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Preface 

This dissertation discusses the development and application of residue interaction 

networks towards the design of enzyme cluster models. By using these cheminformatic 

graphs as rationale for model creation, we seek to provide a protocol that is rational, 

reproducible, and practical for the simulation of various biosystems beyond those detailed 

within this work.   

Several chapters are adapted from published works. Chapter 2 is adapted from the 

journal article “A transition state ‘trapped’? QM-cluster models of engineered threonyl-

tRNA synthetase” published in Organic & Biomolecular Chemistry (T. J. Summers, Q. 

Cheng, and N. J. DeYonker. Org. Biomol. Chem. 2018, 16, 4090-4100). Chapter 4 and 

part of Chapter 1 is adapted from the journal article “Cheminformatic quantum 

mechanical enzyme model design: a catechol-O-methyltransferase case study” under 

review by Biophysical Journal (T. J. Summers, Q. Cheng, M. A. Palma, D.-T. Pham, D. 

K. Kelso III, C. E. Webster, and N. J. DeYonker). Chapter 5 is adapted from the journal 

article “Quantifying inter-residue contacts through interaction energies” published in 

Journal of Chemical Information and Modeling (T. J. Summers, B. P. Daniel, Q. Cheng, 

and N. J. DeYonker. J. Chem. Inf. Model. 2019, 59, 5034-5044). For consistency, the 

tables and figures of these journal articles have been renumbered, and references are 

formatted following Journal of Chemical Information and Modeling guidelines. 
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Abstract 

 In order to accurately simulate the inner workings of an enzyme active site with 

quantum mechanics (QM), not only must the reactive species be included in the model, 

but also any important surrounding residues, solvent, ions, and coenzymes involved in 

crafting the microenvironment.  The Residue Interaction Network ResidUe Selector 

(RINRUS) toolkit was designed to utilize interatomic contact network information for 

automated, rational residue selection and QM-cluster model generation. An X-ray crystal 

structure of a protein is translated into a two-dimensional network which may be then 

used to discern residues with significant interactions with the enzyme substrates. The rest 

of the protein is trimmed away following a defined protocol to create QM-cluster models 

suitable for simulation. 

 Three QM-cluster enzyme case studies demonstrating the capability of network-

based models are presented in this work. First, models of six bioengineered threonyl-

tRNA synthetase enzymes are simulated to reveal the impact residue mutations have 

towards creation of a transition state analogue structure within a protein pocket. Second, 

models of the zinc-native enzyme human carbonic anhydrase II with various transition 

state ions in the active site are shown to provide insight into the reduced catalytic activity 

of the metallovariants, along with predicting the potential viability of the iron-substituted 

variant. Third, over 500 RINRUS-designed models of the enzyme catechol-O-

methyltransferase are analyzed to identify cheminformatic features that might be 

foundational for efficient, accurate model designs.  

 There is the possibility to incorporate machine learning into the RINRUS 

workflow to enable the transformation of simple qualitative/semi-quantitative chemical 
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characteristics into descriptors suitable for more quantitative network designs. This is 

illustrated in the final piece of this work where random forest models constructed from 

the chemical information of four proteins were able to accurately predict quantitative 

inter-residue interaction energies for an untested protein only using several structural, 

network, and chemical descriptors. Collectively, the studies illustrate the value of the 

RINRUS toolkit in creating practical, accurate models of enzyme active sites, and they 

provide direction for future improvement with the methodology. 
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Chapter 1: Introduction 

 For nearly two centuries, the structure, function, and catalytic power of enzymes 

have fascinated scientists, with countless studies seeking to understand their underlying 

mechanisms and biological function. With the advancement of computers, atomic-scale 

computer modeling of enzymes has become a necessary part of the global multibillion-

dollar research effort that aids the design of new pharmaceuticals, helps to investigate and 

engineer novel protein structures and functions, and advances our understanding of the 

molecular basis of disease.1,2 The importance of atomic-level simulation of enzyme-

catalyzed reactions was publicly acknowledged with the 2013 Chemistry Nobel Prize 

being awarded to Warshel, Levitt, and Karplus, who developed methods to treat the 

active site of an enzyme with quantum mechanics (QM) and the periphery with classical 

or molecular mechanics (MM).3 

 QM-only (also called QM-cluster), QM/MM, and ONIOM (Our own n-layered 

Integrated molecular Orbital and Molecular Mechanics) are alternative approaches that 

have leveraged advancements in quantum mechanical theory and molecular dynamics 

(MD) to continually increase the ubiquity of computational enzymology.4–8 As with all 

forms of modeling, the comparative accuracy of a model to reality is limited by the 

design of the model and relevant/reliable experimental data. For simulating the active site 

of enzymes, it is crucial to ensure not only the amino acids directly involved with the 

reaction are modeled at the QM-level but also any residues, water molecules, ions, and 

coenzymes sterically and/or electrostatically crafting the active site microenvironment.4–

6,9 While this is a simple idea in principle, it is far harder in practice to identify rationally 

which residues must be partitioned into the QM-level. 
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 While ad hoc protocols exist for selecting residues for inclusion in QM-level 

modeling, recommendations are typically ambiguous, inefficient, or challenging to 

implement.4,5 One of the most common practices is to simply include all residues within a 

certain radial distance from a point, perhaps the center of mass of substrate(s) or an 

active-site metal center. While suitable models could be constructed this way, calibration 

studies have confirmed large spheres (and consequently large models) are needed for 

convergence of simulated enzyme thermodynamics/kinetics.9–18 These results are perhaps 

unsurprising as nature does not enforce any geometric requirement to the design of an 

enzyme active site. Published “big-QM” models further add distant charged residues 

within the protein to generate 500-1000 atom models; however, inclusion of less 

important residues unnecessarily increases the computational cost of any model.11,19,20 

Attempts to quantify the importance of residues have been performed via a posteriori 

computations such as QM/MM thermodynamic cycle perturbations,21,22 linear response 

functions,23 or Fukui/Charge Shift Analysis.14,24 However, such methods essentially 

require computational effort and thorough analysis of the constructed enzyme models in 

order to decide on an optimal system. Iterating an undirected residue selection process to 

self-consistency via QM or QM/MM computations is even more expensive. 

 Ideally, there would be a computationally inexpensive, a priori approach to 

enzyme model construction that utilizes structural and chemical data to rationally select 

residues (or parts of residues) for QM-cluster modeling. As a potential solution for this 

model creation problem, our lab has been developing the software Residue Interaction 

Network ResidUe Selector (RINRUS) for automating QM-cluster model design and 

construction.  
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 The general workflow of RINRUS (Figure 1) begins with the user uploading the 

protein structure of interest and specifying the substrate(s)/residue(s)/cofactor(s) directly 

involved in the reaction (termed the “seed”). The protein structure may undergo pre-

processing if needed (e.g., adding missing hydrogens to an X-ray crystal structure or 

removing alternate residue conformations) before having its three-dimensional structure 

analyzed and translated into a two-dimensional inter-residue interaction network.25,26 In 

its current form, the interaction network is generated from interatomic contact 

interactions as computed from the program Probe.27 In short, Probe rolls a sphere along 

the van der Waals surface of all atoms and indicates with “contact dots” where the sphere 

comes into contact or overlaps with nearby atoms. This interatomic contact information is 

compiled for each of the residues and translated into a network graph where residues 

 

Figure 1. General workflow of the RINRUS toolkit (orange) where a user-specified 

protein structure is analyzed and processed into a QM-cluster model suitable for further 

QM computation. There are also opportunities for molecular dynamics cheminformatics 

to be incorporated into the workflow (green). 
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(represented as “nodes” in the graph) with interatomic interactions are interconnected 

with lines (termed “edges” in the graph). As the focus for constructing QM-models is on 

the species directly interacting with the seed, RINRUS isolates the subgraph composed of 

the user-specified seed and its neighboring residues (nodes). The interactions (edges) of 

the subgraph may be weighted by a property such as the number of interatomic contacts 

each residue has with the seed, favoring residues with many interatomic contacts with the 

seed over residues with few contacts. In constructing models, RINRUS currently has two 

modes of model design: one, models may be formed iteratively, adding residues to the 

seed based upon their edge weights (a ranking scheme); or two, models are formed by 

adding groups of residues with similar properties (a classification scheme). With the 

residues to be included in the cluster model identified, the rest of the protein is 

systematically trimmed away following a pre-defined protocol. To maintain the valence 

state of the atoms, hydrogens are added where covalent bonds are broken. The resulting 

cluster model may then be translated into an input file for QM-treatment by external 

software. 

 The chapters of this work detail the development of the RINRUS methodology 

alongside its application in the case studies of four different enzymes. Chapters 2 and 3 

cover the earliest applications of this methodology at a time when the procedure was not 

yet automated and a detailed protocol for model trimming was not established. Even 

without the extra rigor of the current form of RINRUS, the manually crafted models 

successfully provided insight into the flexibility of a noncanonical residue side chain 

within an inner protein pocket (Chapter 2) and the impact of substituting a native active 

site metal ion with other metals on a catalyzed reaction mechanism (Chapter 3). By 
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Chapter 4, a model trimming protocol based upon network chemical information had 

been constructed, and the steps for RINRUS model building had been encoded into a 

Python toolkit. In automating the workflow, hundreds of QM-models are able to be 

created within mere minutes. With this newfound capability, we simulated a single 

enzyme reaction with over 500 unique models generated from several different building 

schemes in order to identify a scheme capable of building accurate, efficient QM-models 

(Chapter 4). Chapter 5 covers recent efforts to improve and expand upon the 

cheminformatics with which RINRUS operates by investigating the ability of simple 

random forest algorithms to translate inter-residue contacts into quantitative interaction 

energy values. Collectively, these works highlight the capability of the RINRUS 

framework and indicate directions for further advancement of this toolkit.       
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Chapter 2: Threonyl-tRNA Synthetase 

Introduction 

 Most research on enzymes centers on studying their extraordinary capability of 

catalyzing biochemical reactions at high kinetic rates and specificity. Over the past 

several decades, interest in enzymes has greatly expanded towards using them as 

bioengineering tools for scientific inquiry. A recent example of this features the enzyme 

threonyl-tRNA synthetase (ThrRS), a member of the class-II aminoacyl-tRNA synthetase 

family primarily known for its function in protein biosynthesis. Through a two-step 

process, ThrRS activates the amino acid threonine by catalyzing the esterification of the 

amino acid to its cognate tRNA.28,29 The newly charged tRNA may then be used by 

cellular ribosomes to construct genetically encoded proteins via translation. Although 

most research has focused on examining the substrate enantiomeric selectivity of 

ThrRS,30–32 Schultz and co-workers investigated using ThrRS as a platform for protein 

engineering.33 Starting from the highly thermostable ThrRS enzyme found in the 

thermophile Pyrococcus abyssi,34 Schultz and coworkers used Rosetta software35,36 to 

computationally redesign the interior of the ThrRS enzyme. Using results from the 

Rosetta package for suggested point mutations, they experimentally created a 

microenvironment that favors the stabilization of the planar conformation of the biphenyl 

sidechain on the noncanonical amino acid p-biphenylalanine. After an iterative procedure 

of amino acid mutations (PDB entries = 4S02, 4S0J, 4S0L, 4S0I, 4S0K), their group 

successfully obtained the X-ray crystal structure of a ThrRS containing the p-

biphenylalanine (BiPhe) side chain in the coplanar conformation (PDB entry = 4S03, 

Figure 2). 
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Figure 2. The X-ray crystal structure of 4S03, detailing the planar rings of the 

p-biphenylalanine residue. 

 The feat of Schultz and coworkers centers on the fact that the coplanar 

conformation (Φ = 0°) of free biphenyl is one of two rotational transition states (TSs) for 

the molecule, the other being at Φ = 90°. Electron diffraction studies have shown gas-

phase biphenyl to have a central dihedral angle of 44.4 ± 1.2° at equilibrium.37 This 

“staggered” global minimum (Figure 3) is commonly explained to be the result of 

energetic-steric competition whereby inter-ring π-conjugation favors the two rings to be 

coplanar but inter-ring hyperconjugation and steric repulsion between adjacent hydrogen 

atoms at the ortho positions favor a nonplanar conformation,38,39 though this 

interpretation remains under debate.40–42 Intramolecularly controlling the biphenyl 

conformation by inserting substituents or complexing with metals remains an active area 

of research, particularly towards the development of microscopic electron transport 

systems.42–44 Alternatively, the stabilization of the coplanar BiPhe side chain in PDB  

4S03 demonstrates how varying favorable (π-stacking) or unfavorable (steric/hydro-  
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Figure 3. Rotation of biphenyl about its central dihedral angle Φ. 

phobic) intermolecular forces may be used to promote the structurally “frustrated” 

conformation within a protein “active site”.33 

 In addition to the progress the Schultz work brings in investigative 

bioengineering, their results raise questions about the atomic-level forces at play within 

proteins. For the last two decades, quantum mechanical (QM) computations have played 

a crucial role in investigating the structure, function and mechanism of biomolecules at 

the atomic level.45–51 Certainly, the developers of multiscale enzyme modeling (QM/MM, 

QM/QM, ONIOM) have received accolades in the scientific community and the public at 

large with Warshel, Karplus, and Levitt being awarded the 2013 Nobel Prize in 

Chemistry.3 Because of improvements in both computational methodology and 

efficiency, QM-only (also often called “QM-cluster”) enzyme modeling has also 

advanced into a dependable tool within enzymology and biomolecular engineering to 

study metalloenzyme active sites.46,47,56,48–55 As an example, previous work in our lab has 

shown the reliability of QM-cluster models in accurately characterizing details of the 

phosphoryl transfer mechanism within the Phospholipase D57 and Tyrosyl-DNA 

Phosphodiesterase I58 active sites. Although cluster models are typically used for 

modeling bioinorganic systems, there is not expected to be any issue with using a fully 

QM model to study the purely organic ThRS protein pocket. With the conformation of 
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the rings predominantly influenced by the mutated “first shell” residues immediately 

surrounding BiPhe, cluster modeling becomes an efficient method to examine this system 

at the atom-level. 

 In this work, QM-cluster models are employed to computationally investigate the 

energetic profiles of the biphenyl dihedral angle rotation within the ThrRS cores. Several 

details of the Schultz work pose interesting unanswered questions. Primarily, does a Φ= 

0° transition state of p-biphenylalanine exist in any iteration of the ThRS mutated 

proteins, particularly 4S03? If the TS does exist and is located at Φ= 0°, there is great 

likelihood that the activation energy of the coplanar TS is negligible. Then the local 

energy curve around Φ= 0° would show an extremely shallow double-well potential. 

Overcoming an existing barrier of coplanarity is expected to be thermally facile at 

physiological/experimental conditions.  The X-ray crystal structure 4S03 would thus 

represent a “trapped” transition state in the sense that it would be an ensemble average of 

the minima on both sides of the double-well. However, if there is no computed TS at Φ= 

0°, then the coplanar sidechain of p-biphenylalanine in the 4S03 X-ray crystal structure 

simply represents an energetic minimum on the potential energy landscape. The 4S03 X-

ray crystal structure would then be the transition state analogue of the free biphenyl, but it 

cannot be labeled a TS analogue of any known enzyme mechanism. Additionally, how do 

the rotational energy profiles for p-biphenylalanine within the different protein cores 

compare to the rotation of free biphenyl? How much rotational flexibility is structurally 

and energetically permitted for p-biphenyl-alanine within the cores? Beyond examining 

the ThrRS microenvironments, this work also serves as a demonstration that properly and 

rationally designed QM-cluster models accurately describe non-metalloenzyme 
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biochemistry.  Our systematic method for QM cluster model creation produces protein 

models that can successfully emulate structural, thermodynamic, and kinetic features of 

the parent X-ray crystal structures on the atom-level. 

Computational Methods and Model Building 

 Construction of the QM-cluster models began from their respective X-ray crystal 

structures available in the Protein Data Bank (PDB codes = 4S02, 4S0J, 4S0L, 4S0I, 

4S0K, 4S03). Using a methodology currently in development by our lab to systematically 

construct reproducible enzyme models, we used the Reduce59 and Probe27 utilities and a 

modified version of the RINalyzer26,60 code to map the topology of the X-ray crystal 

structures and identify the active site based upon interactions between the p-

biphenylalanine amino acid and surrounding local protein structure. The residues 

determined to have important interatomic contacts with BiPhe were consistent among the 

six different protein models with the exception of V38, A115, and W81. From our 

systematic model creation scheme, residues V38 and A115 were flagged to be included in 

all protein models except 4S03. For consistency, V38 and A115 were still included in the 

4S03 cluster model. Conversely, a BiPhe–W81 interaction was only detected within the 

4S0K and 4S0L X-ray crystal structures. Two additional cluster models of 4S03 and 4S0I 

were constructed to include the W81 residue (labelled 4S03_W81 and 4S0I_W81). 

Residues included in all QM-cluster models were trimmed, with peripheral residue 

backbone or sidechains replaced with C–H bonds to further reduce the size of the models 

(see Appendix A: Table 1). As BiPhe is located within a very hydrophobic protein core, 

and as water molecules were not observed nearby in the crystal structures, no explicit 

water molecules were expected to significantly inter-act with BiPhe to warrant inclusion 
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in the cluster models. This was reaffirmed ex post facto by molecular dynamics (MD) 

simulations of the enzymes (see Appendix A). Through this method, final active site 

models composed of 19–20 amino acids and 267–300 atoms were generated for the six 

proteins (see Appendix A). To retain the general shape of the active site and mimic the 

constrained behavior of the protein tertiary structure, Cα and select Cβ atoms were frozen 

at their crystallographic positions, a technique that has performed reliably in other studies 

(Figure 4).57,58,61 A total of 31 backbone atoms were frozen for the 4S02, 4S0J, 4S0I, and 

4S03 cluster models; 33 atoms were frozen for the models containing residue W81 

(4S0L, 4S0I_W81, 4S0K, and 4S03_W81 models). In addition to freezing the backbone 

atoms and the central biphenyl dihedral angles for desired measurements, two other 

parameters were constrained. In all energy scans, the β-carbon and one H–Cβ–Cγ–Cδ 

dihedral of the p-biphenylalanine (Figure 5) were frozen using generalized redundant 

internal coordinates to limit translation of the biphenylalanine residue. A short 

description of how to reproduce these scans is included in Appendix A. 

 QM computations were performed using the Gaussian09 software program.62 All 

QM computations utilized density functional theory (DFT) with the hybrid B3LYP 

exchange–correlation functional.63,64 The 6-31G(d') basis set was used for N, O, and S 

atoms65,66 and the 6-31G basis set was used for C and H atoms.67 Models of free 

biphenyl, 4S02, 4S03, and 4S03_W81 were optimized with and without inclusion of the 

Grimme D3 (Becke–Johnson) dispersion correction (GD3BJ) and/or a conductor-like 

polarizable continuum model (CPCM)68,69 with UAKS sets of atomic radii, a non-default 

electrostatic scaling factor of 1.2, and a dielectric constant of ε= 4, a value previously 

determined as appropriate for simulating the less-polarized environment within an  
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Figure 4. 2D representation of the 4S03_W81 cluster model. Cα and Cβ atoms depicted in 

red are frozen, a total of 33 atoms (31 atoms in models without W81). 

 

 

Figure 5. Structure of the non-canonical p-biphenylalanine residues. Red is used to 

indicate the frozen H–Cβ–Cγ–Cδ dihedral. 
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enzyme active site.49,50 Computations involving models of 4S0I, 4S0I_W81,4S0J, 4S0K, 

and 4S0L were performed with both GD3BJ and CPCM. Unscaled harmonic vibrational 

frequency calculations were used to identify all stationary points as either minima or 

transition states. Zero-point energies (ZPE) and thermal enthalpy/free energy corrections 

were computed at 1 atm and 298.15 K. 

 Molecular dynamics (MD) simulations were performed using the AMBER14 MD 

package70 for initial structure relaxation. For all of the proteins, MD simulations were 

carried out using the AMBER force field ff14SB71 and an explicit solvent model of 

TIP3P.72 The proteins were solvated in a truncated octahedron water box with a 15 Å 

cutoff to the box edge, and Na+ and Cl− ions73 were added to each system to achieve a 

total neutral charge. The systems were simulated using periodic boundary conditions and 

a cutoff value for non-bonded interactions of 8 Å. The simulations were performed using 

Langevin dynamics under the constant-temperature, constant-pressure (NPT) condition at 

300 K and 1 atm. The SHAKE algorithm was used to constrain all bonds involved with 

hydrogen atoms. 

 All proteins were subjected to four minimization procedures followed by one 

relaxation procedure. All four minimizations ran 100 steps with the force constants of the 

harmonic positional restraints (kpos) set at 20, 10, 5, and 2 kcal mol−1Å−2, applied to all 

heavy atoms. The relaxation procedure was run for 500 ps with kpos set at 2.0 kcal 

mol−1Å−2 on heavy atoms before the MD simulation was run for 10 ns with kpos set at 1.0 

kcal mol−1Å−2. The cpptraj program of AMBER was used alongside Visual Molecular 

Dynamics74 for analysis of the simulation trajectories. 
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Results and Discussion 

 Examination of Free Biphenyl 

 Previous studies of the biphenyl torsional profile have noted the challenge in 

obtaining accurate theoretical results for torsional activation energies.75–77 Despite this, 

some calibration of the B3LYP/6-31G(d') level of theory is necessary to validate semi-

quantitative accuracy in the protein cluster model energy curves. Experimental work on 

biphenyl in the gaseous state37 showed ΔE‡
Φ=0 = 1.4 ± 0.5 kcal/mol and ΔE‡

Φ=90 = 1.6 ± 

0.5 kcal/mol with an equilibrium dihedral angle of 44.4 ± 1.2°. Benchmark computations 

done by Johansson and Olsen77 used coupled cluster theory with a Goodson continued-

fraction approach and the cc-pVTZ basis set to obtain gas phase activation energies of 

ΔE‡
Φ=0 = 1.91 kcal/mol and ΔE‡

Φ=90 = 1.98 kcal/mol and an equilibrium dihedral angle of 

Φ = 38.8°. 

 Using B3LYP/6-31G(d') we computed gas phase biphenyl to have ΔE‡
Φ=0 = 1.94 

kcal/mol and ΔE‡
Φ=90 = 2.63 kcal/mol with the equilibrium dihedral angle of Φ= 37.6°. 

Inclusion of CPCM reduces ΔE‡
Φ=0 and increases ΔE‡

Φ=90 values. In the gas phase, 

inclusion of GD3BJ noticeably increases ΔE‡
Φ=90 (Table 1). Computations using both  

Table 1. Experimental and electronic energy calculations for the torsional barriers 

of free biphenyl at Φ = 0° and 90°. 

 ΔE0 

(kcal/mol) 

ΔE90 

(kcal/mol) 

Experimental (gas phase)  1.4 ± 0.5 1.6 ± 0.5  

Continued fraction CCSD(T)/cc-pVTZ 1.91 1.98 

B3LYP/6-31G(d')  1.94 2.37 

B3LYP/6-31G(d')+GD3BJ 1.93 2.61 

B3LYP/6-31G(d')+CPCM 1.55 2.67 

B3LYP/6-31G(d')+GD3BJ+CPCM 1.67 2.85 
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GD3BJ and implicit solvation with CPCM show ΔE‡
Φ=0 = 1.95 kcal/mol and ΔE‡

Φ=90 = 

2.90 kcal/mol with the equilibrium torsional angle of Φ = 35.5°. The rotational energy 

profiles for free biphenyl (Appendix A: Figure 1) are provided. While there is a notable 

overestimation of the ΔE‡
Φ=90 energy barrier when using B3LYP/6-31G(d'), the ΔE‡

Φ=0 

barrier and equilibrium dihedral angle are comparable to that of Johansson and Olsen. 

This method will be sufficient for examining the difference in the biphenyl energetic 

rotation profile within the much larger QM-models of the ThrRS active site, where 

expensive ab initio methods like coupled cluster theory would be clearly intractable. 

Similar computations were performed on a BiPhe derivative (Appendix A: Figure 2) at 

the B3LYP/6-31G(d')+GD3BJ+CPCM level of theory. The rotational energy curve for 

the BiPhe derivative is qualitatively identical to the curve for free biphenyl, indicating the 

torsional rotation of the BiPhe rings is not influenced by the amino acid backbone. 

 Examination of Biphenyl Rotation Within the 4S02 Cluster Model 

 To begin the examination of the rotational energy profile of biphenylalanine 

within the protein cores, cluster models of the 4S02 protein pocket were constructed from 

the X-ray crystal structure with 10° increments in the biphenylalanine central dihedral 

angle in both directions. Finer 1° increments were additionally conducted near the global 

minimum to better determine the dihedral angle (Figure 6). Unlike free biphenyl, the 

QM-cluster dihedral rotational energy curves are not expected to be symmetric around 

the global minimum due to the various steric constraints provided by the other amino acid 

residues surrounding BiPhe. The effects of implicit solvation and empirical dispersion 

corrections on the BiPhe rotational profile were tested both individually and 

conjunctively on the cluster model derived from the 4S02 X-ray crystal structure. Among  
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Figure 6. Potential energy curves near equilibrium for the torsional rotation of 

p-biphenylalanine within the 4S02 protein cluster model. Gas phase (black circle, solid 

line); gas phase with GD3BJ (black circle, dashed line); CPCM (blue square; solid line); 

CPCM with GD3BJ (blue square, dashed line). 

the four variants of the methodology used on the 4S02 model, the computed dihedral 

angle at the minimum (Appendix A: Table 2) better resembled the experimentally 

observed dihedral angle of Φ= 26° when implicit solvation was included (ΦCPCM = 25.3°; 

ΦCPCM+GD3BJ = 24.8°) compared to gas phase computations (Φgas = 28.4°; Φgas+GD3BJ = 

18.8°). To examine the impact of the four additional constraints placed on BiPhe in the 

dihedral energy scans, the previously mentioned dihedral/atom position constraints 

(Figure 5) were removed, and the models were re-optimized. This increased mobility of 

the proximal biphenylalanine rings permitted additional geometric relaxation within the 

protein pocket. The computed dihedrals for the less constrained models at their 

equilibrium geometries1 are Φgas = 29.0°, Φgas+GD3BJ = 36.5°,ΦCPCM = 25.6°, and 

ΦCPCM+GD3BJ = 31.5°. The energy difference from releasing the four extra constrains in the 

4S02 models is ΔEgas = 0.84 kcal/mol, ΔEgas+GD3BJ =2.2 kcal/mol, ΔECPCM =0.83 kcal/mol, 

 
1 Please note that the computed ground state for 4S02CPCM+GD3BJ contained one imaginary frequency at 

−16.2 cm−1 attributable to the entire I121 residue rocking away from the BiPhe. In this entire study, this is 

the only occurrence of an imaginary vibrational mode observed in the QM protein minimization when one 

is not observed in the constrained BiPhe dihedral curve scans. This should not qualitatively affect the 

results, as we typically are reporting relative electronic energies. 



17 

and ΔECPCM+GD3BJ = 0.90 kcal/mol (Appendix A: Table 2). With the exception of 

4S02gas+GD3BJ, the results indicate freezing the additional dihedral angle and atom position 

accounts for less than 1 kcal/mol difference between the models. The root mean square 

deviation (RMSD) between the crystal structure atomic positions and the fully optimized 

model (not including atoms frozen to their crystallographic coordinates or hydrogens) 

was evaluated for each the four 4S02 variants. The RMSD values between the 4S02 

model and the original crystal structure were 0.729 Å (gas), 0.869 Å (gas+GD3BJ), 0.952 

Å (CPCM), and 0.782 Å (CPCM+GD3BJ), well within the atomic resolution of the 4S02 

X-ray crystal structure reported by Schultz (1.95 Å). The optimized 4S02CPCM+GD3BJ 

model is overlaid with the trimmed geometry from the 4S02 X-ray crystal structure in 

Figure 7a. As shown, the optimized cluster model retains nearly all of its structural 

similarity to the 4S02 X-ray crystal structure.  

 There are two general features seen in the various dihedral scans of the four 4S02 

potential energy curves (Appendix A: Figure 4a). First (and as expected), there is a 

 

Figure 7. Overlay of the (a) 4S02 and (b) 4S03 cluster models optimized at the 

B3LYP/6-31G(d')+CPCM+GD3BJ level of theory (carbons colored green) compared to 

their respective, experimentally determined x-ray crystal structures (magenta). 
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drastic increase in the energy required for biphenyl to fully rotate within the protein core 

due to steric clashing between p-biphenylalanine and nearby side chains.  In the 

computations using the 4S02 models, the measured maximum ΔE of the curve compared 

to the constrained minimum ranges from 11.4 kcal/mol at Φgas = −90° to 16.2 kcal/mol at 

ΦCPCM+GD3BJ = −83°.  These energies for biphenyl within the sterically hindered protein 

microenvironment are comparable to the 6.0 to 45 kcal/mol rotational barriers of 

substituted biphenyls.78 It is important to note that these “maxima” within the scans and 

their abrupt discontinuities (see Appendix A: Figure 4a) are indicative of the amino acid 

residues around the BiPhe undergoing structural relaxation in order to relieve steric strain 

and are not indicative of true transition states. It is also expected that the maxima of these 

curves have a much lower relative energy than the true activation energy; cluster models 

lack the many thousands of degrees of freedom affected by such a massive steric 

repulsion within the active site. It is certain that full 180° rotation of the BiPhe dihedral 

would be thermally impossible. 

 Second, there are discontinuities in the four 4S02 potential energy curves 

observed when Φ is less than −50°. Examination of those structures indicates that the 

unexpected reduction in relative energy seen in all four curves results from the p-

biphenyl-alanine conformation sterically forcing the side chain of A79 to rotate from 

facing inside the core to outside the model (void solvent continuum), an action that would 

not occur in the intact protein due to rigidity of the surrounding amino acids not included 

in these cluster models. On the timescale of BiPhe dihedral rotation, it is unlikely that 

steric relaxation of surrounding residues like A79 would be a facile process. Based on a 

Gaussian distribution of Φ angles in the MD snapshots of 4S02 (Appendix A: Figure 8a) 
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and all ThrRS protein cores investigated, destabilizing biphenyl ring distortion would 

preferentially occur, significantly increasing the energy of the model at extreme values of 

Φ (Appendix A: Figure 9d). 

 Examination of Biphenyl Rotation Within the 4S0J, 4S0L, 4S0I, 4S0I_W81, 

 and 4S0K Cluster Models 

 Rotational energy curves were computed with the 4S0J, 4S0L,4S0I, 4S0I_W81, 

and 4S0K cluster models. Considering the previous calibrations of free biphenyl and 

4S02 cluster models, the computations were performed only using the B3LYP/6-

31G(d')+CPCM+GD3BJ method. The resulting energy profiles are shown in Figure 8 

(except 4S0I_W81 – Appendix A: Figure 3a). Equilibrium biphenyl dihedral angles 

(Table 2) were computed to be within 3° – 4° degrees of the experimentally observed 

dihedrals, except for the 4S0I model, where a difference between the X-ray crystal 

structure Φ and that obtained with DFT was 16.9°. Removing the additional 

dihedral/atom constraints and re-optimizing the models allowed further relaxation of the 

BiPhe moiety similar to the 4S02 models. The ground state dihedrals for these less 

constrained models (Table 2) were marginally closer to the crystallographically-

determined dihedrals for the 4S0J and 4S0I models, with the difference in dihedral angle 

between the more constrained and the less constrained models being 1.1° and 0.6°, 

respectively. Conversely, removing the constraints for the 4S0L, 4S0I_W81, and 4S0K 

cluster models permitted greater relaxation of the BiPhe dihedral. The relaxation energies 

from releasing the four additional constraints for the models (Table 2) are less than 1 

kcal/mol except for 4S0L (2.3 kcal/mol) and 4S0I_W81 (1.4 kcal/mol). The RMSD of 
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Figure 8. Potential energy curves near equilibrium for the torsional rotation of p-

biphenylalanine within the (a) 4S0J, (b) 4S0L, (c) 4S0I, and (d) 4S0K protein cluster 

models, calculated at the B3LYP/6-31G(d')+CPCM+GD3BJ level of theory. 

 

 

 

Table 2. Comparison of calculated Φ among constrained and unconstrained cluster 

models, computed at the B3LYP/6-31G(d')+GD3BJ+CPCM method.    

Model Experimental Φ 

(°) 

Φ at  

dE/dΦ = 0 

(°) 

Unconstrained  

model Φ 

(°) 

Relaxation 

Energy 

(kcal/mol) 

4S02 26 24.8 31.9 0.9 

4S0J 35 32.1 33.2 0.4 

4S0L 21 25.2 32.0 2.3 

4S0I 15 28.0 27.4 0.9 

4S0I_W81 15 28.7 29.6 1.4 

4S0K 20 23.0 26.7 0.4 

4S03 0 −2.1 −6.7 0.3 

4S03_W81 0 −2.5 −10.9 0.5 
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heavy unfrozen atoms in each model and the respective X-ray crystal structure are 

provided in Table 3 and are all notably within the reported atomic resolution. 

 In general, the qualitative trends for these rotational scans are quite similar to 

those seen for 4S02. Large energetic barriers of rotation ranging from 12.3 kcal/mol for 

4S0J to 28.7 kcal/mol for 4S0K (Appendix A: Figure 4) are seen resulting from steric 

repulsion between the surrounding residue side chains and BiPhe. Regions where the 

models deviate onto a separate energy curve are seen in the plots for 4S0J when the 

dihedral angle is less than −55° and greater than 76° and for 4S0I and 4S0I_W81 when 

the angle is between −75° to −60°. The separate energy curves seen in the 4S0J, 4S0I, 

and 4S0I_W81 models all result from the BiPhe sterically forcing the side chain of S79 to 

rotate from facing inside the core to outside, a phenomenon seen in the 4S02 scans and 

unfeasible within the engineered proteins. 

  

Table 3. Thermal flexibility of biphenyl within the protein clusters at 310K, 

computed at the B3LYP/6-31G(d')+GD3BJ+CPCM method, compared to dihedral 

values observed in MD simulations of the enzymes. Root mean square deviation 

(RMSD) values between the trimmed x-ray crystal structure and its respective 

optimized unconstrained model. 

Model Thermally Allowed  

Displacement  

from Φmin  

(°) 

Thermal  

Range 

(°) 

RMSD of 

Cluster 

Model  

(Å) 

Average Φ 

in MD 

Simulation 

(°) 

Standard 

Deviation 

4S02 −13.0 +10.5 23.5 0.78 15.0 7.3 

4S0J −8.6 +8.7 17.3 0.47 19.1 6.9 

4S0L −10.1 +9.8 19.9 0.87 13.0 7.3 

4S0I −12.1 +10.2 22.3 0.57 7.2 9.3 

4S0I_W81 −10.4 +9.6 20.0 0.53   

4S0K −16.2 +9.9 26.1 0.53 8.0 8.9 

4S03 −12.1 +13.3 25.4 0.37 −0.3 8.3 

4S03_W81 −11.5 +14.0 25.5 0.47   
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 The rotational energy profiles of 4S0I and 4S0I_W81 are nearly identical. Both 

4S0I and 4S0I_W81 have a similar minimum dihedral angle, with a difference of only 

0.7°, though this computed angle is also atypically larger than the experimental angle by 

∼13°. The minima computed when the proximal dihedral constraints are released are also 

similar. The dihedral angles differ by only 2.2° and the relaxation energy differs by 0.5 

kcal/mol. The lack of a substantial difference between the 4S0I and 4S0I_W81 results 

reaffirms the expectation formed during model construction of a negligible BiPhe–W81 

interaction. 

 Examination of Biphenyl Rotation Within the 4S03 Cluster Models 

 The 4S03 and 4S03_W81 optimizations and rotational curves were also computed 

with and without CPCM and/or GD3BJcorrections. Among the four variants for the 

cluster models, the computed dihedral angle at the minimum was closer to the 

experimental dihedral of Φ = 0° when implicit solvation and empirical dispersion was 

included in the models (Figure 9 and Appendix A: Figure 3b) with ΦCPCM+GD3BJ = −2.1°  

 

Figure 9. Potential energy curves near equilibrium for the torsional rotation of 

p-biphenylalanine within the 4S03 protein cluster model. Gas phase (black circle, solid 

line); gas phase with GD3BJ (black circle, dashed line); CPCM (blue square, solid line); 

CPCM with GD3BJ (blue square, dashed line). 
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for 4S03 and −2.5° for 4S03_W81. Re-optimizing the models without the proximal 

dihedral constraints resulted in equilibrium dihedral values (Appendix A: Table 2) 

significantly different from the experimental value when empirical dispersion corrections 

were not included (4S03: Φgas = −27.5°,ΦCPCM = −28.9°) compared to when they were 

included (4S03: Φgas+GD3BJ = 9.4°, ΦCPCM+GD3BJ = −6.7°). In comparing the relaxed 4S03 

and 4S03_W81 models, there is a dihedral angle difference of only 2.1° and a relaxation 

energy difference of only 0.2 kcal/mol (Table 2). Similar to the comparison between 4S0I 

and 4S0I_W81, there is no substantial difference between the results by including the 

W81 residue in the 4S03 cluster model. This is expected, as a BiPhe–W81interaction was 

not detected as a necessary residue for the 4S03 cluster model. As with the previous 

protein models, the RMSD values (Table 3) for 4S03 and 4S03_W81 are all within the 

reported atomic resolution of 2.05 Å for the 4S03 X-ray crystal structure. The 

4S03CPCM+GD3BJ optimized model is overlaid with the trimmed geometry from the 4S03 

X-ray crystal structure in Figure 7b, demonstrating how the optimized cluster model 

retains the positioning of the residues. 

 Thermal Flexibility and Transition State Searches 

 While the computed energy profiles indicate that complete torsional rotation of 

BiPhe would be impossible under physiological conditions, it is important to consider the 

range of rotational flexibility energetically permitted within the different ThRS protein 

models under investigation. To semi-quantitatively examine this property, we 

approximate the available rotational energy at physiological temperature (310 K) via the 

Boltzmann expression E = kBT = 0.62 kcal/mol. Fitting a second-order polynomial to the 

computed electronic energies for each of the models, dihedral angles with a relative 
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energy of +0.62 kcal/mol from the minima were defined as the range of Φ where BiPhe 

may freely fluctuate at 310 K (Table 3). Our computations suggest that the 

biphenylalanine rings have a reasonable amount of flexibility within the protein cores 

ranging from a total of 17.3° to 26.1°. The computed thermal ranges also indicate the 

BiPhe rings may rotate from the equilibrium geometry both in positive and negative 

directions. The X-ray crystal structures represent an ensemble average of thermally 

allowed rotational states of the BiPhe dihedral. It may be hypothesized that greater 

flexibility of the BiPhe may correlate with an increase in X-ray crystallographic 

resolution. However, comparison of the computed thermal range of BiPhe to the 

respective crystallographic resolution of the ThRS proteins engineered by Schultz (Table 

3) indicated no significant correlation between the two factors (Appendix A: Figure 5, 

R2= 0.149). 

 MD simulations were performed on the six ThrRS proteins in the interest of 

providing additional insight into the flexibility of BiPhe and its surroundings. Comparing 

the MD simulation snapshots to their respective X-ray crystal structure, the average root-

mean square deviation (RMSD) of the non-hydrogen atoms for the proteins ranged from 

0.33 to 0.52 Å (Appendix A: Table 4 and Figure 6). Considering only the non-hydrogen 

atoms of the residues included in our cluster model, the average RMSD between the 

crystal structure and MD snapshots ranged from 0.28 to 0.31 Å. The absence of 

substantial structural changes between the simulated and PDB crystal structures indicates 

the protein effectively retains its tertiary structure without noticeable unfolding. 

Likewise, the BiPhe core maintains its structural integrity. Most of the BiPhe core 

residues tend to exhibit little change among the different protein models (Appendix A: 
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Figure 7) compared to X-ray crystal structures. Unsurprisingly the largest differences are 

observed with residues that undergo point mutation during the progression from 4S02 to 

4S03. 

 Examination of the BiPhe central dihedral angle in the MD simulation snapshots 

presents results that are considerably different from the experimental and cluster model-

based results. The average BiPhe dihedral angle for each of the protein simulations 

(Table 3) is shown to be significantly lower than the experimental value, with the 

exception of 4S03. The histogram of the dihedral values for 4S03 (Figure 10) 

demonstrates an anticipated result: a relatively Gaussian distribution of the data centered 

on/near the experimentally observed dihedral in the 4S03 X-ray crystal structure. 

Visualization of these 4S03 structures with the largest, smallest, and average dihedral 

angle is provided in Appendix A: Figure 9. The histograms of the biphenyl dihedral 

values in the other enzymes (Appendix A: Figure 8) demonstrate distributions shifted to 

favor smaller dihedral angles of BiPhe. This tendency towards more coplanar 

conformations is likely due to the generated AMBER force field parameters for BiPhe  

 

Figure 10. Frequency of BiPhe central dihedral angles in MD simulation snapshots of 

4S03. The red dashed line represents the X-ray crystallographically determined value. 

Green is used to represent dihedral angle values within the thermal range calculated by 

our cluster models. 
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being insufficient to account for the intricate steric/electronic competition between the 

rings. A more fine-tuned parameterization of BiPhe is thus needed to more adequately 

model this residue outside the constrained 4S03 protein, a feat beyond the scope of this 

work. As an additional comparison between the MD simulation and the QM-cluster 

model results, the ranges of the histograms with values within the thermal range 

computed by the cluster models were colored green. Focusing on the 4S03 results (Figure 

10), 87% of the dihedral values in the snapshots were within the thermal range, with the 

remaining 5% and 8% outside the left and right boundaries, respectively. In this manner, 

the MD and cluster model results are in close agreement with the relative flexibility of 

the dihedral angle within the 4S03 protein core. Interestingly, snapshots farther outside of 

the thermal range display severe biphenyl ring distortion rather than steric 

accommodation of the ThRS residues around the BiPhe (Appendix A: Figure 9). Similar 

behavior is observed by Masson in the study of dihedral rotational profiles of substituted 

biphenyls.78 As the minimization of BiPhe to a large value of Φ can be considered a “rare 

event” in the 10 ns MD simulations of ThRS, we could estimate a rate constant based on 

one complete dihedral rotation of BiPhe every 10 ns. At 310 K, this would correspond to 

an extremely conservative ΔG‡ of 6.5 kcal/mol, but actual values are likely closer to the 

barrier heights shown in Appendix A: Figure 4. 

 Lastly, to determine if a coplanar transition state persists in any of the protein 

models, transition state searches near Φ=0° were conducted for each of the models. 

Transition states with a definitive imaginary vibrational frequency attributable to the 

rotation of the biphenylalanine central dihedral were identified for 4S02 at Φgas = 9.3°, 

4S0I at ΦCPCM+GD3BJ = −3.2°, and 4S0K at ΦCPCM+GD3BJ = 2.4°. Activation free energies 
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were computed as the difference between the transition state conformations and their 

unconstrained ground state conformations and were 1.28 kcal/mol, 1.55 kcal/mol, and 

0.66 kcal/mol, respectively. Of particular significance is the fact that these energies are 

comparable to the rotational energy for free biphenyl (Figure 11). The similar energy 

barriers support the notion that the detected near-coplanar TSs within 4S0I and 4S0K are 

directly attributable to the BiPhe rings rotating through the unfavorable coplanar 

conformation. Collectively, this evidence strongly suggests the coplanar conformation of 

biphenylalanine exists within the 4S0I and 4S0K protein models as a computationally 

detectable local maximum on their potential energy curves. It is important to note that 

while these two transition states are observed using DFT, they will have no qualitative 

impact on the potential energy surface. As the energy barrier for the reverse rotation is 

negligible, it is expected that the BiPhe rings will undergo facile relaxation to the global 

minimum conformation. 

 No transition states near Φ = 0° were found for the 4S03 or 4S03_W81 models, 

indicating the surrounding steric forces of the hydrophobic residues acting on  

 

Figure 11. Potential energy curves for the torsional rotation of p-biphenylalanine within 

the 4S0I protein (circles) with the proposed transition state maxima and local minimum 

(red) in comparison to the potential energy curve for free biphenyl (triangles). 
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biphenylalanine effectively counteract the intramolecular H–H steric repulsion of the 

coplanar conformation. With this juxtaposition of opposing forces, the coplanar 

conformation exists as an energetic minimum within the designed 4S03 protein model 

rather than a “trapped” local transition state. 

 The concept of the 4S03 structure sterically compacting the BiPhe side chain into 

the coplanar conformation is further reflected in the number and type of residue–BiPhe 

interactions computed by probe (Appendix A: Table 5) during cluster model 

construction. The last three ThRS synthetase proteins (4S0I, 4S0K, and 4S03) each differ 

by a single amino acid substitution of Y79S, Y79V, or Y79I, respectively. As each 

residue substitution is characterized by an increase in the size of the side chain and in 

hydrophobicity, it may be expected that the number of computed BiPhe ↔ residue 

interaction counts (RICs) will increase going from 4S0I to 4S03. A distinct increase in 

the number of RICs is indeed seen for residue 79 as probe computes 4 RICs for Y79S 

(4S0I), 14 RICs for Y79V (4S0K), and 17 RICs for Y79I (4S03). Additionally, the RICs 

for residue A123 in all three proteins are noted to also increase from 3 RICs (4S0I) to 9 

RICs (4S0K) and 10 RICs (4S03). These increased RICs result from increased steric 

clashing between the BiPhe and A123 as BiPhe shifted to accommodate the larger Y79I 

side chain. With each mutation of Y79, the number of BiPhe RICs progressively 

increased with the final Y79I mutation in 4S03 providing sufficient steric and 

hydrophobic interactions to force the BiPhe to be coplanar. Thus, the RICs reflect how 

the designed 4S03 core effectively compacts the coplanar BiPhe side chain. As seen in 

our work, there is potential in using RICs (or other chemical mapping methods) to 

qualitatively assess protein structure at the residue level. As these interaction networks 
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may be obtained with negligible computational cost, we speculate that they may prove to 

be a novel qualitative measure for prediction of mutant protein thermostability and 

rational bioengineering. 

Conclusions 

 QM-only cluster models ranging from 267 – 300 atoms of several bioengineered 

threonyl-tRNA synthetase proteins were constructed to examine the energetics of the 

torsional rotation of the noncanonical p-biphenylalanine residue. We successfully 

computed resting dihedral angles for most of the models within 1–4° of the experimental 

X-ray crystal structures. Unlike free biphenyl, complete rotation of the biphenylalanine 

rings within the proteins requires overcoming substantial energetic barriers of at least 5 – 

15 kcal/mol, which are likely much higher for the actual ThRS potential energy surfaces. 

These barriers are noted to be similar to the rotational activation energies of substituted 

biphenyl molecules. While complete rotation of the biphenylalanine rings is not facile, 

the rings are also not rigidly constrained and may fluctuate at 310 K by 17.3° – 26.1°. 

Transition state searches near Φ = 0° were conducted to determine whether a coplanar 

biphenylalanine transition state exists within the various models. We identified coplanar 

TSs for the 4S02 (gas phase), 4S0I, and 4S0K cluster models, and the activation energies 

for these are noted to be close to the barrier height for free biphenyl. The evidence of 

these detected transition states suggests an intramolecular steric transition state of 

biphenylalanine exists within the 4S0I and 4S0K models; however, this transition state 

has a negligible energetic barrier and so the transition state is not expected to impact the 

qualitative potential energy surface of the proteins. 
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 Transition states near Φ = 0° were not identified for 4S03 or 4S03_W81 models, 

suggesting that the surrounding steric forces acting on biphenylalanine effectively 

counteract the intramolecular H–H steric repulsion of the coplanar conformation, 

resulting in the coplanar conformation being an energetic minimum. While the 

computational evidence does not support the idea that the 4S03 X-ray crystal structure 

represents a “trapped” transition state alluded to in the work of Schultz and coworkers, 

their use of rational computational bioengineering generated a protein capable of 

stabilizing an energetically unfavorable conformation, which is a remarkable and highly 

commendable accomplishment. Indeed, their general method allows new insight into the 

function and mechanism of proteins, along with the potential to design proteins with new 

properties, which is work in progress in the Schultz laboratory.79 Future investigations 

could pursue enzyme modifications to stabilize/“trap” TS analogues of bond 

breaking/forming reactions, and this study validates a supporting role for quantitative 

QM-cluster model computations. 

 This work reiterates computationally what is expected to chemically occur during 

the process of protein design and bioengineering. The interaction-based cluster models 

demonstrate the impact inter-residue steric repulsions play in determining the 

conformation and orientation of nearby residues. This work further demonstrates how 

protein models constructed based upon inter-residue interactions provide semi-

quantitatively accurate results without using QM/MM or ONIOM models. Just as our 

QM-cluster model creation scheme was able to provide valid results in this proof-of-

concept study, we anticipate similar reliability in its application to many useful topics in 
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biochemistry and biophysics, such as elucidation of enzyme mechanisms, molecular basis 

of disease, in silico protein engineering, and drug design.
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Chapter 3: Human Carbonic Anhydrase II 

Introduction 

 Metalloenzymes have crucial roles in living organisms, ranging from facilitating 

cellular signal transduction pathways to functionalizing substrates. Many of these 

proteins utilize the trace element zinc, with up to 10% of the human genome potentially 

encoding zinc-binding proteins.80 Carbonic anhydrases81 (CA) are a family of these zinc-

dependent enzymes that rely upon a relatively simple zinc-bound active site to activate 

water to hydrolyze carbon dioxide through the reaction:  

  𝐶𝑂2 + 𝐻2𝑂 ⇌ 𝐻𝐶𝑂3
− + 𝐻+ (1) 

With this functionality, CAs are found widely throughout organisms within all three 

domains and play important roles in cellular respiration, pH and fluid homeostasis, and 

carbon dioxide fixation.81,82 

 Although there are several different isoforms of CA, the most well studied is 

human carbonic anhydrase II (HCAII), which is a 32 kDa monomeric α-class protein that 

supports a four-coordinate Zn2+ center (Figure 12).81,82 Over the past twenty years, it has 

been observed that this protein is cambialistic in which the native Zn2+ may be substituted 

with other divalent metal ions and the enzyme still retains some catalytic activity.  In 

general, the metal binding affinity of CAs follow the Irving-Williams series (Mg2+ < Fe2+ 

< Co2+ < Ni2+ < Cu2+ > Zn2+) with the exceptions of the native Zn2+ having a greater 

affinity than Cu2+ and Fe2+ having a smaller affinity than Mg2+.83 Although HCAII is 

capable of binding to different divalent transition metals, the enzymatic activity of these 

HCAII variants is significantly reduced, with only Zn2+ having a high catalytic activity.  
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Figure 12. Cartoon representation of HCAII (PDB: 3D92) with carbon dioxide in the 

active site pocket and the zinc bound to a water and three histidines (stick representation 

with green carbon atoms; hydrogens are omitted). 

HCAII with Co2+, Mn2+, Fe2+, Ni2+, and Cd2+-bound showed approximately 50%, 8%, 

4%, 2%, and 2% activity respectively (compared to Zn2+) while HCAII with Cd2+ did not 

show any detectable activity.81,82,84–86   

 It has been reported87 that the γ-class CA of the anaerobic archaeon 

Methanosarcina thermophilia may be successfully reconstituted with Fe2+ in an 

anaerobic environment to yield an enzyme with a catalytic efficiency greater than Zn2+-

reconstituted CA. Subsequently exposing the Fe2+-reconstituted enzyme to hydrogen 

peroxide oxidized the Fe2+ to Fe3+ and inactivated the enzyme by dissociating Fe3+ from 

the enzyme active site. These results suggested that previous reports of the poor activity 

of Fe-substituted γ-class CA may have arisen from Fe2+ being oxidized to Fe3+ during 

aerobic purification. Although there are substantial structural differences between the γ-
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class CA of Methanosarcina thermophilia and α-class HCAII, the aforementioned 

finding leads to questions into whether similar effects may impact the activity86 of Fe-

substituted HCAII. In light of this information, we seek to use a theoretical approach to 

investigate the mechanistic details of Fe- and other metal-substituted HCAII variants. 

 There are two commonly proposed reaction mechanisms for native HCAII.81 Both 

begin with a metal-bound hydroxide performing a nucleophilic attack on carbon dioxide 

to form bicarbonate with two oxygens bound to the metal. The Lipscomb mechanism 

proposes that dual proton transfers occur between the bicarbonate and the nearby, 

evolutionarily conserved threonine and glutamic acid residues before the bicarbonate 

detaches from the metal. Alternatively, the Lindskog pathway proposes the bicarbonate 

breaks away without additional steps (Figure 13). A water molecule then replaces 

bicarbonate, and the catalytic hydroxide is regenerated via a proton dissociation shuttle 

transferring a water proton to the protein surface and subsequent solvent. For decades, 

there has been debate over which pathway is preferred, but recent studies tend to suggest 

both mechanisms are competitive with each other.88,89,98,99,90–97 This historic inability to 

identify the preferred pathway(s) computationally is in part based on the wide variability 

in models used to simulate this biosystem. Models range from minimal QM-cluster 

models (e.g. a model composed of only a CO2 and [(NH3)3Zn−OH]+)  to more recent 

QM/MM simulations.88,89,96–100 

 In this work, we seek to investigate the viability of Fe-substituted HCAII by 

quantum mechanically simulating both the Lipscomb and Lindskog reaction mechanisms. 

For improved context and comparison, reaction pathways for models with Zn2+, Co2+, 

Mn2+, Ni2+, and Cd2+ as the active site ions will also be computed. This work will use  
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Figure 13. Part of the proposed carbonic anhydrase reaction pathway illustrating the differences between the Lipscomb and Lindskog 

mechanisms. Steps shown include the enzyme-substrate complex (ES), transition state (TS) and intermediate (INT) structures. Labels 

correspond to coordinates for the reactions where the active site metal (M) is Zn2+ or high-spin Fe2+.
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information from protein residue interaction networks to construct models large enough 

to mimic the active site microenvironment better than previously reported minimal QM-

cluster models while avoiding simulating the entire protein via QM/MM simulation. 

Through this work, we seek to efficiently (and accurately) obtain atomic-level insight into 

the HCAII active site and its cambialistic properties. 

Methods 

 The QM-cluster models of the CA active site were constructed using the X-ray 

crystallographic coordinates of a cobalt-substituted derivative of HCAII (PDB: 3KOI).101 

Hydrogen atoms were added to the structure using the program Reduce.59 To identify the 

residues that craft the active site microenvironment, the inter-residue topologies for three 

HCAII X-ray crystal structures (PDBs 3KOI, 3D92, 1CAH) were mapped by using the 

Probe software27 to identify inter-residue contact interactions. The computed inter-

residue contact interactions were used to construct a residue interaction network, a graph 

that translates the three-dimensional protein structure into a two-dimensional network of 

residues (called “nodes”) interconnected by their contact interactions (called “edges”).25  

The three X-ray crystal structures examined each have unique characteristics which may 

help ensure crucial interactions are captured in modeling the various metal-substituted 

systems. The cobalt-substituted structure 3KOI has three waters coordinated to the metal 

to give an octahedral geometry;101 the 3D92 structure is obtained from CO2-pressurized, 

cryo-cooled crystals, capturing the location of CO2 within the active site;102 and the 

cobalt-substituted structure 1CAH has bicarbonate complexed to the metal.103 The 

contact maps of these three proteins were analyzed to identify residues interacting with 

either the metal-coordinated waters, the three metal-coordinated histidine side chains 
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(His94, His96, His119), the unbound CO2 molecule (within 3D92) and the metal-bound 

bicarbonate molecule (within 1CAH). A total of 15 residues were identified as having 

contact interactions with the aforementioned species. Three interacting residues were 

excluded from the final model (Asn67 and Thr200 had very few contact interactions and 

Phe66 only had minor non-hydrogen bonding backbone contacts with His94), allowing 

the final list of directly interacting residues modeled to be Gln92, Phe93, Phe95, Glu106, 

Glu117, Leu118, Val121, Val143, Leu198, Thr199, Trp209, and Asn244.  

 The rest of the protein was trimmed away (see Appendix B: Table 1) and places 

where bonds were broken were capped with C–H bonds to satisfy valency. A water 

molecule was also included in the model positioned at the crystallographic coordinates of 

Wat592 of PDB entry 3D92. The final model for the Zn-, Fe-, Cd-, and Co-composed 

active sites is composed of 224 atoms. An additional metal-coordinated water is added to 

the Mn- and Ni-substituted model to yield a 227-atom model. To mimic the generally 

rigid nature of the protein backbone, a total of 22 Cα and select Cβ atoms were frozen to 

their crystallographic coordinates (Figure 14).  

 QM computations were conducted using the Gaussian16 software62 using density 

functional theory. The hybrid B3LYP exchange-correlation functional63,64 was used with 

6-31G(d') basis set for N and O atoms,66 6-31G basis set for C and H atoms,67 and 

LANL2DZ basis and effective core potentials for the metals.104 The models were 

simulated with the inclusion of the GD3BJ dispersion correction and a CPCM 

environment using UFF sets of atomic radii, a non-default electrostatic scaling factor of 

1.2, and a dielectric constant of ε=4.68,69,105 Unscaled harmonic vibrational frequency  
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Figure 14. The 224-atom QM-cluster model of the CA active site. The Cα and select Cβ 

atoms which were frozen to their crystallographic coordinates are indicated in orange. 

calculations were used to confirm all stationary points as either minima or transition 

states. 

Results and Discussion 

 Proposed Mechanism for Zn-HCAII 

 The relative Gibbs free energies for stationary points along both Lipscomb and 

Lindskog reaction pathways (Figure 13) were computed using the designed QM-cluster 

models, and the resulting energy profile for the mechanisms are shown in Figure 15. The 

results indicate that at the point where the mechanisms deviate, the dual hydrogen 

transfer of the Lipscomb mechanism is barrierless (TS2) and leads to a 4.5 kcal/mol more 

stable intermediate (INT2) while the Lindskog mechanism requires 9.3 kcal/mol to break 

the Zn-O bond (TS5). However, the energy for the carbonate to break its Zn-O bond 

(TS3, ΔΔG = 15.1 kcal/mol ) is greater than that for the bicarbonate Zn-O bond to break 
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Figure 15. Free energy profile for the Lipscomb (solid) and Lindskog (dashed) reaction 

mechanisms for HCAII with Zn2+ as the active site metal. 

(TS5, ΔΔG = 9.3 kcal/mol). Reversibility of INT2 to INT1 may be expected to occur 

given the low activation energy for the reverse reaction, enabling the reaction to follow 

the slightly more energetically favorable Lindskog pathway. However, both Lipscomb 

and Lindskog rate determining steps are feasible to overcome and both pathways may be 

expected to be competitive.  

 In comparing these results to other free energy profiles in the literature, the 

thermodynamics of our computed mechanisms have characteristics reportedly attributable 

to the absence of extensive water networks within the active model (e.g. within QM/MM 

or QM-only models with additional water clusters).88,90 For example, the TS1 activation 

energy (ΔΔG = 1.6 kcal/mol) is lower than the ~7 kcal/mol activation energy reported for 

water-packed models as the hydroxide and CO2 substrate do not have to break through a 

“wall” of waters to bind. The calculated value is instead comparable to the ~1 kcal/mol 

activation energy reported in QM-models with few waters.88,89,106 The issue of how to 
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properly ensure waters are identified and modeled appropriately in active site models 

remains a complicated topic, compounded by the mobility of waters and their typically 

poor resolution in X-ray crystal structures. Efforts to design solvent-accessible active 

sites that better account for the presence of waters though MM or brief MD enzyme 

solvation simulations are underway by our lab. Apart from the water differences, the 

results reported here are comparable to those from reported “larger” QM-models, 

providing good evidence to support the accuracy of this computational method. These 

results with Zn in the active site will serve as a reference of comparison against the other 

metal- substituted HCAII models. 

 Proposed Mechanism for Co-HCAII 

 The Co2+-substituted metallovariant of HCAII was reported as having the next 

highest enzymatic activity after Zn2+. Like Zn2+, the metal coordination geometry is 

tetrahedral for the lone enzyme (E+S) and substrate-bound starting structures (ES). The 

computed reaction energy profile (Figure 16) indicates that upon nucleophilic attack of 

the Co2+-bound hydroxide to the CO2 (TS1), the structure rapidly relaxes to the bidentate 

carbonate within the Lipscomb pathway (INT2) where the hydrogen has been transferred 

to the Thr199; an INT1 stationary point structure was not able to be isolated. Breaking of 

one of the bidentate carbonate bonds in concert with the transfer of the hydrogen from 

Thr199 to the carbonate may occur (TS5) to lead to the monodentate bicarbonate (INT4), 

but this process is computed to require 18 kcal/mol to occur. Given the significant 

stability of the bidentate carbonate structure, our model is unable to isolate the Lindskog 

pathway structures. 
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Figure 16. Free energy profile for the modified Lipscomb reaction mechanism or HCAII 

with Co2+ as the active site metal compared to Zn2+ (grey). 

 Since the computation of this free energy profile, recent X-ray crystallographic 

studies have provided additional insight into the Co2+-HCAII mechanism of action.107 

These crystal structures reveal that while a tetrahedral coordination is confirmed for E+S 

and ES states, the coordination is unusually expanded into an octahedral coordination 

upon formation of the bicarbonate whereby the Co2+ is coordinated to the three protein 

histidines, a bidentate bicarbonate structure, and an additional water molecule. The 

authors of this work107 theorize that the binding mode of bicarbonate to the Co2+ will be 

stronger than that of Zn2+ and that deprotonation of the additional Co2+-bound water 

molecule may facilitate dissociation of bicarbonate due to charge-charge repulsion 

between the resulting hydroxide and bicarbonate. The QM-cluster models support the 

idea of the Co2+ having tighter product metal-binding than Zn2+ (TS5, ΔΔG = 18.0 

kcal/mol), but given the absence of additional waters within this model, they are not 

capable of giving insight into the impact the additional coordinated water and its 
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deprotonation may have on the reaction mechanism. This inquiry will be investigated in 

the future by adding several more waters to the model and recomputing the stationary 

points to include examination of the octahedrally coordinated structures.  

 Proposed Mechanisms for Mn-, Ni-, and Cd-HCAII 

 The Mn2+- and Ni2+-substituted metallovariants of HCAII were reported as having 

poor enzymatic activity (8% and 2% respectively) compared to the activity of Zn2+. Both 

QM-models include an additional water coordinated to the metal, beginning with a square 

pyramidal starting geometry. This difference in metal and coordination alters the 

predicted mechanism (Figure 17) and subsequent reaction energy profiles (Figures 18 and 

19). Both Mn2+- and Ni2+-HCAII display a remarkable change in activation energy for the 

beginning step, increasing from <2 kcal/mol for both Zn2+ and Co2+ to ≥11.2 kcal/mol 

(TS6). This substantial increase in activation energy suggests the beginning coordination 

geometry is not as conducive towards reaction initiation as the tetrahedral geometry and 

may partly explain why enzymatic activity for the Mn2+ and Ni2+ metallovariants are 

poor. The TS6 activation energy for Mn2+-HCAII is 6.6 kcal/mol greater than that for 

Ni2+-HCAII, suggesting reduced enzymatic activity for the former than the latter which is 

not observed experimentally; other phenomena not captured in this model are likely 

involved. Besides the increase in activation energy for TS6, it is noted that the other 

transition state and intermediate structures are not as stabilized within the Mn2+- and 

Ni2+-active sites compared to the Zn2+- and Co2+-equivalents and the net reactions are less 

exergonic. 

 X-ray crystal structures reveal hexacoordinate geometries for Mn2+- and Ni2+-

HCAII, which will have to have one of their waters displaced for the reaction to
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Figure 17. Part of the proposed carbonic anhydrase reaction pathway illustrating the differences between the Lipscomb and Lindskog 

mechanisms. Steps shown include the enzyme-substrate complex (ES), transition state (TS) and intermediate (INT) structures. Labels 

correspond to coordinates along for the reactions where the active site metal (M) is Mn2+ or Ni2+.
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Figure 18. Free energy profile for the modified Lipscomb (solid) and Lindskog (dashed) 

reaction mechanisms for HCAII with Mn2+ as the active site metal compared to Zn2+ 

(grey). 

 

 

 

Figure 19. Free energy profile for the modified Lipscomb (solid) and Lindskog (dashed) 

reaction mechanisms for HCAII with Ni2+ as the active site metal compared to Zn2+ 

(grey). 
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commence.107,108 CO2-pressurized, cryo-cooled crystals of Ni2+-HCAII reveal there will 

be steric hindrance between the CO2 and metal-bound waters as CO2 enters the active site 

pocket, distorting final orientation of CO2 within the cavity compared to within Co2+- and 

Zn2+-substituted active sites. Although our water-sparse QM-model is not designed to 

capture the true magnitude of these steric effects when CO2 enters this active site, it 

should be noted that the enzyme-substrate complex (ES) is computed to be less stable 

within the Mn2+ and Ni2+-model than the separate enzyme and substrate species (E + S), 

which is the opposite of what is observed with the Zn2+- and Co2+-substituted models. 

The evidence from the QM-models support the theory107 that the reduced enzymatic 

activity of Mn2+- and Ni2+-substituted HCAII is attributable to the non-tetrahedral metal 

coordination geometries hindering the ease for CO2 to orient within the active site and 

efficiently initiate the reaction. 

The Cd2+-substituted HCAII was similarly reported as having poor enzymatic 

activity (~2% compared to Zn2+--HCAII). The energy profile for the reaction (Figure 20) 

was computed using the tetrahedral metal starting geometry, and intermediates and 

transition state structures similar to those along the Zn2+-HCAII reaction pathways 

(Figure 13) were identified. Although a significantly reduced enzymatic activity is 

reported experimentally, the energy profile indicates the reaction catalyzed by Cd2+-

HCAII is slightly more favorable thermodynamically and kinetically. The comparability 

between the computed Zn2+- and Cd2+-HCAII reaction thermodynamics is similar to a 

previous QM-cluster model study.91  

This discrepancy between our model and experiment may be due to the fact that 

the reaction pathways computed in this and the aforementioned QM-cluster modeling 
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Figure 20. Free energy profile for the Lipscomb (solid) and Lindskog (dashed) reaction 

mechanisms for HCAII with Cd2+ as the active site metal compared to Zn2+ (grey). 

studies focus on the CO2 hydration mechanism and begin with the metal-hydroxide 

structure (ES) without simulating the steps required to generate this starting structure. 

Water deprotonation occurs via a histidine-directed water shuttle which drives the proton 

from within the protein pocket into the bulk solvent,81,109–113 a mechanism not able to be 

properly simulated in this current QM-cluster model. Given that Cd2+ is a weaker Lewis 

acid than Zn2+, it may be that the predominant form of the ligand bound to Cd2+ is water 

rather than hydroxide.91 This is supported by experimental evidence that the activity of 

Cd2+-HCAII is induced at higher pH with an activity profile corresponding to the 

ionization of a Cd2+-bound water molecule.114 Additional modeling beyond the scope of 

this current work would need to be conducted to examine this hypothesis. 

 Proposed Mechanism for Fe-HCAII 

 Low enzymatic activity (~4% compared to Zn2+-HCAII) was similarly reported 

for Fe-HCAII. The Fe2+-HCAII model was simulated at both low and high-spin 
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configurations, with previous experiments on γ-class CA reporting a high-spin state for 

its Fe2+-bound CA.87 Structures for the low-spin Fe2+-HCAII were computed using a 

model with the additional metal-bound water, and the resulting mechanism (Figure 21) 

and free energy profile (Figure 22) are shown to be similar to the Mn2+ and Ni2+-HCAII 

pathways. The reaction is shown to be slightly more thermodynamically and kinetically 

favorable with low-spin Fe2+ compared to Mn2+ and Ni2+, but there is still a substantial 

activation energy required for reaction initiation with this coordination geometry. 

 Structures for the high-spin Fe2+-HCAII were computed with mechanisms (Figure 

17) and a free energy profile similar to the Zn2+-HCAII pathway (Figure 23). The 

intermediates are shown to be more thermodynamically stable, and the reaction is slightly 

thermodynamically favorable compared to Zn2+-HCAII. Fe2+-HCAII also has a reduced 

activation energy required for the Lipscomb pathway (TS3; ΔΔGZn = 15.1, ΔΔGFe = 11.7), 

and slightly greater activation energy required for the Lindskog pathway (TS3; ΔΔGZn = 

9.3, ΔΔGFe = 10.6). Both metal active sites kinetically favor the Lindskog pathway over 

the Lipscomb pathway, although the advantage is reduced in Fe2+-HCAII, making the 

pathways more competitive. Based upon these results, the hydration of CO2 is predicted 

to be thermodynamically and kinetically feasible for Fe2+-HCAII. 

 The models were also used to simulate the CO2 hydration mechanism for Fe3+-

HCAII. The reaction mechanism (Figure 13) was computed for the low-spin state Fe3+ 

(Figure 24), and it is shown to be similar to the high-spin Fe2+-HCAII with the exception 

of the very thermostable Lipscomb intermediate INT2. This increases the activation 

energy for the Lipscomb reaction pathway to 21.1 kcal/mol; the Lindskog pathway 

remains kinetically favored with a ΔΔG = 11.5 kcal/mol. These results support the
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Figure 21. Part of the proposed carbonic anhydrase reaction pathway illustrating the Lipscomb mechanism where active site metal 

(M) is low-spin Fe2+. Steps shown include the enzyme-substrate complex (ES), transition state (TS) and intermediate (INT) structures. 
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Figure 22. Free energy profile for the modified Lipscomb (solid) and Lindskog (dashed) 

reaction mechanisms for HCAII with low-spin Fe2+ as the active site metal compared to 

Zn2+ (grey). 

 

 

 

Figure 23. Free energy profile for the Lipscomb (solid) and Lindskog (dashed) reaction 

mechanisms for HCAII with high-spin Fe2+ as the active site metal compared to Zn2+ 

(grey). 
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Figure 24. Free energy profile for the Lipscomb (solid) and Lindskog (dashed) reaction 

mechanisms for HCAII with low-spin Fe3+ as the active site metal compared to Zn2+ 

(grey). 

feasibility of Fe3+-HCAII to catalyze the CO2 hydration reaction. However, this assumes 

the starting metal-bound hydroxide structure is readily formed, and experiments report 

the poor metal binding affinity of HCAII for Fe3+.86,87 

Conclusions 

 In this work, the viability of multiple transition metal-substituted HCAII enzymes 

were investigated by quantum mechanically modeling the Lipscomb and Lindskog 

reaction mechanisms. Using Zn2+-HCAII as a point of reference, the models 

demonstrated Co2+-substituted HCAII is catalytically feasible but is limited by the energy 

needed to break the Co-O bond of a tightly bound, bidentate carbonate intermediate 

structure. Additional computations are needed to examine recent experimental evidence 

finding an additional water bound to the intermediate metal structure, a possibility not 

accounted for in the current model but easily rectified by adding additional waters to the 
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active site model. Models of the Mn2+ and Ni2+-substituted active site reveal that square 

pyramidal coordination substantially increases the activation energy required for the 

hydroxide to bind to CO2 and initiate the reaction. Models of Cd2+-HCAII suggest the 

reaction is readily catalyzed, in agreement with previous modeling studies but in 

disagreement with the poor experimentally reported activity levels. It is hypothesized this 

discrepancy arises from Cd2+-HCAII not readily deprotonating the metal-bound water to 

form the metal-bound hydroxide, a mechanistic step not modeled in this work.  

 Lastly, the mechanisms for Fe2+-HCAII in low and high metal spin states were 

examined along with Fe3+-HCAII in the low spin state. The high spin state Fe2+ is 

expected to be the predominant form, and the reaction pathways computed are 

thermodynamically more favored than Zn2+-HCAII along with being kinetically 

comparable. These results suggest that, in an anaerobic environment where the Fe2+ is not 

able to be oxidized to Fe3+, the hydration of CO2 by Fe2+-HCAII is theoretically feasible. 

This feasibility is notably limited to the steps of the reaction cycle modeled, as steps from 

the overall catalytic cycle not addressed by these models (e.g. generation of the metal-

hydroxide or dissociation of the product) may inhibit the drive of the reaction. 

Nevertheless, these results give hope in the ability to synthesize an active, anaerobic 

Fe2+-HCAII. When the Fe2+ is oxidized to Fe3+, the models suggest the reaction is still 

catalytically feasible, which is supported by the poor enzyme activity reported for Fe-

HCAII. 

 In conjunction with this theoretical work, experiments involving the synthesis of 

Fe2+-HCAII within an anaerobic environment and measurement of its activity and metal 
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spin state are currently being carried out by the lab of Dr. Joseph Emerson at Mississippi 

State University. 
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Chapter 4: Catechol-O-methyltransferase 

Introduction 

 With the advancement of computers, the modeling and simulation of enzymes 

have become invaluable tools for insight into atomic-scale protein properties. Enzyme 

simulations typically apply quantum mechanics (QM), molecular mechanics (MM), or a 

hybrid of the theories depending on whether the question of interest requires simulating 

the entire protein or only the enzyme active site.1,2,4–6 When creating QM-cluster model 

simulations of an enzyme active site, it is crucial to include any residues, solvent, ions, 

and coenzymes sterically and/or electrostatically crafting the active site 

microenvironment to ensure the results reflect reality, while also excluding less important 

residues to ensure computational feasibility and efficiency.4–6,9 While this is relatively 

simple, much remains to be done to establish a rational, computationally inexpensive 

protocol for identifying these chemically important residues. 

 Ideally, there would be a computationally inexpensive, a priori approach to 

enzyme model construction that utilizes structural and chemical data to rationally select 

residues (or parts of residues) for QM-cluster modeling. As a potential solution for this 

model creation problem, our lab has been developing the software Residue Interaction 

Network ResidUe Selector (RINRUS) which computes a contact-based residue interaction 

network25,26 and uses the data to identify and rank residues for subsequent modeling. 

Further, RINRUS automatically trims and caps the residues via a rules-based criterion to 

form appropriate models and generates formatted input files for several popular 

electronic structure theory packages (see Methods and Appendix C for details). The 

success of incorporating interaction and rules-based rationale into model design has been 
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reported for QM-only models115 and recently implemented into a QM/MM modeling 

API;116 however, there continues to be no definitive protocol for generalized QM-cluster 

enzyme model creation. Through establishing an automated and rigorous workflow, we 

envision solutions to several community-wide problems including standardization of 

enzyme QM-model creation, reducing learning curves for new users, and minimizing trial 

and error using poorly or incorrectly designed models. Implementing the RINRUS toolkit 

may also improve reproducibility of workflows and published results, a scientific 

community-wide need which was most recently emphasized by the 2019 consensus study 

report Reproducibility and Replicability in Science released by The National Academies 

of Sciences, Engineering, and Medicine.117 To informally highlight the reproducibility 

problem within the QM/MM and QM-cluster modeling communities, we surveyed 58 

QM/MM or QM-cluster model papers published between Jan 1 – Mar 31 of 2015 and Jan 

1 – Mar 31 2019, evaluating whether the models could be directly reproduced via 

reporting of Cartesian coordinates (see Appendix C for details). Only 20 papers (34%) 

reported Cartesian coordinates to the extent that reproduction is possible. Given the 

absence of consistent community reporting, embedding reproducibility via a systematic 

model design workflow would be a large step towards research standards in 

computational enzymology. 

 Ideally, the RINRUS workflow would be capable of identifying a singular model 

or handful of models that best capture the balance between maximizing the number of 

key residues included to simulate the active site while minimizing the size of the QM-

region for computational efficiency. This leads to questions such as what makes the 

enzyme model “good”? What easily obtainable metrics might be universal in 
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computational biochemistry for ranking the importance of interatomic/inter-residue 

interactions? We begin to answer these questions within the context of contact-based 

residue interaction networks.25,26 

 The protein of interest for this case study is catechol-O-methyltransferase 

(COMT), a target enzyme of numerous QM-cluster and QM/MM studies.9,18,124–

133,21,22,118–123 The mechanism catalyzed by COMT is rather simple, involving only an SN2 

methyl transfer from S-adenosylmethionine (SAM) coenzyme to the oxygen of a Mg2+-

bound catecholate substrate (CAT, Figure 25A). Kinetic experiments on human COMT 

provide a free energy of activation (ΔG⧧) of 18 - 19 kcal/mol at 310 K134,135 and 

computational studies report the methyl transfer reaction to be exergonic.9,122,123,131 

 Previous computational studies have shown substantial variation in both ΔG⧧ and 

free energies of reaction (ΔGrxn) with respect to QM-cluster or QM/MM model size. 

Recent results from QM/MM calibration studies using radial distance-based QM-regions 

suggest that asymptotic convergence of thermodynamics/kinetics requires radial QM-

regions of 400 - 600 atoms.9,18,122 Unfortunately, conventional DFT calculations of 400 - 

600 atom models are prohibitively expensive for many research groups. The large QM-

region size required to study the COMT mechanism also defies conventional wisdom that 

kinetic/thermodynamic properties should converge quickly as the size of the QM-region 

grows in a QM/MM partition. Slow convergence behavior of COMT has been attributed 

to the non-spherical active site, requiring an accurate description of both the 

Mg2+/catechol coordination chemistry and the electrostatic stabilization of the large SAM 

cofactor.122 
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Figure 25. (A) COMT catalyzes the methyl-transfer reaction from S-adenosylmethionine 

(SAM) to the oxygen of a Mg2+-bound catecholate substrate, forming S-

adenosylhomocysteine (SAH) and guaiacol. (B) The RINRUS workflow begins by 

processing a protein structure (X-ray, NMR, or computational simulation in PDB file 

format) before computing inter-residue contacts to form a contact network. Residues 

(green) and solvent (blue) interacting with the species of interest (the “seed”, orange and 

red) are identified. Systematic classification or ranking schemes are used to construct 

appropriate cluster models. RINRUS then writes these models into an input file format 

appropriate for simulation in a variety of quantum chemistry software packages. (C) The 

base model from which all COMT models were built-up. It is composed of the seed 

(SAM, CAT, Mg2+), three residues, and one coordinating water completing the 

coordination of Mg2+ (D141, D169, N170, HOH411). 
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 While the paradigm of calibrating expanding QM-regions in a radial distance-

based fashion has been established to provide poor convergence for COMT, there is a 

surprising dearth of explored alternatives to distance-based active site models in the 

literature. In this work, we present the reaction thermodynamics and free energies of 

activation for hundreds of QM-cluster models of COMT constructed by RINRUS using 

several possible workflows. By tracing the final results back to how the models were 

constructed, we seek to identify a construction protocol that consistently constructs 

accurate and efficient QM-cluster models of COMT. Though this work will only involve 

one case study, the findings from surveying an immense range of models of the same 

enzyme will allow future studies to invert the focus towards assessing the benefits of a 

particular approach on enzymes with more diverse structure and function. This 

cheminformatics perspective will be a rigorous step towards establishing a translatable, 

generalized computational enzymology protocol. 

Methods 

 The various structures and functions of proteins arise in part from the noncovalent 

interaction networks of their amino acid subunits. To highlight these networks, the 

complex three-dimensional structure of proteins may be simplified into a two-

dimensional adjacency matrix or a graph mapping the residues to points (nodes) 

interconnected by lines (edges). Conventionally, each node represents an individual 

amino acid of the protein, and each edge represents a noncovalent interaction occurring 

between two amino acids. For more information on inter-residue contact networks and 

their design, properties, and applications within chemistry, the reader is directed to 

reviews by Giuliani25 and Shen.136 
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 In this work, the construction of inter-residue contact networks begins by 

following a procedure similar to that of the software RINerator.26 First, hydrogens are 

added to the protein crystal structure (PDB ID: 3BWM) using the program Reduce.59,137 

As the 3BWM crystal structure has the inhibitor 3,5-dinitrocatechol coordinated to the 

active site metal, the two nitro-groups were replaced with hydrogens to form the catechol 

substrate. An additional hydrogen was also added to the 2-amino functional group of the 

S-adenosyl methionine substrate to bring it to a +1 charge, its expected protonation state. 

This modified crystal structure is the structure used for all subsequent network generation 

and model construction. The program Probe27 is then used to identify non-covalent 

interactions throughout this structure. The program does this by rolling a small (0.25 Å 

radius) spherical probe over the van der Waals surface of the atoms and identifying both 

where the probe comes in contact with other non-covalently bound atoms and where van 

der Waals surfaces are clashing. The Probe output file details the contact/overlap “dots” 

for all of the atoms reflecting the distance of contacts or volume of overlaps. Wide 

contacts have an interatomic gap distance ≥0.25 Å; close contacts have an interatomic 

gap distance <0.25 Å; big overlaps have overlapping van der Waals radii ≥0.4 Å; small 

overlaps have overlapping van der Waals radii <0.4 Å; and hydrogen bonding are 

overlapping van der Waals radii between donor hydrogen and electronegative acceptor 

atoms.27 All of the reported contact dots (places where an interatomic contact/overlap 

occurs) are then collated for each residue to indicate which residues are interacting. The 

network illustrating all Probe-predicted contact interactions within 3BWM is shown in 

Appendix C: Figure 1. 
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 The chemically reactive species for this enzyme include the two substrates SAM 

and CAT along with the Mg2+ that CAT binds. One rationale for building-up models of 

the active site would be to first focus on including residues immediately interacting with 

these reactive species. The network indicates this list includes 27 amino acids and 4 

crystallographic waters. The specific parts of the residues having contact interactions 

with the reactive species (main chain or side chain) and the number of each contact type 

is provided in Appendix C: Table 1. 

 The base for building-up all models described in this work is composed of the 

substrates SAM and CAT, Mg2+, and the four species completing the coordination of 

Mg2+ (D141, D169, N170, HOH411; Figure 25). Residues are added to this base model 

by either assigning each residue an ordered rank or by adding groups of residues 

classified by a common feature. Models were automatically generated using the RINRUS 

software, trimming the models based upon a residue amino, carboxyl, or side chain 

having interatomic contacts with the seed. Places where covalent bonds are broken in 

trimming the model have hydrogens added to satisfy valency via the program PyMol 

v2.3.a0.138 To maintain the general shape and semi-rigid character of the protein tertiary 

structure, all Cα atoms, along with the Cβ atoms of Arg, Lys, Glu, Gln, Met, Trp, Tyr, and 

Phe side chains, were frozen to their crystallographic positions. Further details about 

residue selection and model trimming are provided in Appendix C. Though other 

research groups who employ QM-cluster models may have developed internal research 

protocols for trimming residues/fragments and freezing backbone atoms, we intend 

RINRUS to be the first enzyme model design toolkit to publicly codify these 
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reproducible workflows (and also encourage hypothesis-driven testing of variations to 

our model building decision trees). 

 All QM computations were performed using the Gaussian16 software package.62 

The models were geometrically optimized using density functional theory (DFT) with the 

hybrid B3LYP exchange-correlation functional.63,64 The computations used the 6-31G(d') 

basis set for N, O, and S;66 the 6-31G basis set for C and H atoms;67 and the LANL2DZ 

effective core potential and basis set combination for Mg.104 The Grimme D3 (Becke-

Johnson) dispersion correction (GD3BJ) was also included105 along with a conductor-like 

polarizable continuum model (CPCM) using UAKS sets of atomic radii, a nondefault 

electronic scaling factor of 1.2, and a dielectric constant of ε = 4.68,69 Unscaled harmonic 

vibrational frequency calculations were used to confirm all stationary points as either 

minima or transition states. Stationary points were found by first pre-optimizing the 

model to the reactant structure. This pre-optimized structure was then used to construct 

an approximate transition state structure by translating the methyl midway between the 

sulfur of SAM and the oxygen of CAT and flattening the methyl to a planar 

configuration. The transition state was optimized, and intrinsic reaction coordinate 

computations were used to confirm the formal reactant and product minima and calculate 

reaction free energies. Whether this procedure biases the simulated active site to more 

strongly stabilize the reactant structure (and whether such a bias would be of any 

significance) is unknown and an uninvestigated facet of computational enzymology. 

 The k-means clustering analysis139 was run through RStudio v.3.6.3140 using seed 

3163 for replication purposes. Elbow and gap statistics (Appendix C: Figure 6) were run 

using the factoextra package.141 For the gap statistic, the number of “bootstrap” Monte 
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Carlo samples used was 50. Both elbow and gap statistics suggest using a k near k = 6 for 

the cluster analysis (Appendix C: Figure 6). A k = 6 was ultimately used for further 

analysis as the clusters with k = 6 are reasonably partitioned into distinct groupings where 

the range of free energies predicted by models within a cluster are not too broad (would 

happen with small k-clusters) and the interpretation of the clusters are not so narrow as to 

fail to be generalizable (would happen with large k-clusters). To identify the appropriate 

clusters, the Hartigan and Wong k-means clustering algorithm was used starting from a 

total of 50 different random starts.142 

Results and Discussion 

 We began by computing a contact-based residue interaction network (Figure 25B) 

for an X-ray crystal structure of human COMT (Protein Data Bank ID 3BWM), where 

residues, substrates, and solvent are illustrated as circles (termed “nodes” in standard 

graph theory nomenclature) interconnected by lines (termed “edges”) when there are 

interatomic contacts between two residues/fragments. Though the construction and 

analysis of these graphs are already known to provide insight into allosteric regulation, 

protein folding and stability, and structure-function relationships,25,136 we repurpose the 

networks towards QM-cluster model design. The network indicated 27 protein residues 

and 4 crystallographic waters had contact interactions with any fragments central to the 

catalytic reaction (termed the “seed”: SAM, CAT or Mg2+). The residue contacts with the 

seed were classified into five different types: wide contacts, close contacts, small 

overlaps, big overlaps, and hydrogen bonding. All QM-cluster models of COMT were 

constructed using the crystallographic coordinates of these residues and, unless otherwise 

indicated, trimmed according to the RINRUS workflow (refer to Appendix C). Models 
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were expanded from the seed by one of two general ways: residues were incrementally 

added based upon a ranking criterion (e.g., distance from the seed, number of contacts 

with the seed) or groups of residues were added to the seed based upon similar residue 

features (e.g. type of interatomic contacts). The models constructed solely from the 

RINRUS contact information expand to a 485-atom model representing a “first-

interaction shell” maximal model that includes all residues with quantified contacts with 

any of the seed fragments. This maximal model is ellipsoidal in shape, reflective of the 

non-spherical geometry of the COMT active site. Further details on the model building 

schemes beyond what will be outlined in the discussion are provided in Appendix C. In 

total, the methyl transfer transition state and connecting reactants/products for 550 unique 

QM-cluster models were computed. A total of 1650 DFT-optimized stationary points 

were analyzed in this work. 

 Expansion of QM-cluster Models by Ranking of Residues 

 We will first detail several ways COMT QM-cluster models were incrementally 

built-up by ranking residues. The first metric is the current paradigm of ranking residues 

based on their distance to the active site. Though a simple distance metric may seem 

straightforward, this method can be ambiguous and tricky to replicate without reporting 

very precise definitions of the radial origin and the thresholds for adding residue 

fragments or entire residues. Subtle variances in definitions might qualitatively affect 

which residues or atoms are captured within varying radially expanding models. For this 

work, 25 models were constructed with RINRUS by incrementally adding residues ranked 

by the shortest distance from the position of any atom (including hydrogens) of the seed 

to the position of any atom of the surrounding residues. The models were expanded until 
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all residues predicted by the contact network were incorporated, encompassing a 3.10 Å 

expansion from any atom of the seed. Two residues (K46 and N92) with no RINRUS-

predicted contact interactions with the seed but fall within the 3.10 Å distance threshold 

were necessarily included in these distance-based models. 

 Computed values of ΔG⧧ and ΔGrxn are plotted against the distance-based 

expansion from the seed (Figure 26A). As the size of the model increases, the predicted 

ΔG⧧ converges (the ΔG⧧ is within ±2 kcal/mol of the largest distance-based model) with 

QM-cluster models containing >342 atoms, but the predicted ΔGrxn does not similarly 

converge even with the largest distance-based models. Some of the largest distance-based 

models computed in this work (containing 444 and 447 atoms) incorrectly predict an 

endergonic reaction. 

 The surprising appearance of qualitatively incorrect reaction free energies in the 

largest distance-based models brings up some crucial pitfalls in designing QM-cluster 

models, but also ways that RINRUS can be used by the QM-cluster modeling community 

to circumvent these pitfalls. The convergence of the reaction free energy is disrupted by 

addition of the charged residue K46, which as previously noted, does not have direct 

contact interactions with the seed.  Such a qualitative shift in thermodynamic properties 

contradicts intuition that a larger QM-cluster model will always be “better” than a smaller 

model. At best, the addition of peripheral residues with no quantifiable interaction with 

seed residues/fragments adds unnecessary time to the DFT simulations, as observed with 

the addition of the uncharged N92 residue (not present in RINRUS-constructed models) 

changing ΔG7 and ΔGrxn by < 0.2 kcal/mol in the 486-atom  
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Figure 26. Computed methyl transfer ΔG⧧ (circle) and ΔGrxn (triangle) free energies as 

models are systematically built-up through different methods of ranking residues 

including distance from the seed (A), total number of contacts with the seed (B), 

frequency of residue in Combinatoric Scheme 2 sets (C), and a by-hand reconstruction of 

models by frequency of residue in Combinatoric Scheme 2 sets (D). Grey lines indicate 

the reference convergence values. 
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scheme does not address the enzyme active site chemistry in a physically meaningful 

way. It may be fortuitous that the maximal COMT model generated by RINRUS does not 

include any boundary residues that are part of an unrequited charged pair. If the maximal 

model is thought of as a “first interaction shell” that encapsulates all residues that 

influence the active site chemistry, regardless of distance from the seed fragments, then 

the RINRUS source code can be easily adapted to include residues in the “second shell” 

that are necessary for charge balancing of larger-sized models. 

 As a step towards identifying a chemically-directed way to expand models, we 

next considered the convergence of QM-cluster models constructed by ranking based on 

the number of contacts each residue has with the seed and incrementally building models 

from residues with the most contacts to fewest contacts with the seed. We define 

“convergence” in this study as being within ±2 kcal/mol of the convergence reference 

values and remaining so as the model size is increased one residue at a time. The 

convergence reference values are defined as average relative free energies of the five 

largest models designed solely using RINRUS contact interactions: 12.3 kcal/mol for 

ΔG⧧ and −4.9 kcal/mol for ΔGrxn. The converged reference value for ΔG⧧ is lower than 

the experimentally derived value but this is expected considering the marginal level of 

theory used in this case study. The accuracy of RINRUS-derived models will be a subject 

of several future studies in our groups, by varying level of theory, treatment of solvation, 

and approaches for freezing atoms. With an improved ranking scheme using number of 

residue-seed contacts, ΔG⧧ and ΔGrxn both converge by the 302-atom model (Figure 

26B).  While an interaction-based ranking fares better at prioritizing residues than 

distance-based expansion, there are some inherent limitations. Namely, larger residues 
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with more surface area (e.g., lysine or tryptophan) are more likely to have more contacts 

with the seed and may bias the ranking compared to smaller residues. Ranking by number 

of contacts with the seed also does not weight or quantify the magnitude of electrostatic 

influences (e.g., charge, hydrogen bonding, and polarity). Nevertheless, even with this 

nonoptimal metric, constructing models by contact count still yields impressively small, 

converged models. 

 Below, we will detail two combinatoric workflows for building models where 

residues are classified into sets by common contact type. The third method for ranking 

residues involves ordering residues by the number of times each residue appears in a 

unique model from the Combinatoric Scheme 2 model sets (see below and Appendix C 

for details). This ranking inherently favors residues with more than one type of contact 

interaction. In using this residue ordering, ΔG⧧ and ΔGrxn are converged when QM-

cluster model size is greater than ~300 atoms (Figure 26C), similar to the models 

designed through ranking residues by total contacts with the seed. The model with the 

greatest overestimation of ΔG⧧ and endergonic ΔGrxn (236 atoms) corresponds to the 

addition of the positively charged residue, K144. The subsequent inclusion of the 

negatively charged E199 residue places the predicted free energies within qualitative 

accuracy, re-emphasizing the point that particular care in model design must be given 

towards charged residues and nearby residues that counter their effective charges. 

 Automation Versus Constructing QM-cluster Models Manually 

 The RINRUS package is still undergoing rapid development and needs further 

testing to address broader QM-cluster model design issues such as residue/substrate 

protonation states, orientation of explicit solvent molecules, and conformational 
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sampling.5,6 While these factors may be manually addressed by the user, doing so places 

a potential bottleneck in the throughput of QM-cluster model applications. 

 In consideration of possible differences between manual and automated model 

building, models built by ranking residues via their frequency of appearance in 

Combinatoric Scheme 2 models (Figure 26C) were reconstructed by-hand by the PI. The 

models were designed without any guidance from RINRUS beyond the identity of the 

specific residues in contact with the seed and their ranked order. The results of these 

“bespoke” models are presented in Figure 26D and are shown to be comparable to the 

models built by RINRUS (Figure 26C). There is reduced fluctuation in the ΔG⧧ for the 

smaller bespoke models versus comparably-sized RINRUS-generated models, likely 

attributable to manual sampling of residue orientations, a treatment not done for any of 

the RINRUS-derived models. However, for the models greater than 300 atoms, there is no 

qualitative difference between the automated and the "by-hand” approach. These results 

demonstrate how RINRUS, even without carefully attending to residue protonation and 

conformational sampling, can construct QM-cluster models in a way similar to that by an 

experienced scientist, but which is founded on a traceable cheminformatic basis and a 

reproducible, rational workflow. 

 Expansion of QM-cluster Models by Residue Interaction Features 

 The remaining models were built up from the seed by combining residues with 

common features, specifically by inter-residue contact type. The contact types contain 

two pieces of information used in QM-cluster model construction: the section of the 

residue contacting the seed (classified as either residue main chain, residue side chain, or 

explicit water molecule) and the contact type (wide contact, close contact, small overlap, 
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big overlap, hydrogen bonding). Models were constructed by taking all combinations of 

the contact types and, for each combination, building a QM-cluster model using all 

residues with the specific contact types of that combination. These models represent a 

combinatoric approach to building-up models by adding groups of residues by common 

features to the seed (Combinatoric Scheme 1, see Appendix C for details). To further 

increase the number of models and dataset size, the sets of residues classified by contact 

types were repartitioned into a second combinatoric approach (Combinatoric Scheme 2, 

see Appendix C for details), though the generation of these sets is not rigorous or 

necessarily applicable to other biosystems. Given the limitations of time and resources, 

114 (of 204 possible) models of Combinatoric Scheme 1 and 357 (of 736 possible) 

models of Combinatoric Scheme 2 have been simulated, representing all unique 

combination-based models up to at least 320 atoms (Appendix C: Figure 5). As the goal 

is identifying small, yet accurate, QM-cluster models, the cost of expanding the dataset to 

include hundreds of additional large models is not expected to lead to substantial 

improvements in analysis. 

 In plotting ΔG⧧ and ΔGrxn of QM-cluster models built through the two 

combinatoric schemes (Figure 27A and B), a wide range of computed kinetic and 

thermodynamic values were exhibited. Variation in ΔG⧧ and ΔGrxn originates from 

differences in model composition rather than models optimizing into unnatural 

orientations, since the root mean square deviation (RMSD) of unconstrained residue 

heavy atoms of the geometry optimized reactant state compared to the X-ray crystal 

structure is on average only 0.53 Å for all models (Appendix C: Figure 4; standard 

deviation, 0.17 Å). Similar to the models built by ranking residues, there are models with  
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Figure 27. Computed methyl transfer ΔG⧧ (circle) and ΔGrxn (triangle) as models are 

constructed through either the Combinatoric Scheme 1 (A) and Combinatoric Scheme 2 

(B). (C) Scatter and density plot of ΔG⧧ (blue density) and ΔGrxn (tan density) for all 

simulated models. Six clusters identified by k-means clustering of similar ΔG⧧ and ΔGrxn 

are differentially colored. Grey lines indicate the reference convergence values. 
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fewer than 300 atoms that yield accurate predictions, affirming that QM-cluster model 

convergence for COMT does not require > 400 atom models. 

 Identifying Important Residues 

 A general grouping of COMT QM-cluster models that predict similar (though not 

necessarily accurate) free energies is observed in Figure 27 for both combinatoric 

schemes. This leads to the question of which residues are required to form an accurate 

model? To more clearly distinguish the grouping of unique models that predict similar 

kinetic/thermodynamic properties, the k-means clustering algorithm was used to partition 

the entire dataset of unique QM-cluster models into six groups (Figure 27C) based upon 

their predicted ΔG⧧ and ΔGrxn.
139 Though an unsupervised method was used to group the 

models, the identified clusters are reasonable and properly differentiate the models with 

both converged ΔG⧧ and ΔGrxn (Cluster 5) from markedly inaccurate models (Clusters 1 

and 6), as well as models with converged values for either ΔG⧧ or ΔGrxn, but not both 

(Clusters 2, 3 and 4). 

 The residues that differ among the clusters give insight into which residues have a 

comparably strong influence on convergence. Tabulating the percent occurrence of each 

residue within the COMT models of each cluster (Figures 28 and Appendix C: Figure 7 

and Table 2), nine residues present in >90% of the Cluster 5 models are absent or have a 

greatly reduced presence in other clusters. For example, in the models of Cluster 6, which 

systematically overestimate ΔG⧧ and 65% of which incorrectly predict an endergonic 

reaction, none contain E199 and only 11% contain M40. Without these residues, the QM- 

cluster models are missing 1) the stabilizing hydrogen bonding interactions between 
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Figure 28. A) Relative frequency for each residue being present in the models of a k-

cluster. Values are proportionally shaded to emphasize differences in residue composition 

among k-clusters. B) Visualization of the maximal 485-atom model highlighting the 

residues that occur in >80% of Cluster 5 models. The carbon atoms of the substrates are 

colored magenta. 

E199 and the catechol and 2) the hydrophobic interactions between M40 and the SAM, 

resulting in consistently large deviations with respect to the converged free energies. 

 Surprisingly, residues identified as particularly important for convergence are not 

always localized around the atoms directly involved in the methyl transfer. For instance, 

E90 (which is present in 99% of the models in Cluster 5 but only in < 35% of the models 

in Clusters 1 and 3) is ~10 Å from the catechol, but plays a role in stabilizing and 

properly orienting the SAM. Other residues such as I91, A118, S119, and H142 are 

present in >70% of the models in Cluster 2 and appear to play important roles in crafting 

the active site microenvironment. 

 With residues crucial for accurate QM-cluster modeling of COMT identified, the 

next step is to examine contact and classification metrics to see if any were particularly 

suitable for predicting the relative importance of residues. For the contact classifications, 
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there is unfortunately no consistent combination of contact types among the Cluster 5 

models for yielding converged models. Using the total contacts between the seed and 

each residue (Figure 26B) as a ranking system proves modestly successful as 9 of the 13 

residues present in > 80% of the Cluster 5 models have a high frequency of contacts with 

the seed and would be correctly prioritized. The four residues with low contacts (N41, 

A67, Y71, A118) are adjacent to high-contact residues and largely have main chain 

interactions with the seed, explaining the fewer contacts. The general success of using 

total contacts as a ranking scheme was previously shown in Figure 26B where converged 

models had 302 atoms as a lower bound. Improvements to this ranking method are 

warranted (and are under current investigation by our lab), ranging from incorporating 

additional chemical descriptors to the interatomic contacts (e.g., through Arpeggio),143 to 

developing a weighting system to favor certain contact interactions (e.g., hydrogen 

bonding, polar, aromatic). 

 Expansion of QM-cluster Models Using Arpeggio as an Interaction Feature 

 The previous sections of this work are all founded on a Probe-based interatomic 

contact network, which is the default network generator for RINRUS. To supplement the 

previous results and give insight into the possible utility of alternate network-creation 

schemes, 78 additional COMT models were constructed based upon the residue 

interaction feature scheme using the residue interaction grouping defined by the Arpeggio 

program.143 In short, Arpeggio identifies 15 different inter-residue interaction types: steric 

clash, covalent, van der Waals clash, van der Waals interaction, proximal interaction, 

hydrogen bond, weak hydrogen bond, halogen bond, ionic, metal complex, aromatic ring 

interaction, hydrophobic, carbonyl, polar, and weak polar. Residues were grouped based 
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upon these interaction types, and combinations of the different interactions led to the 

creation and simulation of 78 unique model residue compositions. 

 The computed reaction thermodynamics/kinetics of these Arpeggio-based models 

are similar to those computed for the Probe-based models. Mapping the data back to the 

previously computed k-cluster centroids allows insight into which clusters the data might 

have been grouped (Figure 29). Of the 78 models, 29 (37%) group into Cluster 5 and 26 

(33%) group into Cluster 2, placing over two-thirds of the new models close to or at the 

reference convergence values rather than the significantly incorrect models within the 

other clusters. Although there are fewer models compared to the Probe-based models, the 

residue composition (Figure 30) largely reflects the trends previously observed. Mapping 

the converged models back to the Arpeggio-based interactions, it is observed that the 

 

Figure 29. Computed methyl transfer ΔG⧧ (circle) and ΔGrxn (triangle) as models are 

constructed through either the Probe-based contact network (transparent) or the 

Arpeggio-based interaction network.  Six clusters identified by k-means clustering of 

similar ΔG⧧ and ΔGrxn are differentially colored. Grey lines indicate the reference 

convergence values. 
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Figure 30. Relative frequency for each residue being present in the Arpeggio-based 

models of a k-cluster. Values are proportionally shaded to emphasize differences in 

residue composition among k-clusters. 

models that included hydrogen bonding interactions, polar interactions, and van der 

Waals interactions (in addition to the metal complex) were consistently converged. Based 

upon these results, the residue interaction scheme employed by Arpeggio appears to be an 

better interaction feature classifier compared to Probe. Further investigation into how this 

chemical information may be used alongside the Probe information to yield a more 

finely-tuned improved model is underway by our lab.  

Conclusions 

 Computational enzymology has made incredible impacts on understanding the 

atomic-level intricacies of enzyme function. While computational resources and scaling 

limitations of quantum chemistry are among factors limiting progress in this field, little 

attention has been given towards how poor or irreproducible model design might be 
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hampering scientific progress. Many publication-quality enzyme models have been 

founded on rationale not necessarily suited for modeling non-spherical active sites (e.g., 

radial distance criterion) or via rationale prone to fallibility (a researcher’s chemical 

intuition). Techniques addressing this problem by identifying important residues a 

posteriori have been useful but fail to meet the need for a computationally inexpensive a 

priori method for designing enzyme models. 

 As a step towards addressing community-wide problems in computational 

enzymology, we have been developing the RINRUS toolkit to automate the residue 

selection and construction of QM-cluster models. RINRUS utilizes the cheminformatics 

of interatomic contact networks as the rationale for identifying active site residues and 

ranking/classifying them. The catalytic methyl transfer reaction of the human COMT 

enzyme was simulated with a total of 550 unique models, illustrating how information 

from RINRUS was used to build models up from a base structure by either adding 

residues incrementally via a ranking scheme (e.g., total contacts with the seed) or by 

adding combinations of groups of residues (e.g., type of contacts). Clusters of models 

with common predictions of reaction and transition state free energies were compared to 

identify residues important for accurate simulations of COMT. Tracing the converged 

models and important residues back to how the models were constructed revealed that 

ranking residues by the frequency of their contacts with the seed was a particularly useful 

method, with QM-cluster models with 210 – 300 atoms yielding converged 

thermodynamic and kinetic properties. Additionally, 78 models built using chemical 

information from the Arpeggio program were evaluated to consider the potential benefits 

of a more defined chemical interaction type classifier. Chemical interaction types crucial 
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for convergence were successfully identified, giving direction towards future 

improvements in how RINRUS designs and classifies its network interactions. 

 The major focus of this work has been to quickly converge energetic properties of 

smaller QM-cluster models to those of a maximally sized QM-cluster model. Further 

testing of the QM-cluster modeling methodology for accuracy to other well-defined 

experimentally known quantities (e.g., NMR chemical shifts) is an obvious next step for 

our lab to take. However, proper calibration of QM-based computational enzymology is 

contingent upon first developing a rational and reproducible scheme for building, QM-

cluster models. Particular avenues of study include calibration of Density Functional 

Theory, one-electron basis set, implicit solvation parameters, empirical dispersion 

corrections, and other variables of electronic structure theory to truly assess the accuracy 

of QM-cluster modeling beyond a metric of internal consistency. Recent developments in 

linear scaling coupled cluster theory suggest ways to incorporate more rigorous “black 

box” electronic structure theories into the realm of computational enzymology. 

Investigating the structural and cheminformatic variation from constructing models using 

X-ray crystal structures versus conformational sampling frames from molecular dynamics 

simulations are also underway. These studies are in concert with investigations by our lab 

on improving the chemical descriptors and ranking schemes, integrating machine 

learning into the workflow, and examining how to best account for the impact that 

charged residues have on modeling the active site. In the future, we also seek to expand 

functionality into automating QM/MM modeling construction. A forthcoming publication 

will describe the RINRUS software package and include thorough tutorials. Public 

availability and adoption of RINRUS will substantially reduce learning curves for new 
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practitioners of QM-cluster modeling and initiate a feedback loop for improving the 

generalizability of RINRUS for constructing QM-models of proteins beyond COMT and 

the enzymes studied within our lab. 

 Though model design and reproducibility questions have been largely ignored 

within the greater computational enzymology community, we hope this work will foster 

self-reflection on the underlying assumptions behind how atomic-level enzyme 

simulations are derived. The current practices often require unnecessarily large models to 

obtain accurate or internally converged results, which is limiting progress and is 

undoubtedly daunting to inexperienced chemists/biochemists interested in contributing to 

the field. Through the automated workflows provided by RINRUS and its successful 

results demonstrated in this work, we present the first steps towards discovering and 

implementing a computationally inexpensive, cheminformatic-based means for 

constructing reproducible, rational, and rigorous enzyme models. Admittedly, this case 

study of a single enzyme does not fully address all parameters of QM-cluster enzyme 

model construction. Nevertheless, reproducible workflows in computational enzymology, 

supported by RINRUS development, will improve openness, data sharing, and facilitate 

novel cyber- and software infrastructure in biochemistry and biology.
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Chapter 5: Residue Interaction Networks and Machine Learning 

Introduction 

 The specific structures and functions of proteins arise from the intricate networks 

of interacting amino acids. Numerous methods have been developed to characterize and 

quantify amino acid interactions to improve our understanding of biological processes. 

Examples include, but are not limited to, experimental NMR spectroscopy,144 site-

directed mutagenesis,145 and quantum mechanical (QM) and molecular mechanical (MM) 

computations.53,56,146 An example of qualitative methods to visualize protein interactions 

involves the application of graph theory to construct residue interaction networks (RINs) 

of a given protein. These graphs translate a protein structure into a set of nodes (defined 

as a single amino acid residue) interconnected by edges (defined as an electronic or steric 

interaction between two amino acid residues).25 Edges are generally established by 

properties such as interatomic distances, hydrogen bonding, and interaction strength 

computed at the MM-level of theory.25,147 Analyzing the topologies of RINs has already 

provided insight into structure−function features including protein stability,148,149 

allosteric regulation,150,151 protein folding and dynamics,152,153 and active site 

identification.154–160 Building up from RINs, edges may also include metadata such as 

structural, chemical, or evolutionary properties.161 This forms a structural interaction 

fingerprint (SIFt or SIF) for each edge, and the analysis of SIFts has proven valuable in 

the domains of drug design and virtual screening.161–163 

 Previous case studies by our lab have demonstrated that RINs may serve as a 

practical tool for designing rational models for QM-only (and potentially QM/MM) 

computations of enzyme active sites and protein functional sites.57,58,61,164 In those 
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studies, Probe27 software was used to generate “contact dots” at coordinates where the 

van der Waals radii of two noncovalently bound atoms are in close contact. The 

RINerator26 software package was then used to convert the interatomic contact data into a 

RIN with weights proportional to an estimated interaction strength and interaction type. 

Using these networks, atomic-level QM-cluster models of the active site were rationally 

constructed by including chemically important neighboring residues with edges linking 

their nodes to those of the substrate, catalytic residues, and/or cofactors. 

 Overall, these contact networks provide a more chemically reasoned basis for 

shaping QM-models compared to the popular method of radially expanding from a 

geometrically defined point, and it can be significantly less expensive than performing 

“back-end” model validation using charge shift or free energy perturbation 

analyses.9,10,14,20,131 Our research group is developing a flexible Python-based software 

toolkit, RINRUS (Residue Interaction Network ResidUe Selector), to create reliable and 

reproducible atomic-level biological models. Starting from PDB-formatted structural 

data, prototype RINRUS can generate robust input files for electronic structure packages 

such as Gaussian 16 and PSI4. Manuscripts detailing the RINRUS toolkit and its 

application in a large-scale testing of automated enzyme modeling are currently in 

preparation. 

 There is not yet evidence that a given RIN has a quantitative correspondence to 

the actual residue−residue interaction energies. It may be further reasoned that 

interatomic contact information alone should be insufficient to accurately predict 

interaction strength as it fails to account for residue charges, polarization, the strength of 

hydrogen bonding, and their dynamic conformations. As such, it is of interest to evaluate 
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contact dot-based networks against a quantitative interaction energy network. Interaction 

energy-based networks have been previously constructed in the literature, generally using 

forcefield data averaged over molecular dynamic simulations.165,166 This work will 

instead compute interaction energies using symmetry-adapted perturbation theory 

(SAPT), a quantum mechanical and nonempirical energy decomposition analysis method 

useful for partitioning the interaction energy into physical components (e.g., electrostatic, 

exchange, inductive, and dispersion energies).167 

 The main goal of this work is to create and evaluate the contact networks and 

interaction energy networks for five proteins to attempt to determine a statistical 

relationship between structural contact dot data and quantitative non-covalent interaction 

energies. We have trained an appropriate random forest model to predict SAPT-computed 

noncovalent interaction energies using minimal, readily available molecular descriptors. 

The trained forest is validated on an untrained protein network and is demonstrated to be 

suitable for predicting interaction energies from the structural contact information on 

similar untested networks. As this work is conducted with the design and construction of 

QM-cluster models of proteins in mind, we deviate from conventional protein network 

analysis and define our intraprotein RINs using chemical functional groups as our nodes 

rather than amino acid subunits. 

Methodology 

 Protein Selection Criteria 

 Five model proteins from the Protein Data Bank168 (PDB) were analyzed in this 

work. The PDB entries were selected randomly from a list of PDBs having all of the 
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following criteria: (1) All five proteins have high X-ray crystallographic resolution (<2.0 

Å resolution), (2) they have all or nearly all of their amino acid sequence identified in the 

deposited X-ray crystal structure, (3) residues missing in the crystal structure are 

terminal, and (4) there are no substrates, ligands, or metal cofactors in the crystal 

structures. The five model proteins are a bacteriophage T4 lysozyme (PDB entry 

=265L),169 an alginate lyase from Corynebacterium sp. strain ALY-1 (PDB ID: 1UAI),170 

a peptidyl-prolyl isomerase from Candida albicans(PDB ID: 1YW5),171 a chymotrypsin 

from Cellulomonas borgoriensis (PDB ID: 2EA3),172 and a serine protease from 

Anthrobacter nicotinovorans (PDB ID: 3WY8).173 Based on CATH Protein Structure 

Classification,174 protein 256L has a mainly alpha-helical secondary structure, 1UAI is 

mainly beta-strand, and the remaining contain a mix of alpha and beta motifs. 

 Network Construction 

 Protein RINs are typically constructed in terms of the edge-interactions of their 

monomeric amino acid nodes (Figure 31A).136,175 Chemically, this partitioning scheme 

muddles the distinct interactions occurring between the side chain and two 

residue−residue amide main chain groups for each amino acid. The RINRUS toolkit  

 

Figure 31. Atomic partitioning of a five amino-acid peptide in terms of amino acids (A) 

and chemical functional groups (B). 
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follows this reasoning and designs QM-models based on whether the main or side chain 

groups of a residue are interacting with the ligand or other moieties of interest. This work 

will deviate from the conventional usage of amino acid−based nodes and instead use the 

more chemically relevant main chain and side chain units for nodes (Figure 31B). In this 

work, “main chain” unit refers to the peptide functional group formed between two 

neighboring residues, and “side chain” unit refers to the functional group formed by a 

residue side chain, Cα, and Hα atoms. 

 Construction of these functional group-based networks with RINRUS is similar to 

the procedure for generating amino acid−based RINs by RINerator.26 Hydrogens are first 

added to the crystallographic structures using the software Reduce.59 The software 

Probe27 rolls a virtual, small (0.25 Å radius) spherical probe along the van der Waals 

surface of each atom and generates either a contact “dot” interaction if the probe touches 

a noncovalently bound atom or a contact “clash” interaction if the probe encounters 

overlapping van der Waals surfaces. Probe quantifies each contact with a score based 

upon an error-function weighting of the volume of overlap between the spherical probe 

and the van der Waals surface, and then sums the score for each atom pair. The network 

is constructed from these results. Nodes represent the main chain and side chain 

functional groups of the protein, and they are connected by one or more edges 

representing the Probe-detected noncovalent interactions. Edges possess information 

pertaining to whether the interaction is from interatomic contact dots, “bad overlaps” 

(chemically defined as a steric clash), or between hydrogen bonding atoms. Each edge is 

weighted by the summed interatomic contact scores. In short, this procedure generates an 

undirected contact network of main/side chain nodes interconnected by edges weighted 
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by a contact score. Graph visualization and analyses were performed using 

Cytoscapev3.7.1.176 

 Computation of Interaction Energies 

 Given the desire to investigate the interactions of residue functional groups and 

the need for a robust ab initio method to handle noncovalent interactions, SAPT was used 

to compute the interaction energies.167,177–179 For the simplest SAPT method, SAPT0, the 

interaction energy decomposition can be described by the equation: 

 𝐸𝑖𝑛𝑡
𝑆𝐴𝑃𝑇0 = 𝐸𝑒𝑙𝑒𝑐

(1)
+ 𝐸𝑒𝑥𝑐ℎ

(1)
+ [𝐸𝑖𝑛𝑑

(2)
+ 𝐸𝑒𝑥𝑐ℎ−𝑖𝑛𝑑

(2)
+ 𝛿𝐸𝐻𝐹

(2)
]𝑖𝑛𝑑 + [𝐸𝑑𝑖𝑠𝑝

(2)
+ 𝐸𝑒𝑥𝑐ℎ−𝑑𝑖𝑠𝑝

(2)
]𝑑𝑖𝑠𝑝 (2) 

where the interaction energy is broken into components of electrostatic, exchange-

repulsion, induction, and dispersion terms. Extensions of this technique include 

functional group SAPT (F-SAPT),180 which provides an effective two-body partition of 

the SAPT terms to localized functional groups, and intramolecular SAPT (I-SAPT),181,182 

which computes the intramolecular interaction between two moieties within the 

embedding field of a third body. 

 As this work seeks to establish a link between the contact networks and inter-

residue interaction energies, functional group-based networks served as the basis for 

identifying interacting residues. If two nodes (main/side chains) had an interlinking edge 

(interaction) present in the contact network, a fragment model of the interacting pair is 

constructed. Starting from the hydrogen-added X-ray crystal structures used for the 

contact networks, the two interacting functional groups are isolated along with select 

atoms of neighboring residues to maintain the local chemical environment. Determining 

which neighboring atoms to include is based on the identities of the interacting functional 
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groups and sequence distance between them (Figure 32). Interacting pairs sequentially 

“distant” with 3 or more main/side chain units between them are modeled as two 

noncovalently bound fragments. For each fragment, if an interacting unit is a side chain, 

the fragment is constructed to include the adjacent main chain units and is capped with 

methyl groups (Figure 32A). If an interacting unit is a main chain, the fragment is 

constructed to include the Cα atoms of neighboring side chain units along with adjacent 

sequential main chain units (Figure 32B). Interacting functional groups sequentially 

“close” with 1 or 2 main/side chain units between each other are modeled as a single 

fragment. Design of the single fragment followed similar neighboring atom-selection 

rules as the aforementioned “distant” pair rules and is visually presented in Figure 

32C−H. Additional details and treatment of unique cases (e.g., prolines and cystines) are 

provided in Appendix E. 

 Hydrogens are added to the model fragment(s) to satisfy the valency where bonds 

were trimmed using PyMol v2.3.0a0.138 To ensure the hydrogens added by both Reduce 

and PyMol are in optimal positions with minimal steric effects, all hydrogens were 

geometrically optimized using density functional theory (DFT) with the hybrid B3LYP 

exchange-correlation functional63,64 using the 6-31G(d') basis set for N, O, and S atoms 

and the 6-31G basis set for C and H atoms.67 The Grimme D3 (Becke-Johnson) 

dispersion correction (GD3BJ) and conductor-like polarizable continuum model (CPCM) 

with UAKS sets of atomic radii, a nondefault electrostatic scaling factor of 1.2, and a 

dielectric constant of ε= 4 were also used.68,69,105 The heavy atoms remained frozen to 

their crystallographic coordinates. All QM geometry optimizations were done with the 

Gaussian 16.B01 software package.62 
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Figure 32. Schemes for translating protein functional groups into fragments. Distant 

interacting groups are trimmed into two separate fragments based on whether the group is 

a side chain (A) or main chain (B). Close interacting groups are trimmed into a single 

fragment based on whether the groups are both side chains (C, D), a side chain and a 

main chain (E, F), or both main chains (G, H). 
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 The final geometries after hydrogen optimization were used for computing the 

SAPT interaction energies. The interaction energy between two sequentially distant 

functional groups modeled as two noncovalently bound fragments was computed using 

the functional group F-SAPT method. The interaction energy between two sequentially 

close functional groups modeled as a single fragment was computed using the 

intramolecular I-SAPT method. Energies were computed at the SAPT0 level of theory 

using the jun-cc-pVDZ basisset.177,180–182 The BioFragment Database, which archives the 

structures and energies of 3380 side chain-side chain (SSI dataset) and 100 

backbone−backbone interactions (BBI data set), demonstrates the SAPT0/jun-cc-pVDZ 

method as an inexpensive, reliable level of theory for computing residue side chain and 

main chain interactions.183 The mean signed error of this method compared to “silver 

standard”183 DW-CCSD(T**)-F12/aug-cc-pV(D+d)Z reference energies is 0.51 kcal/mol 

(0.53 kcal/mol standard deviation) for the SSI, and −0.10 kcal/mol (0.74 kcal/mol 

standard deviation) for the BBI data sets. All SAPT computations were done with the F/I-

SAPT module of PSI4 v1.3.184 

 Statistical Testing 

 All statistical methods were conducted using the statistical computing 

environment R version 3.6.0.140 Random forest regression modeling was performed to 

construct a predictive regression model suitable for predicting interaction energies from 

contact network information and qualitative descriptors using the randomForest 

library.185 Random forest regression involves an ensemble of regression decision trees 

from which the prediction of a continuous variable is computed as the average of the 

predictions of all the trees within the forest.186 The predictive ability of the forests is 
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evaluated using both a test set and out-of-bag validation. The out-of-bag error represents 

the mean prediction error of the bagged subsample of data not used for tree growth. The 

importance of the descriptors in the random forest models were also evaluated by 

measuring the change in mean squared error for the out-of-bag validation as each 

descriptor is permuted.185 For this method, larger changes in mean squared error reflect a 

greater importance of the descriptor in the random forest. 

Results and Discussion 

 Protein Network Analysis 

 In this work, the networks of five proteins (Protein Data Bank IDs 1UAI,170 

1YW5,171 256L,169 2EA3,172 and 3WY8173) were constructed by partitioning the protein 

into residue side chain and main chain units. By defining the network nodes in terms of 

residue side chain and main chain units, the number of nodes nearly doubles compared to 

conventional protein networks. Although the atomic size of the four-atom MC unit is 

smaller than nearly all SC units, there is not a diminutive number of MC interactions, 

reinforcing the idea that this functional group partitioning does not distort or 

inappropriately distribute interactions between the two different node types (Table 4).  

Table 4. General Network Information of the Tested Protein Models  

PDB Number of 

Residues 

Number of 

Nodes 

Number of Edges 

MC-MC MC-SC SC-SC Total 

1UAI 223 430 233 369 408 1010 

1YW5 177 336 234 273 287 794 

256L 164 319 315 356 262 833 

2EA3 183 347 200 281 299 780 

3WY8 219 423 252 338 389 979 
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These results are expected as the chemical importance of hydrogen bonding protein 

backbones is clearly established, though as far as we are aware, this protein partitioning 

scheme is novel within the domain of protein network analysis. 

 As these networks are based on the contact information within the protein 

structure, the predicted interactions of the network are highly dependent on the positions 

of the atoms in the X-ray crystal structure. This fact, compounded with the finer-grained 

partitioning of residues into functional groups, allows the interesting opportunity for a 

network to form small “tidal islands” where two or more functional groups have 

noncovalent interactions with each other but no noncovalent interactions linking them to 

the main network body. One island is observed in each of the networks for 1UAI, 1YW5, 

and 2EA3 (Figure 33 and Appendix E: Figures 9 and 10). In all three instances, the 

islands correspond to main/side chains located on the surface of the protein that are 

oriented away from neighboring residues and outward into the solvent, likely to improve 

protein solubility. These islands reflect the minimal roles these functional groups have in  

 

Figure 33. Contact network of PDB 1UAI where nodes are colored by interacting main 

chain (blue) and side chain (orange). An “island” of nodes is observed in the upper right 

region. A higher resolution image is provided in Appendix D. 
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intraprotein stability, but it also demonstrates a limitation of predicting interactions for 

mobile residues from a single crystallographic snapshot. For example, if the networks of 

multiple snapshots of the proteins throughout a molecular dynamics simulation were 

compiled, it is likely that a selection of the snapshot networks would show the tidal island 

connected to one or more nodes of the main network body. Determining the best protocol 

for formulating networks more representative of mobile and solvent interacting functional 

groups is beyond the scope of this work but is an interesting point for future investigation 

in our laboratory. 

 Molecular Descriptors and Interaction Energies 

 As it is the goal of this work to utilize only the immediately available contact and 

structural descriptors of the protein networks, the interactions were characterized by the 

following network, structural, and molecular descriptors. Position is the sequence ID of 

the two interacting functional groups. Sequence Distance is the distance in sequential 

number between the interacting functional groups. Functional Group Type is 

distinguishing whether the interacting unit is a main chain or a side chain. Functional 

Group Name is the side chain identity. Contact Types is the total number of wide 

contacts, close contacts, small overlaps, bad overlaps, and hydrogen bonding contacts 

computed by Probe.27 Score is the interaction strength score computed by Probe as a 

function of the overlap between contact probes and the van der Waals radii.26,27 Center of 

Mass Distance is the distance between the center of mass for the two functional groups. 

Interaction Charge classifies the interaction based on the individual charge of each 

species (positive, negative, neutral) with further separation into two categories for either a 

neutral side chain or a main chain. Chemical Type classifies the interaction based on the 
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functional group’s chemical character, specifically as being either a main chain, aliphatic 

(Gly, Ala, Val, Leu, Ile, and Pro), aromatic (Phe, Tyr, Trp, and His), polar (Ser,Thr, Cys, 

Met, Asn, and Gln), negatively charged (Glu and Asp), or positively charged (Arg and 

Lys) group. 

 Collectively, 4381 pair interactions were computed for the five proteins. There is 

generally abundant representation of the different interaction types among the test 

proteins with the only dearth of data being for interactions where both side chains are 

charged (Appendix E: Table 3). This is expected as charged amino acid sidechains are 

usually located at the surface of water-soluble proteins and would have predominantly 

side chain-solvent interactions (an interaction not examined in this work). The sparse 

number of interactions between similarly charged, solvent-exposed sidechains 

(POS−POS and NEG-NEG) is also noted but rationalized as resulting from factors 

including the absence of a complete hydration shell in the X-ray crystal structure, the fact 

that protonation equilibrium is not considered to allow fluctuation between 

charged/neutral states, and the consequence of only evaluating the interaction energies at 

the nuclear positions within the X-ray crystal structure compared to a set of molecular 

dynamics simulation snapshots. The distribution of the SAPT interaction energies among 

the five proteins is also consistent, where similar types of residue pairs consistently yield 

similar interaction energy strengths (Figure 34, and Appendix E: Figure 14). This 

fundamental chemical consistency among functionally and evolutionarily different 

proteins lends support to our belief that the prediction model yielded from this work 

should be generalizable to many proteins. 

 



91 

 

Figure 34. Box and whisker plots of the range of interaction energy values among the 

test set. The data is separated based upon the interaction charge of the two species. MC 

refers to main chains, and POS, NEU, and NEG refer to positive, neutral, and negative 

side chains, respectively. 

 For the computed SAPT energies, the identity of whether electrostatic or 

dispersion forces dominate the interaction energy is consistent in our pair models with 

expected chemical intuition (Figure 35). The grid in Figure 35 plots each computed 

main/side chain interaction as a box proportionally sized to the number of corresponding 

pairs (i.e., more data points for a given interaction type is displayed as more boxes) and 

colored according to the contribution of electrostatics/dispersion. As may be expected, 

the interactions between aliphatic or aromatic residues are predominantly influenced by 

dispersion forces, the interactions between charged residues are predominantly influenced 

by electrostatic forces, and the interactions between polar residues and between 

combinations of nonsimilarly typed residues are comparably influenced by both forces. 
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Figure 35. Grid of computed main and side chain pair interactions colored according to 

the proportion electrostatics and dispersion SAPT decomposition terms contribute to the 

interaction energy.  

These trends are consistent with previously published reports and data from the 

BioFragment Database.183,187 

 Comparing Interaction Energies to Probe Descriptors 

 It may be reasoned that interatomic contact data alone should be insufficient to 

accurately predict interaction strength due to the lack of information regarding residue 

charges, polarization, or hydrogen bonding strength. To affirm that there is indeed no 

simple correlation between the descriptors output by Probe (i.e., number of contacts and 

interaction score) and the computed or relative interaction energy strength, correlation 

plots are provided (Figure 36). There is no direct linear, polynomial, or exponential 

correlation between the two descriptors and the interaction energy. It may be argued that 

descriptors are more appropriate for comparison among similarly charged residue pairs as 
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Figure 36. A) Correlation plots comparing the Probe-computed total number of contacts 

and score against SAPT-computed interaction energies. B) Correlation plots showing 

only the neutral-charged interactions. 

the dominating electrostatic interactions of charged functional groups will 

disproportionally spread the results. However, this is shown to not be the case (Figure 

36B). The distribution of neutral pairs of functional groups remains scattered without any 

distinct relationship between the contact descriptors and interaction energy strength. 

Additionally, it may be noted that both the number of contacts and the interaction score 

do not qualitatively correlate with whether a particular interacting pair would have a 

favorable (negative) or unfavorable (positive) interaction energy value. Overall, these 

results demonstrate that it would be inappropriate to use the contact score and count alone 

in approximating the relative interaction energy between two residue side/main chains. 

As additional information is required to effectively predict functional group pair 
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interaction strength, we turn to using random forest modeling on the previously defined, 

minimal descriptor set. 

 Random Forest Regression 

 Random forest regression modeling was used to identify descriptors important for 

determining the interaction energy between two main/sidechain units and to construct a 

predictive model. The training set was formed from the interactions computed for the 

networks of 1UAI, 256L, 2EA3, and 3WY8 (3589 data points); the test set was from the 

network for PDB 1YW5 (792 data points). 1YW5was selected as the test set for having a 

complete set of all interaction types. 

 The parameter for the number of predictors sampled for splitting at each node in 

the forest was initially tuned on the training set using mean squared error results to select 

the optimized parameter. The model was tested with up to 16 variables at each node and 

with 500 trees in the forest. The results (Figure 37) demonstrate the appropriate number 

of predictors to sample at each split should be 6, which is in agreement with the general  

 

Figure 37. Convergence of mean squared error as the number of features tested at each 

node is increased (500 trees used in each forest test). 
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rule of thumb that the number tested should be approximately the total number of 

descriptors possible (in this set, 17) divided by 3.185 Literature has suggested that the 

number of trees in the forest does not need to be optimized given a large enough number 

of forests.188 As such, the random forests are run using the optimized node sampling of 6 

and a total number of trees of 1000. 

 For the training set, the random forest using all descriptors was able to account for 

91.9% of the variance in interaction energies and a root-mean-square error (RMSE) of 

3.2 kcal/mol. The frequency that each descriptor is used in the trees of the random forest 

and the number of training data points affected by the inclusion of the descriptor are 

described by the relative importance of the variable. The importance of the descriptors in 

this forest, as measured by the increase in mean squared error of predictions estimated 

through out-of-bag error, indicate that the most important five descriptors are (in 

decreasing importance) the Chemical Type, Interaction Charge, Center of Mass Distance, 

Number of Hydrogen Bonding Contacts, and Sequence Distance (Appendix E: Table 4). 

Functional Group Positions and the number of Bad Overlap Contacts were observed to 

have a insignificant impact on the model (<0.2% increase in mean squared error) and 

were excluded from descriptor selection in subsequent random forests. 

 The fit of the model to training data is not representative of how accurate the 

model will predict values from new data. In consideration of this, the random forest 

model was tested against the 1YW5 validation set and was shown to account for 94.3% 

of the variance in the validation set and have a RMSE of 3.2 kcal/mol and a mean 

absolute error (MAE) of 1.6 kcal/mol. The forest constructed from the combined training 

and test sets was concurrently run and it was able to account for 92.2% of the variance 
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and have an RMSE of 3.1 kcal/mol and a MAE of 1.6 kcal/mol. These forests were 

repeated 10 times and the cumulative range of each descriptor’s importance is shown in 

Figure 38. The relative rank of descriptor importance is notably consistent between 

validation and test set. 

 In predicting the interaction energies of the test set, most of the values are 

concentrated around the line of equality between the computed and predicted value 

(Figure 39A), showing that the model is able to appropriately estimate the property with 

good accuracy (94.3% variance explained). The distribution of actual and relative errors 

between the SAPT-computed and random forest-predicted energies for the validation set 

is plotted in density plots (Figure 39B and Appendix E: Figure 20). The error outside the 

range of ±1.6 kcal/mol is largely in pair models involving one or more charged residues 

(Table 5 and Appendix E: Figure 21), an expected result as there is both a smaller  

 

Figure 38. Range of the importance of descriptors for ten random forest models of the 

validation set. Importance is measured by the percent increase in mean square error 

where high values of percent increase in mean square error indicate more important 

descriptors in the random forests. 
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Figure 39. A) Plot of SAPT-computed vs random forest-predicted interaction energy. 

The grey line represents the line of equality where RF-predicted energies would equal 

SAPT-computed energies. B) Density plot of differences between SAPT-computed and 

RF-predicted energies 

 

Table 5. Distribution of Predicted Error for 1YW5 by Model Charge 

Model Charge 

Type 

Mean Error 

(kcal/mol) 

Standard 

Deviation 

(kcal/mol) 

Mean Absolute 

Error  

(kcal/mol) 

Number of 

Interaction 

Energies with 

Incorrect Sign  

MC-MC −0.18 1.9 1.3 11 

MC-NEG −1.0 6.2 4.4 2 

MC-NEU 0.14 1.7 1.2 56 

MC-POS 1.3 5.3 4.4 2 

NEG-NEG1 2.0 -- -- 0 

NEG-NEU 0.37 3.2 2.3 12 

NEG-POS −2.4 17.9 13.0 0 

NEU-NEU 0.05 1.1 0.62 19 

NEU-POS −0.54 2.8 2.1 10 

POS-POS1 −3.6 -- -- 0 

Entire Data Set −0.05 3.2 1.6 112 

 
1 NEG-NEG consists of one data point and POS-POS consists of only two data points, thus mean absolute 

error and standard deviation is inappropriate to report. The NEG-NEG and POS-POS mean errors are 

reported for reference, though there is no statistical significance of these values compared to the other 

subsets. 
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sample size of the charged interaction types and these models often have interaction 

energies an order of magnitude greater than neutral models. This difference is represented 

most in the pair models involving oppositely charged side chains (classification NEG-

POS). In this subset, there is a large standard deviation of error (±17.9 kcal/mol) which 

would appear to suggest a poor ability to predict the interaction energy, especially 

compared to the neutral interacting side chains (NEU-NEU standard deviation is ±1.1 

kcal/mol). This is rationalized by the fact that the range of energies for NEG-POS spans 

−43 to −117 kcal/mol, a substantially larger range compared to NEU-NEU (−7 to 2 

kcal/mol), and so the RF-predictive model does provide a relatively accurate prediction 

of the diverse charge-based interactions.   

 Lastly, it is important to examine the qualitative accuracy of the random forest 

modeling toward predicting whether the interaction is stabilizing (negative in value) or 

destabilizing (positive). The results for the number of qualitatively incorrect predictions 

for the 1YW5 test set are presented in Table 5, showing that 14% of the predicted results 

were of the incorrect sign. Of the incorrect predictions, 69% are typing destabilizing 

interactions as stabilizing interactions, indicating a bias in this random forest model 

toward predicting favorable interactions. Reduction of both this bias and the frequency of 

mistyped pair interactions is expected to occur with additional data points and chemical 

descriptors, which is currently being explored by our laboratory. 

Conclusions 

 With the continued growth of computational enzymology, there is need for a 

relatively inexpensive and rational methodology for determining which residues are to be 

included in the QM-region of QM-cluster and QM/MM enzyme models. The RINRUS 
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program in development by our lab seeks to provide an automated solution to this by 

utilizing the information from protein contact networks. In this work, we sought to 

evaluate the relationship between the qualitative and semiquantitative data of contact 

networks and quantitative interaction energies. The contact networks of five proteins 

were constructed in a novel way by defining the nodes in terms of chemical functional 

groups (main chains and side chains) rather than as conventional amino acid residues. 

Through this partitioning, the network is crafted to more appropriately represent the 

unique chemical inter-molecular interaction types. The noncovalent interaction energies 

for the edges in the five networks were computed using the ab initio SAPT method, 

totaling 4381 main/side chain interaction energies. 

 As our results showed no direct correlation between the immediate information 

from the contact networks (Probe score and contacts) and quantitative interaction 

energies, we constructed a predictive random forest model capable of predicting 

interaction energies from minimal descriptors, namely the contact network information 

(number of contacts, types of contacts, contact score), sequence information, a general 

interaction type classification scheme, and center of mass distances. When tested against 

a test set, the random forest was able to account for 94.3% of the variance in the data with 

a root mean squared error of 3.2 kcal/mol and mean error of 1.6 kcal/mol. Most of the 

variance arising from models involves charged functional groups. The data used in this 

work is provided in the Supporting Information in the interest of serving both as training 

data for predictive random forests for other works and as a benchmark for future 

improved statistical modeling. As this work utilizes only a minimal set of chemical 

descriptors immediately available from contact mapping methods, we anticipate 
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significant improvement in qualitative and quantitative accuracy by including rationally 

selected 1D-, 2D-, and 3D- molecular descriptors. Further expanding the dataset allows 

for the opportunity to utilize unsupervised machine learning methods, such as neural 

networks, for improved model quality. 

 In summary, this work demonstrates the ability to use random forests to predict 

interaction energies among residue functional groups from readily available contact 

network descriptors. In addition to the immediate impact these results have in improving 

the development of the RINRUS software, this work may serve as a basis for functional 

group network-based investigations into fields examining protein−protein interactions, 

noncanonical amino acids, and the impact of point mutations.
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Chapter 6: Conclusions 

 QM-cluster models have proven to be a reliable modeling technique for obtaining 

atomic-level insight into the inner workings of proteins and enzymes. Although early 

studies were originally limited to modeling QM-systems of <100 atoms, the accelerated 

advancement of computer hardware and software has now enabled simulation of QM-

models with several hundred atoms at ever-increasing accuracy, allowing a more 

thorough modeling of the protein active site. Despite having been utilized for several 

decades, there has not yet been an efficient, systematic protocol developed for rationally 

designing enzyme QM-cluster models. This work detailed the development of the 

cheminformatics-based toolkit RINRUS and its application towards multiple different 

biosystems. 

 In Chapter 2, QM-cluster models of the inner pocket of six bioengineered 

threonyl-tRNA synthetase enzymes were used to investigate the energetic profiles of 

BiPhe dihedral rotation. The models were used to demonstrate how, after several 

iterations of protein engineering, the final protein synthesized had an inner pocket able to 

compact the staggered BiPhe dihedral angle into a coplanar conformation, creating a 

transition state analogue structure. In Chapter 3, QM-cluster models of the active site of 

human carbonic anhydrase II were simulated with the native Zn2+ ion alongside other 

transition metal ions. The models gave insight into the theoretical viability for the Fe2+-

substituted metallovariant to catalyze CO2 hydration, and the findings are soon to be 

followed up by experimental studies. In Chapter 4, hundreds of QM-cluster models of the 

catechol-O-methyltransferase active site were constructed to explore what 

cheminformatics might be particularly useful for creating reliable, converged models. 
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The interatomic contact metrics currently employed by RINRUS were validated, and 

avenues for improvement were highlighted. In Chapter 5, it was shown that there is no 

correspondence between interatomic contacts and quantitative inter-residue interaction 

energies; however, random forest algorithms using the interatomic contacts and several 

easily accessible chemical descriptors are capable of predicting the interaction energies 

with considerable accuracy. 

 The studies in this work affirm the capability of the RINRUS workflow to model 

enzymes with varying active site sizes. However, much remains to be done to further fine 

tune and improve upon RINRUS to ensure it is able to be easily applied to the wide range 

of enzymes. Chapter 3 highlighted the need to account for waters in solvent-accessible 

active sites, especially since X-ray crystal structures may not have well-resolved 

hydration spheres. Chapter 4 touched on the importance of handling charged residues and 

how alternative interaction classification schemes (e.g. Arpeggio) may be useful in 

differentiating the interactions important in converged models. Chapter 5 demonstrated 

the potential behind using machine learning algorithms to transform easily computed 

qualitative/semi-quantitative descriptors into quantitative metrics. Additional 

investigations into these details, in addition to examining the benefits of using molecular 

dynamics structures and networks, are underway. Nevertheless, RINRUS currently stands 

as a strong, cheminformatics-based tool whose further development and adoption by the 

enzymology community will improve QM-cluster modeling accuracy and facilitate novel 

insights behind the inner workings of enzymes.   
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Appendices 

Appendix A: Chapter 2 Supplementary Information 

Cartesian coordinates of model structures are available at doi:10.1039/C8OB00540K 

 Potential Energy Scans 

 Cluster models of the torsional conformations were obtained by freezing Cα and 

select Cβ atoms (Figure 4) to their x-ray crystallographic coordinates using Gaussian09 

freeze codes, along with using generalized redundant internal coordinates to constrain the 

p-biphenyalanine Cβ position, a select H-Cβ-Cγ-H dihedral angle (Figure 5), and the two 

central C-C dihedral angles characteristic of the rotating biphenyl rings. To reproduce the 

constrained dihedral scans, the redundant internal coordinates below should be used with 

“opt(modred)” in Gaussian09: 

115 114 121 120 F 

113 114 121 122 F 

268 31 111 112 F 

111 F 
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Table 1. List of residues included in the QM cluster model.  Total charge of model is 

neutral. 

Species/residue 

label 

Protonated 

R group? 

Species/residue 

charge 

Trim N-

side 

Trim R- 

group 

Trim C-

side 

4S02      

Y10 N/A 0 H H - 

BIF11 N/A 0 - - - 

E12 N -1 - - - 

Y13 N/A 0 - - H 

R34 Y +1 H - - 

M35 N/A 0 - - - 

E36 N/A 0 - H H 

V38 N/A 0 H - H 

V40 N/A 0 H - - 

A41 N/A 0 - H - 

F77 N/A 0 H - - 

V78 N/A 0 - H - 

Y79A N/A 0 - - H 

A115 N/A 0 H - H 

I121 N/A 0 H - H 

F123Y N/A 0 H - - 

K124 N/A 0 - H - 

I125 N/A 0 - - H 

4S0J      

F42F N/A 0 - - H 

Y79S N/A 0 - - H 

F123V N/A 0 H - - 

 

4S0L      

F42F N/A 0 - - H 

Y79V N/A 0 - - H 

W81 N/A 0 H - H 

F123V N/A 0 H - - 

4S0I      

F42F N/A 0 - - H 

Y79S N/A 0 - - H 

F123A N/A 0 H - - 

4S0I_W81      

F42F N/A 0 - - H 

Y79S N/A 0 - - H 

W81 N/A 0 H - H 

F123A N/A 0 H - - 

4S0K      

F42F N/A 0 - - H 

Y79V N/A 0 - - H 

W81 N/A 0 H - H 



121 

Table 1 (continued) 

Species/residue 

label 

Protonated 

R group? 

Species/residue 

charge 

Trim N-

side 

Trim R- 

group 

Trim C-

side 

F123A N/A 0 H - - 

4S03      

F42F N/A 0 - - H 

Y79I N/A 0 - - H 

F123A N/A 0 H - - 

4S03_W81      

F42F N/A 0 - - H 

Y79I N/A 0 - - H 

W81 N/A 0 H - H 

F123A N/A 0 H - - 

 

 

Table 2. Comparison of calculated Φ among constrained and unconstrained cluster 

models. Experimental Φ are from their respective PDB crystal structures. 

Model Conditions Experimental  

Φ 

(degrees) 

Φ at  

dE/dΦ = 0 

(degrees) 

Unconstrained  

model Φ 

(degrees) 

Relaxation 

Energy 

(kcal/mol) 

4S02 Gas 26 28.4 29.0 0.84 

Gas+GD3BJ 26 18.8 31.1 2.2 

CPCM 26 25.3 24.9 0.83 

CPCM+GD3BJ 26 24.8 31.9 0.90 

4S0J CPCM+GD3BJ 35 32.1 33.2 0.38 

4S0L CPCM+GD3BJ 21 25.2 32.0 2.3 

4S0I CPCM+GD3BJ 15 28.0 27.4 0.92 

4S0I_W81 CPCM+GD3BJ 15 28.7 29.6 1.4 

4S0K CPCM+GD3BJ 20 23.0 26.7 0.39 

4S03 Gas 0 2.3 -27.5 1.4 

 Gas+GD3BJ 0 -0.4 9.4 0.53 

 CPCM 0 2.8 -28.9 2.4  
CPCM+GD3BJ 0 -2.1 -6.7 0.33 

4S03_W81 Gas 0 10.5 -26.7 1.9 

 Gas+GD3BJ 0 -7.6 -13.1 0.33 

 CPCM 0 10.5 -28.7 2.5 

 CPCM+GD3BJ 0 -2.5 -10.9 0.48 
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Table 3. Thermal flexibility of biphenyl within the protein clusters at 310K, and root 

mean square deviation (RMSD) values between the trimmed x-ray crystal structure 

and its respective optimized unconstrained model. 

Model Conditions Thermally  

Allowed  

Displacement  

from Φmin 
(degrees) 

Thermal  

Range 

 

 
(degrees) 

RMSD of 

Cluster 

Model 
(Angstroms) 

Resolution 

of 

Crystallized  

Enzyme 
(Angstroms) 

4S02 Gas -12.6 +10.5 23.1 0.73 1.95 

 Gas+GD3BJ -15.0 +15.0 30.0 0.87 1.95 

 CPCM -12.4 +9.8 22.2 0.95 1.95  
CPCM+GD3BJ -13.0 +10.5 23.5 0.78 1.95 

4S0J CPCM+GD3BJ -8.6 +8.7 17.3 0.47 2.1 

4S0L CPCM+GD3BJ -10.1 +9.8 19.9 0.87 2.5 

4S0I CPCM+GD3BJ -12.1 +10.2 22.3 0.57 2.36 

4S0I_W81 CPCM+GD3BJ -10.4 +9.6 20.0 0.53 2.36 

4S0K CPCM+GD3BJ -16.2 +9.9 26.1 0.53 2.1 

4S03 Gas -16.3 +19.7 36.0 0.62 2.05 

 Gas+GD3BJ -12.6 +15.2 27.8 0.52 2.05 

 CPCM -14.9 +19.8 34.7 0.58 2.05  
CPCM+GD3BJ -12.1 +13.3 25.4 0.37 2.05 

4S03_W81 Gas -20.0 +14.4 34.4 0.78 2.05 

 Gas+GD3BJ -10.4 +15.7 26.1 0.66 2.05 

 CPCM -18.8 +15.8 34.6 0.85 2.05 

 CPCM+GD3BJ -11.5 +14.0 25.5 0.47 2.05 

 

 

Table 4. Average RMSD calculations between the original PDB crystal structure 

and structures from the MD simulation 

Enzyme RMSD of         

Entire Enzyme  

(Å) 

RMSD of Cluster 

Model Residues 

(Å) 

4S02 0.52 0.30 

4S0J 0.35 0.31 

4s0L 0.36 0.30 

4S0I 0.37 0.31 

4S0K 0.36 0.30 

4S03 0.33 0.28 
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 BiPhe-Water Distances 

 The MD simulations reinforce the expectation that the BiPhe residue has no 

significant interaction with the solvent, as anticipated by the hydrophobic residues 

surrounding the side chain and the absence of nearby waters in the crystal structure. The 

distance between the oxygen of the nearest water to the nearest atom of BiPhe (which is 

consistently the solvent-exposed atom H9 or H10, two hydrogens on the terminal ring of 

BiPhe) was measured and averaged for each of the MD simulations. The average of the 

shortest distance ranges from 2.85 Å (s, or standard deviation, of 0.33Å) of 4S02 to 

3.04Å (s = 0.39 Å) of 4S0J, indicating no strong solvent-BiPhe residue interaction. 
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Table 5. Residue interactions with BIF11 within the 4S0x enzymes. CMC indicates a main chain contact with BIF11. CSC 

indicates a side chain contact with BIF11. OMC indicates a main chain overlap with BIF11. OSC indicates a side chain overlap 

with BIF11. HB indicates the main chain hydrogen bonds with the BIF11 main chain. (*) indicates the residues were included in 

the model for inter-model consistency and no distinct BIF11-residue interaction was detected. (**) indicates the residue main 

chain was included for structural integrity and no distinct BIF11-residue interaction was detected. 

Residue  

Position 1Y2Q 

4S02 4S0J 

  CMC CSC OMC OSC HB   CMC CSC OMC OSC HB 

10 Y Y * * * * * Y   1       

12 E E 1      E 1      

13 Y Y   11     Y   9  2   

34 R R 2 2 1    R 2 1 1    

35 M M 3  1  1 M 3  1  1 

36 E E ** ** ** ** ** E ** ** ** ** ** 

38 V V   3     V   3     

40 V V   7     V   8     

41 A A ** ** ** ** ** A ** ** ** ** ** 

42 F W   6  1   F   5  1   

77 F F   11  4   F   11  2   

78 V V ** ** ** ** ** V ** ** ** ** ** 

79 Y A   4     S   7  1   

81 F W        W        

115 A A   5  3   A   5  2   

121 K I   10     I   7     

123 F Y   10     V   7  3   

124 K K 1  1    K 2      

125 I I 1 6   1   I 1 7       
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Table 5 (continued) 

Residue  

Position 1Y2Q 

4S0L 4S0I 

  CMC CSC OMC OSC HB   CMC CSC OMC OSC HB 

10 Y Y 1         Y * * * * * 

12 E E 1      E 1      

13 Y Y   8     Y   6     

34 R R 2  1    R 1  1    

35 M M 3  1  1 M 3  1  1 

36 E E ** ** ** ** ** E ** ** ** ** ** 

38 V V   3     V   1     

40 V V   7     V   7     

41 A A ** ** ** ** ** A ** ** ** ** ** 

42 F F   5     F   5     

77 F F   4  1   F   8  1   

78 V V ** ** ** ** ** V ** ** ** ** ** 

79 Y V   13  4   S   4     

81 F W   1     W        

115 A A   5     A   6  1   

121 K I   6     I   7     

123 F V   10  1   A   3     

124 K K 1      K 2  1    

125 I I   7       I 1 7   1   
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Table 5 (continued) 

 

 

 

 

Residue  

Position 1Y2Q 

4S0K 4S03 

  CMC CSC OMC OSC HB   CMC CSC OMC OSC HB 

10 Y Y * * * * * Y   1       

12 E E 2      E 2      

13 Y Y   6     Y   7     

34 R R 2 1 1    R 2 1 1    

35 M M 3  1  1 M 3    1 

36 E E ** ** ** ** ** E ** ** ** ** ** 

38 V V   1     V * * * * * 

40 V V   6     V   5     

41 A A ** ** ** ** ** A ** ** ** ** ** 

42 F F   5     F   4     

77 F F   7  1   F   4  2   

78 V V ** ** ** ** ** V ** ** ** ** ** 

79 Y V   14     I   15  2   

81 F W   2     W        

115 A A   6     A * * * * * 

121 K I   9  1   I   8     

123 F A   8  1   A   9  1   

124 K K 2      K 3      

125 I I   6       I 1 8   1   
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Figure 1. Potential energy curves for the torsional rotation of free biphenyl. 
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(a) 

 

(b) 

 

 

Figure 2. (a) Potential energy curves for a p-biphenylalanine derivative model and free 

biphenyl for the torsional rotation about the central C-C biphenyl bond, both calculated at 

the B3LYP/6-31G(d')+CPCM+GD3BJ level of theory. (b) Structure of the simulated p-

biphenylalanine derivative. Blue is used to indicate the backbone atoms frozen to their 

respective 4S03 crystallographic coordinates. 

 

 



129 

 

 

 

 

Figure 3. Potential energy curve near equilibrium for the torsional rotation of p-

biphenylalanine within the (a) 4S0I_W81 and (b) 4S03_W81 protein cluster models. The 

4S0I_W81 scan was only computed using the B3LYP/6-31G(d')+CPCM+GD3BJ level of 

theory. The 4S03_W81 scan was carried out in gas/aqueous phase, with and without 

GD3BJ.  

a – 4S0I_W81 

b – 4S03_W81 
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Figure 4. 180°-scan potential energy curves for the torsional rotation of p-

biphenylalanine within the (a) 4S02, (b) 4S0J, (c) 4S0L, (d) 4S0I, (e) 4S0I_W81, (f) 

4S0K, (g) 4S03, and (h) 4S03_W81 enzyme cluster models, calculated at the B3LYP/6-

31G(d')+CPCM+GD3BJ level of theory unless otherwise labeled. 

 

 

a – 4S02 

b – 4S0J 
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 Figure 4 (continued) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c – 4S0L 

d – 4S0I 

e – 4S0I_W81 
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Figure 4 (continued) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

g – 4S03 

h – 4S03_W81 

f – 4S0K 
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Figure 5. Linear model between the computed thermal range for p-biphenylalanine 

within a given protein core model and the x-ray crystallographic resolution. 
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Figure 6. RMSD of non-hydrogen atoms of the whole protein and QM-cluster residues 

for MD simulations of (a) 4S02 (b) 4S0J (c) 4S0L (d) 4S0I (e) 4S0K and (f) 4S03 

compared to their respective crystal structure with respect to a timescale of 10 ns.

    a – 4S02            b – 4S0J 

    c – 4S0L            d – 4S0I 

    e – 4S0K            f – 4S03 
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Figure 7. a) Average RMSD of non-hydrogen atoms of select residues within MD 

simulations compared to their respective crystal structure. b) Relative change in residue 

RMSD with respect to its value in the previous model.   

    a) 

    b) 
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Figure 8. Distribution of the BiPhe central dihedral angles in MD simulation snapshots 

of (a) 4S02 (b) 4S0J (c) 4S0L (d) 4S0I (e) 4S0K and (f) 4S03. The red dashed line 

represents the x-ray crystallographically determined value. Green is used to represent 

dihedral angle values within the thermal range calculated by our cluster models.  

 

 

 

 

 

 

 

 

a – 4S02 
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Figure 8 (continued) 

 

 

 

 

 

 

b – 4S0J 

c – 4S0L 
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Figure 8 (continued) 

 

 

 

 

 

 

d – 4S0I 

e – 4S0K 
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Figure 8 (continued) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f – 4S03 
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Figure 9. Overlay of select MD simulation snapshots of the 4S03 BiPhe core and the x-

ray crystal structure (magenta) and average MD simulation structure (cyan). Models with 

the a) smallest and b) largest BiPhe dihedral angle are presented, along with five random 

intermediary angles (c). Viewing along the central BiPhe bond shows how snapshots 

outside the thermal range often have biphenyl ring distortion (d).  

 

 

 

 

 



141 

Appendix B: Chapter 3 Supplementary Information 

Model cartesian coordinates and data are available on request. 

 

Table 1. Residue trimming scheme for the residues indicating where the N-terminus, 

C-terminus, and Side Chains are trimmed away and capped with hydrogens. 

Residue N-terminus Trim Side Chain C-terminus 

A 92 GLN H - - 

A 93 PHE - H - 

A 94 HIS - - - 

A 95 Phe - H - 

A 96 HIS - - H 

A 106 GLU H - H 

A 117 GLU H - - 

A 118 LEU - H - 

A 119 HIS - - - 

A 120 Leu - H - 

A 121 VAL - - H 

A 143 VAL H - H 

A 198 _LEU H - - 

A 199 THR - - H 

A 209 TRP H - H 

A 244 ASN H - - 

A 245 TRP - H H 

A 262 CO - - - 

A 267 HOH - - - 

A 272 HOH - - - 

A 375 HOH - - - 
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Appendix C: Chapter 4 Supplementary Information 

Model cartesian coordinates and additional data are available on request. 
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Figure 1. Interaction network for COMT (PDB: 3BWM). Nodes are labeled by their residue sequence number and colored by 

identity: green for amino acids, blue for waters, orange for substrates, red for metals). Nodes representing the chemically reactive 

species (nodes 300 [Mg2+, red], 301 [SAM, orange] and 302 [CAT, orange]) and their first neighbor nodes are emphasized.
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Figure 2. 3D structure of the baseline model, or “seed”, used for constructing larger QM-

cluster models of the COMT active site. 
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Figure 3. The denticity of the catecholate substrate in the reactant (A, B), transition state 

(C, D), and product (E, F) models. The O1 atom is not bound to the Mg (Mg-O1 distance 

> 3Å) in 8 models of the reactant (A), transition state (C), and product structures (E) 

while the O2 atom remains consistently bound. 
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Figure 4. Distribution of the root mean square deviation (RMSD) of the non-hydrogen, 

unconstrained, optimized reactant atoms compared to the crystal structure coordinates. 

The distribution of RMSD for all the atoms in the model excluding SAM and CAT (A), 

for only the atoms of CAT (B), and for only the atoms of SAM (C) are shown. 
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Figure 5. Histograms of the number of Combinatoric Scheme 1 models (A) and 

Combinatoric Scheme 2 models (B) completed for this work based upon the number of 

atoms present in the models. 
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Figure 6. Elbow (A) and Gap (B) statistics for the computed k-means clustering. 
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Figure 7. Visualization of the maximal 485-atom model highlighting the residues that 

occur in >80% of Clusters 1 (A), 2 (B), 3 (C), 4 (D), 5 (E) and 6 (F). The carbon atoms of 

the substrates are colored magenta. Residue frequency is tabulated in Appendix C: Table 

2.
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Table 1. Total contacts between the chemical active site and residue main chains (MC), side chains (SC) or waters (WAT). 

Residue Wide Contacts Close Contacts Hydrogen Bonding Small Overlaps Big Overlaps Total 

Contacts MC SC WAT MC SC WAT MC SC WAT MC SC WAT MC SC WAT 
W38 0 27 0 0 9 0 0 0 0 0 0 0 0 0 0 36 

M40 58 158 0 5 223 0 0 0 0 0 47 0 0 0 0 491 

N41 38 0 0 15 0 0 0 0 0 0 0 0 0 0 0 53 

V42 0 22 0 7 20 0 47 0 0 0 0 0 0 0 0 96 

G66 142 0 0 113 0 0 6 0 0 14 0 0 0 0 0 275 

A67 45 0 0 22 0 0 0 0 0 0 0 0 0 0 0 67 

Y68 57 47 0 19 70 0 0 0 0 0 101 0 0 0 0 294 

Y71 0 0 0 0 17 0 0 0 0 0 34 0 0 0 0 51 

S72 10 53 0 33 120 0 17 1 0 0 44 0 0 0 0 278 

I89 3 9 0 0 31 0 0 0 0 0 9 0 0 0 0 52 

E90 47 54 0 10 37 0 0 116 0 0 0 0 0 0 0 264 

I91 31 139 0 52 94 0 2 0 0 0 17 0 0 0 0 335 

G117 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 

A118 9 0 0 32 0 0 0 0 0 10 0 0 0 0 0 51 

S119 7 71 0 7 10 0 63 0 0 0 0 0 0 0 0 158 

Q120 0 4 0 0 32 0 0 9 0 0 0 0 0 0 0 45 

F139 0 23 0 0 6 0 0 0 0 0 0 0 0 0 0 29 

D141 23 88 0 92 126 0 0 0 0 55 65 0 0 29 0 478 

H142 18 82 0 51 85 0 0 0 0 24 6 0 0 0 0 266 

W143 28 96 0 18 138 0 0 0 0 0 96 0 0 2 0 378 

K144 0 63 0 0 14 0 0 52 0 0 4 0 0 0 0 133 

R146 0 29 0 0 0 0 0 0 0 0 0 0 0 0 0 29 

D169 0 0 0 0 0 0 0 0 0 0 48 0 0 6 0 54 

N170 0 22 0 0 95 0 0 32 0 0 123 0 0 32 0 304 

P174 0 73 0 0 8 0 0 0 0 0 0 0 0 0 0 81 

L198 0 0 0 0 23 0 0 0 0 0 23 0 0 0 0 46 

E199 0 46 0 0 91 0 0 4 0 0 42 0 0 0 0 183 

HOH402 0 0 0 0 0 17 0 0 72 0 0 9 0 0 0 98 

HOH411 0 0 39 0 0 36 0 0 146 0 0 36 0 0 28 285 

HOH441 0 0 2 0 0 16 0 0 136 0 0 12 0 0 0 166 

HOH458 0 0 8 0 0 17 0 0 71 0 0 0 0 0 0 96 

Total 524 1106 49 476 1249 86 135 214 425 103 659 57 0 69 28 5180 
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Table 2. Relative frequency (green) and number of Probe contacts (blue) for each 

residue being present in the models of a k-cluster. Values are proportionally shaded 

to emphasize differences in residue composition among k-clusters.  
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QM-model Construction 

 Residue Selection 

 Determining which residues to include/exclude in a model generally requires 

some form of residue ranking. Various selection criterion employed by others include 

distance from defined foci, partial charges, impact of excluding the residue from the 

model, and researcher’s “chemical intuition.” This work builds-up models from a 7-

residue base composed of the chemically reactive and metal-coordinating residues (D141, 

D169, N170, Mg300, SAM301, CAT302, HOH411; Appendix C: Figure 2).  

Models are built by either ranking the individual residues and adding them 

incrementally to the base model or by forming groups of residues by a common feature 

and adding group(s) of residues to the base model. 

Expansion by Ranking Residues 

• Distance from Reacting Species – Residues are incrementally added to models 

based upon shortest distance from any non-hydrogen atom of the reacting species 

(Mg2+, SAM, CAT) to any non-hydrogen atom of a residue. The residues are 

added until all of the residues with contact dots (Appendix C: Table 1) have been 

included. Residues K46 and N92 are present in this list but do not have contact 

dots with the chemically reactive species. The order of residues added to the base 

model is as follows: M40, E90, HOH441, K144, V42, S119, L198, H142, Y68, 

F139, S72, I89, Y71, Q120, G66, E199, W143, R146, I91, K46, HOH402, A118, 

A67, W38, HOH458, N41, N92, G117, P174. 



153 

• Total Number of Contacts – Residues are incrementally added to models from 

most to fewest total contacts (see Appendix C: Table 1) 

• Residue Frequency in Combinatoric Scheme 2 – Residues are cumulatively added 

to models based upon the frequency of a residue’s occurrence in the unique 

models formed from the combinations of sets constructed in Combinatoric 

Scheme 2 (see below). While these models do not directly map back to a 

systematic cheminformatic method translatable to other studies, they do still 

provide additional model variants useful for this work’s analysis on the impact of 

residue composition on model convergence. The order of residues added to the 

base model is as follows:  S72, HOH441, H142, G66, S119, V42, A118, M40, 

E90, K144, E199, Q120, W143, Y68, I91, HOH402, N41, A67, L198, Y71, I89, 

G117, W38, HOH458, F139, P174, R146. 

Expansion by Groupings of Interaction Features 

• Combinatoric Scheme 1 – Models are formed from the sets of residues with 

particular combinations of contact types. Table 1 indicates 14 contact types (e.g. 

wide contact-main chain, wide contact-side chain, etc.) are present, leading to the 

total number of contact type combinations being ∑ (𝟏𝟒
𝒊

)𝟏𝟒
𝒊=𝟏  = 16,338. As residues 

often have more than two types of contact type, most combinations of contact 

types yield redundant models. This redundancy reduces the total number of 

unique residue sets to only 204 possible models. 

• Combinatoric Scheme 2 – Similar to models formed from combinations of contact 

types, these models are formed from the combinations of the 15 sets listed below. 

The sets were derived using an older, no-longer-employed grouping method based 
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on similar types of contacts (contacts, hydrogen bonding, and overlaps). At this 

time, we are not able to directly map most of these models back to a systematic 

cheminformatic method appropriate for being templated to other works. 

Nevertheless, the variation in residue composition these sets of models possess do 

give significant insight into the residues that impact model convergence and are 

thus kept in the work. The total of 32,767 possible set combinations simplifies by 

redundancy to only 736 possible unique models. The sets and their general 

common feature are specified below. The sets titled “Contacts” are formed from 

residues that have either “Wide Contacts” or “Close Contacts” (as noted in Table 

1); the sets titled “Hydrogen Bonding” are formed from residues that have 

“Hydrogen Bonding” contacts; and the sets titled “Overlaps” are formed from 

residues that have either “Small Overlaps” or “Big Overlaps”. 

Contacts: (HOH402, HOH441, HOH458) (M40, N41, G66, A67, Y68, 

S72, I91, G117, A118, H142, W143) (W38, M40, Y68, S72, E90, I91, 

S119, Q120, W143, K144, L198, E199) (N41, V42, G66, A67, Y68, S72, 

I89, E90, I91, A118, S119, H142, W143) (W38, M40, V42, Y68, Y71, 

S72, I89, E90, I91, S119, F139, H142, W143, K144, R146, P174, L198, 

E199) 

Hydrogen Bonding: (G66) (Q120) (HOH441) (E90, K144) (V42, S72, 

 S119) 

Overlaps: (A118, H142) (HOH402, HOH441) (M40, S72, E199) (V42, 

G66, S119) (M40, Y68, Y71, S72, I91, H142, W143, K144, L198, E199) 
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 Additional Discussion 

Catechol Denticity 

 Of the 550 models examined in this work, 8 models (2% of all) optimized to 

monodentate catecholate structures (Figure 3) where the O1 oxygen of CAT is not bound 

to the Mg2+ (Mg-O1 distance > 3Å). Monodentate catecholates have been examined by 

Kulik et al.127 and identify the difference in both activation and reaction free energies for 

mono- and bidentate arrangements within 1 kcal/mol of each other. Likewise, the activation 

and reaction thermodynamics for our monodentate models are not significantly different 

from bidentate models. 

Sulfur and Magnesium Basis Set Benchmarking 

 A noncomprehensive benchmark of the impact of including polarization functions 

on sulfur (atom of SAM; directly involved with the methyl transfer) and magnesium (binds 

to CAT substrate; indirectly involved with the methyl transfer) was run on two different 

model types. Model 1 is a 254-atom, RINRUS-designed model composed of the residues 

present in >90% of the models within cluster 5; Model 2 is 306-atom, RINRUS-designed 

model composed of the residues present in >70% of the models within cluster 5 (see Table 

2). The models were run using the same methodology mentioned previously (see QM-

model Construction subsection Computational Methods) though with differing sulfur and 

magnesium basis sets. The results are shown below in Table 3 and illustrate that including 

polarization functions (present in the 6-31G(d') basis set but not in LANL2DZ) on sulfur 

are crucial for obtaining a result closer to experimental accuracy, but including them on 

magnesium has no significant effect. 
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Table 3. Free energies of activation and reaction for two models using differing basis 

sets for their Sulfur and Magnesium atoms 

Model Sulfur  

Basis Set 

Magnesium  

Basis Set 
ΔG⧧ 

(kcal/mol) 

ΔGrxn 

(kcal/mol) 

Model 1 6-31G(d') LANL2DZ 13.0 −8.1 

6-31G(d') 6-31G(d') 13.1 −8.1 

LANL2DZ LANL2DZ 5.5 −17.6 

Model 2 6-31G(d') LANL2DZ 13.2 −3.8 

6-31G(d') 6-31G(d') 13.2 −4.0 

LANL2DZ LANL2DZ 5.9 −13.1 

 

 Survey for Cartesian Coordinates within SI 

Reporting the Cartesian coordinates for the starting and/or final model structures is 

one of the simplest and easiest ways to ensure others may be able to replicate, analyze, or 

utilize the models used in a study. Nevertheless, it is not necessarily a common practice for 

scientists to report their model structures, even if they are providing other data and 

supplementary information. To preview the frequency that protein or enzyme model 

Cartesian coordinates are being reported in supplementary materials, we conducted a 

survey of articles conducting QM-only, QM/MM, and ONIOM computations. The list of 

148 entries was obtained using the Web of Science citation database search, filtering for 

the keywords “QM/MM” and “ONIOM” in manuscripts published between 1 January 2015 

– 31 March 2015 and 1 January 2019 – 31 March 2019, along with grabbing articles 

published between the same range that cited either of two prominent QM-cluster works 

Transition-Metal Systems in Biochemistry Studied by High-Accuracy Quantum Chemical 

Methods by Siegbahn and Blomberg (doi: 10.1021/cr980390w)49 or Modeling Enzymatic 

Reactions Involving Transition Metals by Siegbahn and Borowski (doi: 

10.1021/ar050123u)189.  A total of 90 entries from this list were excluded from this survey 

due to a variety of factors, the main one being that the actual publication dates were outside 
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the desired ranges. Other factors that resulted entry exclusion include the entry not being 

an actual journal article (e.g. a journal supplement, erratum or review paper), the system of 

interest was not of proteins (e.g. studying inorganic metal clusters or lone molecules in 

solvent), or the study did not directly involve computation of QM-cluster or QM/MM 

models. Of the remaining 58 journal articles, 51 (88%) reported a supplementary 

information document of some kind, but only 20 (34%) reported Cartesian coordinates for 

any of their structures. This information is tabulated in data files that will become available 

at the publication of this work. 
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Appendix D: Chapter 5 Supplementary Information 

Model cartesian coordinates and additional data are available at 

doi:10.1021/acs.jcim.9b00804 

 

 

Figure 1. Atomic partitioning of a five-amino-acid peptide in terms of amino acids (A) 

and chemical functional groups (B). 

 

 

Figure 2. Example of the naming scheme used for this work on a five-residue peptide 

chain. The peptide is partitioned in terms of chemical main chain (MC) and side chain 

(SC) functional groups, and naming begins at the N-terminus. 
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Additional Information on Data Cleaning and F/ISAPT Model Construction 

 In generating the datasets for this work, there are several stages where additional 

steps were taken either to reduce the complexity of the modeling problem or to exclude 

interactions that would be or were infeasible to compute using the SAPT method detailed 

in this work. 

Terminal Residues 

 As issues arise in how SAPT handles the charged amine and carboxylate 

functional groups of the N- and C- terminal residues, and as the PDBs 1UAI and 2EA3 

are missing the N-terminus and C-terminus, respectively, interactions involving the N-

terminus or SC of the first residue or the C-terminus or SC of the last residue resolved in 

the crystal structure were not included. In the example peptide in Figure 2, the Functional 

Groups 0, 1-SC, 5-SC, and 5 would be excluded from consideration.  

Adjacent Functional Groups 

Contact network graphs may be designed to interconnect residues (or functional groups in 

this work) that are adjacent (covalently bound) in accordance with the primary structure 

of the protein. As adjacent functional groups are covalently bound, their interaction 

energies were not computed in this work. 

Proline 

 Given the tertiary amine of proline, there will be issues computing the ISAPT 

interactions involving MCs composed of the proline-N and involving the proline SC. 

Interactions that would involve computing ISAPT energies for proline-N MC or proline 
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SC are excluded from consideration. Interactions that would involve computing FSAPT 

energies for proline SC or MC are included and are trimmed according to the rules shown 

in Figure 3I and 3J, respectively. 

Cystines 

 Cystines are present in the PDBs 1UAI, 2EA3, and 3WY8. Although the 

covalently bound side chains are effectively one unit, for this work we treated the two 

residues forming them in their reduced cysteine form as two separate cysteine side 

chains. As an example, PDB 1UAI has a cystine connecting residues 200-SC and 206-

SC. The interaction between 200-SC and 203-MC was computed using a cysteine side 

chain for 200-SC. 

Interaction Energies Unable to be Computed 

 Of the total dataset there were a total of 8 ISAPT SC-SC interaction energies 

unable to be computed due to software complications that were unable to be resolved 

over the course of this work. These were specifically the following: 

Table 1. Network residue pairs whose interaction energies were unable to be 

computed. 

PDB Functional Group  

IDs 

Functional Group  

Types 

1UAI 120-SC_122-SC ASP-ASP 

149-SC_151-SC ASP-THR 

1YW5 112-SC_114-SC SER-GLU 

64-SC_65-SC GLU-ASP 

256L 20-SC_22-SC LEU-ILE 

22-SC_24-SC GLU-TYR 

88-SC_89-SC TYR-ASP 

3WY8 137-SC_139-SC ASN-GLU 
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Table 2. General network information of the tested protein models. 

PDB Number of 

Residues 

Number of 

Nodes 

Number of Edges 

MC-MC MC-SC SC-SC Total 

1UAI 223 430 233 369 408 1010 

1YW5 177 336 234 273 287 794 

256L 164 319 315 356 262 833 

2EA3 183 347 200 281 299 780 

3WY8 219 423 252 338 389 979 
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Table 3. Distribution of Interaction Data based on interaction charge and chemical 

type. 

 1UAI 1YW5 256L 2EA3 3WY8 

Interaction Charge 

MC-MC 233 234 315 200 252 

MC-NEG 28 24 25 9 13 

MC-NEU 316 219 189 257 310 

MC-POS 25 30 42 14 15 

NEG-NEG 3 1 1 0 0 

NEG-NEU 43 33 30 19 23 

NEG-POS 8 13 15 2 3 

NEU-NEU 296 187 157 249 329 

NEU-POS 48 49 55 26 30 

POS-POS 6 2 1 1 1 

Chemical Type 

ALI-ALI 60 44 56 65 52 

ALI-ARO 67 41 41 48 74 

ALI-NEG 12 16 13 6 8 

ALI-POL 78 43 30 76 79 

ALI-POS 14 25 28 9 11 

ARO-ARO 20 12 1 7 15 

ARO-NEG 17 4 7 4 8 

ARO-POL 42 24 16 33 62 

ARO-POS 15 8 12 4 7 

MC-ALI 137 95 96 120 110 

MC-ARO 75 42 29 38 80 

MC-MC 233 234 315 200 252 

MC-NEG 28 24 25 9 13 

MC-POL 104 82 64 99 120 

MC-POS 25 30 42 14 15 

NEG-NEG 3 1 1 0 0 

NEG-POL 14 13 10 9 7 

NEG-POS 8 13 15 2 3 

POL-POL 29 23 13 20 47 

POL-POS 19 16 15 13 12 

POS-POS 6 2 1 1 1 

Total Interactions 1006 792 830 777 976 
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Figure 3. Model fragmentation schemes for computing the FSAPT interaction energy of a side chain (A) and main chain (B) with a 

second side/main chain 

 

Figure 4. Model fragmentation schemes for computing the ISAPT interaction energy between the indicated side chains that are 

separated by exactly one (main chain) functional group (A) or exactly three (one side chain, two main chain) functional groups (B). 
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Figure 5. Model fragmentation schemes for computing the ISAPT interaction energy between the indicated side and main chains that 

are separated by exactly two (one main chain, one side chain) functional groups (A) or four (one main chain, one side chain) 

functional groups (B). 

Figure 6. Model fragmentation schemes for computing the ISAPT interaction energy between the indicated main chains that are 

separated by exactly one (side chain) functional group (A) or either 3 (one main chain, two side chain) or five (two main chain, three 

side chain) functional groups (B).  
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Figure 7. Model fragmentation scheme for computing the FSAPT interaction energy involving a proline side (A) or main (B) chain. 
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Figure 8. Graph of the functional group network of PDB 1UAI. Main chains are colored blue; side chains are colored orange. 
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Figure 9. Graph of the functional group network of PDB 1YW5. Main chains are colored blue; side chains are colored orange. 
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Figure 10. Graph of the functional group network of PDB 2EA3. Main chains are colored blue; side chains are colored orange. 
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Figure 11. Graph of the functional group network of PDB 3WY8. Main chains are colored blue; side chains are colored orange. 
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Figure 12. Graph of the functional group network of PDB 256L. Main chains are colored blue; side chains are colored orange. 
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Figure 13. Distribution of interaction energy data among the test set. Color and partitioning is based upon the interaction charge of the 

two species. MC refers to main chains, and POS, NEU, and NEG refer to positive, neutral, and negative side chains, respectively.
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Figure 14. Distribution of interaction energy data among the test set. Color and 

partitioning is based upon the interaction type of the two species. 
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Figure 15. Grid of computed main and side chain pair interactions colored according to the proportion electrostatics and dispersion 

SAPT decomposition terms contribute to the interaction energy. 
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Figure 16. A) Correlation plots comparing the Probe-computed total number of contacts and score against SAPT-computed 

interaction energies. B) Correlation plots showing only the neutral-charged interactions. 
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Figure 17. Convergence of mean squared error as the number of features tested at each 

node is increased (500 trees used in each forest test). 

 

 

 

Table 4. The importance of the functional group (FG) descriptors in the training set 

random forest as determined by the increase in mean square error. 

Descriptor 

Abbreviation 

Descriptor Name % Increase in Mean 

Square Error 

IntType Chemical Type 69.0 

IntCharge Interaction Charge 66.6 

CoMDist Center of Mass Distance 43.9 

HBcount Hydrogen Bonding Contacts 24.5 

SeqDist Sequence Distance 23.7 

Type2 FG 2 Type 9.96 

Func1 FG 1 Name 8.16 

Func2 FG 2 Name 6.13 

Score Score 6.11 

TotalCount Total Contacts 3.43 

Type1 FG 1 Type 3.41 

WCcount Wide Contacts  2.59 

CCcount Close Contacts 2.11 

SOcount Small Overlap Contacts 1.85 

Pos1 Position of FG 1 0.16 

Pos2 Position of FG 2 0.15 

BOcount Bad Overlap Contacts 0.02 
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Figure 18. The importance of descriptors for the validation random forest as determined 

by the increase in mean square error. 

 

 

Figure 19. A) Plot of SAPT-computed vs random forest-predicted interaction energy. 

The grey line represents the line of equality where RF-predicted energies would equal 

SAPT-computed energies. B) Density plot of differences between SAPT-computed and 

RF-predicted energies. 
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Figure 20. Density plot of relative error differences between SAPT-computed and RF-

predicted energies 
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Figure 21. Plot of the residuals (difference between the SAPT-computed interaction 

energy and the RF-predicted interaction energy) for the 1YW5 test case. 
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Table 5. Distribution of Prediction Error for 1YW5 by Model Charge. 

Model Charge 

Type 

Mean Error 

(kcal/mol) 

Standard 

Deviation 

(kcal.mol) 

Mean 

Absolute 

Error 

(kcal/mol) 

Number of 

Interaction 

Energies with 

Incorrect Sign  

MC-MC −0.18 1.9 1.3 11 

MC-NEG −1.0 6.2 4.4 2 

MC-NEU 0.14 1.7 1.2 56 

MC-POS 1.3 5.3 4.4 2 

NEG-NEG 12.0 1-- 1-- 0 

NEG-NEU 0.37 3.2 2.3 12 

NEG-POS −2.4 17.9 13.0 0 

NEU-NEU 0.05 1.1 0.62 19 

NEU-POS −0.54 2.8 2.1 10 

POS-POS 1−3.6 1-- 1-- 0 

Entire Data 

Set 

−0.05 3.2 1.6 112 

 

 
1 NEG-NEG consists of one data point and POS-POS consists of only two data points so mean absolute 

error and standard deviation are inappropriate to report. Their respective mean errors are reported for 

reference, though it should not be held comparable to the other Charge Type values due to the sparsity of 

their datasets. 
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