Synthesis of Block Copolymers to Deliver Ortho－Carborane for Proton Capture Therapy

Bao Quang Gia Le，Guodong Zhang，Prof．Chun Li
Cancer Systems Imaging Department

Background

－Ortho－carborane is utilized for proton capture therapy
－To ensure the ortho－carborane to be delivered to the target site，the block copolymers could be utilized as nanocarrier．
Poly（PEGMA）$)_{n}$ b－poly［HEMA－g－（ ε－caprolactone）$\left.]_{7}\right]_{m}$ has been proven as an effective delivery vehicle for therapeutic drug．

Figure 1．The overview of ortho－carborane delivery via polymer micelles for proton capture therapy．

Methods

Scheme 1．The synthesis of poly（PEGMA）－b－poly $\left.[\text { HEMA－g－（ } \varepsilon \text {－caprolactone })_{7}\right]_{\mathrm{m}}$（polymer 3）

[^0]Figure 2．The ortho－carborane can be encapsulated by poly（PEGMA $)_{n}-$ b－poly $\left[\text { HEMA }- \text {－}-(\varepsilon-\text { caprolactone })_{7}\right]_{n}$

Results

a		e
）	目	
学 a		
\％	橉	
，	园	
\％ a	\ldots	b

Polymer 2 （evaluating the effect of long HEMA）

Figure 2．Polymer 3 with long PEGMA and HEMA chain was utilized as testing polymer to evaluate its capacity to form micelles in water．Normal length polymer 2，polymer 2 with long HEMA，and polymer 2 with short PEGMA were utilized to evaluate their capacity to encapsulate ortho－carborane．

Results

Figure 3．Duplicate of polymer 3 were dissolved in THF at three concentrations． 2 mL of each solution was added to 10 mL of water for the polymers＇self－assembly to nanoparticles． The dynamic light scattering technique（above）was utilized to determine the nanoparticle sizes（number results）．

Conclusions

－Poly（PEGMA $)_{n}-\mathrm{b}$－poly［HEMA－g－（ ε－caprolactone $\left.)_{7}\right]_{m}$ is capable of self－assembling to nanoparticles in water
－The final polymers with different sizes are successfully synthesized and characterized．
－The dynamic light scattering results demonstrates that the concentration of the polymer does not affect the size of the nanoparticles．

Future Direction

－The testing polymer 3 will be first utilized to encapsulate the ortho－carborane using two different methods to determine the better method for this system
－Polymer with different length in PEGMA and HEMA building block will be analyzed for their capacity to encapsulate ortho－carborane using the optimal encapsulating method．
The drug release profile of each nanoparticles will be investigated．

Acknowledgements

－Special thanks to all the members of the Li lab，especially Dr．Zhang，as well as Prof．Chun Li．
－We are also grateful to the Cancer Systems Imaging Department．

References

－Zhao，J et al．Simultaneous inhibition of hedgehog signaling and tumor proliferation remodels stroma and enhances pancreatic cancer therapy．Biomaterials 2018， 159，215－228．

[^0]:

