

TARGETING POLO-LIKE KINASE 4 (PLK4) TRIGGERS POLYPLOIDY AND APOPTOSIS IN TP53-MUTANT ACUTE MYELOID LEUKEMIA AND RESULTS IN IMPROVED SURVIVAL

<u>Akhil Marupudi^{1,2}, Edward Ayoub², Yuki Nishida², Wencke Walter³, Torsten Haferlach³, Michael Andreeff²</u>

¹Department of Biomedical Sciences, Texas A&M University, ²Department of Leukemia, The University of Texas MD Anderson Cancer Center, ³MLL Munich Leukemia Laboratory

Background

• *TP53* mutations in acute myeloid leukemia (AML) are associated with complex karyotype and high risk of relapse (Döhner et al., 2017; Giacomelli et al., 2018). The mechanisms responsible for response and relapse in TP53-mutant AML remain unclear and investigating novel mechanisms is critical to develop more effective therapies.

• In order to shed light on the defective p53 signaling pathways underlying TP53 mutant AML, we performed RNA-sequencing (RNA-seq) on bulk mononuclear cells or FACS-sorted leukemic stem cells (LSCs) using samples collected from TP53-mutant or TP53-wt high-risk AML patients.

• We identified a key regulator of centriole biogenesis: Polo-like kinase 4 (PLK4) as a potential target highly expressed in TP53-mutant AML samples.

Results

Β.

õ

Α.

• Previous publications showed that PLK4 is transcriptionally repressed by p53 and induces apoptosis upon RNAi silencing (Fischer et al., 2014; Li et al., 2005). Here we show that TP53-mutant AML samples lack the p53-dependent PLK4 repression and have higher levels of PLK4 compared to TP53-wt AML.

• Gap of knowledge: The mechanisms responsible for response and relapse in *TP53*-mutant AML remain unclear and there are no effective treatments against TP53-mut AML.

• We hypothesized that targeting PLK4 will triger mitotic defects, and activate apoptosis in TP53-mut leukemia cells, making it a potential treatment approach for TP53-mut AML.

Materials and Methods

RNA sequencing datasets:

MD Anderson AML Moonshot RNA seq dataset:

Total = 44 AML samples as following: TP53-mut samples = 19 (bulk = 12, LSC = 7) *TP53*-wt samples = 25 (bulk =14, LSC =11)

Munich Leukemia Laboratory (MLL) RNA-seq

Figure 2: RNA-seq datasets show a significant increase in PLK4 expression in TP53-mut AML. A) MDACC Moonshot (bulk n=26, LSC n=18). B) Munich Leukemia Laboratory (bulk n = 726).

Figure 5: Monitoring DNA content with the Click-iT EdU

dataset:

Total = 726 AML samples as following: TP53-mut samples = 72, TP53-wt samples = 654.

Cell lines: MOLM13 cell lines from Dr. S. Boettcher

Statistical analysis: Variables were compared using the Wilcoxon rank-sum test for pairwise comparisons. The Kaplan–Meier method was used to estimate the probability of OS, and compared by the log-rank test. Univariate and multivariate Cox proportional hazards models were used to assess the association between *TP53* status and PLK4 expression. Analyses were performed using R version 4.0.3.

PLK4 is overexpressed in TP53-mut AML MOLM13 <u>cell lines</u>

labeling. Pseudocolor plots showing the levels PI and Edu levels in TP53-wt, TP53-KO, and TP53-R234Q MOLM13 cell lines. Left column shows untreated samples. Right column shows samples treated with 25nM CFI-400945 for 48 hours. Color axis represents the levels of cleaved Caspase-3.

TP53-mut PDX have worst OS

PDX models.

L.UU										
0.75							Ţ]		• 7
0.50								<u> </u>		wł
0.25	p <	0.0001								• T
0.00	0 '	3	6	9	' 12 Dav	' 15 S	18	21	24	• F
	Num	iber a	t risk		,					po
5 <i>3</i> –KO	9	9	9	9	9	9	0	0	0	ap

Treatec (N=30)	0.084 (0.038 – 0.19)		⊨⊣						<0.001 ***
# Events: 58; Global p–value (Log–Ra AIC: 283.82; Concordance Index: 0.8	ank): 6.653e–18 9	0.05 0	.1	0.5 1	5	10) 5	0 10	0 500

Figure 7: OS in untreated & treated A) *TP53*-wt, B) TP53-R248Q, and C) TP53-ko PDX models. D) Hazard ratio plotted based on treatement & genotype.

Conclusions

TP53-mutant AML has an overexpression of PLK4, hich is a central regulator for centriole duplication.

Targeting PLK4 results in increased levels of polyoidy in TP53-mut AML vs TP53-wt AML.

PLK4 inhibition upregulates cleaved Caspase-3 in olyploid cells, and results in significantly higher poptosis in TP53-mut MOLM13 cell lines in comparison to TP53-wt MOLM13 cell line.

• A clinical trial is ongoing testing the efficacy of PLK4 inhibition (CFI-400945) in AML (ID: NCT04730258, TWT-202).

Funding: This work was funded by The University of Texas MD Anderson AML Moonshot project.

Acknowledgements: Many thanks to Marites Melancon, Chandra Bartholomeusz, and Nancy Strange for their organization of the MD Anderson Cancer Center Summer Experience and Summer Undergraduate Research Program (SURP).