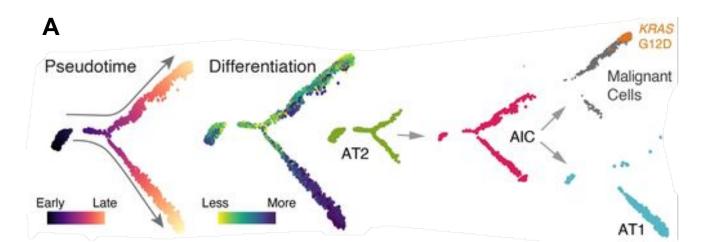


Prevention of early stage *Kras*-mutant lung adenocarcinoma via targeted *Kras*^{G12D} inhibition

Camille Abaya¹, Yuejiang Liu², Zahraa Rahal³, Ansam Sinjab³, Humam Kadara³



Making Cancer History®

¹Trinity University, San Antonio, TX ; ² MD Anderson Cancer Center Graduate School of Biomedical Sciences, Houston, TX; ³ Department of Translational Molecular Pathology

Background

- Lung adenocarcinoma (LUAD) represents the most common subtype of lung cancer¹. Patients with KRASmutant LUADs (KM-LUADs) common to smokers display dismal clinical outcomes and resistance to targeted therapies³.
- Our group recently identified alveolar intermediary cells (AICs) that arise early on post-tobacco carcinogen exposure in vivo and during AT2-mediated repair mechanisms. Notably, and prior to tumor onset, a subset of AICs harbored driver *Kras*^{G12D} mutations which were later found in the resultant LUADs, and which comprise the same variants found in human smokers with KM-LUADs. These findings support a role for AICs as precursors for KM-LUAD pathogenesis (Fig 1a). Our ongoing studies are studying AICs at high resolution to identify targets for early prevention and/or interception of KM-LUAD pathogenesis, including specifically targeting *Kras*^{G12D} mutation (Fig 1b).

Objectives

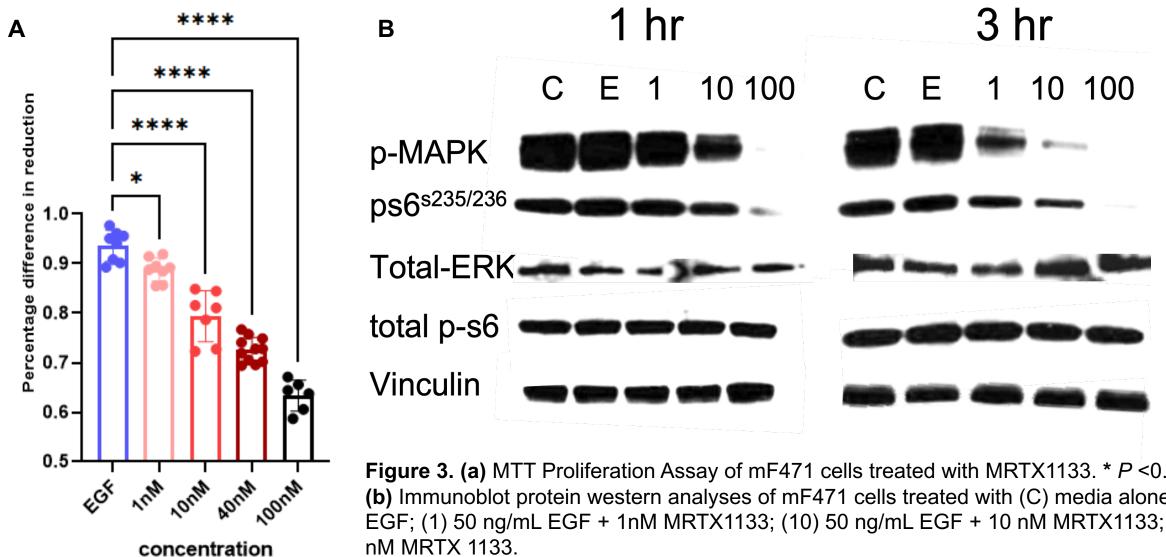
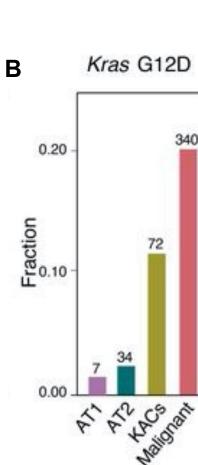
- Confirm the ability of MRTX 1133 to specifically downregulate downstream products of Kras^{G12D} in a murine LUAD cell line (mF471).
- Study the pharmacokinetics of murine Kras^{G12D} inhibition by MRTX 1133 to determine the onset of action and • minimal inhibitory concentration (MIC).

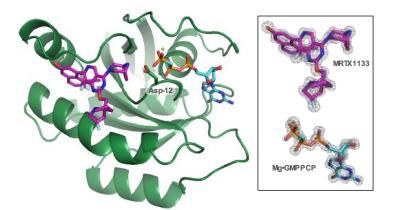
Methods

- MTT Proliferation Assay: mF471 cells were plated on day 1, treated with MRTX 1133 (0nM, 1 nM, 10 nM, and 100nM) and Epidermal Growth Factor (50 ng/mL) on day 2, and MTT proliferation assay measured on day 4 (Fig 3a). Each well contains 1000 cells.
- Western Blot: mF471 cells were plated on day 1, treated with MRTX 1133 (0 nM, 1nM, 10nM, and 100nM) and Epidermal Growth Factor (50 ng/mL) on day 3 for 1 and 3 hours before analysis (Fig 3b). 200 ug protein was loaded per lane.

Results

LUAD).


Figure 1. (a) Trajectory analysis of KACs and malignant cells implicated in human KM-LUAD development. Adapted from Han G (2022).

(b) Fraction of *Kras*G12D mutant cells (right) in KACs, malignant, AT1 and AT2 subsets. Absolute numbers of *Kras*G12D mutant cells are indicated on top of each bar. Figure and legend adapted from Han G, Sinjab A (2022).

Mutated KRAS has been an elusive target prior to the discovery of a conserved switch II binding pocket among all KRAS proteins. A structure-based drug design identified MRTX 1133 as a potent and selective *KRAS*^{G12D} inhibitor in both in vitro *and in vivo* models (Fig 2)². While previous testing utilized patient-derived xenograft tumor models and orthotopic pancreatic cancer models², we investigate the effectiveness of MRTX 1133 in murine lung cancer cells as a precursor to potential clinical prevention of KM-LUAD in vivo.

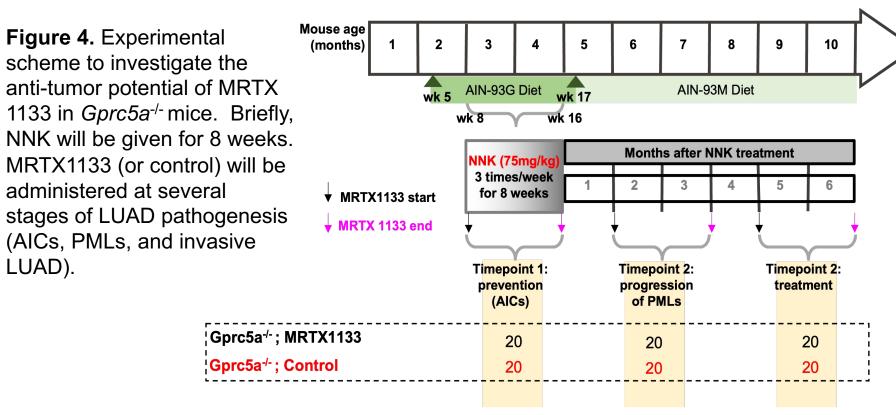

Figure 2. Crystal structure of KRAS^{G12D} bound to MRTX 1133 via the switch II binding pocket. Figure adapted from Christensen J (2022).

Figure 3. (a) MTT Proliferation Assay of mF471 cells treated with MRTX1133. * *P* < 0.05, ** *P* < 0.01, *** *P* < 0.001. (b) Immunoblot protein western analyses of mF471 cells treated with (C) media alone for control; (E) 50 ng/mL EGF; (1) 50 ng/mL EGF + 1nM MRTX1133; (10) 50 ng/mL EGF + 10 nM MRTX1133; (100) 50 ng/ mL EGF + 100 nM MRTX 1133.

Conclusions & Future Directions

- Increasing concentrations of MRTX 1133 result in statistically significant decreases in cell viability when compared to control.
- MRTX1133 shows dose-dependent inhibition of Kras signaling at all time points tested. A significant reduction in key KRAS pathway signaling molecules were observed as early as 3 hours and with concentration as little as 1 nM.
- These results suggest that MRTX 1133 is a potent Kras^{G12D} inhibitor which has the potential to inhibit murine Kras • mutant lung cancer cell lines.
- Further experiments are warranted to assess the role of inhibiting Kras^{G12D} during the early stages of LUAD pathogenesis in an in vivo model (Figure 4). Our group previously showed that mice with knockout of Gprc5a (Gprc5a-/-) develop pre-malignant lesions (PMLs) and LUADs which were markedly accelerated with exposure to nicotine-specific nitrosamine ketone (NNK), a tobacco carcinogen that is casually linked to lung cancer in humans. Hence, we will investigate the anti-tumor effects (including preventive) of MRTX 1133 in a mouse model of tobacco-associated KM-LUAD (Gprc5a^{-/-}) and in 3D organoid models of tumor precursors from the same mice.

References & Support

- Han G, Sinjab A, et al. *BioRxiv*. 2022 1)
- Christensen J, et al. Research Square. 2022 2)
- 3) Fujimoto J et al. Int J Cancer. 2017;141(8):1589-1599.

Thank you to Dr. Humam Kadara, Dr. Zahraa Rahal, Dr. Ansam Sinjab, Yuejiang Liu for mentorship, and the directors and organizers of the ITERT Summer Experience, etc.

Thank you to Mirati Therapeutics for the use of MRTX 1133.