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Background and Aims Method: Data Profile Method: Data Exploration and Modeling
One of the most common cause of mortality for 1. Total 189 patients, 105 patients with photon Dataset Resample* Algorithms Prediction
liver cancer patients is hepatic failure caused by radiation therapy have no missing values. [ e [e— _} DEERLEAMIT Smg'e Lajeted)
limited functional liver volume post therapy [1]. 2. 30 Categorical variables, 92 Numerical [& ' a | —> =Input lyer gglcide?ltayer @
.y : : : : _ _ g B=Bi utput layer
;Accura_te_predlc?lorl of Il\{erlregtenle_lratlon IS crtljjua: variables, and 6 Response variables. : — — Sinnl 1 lases §
0 maximize patient survival rate. However, robus . Values > 5 Values <5 Logistic
pate ) . 3. Binary outcome: Hypertrophy (H), Not [ [ . il @
models to predict functional liver volume on Hypertrophy (N) for each segment —I  Chi-squared Fisher Exact <0r Loglstlc Random
. . ; . -val < 0. i
segment basis post-radiotherapy (RT) haven't | | fest fest i - ‘ —-— e 4
been developed. 4. Dataset size: ML: Train: 81, Test: 24 p-val < 0.2 0((:'::;;':!6.75? =
. . DL: Train: 80, Test: 25 . o N S\ e
Our aims for the project are — | =, Combined Dataset for wl N A [
. . g . . Table 1: Segmental responses at the 3-months- 87 o-val < 0.2 Categorical IVs+Numerical IVs N A
1. To identify the clinical and dosimetric factors followup g2 | | : r %
that are responsible for regeneration of liver Seql Seg? Seq3 Segd Segs-8 Sega-3 EE M“'“P'eL°9iS|“° Regression Resampling was performed for all models usng_thre m;ztggdj:
- - Upsampling, Downsampling, Random Over-Sampling Examples (ROSE).
segments 1, 2, 3, 4, 5-8, 2-3 post-RT o s >y e G o = StepAlIC (Backward Selection) ROSE was only used for Deep Learning.
2. To develop machine learning (ML) and deep | . o | L
N 79 g1 58 75 79 55 Figure. 1. Workflow of the study. Univariate and multivariable analysis were performed to identify

learning (DL) models to predict liver

regeneration post-RT IR 3.0 3.4 1.2 2.5 2.2 1.1
H=hypertrophy, N=not hypertrophy, IR=imbalance ratio

significant variables. Resampling was performed where imbalance ratio was greater than 2 for ML
and for all DL models. 10-fold Cross Validation was performed for all models. For DL, number of
nodes Iin the hidden layer and decay rates were tuned by training models with nodes=1:1:10 and

Results: Data Exploration Results: Modeling decay rate = 0.1:0.1:0.5 {2]
Variables Odds Ratio 95% ClI p-value ROC Curves (Lasso Regression+Upsampling) ROC Curves (Lasso Regression+Downsampling) ROC Curves (Lasso Regression+ROSE) OROC Curves (Single Layered Neural Network + ROSE)
Segl Vcisgy, 1.04 1.02, 1.07]<.001 A | "B | e _U / lRe
Dgo, 0.97 0.95, 0.99]0.002 - i e B o 8 R o 57
- ® © o ! S m
[ 1.03 1.01, 1.05]0.003 & s- LL// s o = 0 o - e 5
n Segment 5-8 [Yes] 0.2 0.05, 0.72]0.019 & _ _ g JJ : P i .
Do, 0.98 0.97, 1.00]0.025 % ° - m—T _ | 8 — s |
1.14 RImP i R = N
Drot[go-100Gy] 44.45 2368.08]  0.045 o A it I oA sl |ewwwens| g4 l l l %3833?388}‘%
Segz :)ming 0.97 096, 099 < 001 0.0 0.2 04 06 08 1.0 0.0 0.2 04 06 08 1.0 0.0 0.2 04 0.6 08 1.0 0.0 02 04 06 08 1.0
D 0.98 0.96. 0.9910.004 False positive rate False positive rate False positive rate False positive rate
— 904 : T RO ROC Curves (Random Forest+Upsampling) ROC Curves (Random Forest+Downsampling) ROC Curves (Random Forest+ROSE)
V<206Gy5-g 0.97 :0'95’ 0. 99: 0.009 2 - o _ o Figure. 2: ROC curves for various
Dos, 0.98 0.97, 1.00]0.014 .| D | / | E = /‘/ | F . ] ML models and DL models with
Seg3 Do, . 0.99 0.97, 1.00] 0.02 g - I 2 ° _! g ° | | different resampling methods are
Vs, 1.01 1.00, 1.03] 0.025 g 3 | / g [ / T / shown in A-F and in G,
Gender [Male] 0.34 0.12, 0.90] 0.034 g . / 2 _|—/ z g dE_/ respectively. LR + ROSE and RF
n Segment 5-8 [Yes] 2.85 1.03, 8.43] 0.049 2 s B el e I A ——— + Upsampling have overall
Seg4 Dog, 1.03 1.01, 1.06] 0.002 1| dsmnens | S = e NI soens | highest test accuracies for all six
Dnin 0.97 :O 95 0 993 0013 o | 3 S5t AUCOTe -~ // “AUCO% o / ‘_ o eniees  segments. RF models have better
3 - |~ ’ . . . | | | | | | © 4 I | | | | | | | | | | !
Dso_g 0.98 0.97, 1.00] 0.013 0oz w0 R B e %rf?;rr:\;g\r%e f\(/)vrltehstlar:]goedregatﬂzsté
n Segment 4 [Yes] 0.22 0.06, 0.72] 0.016 raise posiive rae False posiive rate eloe postive e . .
v 0.99 0.99. 1.00] 0.018 high train accuracy 100% but
S : .99, . . . .
EOD2 0.96 093 1.001 0.046 Table 4: Test Accuracy for all models. relative low test accuracy, which
' T iIndicates  overfitting. LR Is
Segs5-8 Vs3 1 0.99, 1.00]  0.007 Test LR+ LR+ LR+ RF+ RF+ RF+ DL+ suggested to use for prediction
Do, _, | 1.01 1.00, 1.02] 0.022 Accuracy Upsample Downsample ROSE Upsample Downsample ROSE ROSE because it has no overfitting
Portal Vein | Segl 0.57 0.57 0.57 0.62 0.38 0.48 0.70 Issues. DL model showed superior
Thrombosis [Yes] ~ 0.22 0.05,0.78] 0.031 Seg?2 0.67 0.67 0.81 0.76 0.67 0.48 0.55 results than ML for segment 1.
Seg2-3 Dmin, 0.99 0.97, 1.00] 0.015 Seg3 0.52 0.52 0.52 0.62 0.62 0.62 0.50
Vs> 1.01 1.00, 1.02] 0.034 Seg4 0.71 0.71 0.76 0.67 0.62 0.52  0.62
Dy, 0.99 0.98, 1.00] 0.045 Seg5-8 0.57 0.67 0.71 0.76 0.67 0.52 0.45
Table 2 highlights: Odds Ratios by Multiple Logistic Regression Seg2-3 0.48 0.48 0.48 0.57 0.57 0.57 0.43 References
with Backward Selection. P-value threshold<0.05 means i
statistically significant. (Highlighted cells indicate results Conclusions 1. Kong FH, Miao XY, Zou H, Xiong L, Wen Y,
excluding Cl~1) Chen B, Liu X, Zhou JJ. End-stage liver
L 1. We developed ML and DL models with three resampling methods to predict hypertrophy.  disease score and future liver remnant
Highlights for Seg 1 response: o _ _ volume predict post-hepatectomy liver failure
Risk increases by 4% for every 1% of volume received 2. The multivariable analysis results (Table 2) demonstrates that tumor locations and in hepatocellular carcinoma. World J Clin
° 0 0 . . . . . o g . . . . .
. . dosimetric variables are significant protective/risk factors for liver hypertrophy. Cases. 2019 Nov 26;7(22):3734-3741. dor:
<15 Gy in segment 1 given all other factors controlled. | | J | p | | yP b 10.12998/wjcc.v7.i22.3734.
R 0 . . . 3. Tumor locations and dosimetric variables are important predictors for all ML and DL 2. Adapted from BioRender.com (2022).
 Risk decreases by 80% for patient with tumor In nodels Retrieved from

Segment 5-8 given all other factors controlled. https://app.biorender.com/illustrations/62e6fch
. Total dose [80-100Gy] has both large OR and 95% CI 4. Most models have higher sensitivity than specificity. Though test accuracies are low, our ~ 1f2dd732bb682460b

models are still useful to predict hypertrophy cases. yzha@mdanderson.org

due to small number of cases (4/105).
5. Overall, ML models showed superior results than DL models. kkbrock@mdanderson.org



