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Abstract - To reduce commutation torque ripple, a 

model predictive control (MPC) for  permanent 

brushless DC motors (BLDCM) is presented (CTR). 

Torque ripples cause vibration noise and decrease 

efficiency. The suggested MPC system is constructed 

by forecasting the phase current with the aim of 

minimizing the BLDCM's CTR and taking into 

consideration the CTR sources. The method presented 

in this paper is a  unique methodology for suppressing 

CTR over the whole speed range, avoids more 

complex current controllers or modulation models, 

and overcomes the challenges of commutated-phase-

current control. The ideal switching state is instantly 

selected and implemented during the next sample 

period according to the preset cost function in order to 

match the slope rates of outgoing and incoming phase 

currents during commutation, ensuring the minimum 

of commutation torque ripple. The modelling and 

experiment findings show that the suggested method 

can effectively reduce CTR over a wide speed range 

and achieve the better CTR minimization 

performance. The results are then compared to the 

outcomes of various torque ripple reduction(TRR) 

techniques. 

Key words- Model Predictive Control(MPC), 

Brushless DC motor(BLDCM), Commutational 

Torque Ripple(CTR) 

I. INTRODUCTION 
Permanent magnet brushless dc motors 

(BLDCMs) have been widely used in a variety of 

fields, including aerospace, robots,home appliances’ 

industry,automotive electronics, and office automation  

 

 

due to their high power density, torque to inertia 

ratio, simple structure, power efficiency, and 

robustness [1]-[5].Torque ripple, which comprises 

current ripple, cogging torque ripple and CTR, is still a 

key issue for permanent-magnet BLDCM. The most 

significant of them is commutation torque ripple, 

which limits the use of permanent-magnet BLDCM in 

high-performance regions [6]-[10]. 

The Current study focuses on minimizing 

commutation torque ripple. The CTR is dependent on 

the connection between and dc-link voltage and back 

electromotive force (EMF), according to an early 

analytical study of CTR described in [11]. The effects 

of hysteresis current regulated pulse-width modulation 

(PWM) on commutation torque ripple discussed in 

[12], which concludes that the current ripple and 

length of commutation phase during commutation 

changes with speed and are dependent on the phase 

current amplitude. In [13][14], a unique approach to 

reduce CTR is presented, which is accomplished by 

adjusting the duty ratio of the PWM based on the 

voltage of the non-commutated phase before 

commutation and during commutation maintaining the 

average voltage of the non-commutated phase. An 

enhanced permanent magnet direct torque control  

BLDCM is presented in [15] to maintain constant 

electromagnetic torque, hence avoiding ripple in 

commutation torque. Unfortunately, these traditional 

approaches for reducing CTR are implemented 

independently at low speed and high speed, making 

them rather complex over the full speed range. Thus, 

the cut-off point of high speed and low speed is 

necessary, and performance may decrease if the cut-

off point is inaccurate. Current control schemes have a 
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significant effect on the CTR of permanent-magnet 

BLDCM. According to the aforementioned study, the 

present control solutions for decreasing CTR are 

almost always PWM-based. Recent research has 

focused on the finite control set model predictive 

control (FCS-MPC) technique, which is conceptually 

novel. Rodriguez proposed the model predictive 

control approach and applied it to nonlinear current 

regulation in 3-phase inverters [16]. The model of a 

controlled system makes projections about the actions 

that will be taken by the controlled variables in the 

future for each switching state. An inverter circuit 

provides a limited number of potential switching 

states, from which the ideal switching state is chosen 

and then applied during the subsequent sampling 

period in accordance with the minimalized preset cost 

function.. In a 3-phase inverter, the newly created 

model predictive control approach was used. [16]–

[20], current control for VSI-driven asymmetrical dual 

3-phase ac machines [21]–[24], and multiphase-

current control [25], [31]. 

In the research, FCS-MPC and other TRR 

approaches are compared with regard to their ability to 

lower the CTR of permanent-magnet BLDCM. In 

order to find a solution to the issue of CTR, research 

was done on the three conduction states that take place 

in inverter circuits during the commutation interval as 

well as the impact those states have on the 

commutation current. Because of the timely 

construction of the appropriate switching state for the 

forthcoming sample period based on the suggested 

predictive model and the present cost function, the 

CTR dropped by a significant amount. 

 

II. COMMUTATIONAL TORQUE 

ANALYSIS 
A. Mathematical Analysis Of Computational Torque 

PMBLDCM generally operates in a two-phase 

120 (electrical) conducting mode, which includes both 

a commutation area and a non-commutation portion 

inside its structure. This work is being done with the 

intention of lowering the CTR in the commuter zone. 

Fig 1 illustrates the connection that exists between the 

trapezoidal back EMF and the BLDCMHall sensor 

signal 

 

 

Fig 1 Back EMF and Hall signals of BLDCM 

The mathematical model of BLDCM can be expressed 

as 

𝑢𝑎0 = 𝑅𝑖𝑎 + 𝐿𝑠

𝑑𝑖𝑎

𝑑𝑡
+ 𝑒𝑎 + 𝑢𝑛 

𝑢𝑏0 = 𝑅𝑖𝑏 + 𝐿𝑠
𝑑𝑖𝑏

𝑑𝑡
+ 𝑒𝑏 + 𝑢𝑛  (1) 

𝑢𝑐0 = 𝑅𝑖𝑐 +  𝐿𝑠

𝑑𝑖𝑐

𝑑𝑡
+ 𝑒𝑐 + 𝑢𝑛 

 

𝑖𝑎 + 𝑖𝑏 + 𝑖𝑐=0    (2) 

where 𝑢𝑎0, 𝑢𝑏0, and 𝑢𝑐0are the 3-phase winding's 

terminal voltages, 𝑖𝑎, 𝑖𝑏, and 𝑖𝑐are the 3-phase 

winding's phase currents, 𝑒𝑎, 𝑒𝑏, and 𝑒𝑐are the 3-phase 

winding's back EMFs, R and 𝐿𝑠  are the phase 

resistance and equivalent phase inductance, un is the 

neutral point voltage. 

The commutation of the motor from phase A → phase 

C conduction to phase B → phaseC  conduction is 

taken as an example of commutation process, shown in 

Fig. 2. 

 

Fig 2 Current flow of commutation process 

Generally, the torque developed by BLDCM given as 
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𝑇𝑒 =
1

𝜔𝑟
(𝑒𝑎𝑖𝑎 + 𝑒𝑏𝑖𝑏 + 𝑒𝑐𝑖𝑐)  (3) 

where Te  is the electromagnetic torque and 𝜔𝑟  is the 

rotor angular velocity. 

Opposing that back EMF maintains fixed value E 

during commutation, theBLDCM’s torque can be 

expressed as 

𝑇𝑒 =
1

𝜔𝑟
(𝐸𝑖𝑎 + 𝐸𝑖𝑏 + (−𝐸)𝑖𝑐)  (4) 

whereE is the value of the back EMF. 

The research reveals that the amount of commutation 

torque that is created during the commutation process 

is related to the amount of phase current that has not 

been commutated. 

III. MODEL PREDICTIVE CONTROL 

TECHNIQUE 
The block diagram of the traditional 

permanent magnet brushless direct current (BLDC) 

motor's predictive current control idea is shown in Fig 

3. The current reference value of d axes is set to zero, 

while the q-axes current reference value is created by 

PI adjustment in the speed outer loop. The projected 

current controller will follow the d- and q-axes 

reference currents as they change. 

 

Fig 3 Block diagram of MPC with BLDC motor 

The one step prediction is given by, 

𝑖𝑑(𝑘 + 1) =  𝑖𝑑(𝑘) + (
∆𝑡

𝐿
) ∗ (𝑉𝑑(𝑘) − (R*𝑖𝑑(𝑘)) +

(𝜔(𝑘)*L*𝑖𝑞(𝑘)))   (5) 

𝑖𝑞(𝑘 + 1) =  𝑖𝑞(𝑘) + (
∆𝑡

𝐿
) ∗ (𝑉𝑞(𝑘) − (R*𝑖𝑞(𝑘)) +

(𝜔(𝑘)*L*𝑖𝑑(𝑘)))   (6) 

The recorded current and voltage must be converted to 

d-q variables, as previously stated. The sum of squared 

errors of currentswas chosen as the objectives function 

in this study. 

𝐽 = (𝑖𝑑(𝑘) −  𝑖𝑑(𝑘 + 1))
2

+  (𝑖𝑞(𝑘) − 𝑖𝑞(𝑘 + 1))
2
 

    (7) 

It is possible to use the simple sum of errors of the 

currents in d and q as the target function; however, the 

sum of squared error is better for big tracking since the 

objective function expands as the difference between 

the reference and forecast currents increases. 

IV. MATLAB SIMULATION AND 

RESULTS 
The simulation is done with different CTR 

reduction technique. Mainly in this paper focused on 

FCS MPC technique. And the Results are compared 

with PID controller, Field Oriented Control and 

Hysteresis current control techniques. The BLDC 

motor drive system is simulated with different control 

technique to know the performance and effectiveness 

of the system. Table 1 shows the parameters of the 

BLDC motor. 

Fig 4 Simulation BLDC driving s/m with MPC 

Table 1 BLDC motor parameters 

PARAMETER VALUE 

Vdc(v) 220 

Rated speed(rpm) 1500 

Nominal load (Nm) 0.8 

Pole pairs 6 

Phase resistance(ohm) 0.0485 

Phase inductance(mH) 0.395 

Inertia constant(kg.m ) 0.015 
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1. Low speed at constant load operation 

In low speed case the motor is tested at the speed of 

the 500RPM and the Constant load torque is taken as 

0.5N-m. Based on the results shown in Figures. we can 

see that torque ripples are reducing. 

 

Fig 5 Electromagnetic torque with PID controller and 

Without PID controller 

 

Fig 6 Electromagnetic torque with Hysteresis Current 

Control 

 

Fig 7 Electromagnetic torque with FOC Control 

 

Fig 8 Electromagnetic torque with MPC control 

 

2. High speed at constant load operation 

In high speed case the motor is tested at the speed 

of the 1000RPM and the Constant load torque is taken 

as 0.5N-m. Based on the results shown in Fig.  we can 

see that torque ripples are reducing. So, results shows 

that proposed scheme is performing well. 

 

Fig 9 Electromagnetic torque with PID controller and 

Without PID controller 

 

Fig 10 Electromagnetic torque with Hysteresis 

controller 
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Fig 11 Electromagnetic torque with FOC controller 

 

Fig 12 Electromagnetic torque with MPC controller 

V. CONCLUSION 
Within the scope of this work, FCS-MPC is used 

with the goal of reducing permanent-magnet BLDCM 

commutation torque ripple. There are two types of 

CTR: torque dips in the high-speed range and torque 

peaks in the low-speed range. Both are caused by a 

mismatch between the slope rates of rising and falling 

current during commutation intervals. Torque dips 

occur at the high-speed and torque peaks occur at the 

low-speed. The primary contribution that comes from 

this study is an in-depth description of the algorithm 

design process for CTR reduction via the use of 

BLDCM. The purpose of this paper is to overcome the 

challenges of commutated-phase-current control by 

avoiding complex current controllers and modulation 

models, and to propose an integrated method for 

reducing CTR across a wide speed range without taking 

into account different current cases at low and high 

speeds. 

The findings of this study indicate that CTR may 

be effectively reduced by switching between the power 

inverter's three conduction states in an exact manner 

during the commutation process. The power inverter's 

design and the dc-link voltage's design do not need to 

be altered in any way in order to implement the FCS-

MPC technique that has been presented. Commutation 

does not need the computation of a PWM duty ratio or 

a modulation model, and there is no significance to the 

relationship between the dc voltage and the back EMF 

of the BLDCM. Both of these things are 

inconsequential. According to the results of the study, 

the approach that was proposed is superior in terms of 

lowering CTR across the board. 
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