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We propose and numerically simulate a semiconductor device based on coupled quantum wires, suitable for
deterministic quantum teleportation of electrons trapped in the minima of surface acoustic waves. We exploit
a network of interacting semiconductor quantum wires able to provide the universal set of gates for quantum
information processing with the qubit defined by the localization of a single electron in one of two coupled
channels. The numerical approach is based on a time-dependent solution of the three-particle Schrödinger
equation. First, a maximally entangled pair of electrons is obtained via Coulomb interaction between carriers
in different channels. Then, a complete Bell-state measurement involving one electron from this pair and a
third electron is performed. Finally, the teleported state is reconstructed by means of local one-qubit operations.
The large estimated fidelity explicitly suggests that an efficient teleportation process could be reached in an
experimental setup.
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I. INTRODUCTION

Quantum teleportation is the process where a quantum
state is transferred from one system to another one at a dif-
ferent location. It relies on quantum entanglement, the most
peculiar trait of quantum mechanics. In the protocol de-
scribed by Bennett et al.1 the sender Alice and the receiver
Bob share an entangled pair of particles. Alice entangles her
particle with a third one, namely, the one whose state is to be
teleported. Then she performs a destructive joint measure-
ment on the two-particle system on her side. Next, she com-
municates through a classic channel the outcome of the mea-
sure to Bob. Through this information he can reconstruct the
original quantum state by simply applying local operations
on his particle. Clearly the scheme of teleportation relies on
the prior establishment of quantum entanglement between
the two parties. However, only classical communication is
used after the particle to be teleported comes into play at
Alice side.

While experimental realization of quantum teleportation
protocols has been performed in NMR,2 optical,3 and atomic
systems,4 no evidence of teleportation in semiconductor sys-
tems has been achieved so far. Indeed, semiconductor tech-
nology represents a viable approach for the realization of
quantum computing devices and quantum teleportation
would be a crucial validation of its potentiality. Theoretical
proposals for electron teleportation in solid-state systems are
based on single5,6 and double7–9 quantum dots. Teleportation
protocols using edge channels in the quantum-Hall effect
have also been advanced.10 However, quantum-wire systems
have the advantage of intrinsically providing the qubit trans-
mission between specified locations, as required by the Di-
Vincenzo criteria.11 Furthermore, they could be directly inte-
grated in traditional electronic circuitry and allow, in
principle, the implementation of a large number of quantum
hardware units thus overcoming the scalability problem. In
this frame, coherent electron transport in systems of couples
of semiconductor quantum wires has been used to design

qubits and to propose fundamental one- and two-qubit quan-
tum gates.12,13 Furthermore, the use of surface acoustic
waves �SAWs� as a mean to inject and drive carriers along
the wires presents some advantages with respect to the free
propagation along quasi-one-dimensional �1D� channels
since it prevents the spreading of the electron wave function,
it reduces undesired reflection effects, and it makes the elec-
tron more immune to the decohering effects of the
phonons.14–16

In this work we propose and simulate numerically a
scheme to perform quantum deterministic teleportation of
electrons in a device consisting of three couples of semicon-
ductor quantum wires. The carriers are embedded in the
minima of SAWs, propagating in the wires direction. The
qubit state is encoded through the localization of a single
electron in one of two parallel quantum wires. In our
scheme, the Coulomb interaction between carriers is used
first for the production of an Einstein-Podolsky-Rosen �EPR�
pair of electrons and then for the rotation of the Bell states
needed to perform a Bell measurement.1,17 We note that the
teleportation model described in the following could also be
applied, without qualitative modifications, to edge channels
in the quantum-Hall regime. In fact, the latter system has
already successfully exposed the two-particle quantum inter-
ference via an electronic version of the Hanbury Brown
Twiss setup.18,19

II. PHYSICAL SYSTEM

The physical system used to implement our quantum tele-
portation scheme consists of three electrons injected by SAW
along three couples of GaAs quantum wires. We assume that
the device operates at low temperatures �simulations are per-
formed at zero temperature� in order to have a negligible
number of electrons in the conduction band and to minimize
decoherence effects due to the interactions of electron with
lattice vibrations. The use of SAW for the injection and
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transport of electrons in the quantum wires16 allows a single
carrier to be captured into a minimum of the sinusoidal pi-
ezoelectric wave propagating along the device and inhibits
the natural spatial spreading of the wave packet. In this way
the particle is confined in a moving quantum dot20 and a
so-called flying qubit is realized.15 In order to implement the
quantum operations for the teleportation scheme we employ
three elements: an electronic beam splitter Rx���, a phase
shifter R0�1����, and a Coulomb coupler T���.21

The former is realized through a coupling window be-
tween the two wires of a qubit able to split an incoming
wave function into two parts.22 In terms of qubit transforma-
tions it corresponds to Rx����0�=cos�� /2��0�+ i sin�� /2��1�
and Rx����1�= i sin�� /2��0�+cos�� /2��1�. The electronic
phase shifter R0�1���� is realized by introducing a suitable
potential barrier in the wire 0 �1�. It acts only on a
single-qubit state by adding a phase factor, namely,
R0����0�=ei��0� and R0����1�= �1�. Similarly, R1����0�= �0�
and R1����1�=ei��1�. The T��� Coulomb coupler is the only
two-qubit gate. It consists of a region in which two electrons
propagating along two different wires get close enough to
each other to give rise to an effective interaction. A phase �
is added if and only if the two-qubit systems is in �0��1� and
the T��� gate acts as follows: T����0��1�=ei��0��1�, leaving
the other three two-qubit states unchanged. The above quan-
tum gates have been numerically validated elsewhere.23 In
fact, the phases �, �, and � depend upon the physical and
geometrical parameters of the system, e.g., the window
length, the barrier height/length, the electron-electron cou-
pling strength, the SAW velocity. The proposed teleportation

scheme �with the exception of qubit 3 preparation� employs
only quantum gates with �=� /2, �=�, �=� and we tuned
the device parameters accordingly. For brevity, in the follow-
ing we will omit the indication of the above phases.

The quantum-wire network for our teleportation protocol
is shown in Fig. 1. As a first step Alice and Bob must en-
tangle qubits 2 and 1. In particular, they start with an initial
state �1211�,24corresponding to one electron entering the up-
per wire of Bob qubit 1 and another electron entering the
upper wire of Alice qubit 2. The first block of quantum gates,
namely, two coupling windows Rx �acting on qubits 1 and 2,
respectively� and a Coulomb coupler T �acting on qubits 1
and 2, together� produces a maximally entangled state
1 /�2��0211�− �1201��. Now Alice, wants to teleport, the quan-
tum state of electron 3 ��3

i �=si�03�+ ti�13�, obtained from �13�
by means of the network of one-qubit gates reported in the
state preparation �SP� box, into electron 1 at Bob side. She
performs a so-called Bell measurement on qubits 3 and 2. In
fact, as suggested by Brassard et al.,25 such a measurement
can be realized in two steps: first the Bell states of qubits 2
and 3 are rotated in the basis ��0302� , �0312� , �1302� , �1312��,
then a projective measurement is performed in this latter ba-
sis. This approach permits to achieve deterministic quantum
teleportation since it makes possible a full Bell measurement
on Alice’s particles. In our scheme, the first step of the Bras-
sard approach is performed by means of the second block of
quantum gates involving a Coulomb coupler T now acting on
the qubits 2 and 3 and three Rx gates �see Fig. 1�. The three-
qubit state obtained after this block takes the form,

Rx Rx Rx
Rx

Rx Rx Rx
−1

Rx Rx
−1Rx

|Ψ >f

|Ψ >i

R 1(φ )0 R0 2(φ )

R0A R0B

1
T

0

1
2

T

0

1

0

1
3 SPAlice

Bob

FIG. 1. �Color online� Sketch of the physical system used for the deterministic teleportation of electron 3 in electron 1. The first two
couples of quantum wires from the top represent the Alice’s system while the bottom couple is Bob’s system. The Bell-state preparation of
qubits 1 and 2 consists of two beam splitters Rx

�1� and Rx
�2� followed by a Coulomb coupler T�12� and a further splitting Rx

�1� of qubit 1. The
gates in the dotted box labeled SP is needed to prepare the input state ��3

i �. This block applied to �13� produces the general one-qubit state
��3

i �=ei�2 cos��1 /2��0�−sin��1 /2��1�. The Bell-measurement process in Alice’s system is realized in two sequential steps. First a complete
rotation from Bell states to separable states is performed by means of the beam splitter Rx

�2� followed by a Coulomb coupler T�23� and further
inverse rotations of � /2 Rx

−1�2� and Rx
−1�3�. Then the single-qubit states are measured by means of charge detectors �filled boxes at right side�.

The outcome is communicated through a classical channel �dashed lines� to Bob, which reconstructs in ��1
f � the original quantum state of

qubit 3 by means of a network of one-qubit gates �two beam splitters Rx
�1� and two potential barriers�. Specifically, the potential barrier

R0A �R0B� is switched on if and only if the outcome of qubit 2 �3� measurement is 0 �see Table I�.
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��3,2,1�OUT = −
1

2
�0302��sf�01� + tf�11��

+
1

2
�0312��tf�01� − sf�11�� −

i

2
�1302��− sf�01�

+ tf�11�� +
i

2
�1312��tf�01� + sf�11�� . �1�

After this rotation Alice can perform two single-particle
measurements on qubits 2 and 3. Specifically, such measure-
ments can be realized by means of single-electron transistors
acting as sensitive charge detectors. Once the result is
known, it can be transmitted as two classical bits of informa-
tion to Bob, that can choose the setup of proper unitary op-
erations on his qubit 1 in order to completely recover the
initial state ��3

i �. In fact, depending upon the outcome of the
measurement on qubits 2 and 3, suitable potential barriers
acting as phase shifters R0 are eventually introduced between
the two coupling windows, according to Table I.

III. NUMERICAL APPROACH

The network of gates described in Sec. II has been simu-
lated by solving numerically the time-dependent Schrödinger
equation for the three electrons injected in the device. GaAs
material parameters have been used. Since a direct solution
of the three-dimensional �3D� Schrödinger equation for the
whole three-particle wave function results too demanding in
terms of computational resources, a semi-1D model has been
adopted, as described in the following by referring to Fig. 1.
The network is defined in the xy plane. In the z direction the
electrons are always supposed to be in the ground state of the
quantum well defining the plane of the wires. The y direction
is explicitly included in the simulations through the y1 ,y2 ,y3
variables, defining the position of the three carriers along the
wires. Specifically, in the computational approach adopted y
is discretized with a point grid of resolution �y=1 nm. For
the x direction, the x1 ,x2 ,x3 variables can assume only the
values 0 or 1, identifying one of the two possible wires of a
qubit, that is, the qubit state.

This allows us to move from a time-dependent
Schrödinger equation for a seven-variable wave function
��x1 ,x2 ,x3 ,y1 ,y2 ,y3 , t� to eight-coupled Schrödinger equa-
tions of the form

i�
�

�t
�x1,x2,x3

�y1,y2,y3,t�

= −
�2

2m
� �2

�y1
2 +

�2

�y2
2 +

�2

�y3
2��x1,x2,x3

�y1,y2,y3,t�

+ Vx1,x2,x3
�y1,y2,y3,t��x1,x2,x3

�y1,y2,y3,t� . �2�

The potential term appearing in the above equation is given
by the sum of two contributions. The first stems from the
SAW time-dependent potential and reads

�
i=1

3

A sin	2�

	
�yi − vst�
 ∀ �x1,x2,x3� , �3�

where A indicates the amplitude of the potential, 	 its wave-
length, and vs the sound velocity. Specifically, in the numeri-
cal investigations performed, A=20 meV, 	=200 nm, and
vs=3.3
105 cm s−1. The second term represents the
screened Coulomb interaction between carriers, computed
from the geometry of the system and can be written in the
form

�
i=1

3

�
j=1

i−1
e2

4��0rij
exp�−

rij

r0
� , �4�

where rij =��yi−yj�2+dxi,xj

2 �yi ,yj� with dxi,xj
�yi ,yj� indicating

the distance between the wires xi and xj at the positions yi
and yj, respectively. This is a Coulomb potential multiplied
by an exponential damping term, corresponding to Debye
wave vector 1 /r0. In particular, in our calculations the latter
has been taken equal to 0.2 nm−1: a value of the same of
order of the ones given in the literature.26 Due to the geom-
etry of the system and to screening effects, the Coulomb
interaction can be considered negligible everywhere for not
adjacent qubits, that is, qubit 1 and 3, and in the regions not
involving the Coulomb coupler for nearby qubits.

Each of the eight-coupled Schrödinger equations of Eq.
�2� has been solved by means of simple finite-difference re-
laxation method applied at each time step of the time evolu-
tion performed in a Crank-Nicholson scheme with
�t=0.01 fs.27,28

It is worth noting that in the simulation of the three-
particle wave-function dynamics, the only gate that presents
a computational challenge due to its spatial extension and the
two-particle potential involved, is the Coulomb coupler T.
However, it is not always necessary to compute its effect on
the whole wave function. In fact, when the first T gate comes
into action by entangling electrons 1 and 2, electron 3 wave
function remains factorizable. As a consequence, before the
second T gate, a two-particle simulation is sufficient.

The numerical estimation of the second T gate, between
qubit 2 and 3, requires more care since at this stage qubit 1 is
already entangled with qubit 2. This entanglement is not only
related to the localization of electrons in one of their wires
but also to their positions y1 and y2. As a consequence, the
effect of the second Coulomb coupler must be computed on
the whole three-particle wave function. Thanks to the super-
position principle and to the fact that the interaction is just
among electrons 2 and 3, we performed different two-

TABLE I. The phase shifters �potential barriers� in the final
stage of the Bob qubit are applied according to the outcome of Alice
measurements in order to reconstruct the original state ��3

i �. Note
that the phase shifter R0B�R0A� is controlled only by the qubit 3 �2�,
i.e., the potential barrier is introduced only when the electron is
found in the lower wire of the corresponding qubit at Alice side.

Qubit 3 Qubit 2 R0B R0A

0 0 Yes Yes

0 1 Yes No

1 0 No Yes

1 1 No No

QUANTUM TELEPORTATION OF ELECTRONS IN QUANTUM… PHYSICAL REVIEW B 81, 045312 �2010�

045312-3



particle simulations for different values of y1 and then com-
puted the final state as the combination of the different evo-
lutions. We found that, due to the sharp localization of the
spatial wave packets and to the small y-direction entangle-
ment, the solution turns out to be practically independent
from the choice of y1, as it will be shown by the numerical
results reported in the next section.

A number of numerical simulations have been performed
in order to obtain the optimal geometry for the Coulomb
coupler T. This is reached when the delay phase � attains �.
As shown in other works,29 the latter mainly depends upon
two geometrical parameters: the length of the coupling re-
gion and the distance between the coupled wires. From the
optimization procedure, we find that the Coulomb coupler is
150 nm long while the coupled wires are 5 nm distant from
each other. This geometry allows a value of 0.88� for the
delay phase �, which is good enough for realizing both the
initial maximally entangled state and the final rotation of the
Bell states at Alice side. The experimental realization of the
Coulomb coupler T is the most challenging part. Specifically,
the angle formed by a wire where it bends towards the other
qubit must be small enough in order to make reflection phe-
nomena negligible. In addition, no tunneling between the
two wires must be present to let the two wave functions only
interact through Coulomb coupling.

Obviously, within our semi-1D model it is not possible to
simulate directly the dynamics of the wave function splitting
by a coupling window leading to the one-qubit transforma-
tion Rx. In fact, we exploited the results of two-dimensional
simulations to validate the qubit transformations12 and in-
clude the beam splitters through their corresponding transfor-
mation matrix.

IV. RESULTS AND DISCUSSION

We have performed our numerical simulations to teleport
many test states prepared by tuning the phase �1 and setting
�2 to � /2 for the phase shifters in the SP box of Fig. 1.
Figure 2 summarizes the three-qubit dynamics estimated nu-
merically for the case of ��3

i �= �1 /2��03�+ �i�3 /2��13� 
cor-
responding to �1= �2� /3��, starting from the carrier-
injection instant up to the single-particle measurements on
Alice’s qubits. The square modulus of the eight components
of the three-particle wave function �x1,x2,x3

�ȳ , ȳ , ȳ , t� is re-
ported being the latter evaluated for the three electrons in the
same ȳ position. We initialized the system in �131211� �elec-
trons injected in the upper wire of each couple�. The first
column of Fig. 2 shows the only nonvanishing component of
the wave function. The two Rx gates located in the left part of
the device split in the same way the electrons of qubits 1 and
2 �third column of Fig. 2�. Then, the Coulomb coupler acting
between qubits 1 and 2 induces a phase of 0.88� in �130211�
with respect to the other components. When the injected car-
riers reach the second coupling window between the wires of
qubit 1, the new rotation leads with good approximation to
the three-qubit state �1 /�2��13���02��11�− �12��01��, as shown
in the fifth column. This corresponds to an EPR pair of elec-
trons 1 and 2. However, we find that the component �130201�
is small but not zero. This can be ascribed to the fact that the

rotation performed by the simulated T gate is not exactly �.
Then the single-qubit gates of the SP block operate onto �13�
and the state �1 /�2���3

i ���02��11�− �12��01�� is produced.
From this stage, single- and two-qubit operations act only

onto electrons 2 and 3, in order to perform the complete
rotation of the Bell state of qubits 2 and 3 into separable
states. The components of the three-particle wave function
displayed in the last column of Fig. 2 show the state
��3,2,1�OUT on which the destructive measurements will be
performed by Alice. The state components depend on the
coefficients of the spectral decomposition of the teleported
state ��1

f � in terms of the single-qubit states �01� and �11�. In
agreement with the theoretical prediction, we find that, for
��3

i �= �1 /2��03�+ �i�3 /2��13�, the square modulus of the
components �030211�, �031201�, �130211�, and �131201� has the
same form and value, which approximately is the triple of
the one found for �030201�, �031211�, �130201�, and �131211�,
respectively. Such a result shows the good efficiency reach-
able in the proposed teleportation scheme.

To better quantify the reliability of the teleportation, we
also compare the square modulus of the coefficients si and ti

of the initial state ��3
i � with the coefficients sf and tf of the

final state ��1
f � obtained by Bob after the teleportation

�see Fig. 3�. The fidelity F of the teleportation process, given
by ���3

i ��1
f ��2, is strictly related to the ratio �si�2 / �sf�2: the

closer to 1 the latter is, the larger values the fidelity
attains. For the set of teleported states, obtained by varying
the phase �1 from 0 to �, the above ratio ranges from
0.91 �F=0.91� to 1.02 �F=0.98� and, for �1= �3� /4�, it is
almost equal to 1 �F=1�. This implies that the state
cos
�3� /8���0�+ i sin
�3� /8�� is teleported with the
maximum efficiency. This proves an important point: the fi-
delity of the proposed teleportation scheme remains very
high also for nonideal entangling gates and this can certainly
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FIG. 2. �Color online� The effect of the quantum gates of the
network of Fig. 1 on a three-qubit state at different stages of the
time evolution. The square modulus of the eight components of
three-carrier wave function ��ȳ , ȳ , ȳ� are reported as a function
of ȳ at different time steps. Here the teleported state is
��3

i �= �1 /2��03�+ �i�3 /2��13�. Thus the output state is ��3,2,1�OUT of
Eq. �1� with sf = �1 /2� and tf = �i�3 /2�. Note that, to optimize the
graphical representation, the curves are normalized to the ones cor-
responding to the states �131201� and �131211� in the second column.
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be considered a plus in view of an experimental implemen-
tation.

In order to test the validity of the approach used in the
numerical solution of the 3D Schrödinger equation for three-
particle wave function, we have reported in Fig. 4, the fidel-
ity F as a function of ȳ �that is, the point along the wires of
qubit 3 where the carrier is assumed to be found in a mea-
surement process�. This is repeated for five teleported states

corresponding to different values of the phase �1 with �2 set
to � /2. We find that F is essentially constant. This implies
that the efficiency of our quantum teleportation scheme does
not basically depend upon the position variable along the
wire direction of the three particles. This behavior, due to the
confinement of the carriers in the SAW minima leading to a
sharp localization of the corresponding wave packets, proves
the validity of the two-particle approach adopted.

Finally, the effect of the temperature deserves a few com-
ments. As stated in Sec. II, numerical simulations of charge
transport through quantum wires has been performed at zero
temperature, that is, fully coherent propagation of electrons
has been assumed. Such an approximation allows one to ne-
glect the effects due to the piezoelectric coupling between
charge carriers and acoustic-phonon modes. In fact, the latter
represents the main decoherence source of our physical sys-
tem. Experimental investigations about both SAW assisted
charge transport30 and low-dimensional devices suitable for
quantum computing31 are usually carried out at temperatures
in the range of millikelvin. A realization of our device would
require such low temperatures at which the stimulated ab-
sorption and emission processes of acoustic phonons are
weak enough to be neglected. In fact, the mean occupation
number of acoustic phonons with momentum energy
Ek�5 meV �of the order of the energy difference between
the ground and the first excited bound state of the electrons�
can be evaluated from Bose-Einstein statistics and results to
be practically zero at a temperature of 100 mK. Thus it
seems reasonable to take into account only spontaneous
emission processes. These obviously affect the ideal fidelity
of the gates implemented in the teleportation scheme. How-
ever such unavoidable effects can be minimized by inserting
suitable quantum error correction codes in our scheme.32,33

This corresponds to use more two-qubit gates for the same
computation. Moreover, we expect that in an experimental
setup the quantum teleportation process, would be repeated
many times. In fact, the simulations performed in this work
represent a “single shot” of the network in Fig. 1, with three
electrons in the same minimum of the SAW. However, it is
reasonable to think that in the experiment electrons also
populate the other minima, as described in Ref. 16. This
corresponds to a multiple repetition of the teleportation
scheme �one each SAW minimum�.

V. CONCLUSIONS

Here we have proposed a device for the deterministic tele-
portation of electrons injected and driven by SAWs in a net-
work of coupled quantum wires. It consists of a sequence of
single-qubit �beam splitter and phase shifter� and two-qubit
�Coulomb Coupler� gates which allows a high level of con-
trol over the state evolution. Numerical simulations show
that, with a suitable design of the nanostructure, the fidelity
of the teleportation can reach values close to 1, indicating a
high reliability of the process. Furthermore, we also mention
the possibility of using carrier transport in edge states for
quantum-Hall effect regime, instead of SAW-assisted elec-
tron transport in quantum wires.
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FIG. 4. �Color online� Fidelity of the teleportation process as a
function of the difference between the wave packet center y0 and
the point ȳ, for five teleported states corresponding to different val-
ues of the phase �1 with �2=� /2: �1=0 �dotted line�, �1=� /3
�dashed line�, �1=� /2 �dot-dot-dashed line�, �1=2� /3 �dash-dash-
dotted line�, and �1=� �solid line�. The abscissa scale, ranging
from −20 to 20 nm, covers the space region where the integral of
the single-electron probability density �shown for reference and rep-
resented by the Gaussian-type thick solid line� is equal to 0.92.
Note that the estimated fidelities take values very close to 1 and
that, for any teleported state, do not significantly depend upon po-
sition in the examined space interval.
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The experimental realization of the device proposed is
challenging since it requires the use of frontier mesoscopic
semiconductor technology. However, both the new develop-
ments in nanostructures fabrication permitting the control of
the coupling between two modes of two 1D channels,34,35

and the recent observation of single-electron dynamics in
experiments of SAW-assisted charge transport,36 seem to in-
dicate the feasibility of an experimental setup of our device.
Its realization would undoubtedly represent a great step for-

ward toward quantum computing capable architectures scal-
able and integrable with traditional microelectronics.
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