

Exploring the Effects of Oncolytic Viruses on the NK Cell Killing of Solid Tumors

Oluwatosin Banjo^{1,2}, Xin Ru Jiang², Katy Rezvani, MD, PhD²

Wellesley College¹, Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center²

THE UNIVERSITY OF TEXAS MDAnderson Cancer Center

Making Cancer History®

Introduction

Natural killer (NK) cells are integral to the innate immune system and function to immediately recognize and lyse virally infected cells and tumor cells^{1,4}. NK cell therapy is largely and solely directed towards liquid tumors rather than solid tumors^{1,4}. Solid tumors, including glioblastoma and pancreatic ductal adenocarcinoma, exhibit severe tumor hypoxia and maintain a suppressive tumor microenvironment through the secretion of NK sensitive-inhibitory cytokines^{1,4}.

NK Cell Virus/Tumor Cell

Experimental Questions and

Results:

- Can oncolytic viruses stimulate NK cell killing of solid tumors?
- 2. How do oncolytic viruses enhance NK cell killing?
- 3. Why does the TGF-beta knockout + virally pretreated tumor cells exhibit the greatest NK cell killing response?

Figure 4: Combination of virus and dual knockout (KO) NK cells improves survival *in vivo***.** Survival analysis of mice injected with GSC8-11, Δ24RGD, and NK cells, respectively. Dual Knockout indicates lack of TGF-beta and NR3C1 Glucocorticoid receptor. n=10.

TGF- β is an immunosuppressive cytokine released by tumor cells into the microenvironment and generally functions as an inhibitory response to innate immune response of NK cells⁵.

Oncolytic viruses are genetically-engineered viruses to specifically target and infect tumor cells and rather than normal cells. This includes 'Oncolytic-Herpes Simplex Virus (oHSV)' and ' Δ 24RGD (Adenovirus)^{2,3,6}.'

Methods

Figure 1: NK+Virus increases the cytotoxicity of NK cells against pancreatic tumor cells (PDAC).

Day 3 Incucyte fluorescence imaging of BXPC3. 1:10 effector to target ratio. Green fluorescence highlights live tumor cells and red, the dead cell stain. delta24-RGD, 0.5 MOI.

Figure 5: NK cells pre-exposed to virally infected tumors exhibit memory like-behavior, identify and effectively kill uninfected tumors.

XCelligence of PATC148. oHSV tumor pretreatment, 2 MOI. 4:1 effector to target ratio.

Figure 6: Wild-type (WT) and Knockout (KO) NK cell killing is unaffected by TGF-beta pretreatment Incucyte: red Integrated Intensity of GSC8-11. Δ24RGD tumor pretreatment, 0.25 MOI.

Infect GSC8-11 with delta24RGD adenovirus and coincubate for 24 hrs.

Figure 3: Combination of NK and oHSV demonstrates synergistic killing of pancreatic tumor cells (PATC148). XCelligence of PATC148. oHSV tumor pretreatment, 0.01 MOI. 2:1 effector to target ratio.

Conclusions

- Oncolytic viruses enhance the NK cell killing response of solid tumors.
- Dual Knockout NK Cells + Virally pretreated tumors exhibit the greatest NK cell tumor lysis.

Tumor Only

NK cells exhibit memory-like behavior upon infected tumor preexposure.

Future Directions

- Optimization of the TGF-beta pretreatment assay to better understand the mechanism behind the dual knockout enhanced NK cell tumor lysis.
- ATAQ Seq and RNA Seq to understand changes in gene expression at different timepoints within our preexposure assay.

Figure 7: TGF-beta pretreatment reduces NK cell anti-tumor killing Incucyte: red Integrated Intensity of GSC8-11. 1:2 effector to target ratio. Δ24RGD tumor pretreatment, 0.05 MOI.

References

- 1. Chambers, et al. (2019). Immunometabolic Dysfunction of Natural Killer Cells Mediated by the Hypoxia-CD73 Axis in Solid Tumors. Frontiers in Molecular Biosciences 6.
- 2. Ferrucci, P.F , et al.. (2021). Talimogene Laherparepvec (T-VEC): An Intralesional Cancer Immunotherapy for Advanced Melanoma. Cancers *13*, 1383.
- 3. Fueyo, J., et al. (2003). Preclinical Characterization of the Antiglioma Activity of a Tropism-Enhanced Adenovirus Targeted to the Retinoblastoma Pathway. JNCI: Journal of the National Cancer Institute *95*, 652–660. https://doi.org/10.1093/jnci/95.9.652.
- 4. Habif, G, et al. (2019). Targeting natural killer cells in solid tumors. Cell Mol Immunol *16*, 415–422.
- Han, J., , et al. (2015). TGFβ Treatment Enhances Glioblastoma Virotherapy by Inhibiting the Innate Immune Response. Cancer Research 75, 5273–5282.
- Lang, F.F , et al. (2018). Phase I Study of DNX-2401 (Delta-24-RGD) Oncolytic Adenovirus: Replication and Immunotherapeutic Effects in Recurrent Malignant Glioma. J Clin Oncol 36, 1419–1427.

Acknowledgement

Thank you to Cheryl, Dr. Rezvani, and all members of the Rezvani lab for their help, support, and mentorship.