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Grapevine varietal classification is an important plant phenotyping issue for grape growing

and wine industry. This task has been achieved from destructive techniques like classic

ampelography and DNA analysis under laboratory conditions. This work displays a new

approach for the classification of a high number of grapevine (Vitis vinifera L.) varieties

under field conditions using on-the-go hyperspectral imaging and different machine

learning algorithms. On-the-go imaging was performed under natural illumination using a

hyperspectral camera mounted on an all-terrain vehicle at 5 km/h. Spectra were acquired

over two different leaf phenological stages on the canopy of 30 different varieties on

a commercial vineyard located in La Rioja, Spain. A total of 1,200 spectral samples

were generated. Support vector machines (SVM) and artificial neural networks (multilayer

perceptrons, MLP) were used for the development of a large number of models, testing

different algorithm parameters and spectral pre-processing techniques. Both classifiers

yielded notable performance values and were able to train models with recall F1 scores

and area under the receiver operating characteristic curve marks up to 0.99 for 5-fold

cross validation. Statistical analyses supported that the best SVM kernel was linear and

the best activation function for MLP was the hyperbolic tangent function. The prediction

performance for individual varieties of MLP ranged from 0.94 to 0.99, displaying low levels

of variability. In the case of SVM, slightly higher differences were obtained, ranging from

0.83 to 0.97 for individual varieties. These results support the possibility of deploying an

on-the-go hyperspectral imaging system in the field capable of successfully classifying

leaves from different grapevine varieties. This technology could thus be considered as a

new useful non-destructive tool for plant phenotyping under field conditions.

Keywords: MLP, plant phenotyping, discrimination, sensors, proximal sensing, remote sensing, non-invasive

sensors

1. INTRODUCTION

Plant phenotyping address the description of the plant’s anatomical, physiological and biochemical
properties (Walter et al., 2015). As grapevine growing and wine industry have a high economical
and social impact, the interest of plant phenotyping is increasing in this context. In practice,
however, phenotypes from controlled conditions rarely agree with those in field environments
(Nelissen et al., 2014; Poorter et al., 2016). For this reason, in field plant phenotyping has become
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a necessity, but it still remains as a difficult task. The
development of new technologies and methodologies for the
precise phenotyping and monitoring of grapevines under field
conditions would definitely improve grape quality (and, thus,
wine quality), a key factor for the industry.

Grapevine variety is a key feature of final product in terms
of price, cultivation, etc. (Clarke and Rand, 2015). In the
world, there exist several thousands of grapevine varieties,
and ampelography has been the classic approach for their
identification (Galet, 1979). Ampelography aims at extracting
morphological differences between the leaves and grape berries,
but it has always required specialized human resources. This
methodology has gradually made way to modern and more
precise identification approaches, such as wet chemistry (Altube
et al., 1991) or DNA analysis (Sefc et al., 2001; Borrego et al., 2002;
Pelsy et al., 2010). Nevertheless, the difficulty to fast and easily
apply these techniques and their destructive nature makes them
unable to be translated to a real time in-field application.

The advances in the research and development of applied
spectroscopy—which involves the interaction between radiation
and matter at specific wavelengths—reveals this technology as
a serious candidate to address the varietal classification goal.
Likewise, many spectroscopic approaches have been developed
toward this objective in several crops, such as barley malt (Porker
et al., 2017), lotus seed (Guo et al., 2017b), pummelo (Li et al.,
2016), or strawberry (Sánchez et al., 2012). Even works on in-
field grapevine varietal classification using a near-infrared (NIR)
device can be found in the literature (Gutiérrez et al., 2015, 2016).
Hyperspectral imaging combines the potential of spectroscopy
and the additional information that a two-dimensional space
provides, and thus opens a new way to the development of
spectroscopic methodologies. Particularly, hyperspectral images
of grapevine leaves enable the development of varietal and
clone classification models, as demonstrated by previous works
(Diago et al., 2013; Fernandes et al., 2015). However, these
studies worked with a very limited number of classes (no
more than four), under laboratory conditions and required
sample preparation. These pitfalls raise the necessity of taking
a further step and deploying hyperspectral imaging directly in
the field, opening a new frontier for the on-the-go classification
of a large number of grapevine varieties, hence removing
the requirements of laboratory conditions and even sample
picking. This new application could be useful for commercial
vineyards, nurseries, appellation boards, etc. Some authors have
previously demonstrated the possibility of performing outdoor
hyperspectral imaging in several crops (Underwood et al., 2017;
Wendel and Underwood, 2017; Williams et al., 2017), and
this bolsters the development of new on-the-go hyperspectral
solutions for grapevine-related problems.

As exposed, hyperspectral imaging brings much richer data
in relation to quantity and quality, but this feature also carries
a big burden that needs to be handled: the huge amount of
data that hyperspectral acquisitions implies. For this reason,
efficient and intelligent data analysis is an almost compelled
necessity. Machine learning provides numerous techniques for
predictive applications by learning and forecasting data (Han
et al., 2011; Witten et al., 2016), and it has been extensively used

in innumerable fields. Two of the most reliable and adaptable
algorithms for the development of supervised classification
models are support vector machines (SVM) and artificial neural
networks (ANN).

SVM are algorithms that are based on a kernel that translates
the input data into higher dimensional spaces (Capparuccia et al.,
1995). In these, SVM try to find hyperplanes that maximize the
distance to the nearest point (projected in the new dimensional
space) of any of the input classes. The adequate selection of a
kernel is crucial when applying SVM to a problem, as specific
kernels can fit better than other depending on the data modeled.
SVM were originally conceived as binary classifiers, but multi-
label classification SVM can be developed by splitting the original
multi-class problem into several smaller binary classification
ones using approaches as one-versus-all (training one model
per class versus all the rest) or one-vs.-one (training one model
per class for each one of the remaining classes). Applications
based on SVM models can be widely found in plant science,
like nitrogen evaluation (Gao et al., 2017), characterization
of invasive grass distribution (Dronova et al., 2017) or seed
development genetics (Ni et al., 2016). ANN are a popular
machine learning approach extensively used for classification
and regression purposes. Originally suggested by McCulloch and
Pitts (1943), the modern concept of ANN was developed by
Werbos (1974). ANNs try to emulate the behavior of a biological
neural network, by deploying a net of basic interconnected
units (neurons) and arranging them into a set of discrete layers
(one-layer or multi-layer). In Rumelhart et al. (1986), error
backpropagation feature was introduced, a process that finds
the gradients of the neurons’ weights to adjust them, from the
last layer to the first one. ANNs can also be found in multiple
applications for plant science, e.g., leaf area index calculation
(Yuan et al., 2017), rootstock genetics (Arab et al., 2017) or
disease detection (Pérez-Bueno et al., 2016). For this reason,
a deep analysis of how these algorithms and their multiple
parameter settings behave with hyperspectral data is desirable,
as they arise as powerful tools for the varietal classification
objective.

The objective of this study was to develop a new application
for the classification of a large number of grapevine (Vitis vinifera
L.) varieties using on-the-go hyperspectral imaging under field
conditions and machine learning algorithms.

2. MATERIALS AND METHODS

On-the-go hyperspectral imaging was performed in a commercial
vineyard on a moving vehicle under field conditions and natural
light, at two different phenological stages in a given season.
A large amount of parameter combinations for spectral pre-
processing and machine learning classification models were
tested and statistically analyzed to evaluate the influence of the
different parameters and obtain the best configuration for the
machine learning classifiers.

2.1. Experimental Layout
The study was conducted in a 1.8 ha commercial vineyard
located in Logroño, La Rioja, Spain (Lat. 42◦ 2′′ 4.5′′′′, Long.
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-2◦ 30′′ 49.6′′′′ Alt. 484 m), during two different days with
clear weather corresponding to two different phenological stages
of season 2017: 10 August—1 week post-veraison, at stage
36 of the modified Eichhorn and Lorenz system (Coombe,
1995)—and 11 October—1 week post-harvest, at stage 41.
Grapevines (Vitis vinifera L.) were grafted on rootstock R-110
and trained to a vertically shoot-positioned trellis system. Plants
were planted in 2001 with a Northwest-Southeast orientation
at 3.00 × 1.20 m inter and intra row distances. Mechanical
tillage was applied for vineyard soil management. Thirty different
international grapevine varieties, uniformly irrigated across
the season, were used in this study. From these, 16 white
varieties were present: Baladí, Blanca Cayetana, Calagraño,
Catalán Blanco, Chardonnay, Chenin Blanc, Cigüente, Palomino,

FIGURE 1 | (A) On-the-go hyperspectral imaging on an all-terrain vehicle in a

vertically shoot positioned vineyard located in Logroño, La Rioja (Spain).

Spectral acquisition was performed on the sun-exposed canopy side at 5

km/h. (The authors declare that written and informed consent has been

obtained from the depicted individual in this image, for the publication of this

identifiable image). (B) Construction of a two-dimensional hyperspectral image

by push broom. The camera’s scanline, that was acquiring spectral

information from a vertical line over the vineyard canopy, was moved by the

motion of the all-terrain-vehicle. Thus, the composition of the image was

performed by this scanline dragging at constant speed.

Pardina, Parellada, Pedro Ximénez, Perruno Fino, Picapoll
Blanco, Pinot Blanc, Sauvignon, Semillón. The other 14 were
red varieties: Brancellao, Cabernet Franc, Cabernet Sauvignon,
Calop Negro, Carnelian, Centurion, Concord, Crujidera, Pinot
Noir, Rubired, Rufete, Sousón, Syrah, and Tempranillo. For each
variety, 10 plants (along 12 m) were imaged. The 30 different
varieties were randomly planted across the whole vineyard
plot.

2.2. On-The-Go Hyperspectral Imaging
The on-the-go acquisition of hyperspectral images was
performed using a Resonon Pika L VNIR hyperspectral
imaging camera (Resonon, Inc., Bozeman, MA, USA) mounted
on the front part of an all-terrain vehicle (ATV) (Trail Boss 330,
Polaris Industries, MN, USA), on a lateral point of view at 2.0 m
of distance (Figure 1A). The camera covered the spectral range
from 400 to 1,000 nm, with a spectral resolution of 2.1 nm (300
bands) and a spatial resolution of 900 pixels. Using an objective
lens with a focal length of 8 mm, the field of view (FOV) was
36.5◦, and casted a vertical recording line covering 1.32 m of the
northeast canopy side, only with the natural illumination from
the sun (between 10:00 and 12:00).

The camera configuration was set up at 108 frames per
second (FPS) with integration time of 6.53 ms, to maximize
the trade-off between an acceptable image composition of the
plants and spectral quality (avoiding signal saturation). In
order to take into account the natural, variable illumination,
at the beginning of the hyperspectral recording, for each
variety, a Spectralon R© white reference was manually presented
to the camera and statically imaged. The dark current (that
corresponds to inherent electronic noise) was measured with
the camera lens covered. Afterwards, the 10 plants of that
specific variety were measured at a constant speed of 5 km/h.
The horizontal movement from the ATV composed the whole
hyperspectral image by push broom scanning (Figure 1B). The
plants from each varietal recording comprised an average of
1,800 scanlines (columns in the hyperspectral image), 900
pixels each column. Therefore, each varietal hyperspectral
image was composed of, on average, 1,620,000 pixels (i.e.,
spectra).

All the raw information from the camera (acquired as light
intensity) was translated into reflectance, using the following
equation:

R(d̄r , λ) =
G(d̄r , λ)− D(d̄r , λ)

W(d̄r , λ)− D(d̄r , λ)
(1)

where d̄r is a position, λ is a wavelength, G is the intensity of
the light reflected by the target, W is the intensity of the light
coming from the white reference, and D is the dark current.
Afterwards, the absorbance (log 1/R) was calculated as the final
unit to be used in computation. From this absorbance spectra,
the first and last group of 25 bands were discarded to avoid the
noise commonly present in both spectral signal’s tails. Therefore,
each spectrum comprised a total of 250 bands.
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2.3. Building the Datasets
From the raw hyperspectral images, a semi-automatic dataset
building process programmed in Python 3.6.1 was performed
in two steps: the segmentation and filtering of the leaf
spectra, and the generation of the samples for each grapevine
variety.

2.3.1. Segmentation and Filtering of Leaf Spectra
The following procedure was applied to each variety
hyperspectral image. From the n × m image (where m is
the number of columns and n the number of pixels in each
column), one manually selected average leaf spectrum was
extracted and used as signature spectrum (the pure reference
spectrum of a leaf of that image). Afterwards, for each column, all
the spectra corresponding to leaves were automatically selected
and averaged as described:

A Saviztky-Golay smoothing and derivative (Savitzky and
Golay, 1964) was applied to the leaf signature spectrum.
Afterwards, for each column, each one of its pixels were
picked and its spectrum in absorbance was extracted, applying
the same Savitzky-Golay smoothing and derivative. Then, the
correlation coefficient between the pixel spectrum and the
signature spectrum was computed, and if the Pearson’s r
was greater than 0.90, the spectrum was therefore positively
identified as a leaf ’s spectrum and added into a selected
leaves set. After all the pixels in the column were tested, the
average spectrum from the selected leaves set was computed
and considered as the average spectrum from all the leaves
in that column. Figure 2 represents a visual summary of this
procedure.

After all the columns were processed,mmean spectra (one per
column) were extracted for each variety altogether. On average,
for all the varieties, the mean spectra was computed from 481
pixels (a 53.4% of the column pixels).

FIGURE 2 | Each m× n hyperspectral image was processed column by

column. For each column i, each pixel (spectrum) was compared with a

signature leaf spectrum. If a certain threshold of belonging was surpassed, the

pixel was marked as leaf pixel. Afterwards, all leaf pixels from the column i

were averaged.

2.3.2. Generation of the Dataset Samples
For each variety, the m mean leaf spectra were divided into
40 consecutive sets with a size of m/40 spectra. The average
spectra from those sets were obtained and, thus, 40 leaf spectra
per variety (four per plant) were finally generated, following
previous methodologies by Gutiérrez et al. (2015, 2016). Having
30 varieties and two measurement days, a total of 2,400 samples
(80 per variety) were generated, each one obtained from the
averaging of approximately 21,500 spectra (86,000 leaf pixels per
plant).

2.4. Spectral Pre-processing and Machine
Learning Modeling
In the development of prediction models from spectral
information, the raw absorbance data is seldom used directly
as input. Spectral pre-processing is a common step that seeks
to remove most of the noise that is inherent to many spectral
acquisitions. As several algorithms and parameters can be
applied, and they noticeably affect the spectral shape, the
influence of two different pre-processing techniques were tested
in the training of the varietal classification models:

• Scatter correction. Sometimes, it is usual for spectral signal to
retain interferences of scatter. One of the techniques usually
applied for this correction is the combination of standard
normal variate (SNV) followed by a de-trending (Barnes et al.,
1989; Dhanoa et al., 1995). Nevertheless, there are situations in
which the application of scatter correction is not necessary, so
for this study it was tested the use of SNV + de-trending and
the complete omission of this scatter correction step.

• Smoothing filtering. Savitzky-Golay filtering along with a
derivative function (Savitzky and Golay, 1964) is commonly
used in spectroscopy, as they are able to remove noise from
external sources and to emphasize certain parts from the
original spectrum. The combination of two derivative orders
(first and second) and three different Savitzky-Golay window
sizes (5, 9, and 15) was tested.

Regarding machine learning modeling, two different
classification algorithms were tested:

• Support vector machines (SVM). SVMs are algorithms
based on kernels that transform the original data into high-
dimensional feature spaces (Capparuccia et al., 1995). The
parameters tested for SVM were: the penalty parameter C
(six different values: 0.01, 0.1, 1, 10, 100, and 1,000) and
three different kernels (linear, polynomial, and radial basis
function–RBF). A total of 18 parameter combinations were
thus generated. As SVM are binary classification algorithms,
a one-vs.-one approach was followed in this work to perform
multi-class classification Bishop (2006). This approach trains
n(n − 1)/2 binary models (where n is the number of classes),
one for each one of the two-classes combinations that can be
arranged. As in this case all the classes had the same number of
samples, no bias was introduced in the models, hence avoiding
over-estimation of a majority class.

• Multilayer perceptrons (MLP). MLPs are a kind of artificial
neural networks (ANN) that consist of at least three layers
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of neurons and make use of backpropagation in the training
process (Hornik et al., 1989). The parameters tested for MLP
were: number of neurons in the hidden layer (t: the sum of the
number of attributes and classes. a: half the amount of t; i: the
number of attributes), activation function for the hidden layer
(logistic: logistic sigmoid function; tanh: hyperbolic tangent
function; relu: rectified linear unit function) and using or not
a warm start (reuse or reject previous solutions in the ANN
training process). The total number of combinations were also
18.

Each developed model was evaluated using a stratified k-fold
cross validation, with k = 5. In a k-fold cross validation, k
models are trained with k−1 folds and tested with the remaining
fold, rotating the latter until all of them have been used. The
average performance of the k models is thus considered as the
performance of the cross validation. Five replicates of 5-fold cross
validation were also carried out, each one of them with random
fold splits. In summary, having two options for scatter correction,
six combinations for smoothing filtering, two algorithms, 18
parameter combinations for each one and five cross validation
replicates, a total of 2,160 classification models were developed.

The performance statistics used were the recall, F1 score, defined
as:

recall =
tp

tp+ fn
=

number of correctly classified samples

total number of testing samples
(2)

F1 score = 2×
precision× recall

precision+ recall
(3)

where tp is true positives (number of samples correctly classified)
and fn (number of samples incorrectly classified) is false negatives,
and the area under the receiver operating characteristic curve
(AUC) (Bradley, 1997), computed from the SVM and ANN class
membership probability estimates. The performance statistics
used were averaged among all the classes. An experimental
modeling diagram is presented in Figure 3.

The evaluation of the models was developed using Python
3.6.1 and scikit-learn 0.18.1. The training of the MLP
was performed using on scikit-learn multilayer perceptron
implementation (Pedregosa et al., 2011). Statistical tests were

FIGURE 3 | Experimental modeling diagram summarizing the analyses performed. From the spectral dataset (input), different combinations of various pre-processing

techniques were applied, modeled using two machine learning algorithms (with many parameters) and validated by several 5-fold cross validation replicates. Finally,

three performance statistics were evaluated.
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carried out using InfoStat software (Córdoba, Argentina), version
2017, using Tukey’s range test at a significance level p = 0.05.

3. RESULTS

3.1. Influence of Scatter Correction and
Derivative Order
The comparison of means of classification recall for scatter
correction was performed for each algorithm. No statistically
significant differences were found between the means from
any statistic when using and omitting SNV followed by a de-
trending (data not shown). Therefore, the successive statistical
analyses were performed without splitting by scatter correction
treatments. Besides, the influence of the first and second order
derivatives was analyzed, and statistically significant differences
were found between them for MLP (p < 0.0001 for the
three performance statistics) and SVM (mean recall with p <

0.05 and F1 with p < 0.01) toward the second order
derivative.

3.2. Influence of Smoothing Filtering
The statistical analyses for the recall results attending to the
different Savitzky-Golay window size are gathered in Table 1.

In all cases, the classification outcomes from the MLP
surpassed those from the SVMmodels.

SVM results did not yield statistically significant differences
between window size for both derivative orders, with values that
ranged from 0.84 to 0.90 for recall, from 0.84 to 0.91 for F1 score
and 0.93 in all cases for AUC. The best scores came from the
second derivative smoothing with the lower window size values
(five and nine), and in all cases the first derivative casted equal or
lower recall outcomes.

MLP showed strong and consistent statistically significant
differences, at p < 0.001 for both derivative orders, across all

the performance statistics, supporting that the best scores were
obtained in general using the second order derivatives (regardless
the window size). In both first and second order derivatives, there
existed a trend in which the lower the value of the window size,
the better the recall values.

3.3. Analysis of the Algorithm Parameters
The results for the statistical analyses per parameter value are
gathered in Tables 2, 3, for SVM and MLP respectively.

The models trained with SVM presented large differences
depending on the specific values selected (averages with high
variability, from 0.65 up to 0.99 for recall, from 0.68 to 0.99
for F1 and from 0.60 to 0.99 for AUC), especially regarding
the C parameter. In this case, a noticeable gap in terms of
average recall can be found between C values equal or greater
than one and 10 (that performed significantly better) and those
that lied below that (whose scores casted worst results). For
the different SVM kernel values, the three of them presented
significant differences in all the statistics, being the linear kernel
the one with the highest score. The polynomial kernel presented
significantly lower average values.

The variability of the MLP results was considerably lower
than that from SVM, with all values above the 0.95 mark and
up to 0.99, for all the performance statistics. In terms of recall
values, the number of neurons in the neural network models
(hidden layer parameter) presented significant differences when
selecting i or t over a (with slightly lower values for the
latter), differences that were almost similar for both F1 and
AUC. Nevertheless, the activation function responded differently
depending on their selected values with the same behavior for
the three statistics. In the first case, the tanh and relu functions
worked significantly better than the logistic one (Table 3). The
use of warm start exhibited no statistical significant differences in
any case.

TABLE 1 | Comparison of means of classification recall, F1 score and AUC for each Savitzky-Golay window size by algorithm and derivative order.

Window size

Algorithm Performance statistic Derivative order 5 9 15 Significance

SVM Recall First 0.8839 0.8648 0.8351 n.s.

Second 0.9024 0.8947 0.8842 n.s.

F1 score First 0.8934 0.8747 0.8450 n.s.

Second 0.9142 0.9058 0.8938 n.s.

AUC First 0.9309 0.9305 0.9297 n.s.

Second 0.9339 0.9328 0.9265 n.s.

MLP Recall First 0.9796 a 0.9678 b 0.9404 c ***

Second 0.9905 a 0.9842 b 0.9804 c ***

F1 score First 0.9796 a 0.9687 b 0.9404 c ***

Second 0.9905 a 0.9842 b 0.9804 c ***

AUC First 0.9998 a 0.9995 b 0.9986 c ***

Second 0.9999 a 0.9998 b 0.9996 c ***

The values represent the average recall.

Dissimilar lowercase letters within rows represent statistically different means among different window sizes, using Tukey’s range test at a significance level p = 0.05.

AUC, area under the receiver operating characteristic curve; SVM, support vector machine; MLP, multilayer perceptron. n.s., not significant (p ≥ 0.05); *** p < 0.001.
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TABLE 2 | Comparison of means of classification recall, F1 score and AUC for the

different parameters tested for support vector machine (SVM).

Parameter Value Average

recall

Average

F1 score

Average

AUC

Penalty

parameter (C)

1,000 0.99 a 0.99 a 0.99 a

100 0.99 a 0.99 a 0.99 a

10 0.98 a 0.98 a 0.99 a

1 0.92 b 0.94 b 0.99 a

0.1 0.73 c 0.75 c 0.98 a

0.01 0.65 d 0.68 d 0.60 b

Significance *** *** ***

Kernel Linear 0.99 a 0.99 a 0.99 a

Radial basis

function

0.90 b 0.90 b 0.95 b

Polynomial 0.74 c 0.77 c 0.84 c

Significance *** *** ***

Dissimilar lowercase letters within the different parameter values represent statistically

different means, using Tukey’s range test at a significance level p = 0.05.

***p < 0.001.

3.4. Prediction Capability per Variety
The average recall, F1 scores and AUC values, for each grapevine
variety, were computed for SVM and MLP models. Figure 4
displays bar plots of these averages for the 30 varieties. No clear
correlation between the trends of both algorithms was found
(the ranking for best classified classes was not the same between
algorithms). For recall values, the difference between the best and
the worst score for MLP was 0.04, presenting a low variability,
while for SVM this difference swelled to 0.11. The plot shapes
between both algorithms were similar for recall (Figures 4A,B)
and F1 score (Figures 4C,D), but the AUC values for MLP
showed a very small variability level (Figure 4E), unlike SVM
(Figure 4F).

Attending to recall values per variety, representing the
ratio of correctly classified samples, the varieties that showed
the best recall values for MLP were Semillón, Perruno Fino
and Blanca Cayetana, while Centurión was the one with
the lowest value. All grapevine varieties, still, reached or
surpassed the 0.94 mark. In the case of SVM, the best scores
came from Semillón and Blanca Cayetana, as in the case of
MLP, and Tempranillo, in third place, with recall values of
greater than 0.92. All the varieties were on or above the
0.83 mark.

3.5. Execution Time Estimation
In the processing of the hyperspectral images, the segmentation
and filtering step (section 2.3.1) of the 60 images (30 varieties,
two different days per variety) took approximately 27 h to
complete on an Intel R© CoreTM i7-5820K CPU with 16 GB
of RAM (with no thread optimization). This resulted in an
average of 1.45 s per image column to be processed (i.e., the
comparison of 900 spectra with a leaf signature and the average
of the spectra marked as leaves). In the case of the prediction
of an unknown spectrum by a previously MLP or SVM trained
model, the time required was of 0.05 s. Therefore, the total

TABLE 3 | Comparison of means of classification recall, F1 score and AUC for the

different parameters tested for multilayer perceptron (MLP).

Parameter Value Average

recall

Average

F1 score

Average

AUC

Hidden layer t 0.9746 a 0.9746 ab 0.9995 ab

i 0.9757 a 0.9757 a 0.9996 a

a 0.9717 b 0.9717 b 0.9994 b

Significance ** ** **

Activation

function

tanh 0.9855 a 0.9855 a 0.9998 a

relu 0.9837 a 0.9837 a 0.9998 a

Logistic 0.9527 b 0.9527 b 0.9990 b

Sign. *** *** ***

Warm start True 0.9740 0.9739 0.9995

False 0.9739 0.9739 0.9994

Significance n.s. n.s. n.s.

Dissimilar lowercase letters within the different parameter values represent statistically

different means, using Tukey’s range test at a significance level p = 0.05.

n.s., not significant (p ≥ 0.05); **p < 0.01. ***p < 0.001.

AUC, area under the receiver operating characteristic curve. t, the number of neurons is

the sum of the number of attributes and classes. i, the number of neurons is the number

of attributes. a, the number of neurons is half the amount of t. tanh, hyperbolic tangent

function. relu, rectified linear unit function. logistic, logistic sigmoid function.

time for obtaining an average spectra from the column of a
hyperspectral image and the prediction of its variety would take
1.5 s.

4. DISCUSSION

The results from the present work reveal the actual capability
of on-the-go hyperspectral imaging and machine learning for
the classification of grapevine varieties growing under field
conditions. Two main novelties have been addressed: the
successful deployment of a hyperspectral camera in the field,
under uncontrolled illumination conditions, and the prediction
of a very large number of classes (30). This, supported by the
wide evaluation of different machine learning classifiers and
parameters, made possible to obtain classification results up to
0.99 for both SVM and MLP. The models were able to cast
notable prediction results from data acquired in two different
phenological stages, correctly classifying leaves of different degree
of development.

To the best of our knowledge, no previous studies can be
found on in-field plant varietal classification neither on-the-
go nor using ground-based hyperspectral imaging. Nevertheless,
recent works have displayed the use of in-field portable
NIR spectroscopy for the classification of grapevine varieties
(Gutiérrez et al., 2015, 2016), discriminating among 20 and 10
different varieties, respectively. The reported cross validation
classification results went up to 87.25 and 88.7%, remarkable
values considering the high number of classes employed in
the training of the models. The present study improved both
the number of varieties discriminated and the classification
response. The different spectroscopic device used (hyperspectral
imaging vs. spectral measurement of a very reduced area)
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FIGURE 4 | Average recall (A,B), F1 score (C,D) and area under the receiver operating characteristic curve, AUC, (E,F) per grapevine variety (n = 2160) for Multilayer

Perceptron (A,C,E) and Support Vector Machine (B,D,F). BA, Baladí; BL, Blanca Cayetana; BR, Brancellao; CA, Catalán Blanco; CB, Chenin Blanc; CE, Centurion;

CF, Cabernet Sauvignon; CG, Calagraño; CH, Chardonnay; CI, Cigüente; CN, Calop Negro; CO, Concord; CR, Carnelian; CS, Cabernet Franc; CU, Crujidera; PA,

Palomino; PB, Pinot Blanc; PC, Picapoll Blanco; PD, Pardina; PE, Pedro Ximénez; PI, Pinot Noir; PL, Parellada; PR, Perruno Fino; RB, Rubired; RU, Rufete; SA,

Sauvignon; SE, Semillón; SO, Sousón; SY, Syrah; TE, Tempranillo.

could be the key factor of these enhancements. A portable
spectrophotometer is only capable of acquiring spectral signals
from a reduced portion of the target (grapevine leaves, in this
case), hence a lot of information is lost if the whole canopy
is not monitored by the device. On the other hand, adding
two spatial dimensions to spectral data greatly increases the
quantity of the information acquired from the canopy, as all
the intervariability (among plants) and intra-variability (within
plants) is considered. Hence the prediction capability of the
machine learning algorithms is expected to be increased, as
they are fed with more information. Hyperspectral imaging
has been previously attempted for the varietal classification

of grapevine leaves and clones by Diago et al. (2013) and
Fernandes et al. (2015), respectively. In these studies, the authors
demonstrated the ability of this technology for the discrimination
of samples from three varieties and four clones. However,
these approaches, unlike the present study, needed for specific
sample preparation. Moreover, imaging was conducted under
laboratory conditions and only at harvest time, over leaves of
different ages. Varietal classification by spectroscopy has been
previously achieved in several agricultural and food applications.
Maize seed discrimination attending to the variety was recently
reported by Guo et al. (2017a) and Yang et al. (2017), with
up to 14 varieties and using hyperspectral imaging and SVM.
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Artificial neural networks and SVM have also been used for
this purpose in pummelo (Li et al., 2016), olive oil (Binetti
et al., 2017), barley malt (Porker et al., 2017), or lotus seed
(Guo et al., 2017b). All these studies had two common factors:
the use of non-portable devices and the need of laboratory
conditions. The present study tried to overcome these two major
issues, by developing a methodology for varietal classification
that is also able to be performed on-the-go, directly in the
field, under uncontrolled illumination conditions, as on-the-go
imaging brings the great advantage of covering large areas and
thus acquiring a larger and richer amount of information from
the crops.

The results obtained from the different spectral pre-processing
steps allow to draw some interesting deductions. The fact that
scatter correction had no influence in the results (no statistically
significant differences were found when using and omitting SNV
and de-trending) could suggest that the spectral information
used as input for the classification algorithms suffered from
no interferences of scatter. This might be explained by one
of the main advantages of hyperspectral imaging: the huge
amount of spectra that it provides. Each sample of the built
dataset came from the average of approximately 43,000 leaf
spectra, and this extreme averaging could have minimized
the scatter influence. When it comes to smoothing filtering,
the different treatments showed no significant differences
for SVM, but they were influential for MLP. The second
order derivative casted the best performance statistics for
this algorithm, making these results to be in line with those
concluded by Gutiérrez et al. (2015), for the same purpose.
Although, as mentioned, smoothing treatments had no influence
for SVM (a fact that could be explained by the higher
variability in classification results from this algorithm), the
trend in terms of average values remained similar to those of
MLP.

In general, the models trained with SVM and MLP were
able to return very high statistical values of classification (for
specific parameters), highlighting that hyperspectral data (and
the high amount of samples) retained enough information
for both machine learning algorithms to successfully extract
underlying classification rules, when providing a considerable
amount of samples. The best results were found in those models
that were trained with MLP (average performance values from
0.95 to 0.99), but SVM was also able to provide outcomes up
to 0.99. Additionally AUC values per variety were much regular
for MLP (Figure 4E) than for SVM (Figure 4F), implying that
MLP had a higher capability to precisely classify from any class.
As it can be concluded from Table 2, wider variability results
came again from SVM, displaying high differences depending
on the kernel selected and much larger gaps depending on
the value of the C parameter. The influence of the kernel was
statistically present, and the analyses promoted the linear kernel
as clearly the best, setting aside more complex kernels. This
enables to affirm that spectral information was better exploited
when, in the case of SVM, linear approaches were applied. Other
studies have also reported good performance of hyperspectral
imaging and SVM when using linear kernels in other crops and
fruits (Baranowski et al., 2015; Schmitter et al., 2017; Siedliska

et al., 2017), and Hsu et al. (2003) also suggested the use of
linear kernels when the number of attributes is large (as in
the case of spectral information). Another consideration that
can be extracted from the obtained results is that the penalty
parameter C should be set at or above 10. C determines the
strength of regularization of the SVM (larger values imply lower
regularization, i.e., correct classification of training data is more
important, and vice versa), so in the present case, the best results
came when the correct classification of the samples from the
dataset was maximized. This situation could lead to an overfitting
scenario, in which testing samples that did not participate in
the training of the model yield bad predictions. Nevertheless,
the fact that all the models were tested by five replicates of
5-fold cross validation could evidence that the generalization
capability of SVM with larger C values remained present, as in
each fold 20% of the samples were not used in the training, but
correctly classified. Even so, a virtual performance plateau was
present at a C value of 10, as increasing it above that amount
did not improve the classification results. The different values
that MLP parameters could take presented a lower variability,
and not a mean lied below the 0.95 mark. In the case of the
hidden layer size, the tested values had influence in the results
when using larger sizes (as in i or t), implying that the artificial
neural networks were able to infer the rules for high classification
reports on cross validation better with increased number of
neurons in the hidden layer. The activation function parameter
also showed statistical differences, making the rectified linear
unit function or hyperbolic tangent function the candidates that
best managed the input spectral data. On the other hand, the
use warm start, attending to the outcomes, has no influence
in the performance of the models. Regarding the classification
performance by variety (Figure 4), it is noteworthy to mention
that the average response of the algorithms did not exactly agree
for each variety (except for the two varieties with greater recall
values: Semillón and Blanca Cayetana). This would allow to
affirm that each one of the machine learning algorithms extracted
concrete classification rules, and thus the specific information
carried by each variety’s spectral data was addressed differently
by each algorithm.

Based on the exposed results, plant phenotyping under
field conditions using on-the-go hyperspectral imaging is an
achievable goal in precision viticulture, and has a strong potential
not only for the varietal classification task, but for the prediction
of many useful parameters (e.g., water status, nutritional
status, disease detection, fruit composition, etc.). The effective
monitoring of the vineyard can be performed in real time
and georeferenced, taking advantage of the integration between
sensors and computing. Some other published works support
the viability of on-the-go hyperspectral imaging (Underwood
et al., 2017; Wendel and Underwood, 2017; Williams et al.,
2017). The methodology exposed in the present work takes
into consideration the works and machinery that are employed
in the vineyard. Hyperspectral imaging was performed at 5
km/h, a speed commonly found in vineyard operations from
agricultural vehicles, so the integration of a hyperspectral camera
with a processing hardware could by translated into a vehicle
(e.g., a tractor) to acquire and compute the spectral signals
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in real time. The numbers exposed in section 3.5 that the
segmentation, averaging and machine learning prediction of a
whole hyperspectral line (column in the image) would take 1.5 s.
Considering this, a hyperspectral camera could be set up for
acquiring two spectra per plant, thus taking 30 s for each 10 plants
to provide the predictive output (that can also be considerably
reduced with hardware and software optimization). This real-
time response could be in line with the way of working in current
viticulture, as a fast, on-the-go varietal classification could be
an useful phenotyping tool for commercial vineyards, nurseries,
appellation boards, etc. Additionally, it would be possible for
this integration, among many other instruments, to be deployed
in agricultural robots, as demonstrated by many works found
in the literature (Ruckelshausen et al., 2009; Weiss and Biber,
2011; Cheein and Carelli, 2013; Bargoti and Underwood, 2017;
Underwood et al., 2017; Wendel and Underwood, 2017). The
deployment of the application described in this study is also
bolstered by the use of samples from different phenological
states. This brings the advantage of performing on-the-go
hyperspectral imaging for varietal classification at different times
of the season, due to the fact that the developed models—
trained with leaves from different ages—were able to notably
modeling the different phenological features from the measured
leaves.

As in-field varietal classification by on-the-go hyperspectral
imaging and machine learning has been successfully proven
within a vineyard, it is advisable to perform additional
research covering supplementary aspects. The involvement
of samples from the same varieties but from different
locations or seasons could contribute to a richer dataset
and a deeper understanding of the relationship between
the spectral signal and the variety of the plant. Finally,
dimensionality reduction is an interesting research topic that
could focus on the future development of cheaper multispectral
devices.

5. CONCLUSIONS

The present study displayed the actual capability of on-the-go
hyperspectral imaging under field conditions for the classification
of many grapevine varieties using machine learning. The results
from the models obtained from testing different algorithm
parameters and spectral pre-processing techniques demonstrate
that a new way is opened for the task of plant phenotyping,
as hyperspectral imaging has been usually performed under
laboratory conditions and restricted to a selected, relatively small
amount of samples. Both support vector machines and artificial
neural networks, when selecting the proper parameters, proved
to be reliable modeling algorithms for the training of precise
classifiers. This could let for a hyperspectral imaging system to
be attached to an agricultural vehicle as a phenotyping tool for
real time, on-the-go classification of grapevine varieties, bringing
information very useful in the context of plant phenotyping and
precision viticulture.
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