R2 in 

calibrating surface heat fluxes. Moreover, the findings of the current study showed that the 

accuracy of surface heat flux simulations by Noah-MP are influenced by land cover and soil type. 

The results of this research also showed that the Noah-MP model simulation is not able to 

accurately capture soil moisture at deeper soil layers. Our findings have an important implication 

that machine learning models are able to reduce the bias of the physics-based models and improve 

their overall performance. Finally, it is important to note that the machine learning models 

developed in this study are valid for individual stations only. Advanced deep learning models like 

Long Short-Term Memory (LSTM) in combination with Convolutional Neural Network (CNN) 

are recommended so that it may be possible to estimate spatiotemporal surface heat flux variables 

over large areas. 
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CHAPTER V 

CONCLUSION  

Accurate representation of land surface properties is essential to conduct reliable and 

precise numerical modelling experiments. Because land cover types change over space and time, 

land use related parameters such as vegetation, green vegetation fraction, stomatal resistance, 

albedo, and surface roughness will lead to differences in simulated sensible heat flux, latent heat 

flux and many other variables depending on vegetation and land use parameters. Our analysis 

suggested higher sensitivity of the WRF simulations such as surface heat fluxes and precipitation 

over the southeast United States, which indicated the importance of utilizing near-real-time LULC 

within the NWP simulations. Therefore, annually updated satellite observations of land use 

products such as MODIS MCD12Q1 data provides accurate representation of Earth's surface on 

different spatial resolutions and is a desirable source of land cover data.  MCD12Q1 data was used 

in this study for regional WRF modelling and investigated the sensitivity and accuracy of a land 

cover dataset that has been used in several atmospheric modelling systems for the southeast United 

States. 

Comparisons of default WRF land cover data with new land cover dataset derived from 

MODIS images showed that the WRF default data are not up-to-date and accurate, especially for 

southeast. We were able to show that surface heat and moisture fluxes are more sensitive to land 

cover change. Additionally, the model simulations showed that the spatial extent and intensity of 

the surface heat and moisture flux simulations were different for the dry, normal, and wet years. 
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Two simulation results were evaluated using point measurements of daily accumulated 

precipitation and daily average 2-m temperature data over the southeast. Results indicated that the 

updated land cover data did not improve the temperature and precipitation simulations over the 

many sites.  This result implies the importance of developing machine learning models to post-

process the NWP model outputs to enhance the accuracy of the weather predictions in regional 

and local scales. 

The results of this work showed that land surface energy and moisture flux simulations 

were impacted due to change in land cover change. Because the WRF default LULC data were 

extracted based on long-term historical land cover data, the differences in default and updated land 

cover data were substantial, especially over the southeast. Transitions from cropland in the default 

LULC data to the woody savannas in the updated land cover data should impact the climatology 

of the region, especially in terms of maximum and average summer temperatures. The result of 

WRF-simulated surface heat fluxes with updated LULC data showed that latent heat flux, sensible 

heat flux, temperature, and precipitation indicated more sensitivity to local land cover changes; 

however, validation of the WRF-simulated precipitation and near-surface temperature did not 

show an appreciable improvement in the model simulations due to updating the land surface 

characteristics. More investigations should involve an ensemble simulation whereby a multi-

physics is generated with updated land use to realize the scientific reasons of the decreased WRF 

performance by providing more realistic land surface characteristics.  

The post-processing Noah-MP surface heat flux and moisture flux procedure presented 

here is one of the techniques currently available for combining physics-based models and data-

driven models. Several other methods of combining the benefits of machine learning techniques 

with the benefits of physically realistic are in development. For example, Pelissier et al., (2020) 
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use Gaussian Processes to predict error between modeled and observed soil moisture, which allows 

machine learning models to be used dynamically within a land surface model to correct the soil 

moisture state at each timestep of a simulation. Results of this study indicated that data-driven 

methods, especially gradient boosting, are able to substantially improve the land surface model 

simulations such as surface heat and moisture fluxes. Implementing post-processing Noah-MP 

model outputs is relatively straightforward compared to other techniques such as adding physics 

into machine learning code or using machine learning to dynamically update the state variables.
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