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ABSTRACT 

 
 
 
Md Moynur Rahman, Ph.D., Systems Engineering, University of South Alabama, August 
2022. Dynamic Dilemma Zone Protection System: A Smart Machine Learning Based 
Approach to Countermeasure Driver’s Yellow Light Dilemma. Chair of Committee: Min-
Wook Kang, Ph.D.  
 
Drivers’ indecisions within the dilemma zone (DZ) during the yellow interval is a major 

safety concern of a roadway network. The present study develops a systematic 

framework of a machine learning (ML) based dynamic dilemma zone protection (DZP) 

system to protect drivers from potential intersection crashes due to such indecisions. For 

this, the present study first develops effective methods of quantifying DZ using important 

site-specific characteristics of signalized intersections. By this method, high-risk 

intersections in terms of DZ crashes could be identified using readily available 

intersection site-specific characteristics. Afterward, the present study develops an 

innovative framework for predicting driver behavior under varying DZ conditions using 

ML methods. The framework utilizes multiple ML techniques to process vehicle attribute 

data (e.g., speed, location, and time-of-arrival) collected at the onset of the yellow 

indication, and eventually predict drivers’ stop-or-go decisions based on the data. The 

DZP system discussed in the present study has two major components that work with 

synergy to ensure the total safety of a DZ affected vehicle: dynamic green extension 

(DGE), and dynamic green protection (DRP) system. Based on the continuous vehicle 

tracking data, the DGE system uninterruptedly monitors vehicle within the DZ and 



xiv 
 

predict vehicles that may face the decision dilemma if there is a sudden transition from 

green signal to yellow. After detecting such vehicles, the DGE system provides an exact 

amount of extended green time so that the detected vehicles could safely clear the 

intersection without any hesitation. There could be some vehicles that may end up 

running the red light due to various limitations. In this case, the DRP system provides an 

extended amount of all-red extensions after predicting potential red light running vehicles 

to nullify the likelihood of any intersection crashes. After the development, the DZP 

system is then implemented in several selected intersections in Alabama. Performance 

assessments are accomplished for the to see the safety and operation impact of the DZP 

system in implemented sites. The comprehensive assessment of the DGE system is 

accomplished with ten performance measures, which include percent green arrivals, 

percent yellow arrivals, percent red arrivals, dilemma zone length, and red-light running 

vehicles before and after the system implementation. Results show that the DGE system 

could significantly improve the overall intersection safety and efficiency. A short-term 

study on performance assessment of DRP systems shows that such a driver behavior 

prediction method could effectively predict 100% red-light-runners as well as efficiently 

provide the required amount of clearance time without hampering overall intersection 

efficiency. Based on the outcomes from the performance assessments of the DGE and 

DRP systems, it is safe to say the machine learning based DZP system would be able to 

promote intersection safety by protecting the dilemma zone impacted vehicles from 

potential intersection crashes as well as enhance the operational performance of 

intersections by intelligently allocate exact right-of-way to the vehicles and reducing the 

overall delays.   
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CHAPTER I: OVERVIEW AND RESEARCH GAP RELATED TO DRIVERS’ 

YELLOW LIGHT DILEMMA  

 

1.1 Introduction 

 Intersections are the nodes of a roadway network where vehicles from two or 

more directions cross each other and get involved in activities such as turning left, 

crossing over, and turning right. These maneuvering activities could create vehicle 

conflicts as well as severe life-threatening crashes. Thus, intersections are one of the 

major safety concerns for traffic engineers. According to a study by the National 

Highway Traffic Safety Administration in 2010, about 40% of total crashes in the U.S. 

are intersection-related (Choi, 2010). A recent report published by the Alabama 

Department of Transportation (ALDOT) showed that a total of 1,56,993 crashes occurred 

across Alabama in 2017. Among them, 89,225 crashes were intersection-related, which 

was almost 57% percent of the total crashes occurring that year (CAPS, 2017). In 

addition, an increase of 2,509 intersection-related crashes was observed in the year 2018 

(CAPS, 2018). Thus, intersection safety is a key factor to improve overall roadway safety 

in the US. 

 

  



2 
 

1.2 Problem statement 

Successful implementation of a machine learning-based Dilemma Zone Protection 

(DZP) system that could potentially improve the overall safety of the users as well as 

increase the overall traffic performance of target intersections involves a set of 

interrelated activities. These activities include but are not limited to the identification of 

high-risk intersections in terms of dilemma zone crashes, developing machine learning-

based methodology for the DZP system, followed by a comprehensive performance 

assessment of the developed methodology. Several researchers contributed to the 

transportation literature through similar types of studies. However, systematic 

implementation and assessment of the machine learning-based DZP system remain an 

essential task. The present study tried to contribute by addressing the following research 

gaps. 

1.2.1 Identification of high-risk intersections in terms of dilemma zone crashes 

Identification of high-risk intersections in terms of dilemma zone crashes (e.g., 

angle and rear-end crashes) typically requires an extensive historical crash data analysis. 

Such a historical crash data analysis involves collecting police-reported crash data for at 

least 5 years period then filtering out dilemma zone crashes followed by attributing the 

filtered crashes based on crash severity level (crash indexing) and finally ranking 

intersections based on the cumulative crash index number. In addition, historical crash 

data analysis does not consider any site-specific criteria to cross-check whether all the 

angle and rear-end crash occurred due to the drivers’ yellow light dilemma. For example, 

an intersection located in an urban area may experience a higher number of angle and 

rear-end crashes as compared to that of the intersection located in rural areas. However, 
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in urban areas, several factors exist (e.g., exits located within intersection functional 

areas, pedestrian crossings, roadside businesses) that are not related to the yellow light 

dilemma and could contribute to the high number of angle and rear-end crashes. To 

resolve such shortcomings of historical crash data analysis, Kang et al. (2020) proposed 

the utilization of dilemma zone length and location as the surrogate safety measure to 

identify high-risk intersections in terms of dilemma zone crashes. As discussed in the 

literature review subsection 1.2, two methods exist in the present transportation literature, 

such as TTI-based and Zegeer’s method. The TTI-based method is solely based on 

operating speeds and does not fully take account of the site-specific conditions of an 

intersection, such as approach grade, traffic mix, and drivers’ aggressiveness changing by 

the time of day. Zegeer’s method is effective to capture the drivers’ inherent variability of 

the decision-making process within the dilemma zone (Rahman et al., 2021; Savolainen 

et al., 2016; Sheffi & Mahmassani, 1981). However, it requires a significant amount of 

data collection efforts. Thus, a prediction method based on intersection site-specific 

variables that influence the driver behavior at the onset of the yellow indication the most 

is required. Such a prediction method would ease the handles of traffic engineers since a 

database regarding intersection site-specific variables is readily available. The versatility 

of this prediction method may also resolve the limitations of existing TTI-based and 

Zegeer’s dilemma zone prediction methods.  

1.2.2 Application of machine learning based methodology for DZP  

As discussed in the literature review subsection 0, transportation researchers are 

adopting a radar sensor-based DZP system. A radar sensor installed on the roadside near 

an intersection could closely monitor and track all approaching vehicles with a wide 
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range of views. Since this system has the capabilities to acquire approaching vehicles’ 

attributes (e.g., approaching speed, location measured from the intersection stop bar, and 

time of day of arrival) dynamically and accurately, this system could facilitate an 

effective platform to provide either required amount of green interval extension to clear 

out the vehicle trapped within the dilemma zone or all red extension to safely clear the 

intersection if any vehicle has the potential to run the red light. In this way, a radar 

sensor-based DZP system has the potential to mitigate the effect of the yellow light 

dilemma faced by drivers during the yellow interval and reduce the likelihood of 

potential intersection crashes (Chang et al., 2013; Park et al., 2018). However, there are 

two major types of errors associated with this DZP system, such as false positive and 

false negative vehicle detection errors. False-positive detection error occurs when the 

radar sensor-based DZP system predicts a vehicle as a possible red-light runner where 

this vehicle decides not to cross the intersection during all red intervals. False-negative 

detection error denotes the inability of such a system to accurately predict a red-light 

runner. False-positive detection error provides an unnecessary all red extension that 

reduces the overall operational efficiency of an intersection by increasing the stop delay 

of cross streets. False-negative detection error potentially could compromise the safety 

aspect of the DZP system. The author of the present study performed a short-term study 

in one of the DZP systems implemented on US43 @ CR96 located at Mt. Vernon, 

Alabama, and found that the implementation of a machine learning based driver decision 

prediction system as a secondary brain along with the existing radar sensor based DZP 

system could potentially reduce false positive detection error by 83% and false negative 

detection error by 50%. Thus, integration of machine learning based driver decision 
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prediction method along with the existing system could be an answer to improve the 

efficiency of the radar sensor based DZP system. 

1.2.3 Comprehensive assessment of the DZP system  

As discussed in the literature review subsection 1.2.5, Bonneson et al. (2002), 

Chang et al. (2013), Park et al. (2018), & Sharma et al. (2011) had shown their effort to 

assess different safety and operational related aspects of the DZP system based on limited 

scopes where an overall safety and operation aspect of this system was not portrayed 

properly. Thus, a comprehensive assessment of the DZP system and an extensive field 

data analysis remains essential task. 

 

1.3 Literature review   

 

1.3.1 Dilemma zone  

A dilemma zone is a spatial stretch of a roadway prior to an intersection stop bar 

where drivers need to decide whether to stop at or proceed through the intersection when 

they are faced with the yellow indication (Elhenawy et al., 2015; Jahangiri et al., 2016; 

Rahman et al., 2021). Researchers have developed two types of definitions to identify the 

dilemma zone of an intersection approach, such as Type I and Type II dilemma zones. 

The Type I dilemma zone is defined as an area prior to the intersection stop bar where 

drivers neither safely stop nor proceed to the intersection before the end of the yellow 

indication (Gazis et al., 1960; Zhang et al., 2014). The Type I dilemma zone concept 

seems simple; however, it is difficult to measure in the field, as vehicle speed and 

decision to stop or go at the intersection vary from person to person. Traffic engineers 
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thus typically assume a constant operating speed to determine the Type I dilemma zone 

with the vehicle’s stopping sight distance and travel distance during the yellow time. To 

remove such an unrealistic aspect of measuring Type I dilemma zone, the Type II 

dilemma zone concept was proposed in 1974 in the technical report from the Institute of 

Traffic Engineers (ITE) (Parsonson, 1978) and has been extensively used for intersection 

safety and traffic operation research since then (Gates et al., 2007; Hurwitz et al., 2011; 

Parsonson, 1978; Zhang et al., 2014). Based on this proposed concept, a Type II dilemma 

zone is an area prior to the intersection stop bar where it may be difficult for a driver, 

when faced with a yellow indication, to decide whether to stop or proceed through an 

intersection before the traffic signal turns to a red indication.  

There are two methods available in the transportation literature to measure the 

Type II dilemma zone at signalized intersections. The first was proposed by Chang et al. 

(Chang et al., 1985), in which a vehicle’s operating speed plays an important role to 

identify the dilemma zone location, calculated based on 2.5–5.5 s of the estimated time of 

vehicle arrival to the intersection stop bar with that speed (here by called TTI-based 

method). TTI-based is easy to use, and thus many states and federal agencies use it. 

However, it is solely based on operating speeds and does not fully take account of the 

site-specific conditions of an intersection, such as approach grade, traffic mix, and 

drivers’ aggressiveness changing by the time of day. The second method is a probabilistic 

approach proposed by Zegeer and Deen (here called Zegeer’s method), in which the 

dilemma zone is determined based on actual decisions made by drivers in response to a 

yellow indication at a time when they approach a signalized intersection (Zegeer & Deen, 

1978). In Zegeer’s method, the Type II dilemma zone is defined as an area prior to the 
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intersection stop bar, measured between locations where 90% of drivers go and 90% of 

drivers stop at the onset of the yellow indication (Zegeer & Deen, 1978). Zegeer’s 

method is superior to TTI-based (in relation to understanding the stochastic nature of 

driver behavior) as it considers relevant site-specific conditions (e.g., approach grade, 

sight distance, traffic, and traffic mix) that possibly affect drivers’ decision to stop or go 

in a dilemma zone situation. Thus, the author adopted the Type II dilemma zone 

estimation method by Zegger and Deen (known as only dilemma zone here after) for the 

analysis in the later part of the present study. 

1.3.2 Factors responsible for driver’s indecision within dilemma zone 

Researchers have found critical factors that may affect drivers’ decisions within 

the dilemma zone (Elassad et al., 2020; Elhenawy et al., 2015). These include, but are not 

limited to driver’s characteristics, human attribute, site-specific factors of intersections, 

subject vehicle characteristics, existing traffic controls, and traffic conditions. 

Most intersection crashes occur due to errors associated with drivers (M. Abbas & 

Machiani, 2016). Thus, drivers’ phycology is one of the major factors that affect drivers’ 

decision-making process within the dilemma zone. Typically, drivers’ phycology 

influences the perception reaction time, and acceleration/deceleration rate while they are 

approaching towards intersections (Caird et al., 2007; Gazis et al., 1960; Rakha et al., 

2007). For example, if a driver tends to take abrupt decisions, he/she may accelerate 

excessively to cross the intersection or decelerate drastically to stop where the former 

scenario may lead to an angle crash and the latter scenario has the potential to occur rear-

end crash (Hurwitz & Quayle, 2016). 
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Human attributes, such as age, gender, and driving experience govern individual 

drivers’ aggressiveness, concentration level, personality, and emotional states (Abbas & 

Machiani, 2016; van Haperen et al., 2016). By way of illustration, Men and older drivers 

are more likely to make aggressive maneuvers (e.g., rapid acceleration, sudden stop) at 

the onset of the yellow indication.  

Other than drivers’ attributes, there are many site-specific factors of an 

intersection that would affect drivers’ behavior under dilemma zone situations (Abbas & 

Machiani, 2016; Elhenawy et al., 2015; Jahangiri et al., 2016; Lu et al., 2015). These 

include the speed of approaching vehicles, the steepness of the approach grade, land use, 

and the density of access roads near the intersection approach. A details discussion on 

how such site-specific factors affect drivers’ behavior is discussed elsewhere in the 

present study. 

Researchers had explored and found as well that the characteristics of vehicles 

approaching towards the intersection may influence drivers’ decisions at the onset of the 

yellow indication as well as the boundaries of dilemma zones of intersection approaches. 

These include but not limited to vehicles’ approaching speeds, locations measured from 

the intersection stop bar, positions in the traffic flow, and vehicle types (Gates & Noyce, 

2010; Kim, 2008; Papaioannou, 2007; Wei et al., 2011; Zhang et al., 2010). 

Traffic control parameters and settings play an important role in defining the 

driver's behavior (Abbas & Machiani, 2016). Researchers had explored and identified 

traffic control-related factors that could affect dilemma zone boundaries as well as driver 

behavior at the onset of the yellow indications. These include but not limited to the 

yellow intervals, signal cycle lengths, control type (pre-timed, actuated, or synchronized), 
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existence of the red-light-running camera, and roadside countdown timers (Bonneson et 

al., 2001; Köll et al., 2004; Papaioannou, 2007; Sharma et al., 2007; Zimmerman et al., 

2003). For instance, the existence of a red-light camera decreases the probability of red-

light-running. However, the likelihood of abrupt stop events may increase since drivers 

try to stop from crossing the intersection during red indication anyhow to avoid the fine.  

Traffic conditions (e.g., traffic volume and composition, presence of side streets, 

and roadway capacity) of the roadway may affect the driver’s performance and decision-

making process as well (Chang et al., 1985; Gates et al., 2007). As a case in point, the 

increment of opposing volume as compared to the major road traffic volume may 

increase the likelihood of angle crashes. 

1.3.3 Traffic issues associated with dilemma zone 

Intersection crashes are largely attributed to driver misjudgment in response to 

traffic signals (Choi, 2010). Among the many safety issues associated with traffic signals, 

conflicts between vehicles due to the yellow light dilemmas (drivers hesitate whether to 

stop before the intersection stop bar or to cross the intersection when encounter the 

yellow indication) are a major safety problem, causing severe traffic injuries and fatalities 

as well as many crashes. Typically, two types of conflicts are associated with the yellow 

light dilemma, such as red-light-running (RLR) and abrupt stops. RLR happens when a 

vehicle crosses the intersection during the red interval due to the poor judgment of 

clearance time. On the other hand, a driver abruptly stops to avoid himself/herself from 

entering the intersection during the red interval. RLRs are mostly responsible for 

intersection angle crashes while abrupt stops lead mostly toward rear-end crashes. 

According to a recent study by the Federal Highway Administration (FHWA), 10% of all 
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fatal crashes in the U.S. were angle crashes while rear-end crashes accounted for almost 

8% of all fatal crashes (Choi, 2010). 

1.3.4 Traditional dilemma zone counter measures 

Traditionally, vehicle-actuated control using multiple advanced loop detectors 

located on the upstream (traditional loop detectors) side of the intersection stop bar is 

often used at a signalized intersection to efficiently manage signal timing and provide 

enough green time to reduce the number of drivers who fall in the dilemma zone as well 

as improve the operational safety of an intersection (Bonneson et al., 2002; Klein et al., 

2006). These multiple advanced loop detector systems focus on clearing a physical 

roadway section (estimated dilemma zone) considering a uniform speed distribution (all 

vehicles are traveling at a uniform speed). Such a system may result in unnecessary 

delays if the maximum-green time is set to long and cannot reduce intersection crashes 

effectively if the maximum-green time is set to short  (Bonneson et al., 2002). In 

addition, this detector system relies on spot detection which makes this system insensitive 

to vehicle types and their distance from the intersection stop bar. 

1.3.5 State-of-the-art dilemma zone counter measures 

To address the shortcoming of the traditional loop detectors system, traffic 

engineers and researchers use radar sensors based real-time actuated signal control. The 

radar sensors are also often used in high-speed signalized intersections to continuously 

track and protect approaching vehicles from the yellow light dilemma dynamically based 

on their approaching speed and location measured from the intersection stop bar (hereby 

called dilemma zone protection or DZP system). DZP system protects vehicles faced with 

dilemma zone situations by two means. First, by providing required green time to 
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approaching vehicles for reducing the number of vehicles trapped within the dilemma 

zone (hereby called dynamic green extension or DGE system). Second, by extending the 

all-red interval to provide enough time to a red-light-runner for crossing the intersection 

safely (hereby called dynamic red protection or DRP system). 

 Due to the continuous development in computational power and radar-associated 

algorithms, the capabilities and effectiveness of DZP systems continue to expand. In 

addition, radar sensors have the capability of monitoring approaching vehicles’ speeds 

and locations at a precision rate of 1/1000 of a second for a wide section of a roadway (up 

to 900 feet upstream of the sensor location) making such a system better capable of 

accurately identifying approaching vehicles’ speed and their distance from the 

intersection stop bar (Rahman et al., 2021; Santiago-Chaparro & Noyce, 2019). 

Several researchers had done similar studies where they developed different 

methods of DZP system and analyzed different performance measures of this system. 

Bonneson et al. (2002) studied the traffic flow rate during the period before and after the 

implementation of a DGE system and claimed that traffic operations of an approach 

could slightly be improved due to the system implementation. Bonneson et al. (2002) and 

Chang et al. (2013) conducted their respective studies and found that a DGE system 

could significantly reduce delays to vehicles from side streets by dynamically providing 

green extension time to vehicles on the main street (Bonneson et al., 2002; Chang et al., 

2013; Park et al., 2018). In another study, Sharma et al. (2011) compared the 

performances of green extension by the DGE system with that of the single loop detector 

using one-hour traffic data for each case and identified that an additional 1.4 vehicles per 

lane could be served in the side streets per unit vehicle provided with the dynamic green 
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extension on the main street. Bonneson et al. (2002), as well as Chang et al. (2013), also 

analyzed the effect of the DGE system on vehicle arrivals and found that providing a 

DGE to approaching vehicles could potentially reduce the number of vehicles that faced 

the yellow light dilemma (Bonneson et al., 2002; Chang et al., 2013; Park et al., 2018). 

Park et al. (2018) performed a field evaluation of the DRP system implemented at two 

intersections in Maryland to see the variation in dilemma zone boundaries. In this study, 

Park et al. (2018) found that the dilemma zone length could be reduced by dynamically 

providing a green extension to approaching vehicles. 

 

1.4 Objectives 

The objective of the present study is to develop a systematic framework of DZP 

system implementation to promote the safety of high-risk signalized intersections. To do 

so, the present study first develops a methodology by which high-risk intersections in 

terms of dilemma zone crashes could be identified using readily available intersection 

site-specific characteristics (e.g., the operating speed, the approach grade, and the amount 

of truck traffic). Later, this study focuses on an innovative framework of predicting driver 

behavior under varying dilemma zone conditions using artificial intelligence-based 

machine learning methods. This framework would be helpful to minimize the limitations 

of a state-of-the-art radar sensor-based DZP system. Finally, the present study develops a 

comprehensive performance assessment process to understand how the implemented 

DZP system could promote the safety and operational efficiency of signalized 

intersections.  
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1.5 Dissertation organization 

This dissertation is presented as a portfolio-based dissertation. It is a collection of 

three peer-reviewed and one under-reviewed journal article with an introduction, systems 

engineering, and conclusion wrapper. After the introductory discussion on driver’s 

yellow light dilemma in CHAPTER I, CHAPTER II draws an overall systematic aspect 

of a DZP system based upon current practices and the literature review done in the first 

chapter and addresses the problem using a systems engineering approach. CHAPTER III 

then identifies the site-specific characteristics of an intersection that influence the driver 

behavior within the dilemma zone by analyzing data collected from 46 high-speed 

signalized intersection approaches (posted speed ≥ 50 mi/h). This chapter also develops 

site-specific dilemma zone models to identify high-risk intersections in terms of dilemma 

zone crashes. Afterward, CHAPTER IV develops a framework that utilizes multiple 

machine learning techniques to process vehicle attribute data (e.g., speed, location, and 

time-of-arrival) collected at the onset of the yellow indication, and eventually predicts 

drivers’ stop-or-go decision based on the data. CHAPTER V then comprehensively 

assesses the safety and operational benefits of the DGE system (a major component of the 

DZP system) based on nine performance measures (including percent green arrivals, 

percent yellow arrivals, percent red arrivals, dilemma zone length, and red-light running 

vehicles before and after the DGE system implementation). CHAPTER VI includes a 

short-term performance assessment of the DRP system (another major component of the 

DZP system) in terms of improving intersection safety and reducing potential intersection 

crashes. CHAPTER VII draws a conclusive remark for the present study.  
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CHAPTER II: SYSTEMATIC APPROACH TO SOLVE YELLOW LIGHT 

DILEMMA 

 

2.1 Introduction 

Systems engineering is a unique discipline that introduces a comprehensive 

interdisciplinary approach to integrate all engineering aspects associated with a target 

system as well as identify the most effective, efficient, and optimized framework to 

achieve the project goal, stakeholders’ satisfaction, and minimal system footprint. System 

engineering focuses on stakeholders’ specific needs, project life cycles, alternative 

concepts and architectures, project requirements, system verification, and validation as 

well as interrelated harmony between different phases of the system. As discussed in the 

literature review subsection 0, the technology of radar sensor-based DZP system is 

emerging and improving as time goes by. Several researchers have contributed to this 

endeavor. However, an overall systematic approach that could help traffic engineers and 

agencies to promote overall intersection safety in terms of the yellow light dilemma stays 

a critical assignment. This chapter focuses on developing a framework (based upon 

systems engineering perspectives) that would help traffic engineers to deal with dilemma 

zone issues in high-risk intersections and improve traffic safety and operations. To do so, 

the present chapter first discusses methodologies available for identifying high-risk 

signalized intersections in terms of dilemma zone crashes. Later discussion on how to 

resolve dilemma zone issues at intersection approaches is presented. Afterward, this 

chapter discusses the system components as well as the socio-economic aspects of the 

DZP systems that are currently in practice. 
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2.2 Identification of high-risk signalized intersections in terms of dilemma zone 

crashes  

 

2.2.1 Historical crash data analysis 

A traditional crash analysis involves investigating and statistically analyzing the 

crash history of a target traffic facility to identify crash hotspots of a roadway network, 

predict motor vehicles crashes, and develop crash modification factors (Wu et al., 2014). 

This traditional crash analysis method has been practiced by transportation researchers 

and transportation related agencies to analyze traffic safety, prevent future crashes, and 

mitigate personal and/or property damages. Historical crash data analysis is the most 

widely adopted method of measuring the safety aspect of a traffic facility to date. 

However, such an analysis requires an extensive amount of data collection, data 

extraction, statistical analysis, and human efforts to draw an effective conclusion. 

Historical crash data analysis involves collecting police-reported crash data for at least 5 

years period then filtering out dilemma zone crashes followed by attributing the crashes 

based on crash severity level (crash indexing) and finally ranking intersections based on 

the cumulative crash index number (Kang et al., 2020; Rahman & Kang, 2020).  

2.2.2 Surrogate safety measures 

To mitigate the hurdles of historical crash data analysis, Kang et al. (2020) 

proposed the utilization of dilemma zone length and location as a surrogate safety 

measure to identify high-risk intersections where dilemma zone crashes are likely to 
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occur. As discussed in the literature review subsection 1.2, two methods exist in the 

present transportation literature, such as TTI-based and Zegeer’s methods. The TTI-based 

method is solely based on operating speeds and does not fully take account of the site-

specific conditions of an intersection, such as approach grade, traffic mix, and drivers’ 

aggressiveness changing by the time of day. Zegeer’s method is effective to capture the 

drivers’ inherent variability of the decision-making process within the dilemma zone 

(Rahman et al., 2021; Savolainen et al., 2016; Sheffi & Mahmassani, 1981). However, it 

requires a significant amount of data collection efforts. Thus, Rahman & Kang (2021) 

developed effective methods of quantifying dilemma zone boundaries using important 

site-specific characteristics of signalized intersections (e.g., the operating speed, the 

approach grade, and the amount of truck traffic). For this reason, the present study 

utilized Rahman & Kang's (2021) methods to identify high-risk intersections in Alabama. 

 

2.3 Loop detector based DZP systems  

According to Traffic Detector Handbook by (Klein et al., 2006), a green extension 

system is a combination of extended loop detectors and auxiliary logic that can detect 

vehicles before entering the dilemma zone. If a vehicle is detected within a predetermined 

dilemma zone, the system then extends the green interval until the vehicle clears the 

dilemma zone. Typically, a set of two loop-detectors per travel lane are used before 

(loop-1) and after (loop-2) a predetermined dilemma zone of an intersection approach. 

When a vehicle passes through loop-1, a timer is activated to hold the green time until the 

vehicle reaches loop-2. A vehicle passing through loop-2 actuates a second timer which 

maintains the green to provide a safe passage for the vehicle until it reaches the 
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intersection stop bar (Klein et al., 2006). This detector system focuses on clearing a 

physical roadway section (i.e. the predetermined dilemma zone) upstream of an 

intersection stop bar assuming a uniform speed distribution (all vehicles are traveling at a 

uniform speed) all over the target section. Such a consideration may result in unnecessary 

delays if the maximum-green setting is large and cannot reduce intersection crashes 

effectively if the maximum-green setting is low  (Bonneson et al., 2002). In addition, this 

detector system is not sensitive to vehicle types and their distance from the intersection 

stop. 

To address the limitations of the traditional multiple advanced detector system, 

Bonneson et al. (2002) introduce “Detection-Control System” where a two-loop speed 

trap located several seconds upstream of the dilemma zone is used to collect speed and 

length information of each approaching vehicle. Such information is then run through an 

algorithm to identify the safe termination of the active phase. The detection-control 

system could significantly reduce the number of vehicles trapped in the dilemma zone 

during the yellow interval while providing equal or lower delays for a reasonable variety 

of speeds, flow rates, and turn percentages. However, utilization of spot detection (two-

loop speed trap) and prediction algorithm do not fully address the real-time driver 

behavior variation (e.g., speed, acceleration/deceleration, and location) between the 

detection zone and the intersection stop bar which may compromise the effectiveness of 

safety improvement and delay reduction of the detection-control system. In addition, this 

system works conservatively at low-to-moderate volume multilane approaches as 

compared to that of single-lane intersection approaches and high-volume multilane 

approaches. 
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2.4 Radar sensor based dynamic DZP system  

Researchers are now emphasizing radar sensor-based dynamic dilemma zone 

protection (DZP) system not only to deal with the dilemma zone issue but also to 

promote intersection efficiency. The dynamic DZP system can track approaching 

vehicles’ speeds, and locations dynamically with the precision of 1/100th of a second. 

Based on such precise tracking, the DZP system then calculates the required time for a 

vehicle to pass the intersection safely. A DZP system could have two major components 

(See Figure 1.), such as a dynamic green extension (DGE), and dynamic red protection 

(DRP) system. 

 

 
 
 

Figure 1. Components of a DZP system. 
 
 

2.4.1 Dynamic green extension (DGE) system 

A DGE system extends the green interval for those vehicles that may experience a 

decision dilemma if they suddenly observe a yellow light. To do so, the DGE system 

continuously calculates each approaching vehicle's travel time to the intersection stop bar 

and compares it with the available green interval. If the available green time does not 

provide enough time for vehicles for clearing out of the intersection safely, then the DGE 
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system extends the green interval. Since each vehicle is unique to the other in terms of 

speed and location, this system dynamically calculates the distinctive required amount of 

green time for each vehicle. In addition, these calculated required green times may 

dynamically update in each 1/100th of a second since vehicles’ speeds and locations are 

not uniform. This system also intelligently identifies gaps in traffic to safely terminate the 

phase without compromising safety and efficiency if no vehicle needs further protection. 

In this way, a DGE system can ensure efficient usage of allocated green intervals to a 

phase. This system could also guarantee safety to the road users by providing the required 

green to clear the intersection before any phase transition.  

2.4.2 Dynamic red protection (DRP) system 

Dynamic red protection (DRP) system ensures the safety of a red-light running 

(RLR) vehicle by providing extra all red time beyond the minimum all red time. To do 

so, the DRP system continuously observes the approaching speed and location of vehicles 

located close to the intersection stop bar during the all-red interval. Based on the speed 

and location data, the DRP system then identifies potential RLR vehicles. Afterward, the 

DRP system then keeps holding the all-red interval until no potential RLR vehicle is 

identified close to the intersection stop bar. In this way, a DRP system can reduce the 

likelihood of intersection crashes and enhance intersection safety.  

  



20 
 

2.4.3 DZP system layout 

 

 

Figure 2. The layout of a DGE system. 
 

 

A DZP system consists of four major components. These are the vehicle detection 

zone, the radar sensor, the sensor controller, and the signal controller. A DZP system 

monitor and collect attribute data (e.g., speed, location, and time of arrival) of vehicles 

within the detection zone and then run such data through the sensor controller logic. 

Afterward, the sensor controller places calls to the signal controller for further traffic 

operations. A brief discussion of these components is given below: 

2.4.3.1 Vehicle Detection Zone 

A radar sensor has the ability to track approaching vehicles’ speed and location 

for a wide range of a roadway section (up to 900 ft. measured from the installation 

location). However, specific traffic operation requires continuous monitoring of vehicles 

within a specific roadway section. For example, the DGE system provides extra green 
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intervals to vehicles that may face the decision dilemma associated with the yellow light. 

Thus, this system requires focusing on vehicles residing within the roadway section 

where the drivers’ dilemma zone is located. Since the DZP system consists of two 

separate components (e.g., DGE and DRP system), their associated detection zone is also 

separate (see Figure 2).  

The vehicle detection zone for the DGE system is a spatial roadway section of an 

approach upstream of an intersection stop bar where approaching vehicles’ approaching 

speed, and distance measured from the stop bar are tracked in real-time using the radar 

sensor. Based on the continuous vehicle tracking data, decisions of extending the green 

are then taken if any vehicle meets the threshold of the DGE system (e.g., speed 

threshold). A DGE system extends the green interval for those vehicles that may 

experience a decision dilemma if they suddenly observe a yellow light. By providing 

extra green time to such vehicles, this system reduces the number of potential dilemma 

zone affected vehicles as well as dilemma zone conflicts. Thus, the present study 

considered the estimated dilemma zone as the vehicle detection zones for the DGE 

system (see Figure 2). Here Zegeer’s probabilistic approach was utilized to identify the 

start and end of dilemma zones. 

The vehicle detection zone for the DRP system is a spatial roadway section close 

to an intersection stop bar where approaching vehicles' speed and location are monitored 

to detect potential RLR vehicles. Based on the detection, this system then holds the all-

red interval to ensure the safe passage of the RLR vehicle as well as to eliminate the 

chance of a potential conflict. A potential RLR vehicle is typically located close to the 

intersection stop bar at the onset of the red interval. Thus, to identify a potential RLR 
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vehicle, the DRP system requires to monitor the vehicle within the close range of the 

roadway section near the stop bar. The present study considers the detection zone for the 

DRP system as a 100 ft long area starting from the stop bar (see Figure 2), which is 

equivalent to 1.0 to 1.2 seconds of vehicle travel time to the intersection stop bar based 

on a measured average speed. 

2.4.3.2 Radar Sensor 

A radar sensor vehicle detector is a microwave-based sensor technology that 

could detect and continuously monitor vehicles for a wide range of roadway sections. 

Unlike a loop detector that could only sense vehicles’ presence in a certain location for a 

certain timestamp, a radar sensor could continuously monitor and collect a vehicle’s 

speed, location, and time of arrival up to 900 ft. wide roadway section with the precision 

of 1/100th of a second. This sensor then sends the collected data to the sensor controller 

for further operations.  

2.4.3.3 Sensor Controller 

The sensor controller analyzes vehicle attribute data collected by the radar sensor through 

a set of predefined algorithms to identify vehicles that require special treatments based on 

the situation. Upon such vehicle identifications, the sensor controller then places calls to 

the signal controller to take further actions (e.g., green extension, and red protection). 

This sensor controller provides the users with a wide variety of parameters (e.g., speed, 

ETA) to customize vehicle identification algorithms (see Figure 3). By providing 

parameter values, the user can create algorithms to identify and monitor vehicles with 

specific characteristics ( e.g., dilemma zone affected, potential RLR). The present study 
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utilizes two types of speed threshold values to create vehicle identification algorithms for 

DGE and DRP systems separately.  

 

Figure 3. Algorithm parameters of the sensor controller.  

 

A vehicle speed threshold for the DGE system is necessary to identify whether a 

vehicle would face a decision dilemma upon a sudden transition from green phase to 

yellow. The present study adopted the methodology by Klein et al. (2006) and set the 

speed threshold as the 15th percentile of operating speed for the dynamic green 

extension. Thus, the dynamic green extension system would extend the green interval 

beyond the minimum green interval for vehicles within the detection zone if their 

approaching speed is more or equal to the 15th percentile operating speed. 

A vehicle speed threshold for the DRP system is necessary to predict whether a 

vehicle would make a red light violation or not. The present study set the speed threshold 

as the 70th percentile of operating speed for predicting a potential RLR vehicle within the 

red protection zone during the all-red interval. Upon detecting a vehicle traveling with a 
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speed equal to or higher than the speed threshold value, the DRP system sends signals to 

the signal controller to hold the all-red time to ensure safe passage of the vehicles.  

2.4.3.4 Traffic Signal Controller 

Traffic signal controllers alternate service between conflicting traffic movements. 

This controller acts as the brain and has the jurisdiction to provide a certain traffic 

operation based upon predefined settings and signals from traffic sensors. In the DZP 

system, the signal controller receives calls from the sensor controller. After receiving 

calls, the signal controller then decides to extend the green interval or hold the red 

protection time, or terminate the phase based on the minimum and maximum allocated 

time.  

The green interval of the DGE system has three timing parameters. These are the 

minimum green, the unit extension, and the maximum green intervals (Klein et al., 2006; 

Urbanik et al., 2015). The minimum green interval is necessary to dissipate any queued 

vehicles at the beginning of the green interval. The maximum green interval is the 

maximum amount of green time that the signal controller allows the target phase to stay 

green based on the vehicle detection within the detection zone. The minimum and 

maximum green parameters are typically designed based on the Traffic Signal Design 

Guide & Timing Manual of state or local highway agencies (Sullivan et al., 2015). The 

unit extension interval is the minimum extension of the green interval based on each 

vehicle detection within the detection zone that meets the speed threshold. The radar 

sensors typically track vehicles and place calls continuously to the signal controller in the 

0.1-second interval. Thus, the unit extension interval is set to 0.1-second. 
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The red interval of the DRP system has three timing parameters. These are the 

minimum all-red, the unit extension, and the maximum all-red (Klein et al., 2006; 

Urbanik et al., 2015). The minimum all-red allows vehicles that entered the intersection 

during the yellow interval to safely clear the intersection before the phase transition. The 

maximum all-red interval is the maximum amount an all-red signal could be extended 

upon any potential RLR vehicle detection. The unit extension interval is the minimum 

extension of the all-red interval based on each vehicle detection within the detection zone 

that meets the speed threshold. The radar sensors typically track vehicles and place calls 

continuously to the signal controller in the 0.1-second interval. Thus, the unit extension 

interval is set to 0.1-second. 

2.4.4 DZP system operation logic 

2.4.4.1 Operation Logic of DGE system 

Figure 4 explains the detailed logic behind the DGE system. As illustrated in the 

figure, the system activates when vehicles’ presence is detected in the detection range of 

the radar sensor. The radar sensor starts monitoring and recording each vehicle’s 

approaching speed (���) and location (���) measured from the intersection stop bar 

(vehicle attribute data) with an accuracy of 1/1000 second. The recorded vehicle attribute 

data are then sent to the sensor controller.  
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Figure 4. The operation logic of the DGE system.  

 

Upon receiving the vehicle attribute data, the sensor controller then checks 

vehicles’ location (���) measured from the intersection stop bar. The sensor controller 

discards vehicles other than those that locate between the starting and end of the DGE 

detection zone (����, and ���	  respectively) then compare the speed (���) of the 

remaining vehicles with the speed threshold values (���). If any vehicle travels with a 
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speed more than or equal to ���, then the sensor controller keeps placing calls to the 

signal controller for extending the green interval until the detected vehicles clear out the 

detection zone.  

After receiving calls from the sensor controller, the signal controller checks the 

current active phase. If the active phase is green for the detected vehicle, then the signal 

controller proceeds to the 2nd step, otherwise does nothing. In the 2nd step, the signal 

controller checks for the minimum green interval. If the minimum green interval is 

ongoing then the signal controller does nothing. If the green interval passes the minimum 

limit then the signal controller holds the green for an extra 0.1 second and waits for the 

next call. In the case of maximum green, the signal controller subsystem does nothing but 

terminates the green regardless of any call from the sensor controller. The decision of the 

signal controller reflects through the signal interface subsystem. 

2.4.4.2 Operation Logic of DRP system 

As shown in Figure 5, the DRP system activates when any vehicle enters the radar 

sensor’s detection range. The radar sensor keeps monitoring and recording each vehicle’s 

attribute data (e.g., ��� and ���) with an accuracy of 1/1000 second. The recorded 

vehicle attribute data are then sent to the sensor controller for further utilization.  
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Figure 5. The operation logic of the DRP system.  

 

After receiving the vehicle attribute data, the sensor controller then checks 

vehicles’ location (���) measured from the intersection stop bar. The sensor controller 

discards vehicles other than those that locate between the intersection stop bar and the 

end of the DRP detection zone (���	) then compare the speed (���) of the remaining 
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than or equal to ���, then the sensor controller keeps placing calls to the signal controller 

for holding the all-red interval until the detected vehicles clear out of the detection zone.  

After receiving calls from the sensor controller, the signal controller checks the 

current active phase. If the active phase is red for the detected vehicle, then the signal 

controller proceeds to the 2nd step, otherwise does nothing. In the 2nd step, the signal 

controller checks for the minimum all-red interval. If the minimum all-red interval is 

ongoing then the signal controller does nothing. If the all-red passes the minimum limit 

then the signal controller holds the all-red for an extra 0.1 second and waits for the next 

call. In the case of maximum all-red, the signal controller subsystem does nothing but 

terminates the phase regardless of any call from the sensor controller. The decision of the 

signal controller reflects through the signal interface subsystem. 

 

2.5 The systematic structure of the DZP system 

  

2.5.1 Stakeholders 

Stakeholders are those individuals, teams, organizations, or classes which have an 

interest in realizing the system. Stakeholders have privileges, benefits, claims, and shares 

concerning the system. Stakeholders can influence the projects. There are two types of 

stakeholders, as follows, i) active stakeholders, and ii) passive stakeholders. Active 

stakeholders are directly related to a system. These stakeholders can directly affect or be 

affected by a system's performance. On the other hand, passive stakeholders are distantly 

related to a system. 
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2.5.1.1 Active Stakeholders of Dynamic DZP System 

The List of active stakeholders (Figure 6) of the dynamic DZP system is as 

follows: 

• Through Traffic Driver 

• Cross Road Driver 

• Alabama Department of Transportation (ALDOT) team 

• Signal controller provider team 

• Microwave radar sensor provider company 

• Traffic signal maintenance team 

• University of South Alabama (USA) research team, which consists of one 

professor acting as the project in charge (P.I.) and a graduate researcher 

• Onsite existing traffic facility 

• Traffic signal light 
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Figure 6. Active stakeholders of dynamic DZP system. 

 

2.5.1.2 Passive Stakeholders of Dynamic DZP System 

The List of passive stakeholders (Figure 7) of the dynamic DZP system is as 

follows: 
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Figure 7. Passive stakeholders of dynamic DZP system. 

 

• Surrounding residence  

• Taxpayer 

• Nearby industrial facilities 

• System implementation material (e.g., cable, installation arm, wire, switch) 

supplier  

• Traffic signal inspector 

• Opposing through vehicle driver 

• Intersection geometry 
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• Roadway surface condition 

• Site condition of approach nearby area 

• Weather 

• Season 

• Road network 

2.5.2 Systems requirements 

The main goal of the present study is to fulfill the desirement of the major 

stakeholder of the target project, which is ALDOT in this case. Based on the project 

proposal, the desirement of ALDOT are as follows: 

• Identify those intersections which are high-risk in terms of intersection crashes 

• Identify necessary methodology to reduce crashes on target intersection or 

develop necessary methodologies to reduce crashes on selected intersections 

• Improve roadway efficiency and safety 

Based on such stakeholders' desirement, the technical requirement of the present 

study can be defined as follows: 

• The system shall resolve dilemma zone-related issues of an intersection approach 

by providing appropriate  

• dynamic green extension (DGE), dynamic red extension (DRP), and queue 

clearance features (see Figure 8). 

• The system shall make sure the implemented DZP system reduces dilemma zone 

crashes of an intersection approach. To do so, necessary short-term, and long-term 

evaluation methods need to be applied (see Figure 8). 
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• The system shall improve overall intersection efficiency by implementing 

effective signal timing management, and optimum right-of-way allocation (see 

Figure 8). 

• The system shall reduce overall total crashes of an intersection by properly 

harmonizing driver behavior and different traffic movement (see Figure 8). 

• The system shall improve the overall safety of an intersection approach by 

reducing drivers’ confusion towards the signal light, potential conflicts, and other 

traffic management-related entropy (see Figure 8). 

 

 
Figure 8. Requirement diagram of dynamic DZP system.  

 

2.5.3 System use case 

Use case diagram shows the features of a system and how stakeholders are related 

to these features (see Figure 9). The use case shows only the relation, however, no 
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additional information regarding how the relations work. Such limitations could be 

solved by use case specifications. Use case specification provides details regarding 

individual use cases, how these cases are influenced by the stakeholders, and what would 

be the possible outcome. 

 

 
Figure 9. Use case diagram of dynamic DZP system. 

 
 
 

2.5.4 System domain diagram 

A system domain diagram describes a system based on its environment. This is 

another way to show how stakeholders are related to the system and what components are 
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the part of these stakeholders. A system domain diagram is essential to have an overview 

of the whole system briefly (see Figure 10). 

 

 
Figure 10. Domain diagram of dynamic DZP system. 
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2.5.5 System activity diagram 

The activity diagram shows the sequence of actions that are required to achieve the 

desired outcome from the system. The activity diagram starts with an action pin followed 

by the flow of the items from one action to another action and then ends at an output pin. 

An activity diagram is very useful to visually describe parallel action processing at the 

same time. Such a diagram is a good representation of processes inside a system. Figure 

10 shows the activity diagram of the dynamic DZP system. 
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Figure 11. Activity diagram of dynamic DZP system. 

 
 

2.5.6 System logical architect 

The logical architect elaborates the system model and breaks it to the sub-system 

level to see how these are working together, what are the inputs, and what are the outputs. 

This shows the combination of related technical concepts and principles that define the 

logical process of the system of interest. The internal block diagram is a useful way to 
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show the logical architect of a system. Figure 12 shows how the sub-system components 

of the dynamic DZP system are correlated in the field.  

 

 
Figure 12. A visualization of on-site interrelation between sub-systems of dynamic DZP 

system. 
   

Figure 13 shows the logical architect of the dynamic DZP system. The whole 

system could be divided into six subsystems. Those are as follows: 
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Figure 13. Logical architect of the dynamic dilemma zone system. 

 

2.5.6.1 Vehicle Detector Sub-system 

The vehicle detector subsystem receives vehicle-related data through radar 

sensors, reference point location, vehicle zone parameters, and associated filtering coding 

(see Figure 14). The vehicle detector subsystem then process received data using vehicle 

filtering coding and sends the processed information to the local area network subsystem. 

 

 
Figure 14. Vehicle detector subsystem of dynamic DZP system. 
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2.5.6.2 Local Area Network Subsystem 

The local area network subsystem works as the communication hub for all the 

subsystems of the dynamic DZP system (see Figure 15). The local area network receives 

data from the vehicle detector subsystem, mini-PC subsystem, and signal controller 

subsystem. The local area network subsystem then sends the process data to the detection 

processor subsystem. 

 

 
Figure 15. Local area network subsystem of dynamic DZP system. 

 

2.5.6.3 Detection Processor Subsystem 

This subsystem receives data from the local area network subsystem and then 

sends the received data to the signal controller subsystem (see Figure 16). In this 

subsystem, vehicles detection data received through local area networks are filtered to 

feed the signal via proper channels. For example, vehicle detection data required for DGE 

and DRP are fed through separate channels. 
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Figure 16. Detection processor subsystem of dynamic DZP system. 

 

2.5.6.4 Signal Controller Subsystem 

The signal controller of a DZP system works as the brain of the whole system and 

takes the necessary decisions (e.g., signal initiation and termination, interval extension, 

right-of-way distribution, and signal light changing) based on pre-defined algorithm 

provided by the responsible traffic engineers. This subsystem receives data from the 

detection processor subsystem (see Figure 17). Based on the received data, the signal 

controller then applies dynamic green extension, dynamic red extension, and queue 

clearance based on the situation.  

 

 
Figure 17. Signal controller subsystem of dynamic DZP system. 
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2.5.6.5 Mini-PC Subsystem 

Mini-PC subsystem work as the user interface for the DZP system. Vehicle 

filtering algorithm, zone defining, and signal controller channel setting could be done 

using this subsystem. Figure 18 shows the structure of the mini-PC subsystem. 

  

 
Figure 18. In-cabinet PC subsystem of dynamic DZP system. 

 
 

2.5.6.6 Power Supply Subsystem 

The power supply subsystem works as the energy source for the whole DZP 

system. Each signal controller provided with at least one AC power outlet that could be 

used as the power supply subsystem. This subsystem supplies power to all subsystems 

and keeps the system running (see Figure 19). 

  

 
Figure 19. Power supply subsystem of dynamic DZP system. 
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2.6 Overall comparison between traditional and radar sensor  

The utilization of a dynamic DZP system is not only limited to protecting the 

vehicle from conflicting situations created by the dilemma zone. Such a system could 

also be used for regular traffic management (e.g., providing right of way based on vehicle 

detection) and can be used as a better replacement for age-old loop detector technology.  

The efficiency of an intersection signal controller system is largely dependent on 

how accurately the approaching vehicles’ attributes are detected and sent to the signal 

controller. The Signal controller can decide the appropriate right-of-way of a vehicle 

movement based on vehicle attribute data received from the vehicle detector and signal 

timing program (e.g., min/max green, yellow, and red interval timing) implemented in it. 

Thus, it is important to select an appropriate vehicle detection system to maximize the 

efficiency of an intersection traffic management system and minimize the detector 

installation costs. 

There are several vehicle detection systems available in the market. These are 1) 

inductive loop detector, 2) acoustic detector, 3) magnetic detector, 5) video imaging 

detection, and 5) radar detector where the first three detectors are intrusive, and the last 

detectors are non-intrusive. Among all of the detectors, the inductive loop detector is the 

most prominent and widely utilized all over the U.S. Like other state DOTs, the Alabama 

Department of Transportation also utilizes inductive loop detectors at almost all 

intersections in Alabama despite some negative side associated with this technology. The 

emergence of a radar detector as the core component of the DZP system, allows traffic 

engineers to overcome the drawbacks of the loop detector, improve intersection safety by 

providing extra protection to vehicles trapped in dilemma zone, and get the almost same 
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efficiency as loop detector without spending extra budget  (Abdel-Rahim et al., 2018; 

Klemann & Byerly, 2020; Sunkari et al., 2005; Urbanik et al., 2015). The remainder of 

this section discusses the methodological, economic, and safety benefits that could be 

achieved by replacing loop detectors with radar detectors. 

2.6.1 Methodological aspects 

Traditionally, an advanced loop detector system is widely used by different traffic 

agencies to address dilemma zone related issues. A set of two induction loop detectors 

installed at the beginning and end of the estimated dilemma zone of an intersection 

approach is utilized in this process. The inductive loop detector is a mature technology 

and can provide actual detection value when properly installed. Vehicles from separate 

lanes can easily be detected using such a detector. Besides, vehicle type and speed can be 

determined more accurately as compared to other detection methods available. However, 

such technology has several limitations. An inductive loop detector requires installation 

into the road surface. To do so, pavements need to be saw cut, lanes need to be closed 

where regular traffic flow is hampered. Sometimes multiple loops are required to fully 

cover one intersection approach. After a resurfacing process of the roadway, 

reinstallation of these sensors is required sometimes. Besides, unlike radar detectors, the 

loop detector can detect vehicles for a limited roadway section (ranging from 0 to 50 

feet). Besides, Weather can severely affect the accuracy of vehicle detection by the loop 

detector  (Abdel-Rahim et al., 2018; Urbanik et al., 2015). 

Radar detectors are capable of detecting vehicles for a much wider zone (ranging 

from 0 to 900 feet) as compared to the loop detector. Installation of such a detector is 

much easier since such a process requires limited (e.g., installation of luminaire arm for 
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mounting the radar unit) modification of existing site conditions without hampering the 

traffic flow. Repairing and troubleshooting radar detectors is also easy and effortless, 

unlike the loop detector where fixing the loop requires saw-cut the pavement and 

rewiring the whole system again. Radar detector has their limitations as well. The cosine 

effect of radar beam propagation causes the radar reads detected vehicles’ speed 

considerably lower than the actual speed. It is also impossible to differentiate between 

vehicles located in the different lanes. Vehicle types cannot be identified via this method. 

During the utilization of radar detectors for the multilane intersection approach, the 

detector will merge individual vehicles into one if they are approaching towards the 

intersection side by side (Abdel-Rahim et al., 2018; Urbanik et al., 2015). Due to such 

detection-related limitations, wrong detection (unable to detect all vehicles), and false 

positive alarm (detect vehicles that do not exist) situations occur. However, researchers 

have found that such detection errors were negligible (Park et al., 2018). Besides, despite 

the ability to work with any signal controller system, utilization of the full radar 

detector’s capacity requires the latest versions of the signal controller. 

2.6.2 Economic aspects 

A study by Sunkari et al. (2005) compared the cost of different detectors. They 

found the total cost of installing a loop detector for a single lane approach is $13,880 

which consisted of cost of unit cost ($2,400), and transmission cost ($11,480). For the 

same condition, the total cost for installing a radar detector was found $15,540 whereas 

the cost of the detection unit, transmission, poles, and other related things is $7,900, 

$3090, $1,300, and $3,250. For the two-lane approach, the total cost of installing a loop 

detector was found $19,680 (detector unit: $4,800, and transmission: $14,880) while the 
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cost of installing the radar sensor remained the same as the single-lane approach. The 

summary of the cost is shown in Table 1. 

 

Table 1. Installation cost comparison of loop and radar detector 

 Single lane approach Double lane approach 

 Loop detector Radar detector Loop detector Radar detector 

Detector cost $2,400 $7,900 $4,800 $7,900 

Transmission 

cost 

$11,480 $3090 $14,880 $3090 

Miscellaneous 

cost 

N/A $3,250 N/A $3,250 

Pole N/A $1,300 N/A $1,300 

Total $13,880 $15,540 $19,680 $15,540 

 

2.6.3 Traffic safety aspects 

Loop detectors are good for detecting the presence of approaching vehicles 

toward an intersection. However, a radar detector could be used for other safety-related 

purposes (e.g., DZP, red light extension, potential red-light runner detection) along with 

detecting the approaching vehicle. Implementation of the DZP system at an intersection 

approach requires continuous vehicle tracking. Since a loop detector can only detect 

vehicles for a limited zone (spot detection), using loop detectors for DZP systems is not 

viable. Research also found that the implementation of DZP at an intersection approach 

could reduce intersection-related crashes by up to 30% (Abdel-Rahim et al., 2018). 
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2.7 Socio-technical aspect of dynamic dzp system 

Socio-technical system study deals with the complex organization of human 

interaction with technology (Geels, 2006). Socio-technical system study was developed 

based on the human interaction method toward the society, which itself an example of a 

complex system (Ottens et al., 2006). The system concept of transportation engineering 

typically neglects the social dimension of human involvement in any transportation-

related systems. Human-social interactions are always interconnected through 

regulations, laws, procedures, and standards that are essential for a transportation system 

to function (Ottens et al., 2006). Thus, a greater outcome could be possible to get through 

a proper socio-technical study of a transportation system. In this section, the author 

discusses the socio-technical aspects of a dynamic DZP system as well as the 

implementation of such aspects for more impactful outcomes. 

 

2.7.1 Dynamic the DZP system as a socio-technical system 

A dynamic DZP system is a socio-technical system where vehicle detection 

instruments, dynamic signal timing systems, drivers, traffic, roadway network, and 

infrastructure work in harmony to ensure the traffic operation safety and efficiency of an 

intersection approach (see Figure 20). The systematic nature of any system could be well 

explained and better understood through future-oriented system-level thinking, strategic 

planning, and decision-making (Auvinen & Tuominen, 2014). However, there is no 

research available in the current transportation literature that deals with the socio-

technical aspect of the dynamic DZP system. A systems engineering level socio-technical 
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system study of the current topic could potentially help the researcher to understand the 

inherent uncertainty, forecast future opportunities, and identify possible threats as a part 

of a bigger strategic planning process (Auvinen & Tuominen, 2014). To understand the 

study of socio-technical systems to be leveraged to strengthen the current research and 

lead to more impactful outcomes, the author tried to address the following research 

questions: 

• What are the possible methods to integrate short and long-term foresight that can 

support the socio-technical impact of the dynamic DZP system applied in an 

intersection? 

• How can socio-technical transitions be integrated for better and more affecting 

consequences? 

 
Figure 20. The socio-technical aspect of the dynamic DZP system. 
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2.7.2 Short and long-term foresight of dynamic the DZP system 

The impact of short and long-term foresight on any socio-technical system is 

discussed by many researchers in the past (Auvinen & Tuominen, 2014; Geels, 2006; 

Ottens et al., 2006; Ropohl, 1999; Roy et al., 2021). Based on their study, the current 

study discusses the short and long-term foresight of a dynamic DZP system through the 

following major functionalities: 

• Enlightenment 

• Facilitation, and 

• Guidance 

2.7.2.1 Enlightenment 

Enlightenment of a system denotes the decision-making stage, where the 

policymakers deal with complex, interconnected, and multidimensional issues to sort out 

the project requirements and goals (Auvinen & Tuominen, 2014). For this process, a 

thorough review of available resources, as well as available case studies regarding the 

target system, are required to be done. For the present study, the University of South 

Alabama (USA) research team has done such a process on behalf of the authority known 

as the Alabama Department of Transportation (ALDOT) and submitted the review as a 

form of a research proposal. ALDOT then review the research proposal, find out the 

project goal, and allocate the required budget to accomplish the research goal. In this 

stage, the USA team reviews current literature that deals with dilemma zone related 

issues and the resolution of such issues. Typically, this review process is done based on 

similar research available in the transportation literature. Besides, several meetings are 

held with ALDOT officials, ALDOT traffic zone engineers, and regional traffic engineers 



51 
 

to get their thoughts regarding the severity of dilemma zone issues in Alabama. 

Afterward, all the collected information is compiled and presented to the authority to 

make their decision regarding the launching of such a research project. Based on the 

research proposal, ALDOT then comes up with project requirements, set a timeline for 

accomplishing the project, and provides guidance for zone traffic engineers for helping 

the USA research team. 

2.7.2.2 Facilitation 

The second functionality denotes the implementation of the policies prepared in 

the previous step. This function consists of research preparation, research design, 

methodology adoption, required data collection, data analysis, and possible solution 

identification, and name a few. For the current system, facilitation starts with the 

identification of intersection locations where drivers face dilemma zone issues. It is 

important to note that, driver behavior data plays a key role here in the identification of 

dilemma zone boundaries on intersection approaches. Later such driver behavior data is 

utilized to develop machine learning dilemma zone models. Besides, methodology 

development for vehicle detection, dynamic green, and red extension, and signal 

controller modification fall under the facilitation function. 

2.7.2.3 Guidance 

The third function denotes the development of the guideline to support the 

planning or policy formulation of the target system. This function needs to be done 

jointly with all the stakeholders of the system. In this stage, a detailed guideline 

demonstrating the implementation, maintenance, and future modification of the target 

system needs to be prepared. For the current system, the guidance function is consisted of 
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developing guidelines regarding high-risk intersection identification, protection system 

implementation and modification, safety and effectiveness assessment, and future 

improvement. 

2.7.3 Future aspects of the DZP system 

The current study deals fully with micro-level socio-technical impact analysis 

where a partial analysis of macro-level is done as well. On the contrary, the meso-level 

socio-technical impact of the dynamic DZP system is not considered in the present study. 

A more thorough analysis of the different groups of people that inhibit the system 

implemented sites may lead to a more accurate and efficient system application. 

However, the identification of such groups of people using the current data collection 

technology is quite hard as well as out of the scope of the present study. The author of the 

present study would address such a data collection related drawback in future work. 

Besides, the identification and implementation of public education policy could 

significantly improve the overall outcome that could be achieved by the DZP system. 

 

2.8 Summary 

Divers’ yellow light dilemma is responsible for compromising the overall safety 

of the traffic system. Several researchers have contributed to identifying the cause, issues, 

locations, and potential solutions to drivers’ dilemmas regarding yellow light indications. 

One of the most effective countermeasures is a radar sensor based DZP system. Despite 

the significant contributions from several research, the overall aspect of a radar sensor 

based DZP is not present in single literature. The present study develops a systematic 

framework of a dynamic DZP system based on radar sensor vehicle detection and 
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machine learning based driver behavior prediction to promote traffic safety and 

operational efficiency of high-risk signalized intersections. A details analysis of the 

dynamic DZP system components is performed based on systems engineering aspects. 

The DZP system’s active and passive stakeholders are identified and tied together based 

on their requirements. Later stakeholders' requirements along with their interrelations are 

reflected through the dynamic DZP system use case. Domain and activity diagrams are 

designed to achieve the desired goal. Finally, the system logical architect explains the 

communication between the subsystems of the DZP system. This systems engineering 

based framework would help traffic engineers as well as transportation researchers to 

install, modify, and improve the DZP system based on site-specific characteristics of the 

site along with the requirements of the system’s stakeholders. The economic and socio-

technical part of the DZP system is also discussed to see how the users could be more 

involved and engaged with this system in the near future. 
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CHAPTER III: SITE-SPECIFIC DILEMMA ZONE MODELS TO IDENTIFY 

HIGH-RISK INTERSECTIONS 

 

Note: The content of CHAPTER III was published in “Journal of Transportation 

Engineering, Part A: Systems” under the title “Analysis of Intersection Site-Specific 

Characteristics for Type II Dilemma Zone Determination”. This article is available at 

https://doi.org/10.1061/JTEPBS.0000578. 

 

3.1 Introduction 

A dilemma zone exists in every signalized intersection and is closely related to 

intersection safety. If approaching vehicles are within the dilemma zone during the 

yellow interval, stopping increases the risk of rear-end crashes, while proceeding 

increases the risk of right-angle crashes (Lu et al. 2015; Machiani & Abbas 2016; Pugh & 

Park 2018; Pathivada & Perumal 2017; Zimmerman & Bonneson 2004). It is also 

important to note that dilemma zone length and location (i.e., where it starts and ends) 

vary from one site to another because each site has its own traffic, geometric, and 

operational characteristics which may affect drivers’ decision to stop or go during the 

yellow interval (Gates et al. 2012; Gates & Noyce 2010; Gates et al. 2007; Pawar et al. 

2016; Sheffi & Mahmassani 1981; Zhang et al. 2014). Furthermore, it was found from 

the authors’ previous study (Kang et al. 2020) that dilemma zone conflicts are 

proportional to dilemma zone length and location. Thus, the safety assessment of a 

signalized intersection could be easier if the measurements of dilemma zone length and 

location are readily available. 
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Two types of dilemma zone definitions are available in the transportation 

literature: Type I and Type II dilemma zones. Type I dilemma zone was first introduced 

by Gazis et al. (1960). It was defined as an area upstream of the intersection stop bar 

where drivers neither safely stop nor comfortably proceed to the intersection before the 

yellow interval terminates. Type I dilemma zone exists if the length of the yellow interval 

is insufficient. Theoretically, it is possible to eliminate Type I dilemma zone with proper 

signal timing, assuming that all approaching vehicles travel at the same speed. However, 

such a concept is not realistic because the speed of approaching vehicles and their 

behaviors at signalized intersections are not identical. As a matter of fact, the area where 

drivers hesitate to stop or go during the yellow interval (so-called “indecision zone”) 

always exists at every yellow interval regardless of whether the yellow interval is 

optimized or not based on the operating speed at an intersection approach (Gates et al. 

2012). 

To overcome such an unrealistic aspect of Type I dilemma zone, Type II dilemma 

zone (also known as “indecision zone”) concept was proposed (Parsonson 1992; 

Parsonson 1978). Type II dilemma zone is defined as an area prior to the intersection stop 

bar where drivers experience difficulty in making decisions (whether to stop or clear the 

intersection) when they are faced with the yellow indication (Zimmerman and Bonneson, 

2004; Parsonson 1992; Parsonson 1978). Since first introduced, the Type II dilemma 

zone concept has been widely used for analyzing intersection safety and operations (Kang 

et al. 2020; Van Haperen et al. 2016; Zhang et al. 2014; Hurwitz et al. 2011; Gates and 

Noyce 2010; Gates et al. 2007; Köll et al. 2004). The present study also adopted the Type 

II dilemma zone concept to analyze dilemma zones at signalized intersection approaches.  
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Two popular methods are available in the transportation literature to quantify 

Type II dilemma zone. The first one is by Zegeer and Deen (1978), which uses field data 

(i.e., the location and stop-or-go decision of approaching vehicles during the yellow and 

red clearance intervals) to measure the start- and end-points of the dilemma zone. 

According to the study (called Zegeer’s method hereafter), Type II dilemma zone begins 

upstream of an intersection stop bar where 90% of drivers choose to continue through the 

intersection when presented with the yellow indication and ends at the position where 

90% of drivers choose to stop the vehicle (Kang et al. 2020; Hurwitz et al. 2011; Zegeer 

& Deen 1978). Zegeer’s method is technically sound and accurate as it directly uses the 

observed data for the dilemma zone determination. Furthermore, it was found from a 

recent study that the chance of red-light running violations increases if the dilemma zone 

measured with Zegeer’s method is located farther from the intersection stop bar (Kang et 

al., 2020). The study also showed that the chance of drivers’ abrupt stops increases if the 

dilemma zone length measured with Zegeer’s method is longer. Thus, Zegeer’s outputs 

could be used as representative safety measures of signalized intersections from Type II 

dilemma zone’s perspective. It is important to note however that Zegeer’s method 

requires extensive data collection and analysis efforts, and thus it has not been frequently 

used by transportation agencies for practical purposes.   

As an alternative to Zegeer’s method, Chang et al. (Chang et al. 1985) proposed a 

method to use i) the travel time to the intersection stop bar (TTI) and ii) the approach 

speed to estimate the start and end-points of the dilemma zone (called TTI-based method 

hereafter). After a number of studies related to TTI and the dilemma zone, it has been 

concluded that Type II dilemma zone generally begins at a position upstream of an 
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intersection stop bar where TTI is 2.5 seconds and ends at a position where TTI is 5.5 

seconds based on the operating speed measured at the intersection approach (Zhang et al. 

2014; Gates et al. 2012; Hurwitz et al. 2012; Sharma et al. 2011; Sharma et al. 2007; 

Bonneson et al. 2002; Chang et al. 1985; Mahalel et al. 1985).  The TTI-based method is 

simple and easy-to-use as it is solely dependent on a single variable (i.e., speed). 

However, it can still benefit from methodological improvements with the inclusion of 

other intersection site-specific variables which may affect drivers’ behavior during the 

yellow and red clearance intervals. 

 

 
 

Figure 21. Type II dilemma zone (a) start-point and (b) length, observed and estimated at 
46 rural high-speed signalized intersection approaches in Alabama. 

 

The present study analyzed driver behavior data of 46 high-speed signalized 

intersection approaches in Alabama.  Here, “high-speed approaches” include those 

located on highways with the posted speed limit of 50 mph or higher. Figure 21 shows 

Type II dilemma zones measured and estimated for all the sites, using both Zegeer’s and 
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TTI-based methods. As shown in the figure, the dilemma zones measured based on the 

observed data (i.e., those quantified with Zegeer’s method) are significantly different 

from those estimated with TTI-based method. The dilemma zones estimated with TTI-

based method have a linear relation with the speed; i.e., � !"�#$%_''( = (5.5+,- −
2.5+,-) × 1.47 × �4� and � 5$�6$_''( = 2.5+,- × 1.47 × �4�, where � !"�#$%_''( and 

� 5$�6$_''( are Type II dilemma zone length and start-point (in feet) estimated with TTI-

based method, respectively; and �4� is the operating speed in mph. It is important to note 

however that the observed Type II dilemma zones quantified with Zegeer’s method vary 

from one site to another although many intersection approaches have similar operating 

speeds. This indicates that other critical variables, besides the speed, that affect dilemma 

zone location would exist at every signalized intersection approach. Note that 85th 

percentile speed was used to represent the operating speed. The 85th percentile speed was 

calculated based on speed samples collected at each site during the green intervals. 

The present study aims to investigate how the dilemma zone length and location 

vary with different intersection site-specific characteristics. The study also seeks to 

develop, based upon the two existing popular methods, an effective (i.e., accurate as well 

as practical) method of quantifying Type II dilemma zone for ease-of-use in the safety 

assessment of signalized intersections. Below show six hypotheses that motivate the 

present study. The authors seek to answer hypotheses throughout the study. 

• The higher the operating speed at an intersection approach is, the further the 

dilemma zone locates from the stop bar, assuming all other things are constant. 

• The higher the operating speed at the approach is, the longer the dilemma zone 

length is, assuming all other things are constant. 
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• The steeper (toward the negative values) the approach grade is, the further the 

dilemma zone locates from the stop bar, assuming all other things are constant. 

• The steeper (toward the negative values) the approach grade is, the longer the 

dilemma zone length is, assuming all other things are constant. 

• The more the amount of truck traffic at the approach is, the further the dilemma 

zone locates from the stop bar, assuming all other things are constant. 

• The more the amount of truck traffic at the approach is, the longer the dilemma 

zone length is, assuming all other things are constant. 

 

The organization of the present study is as follows. After the introductory 

discussion of Type II dilemma zone concept and the drawbacks of the existing methods, 

the next section discusses existing literature that studied the relationship between driver 

behavior and intersection site-specific characteristics. This section also discusses site 

selection criteria for data collection. The following section discusses data collection and 

analysis. In this section, ways of collecting and processing site-specific and driver 

behavior data are discussed. The next section discusses the effect of intersection site-

specific characteristics on Type II dilemma zone. The following section discusses the 

proposed models which use site-specific variables to quantify the dilemma zone length 

and location. The performance of the proposed models is highlighted in this section by 

comparing the models with the existing methods. The final section summarizes overall 

research work with study limitations and future work. 
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3.2 Intersection site-specific characteristics 

Many intersection site-specific factors that would affect drivers’ behavior under 

dilemma zone situations have been reported in the transportation literature (Jahangiri et 

al. 2016; Machiani & Abbas 2016; Elhenawy et al. 2015; Lu et al. 2015; Amer et al. 

2012; Hurwitz et al. 2012; El-Shawarby et al. 2011; Chang et al. 1985). These include: 

the speed of approaching vehicles; the steepness of the approach grade; traffic volume; 

the amount of truck traffic; the length of the existing yellow interval; land-use; sight 

distance; drivers’ aggressiveness; signal phasing and operations, the presence and density 

of access roads near the intersection approach, etc. Among them, the present study 

focused only on those relevant in rural high-speed signalized intersections where traffic 

pattern and geometric and operating characteristics are relatively simple but greater 

potential of serious crashes exists due to high speeds (Kang et al. 2020; Hurwitz et al. 

2011; Sharma et al. 2011). The first five site-specific factors listed above (i.e., the speed 

of approaching vehicles, the steepness of the approach grade, traffic volume; the amount 

of truck traffic; the length of the existing yellow interval) were selected for a detailed 

dilemma zone analysis. Note that these selected factors have been reported as major 

contributing factors of drivers’ decision to stop or go during the yellow interval at rural 

high-speed signalized intersections, according to many previous studies (Bar-Gera et al. 

2016; Savolainen et al. 2016; Elhenawy et al. 2015; Lu et al. 2015; Amer et al. 2012; 

Bonneson et al. 2002; El-Shawarby et al. 2011; Hurwitz et al. 2011; Gates et al. 2007; 

Liu et al. 2007). Note that urban signalized intersections were not considered in the 

present study as they have other extraneous factors (e.g., traffic controls, signal 

coordination and time-of-day operations, driver aggressiveness, turning movements, 
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land-use, etc.) that may also affect driver behavior under dilemma zone situations, in 

addition to those selected for rural signalized intersections (Kang et al. 2020; Hurwitz et 

al. 2011). Below shows a detailed review of existing literature, which support why the 

present study selected the site-specific variables for further study. 

Liu et al. (2007) found that the speed of approaching vehicles is one of the critical 

variables that impact driver behavior at the onset of yellow indication. The study also 

found that vehicles with a higher speed are more likely to encounter a wider (or longer) 

dilemma zone, as compared those with a low speed. Papaioannou (2007) found that 

drivers are likely to experience a dilemma zone situation (e.g., either stop or go) if they 

are aggressive and their speed is high. Recently, Pawar et al. (2016) analyzed the 

location, speed, and type of approaching vehicles at the onset of the yellow indication. 

The study found that high-speed drivers are more likely to pass the intersection as 

compared to low-speed drivers under a dilemma zone situation. The study also found that 

the dilemma zone shifts away from the intersection stop bar with the increment of the 

vehicle speed. Pawar et al. (2016) also found that the stopping probability of heavy 

vehicles are lower, as compared to passenger cars and motorized three-wheel vehicles 

during a dilemma zone situation. Gates & Noyce (2010) also found that heavy vehicles 

are less responsive to the signal indication and have a higher (2.5 to 3.6 times more) 

chance of running the red light as compared to passenger cars.  

Among many intersection geometric variables, it was found that the steepness of 

an approach grade affects the most drivers’ decision to stop or go when they are faced 

with the yellow indication (Chang et al., 1985). The study found that the deceleration rate 

of approaching vehicles significantly increases at a steep downgrade section during the 
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yellow interval. Amer et al. (2012) also found that the steepness of an approach grade is 

proportional to drivers’ perception reaction time during the yellow interval. Bonneson et 

al. (2002) found that a longer yellow interval could increase the drivers’ stopping 

probability. There were many other studies available in the literature that found a relation 

between driver behavior and intersection site-specific variables (Hurwitz et al., 2012; 

Gates & Noyce, 2010; Savolainen et al., 2016; Zhang et al., 2014). However, no study 

discussed how the dilemma zone length and location would change with varying such 

site-specific variables. 

Based on the literature review discussed above, the present study established site 

selection criteria that could be used to determine typical rural high-speed signalized 

intersections. Such site selection criteria were then employed to the Critical Analysis 

Reporting Environment (CARE 10) software program by CAPS to identify a list of 

signalized intersections that were appropriate for the present study. It is important to note 

that, a 10-year Alabama police reported crash data (for a period from 2006 to 2015) was 

utilized in this process to check if the selected intersections experienced with high 

dilemma zone crashes in the past. The present study eventually selected 23 four-legged, 

high-speed signalized intersections in Alabama based on the site selection criteria listed 

below. Note that the present study focused only on major road approaches of the selected 

intersections, and thus totally 46 approaches were investigated.  

• Located in rural areas; 

• Located on highways with the posted speed limit of 50 mph or higher; 

• Located on freight routes in Alabama; 

• Located on multi-lane highways 
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• Located on divided highways; 

• Located on federal or state highways; and 

• No red-light cameras on intersection approaches. 

 

3.3 Data collection 

 

3.3.1 Site-specific data 

Extensive field observation was made to obtain the site-specific information of 

the 46 selected approaches. Table 2 shows a summary of the obtained site-specific data. 

As shown in the table, the approach grade (denoted as 7�) at the 46 sites varies from -7 to 

6%. The operating speed (denoted as �4�) also varies from 42 to 79 mph, despite having 

similar posted speed limits (55 to 65 mph) across the sites. The average daily truck traffic 

(denoted as 
8) also varies from the minimum of 465 veh/day to the maximum of 16,407 

veh/day. The sample mean and standard deviation of the daily truck traffic are 4,141 and 

3,530 veh/day, respectively. The average of total traffic that uses each approach (denoted 

as 98) is also significantly fluctuated from 2,215 to 54,690 veh/day. The length of the 

existing yellow interval (denoted as :") at the sites also varies from 4.0 to 6.0 sec, but 

their fluctuation is not significant. All the information presented in Table 2 shows that 

each selected approach has its own unique site-specific characteristics in the aspect of 

geometric, vehicle operation, and traffic conditions. Readers may refer to the lower 

portion of Table 2 to see the descripted statistics of the site-specific variables. 
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3.3.2 Dilemma zone data 

Type II dilemma zone was also measured for each of the 46 approaches, using 

Zegeer’s method (Zegeer & Deen 1978). For that, a series of high definition video 

sensors were installed upstream of each intersection approach. Figure 22 shows the 

layout of the video sensors which covered up to 1,000 feet upstream of the intersection 

stop bar. Note that the present study adopted the data collection methods explained in the 

NCHRP report 731 to effectively capture driver behavior in response to the yellow 

indication (Kang et al. 2020; Gates et al. 2012; McGee et al. 2012). About 4,000 hours of 

video data were collected during the months of May to July in 2019 to determine the 

dilemma zones of the 46 sites. At least 80 continuous hours (3 to 4 days) of video data 

were collected for each site to track vehicles arriving during peak, non-peak, and 

nighttime traffic hours. As a result, more than 500 vehicles were tracked for each site. 

Note that the sample size was determined based on the formula used in a similar dilemma 

zone study by Papaioannou (2007).  

The collected video data include speeds, locations, and stop or go decision of all 

the approaching vehicles during the yellow and red clearance intervals as well as the 

change of signal phases over the time. The collected video data were then manually 

extracted for further analysis; each approaching vehicle captured at the onset of yellow 

indication was tracked individually to identify if it actually stopped or passed the 

intersection before or after the yellow interval is terminated. These data were then further 

analyzed to quantify the dilemma zone with Zegeer’s method. 
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Figure 22. Video sensor installation layout for driver behavior data collection. 
 

 

A summary of the quantified Type II dilemma zones for the 46 sites is presented 

in Table 2 (see the last three columns of the table). Here, the dilemma zone is defined 

with three variables: dilemma zone start-point, end-point, and length (denoted as � 5$�6$, 

� "�;, and � !"�#%$, respectively). � 5$�6$ and � "�; are both measured from the 

intersection stop bar and expressed in feet. � !"�#%$ is the difference between � "�; and 

� 5$�6$. Note that � 5$�6$ and � !"�#%$ are used as a response variable in next sections 

to investigate the relationship between the dilemma zone and the intersection site-specific 

characteristics. As shown in Table 2, Type II dilemma zone length and location vary 

significantly from one site to another. � 5$�6$  ranges from 109 to 410 feet with the 

sample mean and standard deviation of 264 and 71.3 feet. � !"�#%$ also varies from 110 

to 575 feet with the sample mean and standard deviation of 261 and 84.5 feet, 

respectively. It is also important to note that Type II dilemma zone on one approach and 

that on the opposing approach at the same intersection are significantly different for all 
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the intersections investigated in the present study. For example, on the northbound 

approach of US 431 at SR 165, dilemma zone starts at 390 feet upstream of the stop bar 

and ends 750 feet, which results in 360 feet of dilemma zone length. On the contrary, 

dilemma zone on the US 431 southbound approach of the same intersection starts and 

ends much earlier than that of the northbound approach. � 5$�6$, � "�;, and � !"�#%$ at 

the southbound approach are 180, 420, and 240 feet, respectively. These two approaches 

show a good example of varying dilemma zone length and location although they are at 

the same intersection and on the same route and use the same posted speed limit (i.e., 65 

mph). To understand why such variations exist at these approaches, the next section 

discusses correlations between Type II dilemma zone and site-specific characteristics. 
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Table 2. Observed Type II Dilemma Zones and Site-Specific Characteristics at Selected 
Sites 

No. Intersection Approach Vsl Vop Ga Tv Av Ye DZstart DZend DZlength 

1 SR 157 at CR 1242 
EB 65 59 4% 1107 7690 4 220 500 280 

WB 65 53 4% 1107 13600 4 220 380 160 

2 US 72 at CR 53 
EB 65 65 -3% 16407 54690 5 290 610 320 

WB 55 53 1% 16407 54690 5 230 450 220 

3 US 431 at SR 77 
NB 65 67 0% 2905 11450 5.5 220 520 300 

SB 65 67 0% 2905 15810 5.5 230 530 300 

4 US 82 at CR 16 
EB 65 66 1% 3400 23280 5 220 500 280 

WB 55 54 1% 3400 24200 5 220 560 340 

5 US 82 at US 11 
NB 65 67 -4% 6110 23070 5.5 300 600 300 

SB 55 68 -4% 6110 38060 5.5 370 700 330 

6 US 80 at SR 219 
EB 65 67 1% 835 6610 6 210 440 230 

WB 55 68 -1% 835 10620 6 220 500 280 

7 US 82 at SR 14 
EB 55 58 0% 1350 9170 4 210 430 220 

WB 50 46 0% 1350 14230 4 220 470 250 

8 US 231 at SR 271 
EB 65 67 0% 10842 18250 4 350 580 230 

WB 65 70 -1% 10842 25120 4 350 540 190 

9 US 84 at SR 123 
EB 65 66 -3% 4455 13550 5.5 270 580 310 

WB 65 68 -2% 4455 16600 5.5 290 600 310 

10 US 280 at CR 97 
EB 65 64 -5% 3960 14460 6 350 500 150 

WB 65 64 -5% 3960 29040 6 350 580 230 

11 US 431 at SR 165 
NB 65 73 -7% 4560 16900 4 390 750 360 

SB 65 69 6% 4560 13500 4 180 420 240 

12 US 43 at CR 96 
NB 55 63 0% 2515 10938 5 230 540 310 

SB 55 64 0% 2515 10938 5 250 550 300 

13 US 231 at SR 51 
NB 55 69 -5% 3050 9838 4 360 700 340 

SB 55 58 2% 3050 9838 4 280 500 220 

14 US 231 at CR 38 
NB 55 58 0% 1888 7550 5 250 540 290 

SB 55 61 4% 1888 7550 5 300 620 320 

15 US 98 at CR 32 
NB 55 61 0% 465 7790 4 200 410 210 

SB 55 61 0% 465 15380 4 210 450 240 

16 US 231 at SR 109 
NB 65 74 0% 745 9825 4.5 275 600 325 

SB 65 71 0% 745 11026 4.5 260 575 315 

17 US 431 at SR 30 
NB 65 65 -5% 3750 7580 4.5 410 770 360 

SB 65 43 4% 3750 9525 4.5 109 229 120 

18 US 431 at SR 131 
NB 65 75 -5% 4500 8990 5 300 690 390 

SB 65 61 3% 4500 9850 5 210 350 140 

19 US 84 at SR 134 
EB 55 58 1% 3125 7580 4 225 425 200 

WB 55 42 4% 3125 7410 4 160 270 110 

20 US 84 at US 331 
NB 55 51 2% 2790 6089 4.5 240 430 190 

SB 55 53 2% 2790 9825 4.5 232 432 200 

21 US 331 at SR 134 
NB 65 59 3% 3445 22157 4.5 148 328 180 

SB 65 72 -3% 3445 21157 4.5 380 660 280 

22 US 331 at SR 52 
NB 65 60 0% 7500 2845 5 350 590 240 

SB 65 79 -5% 7500 2945 5 390 750 360 

23 US 331 at US 84 
EB 65 59 0% 5545 2310 5 280 500 220 

WB 65 57 3% 5545 2215 5 180 340 160 
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Table 2, cont. 
Descriptive statistics - VSL VOP GA TV AV YE DZstart DZend DZlength 

Sample mean - 61 62 -0.3% 4141 14690 4.8 264 516 261 

Standard deviation - 5.1 8.1 3.1% 3530 1670 0.6 71.3 126.6 84.5 

Minimum - 50 42 -7.0% 465 2215 4.0 109 229 110 

Maximum - 65 79 6.0% 16407 54690 6.0 410 770 575 

Median - 65 64 0.0% 3400 10938 5.0 245 510 245 

Mode - 65 67 0.0% 1107 54690 4.0 220 500 220 

Count - 46 46 46 46 46 46 46 46 46 

where   DZstart = the start-point of Type II dilemma zone quantified with Zegeer’s method (i.e., location 
where 90% of drivers choose to continue through the intersection when presented with 
the yellow indication); DZstart is expressed in feet and measured from the stop bar; 

DZend = the end-point of Type II dilemma zone obtained with Zegeer’s method (i.e., location 
where 90% of drivers choose to stop the vehicle when presented with the yellow 
indication); DZend is expressed in feet and measured from the stop bar; 

DZlength = the length of Type II dilemma zone in feet; DZlength = DZend – DZstart; 
Vsl = posted speed limit (mph); 
Vop = the operating speed of approaching vehicles (mph); 
Ga = approach grade (%); 
Tv = average daily truck traffic (veh/day); 
Av = average daily traffic (veh/day); and 
Ye = the length of the existing yellow interval (sec). 

 

3.4 Correlations between dilemma zone and site-specific variables 

Spearmen’s correlation coefficients were used to see if there are any relationships 

between the site-specific characteristics and Type II dilemma zone (Schrock et al., 2020; 

Wang et al., 2015). Here, the two dilemma zone variables (i.e., � 5$�6$  and � !"�#%$) 

were treated as a response variable and the site-specific characteristics were treated as an 

explanatory variable. Note that the range and the sign of the site-specific variables (i.e., 

operating speed, approach grade, average daily truck traffic, and average daily traffic) are 

somewhat different as shown in Table 3 (see original values). For example, the operating 

speed at the selected sites ranges from 42 to 79 mph, while the average truck traffic 

ranges from 465 to 16,407 veh/day. Furthermore, the approach grade ranges from +6 to -

7% where positive and negative values are mixed in the data, which would make it 

difficult to analyze the sign of its coefficient with other explanatory variables. Thus, the 
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values of the site-specific variables were transformed so that the transformed data points 

fit within specific scales. Note that normalization (i.e., changing the shape of the 

distribution) of the variables was not performed here as there is no significant scale 

difference between the variables after the data scaling. 

Table 2 shows the range of the transformed explanatory variables after scaling 

(see scaled values). As shown in the table, the values of the approach grade (denoted as 

<�� after scaling) range from 1 to 14: 1 being the lowest (i.e., +6%) and 14 being the 

highest (i.e., -7%). It is important to note here that <�� represents the level of steep 

downgrade; for example, <��= 9 (i.e., -2% grade) is steeper than <��= 3 (i.e., +4% 

grade). Similarly, the values of the scaled operating speed (denoted as <=>?) range from 1 

to 8: 1 being the lowest and 8 being the highest. Note that the average daily truck traffic 

and the average daily traffic (denoted as <'8 and <�8 after scaling, respectively) were 

both grouped into 4 bins to fit their data points within 1 to 4 scales. For this process, 

descriptive statistics of four-year (from 2014 to 2017) average daily traffic and truck 

traffic data for rural high-speed signalized intersections in Alabama were used (ALDOT, 

2017). A scale of 1 to 4 was used for both cases: 1 being under 25 percentiles, 2 being 

between 25 and 50 percentile, 3 being between 50 and 75 percentile, and 4 being over 75 

percentile of the average State traffic and truck traffic data. 

 

  



70 
 

Table 3. Scaled Site-Specific Variables of Rural High-Speed Intersections 

Approach grade 

Ga 
(original) 

6% 5% 4% 3% 2% 1% 0% -1% -2% -3% -4% -5% -6% -7% 

XGa (scaled) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Operating speed 

Vop 
(original) 

Vop<45 45≤Vop<50 50≤Vop<55 55≤Vop<60 60≤Vop<65 65≤Vop<70 70≤Vop<75 75≤Vop 

XVop 
(scaled) 

1 2 3 4 5 6 7 8 

Average daily truck traffic 

Tv (original) Tv < 1500 1500 ≤ Tv < 3000 3000 ≤ Tv < 5000 5000 ≤ Tv 

XTv (scaled) 1 2 3 4 

Average daily traffic 

Av (original) Av < 5000 5000 ≤ Av < 13000 13000 ≤ Av < 20000 20000 ≤ Av 

XAv (scaled) 1 2 3 4 

where    XGa = ordinal scale of the approach grade (Ga); XGa represents the level of steep downgrade; 
 XVop = ordinal scale of the operating speed (Vop); 
 XTv = ordinal scale of the average daily truck traffic (Tv); and 

XAv = ordinal scale of the average daily traffic (Av) 

 

Table 4 shows a summary of Spearmen’s correlation coefficients (called 

Spearman’s rho here after) between the site-specific and dilemma zone variables. Note 

that Spearman’s rho test is a nonparametric test that identifies the degree of association 

(either linear or nonlinear) between two variables. This test is appropriate when subject 

variables are either ordinal, interval, or ratio (Schrock et al., 2020; Wang et al., 2015). As 

shown in the table, the level of steep downgrade (<��) has strong correlations with the 

two dilemma zone variables (� 5$�6$ and � !"�#%$); it has about 0.77 and 0.70 of 

Spearman’s rho with the dilemma zone start-point and length, respectively with p-values 

lower than 0.05. These positive correlations support both the 1st and 2nd hypotheses of 

the present study discussed earlier; i.e., the steeper (toward negative values) the approach 

grade is, the further the dilemma zone locates from the stop bar (1st hypothesis) as well 

as the longer the dilemma zone length is (2nd hypothesis). Graphical representation of 
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these correlations can be found in Figure 23(a) and (b). The operating speed (<=>?) has 

also strong positive correlations with � 5$�6$ and � !"�#%$; it has about 0.69 and 0.63 of 

Spearman’s rho with the dilemma zone start-point and length, respectively with p-values 

lower than 0.05. These indicate that the higher the operating speed at an intersection 

approach is, the further the dilemma zone locates from the stop bar (3rd hypothesis) as 

well as the longer the dilemma zone length is (4th hypothesis). Please also see Figure 23 

(c) and (d) for more details. Note that there is a moderate correlation between the first 

two explanatory variables (<�� and <=>?). However, the authors decided to include both 

variables for further analyses in the model development because i) there is a negligible 

multi-collinearity between them (variance inflation factor (VIF) values for <�� and 

<=>? are 1.86 and 1.65, respectively) and ii) each variable can explain some aspects of 

the dependent variables that the other cannot (James et al. 2017).  

It is also found that there is a meaningful correlation between the average daily 

truck traffic (<'8) and dilemma zone start-point and length. About 0.46 and 0.43 of 

Spearman’s rho values exist between <'8 and � 5$�6$ and � !"�#%$, respectively with p-

values lower than 0.05. These positive Spearman’s rho values support both the 5th and 

6th hypotheses; i.e., the more truck traffic at an intersection approach is, the further the 

dilemma zone locates from the stop bar (5th hypothesis) as well as the longer the 

dilemma zone length is (6th hypothesis). See Figs 3(e) and (f) for graphical 

representation of such correlations. No significant Spearman’s rho values were found for 

the average daily traffic (<�8) and the length of the existing yellow interval (:"). Thus, 

such explanatory variables were disregarded for further analysis. 
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Table 4. Spearman’s Correlation Coefficients between Site-Specific & Dilemma Zone 
Variables 

 Explanatory Variable Response Variable 

XGa XVop XTv XAv Ye DZstart DZlength 

XGa 1       

XVop 0.46748 
(1.2e-5) 

1 
 

     

XTv 0.27144 
(0.0679) 

0.24649 
(0.0986) 

1 
 

    

XAv 0.25001 
(0.0938) 

0.07165 
(0.6351) 

0.10375 
(0.4913) 

1 
 

   

Ye 0.34560 
(0.0191) 

0.18890 
(0.2080) 

0.29547 
(0.0465) 

0.04028 
(0.7899) 

1 
 

  

DZstart 

0.76959 
(1.8e-

10) 

0.68888 
(3.7e-7) 

0.45919 
(0.0014) 

0.13666 
(0.0463) 

0.17322 
(0.0248) 

1 
 

 

DZlength 
0.69525 
(2.8e-7) 

0.63039 
(0.0030) 

0.43227 
(0.0074) 

0.07002 
(0.0428) 

0.23432 
(0.0169) 

0.54306 
(0.0001) 

1 
 

VIF 1.85525 1.64692 1.11646 1.06179 
1.1748

7 
  

Note: p-values for the coefficient of each variable were expressed using an italic font in the table. 
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Figure 23. Graphical representation of correlations between the site-specific variables and 
dilemma zone variables: (a) and (b) the level of steep downgrade vs dilemma zone start-
point and length; (c) and (d) operating speed vs dilemma zone start-point and length; (e) 
and (f) average daily truck traffic vs dilemma zone start-point and length, respectively. 
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3.5 Site-specific dilemma zone models 

 

3.5.1 Model development and validation  

This section develops site-specific dilemma zone models to effectively quantify 

the start-point and length of Type II dilemma zone at a high-speed signalized intersection 

approach. Both dilemma zone and site-specific data collected at the 46 intersection 

approaches were solely utilized for the model development. A log-linear regression 

method was utilized to develop dilemma zone start-point (@�) and length (@A) models. 

Both @�  and @A were modeled based on the three site-specific variables (i.e., approach 

grade, operating speed, and average daily truck traffic) selected in the correlation 

analysis. A stepwise regression method was adopted to identify the best combination of 

site-specific variables that explain the response variables (i.e., dilemma zone length and 

location). Table 5 presents a summary of the stepwise regression analysis. It shows a list 

of the best performed models developed with one site-specific variable to five variables 

among all possible combinations. As shown in the table (see the shaded row), @� and @A 

models developed with the three site-specific variables (i.e., approach grade, operating 

speed, and average daily truck traffic) outperforms the other models. The proposed 

models have the lowest RMSE and MAD as well as the highest NpRE among all tested 

models. 
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Table 5. Summary of the stepwise regression model outputs  

Best performed models 

with # of variables 

Start-point model (MG) Length model (MH) 

RMSE MAD NpRE RMSE MAD NpRE 

1 19.490 9.781 0.812 18.244 7.874 0.881 

2 19.114 9.448 0.829 17.827 7.809 0.876 

3 18.323 8.810 0.915 17.775 7.380 0.916 

4 18.443 9.025 0.901 18.138 7.852 0.842 

5 19.074 9.324 0.840 18.191 7.874 0.795 

  

Table 6 shows a summary of the model performance. It shows that the dilemma 

zone models perform very well and fit the observed data with the p-value lower than 

0.05, Nagelkerke pseudo R-square (IJKE) value higher than 0.9, and McFadden pseudo 

R-square (@JKE) value lower than 0.4 (Nagelkerke 1991; McFadden 1973). Table 6 also 

shows the p-value for the coefficient of each explanatory variable used in the dilemma 

zone models. All these p-values are lower than 0.05, which indicates that all the selected 

site-specific variables are a meaningful addition to the dilemma zone models. 
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Table 6. Site-Specific Dilemma Zone Models with Model Performance  

Site-specific dilemma zone models a b c d p-value NpRE MpRE 

Start-point 

model (MG) 
� 5$�6$ = ,�LMNOPLQNRSTL;NUV  

4.834  
(2e-16) 

0.037 
(0.0006) 

0.056 
(0.0031) 

0.058 
(0.0158) 

4e-06 0.915 0.35 

Length 

model (MH) 
� !"�#$% = ,�LMNOWLQNRXL;NUR 

4.553  
(2e-16) 

0.059 
(1e-5) 

0.046 
(0.0434) 

0.085 
(0.0043) 

1e-06 0.916 0.37 

where a,b,c,d = coefficient of each independent variable; MpRE = McFadden pseudo R-square; NpRE = Nagelkerke pseudo R-square; 
(italic) = p-value for the coefficient of explanatory variables; and 

Note:  MG and MH are only valid within the specified domain below. See Table 2 for details. −7% ≤ 7� ≤ 6% 42 �Jℎ ≤ �>? ≤ 79 �Jℎ 465 veh/day ≤ 
= ≤ 16,407 veh/day 

 

Six additional sites (outside the previously selected 46 sites) were selected to 

collect data for the validation of the proposed @� and @A models. With the newly 

collected data from the six additional sites, the root means square errors (RMSE) and 

mean absolute deviation (MAD) were calculated for the model validation. Note that the 

six additional sites were selected based on the same criteria used for the selection of the 

46 sites. Table 7 shows a summary of the model validation results (see shaded rows in the 

table). It shows that the proposed models perform well to predict the start-point and 

length of Type II dilemma zone with RMSE values of 9.77 and 8.54 feet and MAD 

values of 8.81 and 7.38 feet for @� and @A, respectively. 

3.5.2 Comparative assessment with existing dilemma zone models 

Recall Section 1.2 where the observed dilemma zones (i.e., those quantified with 

the observed data using Zegeer’s method) at the 46 sites were compared with those 

estimated with TTI-based method. It was found in that section that the observed dilemma 

zones were significantly different from those estimated with TTI-based method. Such a 
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finding can also be seen in Table 6 where the residual errors (RE) for TTI-based models 

are huge; its RE for dilemma zone start-point and length are 209.8 and 257.1, 

respectively. Table 6 also shows the residual errors of the site-specific dilemma zone 

models proposed in the present study: RE for @� and @A are 31.54 and 35.09, 

respectively. These values are significantly lower than those of TTI-based models. This 

indicates that the proposed models outperform TTI-based models in predicting dilemma 

zone location and length. Figure 24 shows Type II d ilemma zones predicted with the 

proposed models for the 46 selected intersection approaches. The predicted dilemma 

zones are plotted with the observed dilemma zones to see how the proposed models fit 

the observed data. As shown in the figure, the location and length of predicted dilemma 

zones are quite close to those of the observed dilemma zones. This finding is supported 

by the statistical measures (e.g., p-value, @JKE, IJKE, and RMSE) described in the 

model performance and validation. See Tables 6 and 7. 

 
Table 7. Model Validation and Comparison with Existing Models 

Model  Format RMSE MAD RE 

Site-specific dilemma zone 

start-point model (MG) 
  � 5$�6$ = ,f.ghf Li.ihj ∗lOWLi.imn∗lRXLi.img∗lUR 9.77 8.81 31.54 

TTI-based model for start-
point 

  � 5$�6$_''( = 2.5 ∗ 1.47 ∗ �4�  230.4 229.7 209.8 

Site-specific dilemma zone 

length model (MH) 
  � !"�#$% = ,f.mmhLi.imo∗lOWLi.ifn∗lRXLi.igm∗lUR  8.54 7.38 35.90 

TTI-based model for length   � !"�#$%_''( = 3.0 ∗ 1.47 ∗ �4� 277.4 276.8 257.1 

where � 5$�6$_''(= Type II dilemma zone start-point, estimated with TTI-based method (feet); � !"�#$%_''(= Type II dilemma zone length, estimated with TTI-based method (feet); 

Other variables are as defined previously. 
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Figure 24. Type II dilemma zone: (a) start-point and (b) length, predicted with proposed 
models for 46 rural high-speed signalized intersection approaches in Alabama. 

 

3.6 Summary 

There are two well-established methods available in the transportation literature to 

determine Type II dilemma zones; one is Zeeger’s method (Zegeer & Deen 1978) and the 

other is the TTI-based method (Bonneson et al. 2002; Chang et al. 1985). Zegeer’s 

method deals with actual driver behavior data to determine the dilemma zone, and thus 

the results of this method are considered as ground truth. However, it has not been widely 

used in the field as it requires an extensive amount of data collection efforts. On the 

contrary, TTI-based method simply uses a single variable (i.e., speed) to predict the 

dilemma zone, and thus it has been widely used in the field (Zhang et al. 2014; Gates et 

al. 2012; McGee et al. 2012; Hurwitz et al. 2012; Chang et al. 1985).  

A preliminary study was conducted, before the main tasks of the present study, to 

see how the dilemma zones estimated with TTI-based method are different from those 

quantified with Zegeer’s method based on the driver behavior data collected in the field. 
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It was found from the analysis that the TTI-based model does not well fit the observed 

data with very high residual errors and RMSE values. Such a result motivated the authors 

to improve the TTI-based model with the inclusion of additional site-specific variables 

that may affect drivers’ behavior during the yellow and red clearance intervals. 

Driver behavior data for 46 rural high-speed signalized intersection approaches 

were analyzed to see if there is a relationship between Type II dilemma zone and 

intersection site-specific characteristics. About 4,000 hours of video data were collected 

at the sites to analyze drivers’ stop or go behavior during the yellow and red clearance 

intervals. The data were then used to determine the Type II dilemma zones, using 

Zegeer’s method. These dilemma zones were treated as the observed dilemma zones in 

the model development stage. Five site-specific variables, which include the approach 

grade, the operating speed, the amount of truck traffic, traffic volume, and the length of 

the existing yellow interval, were selected to investigate their correlations with the 

dilemma zone. The correlation analysis results show that the first three site-specific 

variables among the five have strong correlations with the dilemma zone. It was found 

from the analysis that the dilemma zone length is longer as well as its location is further 

from the stop bar if the grade is the steeper (toward negative values), if the operating 

speed is higher, or if more truck traffic operate at the approach.  

The present study also developed dilemma zone prediction models, using the 

three site-specific variables, to effectively identify the start-point and length of Type II 

dilemma zone. The results showed that the site-specific dilemma zone models perform 

well with pseudo R2 ≥ 0.9 and p-value ≤ 0.05. It outperforms the TTI-based model, by 

significantly reducing prediction errors. The proposed site-specific dilemma zone models 
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are simple and easy to use as they only require the three variables (i.e., the approach 

grade, the operating speed, and the average daily truck traffic), which are readily 

available in the database of highway agencies or easy to collect. It is anticipated that the 

site-specific dilemma zone models help traffic engineers effectively (i.e., readily as well 

as accurately) quantify Type II dilemma zones in the field, and can be used for many 

applications to improve traffic operations and safety of signalized intersections. 

Driver’s aggressiveness may vary by time of a day, so may the dilemma zone 

length and location. The present study did not consider such a time-varying variable as it 

focused on the development of a macroscopic model, which deals with aggregate site-

specific data. Future work would include a detail investigation of driver’s stop or go 

behavior during the yellow and red clearance intervals to see how the driver behavior as 

well as dilemma zone length and location vary by time-of-day. It is anticipated that a 

significant amount of data collection and analysis efforts would be needed for this future 

work.  
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CHAPTER IV: MACHINE LEARNING BASED METHODOLOGY FOR 

DYNAMIC DZP SYSTEM 

 

Note: The content of CHAPTER IV was published in “Transportation Research Part C: 

Emerging Technologies” under the title “Predicting time-varying, speed-varying dilemma 

zones using machine learning and continuous vehicle tracking”. This article is available 

at https://doi.org/10.1016/j.trc.2021.103310. 

 

4.1 Introduction 

Dilemma zone is a spatial stretch of a roadway prior to an intersection stop bar 

where drivers need to make a decision whether to stop at or proceed to the intersection 

when they are faced with the yellow indication (Elhenawy et al., 2015; Jahangiri et al., 

2016; Kang et al., 2020). Under dilemma zone situations, an abrupt stop increases the 

likelihood of rear-end crashes whereas speeding to proceed the intersection increases the 

likelihood of right-angle crashes (Abbas & Machiani, 2016; Hurwitz et al., 2011; Kang et 

al., 2020; Sharma, et al., 2011). Among two types of dilemma zone (e.g., Type I, and 

Type II) available in the transportation literature, the present study explicitly addressed 

Type II dilemma zone (called, dilemma zone hereafter) using field data and novel 

machine learning algorithms. 

Researchers have found critical factors that may affect drivers’ decision within 

the dilemma zone (Elassad et al., 2020; Elhenawy et al., 2015). These include, but are not 

limited to: driver’s perception reaction time, gender, age, and distracted behavior; vehicle 

speed and location at the onset of the yellow indication; traffic volume, the amount of 
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truck traffic, posted speed limits, the stiffness of the approach grade, the number of lanes, 

the presence of red-light cameras and pedestrians, and land-use near the intersection 

(Amer et al., 2012; Bonneson et al., 2002; Chang et al., 1985; El-Shawarby et al., 2011; 

Elhenawy et al., 2015; Elmitiny et al., 2010; Gates et al., 2007; Hurwitz et al., 2011; 

Jahangiri et al., 2016; Kang et al., 2020; Lavrenz et al., 2014; Majhi & Senathipathi, 

2020; Pathivada & Perumal, 2019; Papaioannou, 2007; Parsonson, 1992, 1978; Pawar et 

al., 2016; Sheffi & Mahmassani, 1981; Wei et al., 2009; Zegeer & Deen, 1978; 

Zimmerman & Bonneson, 2006). Based on such contributing factors, researchers have 

developed many mathematical methods to account for drivers’ behavior under dilemma 

zone situations. Among them, two popular methods to quantify dilemma zone boundaries 

are 1) a probabilistic method by Zegeer and Deen (1978) and 2) a travel time & speed-

based method by Chang et al. (1985). According to Zegeer and Deen (1978) (called 

Zegeer’s method hereafter), the dilemma zone exists upstream of an intersection stop bar 

where drivers’ probability of stop ranges from 10% to 90% when they first encounter the 

yellow indication. Zegeer’s method is effective to capture the drivers’ inherent variability 

of the decision-making process within the dilemma zone (Savolainen et al., 2016; Sheffi 

& Mahmassani, 1981). However, it requires a significant amount of data collection 

efforts. To ease such a data collection hardship, Chang et al. (1985) proposed a 

comparatively simpler method, which uses the speed of approaching vehicles and their 

travel times to the intersection stop bar (TTI) to quantify dilemma zone boundaries. Many 

researchers have continued studying on their methods and concluded that the dilemma 

zone generally begins at a location before the intersection stop bar where TTI is 2.5 sec 

and ends at a location where TTI is 5.5 sec (Bonneson et al., 2002; El-Shawarby et al., 
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2011; Hurwitz et al., 2012; Kang et al., 2020; Zhang et al., 2014). Note that the method 

which uses 2.5 and 5.5 sec of TTI to determine start- and end-points of the dilemma zone 

is called TTI-based method hereafter in the present study. 

Recently, there is a growing trend of using Artificial Intelligence in transportation 

research. Many researchers are adopting Machine Learning (ML) techniques to analyze 

and predict driver behavior for varying traffic and operational conditions. The 

advancement of such computational technologies and the availability of effective data 

collection methods help researchers predict dynamic nature of driver behavior more 

precisely and accurately. There are a few numbers of studies available in the 

transportation literature which use ML techniques to deal with driver behaviors under 

dilemma zone situations. A study by Jahangiri & Rakha (2015) utilized ML techniques to 

address data deficiency issues when predicting red-light running violations at a signalized 

intersection. Another study by Abbas & Machiani (2016) developed ML-based models to 

classify drivers’ stop or go behavior within the dilemma zone with data collected from 

driving simulator experiments.  

ML techniques typically require a large dataset to train models effectively. With 

conventional data collection methods however it is difficult to collect enough data for the 

development of ML models for driver behavior prediction and dilemma zone 

quantification (Jahangiri et al., 2016, Jahangiri & Rakha, 2015). The use of microwave 

radar sensors, which can continuously track and log various vehicle attributes (e.g., 

speed, time, and location) could be a good option to deal with such a data shortcoming 

issue. With the aid of such technology, it is possible to seamlessly collect a large set of 
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vehicle attribute data with high precision (up to 1/1000 second resolution) (Weidmann & 

Steinbuch, 1998). 

Recall that the speed and location of vehicles at the onset of the yellow indication 

are important factors that affect drivers’ decision to stop or go during the yellow interval 

(Chang et al., 1985; Elmitiny et al., 2010; Hurwitz et al., 2011; Kang et al., 2020; Zegeer 

& Deen, 1978; Zimmerman & Bonneson, 2006). Furthermore, a recent study showed that 

driver’s aggressiveness increases during peak traffic hours. According to Gates and 

Noyce, (2010), the chance of red-light running violations during peak traffic hours is 1.3 

times higher than that of off-peak hours. Zhang et al. (2018) analyzed the dynamic nature 

of dilemma zone at signalized intersections. The paper showed that dilemma zone varies 

with time, and is affected by the leader vehicle. The paper also acknowledged the need of 

a vehicle detection system, which can continuously track vehicle speed and position, in 

order to effectively draw the relation between dilemma zone and time dynamicity. 

The objective of the present study is to predict driver behaviors under varying 

traffic conditions with key vehicle attributes collected at the onset of the yellow 

indication, and eventually identify speed varying, time-varying dilemma zone boundaries. 

To meet such objectives, the present study utilizes multiple machine learning techniques: 

a linear support vector machine (SVM) to extract through vehicles from all approaching 

vehicles detected from the radar sensors; a hierarchical clustering method to classify 

different traffic patterns by time-of-day; linear SVM, polynomial SVM, and artificial 

neural network (ANN) to classify approaching vehicles into two groups (a group that 

makes a stop-decision and the other that makes a go-decision) based on their attribute 
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data collected at the onset of yellow indication. The developed ML models are later used 

to draw arbitrary planes that determine the start- and end-points of the dilemma zones. 

A preliminary study was conducted with sample data collected at the northbound 

approach of US43 at CR96 in Mobile, Alabama to see if the dilemma zone location 

would change by time of day. 72 hours of video data were collected in typical weekdays, 

and Zegeer’s method was used to quantify dilemma zone boundaries during peak hours 

(5 AM to 6 AM and 3 PM to 5 PM) and non-peak hours (i.e., outside the peak hours). As 

shown in Figure 25, the dilemma zone starts at 275 feet and ends at 590 feet from the 

intersection stop bar during the peak hours. On the contrary, it starts and ends at 190 feet 

and 520 feet, respectively during the non-peak hours. These findings from the 

preliminary study motivated the present study. 

 

 
Figure 25. Time-varying dilemma zones at the northbound approach of US43 at CR96 in 

Mobile, Alabama. 
 
 

The remainder of this paper is organized as follows: Section 2 briefly reviews 

existing studies that use ML methods for driver behavior analysis. Section 3 discusses 

two popular ML methods adopted in the present study for driver behavior prediction 

under dilemma zone situations. Section 4 discusses the vehicle attribute and signal event 
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data collected for the present study. Section 5 discusses ML-based driver behavior 

prediction models developed for the present study with explanation of how the models 

predicts drivers’ stop or go decisions based on their attributes collected at the onset of the 

yellow indication. Section 6 discusses speed-varying and time-varying dilemma zones 

predicted with the developed ML models. Finally, Section 7 summarizes the overall 

research work with study limitations and future work. 

 

4.2 Existing literature 

For the last few decades, ML algorithms have been extensively adopted by many 

transportation researchers for classifying and predicting driver behavior to improve traffic 

safety and operations. These studies include drivers’ cognitive distraction (Jin et al., 

2012; Liang et al., 2007), behavior classification (Atiquzzaman et al., 2018; Elhenawy et 

al., 2015; Ersal et al., 2010), and aggressiveness detection (Aoude et al., 2012; Jahangiri 

et al., 2016), to name a few. Other topics that applied ML algorithms include traffic sign 

discovery (Balali & Golparvar-Fard, 2014), conflict detection (Yuan & Cheu, 2003), and 

mode of transport recognition (Jahangiri & Rakha, 2015). In most cases, the researchers 

adopted Artificial Neural Network (ANN), Support Vector Machine (SVM), Fuzzy & 

Neuro-Fuzzy (NF) systems, Clustering (CL), Hidden Markov Model (HMM), K-Nearest 

Neighbor (KNN), Bayesian network (BN), and Random Forest (RF) as a base ML 

technique to solve their problems (Chen et al., 2018; Elassad et al., 2020; Jahangiri et al., 

2016). 

There are a few studies that used ML algorithms for driver behavior prediction 

under dilemma zone situations. Elmitiny et al. (2010) employed a classification tree 
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model to analyze how the chance of drivers’ red-light running violations is associated 

with available traffic parameters, such as vehicle type, speed, and location from the 

intersection. The study found that vehicle’s location and speed at the onset of yellow 

indication as well as its position in the traffic flow are the most important predictors both 

for drivers’ stop or go decision and red-light running violations. Jahangiri et al. (2016) 

applied SVM and RF techniques to predict red-light running violations at a signalized 

intersection. The study used both observational and simulator data for model 

development. The study found that vehicle speed, location, and TTI at the onset of the 

yellow indication are among the most important factors for predicting red-light running 

violations. Abbas and Machiani (2016) used a reinforcement human-learning technique, 

called Q-learning, to capture driver choice behavior and learning process in dilemma 

zone situations. The study used data from driving simulation experiments to develop the 

human-learning model. TTI, pavement condition, and presence of police, surrounding 

vehicles, and side-street queue were used as explanatory variables to predict driver 

behavior under dilemma zone situations. The study showed that the human learning 

process can significantly reduce the overall prediction error of pure machine learning 

models by 31.5%. Recently, Chen et al. (2018) utilized a logit-based Bayesian network 

(BN) hybrid method to investigate how drivers’ decision patterns change under a 

dilemma zone situation if a distractive phone task is given. This study also used data from 

driving simulation experiments, and found that drivers distracted by phone use are likely 

to go through intersections when a short yellow signal is set up. Li et al. (2020) 

developed a latent class logit model to analyze drivers’ decision-making processes under 

dilemma zone situations. Driving simulator data were also used in the study, and drivers 
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were classified into “low-risk” and “high-risk” categories according to driving styles. The 

study found that “low-risk” drivers are less likely to make risky decisions, while “high-

risk” drivers are more likely to make improper decisions. The study also claimed that 

driving while talking on the phone may cause drivers’ inappropriate decisions at the onset 

of the yellow indication. 

 

4.3 Selected machine learning algorithms 

Recall that the underlying problem of the present study is to classify approaching 

vehicles into two groups (one that makes a stop-decision and the other that makes a go-

decision) based on their attribute data collected at the onset of yellow indication. Support 

Vector Machine (SVM) and Artificial Neural Network (ANN) were adopted for the 

driver behavior prediction under dilemma zone situations because they are simple but 

effective for binary classification problems and have been widely adopted by many 

researchers (Elassad et al., 2020).  

4.3.1 Support vector machine  

SVM is a popular classifier that has been widely applied in a variety of research 

areas such as facial, text, object, and speech recognition, pattern classification, non-linear 

relationship identification, etc. SVM casts multi-dimensional data into a higher 

dimension and constructs a suitable hyperplane to classify into two different groups 

(Boswell, 2002; Du et al., 2017). To understand the mechanism of SVM for the 

underlying problem of the present study, let’s consider a dataset which consists of 

instance-label pairs (qr, ��), where s = 1, …, t, and t is the total number of samples. 

Here xr consists of three input vectors (speed, location, and time-of-arrival of 
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approaching vehicles), and �� is the drivers’ stop or go decision (an output vector) in 

sample s. Then, the linear relationship between qr and �� can be given by Eq 1.  

 

�� = vwqrx = y'zwqrx + { Eq 1. 

  

Where y in Eq 1 is a vector perpendicular to the hyperplane, 
 is a transposition 

of the matrix, { is a constant associated with decision boundaries, and z is a function 

used to transform the training vector qr into a higher dimensional space   (Chang & Lin, 

2011). To find y and | in Eq 1, SVM requires solutions calculated from the objective 

function and associated constraints shown in Eqs. 2, 3, and 4. 

 

 �}�~,M,�� �12 y'y + � � �r
!

r�� � Eq 2. 

Subject to: �� wy'qr +  {x ≥ 1 − �r  for, s = 1, … . , t Eq 3. 

 �r  ≥ 0    for, s = 1, … . , t Eq 4. 

  

Where, �r is an error parameter to denote margin violations, and � is a penalty 

parameter which deals with the overfitting issue. The conventional practice is to adjust 

the value of � to achieve the optimal performance of an SVM model (Elhenawy et al., 

2015). Among the four kernels (i.e., linear, polynomial, radial, and sigmoid) widely used 

for SVM models (Hsu and Lin, 2002), the present study used linear and polynomial 

kernels to find effective hyperplanes that classify approaching vehicles into two different 

groups. Please see Section 5 for more details of the SVM models developed for the study. 
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4.3.2 Artificial neural network  

The basic structure of an ANN model can be defined by the network architectures, 

node characteristics, and learning methods. The learning process begins with producing 

datasets through emulating a mechanism based on a given set of input and output 

variables (feed-forward). In this process, the input data is added to the previous input 

node after multiplying by weight and stored in a hidden layer (Chen & Billings, 1992). At 

the final stage, the model prediction errors are determined based on the difference 

between actual output and predicted output. The back-propagation process continuously 

monitors and adjusts the weight after each backward iteration to reduce the error 

gradually (Chen & Billings, 1992; Pugh & Park, 2018).  

To understand the mechanism of ANN for its application to the present study, let's 

see Figure 26. The figure shows a dynamic system of driver behavior under dilemma 

zone situations with a nonlinear relationship described in Eq 5. Here, �� is the speed of 

approaching vehicles and �� is their distance to the intersection stop bar (in other words, 

�� represents the location of approaching vehicles) at the onset of the yellow indication. 


4� represents time of day when the approaching vehicles arrive at the intersection. �� 

represents their final decision whether to stop or go during the yellow intervals. 

 

��(
) = �(��(
 − 1), … , ��(
 − �>), ��(
 − 1), … , ��(
 − ��), ��(

− 1), … , ��(
 − ��), 
4�(
 − 1), … , 
4�(
 − ��) ) + �(
) 

Eq 5. 
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In Eq 5, ��(speed), ��(location), and 
4�(time-of-day of vehicle arrival) are the 

input variables, ��(driver’s stop or go decision) is the output variable; �� and �> are the 

corresponding lags in the input and output matrix. �() is a vector-valued nonlinear 

function and �(
) is the noise vector (see Eq 5). The network input vector and its 

dimension are shown in Eqs. 6 and 7, respectively. Please see Section 5 for more details 

of the ANN model developed for the present study. 

 

��(
) = [��$(
 − 1) … ��$(
 − �>) ��$(
 − 1) … ��$(
 − ��)��$(

− 1) … ��$(
 − ��)
4�$(
 − 1) … 
4�$(
 − ��)]$ 

Eq 6. 

�! = q ∗ �> + � ∗ �� Eq 7. 
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Figure 26. An artificial neural network representing a dynamic system of driver behavior 
under dilemma zone situations. 

 

 

4.4 Data collection 

The present study selected north- and southbound approaches of US43 at CR96 

located in Mobile, Alabama for a data collection site. It is a four-legged intersection with 

90-degree angles between the two crossroads. The intersection is on a level terrain, and 

there are no adjacent signalized intersections within 15 miles. It is located in a suburban 

area of the City of Mobile, and the land uses nearside the intersection are mixed with 

residential, undeveloped, and some industrial properties. The major road on this 

intersection is US43, which is a freight route and classified as a rural principal arterial 

from the State highway agency. It is a multi-lane divided highway with the posted speed 

limit of 55 mph. The intersection is operating under fully-actuated signal control with 25 

and 5 seconds of the minimum green time and 60 and 15 seconds of the maximum green 

time for traffic on major (US43) and minor (CR96) road approaches, respectively. A 
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standard eight-phase operation is used in the intersection. 5 and 2 seconds of the yellow 

and all-red intervals are given to all traffic movements at the intersection. The protected-

permissive left-turn (PPLT) mode is used to deal with all left-turn movements. The 

attributes of approaching vehicles were collected for 14 days with a microwave radar 

sensor installed on each approach of US43: from May 18 to 25, 2020 for the northbound 

approach; from June 9 to 16, 2020 for the southbound approach.  

4.4.1 Vehicle attribute and signal event data 

The radar sensor was mounted on a roadside utility pole located downstream of 

the stop bar at a height of 35 feet from the road surface. This was to collect data for all 

approaching vehicles including red-light running vehicles that pass the stop bar after the 

termination of the yellow interval (see Figure 27). The radar sensor detected and tracked 

all approaching vehicles while logging their attribute data up to a distance of 900 feet 

upstream of the sensor location. Vehicle attribute data collected from the radar sensor 

included the speed, location, and time of arrival of all approaching vehicles at a precision 

rate of 1/1000 of a second. To store such vehicle attribute data, a Windows-based mini-

PC was connected to the radar sensor as shown in Figure 27. Collected data were then 

converted to a readable format using Python tools.  

Signal event data were also collected for the same period when the vehicle 

attribute data were collected from the radar sensors. The signal event data were utilized to 

identify the beginning and termination of the yellow and red clearance intervals. The 

signal event data were later used to filter the sensor data only relevant to drivers’ stop or 

go decision during the yellow intervals. Note that both the signal controller and radar 

sensors were synchronized during the data collection period to assure congruence 
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between each source of data. A local area network (LAN) was set up between the radar 

sensors, a mini-PC, and the signal controller for the ease of data synchronization and 

exchange. 

 

 
Figure 27. Sensor location and detection range for data collection at US43 & CR96 in 

Mobile, Alabama. 
 
 

4.4.2  Data extraction 

 A huge amount of vehicle attribute data for about 250,000 approaching vehicles 

were collected during the data collection period. These data include more than 10 billion 

of vehicle trajectory information for all the approaching vehicles. A Microsoft Excel 

Macro was applied to narrow down the whole dataset into a smaller set which contains 

the information of the approaching vehicles detected only at the onset of the yellow and 

red indications. The timestamp information (including the beginning and termination) of 

the yellow and red clearance intervals obtained from the signal event data were utilized in 

this process. Furthermore, a methodology developed by Zaheri & Abbas (2015) was also 

adopted here to discard possible turning movements from all the approaching vehicles 
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detected at the onset of the yellow indication. For that, a simple linear SVM model 

(which uses the speed of approaching vehicles and their turning decision as model input 

and output, respectively) was developed with prediction accuracy of 94% and p-value 

less than 0.05. Results showed that vehicles with their approaching speeds below 40 mph 

were predicted to either turn left or right at the study site where the posted speed limit is 

55 mph. Thus, such slow vehicles detected at the onset of the yellow indication were 

discarded from the total approaching vehicles to focus only on through vehicles. As a 

result, 2,495 through vehicles were identified for further analysis. In the next step, the 

2,495 vehicles detected at the onset of the yellow indications were compared with those 

detected at the onset of the following red indications. Such a comparison was made based 

on unique vehicle IDs assigned by the sensor. Note that a vehicle was considered as a 

“stopped” vehicle if it was detected not only at the onset of the yellow indication but also 

at the red indication. Otherwise, it was considered as a “go” vehicle. 

 

4.5 Driver behavior prediction under dilemma zone situations 

 

4.5.1 Traffic pattern and vehicle detection by time-of-day 

 Drivers’ behavior may vary by traffic conditions, changing by time of day. The 

present study analyzed hourly traffic counts of the US43 north- and southbound 

approaches to identify distinct traffic patterns throughout a day. A hierarchical clustering 

method was used for this analysis with 100 days of hourly traffic counts for both 

approaches. The hierarchical clustering is an unsupervised ML technique that classifies a 

large dataset by partitioning it into clusters based on a distant or dissimilarity function 
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(Calafate et al., 2015). A clustering validity measure namely Silhouette index was used to 

assess how well the hourly traffic patterns are separated into several groups. The analysis 

result showed that separating the hourly traffic patterns into 3 groups (overnight, rush, 

and daytime non-rush hours as described in (Figure 28) yields the best performance with 

Silhouette index of 0.85. Note that Silhouette index for the clustering of 2, 3, 4, and 5 

groups were 0.79, 0.85, 0.76, and 0.71, respectively with a higher value implying better 

clustering precision. 

 Figure 28 shows different time-of-day splits based on the hourly traffic trends 

with TOD = 1 (green) covering overnight hours, TOD = 2 (orange) covering daytime 

non-rush hours, and TOD = 3 (red) covering morning and evening rush hours. As shown 

in the figure, the US43 northbound approach has experienced light traffic conditions 

overnight from 6 pm and 5 am, while high traffic conditions were observed during 

morning and evening rush hours from 5 am to 6 am and 3 pm to 6 pm, respectively. 

Moderate traffic conditions were observed at the northbound approach from 6 am to 3 

pm. Somewhat different traffic patterns were observed for the US43 southbound 

approach as shown in the figure. Note that the time-of-day detection information 

described in Figure 28 was later used in the model development section as a reference to 

determine when (i.e., which time-of-day) does each approaching vehicle arrive at the 

intersection. See the next sections for more details. 
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Figure 28. Hourly traffic patterns and vehicle detection by time-of day at the north- and 
southbound approaches of US43 & CR96 intersection in Mobile, Alabama. 

 
 
 

4.5.2 Model inputs 

 Table 8 shows the dataset used for the development of ML models in the present 

study. As shown in the table, the attributes (i.e., location (DS), speed (VA), and time-of-

day detection (TOD)) of the approaching vehicles collected at the onset of the yellow 

indication were treated as the input variable of the models, while drivers’ decision to stop 

or go (denoted as DD) was treated as the output variable. Here, DS is the distance 

measured from the intersection stop bar for the approaching vehicles detected at the onset 

of the yellow indication. DS varies from 0 to 800 feet. VA is the speed of the 

approaching vehicles. As discussed in previous section, VA was limited to 40 mph or 

higher to include only through vehicles. As a result, VA fluctuates from 40 to 75 mph 

with the sample mean and standard deviation of 49.76 and 6.05 mph, respectively. TOD 

is the time-of-day of vehicle detection at the onset of the yellow indication. Either 1, 2, or 

3 of TOD was assigned to each approaching vehicle based on their detection time 

obtained from the radar sensor. DD is the output variable of the ML models which 
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signifies drivers’ decision to stop at the stop bar or go through the intersection after they 

notice the yellow indication. Here, the “stop” behavior was coded as “0”, while the “go” 

behavior was coded as “1”. It was observed that 1,699 vehicles (68%) proceeded through 

the intersection, while 796 (32%) were stopped at the stop bar, among the total of 2,495 

approaching vehicles detected at the onset of the yellow indication for the 14 days of the 

data collection period. 
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Table 8. Data input matrix of machine learning models 
Northbound approach  Southbound approach 

 Input Output   Input Output 

Datapoint DS VA TOD DD  Datapoint DS VA TOD DD 

1 65 43 1 0  1 135 40 3 1 

2 545 49 3 1  2 475 55 3 1 

3 100 44 3 1  3 150 55 3 1 

4 340 40 3 1  4 195 36 3 1 

5 575 54 3 1  5 200 42 2 1 

6 185 58 3 1  6 35 53 2 1 

7 190 33 3 1  7 540 49 2 0 

8 400 43 2 0  8 575 45 2 0 

9 375 39 2 1  9 510 43 1 0 

10 220 57 2 1  10 510 54 1 0 

· · · · ·  · · · · · 

· · · · ·  · · · · · 

· · · · ·  · · · · · 

· · · · ·  · · · · · 

1260 290 58 1 1  1229 415 49 2 0 

1261 90 55 1 1  1230 440 41 2 0 

1262 5 61 1 1  1231 635 42 2 0 

1263 290 58 1 1  1232 60 44 2 1 

where  DS = Vehicle location at the onset of yellow indication, measured from the intersection stop bar 

in feet;  

VA = Vehicle approaching speed at the onset of yellow indication in mph; 

TOD = Vehicle detection time-of-day; (1=overnight; 2=non-rush; 3=rush hours); 

DD = Drivers’ stop or go decision during the yellow interval; (1=go; 0=stop) 
 

Table 9 shows descriptive statistics of the dataset used for the development of ML 

models. It shows how the attributes of the approaching vehicles vary by 1) their decision 

to stop-or-go as well as by 2) their detection time-of-day. The summary of findings from 
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the descriptive statistics is as follows. First, DS for go-vehicles (DD = 1) is much shorter 

than that for stop-vehicles (DD = 0). Furthermore, VA for go-vehicles is faster than that 

for stop-vehicles. Second, DS varies by time-of-day; however, in general DS for vehicles 

arriving in rush hours (TOD = 3) is longer than that for those arrived in non-rush hours 

(TOD = 2) or overnight (TOD = 1). Furthermore, VA of vehicles arrived in rush hours 

(TOD = 3) is faster than that of those arrived in non-rush hours (TOD = 2) or overnight 

(TOD = 1). Based on such a finding, it could be inferred that drivers are more aggressive 

during rush hours as compared to non-rush hours. Furthermore, driver’s decision location 

to stop or go is distributed further from the intersection stop bar during rush hours as 

compared to during non-rush hours or overnight. 
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Table 9. Descriptive statistics of approaching vehicles’ attributes classified by their 
decision to stop-or-go as well as time-of-day detection  

US43 northbound   US43 southbound  
Go (DD =1) Stop (DD =0) .. Go (DD =1) Stop (DD =0)  

DS VA DS VA  DS VA DS VA 

TOD = 1 (overnight)  
    

Sample mean 202.50 49.91 441.33 46.78  217.79 50.19 413.57 47.66 
Standard Deviation 114.27 6.39 112.27 4.37  136.87 6.62 112.50 4.89 
Minimum 5.00 40.00 225.00 40.00  0.00 40.00 210.00 40.00 
Maximum 465.00 68.00 675.00 62.00  480.00 67.00 620.00 59.00 
Median 197.50 49.00 435.00 46.00  207.50 50.00 400.00 47.00 
Mode 85.00 48.00 310.00 46.00  200.00 46.00 510.00 46.00 
Sample Variance 13056.73 40.89 12603.93 19.09  18734.72 43.88 12655.25 23.88 
Count 118 118 49 49  52 52 35 35 

TOD = 2 (non-rush hours)  
    

Sample mean 210.25 50.66 474.93 48.12  229.78 51.75 456.44 48.12 
Standard Deviation 124.02 6.45 101.51 4.79  135.01 7.05 100.93 4.31 
Minimum 5.00 40.00 195.00 40.00  0.00 40.00 255.00 40.00 
Maximum 485.00 69.00 770.00 60.00  600.00 74.00 670.00 63.00 
Median 205.00 51.00 490.00 48.00  215.00 51.00 460.00 47.50 
Mode 210.00 51.00 505.00 45.00  210.00 50.00 260.00 46.00 
Sample Variance 15381.34 41.59 10303.29 22.93  18227.01 49.67 10186.94 18.58 
Count 384 384 274 274  691 691 270 270 

TOD = 3 (morning or evening rush hours)  
    

Sample mean 212.60 50.81 499.83 48.62  250.31 51.87 482.14 49.27 
Standard Deviation 135.12 6.35 100.79 5.36  141.20 6.78 101.69 6.09 
Minimum 5.00 40.00 220.00 40.00  15.00 40.00 320.00 41.00 
Maximum 510.00 66.00 715.00 73.00  615.00 71.00 650.00 69.00 
Median 195.00 50.50 510.00 48.00  257.50 52.50 440.00 48.00 
Mode 105.00 45.00 525.00 43.00  40.00 55.00 645.00 46.00 
Sample Variance 18256.75 40.34 10158.02 28.69  19937.66 45.92 10340.63 37.12 
Count 308 308 119 119  146 146 49 49 

 

4.5.3 Model development and validation 

 Several ML techniques were explored to find an effective way (at least offering 

80% or higher prediction accuracies) of predicting driver’s stop or go decision under 

dilemma zone situations. Among them, the performances of linear support vector 

machine (LSVM), polynomial support vector machine (PSVM), and artificial neural 

network (ANN) were selected to present here. For the development of LSVM and PSVM 

models, C-classification method was used in the present study to classify approaching 

vehicles into two groups (stop or go vehicles) based on their attributes at the onset of the 

yellow indication. LSVM models were tuned with C parameter, ranging its penalty from 



102 
 

2-5 to 25. It was found that classification errors of these models were minimum when C is 

10. PSVM models were tuned with grid search over a three-dimensional parameter space 

(C, γ, d) where C and γ are ranging from 2-5 to 25 and d is ranging from 2 to 10. Here, the 

γ parameter represents the influence of sample selection during model training where a 

high γ value indicates a close influence and a low γ value suggests a far influence. The d 

parameter represents the flexibility of a decision boundary where a high d value yields a 

high flexible boundary. PSVM models performed the best when C = 5, γ = 10, and d = 3. 

For the development of ANN models, the sigmoid activation function was employed to 

each neuron in the network to calculate the probability of driver’s stop or go decision. 

Cross-entropy was used as an error function to calculate the deviation of predicted 

outcomes from the observed data. Model outcomes for different combinations of hidden-

layers (ranging from 1 to 10) and neurons (ranging from 1 to 20 per hidden-layer) were 

evaluated. As a result, it was found that ANN models with 2 hidden-layers and 6 neurons 

per layer produced the minimum prediction errors.  

 For each of the US43 north- and southbound approaches, the vehicle attribute 

dataset were divided into two subsets: training and testing datasets. 75% of the total 

dataset were utilized for training, while 25% were reserved for validating the models. R-

studio, an open-source statistical software program was used for the model development 

and validation. To validate the trained models, five performance measures were used. 

These are: model prediction accuracy, p-value, sensitivity, specificity, and Mathew’s 

Correlation Coefficient (MCC). Prediction accuracy is the ratio of correctly predicted 

results by the model from total observations. Sensitivity represents the proportion of true 

“go” decisions predicted by the model out of total “go” decisions observed from the 
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dataset. Sensitivity was calculated by dividing the number of predicted true “go” 

decisions with the sum of predicted true “go” and false “stop” decisions. Specificity 

represents the proportion of true “stop” decisions predicted by the model out of total 

“stop” decisions observed from the dataset. It was calculated by dividing the number of 

predicted true “stop” decisions with the sum of predicted true “stop” and false “go” 

decisions. MCC calculates the correlation between actual and predicted binary 

classification matrices. MCC value is high when fairly good predictions are obtained in 

terms of four confusion matrix categories (i.e., true positives, true negatives, false 

positives, and false negatives). MCC ranges between -1 to +1 where 1 for a perfect 

prediction, 0 for a random prediction, and -1 for a total disagreement. MCC is considered 

as one of the best performance measures for binary ML prediction models, and performs 

well for models trained with an unbalanced binary dataset in which the number of one 

class samples is far greater than that of the other class samples (Atiquzzaman et al., 2018; 

Chicco and Jurman,2020). 
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Table 10. Driver behavior prediction model validation 
 US43 Northbound Approach @ CR96 US43 Southbound Approach @ CR96 

 LSVM PSVM ANN LSVM PSVM ANN 

Accuracy 0.8185 0.8919 0.9093 0.8167 0.8808 0.9074 

p-value 2e-16         2.2e-16 2.2e-16 8.456e-11 9.457e-15 0.0054 

Sensitivity 0.8542          0.9656 0.9074 0.8458 0.9659 0.9023 

Specificity 0.5547          0.5969 0.7889 0.5439 0.5937 0.7128 

MCC 0.5149 0.6403 0.7520 0.4987 0.6305 0.7025 

Where, LSVM = Linear support vector machine 

PSVM  = Polynomial support vector machine 

 ANN  = Artificial neural network 

 MCC = Mathew’s correlation coefficient 

 

Table 10 shows model validation results for the LSVM, PSVM, and ANN 

models. As shown in the table, all the models performed well with a high prediction 

accuracy greater than 80%. All the models were also statistically significant with a p-

value less than 0.05. Note that the prediction accuracy of the LSVM models was found to 

be around 82%, while the PSVM and ANN models’ accuracies were around 90%, which 

is significantly higher than the LSVM models’. This indicates that drivers’ stop or go 

decision and their attributes collected at the onset of the yellow indication would follow a 

nonlinear relation rather than a linear relation (Atiquzzaman et al., 2018). The PSVM 

models yielded the highest sensitivity among all the developed models. However, the 

specificity and MCC values were the highest with the ANN models. Such a variation in 

the model results would be caused by the use of the unbalanced datasets (68% of “go” 

decisions and 32% of “stop” decisions) as discussed earlier. According to Ren (2012), 

ANN models typically produce less errors for unbalanced training scenarios. 

Furthermore, Table 10 shows that the developed ANN models outperformed the LSVM 
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and PSVM models in terms of the prediction accuracy, specificity, and MCC values. 

Thus, the present study selected the ANN models for the further analysis of speed-

varying and time-varying dilemma zones in the next sections.  

 

4.6 Dilemma zones vary by speed and time-of-day  

This section utilized the vehicle attribute data (collected at the onset of the yellow 

indication) and drivers’ stop-or-go decision data (collected at the end of the yellow and 

all-red indications) to determine the start- and end-points of dilemma zones. Dilemma 

zones predicted with the ANN model and those quantified using the two existing methods 

(i.e., Zegeer’s and TTI-based methods) were described graphically in this section to see 

how they are different and change by varying approaching speeds and arrival time of day.  

4.6.1 Speed varying dilemma zones 

Figure 29 plots the vehicle attribute and drivers’ decision data for the US43 

northbound approach where the orange-colored triangles are for drivers who stopped at 

the intersection, while the light blue dots are for drivers who proceeded to the 

intersection. In the figure, the x-axis represents the vehicle locations at the onset of the 

yellow indication, while the y-axis represents the speed of approaching vehicles. To 

identify the start- and end-points of the predicted dilemma zone by the ANN model, a 

binary ANN classification method was used. The binary ANN classification utilizes a 

multi-layer connection and several activation functions to create a boundary of an 

arbitrary plane that splits a dataset into two subsets (Atiquzzaman et al., 2018; Ren, 

2012). By default, the likelihood of the two subsets is set to 50%. The present study 

however modified the binary ANN classification to create separate arbitrary planes for 
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the dilemma zone start- and end-points. The likelihoods of the two subsets for the 

dilemma zone start-point were set to 10 and 90%, while those for the end-point were set 

to 90 and 10%. Note that the 10/90% and 90/10% likelihoods were applied in the ANN 

model because the same probabilities were used in Zegeer’s method to quantify the 

dilemma zone start- and end-points ( Sheffi & Mahmassani, 1981). 

 
 

Figure 29. Speed varying dilemma zones predicted with the ANN model along with those 
quantified with Zegeer’s, and TTI-based methods for US43 northbound approach at 

CR96 in Mobile, Alabama. 
 

Figure 29 shows predicted dilemma zone boundaries (with 91% accuracy) for the 

US43 northbound approach along with those quantified with Zegeer’s and TTI-based 

methods. As shown in the figure, the dilemma zone quantified with Zegeer’s method is 

constant despite varying approaching speeds. However, the predicted dilemma zone with 
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the ANN model changes by varying approaching speeds. The model predicted that the 

dilemma zone start-point would locate further from the intersection stop bar with higher 

approaching speeds (see, the predicted 10% stop plane by the ANN model). The dilemma 

zone end-point would also locate further from the stop bar with higher approaching 

speeds (see, the predicted 90% stop plane by the ANN model). It is also important to note 

that the dilemma zone end-point (i.e., the 90% stop plane) is more sensitive to the 

approaching speed than the start-point (i.e., the 10% stop plane) is. As a result, the 

dilemma zone length would become longer with higher approaching speeds. For 

example, the predicted dilemma zone start-point for the US43 northbound approach 

varies from 230 to 410 feet (i.e., 180 feet variation), while the dilemma zone end-point 

varies from 370 to 770 feet (i.e., 400 feet variation) for all approaching vehicles with 

different speeds. Figure 29 also shows the dilemma zone quantified with TTI-based 

method which uses 2.5 and 5.5 sec of TTI to determine its start- and end-points. Both the 

ANN predicted and the TTI estimated dilemma zones are sensitive to the speed of 

approaching vehicles. It was found however that the predicted dilemma zone with the 

ANN model is located further from the intersection stop bar (i.e., more sensitive as 

compared to the one estimated with TTI-based method), and follows a nonlinear relation 

with the approaching speed. A possible reason of such a result would include that the 

proposed machine learning method uses individual vehicle’s speeds instead of the 

aggregate value (i.e., the average speed) used in the TTI-based method. 
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4.6.2 Time-varying dilemma zones 

 In this section, the vehicle attribute and driver’s stop or go decision data were 

divided into three groups based on the time-of-day (TOD) of vehicle detection. Afterward, 

the ANN model was applied to each group to see how the start- and end-points of the 

predicted dilemma zone would change by time-of-day. Figure 30 shows the predicted 

dilemma zone boundaries for the US43 northbound approach. To help readers better 

understand the effect of vehicle arrival time-of-day on the dilemma zone location, the 

analysis was focused on vehicle groups arrived at three different times-of-day but having 

the same approaching speed of 55 mph. As shown in the figure, the ANN model 

predicted that the dilemma zone locates closer to the intersection stop bar during the 

overnight period (TOD = 1) where a light traffic condition is present. For vehicles arriving 

at 55 mph in this time period, the dilemma zone starts and ends at 260 and 410 feet 

upstream of the stop bar. During the rush hours (TOD = 3), however, the dilemma zone for 

the 55-mph speed group locates much further from the stop bar, resulting in its start- and 

end-points at 340 and 570 feet, respectively. This indicates that the dilemma zone length 

and location would change by time of day even if vehicles arrive at the intersection with 

the same approaching speed. In other words, drivers’ decision to stop or go, when they 

are faced with the dilemma zone situation, would change depending on their time of 

arrival at the intersection. The dilemma zone length would be longer and its location 

would be much further from the stop bar if vehicles arrive during rush hours where 

relatively high traffic conditions are present. These findings support 1) Gates and Noyce 

(2010) where they claimed that the chance of red-light running violations during peak 

traffic hours is higher than that of off-peak hours and 2) Kang et al. (2020) where they 
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claimed that the chance of red-light running violations increases if the dilemma zone is 

located further from the stop bar. 

 

 
Figure 30. Time varying dilemma zones predicted with the ANN model for US43 

northbound approach at CR96 in Mobile, Alabama. 
 

4.7 Summary 

 Predicting driver’s decision to stop or go under varying dilemma zone conditions 

is a challenging task. However, with the aid of advanced sensor technologies which can 

continuously track vehicle movements as well as effective machine learning techniques 

available for complex data analysis and computation, it has become possible to predict 

the dynamic and stochastic nature of driver behavior precisely and accurately. The 

present study proposes an innovative framework of predicting time-varying, speed-

varying driver behavior (under varying dilemma zone conditions), using artificial 

intelligence-based machine learning and continuous vehicle tracking information. The 
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framework utilizes multiple machine learning techniques to process vehicle attribute data 

(i.e., speed, location, and time-of-arrival of approaching vehicles) and drivers’ stop-or-go 

decision data collected from microwave radar sensors and signal controllers. A linear 

support vector machine is used to extract through vehicles from all approaching vehicles 

detected from the radar sensors. A hierarchical clustering method is utilized to group 

distinct traffic patterns by time-of-day. Finally, driver behavior prediction models are 

developed using three machine learning techniques (i.e., LSVM, PSVM, and ANN) that 

classify approaching vehicles into two groups (a group of making a “stop” decision and 

the other group of making a “go” decision) based on their attribute data collected at the 

onset of yellow indication.  

 North- and southbound approaches of US43 at CR96 located in Mobile, Alabama 

were selected for data collection. Microwave radar sensors were used to continuously 

track approaching vehicles as well as to collect their speeds, locations, and time-of-arrival 

at the onset of the yellow indication. Signal event data were also used, in addition to the 

vehicle tracking data, to identify a group of vehicles that made a “stop” decision and 

those that made a “go” decision during the yellow intervals.  

 The performance of the driver behavior prediction models was evaluated with five 

measures, namely model prediction accuracy, p-value, specificity, sensitivity, and 

Mathews Correlation Coefficient (MCC). The result showed that all the models perform 

well with high prediction accuracies. Among them the ANN model, which showed the 

best performance with 91% prediction accuracy, was selected to predict drivers’ decision 

to stop or go under dilemma zone situations. The prediction result was then used to 

quantify dilemma zone boundaries under varying traffic and time-of-day conditions. A 
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binary ANN classification method was used to quantify the dilemma zone boundaries 

with the likelihood of two subsets for each case being 10/90% and 90/10%, respectively. 

Results showed that the dilemma zone start- and end-points would both locate further 

from the stop bar with higher approaching speeds. Furthermore, the dilemma zone end-

point would be more sensitive to the approaching speed than the start-point is. As a 

result, the dilemma zone length would become longer with higher approaching speeds. 

Results also showed that the dilemma zone length and location would vary by time of 

day, regardless of the speed of approaching vehicles. The analysis results showed that the 

dilemma zone length would be longer and its location would be much further from the 

stop bar for vehicles arriving during rush hours, as compared to those arriving during 

non-rush or nighttime hours. This indicates that drivers’ decision location to stop or go 

(when they are faced with a dilemma zone situation) is distributed further from the 

intersection stop bar during rush hours, and such a finding is supported from the 

descriptive statistics of the observed data. Thus, a customized dilemma zone protection 

strategy by time of day would be effective to reduce the likelihood of red-light violations 

and associated crashes. 

 The proposed framework, which 1) predicts driver behavior using artificial 

intelligence-based machine learning and continuous vehicle tracking and then 2) use the 

prediction result to quantify dynamic dilemma zone boundaries, shows possibilities of 

effective signal operations to deal with dilemma zone conflicts. The future work may 

include the automation of the proposed framework and its field assessment. For that, 

programing of the developed ML models on a signal controller with the National 

Transportation Communications for ITS Protocol (NTCIP) is important. Once 
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implemented, the ML models will be able to automatically predict individual vehicles’ 

stop or go decision based on their attributes at the onset of the yellow indication. 

Furthermore, the dilemma zone boundary will be continuously updated from the 

prediction result. It is expected that such an ML-based system would help reduce the 

likelihood of dilemma zone crashes and improve intersection operations significantly.  

  The present study has a limitation. The vehicle attribute data collected from the 

radar sensor did not contain any information about vehicle type. Thus, future work would 

also include the expansion of the research scope to incorporate vehicle type information 

to understand the effect of vehicle types on driver behavior prediction. The application of 

deep learning algorithms to deal with much bigger datasets and the inclusion of more data 

for a series of intersections in the same corridor would be another possible future research 

direction. 
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CHAPTER V: COMPREHENSIVE PERFORMANCE ASSESSMENT OF DGE 

SYSTEM 

 

Note: The content of CHAPTER V in under-reviwed in “Journal of Transportation 

Engineering, Part A: Systems” under the title “Comprehensive Assessment of Dynamic 

Green Extension Signal Operations with Continuous Radar Sensor Vehicle Tracking: 

Alabama Case Study”.  

 

5.1 Introduction 

Improving the safety of a signalized intersection is an important task of highway 

agencies as it is a major source of traffic crashes in a roadway network. According to the 

Fatality Analysis Reporting System (FARS) by National Highway Traffic Safety 

Administration (NHTSA), every year about 10,000 fatalities occur at or near intersections 

which are 25% of total traffic fatalities in a year in the U.S. (NHTSA, 2016). In Alabama, 

the annual traffic fatalities at intersections are about 180, which is higher than the 

national average (CAPS, 2018). Traffic engineers face challenges in operating a 

signalized intersection while maintaining its safety because a trade-off between these two 

conflicting factors (safety and operations) always exists (Bonneson et al., 2002). In many 

cases, the safety improvement of an intersection leads to the degradation of its 

operational performance, and vice-versa. Thus, a comprehensive assessment of a 

signalized intersection is desired to understand how such a roadway facility could be 

improved in the aspect of both traffic safety and operations.  
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Intersection crashes are largely attributed to drivers’ misjudgment towards signal 

light transition from green to yellow indications while they are approaching the 

intersection. Safety issues involving such drivers’ misjudgment during the signal 

transition are known as “yellow light dilemma” or “dilemma zone conflicts”. Right angle 

and rear-end crashes are common types of dillema zone crashes (Kang et al., 2020; 

Rahman et al., 2021; Rahman & Kang, 2021). The development of engineering 

countermeasures that greatly reduce such driver behavioral crashes is critical to improve 

intersection safety as well as operations. To deal with the dilemma zone issue, a 

detection-control system has been used for signalized intersections on rural high-speed 

roads (Bonneson et al., 2002). The main function of a detection-control system is to 

extend the green interval for fast approaching through-vehicles which arrive after the 

minimum allocated green time (Gmin) but before the maximum green time (Gmax). Such a 

process allows more through vehicles to pass the intersection during the green interval 

and reduce the likelihood of potential intersection crashes by lowering the number of 

vehicle arrivals during the yellow and red intervals.  

A taditional detector-control system for dilemma zone protection utilizes advance 

loop-detectors located upstream of the intersection stop bar to detect approaching 

vehicles, and uses the detection information to extend the green intervals for them. It is 

important to note however that the effectiveness of the green extension using advance 

loop-detectors is not always satisfactory because the loop-detector reports only one-time 

detection information of an approaching vehicle at a pre-determined location without 

continuously tracking its speed and location until it passes the intersection. The taditional 

detector-controll system with advance loop-detectors provides a fixed amount of the 
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green extension time (e.g., 3 to 4 seconds), pre-calculated based upon posted speed limits 

or 85th percentile speeds (Biswas et al., 2021; Rahman & Kang, 2021) of an approach 

road. Furthermore, the traditional detector-controll system utilizes advance loop-detectors 

typically placed on 300 to 500 feet upstream of the intersection stop bar, which does not 

always coincide with dilemma zone location changing dynamically by time of day and/or 

the speed of approaching vehicles (Rahman et al., 2021). An excessive green extension 

may deteriorate traffic operations, while insufficient green extension could compromise 

the traffic safety of an intersection.  

To address the limitation of the traditional detector-control system with advance 

loop-detectors, researchers have been adopting a radar sensor-based dynamic green 

extension (DGE) not only to deal with the dyanmic nature of dilemma zone location but 

also to promote intersection efficiency (Abbas et al., 2017; Chang et al., 2013; Park et al., 

2018; Sharma et al., 2011). Radar sensors continuously track the speed and location of all 

approaching vehicles in a wide range of detection coverage. Thus, a DGE system with 

radar sensors allows effective signal operations by offering just the right amount of the 

green extension time for approaching vehicles, while reducing yellow light dilemma 

(Sharma et al., 2011). The DGE system continuously calculated an estimated time of 

arrival (ETA) of each vehicle with the precision of 1/100th of a second. If the ETA for a 

vehicle surplus Gmin, then the DGE system keeps extending the green time to allow the 

vehicle within the dilemma zone to proceed safely through the intersection before the 

phase transition. Such a dynamic green extension is applied during the green interval of 

all approaching vehicles until there is no vehicle detected within the dilemma zone or if 

the signal reaches the maximum green time (Gmax). In this way, a DGE system could 
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promote intersection operational efficiency by smartly utilizing available green time and 

improve intersection safety by reducing the number of vehicles trapped within the 

dilemma zone. Figure 31. shows system components and layout of a radar sensor-based 

DGE system. As shown in the figure, the DGE system consists of a radar sensor per 

approach, a signal controller, and a sensor-controller interface, and a mini PC. They are 

connected in a local area network (LAN) to seamlessly communicate each other. 

 

 

Figure 31. Radar sensor-based dynamic green extension system. 
 

Since the introduction of radar sensors for a DGE, very limited research has been 

dedicated to analyzing its effect on intersection safety and operations. Sharma et al. 

(2011) conducted a case study to identify the potential safety and efficiency related 

improvement of an intersection that could be achieved by replacing a single loop detector 

by a wide-area detection-based green extension system. This case study revealed that the 

application of radar sensors could reduce the waiting time of the cross-street vehicle by 

serving the same amount of through vehicles as compared to that of loop detectors. In 
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another study, Chang et al. (Chang et al., 2013) introduced a DZP system where the 

authors developed sensor algorithms to control signal controller logic to provide either 

green or all-red extension if threshold values (e.g., speed, distance from the stop bar, and 

estimated time of arrival) of algorithoms were satisfied by any detected vehicles. 

Afterward, the authors conducted a field test based performance assessment on one 

intersection approach in Maryland and found that the DZP system could protect vehicles 

from the “yellow light dilemma” by reducing the number of vehicles trapped within the 

dilemma zone. Abbas et al. (Abbas et al., 2017) analyzed performances of different DZP 

systems and found that the implementation of a radar-based DZP system could reduce the 

RLR frequency of an intersection by up to 80%. Along the same line, Park et al. (2018) 

performed a field evaluation of the DZP system implemented at two intersections in 

Maryland to see the variation in dilemma zone boundaries. This study found that the 

dilemma zone length could be reduced by dynamically providing green extensions to 

approaching vehicles. Despite the contribution of these existing studies (Abbas et al., 

2017; Chang et al., 2013; Park et al., 2018; Sharma et al., 2011) on green extension using 

radar sensors, a comprehensive assessment of DGE system to a greater extent remains an 

essential task. The existing literature does not quantify why and how much the traffic 

operations are affected by the DGE system in terms of different vehicle arrivals 

distributions (e.g., percent green, percent yellow, and percent red arrivals) and overall 

intersections delay. In addition, how a DGE system could promote the intersection safety 

by addressing issues related to the number of vehicles trapped within the dilemma zone, 

dilemma zone boundaries (e.g., dilemma zone start point, and length), and dilemma zone 
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conflicts (e.g., RLR and abrupt stop frequencies) is not fully discussed in the literature as 

well.  

As part of a state-wise roadway safety improvement program, the state agency 

implemented the DGE system in several high-speed intersections throughout Alabama. 

The object of the present study is to conduct a comprehensive study focused on ten 

performance measures for quantifying how the implemented DGE system address the 

safety issues and promotes operational efficiency. These performance measures include 

percent green arrivals, percent yellow arrivals, percent red arrivals, total vehicle arrivals, 

total cross-street vehicle arrivals, total green extension, dilemma zone boundaries (e.g., 

start points and lengths), and dilemma zone conflicts (e.g., red-light running and abrupt 

stop) before and after the DGE system implementation. 

The organization of the present study is as follows: after the brief discussion of the 

current practices on the DGE system performance assessment as well as the objective of 

the present study in the introduction, the next section briefly discusses different steps of a 

DGE system application on study sites. The following section discusses the details of 

different subsystems of the DGE system. Afterward, the present study discusses the 

comprehensive before-after performance assessment of the DGE system implemented in 

several intersections of Alabama. The final section draws conclusive remarks on the 

overall research work with study limitations and future works. A list of notations used in 

the present study is shown in Table 11. 
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Table 11. List of Notations 
Notation Description Unit � A"�#$% The length of the dilemma zone at a signalized intersection approach. 

Note: the dilemma zone was used as a vehicle detection zone in the 
present study 

feet 

� �$�6$ The start location of the dilemma zone at a signalized intersection 
approach, measured from its stop bar 

feet 

Variables collected or computed per cycle �� The number of vehicles identified within the detection zone during only 
the red interval 

veh/cycle 

�� The number of vehicles identified within the detection zone during only 
the green interval 

veh/cycle 

�� The number of vehicles identified within the detection zone during only 
the yellow interval 

veh/cycle 

��� The number of vehicles identified within the detection zone during both 
the yellow and red intervals 

veh/cycle 

��� The number of vehicles identified within the detection zone during both 
the red and green intervals 

veh/cycle 

��� The number of vehicles identified within the detection zone during both 
the green and yellow intervals 

veh/cycle 

��"; Total number of vehicles arrived during the red interval; ��"; = �� +��� 

veh/cycle 

��6""� Total number of vehicles arrived during the green interval; ��6""� =�� + ��� 

veh/cycle 

��"!!>� Total number of vehicles arrived during the yellow interval; ��"!!>� =�� + ��� 

veh/cycle 

Variables collected or computed per day ��"; The average of vehicle arrivals during the red intervals in a day Veh/day ��6""� The average of vehicle arrivals during the green intervals in a day Veh/day ��"!!>� The average of vehicle arrivals during the yellow intervals in a day Veh/day �'>$�! The average of total vehicle arrivals in a day; �'>$�! = ��"; + ��6""� +��"!!>� 

Veh/day 

�l6>55 The average of total crossing street vehicles in a day; Veh/day ���6""� Percent of vehicle arrivals during the green intervals out of the total 
vehicle arrivals per day (namely percent green arrivals); ���6""� = 100 ×=O����=US�P�  

% 

���"!!>� Percent of vehicle arrivals during the yellow intervals out of the total 

vehicle arrivals per day (namely percent yellow arrivals); ���"!!>� =100 × =����S�=US�P�  

% 

���"; 
Percent of vehicle arrivals during the red intervals out of the total vehicle 

arrivals per day (namely percent red arrivals); ���"; = 100 × =���=US�P� 
% 


�6""�_	"�$ The average of total amount of the green extension time per day Sec/day I�A� The average of red light-runing violations per day #/day I��� The average of abruptly stopped vehicles per day #/day 
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5.2 DGE system application 

 

5.2.1 Study site  

To identify an appropriate study site, the present study focused on 10- years of 

police-reported historical crash data. An extensive historical crash data analysis was 

performed to identify multi-lane high speed (≥ 50 mph) signalized intersections located at 

rural isolated freight routes where the angle and rear-end crashes were high in the past. 

The detailed site selection process and historical crash data analysis were discussed by 

the author elsewhere in the transportation literature (Kang et al., 2020; Rahman et al., 

2021). Finally, five such intersections were selected (7 approaches) for DGE system 

implementations. It is important to note that, isolated intersections were selected since the 

DGE system could not work properly for intersections that are closely spaced with 

synchronized signal timing. In addition, selected sites were located in the rural area to 

mitigate the effects of extraneous variables that were not related to the dilemma zone 

(e.g., exits located within intersection functional areas, pedestrian crossings, roadside 

businesses). 

5.2.2 Vehicle detection zones  

The vehicle detection zone for the DGE system is a spatial roadway section of an 

approach upstream of an intersection stop bar where approaching vehicles’ approaching 

speed, and distance measured from the stop bar are tracked in real-time using the radar 

sensor. Based on the continuous vehicle tracking data, decisions of extending the green 

are then taken if any vehicle meets the threshold of the DGE system (e.g., speed 

threshold). The present study considered the estimated dilemma zone as the vehicle 
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detection zones. Here Zegeer’s probabilistic approach was utilized to identify the start 

and end of dilemma zones (resided prior to the intersection stop bar between locations 

where 90% of drivers go and 90% of drivers stop at the onset of the yellow indication) 

(Kang et al., 2020; Rahman et al., 2021; Rahman & Kang, 2021, Zegeer & Deen, 1978). 

5.2.3 Vehicle speed thresholds  

To identify vehicles that may face a decision dilemma after watching a sudden 

signal transition from green to yellow, the DGE system utilizes a speed threshold. The 

DGE system then keeps providing a green extension to reduce the number of vehicles 

that may get trapped within the dilemma zone. Based on the speed threshold value, the 

DGE system intelligently identifies a gap time to safely terminate the green interval 

without compromising the operation efficiency. The present study adopted the 

methodology by Klein et al. (2006) and set the speed threshold as the 15th percentile of 

operating speed for the dynamic green extension.  

5.2.4 Green interval parameters  

The green interval of the DGE system has two timing parameters. These are the 

Gmin, and Gmax (Klein et al., 2006, Urbanik et al., 2015). The Gmin is necessary to 

dissipate any queued vehicles at the beginning of the green interval. The Gmax is the 

maximum amount of green time the controller will allow the target phase to stay green 

based on the vehicle detection within the detection zone. The Gmin and Gmax parameters 

were designed based on the Traffic Signal Design Guide & Timing Manual of the 

Alabama Department of Transportation (Sullivan et al., 2015). To facilitate the dynamic 

green extension, the DGE utilizes unit extension intervals. The unit extension interval is 

the minimum extension of the green interval based on each vehicle detection within the 
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detection zone that meets the speed threshold. The radar sensors typically track vehicles 

and place calls continuously to the signal controller in the 0.1-second interval. Thus, the 

unit extension interval is set to 0.1-second. 

 

5.3 DGE components 

DGE system consists of four major components. These are the vehicle detection 

zone, the radar sensor, the sensor controller, and the signal controller (see Figure 31). The 

DGE system continuously communicates between these subsystems. As shown in Figure 

31, in the DGE system the radar sensor continuously tracks approaching vehicles within 

the detection zone and sends their attribute data (e.g., approaching speed, and distance 

measured from the intersection stop bar) to the sensor controller every 1/100th of a second 

interval. The sensor controller then calculates the required amount of time for each 

approaching vehicle to clear the intersection safely and compares it with the available 

green time. If the available green time is not sufficient, then the sensor controller keeps 

placing calls to the signal controller for extending the green time until the vehicle clears 

out of the detection zone. Unlike a traditional green extension, the DGE calculated green 

extension varies from vehicle to vehicle since they are unique to each other in terms of 

speed and location. Upon receiving calls from the detection processor subsystem, the 

signal controller then decides whether to hold the green interval until there is no call or to 

do nothing based on the current phase situation. The green interval holding process 

updates every 0.1 seconds based on the presence of vehicles with speeds more or equal to 

the threshold values within the detection zone. It is important to note that, a windows-

based operating system (e.g., mini-PC) is required to establish local area communication 
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between the sensor and signal controller. This local area communication is necessary to 

set the vehicle detection zone, apply vehicle detection algorithms (e.g., speed thresholds), 

store high-fidelity vehicle attribute data collected through radar sensors, and download 

high-resolution signal controller data. Details regarding these vehicle attributes and signal 

controller data are explained in the next section under the data collection subsection.  

 

5.4 Vehicle arrivals on different signal intervals  

 

5.4.1 Data collection  

As shown in Figure 32, The present study collected two types of data for 

analyzing the performance of DGE systems, these are high-fidelity vehicle attribute data 

and high-resolution signal controller data. High-fidelity vehicle attribute data consisted of 

vehicles’ approaching speed, location measured from the intersection stop bar, and time 

of arrival with the precision of 1/1000 of a second. The present study utilized microwave 

radar sensors mounted on the roadside utility poles to collect vehicle attribute data. The 

accuracy of this data was verified using the video data collected through a series of high-

definition video sensors. On the other hand, high-resolution signal controller data 

included information regarding signal phasing, signal timing, cycle length, number of 

cycles per day, and green interval extension with the accuracy of 1/100 of a second. This 

signal controller data was collected directly from the signal cabinet located in each 

intersection. Both data were collected for five working days before and after the 

implementation of the DGE system. Collected data was then extracted to compile several 
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traffic and traffic management-related criteria to see how the DGE system affects the 

operational and safety of study sites. 

 

 
 
 

Figure 32. Collected and extracted data for DGE performance assessment. 
 

5.4.2 Vehicle arrivals on different signal intervals 

In this subsection, the process of identifying vehicle arrivals on different signal 

intervals per approach (e.g., red, green, and yellow) is described. First, these vehicle 

arrivals were identified per signal cycle of an approach and later added together for 24 

hours to determine different vehicle arrivals per day per approach. At the beginning of 

the process, vehicle identification within the detection zone of an approach throughout a 

signal cycle was performed. Six types of vehicle observations were found (see  



125 
 

Figure 33) in this process. These are ��, �� , ��, ���, ���, and ��� (see Table 11 for the 

abbreviation). It is important to note that, vehicle identification and vehicle arrival of an 

interval may or may not be the same since the same vehicles could be identified within 

the detection zone for two consecutive intervals. The process of calculating different 

vehicle arrivals by utilizing these six types of vehicle identification is discussed below 

with the visual aid shown in Figure 33. 

 

 
 
 

Figure 33. A visual representation of calculating the number of vehicles that arrive during 
different phases of a signal. 

 

Vehicles that arrived and stopped before the stop bar of an intersection approach 

during the red interval of a signal cycle were considered as ��";. To calculate ��";, the 

present study added �� with ��� (see Equation 1). �� entered the detection zone during the 

red interval and stopped before the intersection stop bar. ��� entered the detection zone at 
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the end of the yellow interval and decided to stop since they saw the signal transition from 

yellow to red. Thus, ��, and ��� could both be considered as ��";.  

 

 ��"; = �� + ��� Equation 1 

 

The present study defined ��6""� as the number of vehicles that enter the intersection 

through an approach while the green phase is active. This study added ��  and ��� to 

determine ��6""� (see Equation 2). ��  arrived at the detection zone when green intervals 

were active and proceeded through the intersection. ��� entered in the detection zone at 

the end of the red interval and decided to go when they saw the signal changed from red 

to green. Thus, both ��  and, ��� could be considered as ��6""�. 

 ��6""� = �� + ���  Equation 2 

 

The present study specified ��"!!>� as the number of vehicles that face the decision 

dilemma (whether to stop or go) after watching the yellow indication while traveling 

towards an intersection approach. Here �� and ���  were added to determine ��"!!>� (see 

Equation 3). �� observed the yellow signal during their progression through the detection 

zone while ��� entered the detection zone at the end of green intervals and watched traffic 

lights transit from green to yellow. Both of these vehicles suffered from the dilemma of 

deciding whether to stop or cross the intersection. Thus, �� and ��� both could be 

considered as ��"!!>�.  

 

 ��"!!>� = �� + ��� Equation 3 
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Afterward calculated ��";, ��6""�, and ��"!!>� values utilized to get vehicle arrivals at 

different intervals per day based on Equations 4 - 7. 

 ��"; = � ��";
%�i
Ef  Equation 4 

 ��6""� = � ��6""�
%�i
Ef  Equation 5 

 ��"!!>� = � ��"!!>�
%�i
Ef  Equation 6 

 �'>$�! = � ��"; + ��6""� + ��"!!>� Equation 7 

 

5.5 Comprehensive assessment of the DGE system 

A total of ten performance measures (shown in Table 11) were employed to 

comprehensively assess the safety and operational benefits of the DGE system. These 

include percent green arrivals, percent yellow arrivals, percent red arrivals, total vehicle 

arrivals, total cross-street vehicle arrivals, total green extension, dilemma zone 

boundaries (e.g., start points and lengths), and dilemma zone conflicts (e.g., red-light 

running and abrupt stop). To understand the overall impact of the DGE system on 

intersection safety and performance, the comprehensive assessment is discussed in four 

steps, these are vehicle arrival distributions, overall delay, dilemma zone transformation, 

and dilemma zone conflict variation before and after the DGE system implementation. 
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Table 12. Performance assessment of implemented DGE system in 5 sites (7 approaches) 

S.I. Target sites Scenario � ¡¢££¤ � ¥£¦¦§¨ � ©£ª  «§¬­¦  ®¢§¯¯ «¡¢££¤_°£±¬ ²³´¬­¢¬ ²³µ£¤¶·¬ ¸©µ© ¸¹º´ 

1  
NB approach of 
US43@CR96 

Before 42.84% 10.31% 46.85% 11280 1351 15709 230 310 90 267 

After 83.64% 6.39% 13.94% 11728 1405 19102 170 220 45 78 

Change ↑40.81% ↓3.92% ↓32.92% 
↑448 

(3.97%) 
↑54 

(3.4%) 
↑3393 

(21.60%) 
↓60 

(26.09%) 
↓90 

(29.03%) 
↓45 

(50.00%) 
↓189 

(70.79%) 

2  
SB approach of 
US43@CR96 

Before 45.37% 12.11% 42.52% 13058 1351 16273 250 300 87 234 

After 81.57% 7.19% 18.28% 13977 1405 21345 180 220 39 105 

Change ↑36.19% ↓4.92% ↓24.24% 
↑919 

(7.04%) 
↑54 

(3.4%) 
↑5072 

(31.17%) 
↓70 

(28.00%) 
↓80 

(26.67%) 
↓48 

(55.17%) 
↓129 

(55.13%) 

3  
NB approach of 
US431@AL165 

Before 45.71% 11.99% 42.31% 7150 475 9305 390 360 81 185 

After 75.80% 5.52% 19.27% 7193 491 11625 310 220 42 111 

Change ↑30.10% ↓6.46% ↓23.03% 
↑43 

(0.60%) 
↑16 

(3.4%) 
↑2320 

(24.93%) 
↓80 

(20.51%) 
↓140 

(38.89%) 
↓39 

(48.15%) 
↓74 

(40.00%) 

4  
WB approach of 
US280@CR97 

Before 41.61% 14.58% 43.80% 22539 2242 17235 350 230 207 288 

After 79.40% 8.11% 18.46% 23883 2361 22632 290 100 108 150 

Change ↑37.78% ↓6.47% ↓25.35% 
↑1344 

(5.96%) 
↑119 

(5.3%) 
↑5397 

(31.31%) 
↓60 

(17.14%) 
↓130 

(56.52%) 
↓99 

(47.83%) 
↓138 

(47.92%) 

5  
EB approach of 
US82@CR16 

Before 51.01% 7.70% 41.29% 16263 1231 15629 220 280 153 246 

After 82.94% 5.13% 15.85% 16901 1275 19256 150 220 69 81 

Change ↑31.94% ↓2.58% ↓25.44% 
↑638 

(3.92%) 
↑44 

(3.56%) 
↑5072 

(23.21%) 
↓70 

(31.82%) 
↓60 

(21.43%) 
↓84 

(54.90%) 
↓165 

(67.07%) 

6  
WB approach of 

US82@CR16 

Before 50.83% 14.95% 34.22% 18222 1231 14623 220 340 165 258 

After 80.47% 7.44% 13.49% 18478 1275 18926 170 240 81 96 

Change ↑29.65% ↓7.51% ↓20.73% 
↑256 

(1.40%) 
↑44 

(3.56%) 
↑4303 

(29.43%) 
↓50 

(22.73%) 
↓100 

(29.41%) 
↓84 

(50.91%) 
↓162 

(62.79%) 

7  
EB approach of 
US84@SR123 

Before 48.86% 17.19% 33.95% 11714 626 11327 270 310 93 288 

After 85.95% 8.09% 15.80% 12867 655 14685 220 210 43 120 

Change ↑37.09% ↓9.10% ↓18.15% 
↑1153 

(9.84%) 
↑29 

(4.15%) 
↑3358 

(29.65%) 
↓50 

(18.52%) 
↓100 

(32.25%) 
↓50 

(53.76%) 
↓168 

(58.33%) 

 
Where, ���6""�  = percent of vehicle arrivals on the green interval (%); ���"!!>�   = percent of vehicle arrivals on the yellow interval (%); ���";  = percent of vehicle arrivals on the red interval (%); �'>$�!   = total daily vehicle arrivals per approach (veh/day); 7	N'   = total green extension per day (second/day); � �$�6$   = start point of dilemma zone measured from the intersection stop bar (feet); � A"�#%$  = length of dilemma zone (feet); I�A�   = red-light running frequency per day (#/day); I���   = abrupt stop frequency per day (#/day). 
(Numbers mentioned in the parenthesis denote the percent variation) 

 

The present study defined ���6""� as the percentage �'>$�! that entered the 

intersection during active green intervals and ���"; as the percentage of �'>$�! that 

decided to stop before the intersection stop bar after facing red indications. The 
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percentage of �'>$�! that encounter the decision dilemma after watching the yellow 

indication while approaching the intersection was defined ���"!!>�. It is important to 

note that, �'>$�! was the total number of vehicles that moved through an intersection 

approach per day (see Equation 7). As shown in Table 12, ���6""� increased up to 41% 

(see Figure 34a) while ���"!!>� and ���"; have decreased up to 9% and 33% 

respectively (see Figure 34b and Figure 34c). In addition, �'>$�! did not change 

significantly between before and after DGE system implementation (Table 12). Such 

increments in ���6""� as well as reductions in ���"!!>� and ���"; occurred due to the 

effective green interval management by the DGE system. This system dynamically 

extended the required amount of green based on the detected vehicle’s speed and location 

within the detection zone. This system provided the exact required amount of green 

extension for each vehicle contrary to the traditional fixed extension (e.g., 5 sec). In 

addition, the radar sensor could monitor real-time approaching vehicles for a wide range 

of roadway sections instead of spot detection. In this way, the DGE system improved 

traffic operations at intersections. On top of that, due to such efficient management of 

vehicle arrivals, most of the drivers that had the potential to cross the intersection during 

the available green interval were served. Thus, fewer drivers arrived during the yellow 

interval causing a smaller number of vehicles trapped within the dilemma zone. In this 

way, the DGE system improved the intersection safety. 
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(a) 

(b) 

(c) 

Figure 34. Graphical representation of different vehicle arrival distribution for before and 
after DGE system implementation: (a) percent green arrivals; (b) percent yellow arrivals; 

(c) percent red arrivals.   
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�6""�_	"�$ was defined as the total amount of green interval extension provided 

by the signal controller for a day to clear the through vehicles of an intersection approach. 

As shown in Table 12, 
�6""�_	"�$ increased up to 31% while �'>$�! and �l6>55were 

seemingly unchanged (see Table 12). The DGE system smartly manages the available 

green time for the through traffic and intelligently identify gap to serve the cross-street 

vehicles. In this way, despite the increment 
�6""�_	"�$, the traffic efficiency of the cross 

street did not deteriorate by the DGE system. Thus, the overall delay of intersections was 

reduced, and operational performance was improved. Such an outcome also supports the 

findings by Sharma et al. (2011). 
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(a) 

(b) 

Figure 35. Graphical representation of dilemma zone transformation for before and after 
DGE system implementation: (a) dilemma zone start location; and (b) dilemma zone 

length. 
 

  The present study adopted Zegeer and Deen’s method to measure the dilemma 

zone boundaries for intersection approaches (Zegger & Deen, 1978). This method is a 

probabilistic approach proposed by Zegeer and Deen, in which the dilemma zone is 

determined based on actual decisions made by drivers in response to a yellow indication 

at a time when they approach a signalized intersection. In this method, the dilemma zone 

is defined as an area before the intersection stop bar, measured between locations where 
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90% of drivers go and 90% of drivers stop at the onset of the yellow indication. � �$�6$ 

of an intersection approach is the location where 90% of drivers go when they first 

encounter the yellow signal indication. � A"�#$% of an intersection approach is the 

distance between the location where 90% of drivers go and the location where 90% of 

drivers decide to stop when they are faced with the yellow indication while approaching 

the intersection. � �$�6$ and � A"�#$% could be used as the safety surrogate measure for 

an intersection approach (Kang et al., 2020). As shown in Table 12,  � �$�6$ came closer 

to the intersection stop bar for each site (see Figure 35a) meaning that vehicles trapped in 

the dilemma zone had to travel less distance while crossing the intersection when 

compared with the condition without a DGE system. Such reduction of � �$�6$ could 

reduce the likelihood of intersection crashes (e.g., right-angle crashes) as well as supports 

the research findings of Park et al. (2018). Besides, the reduction in � A"�#$% (up to 

57%) were also observed in study sites after the implementation of the DGE system (see 

Figure 35b). This reduction of � A"�#$% facilitated the approaching drivers with the 

advantage of spending less time within the dilemma zone and consequently preventing 

the drivers from adopting any aggressive maneuver such as speeding to cross the 

intersection or abrupt stopping. Thus, the DGE system could improve the safety of an 

approach by reducing both � �$�6$ and � A"�#$%. 
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(a) 

(b) 

Figure 36. Graphical representation of dilemma zone conflict variation for before and 
after DGE system implementation: (a) red light running frequency; and (b) abrupt stop 

frequency. 
  

Red-light runnings and abrupt stops are considered dilemma zone conflicts (Kang 

et al., 2020). I�A� is the number of vehicles of a day that cross the intersection approach 
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stop before the intersection approach stop bar during yellow and red intervals. The present 
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(Kang et al., 2020). It was determined in a field data review process that an approaching 

vehicle made an abrupt stop if it satisfied both criteria below: 

• Speed of a vehicle within 200 ft upstream of the intersection stop bar is equal to 

or exceeding the posted speed limit, and 

• This vehicle physically stops before the intersection stop bar during the yellow 

and red intervals. 

 

As shown in Table 12, I�A� reduced up to 56% as compared to that without the 

DGE system (see Figure 36a). As the DGE system reduced ���"!!>� for the study sites, 

fewer vehicles were trapped within the dilemma zone at the onset of the yellow interval 

and thereby reducing the I�A�. This reduction in I�A� also support the claims by Abbas 

et al. (2017). In addition, I��� also reduced up to 70% (see Figure 36b) since the DGE 

system efficiently served green time to approaching vehicles resulting in fewer vehicle 

arrivals at the end of green intervals. Since there were less I�A� and I��� during the 

DGE system implementation period, the overall safety of intersections would be 

improved. 

   

5.6 Summary 

Roadway intersections are the major source of vehicle crashes in a roadway 

network. Driver’s misjudgment towards the signal light transition from green to yellow is 

one of the major factors that contribute to intersection crashes. Providing extra green time 

based on the arrival of vehicles after the minimum green interval is one of the effective 

solutions to address the driver’s misjudgment issue. The traditional green extension system 
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utilizes an advanced loop detector before the dilemma zone of an intersection stop bar to 

identify vehicle presence. Such a system only can detect the vehicle's presence and cannot 

continuously track or record approaching vehicles’ speed and location. Due to such a 

limitation, the traditional green extension system cannot effectively reduce intersection 

crashes and affect the intersection operational performance by increasing traffic delay 

(Bonneson et al., 2002). 

The emergence of radar sensor-based technology for the green extension is getting 

attention at present. The radar sensor’s ability to track approaching vehicles’ speed and 

location for a vast section of a roadway allows the traffic engineers to design a green 

extension for an intersection more effectively. Few researchers have explored different 

safety and operational-related aspects of the DGE system. Thus, a comprehensive 

assessment of such a system in terms of both safety and operational performance remains 

a crucial job. 

The present study aims to conduct a comprehensive study of the DGE system based 

on ten performance measures (including percent green arrivals, percent yellow arrivals, 

percent red arrivals, dilemma zone length, and red-light running vehicles before and after 

the DGE system implementation). To do so, the author implemented the DGE system in 7 

rural high-speed signalized intersection approaches that were identified based on high 

dilemma zone crash history. The author then collected high-fidelity vehicle attributes 

(vehicles’ approaching speed, location measured from the intersection stop bar, and time 

of arrival with the precision of 1/1000 of a second) and high-resolution signal controller 

data (signal phasing, signal timing, cycle length, number of cycles per day, and green 

interval extension with the accuracy of 1/100 of a second) for five working days before and 
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after implementation of the DGE system. The collected data was then extracted to evaluate 

ten performance measures to see how the DGE system affect the operational and safety 

aspect of study sites. 

Based on the performance analysis it could be said that the DGE system could 

efficiently improve the operational performance of an intersection approach by increasing 

vehicle arrivals during the green intervals as well as reducing vehicle arrivals during the 

red and yellow intervals. This system could potentially improve safety per approach by 

reducing the number of vehicles got trapped within the dilemma zone while 

simultaneously decreasing dilemma zone lengths, and its locations measured from the 

stop bar. The overall intersection performance could also be enhanced by this system 

through the reduction of traffic delays to both main streets and the side street. In addition, 

the DGE system could improve the overall safety of an intersection by reducing dilemma 

zone conflicts in implemented sites. 

The present study developed a DGE system framework for improving traffic 

safety and operational performance in rural high-speed signalized intersections. The 

developed framework might require modification for intersections located in urban and 

suburban areas. Besides, the study sites had negligible queue buildup during red intervals. 

Thus, the present study did not emphasize clearing the queued vehicle at beginning of 

green intervals. Intersections located in the highly congested area may need a separate 

queue clearing zone close to the stop bar to clear out queued vehicles. In addition, the 

framework may not work well in intersections with synchronized traffic signaling 

systems.  
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CHAPTER VI: SHORT-TERM PERFORMANCE EVALUATION OF DRP 

SYSTEM 

 

6.1 Introduction 

Red-light running (RLR) violations at signalized intersections are a major traffic 

safety issue, responsible for fatalities and economical losses. In 2019, 846 fatalities and 

more than 143,000 injuries occurred due to the RLR violations (Hussain et al., 2020; 

Mohammed et al., 2022; Porter & England, 2000; Retting et al., 1998, 2008; Retting & 

Greene, 1997; Retting & Williams, 1996). The economic impact of crashes related to 

RLR violations could reach up to $13 billion per year considering fatalities, lost income, 

medical expenses, property damage, and insurance (Zhang et al., 2011). 

An RLR violation occurs when a vehicle crosses the intersection stop bar during 

an all-red interval. The consequences of RLRs violation could be severe if the violators 

do not have enough time to clear the intersection before the phases of crossing streets 

turn green. In this way, the likelihood of occurring severe angle crashes could be 

increased (Kang et al., 2020; Zhang et al., 2011). There are several countermeasures 

available in the current transportation literature to mitigate the RLR frequencies of an 

intersection (Retting et al., 1998). Despite all these countermeasures, RLR violations 

could still be possible due to drivers' misjudgments towards the signal lights, platooning, 

and intentional running behavior (Park et al., 2018; Zhang et al., 2011).  

To protect these RLR violators, as well as the crossing vehicles from potential 

intersection crashes, several researchers employed the dynamic red protection system 

(DRP) where the all-red time interval extends dynamically upon detecting a potential red- 
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light runner (Park et al., 2018; Zhang et al., 2011). This all-red extension could allow the 

potential red-light runner to clear the intersection before any phase transition and may 

reduce the likelihood of potentially hazardous situations.  

As a part of a state-wide roadway safety improvement policy, the Alabama 

Department of Transportation (ALDOT) has newly implemented a DRP system in 

several high-risk intersections in Alabama. The present section of the dissertation 

discusses a short-term performance evaluation of the DRP system implemented in 

intersection US43@CR96 located at Mt. Vernon, Mobile. 

 

6.2 Dynamic red protection (DRP) system 

Dynamic red protection (DRP) system ensures the safety of a red-light running 

(RLR) vehicle by providing extra all red time beyond the minimum all red time. The 

DRP system continuously observes the approaching speed and location of vehicles close 

to the intersection stop bar during the all-red interval (see Figure 37). Based on the speed 

and location data, the DRP system then identifies potential RLR vehicles. Afterward, the 

DRP system keeps holding the all-red interval until no potential RLR vehicle is identified 

close to the intersection stop bar. In this way, a DRP system can reduce the likelihood of 

intersection crashes and enhance intersection safety. 
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Figure 37. The layout of a DRP system. 

 

 

A DRP system consists of five major components. These are the vehicle detection 

zone, the radar sensor, the sensor controller, the machine learning-based smart brain, and 

the signal controller. A DRP system monitor and collect attribute data (e.g., speed, 

location, and time of arrival) of vehicles within the detection zone and then run such data 

through the sensor controller logic as well as the smart brain to predict potential RLR 

violators. Afterward, predictions from both systems are combined and run through 

another set of logic for placing all-red extension calls to the signal controller for further 

traffic operations. A brief discussion of these components is given below: 

6.2.1 Vehicle detection zone 

The vehicle detection zone for the DRP system is a spatial roadway section close 

to an intersection stop bar where approaching vehicles’ speed and location are monitored 

to detect potential RLR vehicles. Based on the detection, this system then holds the all-
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red interval to ensure the safe passage of the RLR vehicle as well as to eliminate the 

chance of potential conflicts. A potential RLR vehicle is typically located close to the 

intersection stop bar at the onset of the red interval. Thus, to identify a potential RLR 

vehicle, the DRP system requires to monitor the vehicle within the close range of the 

roadway section near the stop bar. The present study considers the detection zone for the 

DRP system as a 100 ft long area starting from the stop bar (see Figure 2), which is 

equivalent to 1.0 to 1.2 seconds of vehicle travel time to the intersection stop bar based 

on a measured average speed. 

6.2.2 Radar sensor 

A radar sensor vehicle detector is a microwave-based sensor technology that 

could detect and continuously monitor vehicles for a wide range of roadway sections. 

Unlike a loop detector that could only sense vehicles’ presence in a certain location for a 

certain timestamp, a radar sensor could continuously monitor and collect a vehicle’s 

speed, location, and time of arrival up to 900 ft. wide roadway section with the precision 

of 1/100th of a second. This sensor then sends the collected data to the sensor controller 

for further operations.  

6.2.3 Sensor controller 

The sensor controller analyzes vehicle attribute data collected by the radar sensor 

through a set of predefined algorithms to identify vehicles that require special treatments 

based on the situation. Upon such vehicle identifications, the sensor controller then places 

calls to the signal controller to take further actions (e.g., green extension, and red 

protection). This sensor controller provides the users with a wide variety of parameters 

(e.g., speed, ETA) to customize vehicle identification algorithms (see Figure 38). By 
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providing parameter values, the user can create algorithms to identify and monitor 

vehicles with specific characteristics ( e.g., dilemma zone affected, potential RLR).  

 

 

Figure 38. Algorithm parameters of the sensor controller for the DRP system. 
 

A vehicle speed threshold for the DRP system is necessary to predict whether a 

vehicle would make a red light violation or not. The present study set the speed threshold 

as the 70th percentile of operating speed for predicting a potential RLR vehicle within the 

red protection zone during the all-red interval. Upon detecting a vehicle traveling with a 

speed equal to or higher than the speed threshold value, the DRP system sends signals to 

the signal controller to hold the all-red time to ensure safe passage of the vehicles.  

6.2.4 Machine learning-based smart brain 

The machine learning-based smart brain in the DRP acts as the advanced RLR 

predictor along with the sensor controller. The smart brain utilizes an approaching 

vehicle’s speed, location, and time of arrival data to predict a potential red light runner 
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more accurately. The logic of the smart brain was developed using a large set of historical 

vehicle attribute data applied through several machine learning prediction methods. 

Finally, the best machine learning predictor model was utilized to incorporate into the 

signal controller logic. Such a smart brain ensures the soundness of the overall DRP 

system efficiency.  

6.2.5 Traffic signal controller 

Traffic signal controllers alternate service between conflicting traffic movements. 

This controller acts as the brain and has the jurisdiction to provide a certain traffic 

operation based upon predefined settings and signals from traffic sensors. In the DRP 

system, the signal controller receives calls from the sensor controller. After receiving 

calls, the signal controller then decides to extend the green interval or hold the red 

protection time, or terminate the phase based on the minimum and maximum allocated 

time.  

The red interval of the DRP system has three timing parameters. These are the 

minimum all-red, the unit extension, and the maximum all-red (Klein et al., 2006; 

Urbanik et al., 2015). The minimum all-red allows vehicles that entered the intersection 

during the yellow interval to safely clear the intersection before the phase transition. The 

maximum all-red interval is the maximum amount an all-red signal could be extended 

upon any potential RLR vehicle detection. The unit extension interval is the minimum 

extension of the all-red interval based on each vehicle detection within the detection zone 

that meets the speed threshold. The radar sensors typically track vehicles and place calls 

continuously to the signal controller in the 0.1-second interval. Thus, the unit extension 

interval is set to 0.1-second. 
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6.3 Short-Term Performance Evaluation of DRP System 

There are limited studies available in the current transportation literature that 

discuss the performance assessment of a DRP system. Simpson et al. (2017) employed a 

dynamic all-red extension system (DARE) based on a set of two-loop detectors placed 

240 upstream of the intersection stop bar. The authors then analyzed five types of 

performance measures (e.g., the average frequency of red light extensions per hour, the 

average number of RLRs per hour, the possible number of unnecessary red extensions per 

hour, the average length of the red extension, and possible time spent on unnecessary red 

extension) to see the effectiveness of the system. In this research, the authors also 

identified that the DARE did not affect the frequency of RLR violations. Such a finding 

is logical since the DARE system only provides protection to vehicles that have a high 

possibility to run a red light. In another study, Zhang et al. (2011) developed a 

probabilistic framework along with a prediction algorithm to identify potential conflicts 

due to RLR violations using vehicle attribute data. The prediction algorithm could 

correctly detect RLR conflicts with accuracies up to 80% along with a false alarm rate of 

less than 5%. In a similar study, Park et al. (2018) assessed the performance of the red 

interval extension system as a part of the dilemma zone protection system. In this study, 

the authors found that the developed red protection system could detect the potential red-

light violator with an accuracy of 100%, while the false alarm rate varies between 4 to 

16%.  

Based on the current transportation literature, the present study selected five 

performance measure to see how effectively the DRP system ensure the safety of an 
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intersection by providing protections to the RLR violators without compromising the 

operational efficiency of an intersection: average number of RLRs per day (I�A�), the 

average number of red extensions per day (K	N'), the average number of false-positive 

alarms per day (»8"L), the average number of false-negative alarms per day (»8"¼), and 

the average length of red extension per day (K�	N').  

The daily average number of vehicles that run the red light for the observation 

periods was I�A�. K	N' is the daily average number of red extensions provided by the 

DRP system. BY comparing the I�A�, and K	N'; »8"L, and »8"¼ were calculated. »8"L 

denotes the average daily number of unnecessary extensions while »8"L implies the 

number of events when red-light runners were not provided with red extensions. K�	N' is 

the average daily amount of all red intervals that were extended.  

To extract and estimate the five performance measures, high-fidelity vehicle 

attribute data from the radar sensor and high-resolution signal timing data from the signal 

controller were collected at the north and south-bound approaches of US43@CR96 for 5 

working days after DRP system implementation. The summary of the extracted and 

evaluated performance measures is shown in the table below. 

 

Table 13. Short-term performance assessment of implemented DRP system  

Sites ¸©µ© ¸°½« ¾¿£L ¾¿£¼ ©µ°½« 

NB of US43@CR96 43 51 8 (16%) 0 0.58 

SB of US43@CR96 39 46 7 (15%) 0 0.65 

Where, I�A�  = average number of RLRs per day (#/day); K	N'   = average number of red extensions per day (#/day); »8"L  = average number of false-positive alarms per day (#/day); »8"¼   = average number of false-negative alarms per day (#/day); and K�	N'   = average length of red extension per day (min/day) 
(Numbers mentioned in the parenthesis denote the percent variation) 
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As shown in Table 13, DRP extended the red interval 51 and 46 times on average 

against 43 and 39 RLR violations per day on average. Thus, the percentage of »8"L was 

observed upto 16%. Such outcomes are reasonable since the speed threshold value for 

RLR detection as well as the vehicle detection area was selected in a defensive manner. 

The null values of »8"¼ indicate the DRP system was able to detect all potential RLR 

vehicles. Thus, the accuracy of this system in terms of predicting actual RLR vehicles 

was 100%. In addition, the total red interval extension was less than one minute per day. 

Such a low extension did not considerably impact the overall operational efficiency of 

intersections.  

 

6.4 Summary 

RLR violations are a serious traffic issue in the United States causing numerous 

fatalities and economical losses each year. There are several countermeasures exist in the 

transportation literature that deal with the reduction of RLR variation in high-risk 

intersections. Despite all the countermeasures available, RLR violations could still be 

possible due to drivers' misjudgments towards the signal lights, platooning, and 

intentional running behavior. To provide safety for the RLR violators as well as the 

conflicting vehicles from potential intersection crashes, researchers are now adopting a 

radar sensor-based DRP system. This system dynamically extends the all-red time when 

it can detect a potential RLR vehicle to provide a passage for this vehicle to clear out the 

intersection safely before any phase transition. To predict a potential RLR vehicle, the 
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DRP system continuously monitors vehicles’ approaching speed, location, and time of 

arrival during the all-red time.  

As a part of the state-wide roadway safety improvement, ALDOT implemented 

DRP systems in several intersections where intersection crashes related to RLR were high 

in the past. The present study performed a short-term performance study of a DRP system 

implemented in the US43 & CR96 intersection where a machine learning based RLR 

predictor smart brain was utilized with the synergy to the orthodox sensor controller 

algorithm. The performance assessment showed that the DRP system was able to 

improve the safety of the intersection by predicting all RLR violators and protecting them 

from a potentially hazardous situation by dynamically extending red time. The average 

extended all red interval was negligible. Thus the operation efficiency of that intersection 

was not significantly impacted by the DRP system. 
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CHAPTER VII: CONCLUSION 

 

Drivers’ decision dilemma at the onset of the yellow light, while they are traveling 

towards the intersection, is one of the major safety issues of the present transportation 

system. The roadway section upstream of the intersection stop bar where drivers’ such 

dilemmas are critical and severe is known as the dilemma zone. Within this dilemma 

zone, a driver’s wrong decision to pass the intersection could increase the likelihood of 

angle crashes while taking an incorrect decision of stopping may increase the possibility 

of rear-end crashes. 

Each year hundreds of fatalities and thousands of injuries occur in the U.S. due to 

drivers’ misjudgments toward the yellow indication. According to a study by Federal 

Highway Administration (FHWA), crashes related to dilemma zone account for 53% of 

total fatal intersection crashes. The dilemma zone issue is more serious at a high-speed 

signalized intersection because it has greater variability in operating speeds and greater 

potential for serious crashes. As vehicle speeds at an intersection approach increase, the 

severity of the crashes also increases. Furthermore, crashes involving heavy vehicles are 

more likely to result in fatal outcomes. Thus, the dilemma zone is a key safety issue that 

needs to be addressed with a high priority to improve the intersection safety. 

To provide protection to drivers located within the dilemma zone at the onset of 

the yellow indications, the dilemma zone protection (DZP) system is traditionally 

implemented in an intersection approach using a set of advanced loop detectors installed 

around 500 to 600 ft upstream of the intersection stop bar. Such a DZP system extends 

the green interval for a fixed amount of time upon detecting a vehicle presence at the loop 
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detectors if the minimum green interval is expired. This DZP system considers vehicles 

traveling at a uniform speed without any acceleration/deceleration within the roadway 

section between the stop bar and the advanced loop detectors. The traditional system only 

performs based on vehicle detection at one point and cannot track approaching vehicles’ 

speed and location continuously. Thus, this system has limitations to provide efficient 

protection to the vehicle affected by the dilemma zone. In addition, the fixed amount of 

green interval extension may sometimes compromise the operation efficiency of the 

intersection by creating unnecessary delays to vehicles from crossing directions.  

Recently intersection traffic management using microwave radar sensors is 

getting popular among traffic researchers. Due to the continuous development in 

computational power and radar-associated algorithms, the capabilities and effectiveness 

of radar sensors continue to expand. In addition, radar sensors have the capability of 

monitoring approaching vehicles’ speeds and locations at a precision rate of 1/1000 of a 

second for a wide section of a roadway (up to 900 feet upstream of the sensor location) 

making such a system better capable of accurately identifying approaching vehicles’ 

speed and their distance from the intersection stop bar. Such an advantage of radar sensor 

over loop detector could allow the traffic researcher to implement a dynamic DZP system 

that could calculate the exact amount of green extension time for a dilemma zone trapped 

vehicle to clear the intersection safely without compromising the intersection efficiency. 

In addition, using the radar sensor for continuous vehicle monitoring, potential red-light 

running (RLR) vehicles could be identified and provided with protection from a potential 

intersection crash.  
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Several researchers have contributed to the field of radar sensor-based DZP using 

orthodox vehicle detection algorithms of the radar sensor. Their research show competent 

outcomes in addressing the dilemma zone issues at high-risk intersections, safeguarding 

drivers from dilemma zone related hazardous situation, predicting potential RLR 

vehicles, and improving overall traffic safety of the intersection. However, an effective 

application of machine learning based driver behavior prediction method in conjunction 

with the orthodox vehicle detection algorithms of the radar sensor could potentially 

improve the overall safety of the road users as well as increase the overall traffic 

performance of intersections.  

The present study develops a systematic framework of a dynamic DZP system 

based on radar sensor vehicle detection and machine learning based driver behavior 

prediction to promote traffic safety and operational efficiency of high-risk signalized 

intersections. A details analysis of the dynamic DZP system components is performed 

based on systems engineering aspects. The DZP system’s active and passive stakeholders 

are identified at first and then tied together based on their requirements. Later 

stakeholders' requirements along with their interrelations are reflected through the 

dynamic DZP system use case. Domain and activity diagrams are designed to achieve the 

desired goal. Finally, the system logical architect explains the communication between 

the subsystems of the DZP system. This systems engineering based framework would 

help traffic engineers as well as transportation researchers to install, modify, and improve 

the DZP system based on site-specific characteristics of the site along with the 

requirements of the system’s stakeholders.  



151 
 

Afterward, the present study develops a methodology by which high-risk 

intersections in terms of dilemma zone crashes could be identified using readily available 

intersection site-specific characteristics (e.g., the operating speed, the approach grade, 

and the amount of truck traffic). For that, driver behavior at 46 high-speed signalized 

intersection approaches where the posted speed limit is 50 mph or higher is analyzed to 

see if there is a relationship between the dilemma zone and the intersection site-specific 

characteristics. The results show that the approach grade, the operating speed, and the 

amount of truck traffic at the signalized intersection have strong correlations with the 

dilemma zone. It is also found that the dilemma zone length is longer, and its location is 

farther from the stop bar if the approach grade is the steeper (toward negative values), if 

the operating speed is higher, or if more truck traffic operates at the intersection 

approach. The developed models are compared with the TTI-based method, which uses 

2.5 and 5.5 s of the travel time to the intersection stop bar (TTI) to determine the 

dilemma zone start and endpoints. The analysis shows that the developed site-specific 

dilemma zone models outperform the TTI-based method and well fit the observed data 

with pseudo R2 ≥ 0.9 and p-value ≤ 0.05. 

Later, this study focuses on developing an innovative framework for predicting 

driver behavior under varying dilemma zone conditions using artificial intelligence-based 

machine learning methods. The framework utilizes multiple machine learning techniques 

to process vehicle attribute data (e.g., speed, location, and time-of-arrival) collected at the 

onset of the yellow indication, and eventually predict drivers’ stop-or-go decisions based 

on the data. A linear SVM is used to extract through vehicles from all approaching 

vehicles detected from radar sensors. A hierarchical clustering method is utilized to 
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classify different traffic patterns by time of day. Finally, driver behavior prediction 

models are developed using three machine learning techniques (i.e., linear SVM, 

polynomial SVM, and ANN) widely adopted for binary classification problems. Model 

validation results show that all the prediction models perform well with high prediction 

accuracies. The ANN model, which shows the best performance among the three, is 

selected to represent dilemma zone boundaries. Results show that the dilemma zone start- 

and end-points would both locate further from the stop bar with higher approaching 

speeds. Furthermore, the dilemma zone end-point would be more sensitive to the 

approaching speed than the start-point is. As a result, the dilemma zone length would 

become longer with higher approaching speeds. Results also show that the dilemma zone 

length and location would vary by time of day regardless of the speed of approaching 

vehicles. The analysis shows that the dilemma zone length would be longer and its 

location would be much further from the stop bar for vehicles arriving during rush hours, 

as compared to those arriving during non-rush or nighttime hours. This indicates that 

drivers’ decision location to stop or go (when they are faced with a dilemma zone 

situation) is distributed farther from the intersection stop bar during rush hours. The 

proposed method shows an effective way of predicting driver behavior at signalized 

intersections. It is expected for the transportation agencies to use the method to improve 

intersection signal operations more effectively and safely. 

Finally, the present study analyzes the performance of the DZP system. A DZP 

system is typically comprised of two major subsystems, dynamic green extension (DGE), 

and dynamic red protection (DRP). Thus, the performance assessment is divided into two 

sections. The first section presents a comprehensive assessment of the DGE system, using 
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high-fidelity vehicle attributes and high-definition signal controller data collected before 

and after the DGE system implementation. A total of ten performance measures 

(including percent green arrivals, percent yellow arrivals, percent red arrivals, dilemma 

zone length, and red-light running vehicles before and after the DGE system 

implementation) are employed to comprehensively assess the safety and operational 

benefits of the DGE system. The analysis results show that the DGE system could 

efficiently improve intersection operations by increasing vehicle arrivals during the green 

intervals as well as decreasing vehicle arrivals during the yellow and red intervals. The 

results also show that the DGE system could improve intersection safety significantly by 

reducing the number of vehicles trapped within the dilemma zone during the yellow 

interval, while simultaneously decreasing the dilemma zone length. The overall 

intersection performance could also be improved since this system potentially reduces the 

delay for the side streets along with that of the main street by efficiently managing the 

signal timing. In addition, the DGE system could improve the overall safety of an 

intersection by reducing dilemma zone conflicts. The second section presents a short-

term performance study of a DRP system implemented in US43 & CR96 located in Mt. 

Vernon, Mobile area. The performance assessment showed that the DRP system was able 

to improve the safety of the intersection by predicting all RLR violators and protecting 

them from a potentially hazardous situation by dynamically extending all red intervals. 

The average extended all red interval per day was negligible. Thus the operation 

efficiency of that intersection was not significantly impacted by the DRP system. Based 

on the outcomes from the performance assessments of the DGE and DRP systems, it 

could be said that the machine learning based DZP system would be able to promote 
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intersection safety by protecting the dilemma zone impacted vehicles from potential 

intersection crashes as well as enhance the operational performance of intersections by 

intelligently allocate exact right-of-way to the vehicles and reducing the overall delays. 

  



155 
 

 
 

REFERENCES 

 

Abbas, M. M., & Machiani, S. G. (2016). Modeling the dynamics of driver's dilemma 

zone perception using agent based modeling techniques. International journal of 

transportation, 4(2), 1-14. 

Abbas, M. M., Wang, Q., Higgs, B. J., Sarabi, D. Z., Machiani, S. G., Mladenovic, M. N., 

& Fulari, S. (2017). Addressing dilemma zone issues with control solutions (No. 

FHWA/VTRC 17-R14). Virginia Transportation Research Council. 

Abbas, M., Machiani, S. G., Garvey, P. M., Farkas, A., & Lord-Attivor, R. 

(2014). Modeling the dynamics of driver’s dilemma zone perception using machine 

learning methods for safer intersection control (No. MAUTC-2012-04). Mid-

Atlantic Universities Transportation Center. 

Abdel-Rahim, A., Chang, K., & Zender, R. (2018). Evaluation of Vehicle Detection 

Systems for Traffic Signal Operations. Journal of Transportation Engineering, Part 

A: Systems, 144(2), 04017075. 

ALDOT (Alabama Department of Transportation) (2017) . Alabama Statewide Freight 

Plan. Freight Network. https://www.dot.state.al.us/oeweb/freightPlanning.html. 

Accessed: 2020-06-06. 



156 
 

Amer, A., Rakha, H., & El-Shawarby, I. (2012). Novel stochastic procedure for designing 

yellow intervals at signalized intersections. Journal of transportation 

engineering, 138(6), 751-759. 

Aoude, G. S., Desaraju, V. R., Stephens, L. H., & How, J. P. (2012). Driver behavior 

classification at intersections and validation on large naturalistic data set. IEEE 

Transactions on Intelligent Transportation Systems, 13(2), 724-736. 

Atiquzzaman, M., Qi, Y., & Fries, R. (2018). Real-time detection of drivers’ texting and 

eating behavior based on vehicle dynamics. Transportation research part F: traffic 

psychology and behaviour, 58, 594-604. 

Auvinen, H., & Tuominen, A. (2014). Future transport systems: long-term visions and 

socio-technical transitions. European Transport Research Review, 6(3), 343-354. 

Balali, V., & Golparvar-Fard, M. (2014, January). Video-based detection and 

classification of US traffic signs and mile markers using color candidate extraction 

and feature-based recognition. In 2014 International Conference on Computing in 

Civil and Building Engineering (pp. 858-866). American Society of Civil 

Engineers. 

Bar-Gera, H., Musicant, O., Schechtman, E., & Ze’evi, T. (2016). Quantifying the yellow 

signal driver behavior based on naturalistic data from digital enforcement 

cameras. Accident Analysis & Prevention, 96, 371-381. 



157 
 

Biswas, P., Kang, M. W., & Rahman, M. (2022). Machine Learning Based Automated 

Left-Turn Vehicle Counts With Conventional Presence Mode Long-Loop 

Detectors: Alabama Case Studies. Transportation Research Record, 

03611981221090519. 

Bonneson, J., Middleton, D., Zimmerman, K., Charara, H., & Abbas, M. (2001). 

Development and evaluation of a detection-control system for rural 

intersections. US Department Transportation, Washington DC, Federal Highway 

Administation FHWA/TX-02-4022-1. 

Bonneson, J., Middleton, D., Zimmerman, K., Charara, H., & Abbas, M. (2002). 

Intelligent detection-control system for rural signalized intersections. Texas 

Department of Transportation. 

Boswell, D. (2002). Introduction to support vector machines. Departement of Computer 

Science and Engineering University of California San Diego. 

Caird, J. K., Chisholm, S. L., Edwards, C. J., & Creaser, J. I. (2007). The effect of yellow 

light onset time on older and younger drivers’ perception response time (PRT) and 

intersection behavior. Transportation research part F: traffic psychology and 

behaviour, 10(5), 383-396. 

Calafate, C. T., Soler, D., Cano, J. C., & Manzoni, P. (2015). Traffic management as a 

service: The traffic flow pattern classification problem. Mathematical Problems in 

Engineering, 2015. 



158 
 

Center for Advanced Public Safety (CAPS). (2017). Alabama Department of 

Transportation: 2017 Crash Facts. http://www.cap-s.ua.edu/outreach/reports/crash-

facts-book/. 

Center for Advanced Public Safety (CAPS). (2018). Alabama Department of 

Transportation: 2018 Crash Facts. http://www.cap-s.ua.edu/outreach/reports/crash-

facts-book/. 

Chang, C. C., & Lin, C. J. (2011). LIBSVM: a library for support vector machines. ACM 

transactions on intelligent systems and technology (TIST), 2(3), 1-27. 

Chang, G. L., Franz, M. L., Liu, Y., Lu, Y., & Tao, R. (2013). Design and evaluation of 

an intelligent dilemma-zone protection system for a high-speed rural 

intersection. Transportation research record, 2356(1), 1-8. 

Chang, M. S., Messer, C. J., & Santiago, A. J. (1985). Timing traffic signal change 

intervals based on driver behavior. Transportation Research Record, 1027, 20-30. 

Chen, J., Wang, H., & Hua, C. (2018). Electroencephalography based fatigue detection 

using a novel feature fusion and extreme learning machine. Cognitive Systems 

Research, 52, 715-728. 

Chen, S. A. B. S., & Billings, S. A. (1992). Neural networks for nonlinear dynamic 

system modelling and identification. International journal of control, 56(2), 319-

346. 



159 
 

Chicco, D., & Jurman, G. (2020). The advantages of the Matthews correlation coefficient 

(MCC) over F1 score and accuracy in binary classification evaluation. BMC 

genomics, 21(1), 1-13. 

Choi, E. H. (2010). Crash factors in intersection-related crashes: An on-scene 

perspective. 

Du, B., Chien, S., Lee, J., & Spasovic, L. (2017). Predicting freeway work zone delays 

and costs with a hybrid machine-learning model. Journal of Advanced 

Transportation, 2017. 

Elassad, Z. E., Mousannif, H., Al Moatassime, H., & Karkouch, A. (2020). The 

application of machine learning techniques for driving behavior analysis: A 

conceptual framework and a systematic literature review. Engineering Applications 

of Artificial Intelligence, 87, 103312. 

Elhenawy, M., Jahangiri, A., Rakha, H. A., & El-Shawarby, I. (2015). Classification of 

driver stop/run behavior at the onset of a yellow indication for different vehicles 

and roadway surface conditions using historical behavior. Procedia 

Manufacturing, 3, 858-865. 

Elmitiny, N., Yan, X., Radwan, E., Russo, C., & Nashar, D. (2010). Classification 

analysis of driver's stop/go decision and red-light running violation. Accident 

Analysis & Prevention, 42(1), 101-111. 



160 
 

El-Shawarby, I., Rakha, H., Amer, A., & McGhee, C. (2011). Impact of driver and 

surrounding traffic on vehicle deceleration behavior at onset of yellow 

indication. Transportation research record, 2248(1), 10-20. 

Ersal, T., Fuller, H. J., Tsimhoni, O., Stein, J. L., & Fathy, H. K. (2010). Model-based 

analysis and classification of driver distraction under secondary tasks. IEEE 

transactions on intelligent transportation systems, 11(3), 692-701. 

Gates, T. J., & Noyce, D. A. (2010). Dilemma zone driver behavior as a function of 

vehicle type, time of day, and platooning. Transportation Research 

Record, 2149(1), 84-93. 

Gates, T. J., McGee Sr, H., Moriarty, K., & Maria, H. U. (2012). Comprehensive 

evaluation of driver behavior to establish parameters for timing of yellow change 

and red clearance intervals. Transportation research record, 2298(1), 9-21. 

Gates, T. J., Noyce, D. A., Laracuente, L., & Nordheim, E. V. (2007). Analysis of 

dilemma zone driver behavior at signalized intersections. Transportation Research 

Record, 2030, 29-39. 

Gazis, D., Herman, R., & Maradudin, A. (1960). The problem of the amber signal light in 

traffic flow. Operations research, 8(1), 112-132. 

Geels, F. W. (2006). Multi-level perspective on system innovation: relevance for 

industrial transformation. In Understanding industrial transformation (pp. 163-

186). Springer, Dordrecht. 



161 
 

Hsu, C. W., & Lin, C. J. (2002). A comparison of methods for multiclass support vector 

machines. IEEE transactions on Neural Networks, 13(2), 415-425. 

Hurwitz, D. S., Knodler Jr, M. A., & Nyquist, B. (2011). Evaluation of driver behavior in 

type II dilemma zones at high-speed signalized intersections. Journal of 

transportation engineering, 137(4), 277-286. 

Hurwitz, D. S., Wang, H., Knodler Jr, M. A., Ni, D., & Moore, D. (2012). Fuzzy sets to 

describe driver behavior in the dilemma zone of high-speed signalized 

intersections. Transportation research part F: traffic psychology and 

behaviour, 15(2), 132-143. 

Hurwitz, D., Abadi, M. G., McCrea, S., Quayle, S., & Marnell, P. (2016). Smart red 

clearance extensions to reduce red-light running crashes (No. FHWA-OR-RD-16-

10). Oregon. Dept. of Transportation. 

Hussain, Q., Alhajyaseen, W. K., Brijs, K., Pirdavani, A., & Brijs, T. (2020). Innovative 

countermeasures for red light running prevention at signalized intersections: A 

driving simulator study. Accident Analysis & Prevention, 134, 105349. 

Jahangiri, A., & Rakha, H. A. (2015). Applying machine learning techniques to 

transportation mode recognition using mobile phone sensor data. IEEE transactions 

on intelligent transportation systems, 16(5), 2406-2417. 



162 
 

Jahangiri, A., Rakha, H., & Dingus, T. A. (2016). Red-light running violation prediction 

using observational and simulator data. Accident Analysis & Prevention, 96, 316-

328. 

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2017). An introduction to statistical 

learning (Vol. 112, p. 18). New York: springer. 

Jin, L., Niu, Q., Hou, H., Xian, H., Wang, Y., & Shi, D. (2012). Driver cognitive 

distraction detection using driving performance measures. Discrete Dynamics in 

Nature and Society, 2012. 

Kang, M. W., Rahman, M., & Lee, J. (2020). Determination and utilization of dilemma 

zone length and location for safety assessment of rural high-speed signalized 

intersections. Transportation research record, 2674(4), 272-280. 

Kim, Z. (2008). Robust lane detection and tracking in challenging scenarios. IEEE 

Transactions on intelligent transportation systems, 9(1), 16-26. 

Klein, L. A., Mills, M. K., & Gibson, D. R. (2006). Traffic detector handbook: Volume 

I (No. FHWA-HRT-06-108). Turner-Fairbank Highway Research Center. 

Klemann, B., Byerly, J. (2020). Literature Search 621: Evaluating Different Detection 

Technologies for Signalized Intersections. Minnesota Department of 

Transportation, 1–15. 



163 
 

Köll, H., Bader, M., & Axhausen, K. W. (2004). Driver behaviour during flashing green 

before amber: a comparative study. Accident Analysis & Prevention, 36(2), 273-

280. 

Lavrenz, S. M., Pyrialakou, V. D., & Gkritza, K. (2014). Modeling driver behavior in 

dilemma zones: A discrete/continuous formulation with selectivity bias 

corrections. Analytic Methods in Accident Research, 3, 44-55. 

Li, J., Jiang, B., Dong, C., Wang, J., & Zhang, X. (2020). Analysis of driver decisions at 

the onset of yellow at signalized intersections. Journal of advanced 

transportation, 2020. 

Liang, Y., Reyes, M. L., & Lee, J. D. (2007). Real-time detection of driver cognitive 

distraction using support vector machines. IEEE transactions on intelligent 

transportation systems, 8(2), 340-350. 

Liu, Y., Chang, G. L., Tao, R., Hicks, T., & Tabacek, E. (2007). Empirical observations 

of dynamic dilemma zones at signalized intersections. Transportation Research 

Record, 2035(1), 122-133. 

Lu, G., Wang, Y., Wu, X., & Liu, H. X. (2015). Analysis of yellow-light running at 

signalized intersections using high-resolution traffic data. Transportation research 

part A: policy and practice, 73, 39-52. 



164 
 

Machiani, S. G., & Abbas, M. (2016). Safety surrogate histograms (SSH): A novel real-

time safety assessment of dilemma zone related conflicts at signalized 

intersections. Accident Analysis & Prevention, 96, 361-370. 

Mahalel, D., Zaidel, D., & Klein, T. (1985). Driver's decision process on termination of 

the green light. Accident Analysis & Prevention, 17(5), 373-380. 

Majhi, R. C., & Senathipathi, V. (2020). Analyzing Driver’s Response to Yellow 

Indication Subjected to Dilemma Incursion: An Econometric 

Approach. Transportation research procedia, 48, 1111-1124. 

McFadden, D. (1973). Conditional logit analysis of qualitative choice behavior. 

McGee Sr, H., Moriarty, K., & Gates, T. J. (2012). Guidelines for timing yellow and red 

intervals at signalized intersections. Transportation research record, 2298(1), 1-8. 

Mohammed, H. A., Abadi, M. G., & Hurwitz, D. S. (2022). Red-light running violation 

during car following at high-speed signalized intersections. Transportation 

Engineering, 8, 100110. 

Nagelkerke, N. J. (1991). A note on a general definition of the coefficient of 

determination. Biometrika, 78(3), 691-692. 

National Highway Traffic Safety Administration (NHTSA). Overview of the 2019 Crash 

Investigation Sampling System. 2016. 

https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/813038. 



165 
 

Ottens, M., Franssen, M., Kroes, P., & Van De Poel, I. (2006). Modelling infrastructures 

as socio-technical systems. International journal of critical infrastructures, 2(2-3), 

133-145. 

Papaioannou, P. (2007). Driver behaviour, dilemma zone and safety effects at urban 

signalised intersections in Greece. Accident Analysis & Prevention, 39(1), 147-158. 

Park, S. Y., Lan, C. L., Rao, R. S., & Chang, G. L. (2018). Field evaluation of the 

dilemma zone protection system at suburban intersections. Transportation research 

record, 2672(21), 51-62. 

Parsonson, P. S. (1978). Signalization of high speed isolated intersections. Transportation 

Research Board, National Research Council. 

Parsonson, P. S. (1992). NCHRP synthesis of highway practice 172: Signal timing 

improvement practices. TRB, National Research Council, Washington, DC. 

Pathivada, B. K., & Perumal, V. (2017). Modeling driver behavior in dilemma zone 

under mixed traffic conditions. Transportation research procedia, 27, 961-968. 

Pathivada, B. K., & Perumal, V. (2019). Analyzing dilemma driver behavior at signalized 

intersection under mixed traffic conditions. Transportation research part F: traffic 

psychology and behaviour, 60, 111-120. 

Pawar, D. S., Kumar, V., Singh, N., & Patil, G. R. (2016). Analysis of dilemma zone for 

pedestrians at high-speed uncontrolled midblock crossing. Transportation research 

part C: emerging technologies, 70, 42-52. 



166 
 

Porter, B. E., & England, K. J. (2000). Predicting red-light running behavior: a traffic 

safety study in three urban settings. Journal of Safety Research, 31(1), 1-8. 

Pugh, N., & Park, H. (2018, April). Prediction of red-light running using an artificial 

neural network. In SoutheastCon 2018 (pp. 1-4). IEEE. 

Rahman, M., & Kang, M. W. (2020). Safety evaluation of drowsy driving advisory 

system: Alabama case study. Journal of Safety Research, 74, 45-53. 

Rahman, M., & Kang, M. W. (2021). Analysis of intersection site-specific characteristics 

for Type II dilemma zone determination. Journal of transportation engineering, 

Part A: Systems, 147(10), 04021072. 

Rahman, M., Kang, M. W., & Biswas, P. (2021). Predicting time-varying, speed-varying 

dilemma zones using machine learning and continuous vehicle 

tracking. Transportation research part C: emerging technologies, 130, 103310. 

Rakha, H., El-Shawarby, I., & Setti, J. R. (2007). Characterizing driver behavior on 

signalized intersection approaches at the onset of a yellow-phase trigger. IEEE 

Transactions on Intelligent Transportation Systems, 8(4), 630-640. 

Ren, J. (2012). ANN vs. SVM: Which one performs better in classification of MCCs in 

mammogram imaging. Knowledge-Based Systems, 26, 144-153. 

Retting, R. A., & Greene, M. A. (1997). Influence of traffic signal timing on red-light 

running and potential vehicle conflicts at urban intersections. Transportation 

Research Record, 1595(1), 1-7. 



167 
 

Retting, R. A., & Williams, A. F. (1996). Characteristics of red light violators: Results of 

a field investigation. Journal of Safety Research, 27(1), 9-15. 

Retting, R. A., Ferguson, S. A., & Farmer, C. M. (2008). Reducing red light running 

through longer yellow signal timing and red light camera enforcement: results of a 

field investigation. Accident Analysis & Prevention, 40(1), 327-333. 

Retting, R. A., Williams, A. F., & Greene, M. A. (1998). Red-light running and sensible 

countermeasures: Summary of research findings. Transportation research 

record, 1640(1), 23-26. 

Ropohl, G. (1999). Philosophy of socio-technical systems. Society for Philosophy and 

Technology Quarterly Electronic Journal, 4(3), 186-194. 

Roy, T., Tariq, A., & Dey, S. (2021). A socio-technical approach for resilient connected 

transportation systems in smart cities. IEEE Transactions on Intelligent 

Transportation Systems. 

Santiago-Chaparro, K. R., & Noyce, D. A. (2019). Expanding the capabilities of radar-

based vehicle detection systems: noise characterization and removal 

procedures. Transportation research record, 2673(11), 150-160. 

Savolainen, P. T., Sharma, A., & Gates, T. J. (2016). Driver decision-making in the 

dilemma zone–Examining the influences of clearance intervals, enforcement 

cameras and the provision of advance warning through a panel data random 

parameters probit model. Accident Analysis & Prevention, 96, 351-360. 



168 
 

Schrock, E.M., Lefevre, H.L., Schrock, E.M., Lefevre, H.L. (2002). Understanding 

Regression Analyses. Good Bad News About Quality. 

Sharma, A., Bullock, D. M., & Peeta, S. (2007). Recasting dilemma zone design as a 

marginal cost–benefit problem. Transportation Research Record, 2035(1), 88-96. 

Sharma, A., Bullock, D. M., Velipasalar, S., Casares, M., Schmitz, J., & Burnett, N. 

(2011). Improving safety and mobility at high-speed intersections with innovations 

in sensor technology. Transportation research record, 2259(1), 253-263. 

Sheffi, Y., & Mahmassani, H. (1981). A model of driver behavior at high speed 

signalized intersections. Transportation Science, 15(1), 50-61. 

Simpson, C. L., Harrison, M. W., & Troy, S. A. (2017). Implementation of a dynamic all-

red extension at signalized intersections in North Carolina: Evaluation of driver 

adaptation and operational performance. Transportation Research Record, 2624(1), 

19-27. 

Sullivan, A., Steven, P.E., Jones, L.E., Tedla, E., Doustmohammadi, S., Committee, S., 

Glass, P.E., Maintenance Bureau, A., Blankenship, R., Barnett, T., Manson, S. 

(2015). Traffic Signal Design Guide & Timing Manual. Alabama Department of 

Transportation. 

Sunkari, S., Parker, R., Charara, H., Palekar, T., & Middleton, D. (2005). Evaluation of 

cost-effective technologies for advance detection (No. FHWA/TX-06/0-5002-1). 



169 
 

Urbanik, T., Tanaka, A., Lozner, B., Lindstrom, E., Lee, K., Quayle, S., Beaird, S., Tsoi, 

S., Ryus, P., Gettman, D., Sunkari, S., Balke, K., Bullock, D. (2015). Signal timing 

manual (Vol. 1). Washington, DC: Transportation Research Board. 

van Haperen, W., Pirdavani, A., Brijs, T., & Bellemans, T. (2016). Evaluating traffic 

safety and performance effects of countdown timers on signalized intersections: A 

driving simulator study. Adv. Transp. Stud, 1, 7-22. 

Wang, Y., Li, Y., Cao, H., Xiong, M., Shugart, Y. Y., & Jin, L. (2015). Efficient test for 

nonlinear dependence of two continuous variables. BMC bioinformatics, 16(1), 1-8. 

Wei, H., Li, Z., & Ai, Q. (2009). Observation-based study of intersection dilemma zone 

natures. Journal of Transportation Safety & Security, 1(4), 282-295. 

Wei, H., Li, Z., Yi, P., & Duemmel, K. R. (2011). Quantifying dynamic factors 

contributing to dilemma zone at high-speed signalized intersections. Transportation 

research record, 2259(1), 202-212. 

Weidmann, W., & Steinbuch, D. (1998, October). A high resolution radar for short range 

automotive applications. In 1998 28th European Microwave Conference (Vol. 1, 

pp. 590-594). IEEE. 

Wu, H., Gao, L., & Zhang, Z. (2014). Analysis of crash data using quantile regression for 

counts. Journal of Transportation Engineering, 140(4), 04013025. 



170 
 

Yuan, F., & Cheu, R. L. (2003). Incident detection using support vector 

machines. Transportation Research Part C: Emerging Technologies, 11(3-4), 309-

328. 

Zaheri, D., & Abbas, M. (2015, September). An algorithm for identifying red light 

runners from radar trajectory data. In 2015 IEEE 18th International Conference on 

Intelligent Transportation Systems (pp. 2683-2687). IEEE. 

Zegeer, C. V., & Deen, R. C. (1978). Green-extension systems at high-speed 

intersections (Vol. 496). Department of Transportation. 

Zhang, H., Cheng, L., Tu, Q., & Wang, Q. (2018). Research on Dynamic Nature of 

Dilemma Zone at Signalized Intersections. In CICTP 2017: Transportation Reform 

and Change—Equity, Inclusiveness, Sharing, and Innovation (pp. 4258-4266). 

Reston, VA: American Society of Civil Engineers. 

Zhang, L., Wang, L., Zhou, K., & Zhang, W. B. (2011). Dynamic all-red extension at a 

signalized intersection: A framework of probabilistic modeling and performance 

evaluation. IEEE Transactions on Intelligent Transportation Systems, 13(1), 166-

179. 

Zhang, L., Wang, L., Zhou, K., Zhang, W. B., & Misener, J. A. (2010). Use of field 

observations in developing collision-avoidance system for arterial red light running: 

Factoring headway and vehicle-following characteristics. Transportation research 

record, 2189(1), 78-88. 



171 
 

Zhang, Y., Fu, C., & Hu, L. (2014). Yellow light dilemma zone researches: a 

review. Journal of traffic and transportation engineering (English edition), 1(5), 

338-352. 

Zimmerman, K., & Bonneson, J. A. (2004). Intersection safety at high-speed signalized 

intersections: Number of vehicles in dilemma zone as potential 

measure. Transportation Research Record, 1897(1), 126-133. 

Zimmerman, K., & Bonneson, J. A. (2006). In-Service Evaluation of Detection–Control 

System for Isolated High-Speed Signalized Intersections. Transportation research 

record, 1978(1), 34-41. 

Zimmerman, K., Bonneson, J. A., Middleton, D., & Abbas, M. M. (2003). Improved 

detection and control system for isolated high-speed signalized 

intersections. Transportation research record, 1856(1), 212-219.  



172 
 

 

 

 

BIOGRAPHICAL SKETCH 

 

Name of Author: Md Moynur Rahman  
 
 
Graduate and Undergraduate Schools Attended: 

Ph.D. in Systems Engineering, University of South Alabama, Mobile, Alabama 

M.Sc. in Civil Engineering, University of South Alabama, Mobile, Alabama 

B.Sc. in Civil Engineering, Bangladesh University of Engineering and Technology, 
Dhaka, Bangladesh 

 

Degrees Awarded:  

Doctor of Philosophy in Systems Engineering, 2022, Mobile, Alabama 

Master of Science in Civil Engineering, 2018, Mobile, Alabama 

Bachelor of Science in Civil Engineering, 2013, Dhaka, Bangladesh 

 

Publications:  

Rahman, M., & Kang, M. W. (2021). Analysis of intersection site-specific 

characteristics for Type II dilemma zone determination. Journal of transportation 

engineering, Part A: Systems, 147(10), 04021072. 

 



173 
 

Rahman, M., Kang, M. W., & Biswas, P. (2021). Predicting time-varying, speed-

varying dilemma zones using machine learning and continuous vehicle 

tracking. Transportation research part C: emerging technologies, 130, 103310. 

 
Rahman, M., & Kang, M. W. (2020). Safety evaluation of drowsy driving advisory 

system: Alabama case study. Journal of Safety Research, 74, 45-53. 

 
Biswas, P., Kang, M. W., & Rahman, M. (2022). Machine Learning Based 

Automated Left-Turn Vehicle Counts With Conventional Presence Mode Long-Loop 

Detectors: Alabama Case Studies. Transportation Research Record, 

03611981221090519. 

 
Kang, M. W., Rahman, M., & Lee, J. (2020). Determination and utilization of 

dilemma zone length and location for safety assessment of rural high-speed signalized 

intersections. Transportation research record, 2674(4), 272-280. 


	Dynamic Dilemma Zone Protection System: A Smart Machine Learning Based Approach to Countermeasure Drivers's Yellow Light Dilemma
	/var/tmp/StampPDF/RYaZ3r9NtP/tmp.1662496544.pdf.0ColL

