

Using the Persuasive Design Model to Refine a Novel Stimuli-Responsive Polymeric Sensor in Head and Neck Cancer Patients

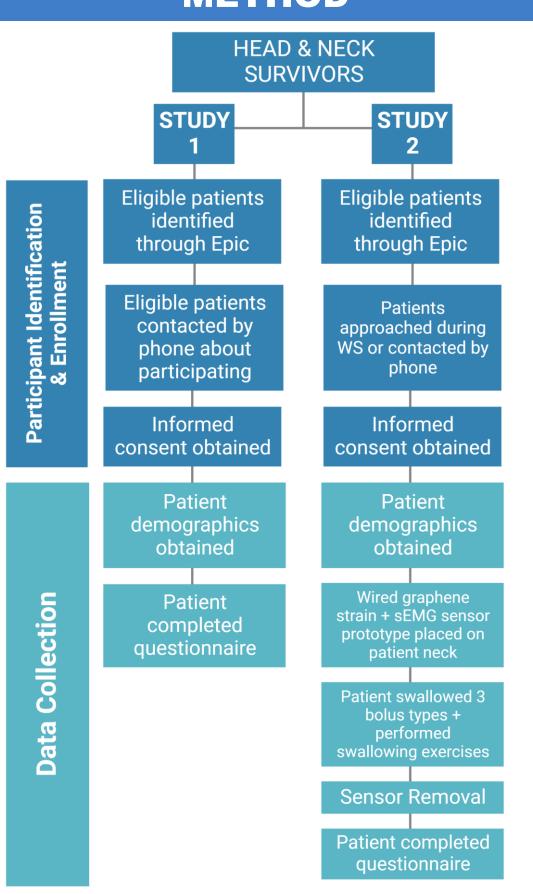
Dylan J. Leupi¹, Tarek Rafeedi², Laura L. Becerra³, Ehab Hanna⁴, Susan Peterson¹, Darren Lipomi², Adam S. Garden⁵, Eileen H. Shinn¹

Department of Behavioral Science, MD Anderson Cancer Center

² Department of Nanoengineering, University of California San Diego

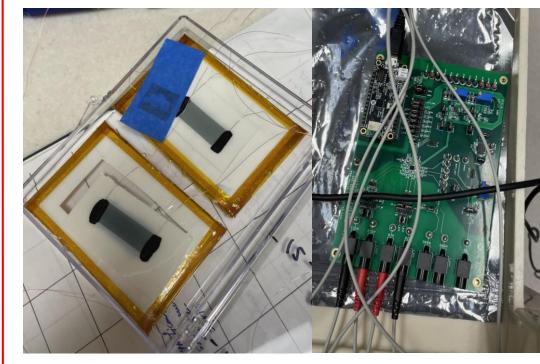
³ Department of Electrical & Computer Engineering, University of California San Diego

⁴ Department of Radiation Oncology, MD Anderson Cancer Center ⁵ Department of Head and Neck Surgery, MD Anderson Cancer Center



We conducted two user-centered tests with head and neck survivors to evaluate long-term usability of a novel sensor (Fig 1) to detect developing dysphagia after radiation. Radiationassociated dysphagia is permanent and occurs in 40% of laryngeal/pharyngeal cancer patients treated with curative radiation. We prototyped a neck-worn epidermal dual-layer strain/sEMG sensor that measures swallowing muscle activity to aid in the earlier detection of dysphagia development. Ideally, home-based monitoring with the sensor during the postradiation treatment period would detect developing dysphagia in time to initiate preventive interventions. However, most U.S. patients abandon wearable health technologies within months, lessening their clinical impact. To sustain patient engagement, user-centered testing is needed but often neglected in the development of these technologies. To evaluate the sensor's long-term usability, we used the Persuasive Design Model¹ to test 4 parameters of technology: ease of use, sensor feedback, credibility and social support (Fig. 2).

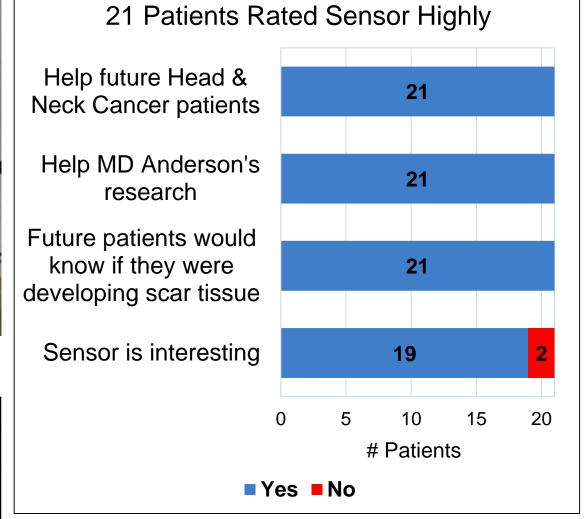
AIM

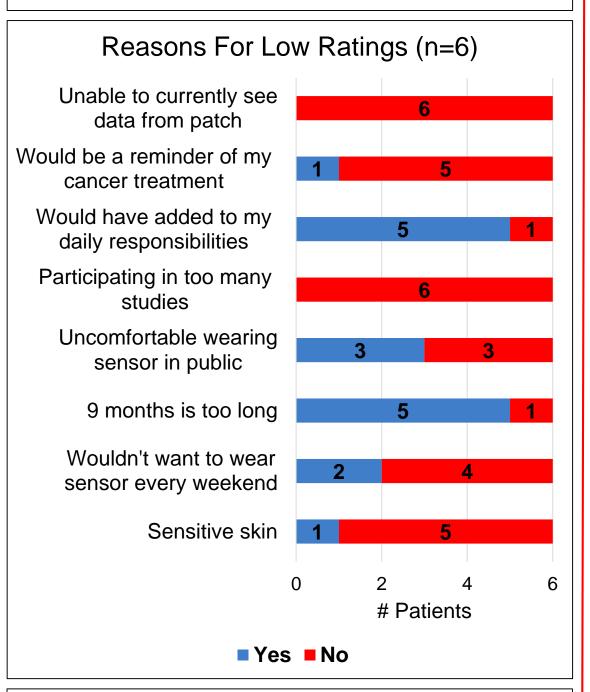

To determine patient design preferences and barriers to long term use of a neckworn epidermal dual-layer strain/sEMG sensor within the persuasive design model.

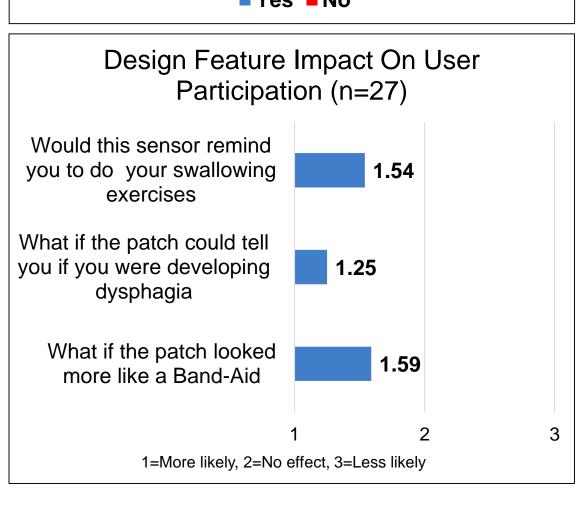
METHOD

RESULTS

Fig. 1 Strain sensor on tattoo paper (left) electrical board (right):

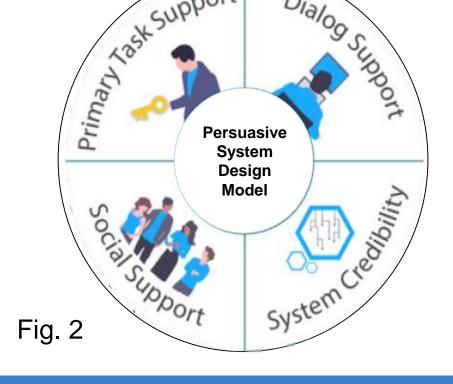

Participant Demographics


Participant Demographics				
Variables	n=138			
Age (yrs.), range, median	(18-83);			
	59			
Race/Ethnicity, Asian	3.6%			
American Indian or Alaska Native	0%			
Non-Hispanic White	92.7%			
African American	2.9%			
Native Hawaiian or Pacific Islander	0.7%			
Education, = High school graduate</td <td>18.4%</td>	18.4%			
Some college credit or Bachelor's	57.4%			
degree				
Master's degree/M.D/PhD etc.	24.3%			
Employment status, full/part-time	73.6%			
Married/S.O.	81.5%			


Study 1 Attitudes Toward Sensor n=138

Study 1	Study 1 Would participate N= 115 (83.5%)		Would not	
			participate	
			N=23 (16.5%)	
Question	True	False	True	False
Sensor is interesting	92	13		
	87.6%	12.4%		
Would remind me to	75	22		
do swallowing exc.	77.3%	22.7%		
I wanted to help MD	108	1		
Andersons research.	99.1%	0.9%		
Sensitive Skin			11	11
			50%	50%
Wouldn't want to			14	8
wear sensor every			63.6%	36.4%
weekend				
9 months is too long			19	3
			86.4%	13.6%
Uncomfortable			12	9
wearing sensor in			57.1%	42.9%
public				
Participating in too			1	18
many studies.			5.3%	94.7%
It would have added			11	9
to my daily			55.0%	45.0%
responsibilities.				
Would be a reminder			6	14
of my cancer			30.0%	70%
treatment.				
Unable to currently			6	14
see sensor data			28.6%	71.4%

Study 2 Real-World Sensor Testing with 27 Head and Neck Cancer Patients



DISCUSSION

Patients agreed that the 9-month period was the biggest hurdle to at-home use. Three Persuasive Design needs were identified: Ease of Use. Sensor application was cumbersome; **Sensor Feedback.** Haptics (vibration signals) would improve sensor placement and exercise movement accuracy; Credibility. In order to support long-term use, patients desired bidirectional communication with their treatment team via the sensor system, e.g. the treatment team could monitor developing dysphagia and send back interpretations of data to educate the patient. (Kim 2017) Limitations. Those who agreed to participate in Study 1 were more likely to be non-Hispanic (p=0.003), had a college degree (p= 0.022), and had higher annual household incomes (p=0.038) compared to nonresponders.

FUTURE DIRECTIONS

Moving forward, the sensor's design and application should become more streamlined. To do this, user-centered testing should be utilized at every stage of development to sustain engagement throughout the 9-month post-radiation period.

CONCLUSION

Our patient data supported three main parameters of the Persuasive Design Model: ease of use, user feedback and credibility. Survivors were willing to use advanced technologies to support adherence to preventive strategies, but this willingness was dependent on how seamlessly the sensor would integrate with their lifestyle and post-treatment radiation side effects.

REFERENCES

[1] Oyibo K, Morita PP. Designing Better Exposure Notification Apps: The Role of Persuasive Design. JMIR Public Health Surveill, 2021 [2] Kim BYB, Lee J. Smart Devices for Older Adults Managing Chronic Disease: A Scoping Review. JMIR Mhealth Uhealth, 2017