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Abstract 
Tissue-classification-based attenuation correction strategies have been pre-
viously proposed to correct for bone attenuation in PET/MR imaging and si-
mulated using computed tomography. However, the complication of voxel 
averaging uniquely associated with bone has not been considered explicitly in 
the past. This study investigated the effect of voxel averaging between bone 
and soft tissue in attenuation images and determined how accurately bone 
must be detected in MR images in order to perform acceptable attenuation 
correction of PET data by using CT-simulated attenuation correction. We 
found out that treating bone as soft tissue caused a mean quantification dif-
ference of −9.9% ± 5.5% in all 119 bone lesions. There were no significant dif-
ferences between lesions in the pelvis and the vertebrae. The nominal differ-
ence in lesions in the ribs was significantly lower, likely due to the spatial mi-
sregistration between the emission and attenuation images. Interestingly, a 
non-monotonic relationship between the bone imaging ability and the abso-
lute PET quantification accuracy was observed, with the minimal quantifica-
tion difference achieved at a BVF around 40% for skull lesions (2.6% ± 2.1%), 
and 30% for non-skull lesions (1.4% ± 1.1%) and all lesions (1.5% ± 1.3%). 
This study established that a bone classification sensitivity of approximately 
30% BVF is required in order for MR-based attenuation correction methods 
to achieve optimal quantification in whole-body PET/MR studies. For this 
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purpose, higher bone imaging ability of MR may not be necessary. 
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1. Introduction 

Inaccuracy in attenuation coefficient maps using MR-based (Magnetic Reson-
ance Imaging) approaches can compromise PET (Positron Emission Tomogra-
phy) quantification accuracy for the combined PET/MR system. This has been 
recognized as one of the weakest points in current PET/MR technology [1]. The 
difficulty lies in the fact that MR signal reflects the density of mobile protons in 
the material weighted by the respective magnetic resonance relaxation properties 
(T1 and T2), rather than the material’s photon attenuation properties. Therefore, 
MR images are not directly translatable into the 511 keV photon linear attenu-
ation coefficients, which are required for PET attenuation correction, in the 
same way that CT (Computed Tomography) images can be translated. Many 
different approaches to obtain patient-specific attenuation maps from MR im-
ages have been proposed [2]-[12]. The most common approach involves de-
riving MR-based PET attenuation maps by classifying or segmenting the MR 
images into different tissue categories followed by assigning standard tis-
sue-specific attenuation coefficients to each voxel based upon its assigned 
class. The tissue-classification approach is used by all of the commercially avail-
able PET/MR models because of its simplicity and flexibility, and is the focus of 
discussion in this paper. 

On current commercial whole-body PET/MR systems, either a three-class (air, 
lung and soft tissue) [13] or a four-class (air, lung, fat and non-fat soft tissue) 
[14] method is employed for obtaining PET attenuation maps. Instead of being 
treated as a separate tissue class in the attenuation maps, in these systems bones 
are incorporated into the soft tissues despite their substantially different photon 
attenuation properties. This is largely attributable to the difficulty of detecting 
bone in MR images: first, the number of protons in bones that are visible to the 
MR scanner is only about 20% - 25% of that of soft tissues [15]; and more im-
portantly, the transverse relaxation time, T2, of bones is substantially shorter 
than those of soft tissues (0.3 - 0.5 ms versus 10 - 100 ms), leading to a rapidly 
decaying signal that cannot be captured by conventional MR sequences [16] 
[17]. A number of studies have demonstrated that simply treating bone as soft 
tissue can cause inaccuracy in PET quantification, especially in brain imaging 
(~10% - 25% underestimation) and in the voxels that are adjacent to or inside of 
the bones in whole-body imaging (~10% underestimation) [18] [19] [20]. Inac-
curacy in attenuation correction of bone may be especially problematic in pedia-
tric studies, a potential key application for PET/MR imaging, given the higher 
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bone to soft tissue ratio [21]. Many of these studies also suggested that identify-
ing bone as a separate tissue class and assigning an attenuation value higher than 
that of soft tissues can significantly reduce the quantification inaccuracy [22]. To 
address these difficulties, special MR imaging methods such as ultrashort-echo- 
time (UTE) or zero-echo-time (ZTE) sequences have been proposed [16] [17] 
[23] [24] [25]. These techniques use an extremely short TE (as low as 10 us for 
the ZTE technique) to capture the signal of bone before its disappearance and 
thereby to obtain bone information using MR. UTE/ZTE MR-based techniques 
have been applied to head imaging and can potentially provide bone information 
for attenuation correction in whole-body PET/MR systems. 

However, MR bone imaging using UTE/ZTE techniques still faces many chal-
lenges [26] [27]. In addition to the short relaxation time and low proton density, 
a unique challenge of bone imaging stems from the small size of bone relative to 
the typical voxel sizes prescribed in clinical imaging, both MR and CT. Unlike 
soft tissues, whose dimensions are often greater than that of the voxel size 
(which is typically 1 - 3 mm), the dimension of bone—or more specifically, the 
mineralized, “hard tissue” component of bone—is usually close to or smaller 
than the dimension of the voxel prescribed for the imaging session. For example, 
the thickness of the cortical layer of the bones in the torso, such as the vertebrae 
and ribs, can be less than 1 mm [28] [29], and even the more sizable bones such 
as the pelvis have regions that are as thin as, or thinner than, the voxel size. As a 
result, when the signals from a human body are “voxelized” during a tomo-
graphic imaging study, most “soft tissue voxels” are homogeneous voxels that 
contain only soft tissues, whereas a substantial proportion of the “bone voxels” 
are, in fact, voxels that contain both bone and soft tissues, leading to partial vox-
el composition, which is the focus of this study. 

The issue of partial voxel composition related to bone deserves special scruti-
ny for MR because it poses a substantially greater challenge to bone imaging in 
MR than in CT. In clinical CT images, the superior contrast to noise ratio be-
tween bone and soft tissue (contrast: >1000 HU, noise: 15 - 20 HU) makes it easy 
to detect the presence of bone even in voxels where the volumetric fraction of 
bone inside the voxel is low (this will be hereafter referred to as the bone volume 
fraction, or BVF for short). For example, consider a voxel that spans the inter-
face between skeletal muscle (~50 HU) and the femur (~1400 HU) such that it is 
composed of 80% muscle and 20% cortical bone. The HU value of this voxel will 
be approximately 320, which is far greater than the expected value of soft tissue 
(typically less than 100 HU). It is thus easy to recognize the presence of bone in 
this voxel, despite the fact that the voxel is predominantly composed of soft tis-
sue (80%). However, detecting the presence of bone with MR in voxels of mixed 
composition is substantially more difficult even with the aid of UTE/ZTE tech-
niques, and the ability of bone identification with MR is far behind the ability of 
CT. As a result of the discrepancy in the abilities of bone identification between 
MR and CT, although previous CT simulated studies [22] [30] showed that 
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binary tissue classification of bone is an effective approach to correcting 
bone-induced quantification inaccuracy, their applicability to MR-based PET 
attenuation correction is limited because the high capability of bone detection 
(low HU threshold in bone segmentation) simulated in these studies may not yet 
be achievable with MR. Therefore, a more detailed investigation of this subject is 
warranted. 

We hypothesized that accurate quantification may be achievable with 
less-than-perfect bone identification abilities, and as a result the segmenta-
tion-based approach remains feasible for PET/MR attenuation correction. In this 
study we investigated the relationship between the quantification accuracy of 
bone lesions in PET and the ability of an MR technique to detect the presence of 
bone in voxels where its fractional presence is low. We only focused on the 
quantification of bone lesions, as it has been demonstrated that in soft tissue le-
sions, quantification bias from ignoring bone are small. The goal of this study 
was to establish the requirement for accurate quantification of bone uptake in 
PET/MR and thereby to support the development of MR-based bone classifica-
tion methods. 

2. Methods 
2.1. 18F-Sodium Fluoride PET/CT Data 
18F-sodium fluoride (NaF) is a radiotracer for skeletal imaging. It has been used 
to evaluate metastatic bone diseases in oncology [31]. Image data of seven pa-
tients (five male, two female, age 55.5 ± 16.5 yr, weight 93.9 ± 20.7 kg) who had 
undergone whole-body 18F-NaF PET/CT examinations at The University of 
Texas MD Anderson Cancer Center were retrospectively obtained for this study. 
The studying of these patient data was approved by the Institutional Review 
Board of The University of Texas M. D. Anderson Cancer Center. All of the 
PET/CT exams had been performed on a Siemens Biograph mCT Flow PET/CT 
scanner. The injected NaF activities were 8.9 ± 0.6 mCi [322 ± 22 MBq]. After an 
uptake time of 46.6 ± 9.3 minutes, whole-body CT attenuation data and PET 
emission data were acquired from the vertex of the skull to the toes. No CT con-
trast material was administered to these patients. The CT data were acquired at 
140 kVp, with a pitch factor of 1.4 and collimation of 16 × 1.2 mm. They were 
reconstructed into images with 512 × 512 matrices with a 1.5 mm transverse 
pixel size. The PET data were acquired in 3D mode and reconstructed into 200 × 
200 matrices with a 4.1 mm transverse pixel size. Both datasets had 3 mm slice 
thickness and 2 mm slice spacing. Following the clinical protocol at our institu-
tion, PET reconstructions were performed using the “UltraHD-PET” option, 
which includes both PSF (point spread function) and TOF (time of flight) cor-
rections, using two iterations, 21 subsets and a 5-mm FWHM Gaussian filter. 
The same parameters were used for all PET reconstructions in this study. 

We used CT attenuation images that had been acquired during NaF PET/CT 
scans in our simulation of MR-based attenuation images. In order to make the 
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results of this CT-simulated study applicable to MR, the bone volume fraction 
(BVF), a physical quantity independent of imaging modalities, was employed to 
characterize the ability of bone imaging. BVF values of voxels were estimated 
using the HU value of the voxels (see details in the Appendix). Using the esti-
mated BVF values of voxels, MR-based attenuation map with various levels of 
bone imaging ability was simulated with CT images by classifying the mixed 
bone voxels with BVF above a certain threshold as bone voxels and the ones be-
low the threshold as soft tissue voxels. The BVF threshold hence characterizes 
the ability of bone identification of the hypothetical MR technique. We then de-
termined the proper attenuation coefficients to be assigned to voxels that had 
been classified as bone for each level of BVF, and we performed PET reconstruc-
tions with the simulated attenuation maps. It is worth noting that the rest of the 
CT images—soft tissue, lung and air voxels—were left intact without any mod-
ification in the attenuation images; by doing so, the effect of bone voxel identifi-
cation on PET quantification is isolated. Finally, the bone lesion uptakes in PET 
data corrected with these simulated attenuation maps were compared to the PET 
data reconstructed with the original CT attenuation images to determine the 
PET quantification accuracy. 

To summarize, our study consists of three steps: 
Step 1: Estimate the BVF for each voxel using whole-body CT datasets from 

the attenuation scans of PET/CT studies at a resolution that is typically em-
ployed in the clinic by. This step was necessary because in this study, the ability 
to detect bone was characterized by the minimal BVF that could be identified as 
bone by an MR bone imaging technique. 

Step 2: Create various attenuation maps that simulate MR-based attenuation 
correction with different bone detection ability by varying BVF thresholds. This 
was achieved by classifying only voxels above a certain BVF threshold as bone, 
while treating voxels below that threshold as simply soft tissue in the attenuation 
map. 

Step 3: Perform attenuation correction using the simulated attenuation maps, 
and then compare the corresponding quantification accuracy of bone lesions to 
CT-corrected PET data. This step evaluated the quantification accuracy of 
MR-based attenuation correction by comparison to the gold-standard of CT- 
based attenuation corrected PET data. 

2.2. Step 1: Estimation of Bone Volume Fraction 

Prior to the calculation, all components outside of the patient anatomy, such as the 
CT table and any positioning pads, were digitally removed from the CT images. 

The HU value in CT reflects the overall attenuation of a voxel. Ignoring noise, 
the linear attenuation coefficient of a voxel that contains multiple tissue types is 
the mean of the attenuation coefficients of the tissue types weighted by the re-
spective volumetric fraction of each type:  

( ) ( ) ( ), , , , , ,n n
n

HU x y z c x y z HU x y z= ∑ , where ( ), , 1n
n

c x y z =∑
   

 (1) 
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In this equation, x, y, and z are the spatial coordinates of the voxel, and cn de-
notes the fraction of the volume of the voxel that consists of tissue type n; 
HUn(x, y, z) is the HU value of tissue type n at the voxel. Although in theory a 
voxel could contain more than two different tissue types (e.g., lung, fat, soft tis-
sue and bone), under realistic conditions voxels containing three or more tissue 
types are so rare that they can be ignored. In this study, the focus was on the 
voxels that are partially bone and partially soft tissues. 

Replacing the cn of bone with the Bone Volume Fraction in the dual-tissue-type 
scenario, Equation (1) becomes: 

( )
( ) ( ) ( ) ( )
, ,

, , , , 1 , , , ,bone tissue

HU x y z

BVF x y z HU x y z BVF x y z HU x y z= ⋅ + − ⋅      
 (2) 

This equation means that given a measured HU (x, y, z), the volumetric frac-
tion of the bone (BVF) of the voxel located at (x, y, z) can be computed if the HU 
values for tissue and bone are known. In order to perform the analysis in our 
study, we made the assumption that in contrast to the large HU difference 
(>1000) between soft tissues and bone, the difference within homogeneous tissue 
voxels is small enough to be neglected, and that all homogeneous soft tissue vox-
els can be considered to have the same HU value, HUtissue, and that all homoge-
neous bone voxels within the same CT slice can be considered to have the same 
HU value, HUbone(z), where z is the slice location (more details about the slice 
dependence of HUbone can be found in the Appendix). 

In essence, Equation (2) becomes 

( ) ( ) ( ) ( ), , , , 1 , ,bone tissueHU x y z BVF x y z HU z BVF x y z HU= ⋅ + − ⋅        (3) 

The BVF for each voxel can be simply estimated as 

( ) ( ) ( ) ( )
1, , , , tissue

bone tissue bone tissue

HU
BVF x y z HU x y z

HU z HU HU z HU
= −

− −    
 (4) 

In this study, HUtissue was set to 0, the HU value of water, which is used in the 
BVF estimation of all studies. The value of HUbone(z) was determined separately 
for each slice because human anatomy at different cross-section can produce 
different amount of beam hardening, which results in a variation of the meas-
ured HU values. The slice-to-slice variation in HU is minimal for soft tissues, 
but cannot be neglected for bone. The details of our method of determining 
HUbone(z) are described in the Appendix. The linear relationship between the 
volumetric fraction of bone and HU values measured with a clinical CT scanner 
has also been demonstrated by Parsa et al. ex vivo [32]. 

2.3. Step 2: Simulation of MRAC Images with Various Bone  
Volume Fraction Thresholds 

Detection of bone in voxels with higher BVF is always easier than in voxels with 
lower BVF because there are greater signal contrasts in the MR-derived parame-
ters, such as *

2R , between these voxels and the background soft tissue voxels. 
Therefore, the ability of an imaging method to detect bone can be characterized 
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by the minimum BVF that a voxel must have in order for the presence of bone to 
be detectable using this method. A low BVF threshold indicates that the tech-
nique is relatively sensitive to the presence of bone, while a high BVF threshold 
indicates relative insensitivity. 

A BVF threshold of 100% corresponds to the situation of complete insensitiv-
ity, namely that in which the presence of bone can be detected only in voxels 
with BVFs strictly greater than 100%. Such an extreme threshold simulates the 
MRAC approaches that are available on the current commercial PET/MR sys-
tems, which treat bone as being the same as soft tissue. With a decreasing BVF 
threshold, the simulated sensitivity increases. In theory, the highest sensitivity 
corresponds to the BVF threshold of 0%, meaning that the presence of bone can 
be detected even in voxels in which the volumetric fraction of bone approaches 
0%. This could not be simulated in our study, because we found that a 10% BVF 
threshold corresponds to 100 - 120 HU in the CT attenuation images. Further 
decreasing the threshold would start to include soft tissue voxels, which produc-
es unacceptable classification errors. This also indicates that, as the most sensi-
tive tomographic bone imaging modality, the bone detection sensitivity of CT is 
around 10% BVF. Expecting MR-based methods to achieve this level of sensitiv-
ity would be unrealistic with present technology. 

In order to simulate the scenarios of different bone detection sensitivities in 
MR, ten sets of different attenuation images were created, representing a range 
of sensitivity with BVF thresholds of 100% (i.e., bone completely ignored and 
treated as soft tissue), 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20% and 10%. Vox-
els with a BVF strictly higher than the thresholds were classified as bone in each 
CT dataset, while voxels with a BVF between 10% and the threshold values were 
classified as soft tissue. 

For each BVF threshold, the mean HU value for the voxels classified as bone 
was calculated separately for each patient. These mean HU values were then as-
signed to the segmented bone voxels, replacing the original HU values. The 
mean HU values for soft tissue voxels were also calculated for each patient, and 
were assigned to the voxels with a BVF between 10% and the corresponding 
threshold. The HU values for the voxels with BVF < 10%, i.e., the soft tissue vox-
els, were not modified. By doing this, the attenuation contribution of bone was 
isolated from that of the rest of the body. The components that had initially been 
excluded from the CT images prior to the BVF estimation (e.g., the patient table, 
the positioning aids and the high attenuation components such as teeth and 
metal implants) were then reintroduced into the attenuation images so that they 
were consistent with the reference CT. The ten sets of attenuation images, along 
with the original CT attenuation images, were then used in reconstructions of 
the PET data. 

2.4. Step 3: Identification and Comparison of NaF-Avid Bone  
Lesions 

In order to quantitatively assess the effect of bone detection sensitivity on PET 
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bone lesion quantification, we evaluated the percentage difference in tracer up-
take of NaF-avid bone lesions between the data reconstructed with simulated at-
tenuation correction maps and those reconstructed with the original CT attenu-
ation maps. For convenience, all regions of bones with tracer uptake that was 
visibly higher than the adjacent background (i.e., appear as “hot spots”) are re-
ferred to as lesions in this study, without necessarily implying any clinical diag-
nosis. The lesions were identified in the PET images reconstructed with the 
original CTAC images. 

The delineation of lesions was performed using in-house software written in 
Matlab [Mathworks, Natick, MA]. A seed location was first manually selected 
for each lesion, and then a region-growing algorithm was used to segment the 
PET voxels with an appropriate uptake threshold that had been manually deter-
mined for each lesion. If necessary, this step was followed by morphological di-
lation or erosion to ensure an adequate segmentation of the entire tracer-avid 
region. In these NaF PET/CT studies, NaF-avid lesions could be identified in 
bones all over the body. However, sometimes patients move their limbs during 
the lengthy PET scan, causing spatial misregistration of the limbs in the CT im-
age and the PET image. This can lead to inaccuracy in quantification of the af-
fected lesions. For this reason, lesions that were located in the upper and lower 
extremities were not included in the analysis. 

A total of 119 suitable lesions were identified in five different anatomical re-
gions: skull (N = 17), pelvis (N = 28), ribs (N = 17), vertebral processes (N = 13) 
and vertebral bodies (N = 44). These lesions were quantified using their maxi-
mum activity concentration values. 

3. Results 

3.1. Simulated MRAC Image with Various Bone Volume Fraction 
Thresholds 

The HU values assigned to the segmented attenuation images are the measured 
mean HU values of voxels above the respective BVF thresholds. These results are 
given in Table 1. 

3.2. Quantification Difference in NaF-Avid Bone Lesions with and 
without an Explicit Bone Class in the Attenuation Images 

Compared to the reference PET data, the quantification difference of the 119 
tracer-avid bone lesions when no bone was classified in the attenuation images 
was −9.9% ± 5.5% (−2.0% to −26.4%) for the maximal uptake (see Figure 1 & 
Table 2). The degree of underestimation differed between lesions located in the 
skull (−19.9% ± 3.8%) and lesions located in the body (−8.2% ± 3.6%, p < 0.001). 
Within the body, the underestimation of lesions in the ribs (−4.6% ± 1.6%) was 
significantly lower compared to that of lesions in the pelvis, the vertebral bodies 
and the vertebral processes (−8.9% ± 3.5%, p < 0.001). The difference among le-
sions in the pelvis, the vertebral bodies and the vertebral processes were found  
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Table 1. HU values assigned to the segmented bone voxels corresponding to each sensi-
tivity level of bone detection. These values were the measured mean HU of the voxels 
above the BVF threshold in the corresponding CT attenuation images. 

BVF threshold HU Assigned to Segmented Bone Voxels 

10% 461 ± 30 HU 

20% 620 ± 34 HU 

30% 764 ± 42 HU 

40% 885 ± 45 HU 

50% 984 ± 44 HU 

60% 1067 ± 44 HU 

70% 1147 ± 52 HU 

80% 1219 ± 54 HU 

90% 1287 ± 51 HU 

Tissue 31 ± 7 HU 

 

 
Figure 1. Quantification error in 119 bone lesions when bone is classified as soft tissue in 
the attenuation image. The underestimation of uptake was significantly higher in the skull 
lesions, while no statistically significant difference was observed among lesions in the pel-
vis, the vertebral process and the vertebral body. The apparent quantification error in rib 
lesions was lower, which was caused by the spatial misregistration between the PET data 
and the CT attenuation data. 

 
Table 2. Quantification error in 119 bone lesions when bone is classified as soft tissue in 
the attenuation image. 

Lesion location Difference in maximum uptake 

All (N = 119) −9.9% ± 5.5% (−26.4% to −2.0%) 

Skull (N = 17) −19.9% ± 3.8% (−26.4% to −10.8%) 

Non-Skull (N = 102) −8.2% ± 3.6% (−19.1% to −2.0%) 

Pelvis (N = 28) −9.4% ± 4.4% (−19.1% to −2.6%) 

Ribs (N = 17) −4.6% ± 1.6% (−7.9% to −2.0%) 

Vertebral Body (44) −8.5% ± 3.0% (−17.1% to −4.2%) 

Vertebral Process (17) −9.5% ± 2.7% (−15.9% to −5.9%) 
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not to be statistically significant (p = 0.705 between the pelvis and the vertebral 
processes, p = 0.522 between the pelvis and the vertebral bodies, and p = 0.180 
between the vertebral processes and the vertebral bodies). 

For the simulation of the case of a highly sensitive method of bone classifica-
tion in MR (corresponding to a BVF threshold of 10%), the quantification dif-
ference of the 119 bone lesions improved from −9.9% ± 5.5% to 1.2% ± 4.7%. 
However, this small mean difference reflects compensation between overestima-
tion in some lesions and underestimation in others. Analyzing the absolute val-
ues of the differences in order to remove the compensation effect, the absolute 
quantification difference of the 119 lesions decreased from 9.9% ± 5.5% to 4.0% 
± 2.7%, which is still a reduction of 59% of the original bias. 

3.3. Effect of Bone Detection Sensitivity on Bone Lesion  
Quantification 

An example of the simulated attenuation images with different bone imaging ab-
ilities are shown in Figure 2. The dependence of the quantification difference on  

 

 
Figure 2. Illustration of simulated attenuation maps in this study and original CT. For display purposes, only the torso portion of 
the whole-body study are shown here. Different BVF thresholds were used when segmenting the partially bone voxels, simulating 
a hypothetical MR-based bone imaging method with different level of bone imaging abilities, in which voxels with BVF strictly 
greater than the threshold are identifiable. BVF = 100% corresponds to the scenario that no bone voxels were identified. 
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the sensitivity of bone detection is plotted in Figure 3 and Figure 4. The detailed 
results are shown in Table 3. The overall absolute quantification error, which 
was 9.9% ± 5.5% with the 100% BVF threshold (i.e., without any bone identifica-
tion), did not decrease monotonically as the sensitivity of bone detection in-
creased, but instead reached a minimum of 1.5% ± 1.3% in the simulated atten-
uation images at a 30% BVF threshold. This corresponds to a reduction of 84% 
of the original quantification bias. Beyond this point, increasing the bone detec-
tion sensitivity (i.e., reducing the BVF threshold) further led to slight increases 
in the quantification error. 

There was also a notable difference between the lesions in the skull and the le-
sions in the body (i.e. in the pelvis, ribs, and vertebrae). As the bone detection 
sensitivity increased from no bone detection to approximately 30% BVF thre-
shold, the degree of underestimation of bone lesions in the body decreased stea-
dily from 8.2% ± 3.6% to 1.4% ± 1.1%. Overestimation then started to occur and 
the absolute quantification difference reached 3.4% ± 2.0% at a 10% BVF thre-
shold. In contrast, underestimation of the uptake in skull lesions decreased from 
19.9% ± 3.8% to 2.6% ± 2.1% as the bone detection sensitivity increased to 40% 
BVF threshold, and then rose to 8.0% ± 3.4% for still lower BVFs without ever 
becoming overestimated. 

4. Discussion 

MR-based attenuation correction techniques using binary tissue-classification  
 

 
Figure 3. Absolute quantification error of bone lesions at different location vs. bone de-
tection sensitivity. For easier visualization, the data of lesions located at different sites are 
slightly shifted on the X-axis. The minimal quantification error occurred at approximate-
ly 30% BVF for the body lesions and approximately 40% for the skull lesions. (V-PROC = 
vertebral process; V-BODY = vertebral body.) 
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Figure 4. Quantification difference of bone lesions (without taking absolute values) at 
different location vs. bone detection sensitivity. For easier visualization, the data of le-
sions located at different sites are slightly shifted on the X-axis. A large difference be-
tween data of the body lesions and of the skull lesions can be observed. This is likely the 
result of using one single attenuation coefficient to represent the wide range of attenua-
tion coefficients that can be observed in typical CT images. According to these results, if 
the binary classification method is to be used for the correction of photon attenuation of 
bone, optimal quantification results can be obtained with the detection of all voxels that 
are partially bone with a BVF above approximately 30%. (V-PROC = vertebral process; 
V-BODY = vertebral body.) 

 
Table 3. Absolute quantification error in the evaluated lesions vs. BVF threshold used in binary segmentation of bone (V-Proc = 
vertebral process; V-Body = vertebral body). The minimum value for each skeletal region is underlined. 

BVF All Skull Non-skull Ribs Pelvis V-Proc V-Body 

No Bone 9.9% ± 5.5% 19.9% ± 3.8% 8.2% ± 3.6% 4.6% ± 1.6% 9.4% ± 4.4% 9.5% ± 2.7% 8.5% ± 3.0% 

90% 9.1% ± 4.6% 16.7% ± 4.9% 7.8% ± 3.0% 4.5% ± 1.5% 8.7% ± 3.6% 8.9% ± 2.0% 8.3% ± 2.5% 

80% 8.1% ± 3.5% 13.3% ± 4.1% 7.2% ± 2.5% 4.5% ± 1.5% 7.8% ± 3.0% 8.2% ± 1.9% 7.6% ± 1.9% 

70% 6.9% ± 2.5% 9.3% ± 3.0% 6.5% ± 2.2% 4.2% ± 1.3% 6.8% ± 2.5% 7.5% ± 2.2% 6.9% ± 1.8% 

60% 5.6% ± 2.1% 5.6% ± 2.1% 5.6% ± 2.1% 3.7% ± 1.2% 5.6% ± 2.0% 6.4% ± 2.2% 6.1% ± 2.0% 

50% 4.2% ± 2.0% 3.0% ± 1.6% 4.4% ± 2.0% 2.8% ± 1.1% 4.2% ± 1.6% 4.7% ± 2.3% 5.0% ± 2.0% 

40% 2.7% ± 1.6% 2.1% ± 1.7% 2.8% ± 1.6% 1.8% ± 0.9% 2.6% ± 1.2% 2.8% ± 2.1% 3.4% ± 1.6% 

30% 1.5% ± 1.3% 2.6% ± 2.1% 1.4% ± 1.1% 0.8% ± 0.6% 1.3% ± 0.8% 1.1% ± 0.6% 1.6% ± 1.3% 

20% 2.0% ± 1.8% 4.9% ± 2.6% 1.5% ± 1.0% 1.2% ± 0.5% 1.4% ± 0.9% 1.9% ± 1.0% 1.6% ± 1.1% 

10% 4.0% ± 2.7% 8.0% ± 3.4% 3.4% ± 2.0% 2.4% ± 1.1% 3.1% ± 1.8% 3.1% ± 1.8% 4.0% ± 2.2% 

 
have been studied by a number of investigators, many of whom concluded that 
identifying bone as a separate tissue class is necessary in order to achieve accu-
rate quantification of the PET data, especially for regions inside of or near bones. 
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Some of these studies have shown that with a sensitive bone detection and classi-
fication method, accurate PET quantification can be achieved. However, pre-
vious studies have not discussed the issue regarding voxel averaging of bone and 
soft tissue when using a binary tissue-segmentation approach, or the required 
sensitivity for an MR tissue-classification based attenuation correction approach 
to correct for the attenuation from human bones. In this study, we examined the 
contribution to attenuation from bone in greater detail and, for the first time, 
evaluated how the sensitivity of bone detection can affect the PET quantification 
in bone lesions. We have thereby established that with a tissue-classification 
based approach, the MR imaging technique should be able to identify all voxels 
with greater than 30% BVF as “bone voxels” in order to minimize the bone-induced 
quantification inaccuracy in PET/MR studies. 

When bones are not separately classified in the attenuation images, uptakes in 
all bone lesions evaluated in this study were underestimated. The underestima-
tion spanned a wide range, from 2.0% to over 25%. It was significantly higher in 
the skull than in the other parts of the skeleton that were evaluated in this study. 
This is to be expected because in the head, the bone-to-tissue ratio is appreciably 
higher than in the body. 

The underestimation of lesion uptakes in the ribs is significantly lower. How-
ever, this does not necessarily indicate that the detection of rib bones is less im-
portant for attenuation correction purpose. This difference in quantification of 
ribs likely stems from the deleterious effects of involuntary respiratory motion, 
which caused spatial misregistration between the PET images and the CT images 
so that uptake in the rib bones was partially projected into soft tissues in the CT 
images, thereby rendering the reference value (i.e., the CT-corrected PET data) 
inaccurate. 

The most interesting result of this study is the non-monotonic relationship 
between the bone detection sensitivity and the quantification difference in bone 
lesions. Intuitively, one would expect that the most accurate PET data would be 
reconstructed from the attenuation map that was made with the highest bone 
detection sensitivity (i.e., the lowest BVF threshold). Our results show otherwise: 
when a binary-tissue-classification method is used for attenuation correction of 
bone in whole-body imaging, there appears to be an optimal BVF threshold for the 
segmentation of voxels that are partially bone. Beyond that optimal BVF, improv-
ing the sensitivity further is not only unnecessary but in fact counterproductive. 
This result may be explained by the manner in which tissue-classification ap-
proaches are performed in MR-based PET attenuation correction: a single at-
tenuation coefficient is assigned to represent an entire tissue class. This can be 
justified relatively easily for air, fat, and non-fat soft tissues, whose attenuation 
coefficients have been shown to have very small inter-patient variation (partly 
because intra-voxel averaging is not a serious problem for these tissue classes). 
This, however, proved to be more problematic for the bone and lung class [33], 
both of which are affected by substantial intra-voxel averaging (of air and soft 
tissue for the lung class, and of bone and soft tissue for the bone class) with typ-
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ical clinical voxel sizes. As the result of tissue mixing at various ratios, the no-
minal attenuation coefficients measured in CT for these two classes have signifi-
cantly wider distributions compared to “air”, “fat” and “soft tissue,” even for the 
same patient. Consequently, using a single attenuation coefficient to represent 
the entire tissue class inevitably leads to overestimation in some regions and 
underestimation in the other regions. In our study, this can be observed both in 
the split trend between skull and non-skull lesions and in the variation of lesion 
quantification within the same type of bone. 

However, this does not invalidate the use of a binary-tissue-classification for 
PET bone attenuation correction. Our results in this simulated study at a repre-
sentative clinical voxel size have shown that, using a binary bone segmentation 
method corresponding to approximately 30% BVF threshold and assigning 760 
HU (corresponding to about 0.135 cm−1 for 511 keV photons [34]), the absolute 
quantification difference of bone lesions was reduced to 1.5% ± 1.3% compared 
to CT-corrected PET data. Although this is probably as high an accuracy as a 
binary-classification method can achieve, it is acceptable because an absolute 
quantification difference of less than 2.0% is sufficient for most clinical PET ap-
plications, if not all. More importantly, this study demonstrates that, in order to 
minimize the quantification effect of bone, MR-based methods do not have to be 
as sensitive as CT is in bone detection. This is fortuitous, given the various limi-
tations in the fundamental imaging mechanism of MR when it comes to bone 
imaging. 

It should be noted that this study has several limitations. One of the primary 
limitations is the inaccuracy in the estimation of BVF using HU values, which 
comes from two main sources. The first is the inaccuracy of the values of HUbone. 
In the determination of BVF for individual voxels, ideally HUbone should be cor-
rected for beam hardening on a voxel-by-voxel basis. However, this is not prac-
tical. By using the heuristic method that we developed to correct the HUbone var-
iation on a slice-by-slice basis (see the Appendix), the uncertainty is reduced. 
The remaining variation can still cause inaccuracy in our results and, unfortu-
nately, there is no simple way to further reduce its impact. 

Another limitation of this study is associated with voxel size, which largely 
determines the extent of intra-voxel averaging. In theory, when the voxel size is 
small enough compared to the dimensions of human cortical bone, intra-voxel 
averaging is negligible, and most bone will be located in homogeneous bone 
voxels. In this scenario, even a method with low bone detection sensitivity would 
be able to classify a sufficient amount of bone for an adequate attenuation cor-
rection. However, reducing voxel averaging by using small voxel sizes in clinical 
MR scans, especially the ones used for attenuation correction purposes, is im-
practical as it requires substantially longer acquisition time and also degrades the 
signal-to-noise ratio of the images. The voxel size of the CT attenuation images 
used in this study was 1.5 mm × 1.5 mm × 3.0 mm, which is a typical voxel size 
in clinical MR imaging of the body. The optimal BVF threshold to correct for 
bone attenuation is expected to depend on the voxel size used for MR imaging, 
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and larger voxel sizes are expected to require higher sensitivities (i.e., lower BVF 
thresholds) because it results in lower average BVF in heterogeneous voxels. 
Since the voxel size for whole-body MR attenuation images is not likely to be 
significantly smaller than the voxel size used in this study, a BVF of 30% can be 
considered to be the bone detection sensitivity that tissue-classification tech-
niques should aim to achieve in order to obtain the best quantification of PET 
bone lesion uptakes in whole-body PET/MR studies. We estimate the sensitivi-
ties of previously published UTE MRAC studies to be around 50% - 70% using 
the sequence parameters published in the papers and typical MR properties of 
tissue. The sensitivities that were achieved in those studies can adequately cor-
rect the bone attenuation in PET/MR studies of the head. However, the present 
work suggests that greater sensitivity is needed for accurate bone lesion quanti-
fication in whole-body PET/MR studies. 

5. Conclusion 

Treating bone as soft tissue can lead to an underestimation of the uptake inside 
bone lesions in whole-body PET/MR studies of approximately 10%. The rela-
tionship between bone detection and the accuracy of PET quantification in bone 
is non-monotonic. By combining the proper level of bone detection with the 
corresponding mean HU for bone voxels, a tissue-classification approach can 
reduce the absolute quantification error of bone lesions to less than 2% com-
pared to the reference CT-corrected PET data. The optimal bone detection 
threshold is approximately 40% BVF for the skull and 30% BVF for non-skull 
skeleton. This is the attenuation correction requirement for the most accurate 
quantification of bone lesions with PET/MR at a typical clinical voxel size. 
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Appendix 

The volumetric fraction of bone, or BVF, of any voxel can be computed if the 
HU values of homogeneous bone and soft tissue in the voxel are known. While 
the HU value for soft tissue is relatively constant for a properly calibrated CT 
scanner, HU values for homogeneous bone voxels can be affected by factors such 
as scan parameters, spatial location and reconstruction methods. In this appen-
dix, we describe our methodology for determining the value of HUbone to be used 
in the estimation of BVF. 

The simplest way to determine HUbone is through direct measurement. How-
ever, this is not achievable for every voxel in a CT dataset simply because not 
every voxel is a bone voxel. The best solution is to use HUbone measured in a 
nearby region to approximate HUbone for voxels where HUbone is not measurable. 
In this study, we determined HUbone on a slice-by-slice basis, the justification of 
which is provided in the following paragraphs. 

1) Identification of Homogeneous Bone Voxels in CT Images with Com-
bined Thresholding and Morphological Erosion 

In order to measure HUbone, homogeneous bone voxels must be first identified 
in the CT dataset. While homogeneous soft tissue voxels can be easily located in 
clinical whole-body CT images, bone voxels are scarce, and homogeneous bone 
voxels are much more so. The voxel averaging between bone and soft tissue can 
be classified into two categories: 1) the intermixing of soft tissue with the porous 
structure of the mineralized bone matrix, such as in trabecular bone, which we 
call “intrinsic” averaging, and 2) the apposition of bone and tissue at a soft tis-
sue-bone interface, such as the boundary between cortical bone and skeletal 
muscle, which we call “extrinsic” averaging. 

We adopted a two-step process to identify homogeneous bone voxels. First, to 
exclude the majority of trabecular bone voxels, a relatively high HU threshold 
was applied to the CT data and the voxels with high BVF were extracted. How-
ever, high BVF voxels can be located on the tissue-bone interface and remain 
potentially subject to the extrinsic averaging. To exclude these voxels, the second 
step was to apply a 3D morphological erosion algorithm to the mask of high 
BVF voxels. Using a 1-voxel erosion radius, this step usually reduced the number 
of extracted voxels by 40% ~ 60%. The remaining voxels were mostly homoge-
neous bone voxels (Figure A1). The mean HU values of these voxels was then 
used to estimate HUbone of the corresponding CT slice. 

A limitation of this method is that not every CT slice contains voxels that can 
be used to estimate HUbone in the two-step process described above. For these 
slices, the value of HUbone cannot be directly measured. Instead of direct mea-
surement, we developed a heuristic method that estimates the slice-specific HU-

bone value by exploiting its dependence on the beam hardening effect. 
2) Effect of Beam Hardening on HU Values 
In order to demonstrate the effect of beam hardening on the HU values, an 

anthropomorphic knee phantom was scanned with the CT component of a GE 
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Discovery 690 PET/CT scanner using four different setups that introduced dif-
ferent degrees of beam hardening (Figure A2). The different extent of beam 
hardening was achieved by adding various amounts of tissue-equivalent attenu-
ating material next to the phantom, with the overall attenuation increasing from 
setup 1 to setup 4. A series of CT data were acquired with the same scanning pa-
rameters: 120 kVp, 300 mAs, pitch factor = 0.984, and 40 × 0.625 mm collima-
tion. They were reconstructed into images with a 0.98 mm transverse voxel size, 
a 0.625 mm slice thickness and a 0.625 mm slice spacing. Voxels of homogene-
ous “soft tissue” and “bone” of the entire phantom were segmented with a me-
thod similar to that described in section A of the appendix: an HU thresholding 
(soft tissue: [0 HU, 100 HU], bone: [1000 HU, ∞]) followed by morphological 
operations to erode the segmented masks isotropically by one voxel. The seg-
mented voxels came only from the knee phantom and did not include any voxels 
from within the added attenuation materials. 

HU values of segmented homogeneous tissue and bone voxels are plotted in 
 

 
Figure A1. Illustration of the two-step process of extracting homogeneous bone voxels. 
Left: a zoom-in cross-section view of Femur in a whole-body CT dataset. Middle: voxels 
extracted with HU thresholding (marked with blue “x”). Right: voxels extracted after a 3D 
morphological erosion operation with 1-voxel erosion radius applied to the thresholded 
voxels. 

 

 

Figure A2. The anthropomorphic knee phantom and the scan setups used to verify the 
impact of beam hardening on HU values. The total amount of attenuation increased mo-
notonically from setup 1 to setup 4. 

https://doi.org/10.4236/ijmpcero.2018.73023


H. A. Ai et al. 
 

 

DOI: 10.4236/ijmpcero.2018.73023 293 Int. J. Medical Physics, Clinical Engineering and Radiation Oncology 

 

Figure A3. The top row shows the HU values of all the tissue voxels and bone 
voxels across the phantom for setups 1 - 4. HU values of the soft tissue voxels 
remained essentially the same, while a considerable decrease in the HU values of 
the “bone” was introduced by the increased amount of attenuation and beam 
hardening within the reconstructed CT images. The bottom row shows the HU 
values of different randomly selected CT slices of the phantom plotted against 
total in-slice attenuation (TISA), which is calculated as the sum of HU values 
over all voxels within the CT slice. While the HU value of tissue voxels remains 
approximately constant over different TISA, the HU value of bone voxels de-
creases with increasing TISA, reflecting the effect of the hardened beam in a 

 

 
Figure A3. HU values corresponding to scan setups 1 - 4, with increasing overall attenuation. Top left: HU value of all tissue vox-
els. Top right: HU value of all bone voxels. Bottom left: HU value of tissue voxels in a randomly selected slice, corresponding to a 
range of different TISA (total in-slice attenuation, defined as the HU sum of all voxels within the slice). Bottom right: HU value of 
bone voxels in a randomly selected slice. While the HU value for tissue voxels remained essentially constant, the HU value for 
bone voxels were affected by the amount of attenuation present in the slices. There is an underlying linear relationship between 
HU and TISA. 
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more attenuating CT slice. It can be seen that the underlying relationship be-
tween bone HU and TISA is approximately linear. Since TISA can always be 
computed for arbitrary CT slices, it can be used to estimate the value of HUbone 
for slices where direct measurement is not possible. 

In the data plotted here, there is approximately a 150 HU difference between 
the slices with maximal and minimal TISA. This corresponds to about a 5% dif-
ference in the measured CT attenuation. It should be noted that beam hardening 
and the resultant variation in bone attenuation values in a whole-body CT study 
can be greater than the difference demonstrated in this phantom study, as the 
amount of attenuation difference at different cross-section inside the human 
body (e.g., abdomen v.s. knee) can easily exceed the difference introduced in this 
experiment. 

3) Estimation of HUbone 
The relationship between HUbone and TISA was also observed in clinical CT 

data (with the interesting exception of skull slices), as shown in Figure A4. Us-
ing this relationship, we developed a heuristic method to estimate HUbone for 
each individual CT slice. 

In this strategy, HUbone is adjusted for each individual slice when estimating 
the BVF, as described in Equation (4). 

The voxels within objects other than the patients (e.g., the scanner table and 
the positioning aids) were first excluded from the images, and voxels of very 
high attenuation values such as teeth and metal implants were also excluded 

 

 
Figure A4. HU vs. TISA of homogeneous bone voxels in one clinical whole-body CT dataset. Each data point and 
error bar represents the voxels in one CT slice. It can be seen that the relationship between the mean HU of the 
homogeneous bone voxels and TISA is approximately linear (except for the skull slices). 
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using a threshold of 2000 HU. Then we computed HUbone for each slice in each 
CT dataset of this study using the following steps: 

a) Classification of slices 
The CT slices were divided into skull slices and torso slices. The slice that 

contained the most inferior point of the chin was identified as the landmark, and 
all slices above it were designated as skull slices (including the landmark slice), 
while slices below the landmark were regarded as torso slices. 

b) Segmentation of homogeneous bone voxels 
The segmentation of homogeneous bone voxels uses the method described in 

section A. The candidate voxels to be classified as homogeneous bone voxels 
were those that exceeded a threshold of 1000 HU. In order to exclude the voxels 
that were potentially mixed with soft tissue, a morphological erosion algorithm 
was used to erode the mask of the candidates isotropically by one voxel. This 
step ensured that the voxels that were classified as bone were at least one voxel 
away from any soft tissue voxels. 

c) Mean HU value for bone voxels 
The mean HU value for the segmented homogeneous bone voxels in each slice 

was computed. 
d) Estimation of HUbone(z) for torso slices 
The total in-slice attenuation TISA (i.e., the summation of the HU values of all 

voxels within a particular CT slice) was calculated for each torso slice. A linear 
regression analysis was performed between TISA and the measured mean HU 
for bone voxels. HUbone(z) was then computed using the linear correlation coef-
ficients and TISA for each torso slice. 

e) Estimation of HUbone(z) for skull slices 
The HU values for homogeneous bone voxels in the skull slices were observed 

not to be linearly correlated with TISA. Therefore, a single HUbone(z) was used 
for all of the skull slices. It was simply calculated as the mean of all the bone 
voxels in the skull of each dataset. 

After HUbone(z) had been determined, BVF was computed for each voxel using 
Equation (4). The computed BVFs could have values less than 0 (for voxels with 
HU less than 0) or greater than 1 (for voxels with HU greater than HUbone), 
which are not realistically possible values for BVF. In those cases, the out of 
range BVFs were set to 0 or 1, respectively. 
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