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An in situ Electrochemical Study of Electrodeposited  

Nickel and Nickel-Yttrium Oxide Composite Using  

Scanning Electrochemical Microscopy 

 

L. Veleva*a, L. Diaz-Ballotea and David O. Wipf*z 

Department of Chemistry, Box 9573, Mississippi State University, 

Mississippi State, MS 39762, USA 

 

ABSTRACT 

Electrodeposited nickel and nickel-yttrium oxide composite samples were studied in 

situ using scanning electrochemical microscopy (SECM). The monitored probe currents in 

phosphate-citrate buffer (pH 4.2) in the presence or absence of Ru(NH3)6
3+ as an oxidizing 

mediator near the Ni surface show that the SECM is a useful tool for study of the 

electrochemical activity of heterogeneous metal surface at micrometer scales. The SECM 

ultramicroelectrode probe tip provides information about the shape, activity and location 

of particles, such as Y2O3 introduced (co-deposited) in the Ni-matrix of the composite. 

Experiments show that the Ni-matrix in the composite coating is more active than the pure 

Ni-coating. This fact is expected, because of texture changes in the Ni structure upon 

introduction (by co-deposition) of Y2O3 particles. In the absence of mediator in the 

solution, the electrochemical activity of heterogeneous metal surface at a micro-level is 

investigated by using O2 concentration changes. The rate of reaction for O2 reduction was 

found to locally vary at electrodes floating at the open-circuit potential (o.c.p) when 

compared to an electrode potentiostatically polarized at a more positive potential than the 

o.c.p. This behavior suggests that local anode and cathode regions are being observed at 

the o.c.p. sample.  
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Nickel coatings are widely used to protect iron, copper or zinc alloys against 

corrosive attack in rural or industrial atmosphere or are used as undercoating on brass and 

chromium for precious metals coatings.1 Because nickel is magnetic, it is sometimes 

plated (electrodeposited) where magnetic properties are desired. Nickel can be deposited 

with minimal internal stress and is therefore useful in electroforming and aerospace 

applications. Nickel plating for engineering purposes provides relatively good wear and 

abrasion resistance (on molds, for example) and it is also used on electronic circuit boards 

as a protective barrier layer against corrosive chemical environments. In several 

applications, nickel composites have been formed where the nickel is co-deposited with 

dispersed inert inorganic particles such as RuO2, SiO2 and SiC. 2-4 Lately, the use and 

deposition of yttrium-oxide thin films, as well as complex metal-oxide films containing 

Y2O3 are of interest for electrochemical and electronic applications.5-7 

Sintered yttrium oxide (Y2O3) is a white polycrystalline powder, with a high 

melting temperature (2400 °C), high breakdown mechanical strength, and good chemical 

stability. It has weakly alkaline properties and is only slightly soluble in water (pH  7), 

forming Y(OH)3. The oxide is insoluble in alkaline solutions but is more soluble in acid 

pH, producing salts, which are hydrolyzed in several steps, giving various positively 

charged cations, as shown in equation 1: 

  [Y(H2O)6]3+  [Y(H2O)5OH]2+    [Y(H2O)4(OH)2]+  . . . .                  [1] 

The solubility of yttrium oxide is highest at pH < 1.5 but undergoes hydrolysis at pH > 2. 

The probable crystal structure of Y2O3 indicates spatial composition inhomogeneity, with 

the presence of oxygen vacancies, the presence of defects, and an evolution of the 

covalent bond Y-O.8 9  
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A simple Ni-Cr matrix, when combined with the strengthening effect of Y2O3 

dispersoid during mechanical alloys, provides excellent creep properties and resistance to 

thermal fatigue. In addition, chemical surface resistance is improved and operation in 

severe conditions (industrial environments) without protective coatings is possible.10 

Similar effects and improvement of the corrosion resistance were found for a zirconium 

matrix, due to the addition of Y2O3 dispersoid11 and for Zn-Al-Cu alloy, modified by 

deposition of a thin layer of Y2O3.12,13 

In our previous study,14 solid particles of Y2O3 were co-deposited in a matrix of 

plated Ni, (from a Watts bath) and this composite was compared to pure plated Ni. Some 

differences in the electrochemical behavior of both coatings were detected in polarization 

curve, cyclic voltammetry, and impedance (EIS) measurements. Changes in corrosion-

current density, polarization resistance, and charge-current density were probably due to 

the blocking effect of Y2O3 particles at the composite surface. Correcting for the actual 

metal area was difficult because the clusters of Y2O3 are not distributed uniformly within 

the Ni-composite matrix and the particle diameter ranges from 0.5 to 10 μm. Thus, the 

previously measured parameters produce an average electrochemical response over the 

entire composite area and, due to this fact, information about the local activity of nickel 

near and far from the Y2O3 particles is lost.  

The scanning electrochemical microscope (SECM)15 is used here to provide local 

information about the electrochemical activity of the nickel/nickel composite surfaces. 

The SECM uses an ultramicroelectrode (UME) probe, with a diameter of a few nm to 25 

m, to image topographic and chemical variations near a phase surface. This information 

can be used to examine different local electrochemical activities.16-24 For example, 
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images of surface reactivity are obtained by moving the UME probe parallel to a sample’s 

surface at a constant distance (a few tip diameters). Since this method does not require 

electrical contact with the sample, there are few restrictions on the chemical or physical 

nature of the sample. The feedback mode of the SECM uses a mediator species to provide 

information about the electrochemical activity (with respect to the mediator species) of the 

substrate.25 The feedback experiment uses the probe tip electrode to generate an oxidized 

or reduced form of the mediator. At close probe-substrate separation, the mediator can 

quickly diffuse to the substrate surface. “Positive” feedback occurs if the mediator is 

returned to its original oxidation state by electron-transfer at the substrate. The probe 

current increases during positive feedback due to the regeneration process. The increase in 

current is a function of the probe-substrate separation and the rate of substrate-mediator 

electron transfer. “Negative” feedback occurs at an inert substrate. The probe current 

decreases as the probe-substrate separation decreases due to diffusional blocking of the 

substrate surface. An alternate experiment uses the probe as a scanning electrochemical 

sensor. In the substrate generation/tip collection (SG/TC)26 mode the probe senses the 

concentration of redox-active species generated at the substrate surface.27,28   Here, the 

probe is an amperometric electrode and the signal at the tip is, in principle, proportional to 

the concentration of redox active species in solution.  The SG/TC is more sensitive to 

concentration changes than the feedback mode.  Conversely, diffusion and convection 

cause the concentration of redox species to extend significantly beyond the source, which 

makes the spatial resolution in SG/TC mode less than feedback mode.   

In this paper, both feedback and SG/TC modes of the SECM are used to examine 

and compare the local chemical activity of nickel and nickel-Y2O3 composite electrodes: 
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firstly, by addition of a mediator and then by examination of local O2 concentration near 

the sample surface.  

 

Experimental 
 

Electrochemical Deposition of Nickel and Nickel-Y2O3 Composite  Deposition 

occurred in a classical Watts bath containing (g/l): 250 NiSO4ꞏ7H2O, 60 NiCl2ꞏ6H2O, and 

35 H3BO3 (analytical reagent chemicals) at pH 3.5 - 4.2. The experiment was performed at 

55 °C and 4 A/dm2 current density (galvanostatic mode) on a stainless steel cathode, 

which allowed a later removal of the Ni coating for testing. The substrate was 

mechanically polished, etched, and degreased before deposition of each coating. Two Ni 

anodes (99.99 %) were arranged on either side of the cathode to produce a homogeneous 

electric field. For the composite electrodeposition, 50-70 g/l Y2O3 powder, with particle 

diameter less than 0.5 m, (produced by the Institute for Pure Compounds of Bulgaria) 

was introduced into the bath. Particles were held in suspension by air bubble agitation 

from the bottom of the bath cell. 

The co-deposition conditions for Y2O3 are such that the solid oxide particles (or 

their hydrated complex) are positively charged because the solution pH is lower than their 

isoelectric point (i.e.p. ~ pH 7.6).29,30 In addition, hydrolysis of Y2O3 (eq. 1) also leads to 

cationic particles. The Y2O3 particles are thus attracted and adhere to (adsorb) on the 

negatively charged cathode. Under these conditions, Y2O3 is embedded in the growing 

metal layer of Ni. 

Stripped coating samples were evaluated by means of a scanning electron 

microscope (SEM) and energy dispersive X-ray analyzer (EDX), to explore morphology 
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and composition, respectively. It can be seen (Fig. 1) that the dark particles of Y2O3 have 

been incorporated in the Ni matrix as individual particles or, more often, as clusters with 

diameter greater than 2-3 m. The EDX microanalysis confirmed the presence of a 

significant amount of yttrium in the composite, especially compared to the Ni coating 

(Figs. 2-3).  

 

 
Fig.1  Cross-sectional SEM image of electrodeposited Ni-Y2O3 composite 

coating. The black color spots and stains represent yttrium oxide 
particles and their clusters (aggregations). 
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Fig. 2  EDX spectra of electrodeposited Ni coating. 
 

 

 
Fig. 3  EDX spectra of electrodeposited Ni-Y2O3 composite coating. 
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SECM Experiments  The SECM images were obtained by scanning the probe (a 2-

µm-diameter Pt tip) parallel to the cross section of the Ni coatings (electrodeposited Ni 

and Ni-composite). The experimental setup is similar to that previously reported.25,31-33 

The probe is mounted on a TS-75Z stage with integral encoder (Burleigh, Instruments, 

Inc.) for vertical movement. TSE-150 translation stages were used for horizontal  

movement. Closed-loop positioning was accomplished with a Burleigh 6000 ULN 

controller. An EI-400 bipotentiostat (Ensman Instrumentation) was used for all SECM 

experiments. Data acquisition and position control were enabled with a custom LabView 

(National Instruments, Austin, TX) program. Samples of the Ni and Ni-Y2O3 were 

embedded in epoxy and polished to expose a cross-section composite (60-80 m thick of 

2-3 mm long sample) of the composite material for imaging. Before all experiments, 

samples were polished with 0.05 m gamma alumina powder (Buehler Inc.). All 

potentials are referenced to a Ag/AgCl electrode. 

The electrochemical study was performed in two solutions: a pH 4.2 phosphate-

citrate buffer34 with 2 mM Ru(NH3)6
3+ (as (Ru(NH3)6Cl3) as a mediator (oxidizing agent) 

and a pH 4.2 phosphate-citrate buffer with 6 mM NaCl (to replace the chloride anions that 

are introduced by dissociation of the ruthenium salt). This pH buffer was chosen because 

it approximates an acid, polluted atmospheric environment, in absence or presence of 

chloride contamination (in coastal regions). All SECM experiments were performed at an 

initial probe-substrate separation of about 2-3 m. This position was set by monitoring the 

probe current-distance curve or by carefully approaching the surface until electrical 

contact was detected between the probe and sample. During image acquisition, the probe 

scan-rate was normally 20 m/s. 
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Results and Discussion  

SECM in the Presence of Ru(NH3)6
3+  Mediator  Cyclic voltammetry on the Pt-tip 

(UME) showed that the half-wave reduction potential for the Ru(NH3)6
3+/Ru(NH3)6

2+ 

couple is about  –0.175 V (vs. Ag/AgCl) in pH 4.2 phosphate-citrate buffer. The open-

circuit potentials (o.c.p.) of the Ni and Ni-Y2O3 composites in this solution are –0.20 V 

and –0.21 V (vs. Ag/AgCl), respectively. Since the open circuit substrate reduces 

Ru(NH3)6
3+ to Ru(NH3)6

2+, a substrate generation-tip collection (SG/TC) SECM 

experiment was used, in which the substrate was held at o.c.p. during the SECM 

experiment and the probe potential was –0.05 V to oxidize (collect) the substrate 

generated Ru(NH3)6
2+. The probe current, thus, is a concentration map of the Ru(NH3)6

2+ 

near the metal substrate. Depending on the substrate activity, the reduction of Ru(NH3)6
3+ 

will occur at a higher or lower rate, producing a higher or lower concentration of this ion. 

Some contribution due to feedback of the Ru(NH3)6
3+/Ru(NH3)6

2+ is also expected given 

the substrate potential.  

An SECM image of the probe current monitored at a 2-3 m separation from the Ni-

coating is presented in Fig. 4. The probe current is uniform over the Ni coating surface 

with an increase along the right edge of the Ni electrode. The increase can be ascribed to a 

slight tilt in the sample along both the right-left and top-bottom axes and also to the Ni 

protruding from the epoxy. The tip is closest to the surface at the top right. The smooth, 

featureless image indicates that the reduction of Ru(NH3)6
3+ on the Ni coating occurs at 

about the same rate over the surface. The Ni-epoxy boundary is sharply defined by a 3-4 

fold lower probe current (Ru(NH3)6
2+concentration). The low concentration of Ru(NH3)6

2+ 

over the epoxy substrate indicates that the epoxy is electrochemically inert.  
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   Areas of the Ni-Y2O3 composite substrate containing a high concentration of Y2O3 

particles were selected by optical microscopy (Fig. 5) for SECM imaging. The SECM 

image in Fig. 6 of Ni-Y2O3 composite substrate clearly indicates the shape and location of 

the larger Y2O3 particles. Smaller particles are not resolved but appear as slightly darker 

regions in the image. The concentration of Ru(NH3)6
2+ is very low over the oxide 

particles, indicating that Ru(NH3)6
2+ is produced principally on the Ni-matrix. Based on 

the overall probe current in Fig. 4 and Fig. 6, the composite Ni-matrix appears more active 

than the Ni-coating. This fact could be due to changes in the Ni structure  because of the 

inclusion of Y2O3 particles in the Ni-matrix during the metal electrodeposition (such as the 

preferred orientation of its crystal planes, defects and internal stresses). The greater 

activity is also predicted by the more negative o.c.p. of the composite. 

 

 

 

 

 
Fig. 4  SECM image of the probe current monitored on Ni coating (at 

o.c.p.). Scanned in situ in pH 4.2 phosphate-citrate buffer with 2.0 
mM Ru(NH3)6

3+. 
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Fig. 5  Optical microscope image of Ni-Y2O3 composite substrate. 

(The black spots are Y2O3 particles). 

 
Fig. 6  SECM image of the probe current monitored on Ni-Y2O3 

composite substrate (at o.c.p.). Scanned in situ in pH 4.2 
phosphate-citrate buffer with 2.0 mM Ru(NH3)6

3+. 
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The SECM can also provide a vertical concentration map over the substrate. Rather 

than scan laterally at a fixed vertical position across a surface, the scan proceeds laterally 

along one axis and vertically along the other. An x-z vertical concentration map was 

acquired at the 50 m y position of Fig. 6. Data were acquired by repetitive scans of 50 

m vertically from the electrode surface into the bulk solution while incrementing the x 

position. The monitored probe current is presented in Fig. 7. It shows how the “cloud” of 

Ru(NH3)6
2+ (formed on the Ni) increases, when the distance (axis z) between probe and 

Ni-composite surface decreases. (The dark areas in this SECM image, those with a lower 

probe current at left and right parts of axis x, represent epoxy substrate).  

 
Fig. 7  SECM vertical concentration map showing the reduction 

current for Ru(NH3)6
3+. Acquired at a Ni-Y2O3 composite 

substrate in phosphate-citrate buffer at pH 4.2 
 

 

   Phosphate-Citrate Buffer with 6 mM NaCl  Ru(NH3)6
3+ is a mild oxidizing agent 

and its presence during SECM experiments may accelerate corrosion of the Ni substrate. 

Eliminating the Ru(NH3)6
3+ mediator provides a more realistic view of the activity of the 

Ni or Ni-composite surface. According to the Pourbaix diagram for the electrochemical 
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equilibrium of Ni in aqueous solution,35 at pH 4.2 and at a potential of -0.21 V (o.c.p.), 

nickel will be oxidized according to the reaction  

Ni ⇌ Ni2+ + 2e-        [2] 

The pH and o.c.p. correspond to an area of the diagram in which water is stable and 

hydrogen evolution is not favored and, therefore, the corresponding reduction reaction is 

likely dissolved oxygen. The relevant half reaction in this buffered solution is 

O2 + 4H+ + 4e- ⇌ 2H2O       [3] 

Imaging of the O2 concentration (consumed during the cathodic reaction on Ni) with 

the SECM gives an estimation by proxy of the Ni2+ formation at the substrate (the anodic 

reaction). A voltammogram at the probe electrode in this buffer solution shows a wave for 

oxygen reduction and its disappearance upon N2 sparging (Fig. 8). Images were acquired 

by holding the probe electrode at a potential of  –0.3 V in order to reduce O2 (Fig. 8), 

while the Ni or Ni-composite substrate was unbiased and was floating at the o.c.p. The 

experiment in this case is a mixture of a negative feedback and a SG/TC experiment. 

Neither the tip nor substrate potential is sufficient to effect a mass-transfer limited 

reduction of O2 (the substrate o.c.p. varied slightly between experiments but was always 

about –0.21 V vs. Ag/AgCl). This allows the tip to sample the O2 concentration without 

significantly perturbing it through the electrolysis process.  However, as the activity (the 

dissolution) of the Ni electrode changes, the concentration of the naturally present 

mediator (O2) will be changed at the Ni surface.   
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Fig. 8  Cyclic voltammogram (100 mV/s) at the probe (Pt UME) used 

in the SECM experiment, run in phosphate-citrate buffer at pH 
4.2. (- - -) solution exposed to air,  (–––) solution deaerated with 
N2 for 30 min.  

 

 

Evidence for differences in the surface activity were found when the probe was 

scanned in the vicinity of Ni-Y2O3 composite substrate (Fig. 9). In this case, the O2 

reduction current is very small and the SECM image does not sharply define the shape of 

the Y2O3 particles or the metal-epoxy boundary. The dark region along the mid right 

indicates higher O2 concentration at the edge of the composite and, thus, a likely region of 

high Ni dissolution. In addition several dark spots in the upper middle are likely at the 

location of Y2O3 particles. Over the Ni-composite substrate, O2 is consumed (eq. 3) to 

support the Ni dissolution and the probe current is two-times smaller than that over the 
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epoxy substrate or Y2O3, where O2 reduction does not occur. A corresponding SECM 

image at the Ni substrate is presented in Fig. 10A. The O2 reduction current is also very 

low and in the same range as on Ni-composite.  

 
Fig. 9  SECM image of the probe current monitored on Ni-Y2O3 

composite substrate (at  o.c.p.), in phosphate-citrate buffer at 
pH 4.2 
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Fig. 10  SECM image of the probe current monitored on Ni-coating 

substrate. Scanned in situ in pH 4.2 phosphate-citrate buffer. 
(A) at o.c.p. and (B) at anodic polarization of 100 mV (vs. 
o.c.p.). 
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Applying an anodic polarization (100 mV vs. o.c.p.) at Ni (Fig. 10B) or Ni-

composite (Fig. 11) accelerates the nickel dissolution in this buffer solution (in the 

presence of free chloride ions). For example, Fig. 11 presents the SECM image for the 

probe reduction current of oxygen found in a vicinity of Ni-composite. This figure is 

interesting in that it shows the evolution of the chemical environment as the substrate 

potential is moved from the o.c.p. to +100 mV of o.c.p. Acquiring a raster image requires 

a fixed amount of time and thus the y-axis in Fig. 11 can be considered to be the 

equivalent of a time axis. Initially, (y = 0) the image is equivalent to that observed at o.c.p. 

(Fig. 9). As time increases, the image becomes less resolved and the tip current decreases. 

At short times, the image has good contrast between the Ni and epoxy matrix. This 

contrast is due to the presence of an O2 gradient between the epoxy (high O2) and Ni (less 

O2). At longer times (y > 100) the image shows less overall current as the O2 is depleted 

near the substrate surface by anodic dissolution of the Ni (thus generating a significant 

Ni2+ concentration in the vicinity of the substrate). The region of depleted O2 extends 

beyond the Ni-composite surface due to the effect of diffusion. The implication of this 

result is that O2 reduction occurs more uniformly across the surface when the Ni substrate 

is polarized at 100 mV more positive potential (vs. o.c.p.) than when the substrate is 

floating at the o.c.p. Polarization apparently overcomes local anodic and cathodic activity 

of the o.c. electrode, eliminating variations in O2 concentration. The time to acquire the 

image in Fig. 11 is about 20 min. The fact that the change in image does not occur 

instantly upon polarization, but evolves slowly is an indication that the net oxygen 

consumption is small and roughly similar at the polarized and o.c. electrode (Fig. 9). 

These images also indicate that Ni2+ reduction at the tip is not a primary source of the 
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image contrast. Ni2+ reduction would produce an increase in cathodic current at the probe 

electrode. An alternate explanation is that the probe electrode is reducing H+ ion and thus 

the decrease in cathodic current is attributed to a local decrease in H+ ion.22 This 

explanation is unlikely since the Pourbaix diagram indicates that the H+ reduction at Ni is 

not favored at these potentials. In addition, the magnitudes of the current changes are 

consistent with the change in probe electrode current at –0.3 V in the absence and 

presence of O2 as seen in the CVs of Fig. 8. A final possible explanation is that, due to the 

consumption of H+ on the cathodic sites [eq. 3], there is a locally higher concentration of 

OH- ions, which react with Ni2+ ions to form a nickel hydroxide, covering the Ni surface 

and causing a local loss of SECM image resolution. This behavior would mask variations 

in activity at the electrode surface. 

 
Fig. 11  SECM image of the probe current monitored on Ni-Y2O3 

composite substrate at an anodic polarization of 100 mV (vs. 
o.c.p.), in phosphate-citrate buffer at pH 4.2 
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A vertical concentration map (Fig. 12) provides more evidence of O2 consumption at 

the anodic polarized Ni substrate (100 mV vs. o.c.p.). The map is acquired at 50 m along 

axis y in Fig. 10. The monitored tip current shows a decrease in oxygen concentration 

when the tip approaches the Ni substrate and the lighter “cloud” defines the thickness of 

sample and its border with the epoxy substrate. It can be seen that in the bulk of the 

solution (100 m over the Ni substrate), the oxygen concentration is ~ 30% higher. This is 

consistent with the SECM results of Gilbert and coworkers at a titanium surface.24 

 
Fig. 12 SECM vertical concentration map of reduction of oxygen on Ni 

coating substrate (at anodic polarization of 100 mV vs. o.c.p.), 
in phosphate-citrate buffer at pH 4.2 

 

 

Conclusions 

Electrodeposited nickel and Ni-Y2O3 composite samples were compared using in 

situ SECM in mixed feedback and substrate generation-tip collection (SG/TC) modes. The 
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experiments were done in phosphate-citrate buffer (at pH 4.2) in absence or presence of 

Ru(NH3)6
3+ as an oxidizing agent (mediator). SECM images with the addition of a 

mediator clearly indicate regions of higher and lower electrochemical activity on Ni and 

Ni-composite surface. The SECM images with the presence of a mediator define the 

shape, activity, and location of particles, such as Y2O3 introduced (co-deposited) in the 

Ni-matrix of the composite. The Ni-matrix in the composite coating appears more active 

than the pure Ni-coating. This difference is significant when an oxidizing agent is used. 

The electrochemical activity of heterogeneous metal surface is investigated by using O2 

concentration changes in the absence of an additional mediator in the solution. The rate of 

reaction for O2 reduction was found to locally vary at electrodes floating at the open-

circuit potential when compared to an electrode potentiostatically polarized at 100 mV 

more positive than the o.c.p. This behavior suggests that local anode and cathode regions 

are being observed at the o.c.p. sample. This is intriguing and should be of interest when 

comparing metallic corrosion data acquired at o.c.p. or potentiostatically.  
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