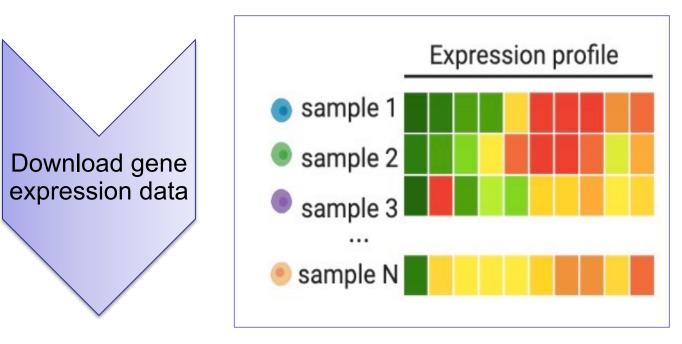


Investigating Glucose Uptake Prognostic Effects On Pan Cancer TCGA by **METAFLUX**

Kyle Tsai^{1, 2}, Yuefan Huang², Ken Chen²

¹Princeton University, Princeton, NJ, 08544

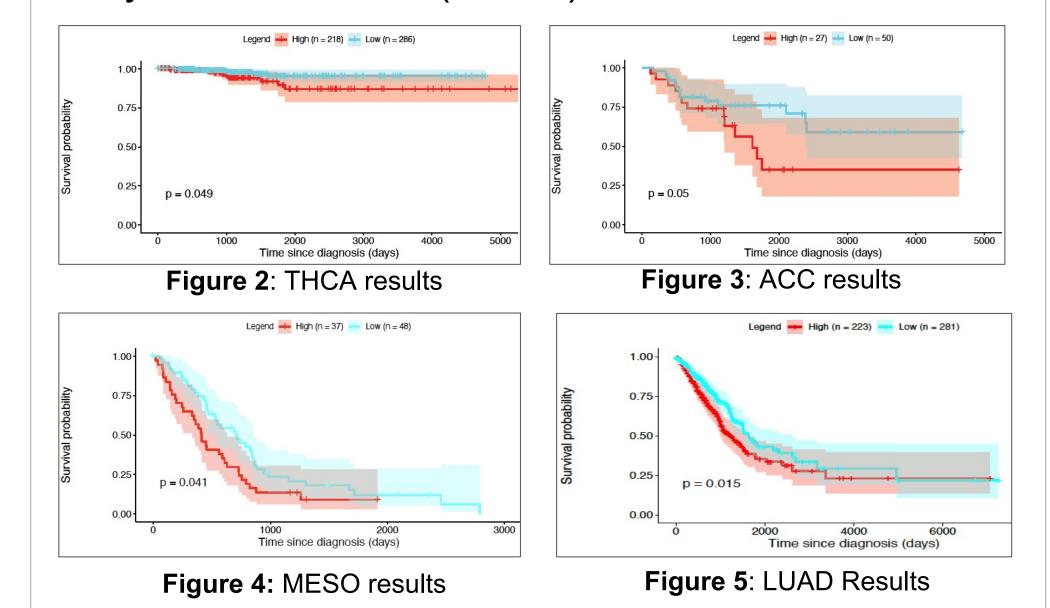

²Department of Bioinformatics and Computational Biology, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030

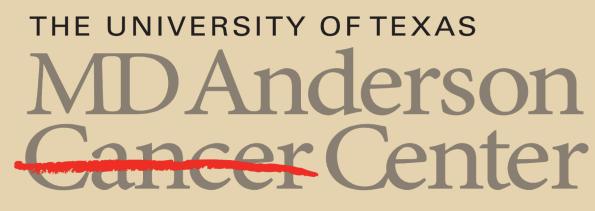
Introduction

- One major hallmark of cancer is deregulation of cellular metabolism, which allows cancer cells to undergo metabolic reprogramming to sustain their uncontrolled growth, such as upregulated glycolysis.
- Higher uptake of glucose into cancer cells has been associated with more aggressive tumors due to increased expression of glucose transporters¹.
- PET scans have been leveraged to infer changes in glucose metabolism, **but pan-cancer**

Methods

- Extract glucose uptake data and sort into "High" and "Low" groups
- Use the TCGABiolinks package⁴ to analyze survival

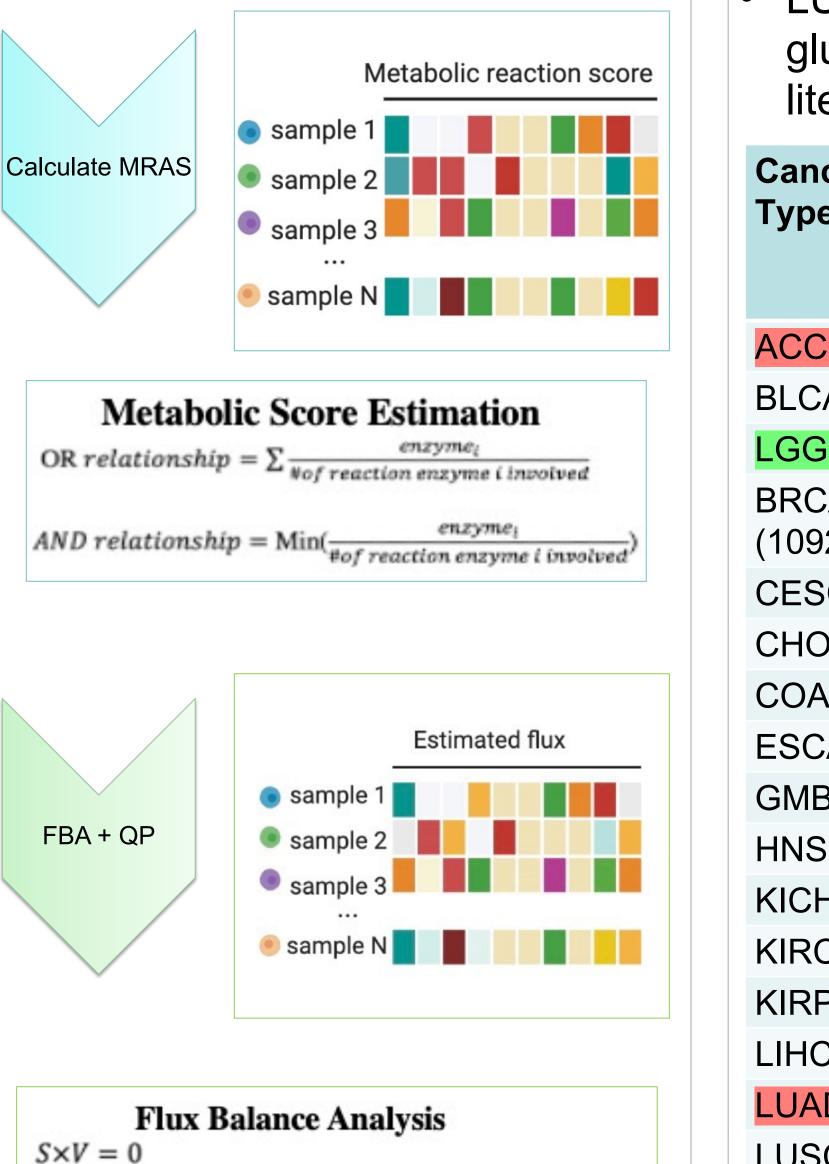



Results

- Highest mean glucose uptakes: lung squamous cell carcinoma (LUSC, mean = 0.0057), uterine carcinosarcoma (UCS, mean = 0.0061), and uveal melanoma (UVM, mean = 0.0064)
- Lowest mean glucose uptake were kidney chromophobe (KICH, mean = 0.0024), kidney renal clear cell carcinoma (KIRC, mean = 0.0026), and kidney renal papillary cell carcinoma (KIRP, mean = 0.0027) LUSC glucose uptake > LUAD

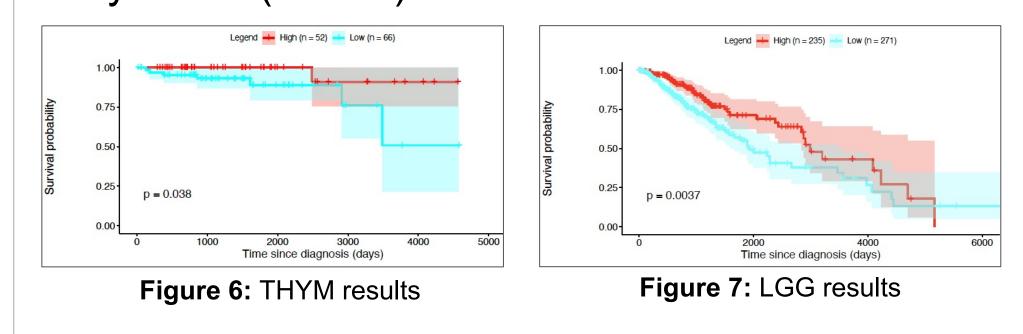
Results

- Twenty-five cancers showed an insignificant difference; may depend on other nutrients (glutamine, amino acids, etc.)⁶
- Four cancers showed that survival for patients with lower glucose uptake was significantly better (p = 0.05): mesothelioma (MESO), lung adenocarcinoma (LUAD), adrenocortical (ACC), thyroid carcinoma (THCA)


glucose uptake studies for large cohorts are still lacking².

To study metabolic processes, we developed METAFlux (METAtabolic Flux balance analysis) to derive metabolic fluxes for 13,082 reactions for bulk RNA-seq datasets. METAFlux relies on three major steps: calculating the metabolic reaction activity score (MRAS), flux balance analysis (FBA), and optimization of biomass reaction.

Objective


- Use METAFlux to analyze 1. The association of predicted glucose uptake with clinical outcomes
 - 2. If these effects are homogenous across different types of cancer.

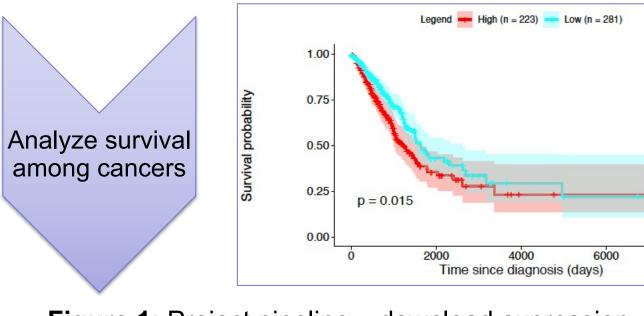
Methods

Cancer Type	Mean Glucose Uptake	Survival P Value	High Uptak Gluco Effect
ACC (77)	0.0039	0.05	Detrin
BLCA (407)	0.0054	0.23	NS
LGG (509)	0.0041	0.0037	Benef
BRCA (1092)	0.0047	0.34	NS
CESC (304)	0.0047	0.85	NS
CHOL (36)	0.0038	0.15	NS
COAD (288)	0.0049	0.92	NS
ESCA (181)	0.0047	0.12	NS
GMB (153)	0.0035	0.48	NS
HNSC (518)	0.0050	0.35	NS
KICH (66)	<mark>0.0024</mark>	0.33	NS
KIRC (530)	<mark>0.0026</mark>	0.087	NS
KIRP (288)	<mark>0.0027</mark>	0.47	NS
LIHC (369)	0.0048	0.67	NS
LUAD (513)	0.0040	0.015	Detrim
LUSC (498)	<mark>0.0057</mark>	0.77	NS
MESO (87)	0.0043	0.041	Detrin
OV (419)	0.0055	0.8	NS
PAAD (178)	0.0038	0.73	NS
PCPG (177)	0.0041	0.24	NS
PRAD (495)	0.0040	0.28	NS
READ (92)	0.0051	0.99	NS
SARC (258)	0.0056	0.59	NS
SKCM (102)	0.0049	0.27	NS
STAD (414)	0.0042	0.63	NS
TGCT (148)	0.0053	0.42	NS
THYM (119)	0.0052	0.038	Benef
THCA (504)	0.0031	0.049	Detrin
UCS (180)	<mark>0.0061</mark>	0.91	NS
UCEC (57)	0.0046	0.85	NS
UVM (79)	<mark>0.0064</mark>	0.82	NS
Table 1: Key: Highest mean gluc owest mean gluce ower glucose upt	ose uptakes ose uptakes	Glucose Uptake	e Results

• Two cancers showed that survival for patients with higher glucose uptake was significantly better (p = 0.05): brain lower grade glioma (LGG), thymoma (THYM)

Discussion

- Four cancers were consistent with previous knowledge, but two were opposite
- Found a shared and cancer-specific pattern in


- Gene expression data downloaded from The Cancer Genome Atlas
- Data passed through the METAFlux pipeline to calculate flux
- 1. Calculate the metabolic reaction score (MRAS) using the gene expression data.
- 2. Use the MRAS to set the bounds for flux balance analysis (FBA)
- 3. Use quadrating programming and the OSQP package³ to minimize the function $\frac{1}{2}v^Tv$ – $\alpha C^T v$ (v is the flux vector, $C^T v$ is the biomass reaction and $\frac{1}{2}v^Tv$ represents the sum of squared fluxes of all metabolic reactions)

-MRS < vi < MRS [if the reaction is reversible] Medium profile constratins

0 < vi < MRS[if the reaction is irreversible]

Extract glu

	##		glucose
	##	TCGA-19-1787-01	0.003325099
	##	TCGA-S9-A7J2-01	0.004881581
Extract glucose uptake data	##	TCGA-EK-A2RE-01	0.003451507
	##	TCGA-44-6778-01	0.002767823
	##	TCGA-F4-6854-01	0.003563619
	##	TCGA-C8-A1HL-01	0.005493341

Figure 1: Project pipeline – download expression data, METAFlux algorithm, analyze results

large cohorts

- Demonstrated the utility of METAFlux in determining metabolites of interest for therapeutics
- **Limitations:** mean was used to determine "High" and "Low" groups, future studies with a systematic way of determining a cutoff would be useful

References

- Pliszka M, Szablewski L. Glucose Transporters as a Target for Anticancer Therapy. Cancers (Basel). 2021 Aug 20;13(16)
- 2. Croteau E, Renaud JM, Richard MA, Ruddy TD, Bénard F, deKemp RA. PET Metabolic Biomarkers for Cancer. Biomark Cancer. 2016 Sep 20;8(Suppl 2):61-9
- 3. Stellato, B., et al., OSQP: an operator splitting solver for quadratic programs. Mathematical Programming Computation, 2020. 12(4): p. 637-672.
- 4. Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, Sabedot TS, Malta TM Pagnotta SM, Castiglioni I, Ceccarelli M, Bontempi G, Noushmehr H. TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 2016 May 5;44(8)
- 5. Leitner BP, Givechian KB, Ospanova S, Beisenbayeva A, Politi K, Perry RJ. Multimodal analysis suggests differential immuno-metabolic crosstalk in lung squamous cell carcinoma and adenocarcinoma. NPJ Precis Oncol. 2022 Jan 27;6(1):8. doi: 10.1038/s41698-021-00248-2. PMID: 35087143; PMCID: PMC8795406.
- 6. Ansari, R.E., Craze, M.L., Althobiti, M. et al. Enhanced glutamine uptake influences composition of immune cell infiltrates in breast cancer. Br J Cancer 122, 94–101 (2020)