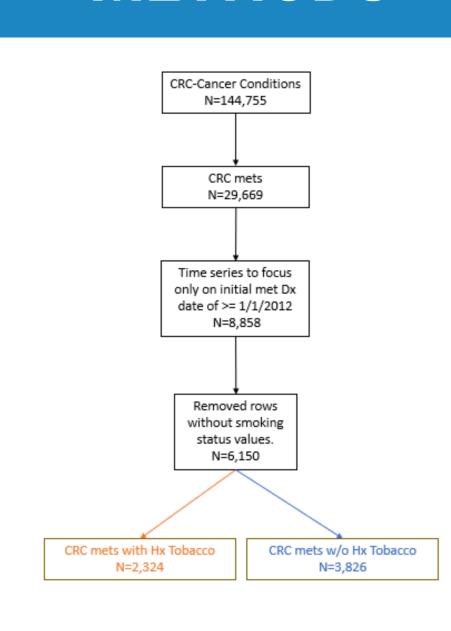


Cigarette smoking and its impact on the survival outcomes and molecular features of metastatic colorectal cancer patients

Ri Chen, BS, MS; Kristin Alfaro, MS, CPT; Catherine Luo, BS; Scott Kopetz, MD, PhD, FACP
The University of Texas at MD Anderson Cancer Center, Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine

INTRODUCTION

Tobacco use is the most preventable cause of Smoking itself accounts for approximately 30% of all cancer-related deaths in the United States.² Furthermore, colorectal cancer (CRC) is the second most common cause of cancer death in the United States. In 2020, approximately 147,950 individuals were diagnosed with CRC and 53,200 died from the disease.3 11%-22% of these new CRC cases were attributable to tobacco use.4 Although past studies have demonstrated a significant association of cigarette smoking with CRC incidence and mortality, there is very little existing literature that has shown the impact of cigarette smoking on the outcomes of metastatic colorectal cancer (CRC).⁵ The impact of smoking on the survival and features of metastatic CRC patients remains unclear.


AIMS

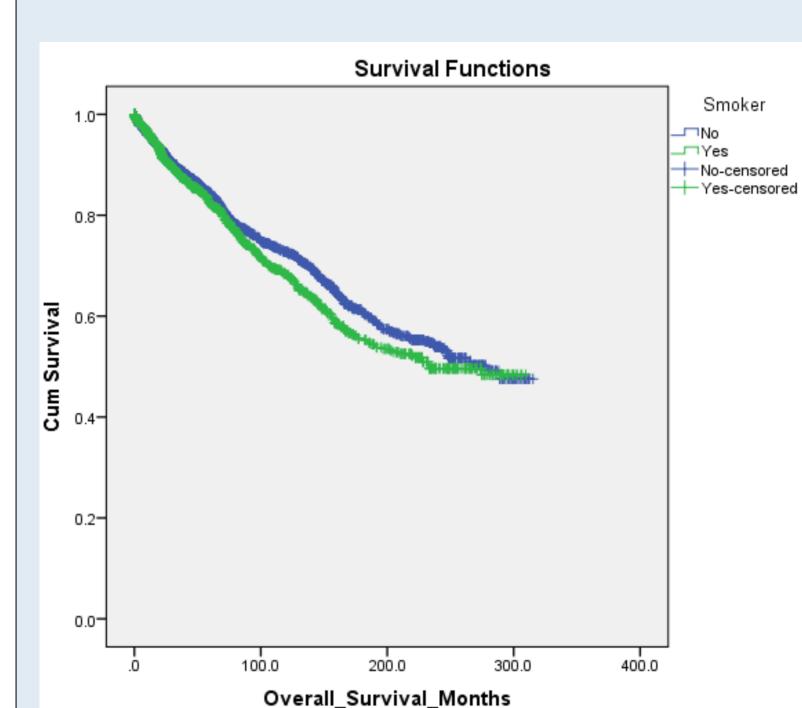
Aim 1: Identify the clinical, laboratory, and pathology features of colorectal cancer patients who smoke and compare them with those who do not smoke. This will focus on a dozen specific characteristics previously identified as critical to overall survival. These correlations will be helpful in interpreting survival outcomes in Aim 2.

Aim 2: Explore the association of smoking with overall survival of metastatic colorectal cancer patients. I will use an institutional database to explore the impact of smoking with survival after diagnosis. I will use a multivariate model to incorporate known existing prognostic factors explored in Aim

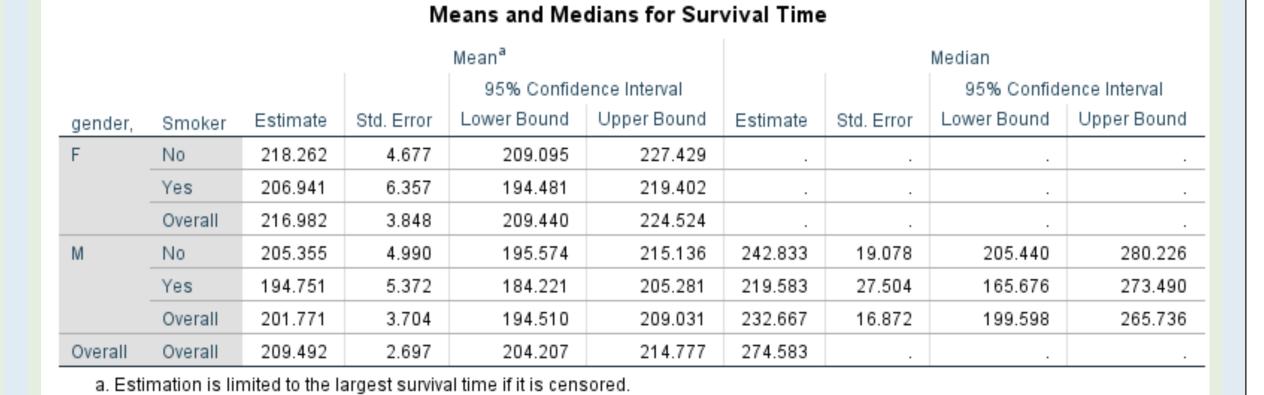
Aim 3: Explore the molecular pathology of how cigarette smoking is associated with colorectal cancer. Genetic and environmental factors cause accumulation of genetic and epigenetic mutations, altering the stem cells or stem cell-like cells in the base of colon crypts, which may progress to more aberrant versions. Cancerous mutations involve several different genes that may be exacerbated by smoking. I will use an existing database to explore association of smoking with key mutations of interest for CRC.

METHODS

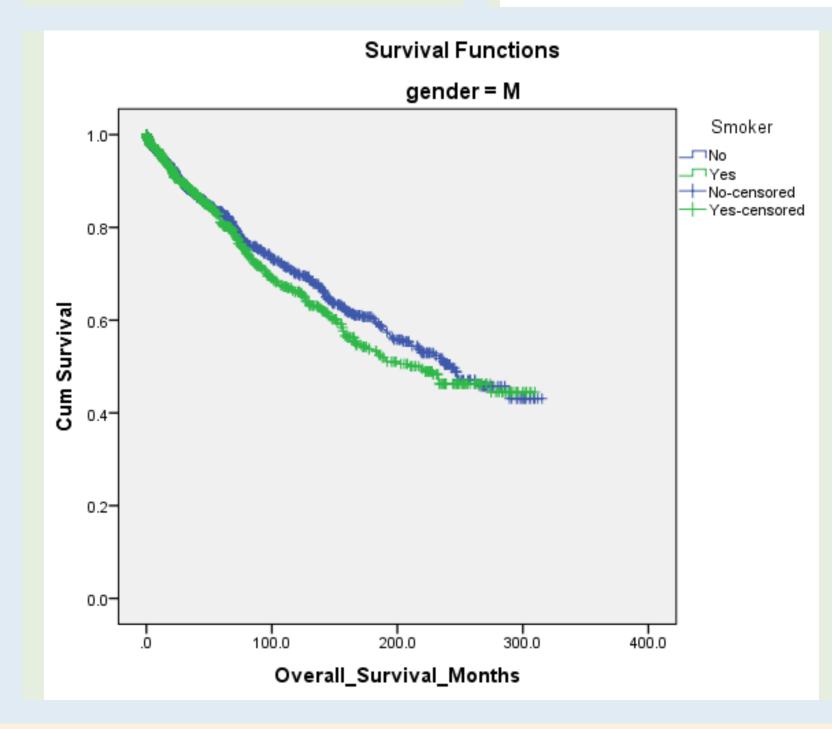
FIGURES

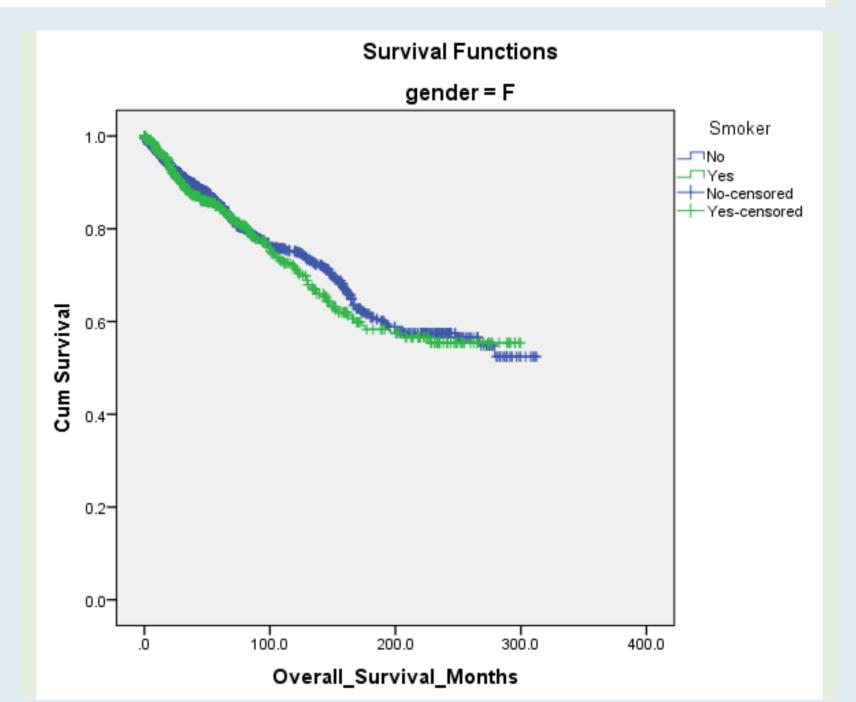

Overall Survival of Metastatic CRC with **Smoking Status**

			95% Confide		
Smoker	Estimate	Std. Error	Lower Bound	Upper Bound	Estimate
No	212.661	3.455	205.889	219.434	279.167
Yes	201.421	4.204	193.181	209.661	233.000
Overall	209.492	2.697	204.207	214.777	274.583


Estimation is limited to the largest survival time if it is censored.

Overall Comparisons


Log Rank (Mantel-Cox) 3.118 Test of equality of survival distributions for the different levels


Overall Survivial of Metastatic CRC Smokers/Non-Smokers Between Males and Females

		Pairwise	Comparison	ıs		
		No		Yes		
	gender,	Smoker	Chi-Square	Sig.	Chi-Square	Sig.
Log Rank (Mantel-Cox)	F	No			.634	.426
		Yes	.634	.426		
	M	No			1.202	.273
		Yes	1.202	.273		

KPAS status

Chi Square Test KRAS x Smoker Status

		KKAS_Status,				
				Mutated	Wildtype	Total
Smoker	No	Count	2323	586	284	3193
		Expected Count	2319.4	608.8	264.7	3193.0
	Yes	Count	1418	396	143	1957
		Expected Count	1421.6	373.2	162.3	1957.0
Total		Count	3741	982	427	5150
		Expected Count	3741.0	982.0	427.0	5150.0

Smoker * KRAS_status, Crosstabulation

Smoker * BRAF	_Status, Crosstabulation
	BRAF_Status,

Mutated Wildtype Total Chi Square Test Smoker No Count 2835 110 248 3193 BRAF x Smoker 2855.7 107.9 229.4 3193.0 Expected Count Status Count 1771 122 1957 Yes 1957.0 Expected Count 1750.3 66.1 140.6 Total 4606 174 370 5150 Count 4606.0 174.0 370.0 5150.0 Expected Count

	Value	df	Asymptotic Significance (2-sided)
Pearson Chi-Square	5.957 ^a	2	.051
Likelihood Ratio	6.003	2	.050
N of Valid Cases	5150		

minimum expected count is 162.26.

Symmetric Measures

		value	Significance
Nominal by Nominal	Phi	.034	.051
	Cramer's V	.034	.051
N of Valid Cases		5150	

Approximate

Chi-Square Tests					
Value	df	Asymptotic Significance (2-sided)			
4.474 ^a	2	.107			
4.551	2	.103			
5150					
	Value 4.474 ^a 4.551	Value df 4.474 ^a 2 4.551 2			

minimum expected count is 66.12.

Symmetric Measures

		Value	Approximate Significance
Nominal by Nominal	Phi	.029	.107
	Cramer's V	.029	.107
N of Valid Cases		5150	

RESULTS

The aims of this research study were to associate cigarette smoking with survival outcomes and molecular features of colorectal cancer patients by institutional analyzing Preliminary data suggests that smoking history has a modest effect on overall survival in metastatic patients compared to a nonsmoker. It also suggests that there may be a correlation between smoking and KRAS/BRAF mutations in metastatic CRC patients.

CONCLUSION

Smoking is linked to survival outcomes and molecular features of metastatic colorectal cancer. The association of smoking with colorectal cancer and its clinical, pathological, epidemiological, and molecular features still needs to be better understood. Future research findings will help point to risk factors involved with smoking in colorectal cancer patients and at-risk patients. Further findings may help to identify markers and patterns that will lead to a faster metastatic CRC diagnosis and an overall better prognosis (improved survival rate and increased survival time). Ultimately, the findings should aim to push forward the agenda of smoking cessation in metastatic CRC patients, at-risk patients, and the general population.

REFERENCES

- Anand P, Kunnumakkara AB, Sundaram C, et al. Cancer is a preventable disease that requires major lifestyle changes. Pharm Res. 2008;25(9):2097-2116. doi: 10.1007/
- Balogh EP, Dresler C, Fleury ME, et al. Reducing tobacco-related cancer incidence and mortality: Summary of an institute of medicine workshop. Oncologist. 2014;19(1):21-31. doi: 10.1634/theoncologist.2013-0230.
- Siegel RL, Miller KD, Goding Sauer A, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin. 2020;70(3):145-164. doi: 10.3322/caac.21601 Chao A, Thun MJ, Jacobs EJ, Henley SJ, Rodriguez C, Calle EE. Cigarette smoking and colorectal cancer mortality in the cancer prevention study ii. J Natl Cancer Inst. 2000;92(23):1888-1896. doi: 10.1093/jnci/92.23.1888
- Yahagi M, Tsuruta M, Hasegawa H, et al. Smoking is a risk factor for pulmonary metastasis in colorectal cancer. Colorectal Dis. 2017;19(9):0322-o328. doi: 10.1111/ codi.13833.

ACKNOWLEDGEMENTS

The research described was supported in part by a cancer prevention fellowship for Ri Chen supported by the National Cancer Institute grant R25E (CA056452, Shine Chang, Ph.D., Principal Investigator).