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Abstract

In this study, we present the application of fractional calculus (FC) in biomedicine. We present three
different integer order pharmacokinetic models which are widely used in cancer therapy with two and three
compartments and we solve them numerically and analytically to demonstrate the absorption, distribution,
metabolism, and excretion (ADME) of drug in different tissues. Since tumor cells interactions are systems
with memory, the fractional-order framework is a better approach to model the cancer phenomena rather
than ordinary and delay differential equations. Therefore, the nonstandard finite difference analysis or NSFD
method following the Grunwald-Letinkov discretization may be applied to discretize the model and obtain
the fractional-order form to describe the fractal processes of drug movement in body. It will be of great
significance to implement a simple and efficient numerical method to solve these fractional-order models.
Therefore, numerical methods using finite difference scheme has been carried out to derive the numerical
solution of fractional-order two and tri-compartmental pharmacokinetic models for oral drug administration.
This study shows that the fractional-order modeling extends the capabilities of the integer order model into
the generalized domain of fractional calculus. In addition, the fractional-order modeling gives more power
to control the dynamical behaviors of (ADME) process in different tissues because the order of fractional
derivative may be used as a new control parameter to extract the variety of governing classes on the non local
behaviors of a model, however, the integer order operator only deals with the local and integer order domain.
As a matter of fact, NSFD may be used as an effective and very easy method to implement for this type
application, and it provides a convenient framework for solving the proposed fractional-order models.
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1. INTRODUCTION

Pharmacokinetics have been defined as the flow and rate of distribution and removal of a drug or nanopar-
ticle (NP) inside body. Pharmacokinetics may be represented as mathematical models to determine the
process of administered drug movement throughout body. Pharmacokinetics models are the main piece of
modeling based drug development and can be performed by non-compartmental or compartmental methods.
Compartmental modeling helps to find the most efficient route of drug administration based on time of uptake
and elimination [1], [2], [3]. These models provide a theoretical and mathematical framework to demonstrate
the transmit of molecules biochemistry and transport phenomena in the body, and it has been done by
dividing body into two main compartments based on pharmacokinetic and pharmacodynamic of different
tissues. Therefore, compartmental modeling defines a comprehensive framework which makes an effective
drug delivery toward targeted tissue and has been attracted by different researchers to find the most optimized
therapy for different diseases such as cancer [4], [5], [6]. These models receives information regarding route
of administration such as intravenous or intramuscular injection, and or oral and combine them by different
assumptions related to single or multiple doses to demonstrate drug traveling states inside body, starting from
the absorbing by tissue and distributing from one organ to the other organ, and then chemical alteration of the
specific tissue, and finally declining drug concentration because of elimination of chemical or biochemical
drug by all removal paths [1], [2], [3], [4], [5], [6].

Another approach to simulate distribution of drug in body that involves different organs and their interac-
tions with other tissues called physiologically based pharmacokinetics models (PBPK) [1], [2]. This computer
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based modeling method receives biological information such as physiological and chemical parameters
for administered drug, blood flow rates to different tissues, volume of different organs, absorption and
metabolism parameters, exposure and dose parameters and depends on different administration route, predicts
the concentration of drug in different tissues using computational and numerical tools [1], [2], [3].

To understand the (ADME) process of drugs in different tissues mathematical and statistical models have
been used by many different researchers [7], [8], [9], [10]. These models use differential equation framework
which are well-defined based on frequency responses [6], [5], but should be appropriately scaled because of
sensitivity of drugs to body mass of adults which is an index of body fat measurement in terms of weight or
height of different persons [6]. However, to build a comprehensive computational model, we need to obtain
different experimental data which demonstrates the (ADME) process in different body organs [6], [5], [11],
[12], [13]. Basically, these models provide us more flexibility in analysis and then modification and update by
converting given biological system including all parameters into a mathematical model which can be written
as the form of deterministic or stochastic differential equations (ODE,PDE). For example, a PBPK model is
a mathematical model and structural framework which explains the (ADME) process of drugs in different
tissues such as kidney, liver, lung, muscle, plasma, and so on. One of the advantages of this type modeling
is preserving the same physiological parameters as the original system during modeling process.

During the recent years, the area of fractional calculus has been attracted by many researchers in biology
and medicine [14], [15], [16], [17], chemistry and biochemistry [18], [19], [20], physics and engineering
[21], [22]. Due to wide applications of fractional modeling in science, and engineering, its importance and
popularity is increasing day by day and it has allocated many attentions [14], [15], [16], [18], [19], [20],
[17], [22], [21]. Fractional calculus is a new approach for modeling biological and physical phenomena
with memory effects. Fractional calculus uses differential and integral operators including non-integer orders
to study the non-linear behavior of physical and biological systems with some degrees of fractionality or
fractality. While the integer order models provide a small class of non-integer order models, using fractional-
order operators, we can study different classes of the same model through changing the fractional-order.
Therefore, these models provide us more flexibility to analyze and control the behavior of a system.

There are many studies that proved the fractional-order differential equations (FODEs) and or models with
integral operators provide more precise results in real world applications since there are some biological or
physical systems which display memory in their long term behavior and the traditional ODEs of integer-
order disregard this fact [18], [22]. However, analytical solutions of these equations cannot explicitly be
obtained. Therefore, to find the dynamical behaviors of solutions, we require to use approximation and
numerical schemes. The finite difference method, adomian decomposition method, extrapolation method,
multistep method, iterative methods, and predictor corrector techniques can be used to acquire the numerical
simulations of the linear and non-linear FODEs.

Here, we want to explore the behaviors of the solutions of three pharmacokinetic compartmental models
and their corresponding fractional-order forms. We organize this study as follows: to drive the fractional-
order compartmental models, we apply the nonstandard finite difference (NSFD) method since they provide
better results compare to traditional standard finite difference (SFD) methods and then we discretize these
pharmacokinetic compartmental models using the Grunwald-Letinkov discretization method. We use the
numerical methods to demonstrate (ADME) process for any drug in different compartments in both original
and fractional-order models. By considering the fractional-order framework in pharmacokinetic modeling, we
can explain all the possible geometric mechanisms underlying drug distribution in different tissues.

2. MATHEMATICAL BACKGROUND

Fractional calculus as a field of mathematics can be considered as an old and novel topic [23], [24], [25],
[26]. To introduce some of the widely used fractional derivatives and integrals of a function f(x) of arbitrary
order α, we start with definition of fractional integral in the sense of Riemann and Liouville. According to
Riemann-Liouville, fractional integral of order α (α > 0) may be defined as a natural consequence of Cauchy
formula:

Jnf(t) := fn(t) =
1

(n− 1)!

∫ t

0

(t− s)n−1f(s)ds, t > 0, n ∈ N, (1)

where fn(t) vanishes at t = 0 with its derivatives of order 1, 2, . . . , n− 1. Using the Gamma function,
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Definition 2.1. The gamma function is defined as follows:

Γ(x) =

∫ ∞

0

yx−1e−ydy, (2)

where for convergence of the integral, x > 0.

We can extend (1) from positive integer values to any positive real values and for α > 0 write it as:

Definition 2.2 (Riemann Liouville integral, Riemann (1953) and Liouville (1832)). The fractional integral
of order α ∈ R+ of the function f(t), for t > 0 where f : R+ → R has been defined by

Iαa f(t) =
1

Γ(α)

∫ t

a

(t− s)α−1f(s) ds, t > 0. (3)

Definition 2.3 (Riemann-Liouville fractional derivative). [27] The fractional derivative of order α ∈ (n−1, n)
of f(t) is defined by taking fractional integral of order (n− α), and then take nth derivative as follows:

Dα
∗ f(t) = Dn

∗ I
n−α
a f(t), (4)

where

Dn
∗ =

dn

dtn
, n = 1, 2, . . . . (5)

Then, we define the Grunwald-Letinkov definition of fractional derivative:

Definition 2.4 (Grunwald-Letinkov fractional derivative, Grunwald and Letinkov 1872). [28] The Grunwald-
Letinkov definition of fractional derivative of a function generalizes the notion of backward difference quotient
of integer order. In this case α = 1 if the limit exists the Grunwald-Letinkov fractional derivative is the left
derivative of the function. The Grunwald-Letinkov fractional derivative of order α of the function f(x) is
define as

Dα
xf(x) = lim

N→∞

(x− a)−α

Γ(−α)

N−1∑
j=0

Γ(j − α)

Γ(j + 1)
f(x− j[

x− a

N
]). (6)

If α = −1, we have a Riemann sum. If α = 1, then we have

lim
N→∞

f(x)− f(x− [
x− a

N
])

[
x− a

N
]

, (7)

which is left derivative of the function f at x.

In 2015, Caputo and Fabrizio proposed a new derivative with fractional-order [29] with two different forms,
however, the first representation was proposed by Joseph Liouville in 1832 [27], [30]. Caputo’s representation
which is a modification of the Riemann Liouville definition and can be used for initial value problems, has
the following definition:

Definition 2.5 (Caputo-fractional derivative, Caputo (1967)). [29] The fractional derivative of order α ∈
(n− 1, n) of f(t) is defined by taking nth derivative. Next, we use the fractional integral operator of order
(n− α),

Dαf(t) = In−α
a Dn

∗ f(t), n = 1, 2, . . . (8)

Therefore, Caputo derivative of order α has the form:

Dαf(t) =
1

Γ(n− α)

∫ t

0

fn(s)

(t− s)α−n+1
ds, (9)

where n− 1 < α < n, n is an integer, and fn is nth derivative of f(s).



66 Azizi, T.

In the definition of fractional derivative with respect to time of any map f(t) at t = tn, we perform an
integral operator and then we compute the fractional derivative with respect to time for which we need to
know the history of the system equations (knowing the values of f(t) in the interval t ∈ [0, tn]. A common
approach to solve the problems with the Caputo fractional-derivative operator is using the Laplace transform.
The Laplace transform formula for the Caputo fractional-derivative operator has the following form

L{Dαf(t)} = zαF (z)−
n−1∑
k=0

zα−k−1f (k)(0), (10)

where f (k)(0) is the initial conditions of f(t). If we neglect the initial conditions, we get

L{Dαf(t)} = zαF (z). (11)

From (11) and using the definition of Laplace transform of Riemann Liouville fractional integral:

L{Iαf(t)} = z−αF (z), (12)

we get the definition of general differintegral fractional operator as:

L{D±αf(t)} = z±αF (z). (13)

It has been proved that for the most analytic functions, Grunwald-Letnikov fractional derivative is identical to
Caputo fractional derivative. The difference between the Grunwald-Letnikov definition and Caputo definition
appears when dealing with constant function. For example, for a constant function, the Caputo fractional
derivative is zero while its RiemannâLiouville fractional derivative is not. In the application, Caputo fractional
derivative has been used for initial value fractional ordinary differential equations. For the case α is an integer,
the fractional derivative would be identical to the integer derivative and we can conclude that fractional
calculus is a kind of interpolation of the integer calculus. One important fact about fractional operators such
as fractional integral and fractional derivative is that there has not been developed any acceptable physical
and or geometrical interpretation for these operators during 300 years [30].

3. PHARMACOKINETIC TWO COMPARTMENTAL MODEL

To demonstrate the uneven transition of drug in body, we use a bi-compartmental model which follows
a biexponential distribution to describe disposition of drugs. We start with the simplest case when we
assume that drugs distribute from second compartment or capillary bed into the third compartment or tissue
compartment but they would be eliminated from the second compartment (see the schematic diagram in
Figure (1)).

Figure 1: Schematic diagram of a simple bi-compartmental model for drug distribution, where k23 and k32 represent the
rate of drug distribution between compartment two or capillary bed and three or tissue, k24 is the rate of elimination
from vascular capillary bed to the venous.
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Here, transfer rate constants k23 and k32, milligram per minute (mg/min), illustrate the reversible transfer
of drugs between compartment two and compartment three. In general, this is a simplification of (ADME)
procedure in the whole body. In this case, we consider that drug concentration initially decreases very fast and
they distribute rapidly into the tissue compartment. Here, tissue compartment may be contained several organs
in body. After this phase, there would be an equilibrium phase for drug concentration in which concentration
of them decreases so slowly, and therefore we only have elimination of these particles.

In this bicompartmental model, we consider a transfer rate of first order between second and third
compartments and also we assume that elimination of drug from the second compartment or capillary bed
follows a rate of first order, and lastly, we ignore any other metabolism in capillary bed. To demonstrate
distribution of drugs in Figure (1), we write the following kinematic equations,

1

V2

dA2

dt
=

−k23 A2

V2
+

k32 A3

V3
− kel A2

V2
,

1

V3

dA3

dt
=

−k32 A3

V3
+

k23 A2

V2
,

(14)

where, A2 and A3 are the drug concentrations in compartment two or capillary bed and compartment three
or tissue respectively molar units (e.g. µmol) per unit volume, and V2 and V3 represent the volume of
compartment two and three respectively.

We assume that at t = 0, A3 = 0, i.e. the drug concentrations in tissue is zero. Therefore, we have the
following boundary conditions for the equations (14) at t = 0,

A2 =
Dose
V2

, A3 = 0.

Therefore, after solving Model (14), we find the concentration of drug in capillary bed, A2, and tissue, A3,
as the form, 

A2 =
Dose [(k32 − r1) e

−r1 t − (k32 − r2) e
−r2 t]

V2(r2 − r1)
,

A3 =
Dose k23 [e−r2 t − e−r1 t]

V2(r1 − r2)
,

(15)

where, 
r1 =

1

2

[
(k23 + k32 + kel) + (

√
(k23 + k32 + kel)2 − 4 k32 kel)

]
,

r2 =
1

2

[
(k23 + k32 + kel)− (

√
(k23 + k32 + kel)2 − 4 k32 kel)

]
.

The first order constants r1 and r2 determine if drug distribution and removal take place slow or fast and
from (16) we can see that they depend on constant rates k23, k32, and kel.

The following equality describes the relationships between r1 and r2 and three rates k23, k32 and kel;

r1 + r2
r1 r2

=
k23 + k32 + kel

k32 kel
.

Using mathematical modeling not only helps us to find the concentration of drug in different compartments,
but also helps to approximate distribution rates between different compartments. The concentration of drug
in capillary bed of Model (14) can be simply obtained by adding the amount of drug that is sent to the tissue
and the amount of drug that is eliminated from capillary:

A2 = A(Distribution) +A(Elimination).

Thus,

A2 = η1 e
−r1 t + η2 e

−r2 t,
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where, A2 consists of two phases, first the exponential term η1 e
−r1 t related to distribution phase and η2 e

−r2 t

related to elimination phase of drug from compartment two. In Model (14), because distribution is faster than
removal, therefore, we assume that the exponential term η1 e

−r1 t is zero and we rewrite A2 as

A2 = η2 e
−r2 t.

If we convert it to log form, we have

logA2 = log η2 −
r2 t

2.303
.

Moreover, for this simple case, we can easily evaluate pharmacokinetic parameters, k23, k32 and kel.

3.1. Grunwald-Letinkov approximation for bicompartmental Model (14)
The fractional differential operator has the following form [31], [32],

DγA(t) = f(t, A(t)), A(t0) = A0,

where γ > 0 represents the order of derivative and Dγ denotes the fractional derivative which is given by:

DγA(t) = Jk−γDkA(t),

where γ ∈ (k − 1, k], for k = 1, 2, . . . and integral operator Jk called the Riemann-Liouville operator of
kth-order which is obtained by the following formula

JkA(t) =
1

Γ(k)

∫ t

0

(t− τ)(k−1)A(τ) dτ, t > 0,

where Γ(.) denotes the gamma function. To apply the Micken’s (NSFD), we need to find the fractional-order
derivative using the Grunwald-Letinkov (G-L) approximation for Model (14) as the form [33], [34], [35]

DγA(t) = lim
s→0

s−γ
T∑

i=0

(−1)i
(
γ

i

)
A(t− i s), (16)

where T = [t]/s and [.] used to show the integer value and s represents the step size. Thus, Equation (16)
would be discretized as

T∑
i=0

Cγ
i A(tk−i) = f(tk, A(tk)), (17)

where tk = k s and Cγ
i are the coefficients for (G-L) approximation written as

Cγ
i =

[
i− 1− γ

i

]
Cγ

i−1, Cγ
0 = s−γ i = 1, 2, . . . .

Next we introduce the non standard finite difference procedure.

3.2. Non-standard discretization of bicompartmental Model (14)
To discretize a system of differential equations (DEs) including a system of ordinary differential equa-

tions (ODEs) and or a system of partial differential equations (PDEs), one may apply the Mickens NSFD
discretization method which is more flexible in construction rather than standard finite difference method
and therefore has better performance. This method checks the positivity of solutions and is concerned about
boundedness and monotonicity of them. Another advantage of using NSFD schemes is their ability to preserve
the structure and properties of the system of differential equations and therefore, we apply NSFD schemes
on the general compartmental model of the form:

dA

dt
= f(A). (18)
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However, to apply the non-standard scheme we need to check that if non-local approximation is used and or
we need to have a non traditional discretization of derivatives and also we may need to use a non-negative
function Φ(h) = s+O(s2). To apply NSFD scheme, we consider a grid tk = t0 + k s, such that s > 0, and
we approximately write the discretized function A as Ak ≈ A(tk). Next, we discretize (18):

dA

dt
=

Ak+1 −Ak

Φ(s)
+O(Φ(s)), when s → 0 =⇒ dA

dt
≈ Ak+1 −Ak

Φ(s)
, (19)

where real valued Φ(s) as a function of the step size s needs to satisfy the following properties:

Φ(s) = s+O(s2), Φ(s) ∈ (0, 1), ∀ s ∈ (0,∞). (20)

Here, the equality (19) is equivalent with the integer order derivative because:

dA

dt
= lim

s→0

[
A(t+ s)−A(t)

Φ(s)
+O(Φ(s))

]
,

= lim
s→0

[
A(t+ s)−A(t)

s

]
lim
s→0

[
s

Φ(s)

]
+ lim

s→0
O(Φ(s)) = Ȧ(t).

As s → 0 the discrete form in (19) converges to its associated continuous derivative. NSFD methods are
convergent without any restriction related to step size s but this is not always true for SFD methods which
depend on the step size s. Moreover, when we discretize a system using NSFD method, if the original system
is persistent, and solutions are stable and convergent, these properties remain the same after discretization,
but not for the case we use SFD to discretize the system of differential equations.

3.3. Fractional Bicompartmental Model
Finally to apply the Mickens NSFD method, we substitute the step size s by Φ(s). Next, we use the G-L

technique to discretize the equations (16). We consider A2(tk) = Ak
2 , A3(tk) = Ak

3 , we have:
1

V2

∑k+1
i=0 Cγ

i A
k+1−i
2 =

−k23 A2

V2
+

k32 A3

V3
− kel A2

V2
,

1

V3

∑k+1
i=0 Cγ

i A
k+1−i
3 =

−k32 A3

V3
+

k23 A2

V2
.

(21)

After simplification, the fractional-order system which is linear and time-invariant has the following form:
Ak+1

2 =

[
k32 A3

V3
−

∑k+1
i=1 Cγ

i A
k+1−i
2 + k23 A2 + kel A2

V2

]
V2

Cγ
0

,

Ak+1
3 =

[
k23 A2

V2
−

∑k+1
i=1 Cγ

i A
k+1−i
3 + k32 A3

V3

]
V3

Cγ
0

.

(22)

We have demonstrated the solutions of the fractional-order system (22) for different orders in Figures (2)
and (3).

4. BICOMPARTMENTAL MODEL WITH DRUG INFUSION

For this case, we have the following two compartmental model (see Figure (4)),


1

V2

dA2

dt
=

k12 A1

V1
+

−k23 A2

V2
+

k32 A3

V3
− kel A2

V2
,

1

V3

dA3

dt
=

−k32 A3

V3
+

k23 A2

V2
.

(23)
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Figure 2: Evolution of drug concentration in capillary bed in fractional-order bi-compartmental model (22) for orders
γ = 0.4 - γ = 1 and the initial conditions k23 = .8, k32 = 0.03, kel = 1.5, the drug concentration for all compartments
to be 1. In this model, the constant rates k23, k32, and kel determine the fast drug distribution and slow drug elimination.

Figure 3: Evolution of drug concentration in tissue in fractional-order bi-compartmental model (22) for orders γ = 0.4 -
γ = 1 and the initial conditions k12 = 1, k23 = .8, k32 = 0.03, kel = 1.5, the drug concentration for all compartments
to be 1.

A1 is the concentration of drug in compartment one, V1 is the volume of compartment one, and k12 is drug
infusion rate. For Model (23), we can derive A2 as the form,

A2 =
k12

V2 kel

[
1 +

kel − r2
r2 − r1

e−r1 t − kel − r1
r1 − r2

e−r2 t

]
. (24)

At steady state, when t → ∞, e−r1 t and e−r2 t converge to zero and we have,

A2 =
k12

V2 kel
=

infusion rate
clearance

.
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Figure 4: Schematic diagram of a simple bi-compartmental model for drug distribution, where k12 describe the transition
rate from artery to capillary, k23 and k32 represent the rate of drug distribution between compartment two or capillary
bed and three or tissue, k24 is the rate of elimination from vascular capillary bed to the venous.

We define the Grunwald-Letinkov approximation as before to apply the non standard finite difference Micken’s
procedure and finding the following fractional-order system for (23):

Ak+1
2 =

[
k12 A1

V1
+

k32 A3

V3
−

∑k+1
i=1 Cγ

i A
k+1−i
2 + k23 A2 + kel A2

V2

]
V2

Cγ
0

,

Ak+1
3 =

[
k23 A2

V2
−

∑k+1
i=1 Cγ

i A
k+1−i
3 + k32 A3

V3

]
V3

Cγ
0

.

(25)

The numerical solutions of the fractional-order system (25) of different orders have been demonstrated in
Figures (5) and (6).

Figure 5: Evolution of drug concentration in capillary bed in fractional-order bi-compartmental model (25) for orders
γ = 0.4 - γ = 1 and the initial conditions k12 = 1, k23 = 0.8, k32 = 0.03, kel = 1.5, the drug concentration for all
compartments to be 1.
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Figure 6: Evolution of drug concentration in tissue in fractional-order bi-compartmental model (25) for orders γ = 0.4 -
γ = 1 and the initial conditions k12 = 1, k23 = 0.8, k32 = 0.03, kel = 1.5, the drug concentration for all compartments
to be 1.

5. APPLICATIONS OF FRACTIONAL CALCULUS TO MODEL DRUG DIFFUSION IN A THREE
COMPARTMENTAL PHARMACOKINETIC MODEL

Inside our body, the blood vessels are covered with specific cell types called Endothelial cells (ECs).
Therefore, we have added a new compartment to the previous two compartmental model to have a more
realistic model. These cells based on their size and location play different roles in our body. For example,
some of them carry small size molecules and or specific hormones such as insulin, the others are effective in
regulation of blood pressure. However, all of these cells have a common role that is building a wall between
blood cells and other tissue cells [36]. For simplicity, we ignore their interactions with surrounding cells.

We consider a new compartmental model with three compartments to represent (ADME) of drugs as it is
demonstrated in Figure (7). In this case, we assume that we have three phases; absorption and distribution,

Figure 7: EC or endothelial cells as a barrier between body vessels and different tissues facilitate the transportation of
drug from capillary to tissue.
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Figure 8: Schematic diagram of the three compartmental pharmacokinetic model for drug disposition, where k23 , k32
and k34 represent the constant rates of transfer between the indexed compartments, k25 stands for the mass transfer rate
from vascular in the second compartment to the venous.

and leakage or elimination. Drugs enter from artery which is the first compartment to the capillary or second
compartment with absorption rate k12. Next, we have distribution to the third compartment or Endothelial
cells with a rate k23. Then, we have transition of drugs into tissue with transfer rate k34:

1

V2

dA2

dt
=

k12 A1

V1
+

−k23 A2

V2
+

k32 A3

V3
− kel A2

V2
,

1

V3

dA3

dt
=

−k32 A3

V3
+

k23 A2

V2
− k34 A3

V3
,

1

V4

dA4

dt
=

k34 A3

V3
,

(26)

where, A4 is the concentration of drug in deep tissue or compartment four, V4 is the volume of compartment
four, and k34 is the reversible transfer of drug between compartment three and four, see Figure (8).

After solving Model (26) for A3 and A4 we have:

A2 = M2, (27)

A3 =
M2 k23

k32 + k34

[
1− e−(k32+k34)t

]
+A3(0) e

−(k32+k34)(t−Γ), (28)

A4 =
M2k23k34
k32 + k34

[
t− 1− e−(k32+k34)t

k32 + k34

]
+

k34A3(0)

k32 + k34

[
1− e−(k32+k34)t(t−Γ)

]
+A4(0). (29)

As before, we apply the NSFD Micken’s method and we find the following fractional-order system for (26):

Ak+1
2 =

[
k12 A1

V1
+

k32 A3

V3
−

∑k+1
i=1 Cγ

i A
k+1−i
2 + k23 A2 + kel A2

V2

]
V2

Cγ
0

,

Ak+1
3 =

[
k23 A2

V2
−

∑k+1
i=1 Cγ

i A
k+1−i
3 + k32 A3 + k34 A3

V3

]
V3

Cγ
0

,

Ak+1
4 =

[
k34 A3

V3
−

∑k+1
i=1 Cγ

i A
k+1−i
4

V4

]
V4

Cγ
0

.

(30)
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We have demonstrated the numerical solutions of the fractional-order system (30) of different orders in
Figures (9) - (11).

Figure 9: Evolution of drug concentration in capillary bed in fractional-order tri-compartmental model (30) for orders
γ = 0.3 - γ = 1 and the initial conditions k12 = 1, k23 = 0.8, k32 = 0.03, kel = 1.5, k34 = 0.3, the drug concentration
for all compartments to be 1.

Figure 10: Evolution of drug concentration in endothelial cells in fractional-order tri-compartmental model (30) for orders
γ = 0.3 - γ = 1 and the initial conditions k12 = 1, k23 = 0.8, k32 = 0.03, kel = 1.5, k34 = 0.3, the drug concentration
for all compartments to be 1.
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Figure 11: Evolution of drug concentration in tissue in fractional-order tri-compartmental model (30) for orders γ = 0.3
- γ = 1, and the initial conditions k12 = 1, k23 = 0.8, k32 = 0.03, kel = 1.5, k34 = 0.3, the drug concentration for all
compartments to be 1.

6. RESULT AND DISCUSSION

Pharmacokinetic compartmental models play an important role to study the chemical or biochemical
reactions of drugs and their distribution entire body and to measure the rates of distribution in different tissues.
Pharmacokinetic compartmental models have been used widely to demonstrate how chemical compounds such
as drugs interact with biological processes in different tissues. Pharmacokinetic models are often represented as
the form of differential equations. There are many studies related to cancer therapy that use the compartmental
models to approximate the drug concentration in tumor cells and other tissues. These models are concerned
about different pathways to administer drug and compare them to find the concentration of chemicals in
different tissue that helps to explore the best route of drug administration for different diseases and finally
better treatment. Fractional calculus is a new approach for modeling physical and biological phenomena with
memory or aftereffects. Fractional calculus uses differential operators and integral operators of orders that
are not integer to study the complexity and behavior of non-linear physical and biological systems which
display some degrees of fractional and fractal behavior. Using fractional derivatives and integrals we are
able to explain the memory and patrimonial effect in different events and successive processes in real world
phenomena. Since the analytical and explicit solutions of fractional ordinary differential equations (FODEs)
(linear and non-linear forms) cannot be easily obtained, someone needs to use computational methods and
computer simulations to approximate the solutions of these systems. fractional-order modeling in biology
and specifically physiology helps to explore the complexity of different processes inside human body and to
characterize and measure different organs complication using fractal geometry and fractional calculus tools.
Moreover, since tumor cells interactions are systems with memory, therefore FODEs are better candidates to
model cancer phenomena rather than ordinary and delay differential equations.

In the current research, we have explored the process of drug distribution inside the body using three
different pharmacokinetic compartmental models. These models include physiological parameters which
describe the process of ADME of drug in different body organs. At first, we have considered integer
order compartmental models to display the process of drug distribution in different tissues tissue. We
tried to write the mathematical models using the schematic diagrams that makes it easier to study these
biological processes. Next, we have used the Grunwald-Letinkov discretization method to discretize these
pharmacokinetic compartmental models. Finally, to obtain the fractional-order compartmental model for each
case, we have applied the nonstandard finite difference method (NSFD) Micken’s technique. To compare the
solutions of fractional-order systems of different orders to the corresponding traditional integer order models,
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we have carried out some numerical methods (by preserving the same biological parameters) since the
solutions of fractional-order models may not be explicitly obtained. The graphical presentations of numerical
results showed that NSFDM is easy and convenient to implement, and effective enough for solving efficiently
the proposed models. Therefore, these numerical results would be a good starting point to find out the best
mathematical model to demonstrate the absorption, distribution, and excretion of drug in different body organs.
By considering the fractional-order modeling approach, we could improve the capabilities of the integer order
modeling into the generalized domain of fractional calculus and we could derive all the possible geometric
mechanisms underlying the (ADME) of drug inside body. Likewise, we have used the order of fractional
derivative as a new control parameter to extract the variety of governing classes on the non-local behaviors
of these models (since for each order we have a new model), while, the integer order framework only could
study the local behaviors in the integer order domain. Using the order of fractional derivative, we can see
different classes of the model and select the model that can be a perfect fit for our data. It also gives us more
control to write down a model that is closer to our experimental results or to choose the appropriate order
that demonstrates the expected dynamical behaviors.

The fractional-order approach discussed in this study required to be extended to be an appropriate frame-
work in the pharmacokinetic modeling area. In principle, it is worthwhile to mention the limitations of this
work. Because the experimental data was not available for this study, future work is crucial to evaluate how
reliable is the provided fractional-order models. Using the experimental data would significantly improve the
reliability of this framework for drug diffusion modeling. It is straightforward to apply fractional calculus on
the pharmacokinetic compartmental model representations proposed here, however we may require to find a
concrete and rigorous analysis to discover the relevance of the physiological interpretation of the fractional
differentiation order γ as a newly added parameter. Although it is evident from numerical simulations that
different classes of these compartmental models and their dynamics have mainly been presented and captured
by different fractional-order γ value, it would be of great significance to find the ranges of γ value using
experimental data for clinical applications.
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