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advisor, Béla Bollobás, for giving me the opportunity to learn many things about

mathematics, and also many things about life.

I am more than grateful to my parents for allowing me the freedom to pursue whatever

struck my imagination, no matter how far-fetched. This dissertation is their work, too.

Many thanks go to my family—my brother, Jack, and my two sisters, Dee and Donna.

Their support has meant more to me than they know.

In my extended family: aunts, uncles, cousins—all have been extremely supportive of

my endeavors. Thank you!

Thanks to my friends—especially to Adam, Jake, Andrew, Kenny, and Ryan—for

always listening to my ravings and rantings.

Thanks to my coauthors: António, Gábor, Julian, Kamil, and Shoham. More
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ABSTRACT

Snyder, Richard. Ph.D. The University of Memphis. December 2018. On the structure
of dense graphs, and other extremal problems. Major Professor: Béla Bollobás, Ph.D.,
D.Sc., F.R.S.

Extremal combinatorics is an area of mathematics populated by problems that are easy

to state, yet often difficult to resolve. The typical question in this field is the following:

What is the maximum or minimum size of a collection of finite objects (e.g., graphs, finite

families of sets) subject to some set of constraints? Despite its apparent simplicity, this

question has led to a rather rich body of work. This dissertation consists of several new

results in this field.

The first two chapters concern structural results for dense graphs, thus justifying the

first part of my title. In the first chapter, we prove a stability result for edge-maximal

graphs without complete subgraphs of fixed size, answering questions of Tyomkyn and

Uzzell. The contents of this chapter are based on joint work with Kamil Popielarz and

Julian Sahasrabudhe.

The second chapter is about the interplay between minimum degree and chromatic

number in graphs which forbid a specific set of ‘small’ graphs as subgraphs. We

determine the structure of dense graphs which forbid triangles and cycles of length five. A

particular consequence of our work is that such graphs are 3-colorable. This answers

questions of Messuti and Schacht, and Oberkampf and Schacht. This chapter is based on

joint work with Shoham Letzter.

Chapter 3 departs from undirected graphs and enters the domain of directed graphs.

Specifically, we address the connection between connectivity and linkedness in

tournaments with large minimum out-degree. Making progress on a conjecture of

Pokrovskiy, we show that, for any positive integer k, any 4k-connected tournament with

large enough minimum out-degree is k-linked. This chapter is based on joint work with

António Girão.

iv



The final chapter leaves the world of graphs entirely and examines a problem in finite

set systems. More precisely, we examine an extremal problem on a family of finite sets

involving constraints on the possible intersection sizes these sets may have. Such

problems have a long history in extremal combinatorics. In this chapter, we are interested

in the maximum number of disjoint pairs a family of sets can have under various

restrictions on intersection sizes. We obtain several new results in this direction. The

contents of this chapter are based on joint work with António Girão.
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CHAPTER 1

A STABILITY THEOREM FOR MAXIMAL KR+1-FREE GRAPHS

1.1 Introduction

For a positive integer r ≥ 2, a graph G is said to be (r+1)-saturated (or maximal

Kr+1-free) if it contains no copy of Kr+1, but the addition of any edge from the

complement G creates at least one copy of Kr+1. Let Tr(n) denote the r-partite Turán

graph that is, the n-vertex, complete r-partite graph for which each of the r classes is of

order bn/rc or dn/re. We write tr(n) = e(Tr(n)), and note that tr(n) = (1− 1
r )

n2

2 +Or(1).

Whenever we speak of an r-partite subgraph, we require that it is induced.

The classical theorem of Turán [67] tells us that, for an integer r ≥ 2, the maximum

number of edges in a graph not containing a Kr+1 is tr(n), and that Tr(n) is the unique

Kr+1-free graph attaining this maximum. Erdős and Simonovits [23, 22, 60] discovered

that this extremal problem exhibits a certain ‘stability’ phenomenon: Kr+1-free graphs for

which e(G) is close to tr(n) must resemble the Turán graph in an appropriate sense. In

particular, they proved that every n-vertex, Kr+1-free graph with at least tr(n)−o(n2)

edges can be transformed into Tr(n) by making at most o(n2) edge deletions and additions.

Beyond the seminal work of Erdős and Simonovits, we are lead to consider finer

aspects of this phenomenon. More generally, it is natural to ask how the structure of a

Kr+1-free graph G comes to resemble the Turán graph as the number of edges e(G)

approaches the Turán number tr(n). For instance, Nikiforov and Rousseau [56], in the

context of a Ramsey-theoretic problem, showed that for r ≥ 2 and ε sufficiently small

(depending on r) the following holds: if G is an n-vertex Kr+1-free graph with

e(G)≥
(
1− 1

r − ε
)

n2/2, then G contains an induced r-partite subgraph H with

|H| ≥ (1−2ε1/3)n and δ (H)≥
(

1− 1
r −4ε1/3

)
n. In other words, G must contain a large

r-partite subgraph with minimum degree almost as large as δ (Tr(n)). The interested
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reader should consult the survey of Nikiforov [55] for a few other stability results in a

similar vein.

Another result concerning the finer structure of stability is due to Brouwer [17], who

showed that if n≥ 2r+1 and G is a Kr+1-free graph with e(G)≥ tr(n)−bn
r c+2, then G

must be r-partite. This result has further been rediscovered by several authors [6, 35, 42],

and Tyomkyn and Uzzell [68] recently gave a new proof. In this paper, we are interested

in the structure of maximal Kr+1-free graphs near the Turán threshold. In this context,

Brouwer’s result says that if the number of edges of an (r+1)-saturated graph G is

roughly within n/r of the Turán number tr(n), then G is complete r-partite. A natural

question then arises, which informally is: When can one guarantee ‘almost-spanning’

complete r-partite subgraphs in (r+1)-saturated graphs?

Continuing this line of investigation, Tyomkyn and Uzzell [68] proved, among other

results, that every 4-saturated graph on n vertices and with t3(n)− cn edges contains a

complete 3-partite graph on (1−o(1))n vertices (they also implicitly dealt with the

3-saturated case). They went on to ask if one can similarly find almost-spanning, complete

r-partite subgraphs in (r+1)-saturated graphs with many edges, for r ≥ 4. The main

result of this paper is to resolve the question of Tyomkyn and Uzzell, in a stronger form.

Not only do we show that this phenomenon persists for (r+1)-saturated graphs for all

r ≥ 2, but we also determine the edge threshold for which the result fails to hold. In

particular, we show the following.

Theorem 1.1.1. Let r ≥ 2 be an integer. Every (r+1)-saturated graph G on n vertices

with tr(n)−o(n
r+1

r ) edges contains a complete r-partite subgraph on (1−o(1))n vertices.

We also show that this theorem is tight in the sense that for every δ > 0 there exist

graphs G with tr(n)−δn
r+1

r edges for which the conclusion of Theorem 1.1.1 fails. Note

that the fact that G is maximal Kr+1-free is important in the above theorem. Indeed,

suppose that G is the graph obtained from T2(n) by removing a matching (suppose for

2



simplicity that 2 divides n). Then G is triangle-free (but not maximal triangle-free), and

has t2(n)−n/2 edges. However, the largest complete bipartite subgraph is on n/2

vertices: very far from covering all but a vanishing fraction of the vertex set!

We actually deduce Theorem 1.1.1 from a stronger, quantitative result, which we now

make precise. For a graph G and an integer r ≥ 2, define the graph parameter

gr(G) = min{|T | : T ⊆V (G),G−T is complete r-partite}.

For n,m ∈ N, let Sr(n,m) denote the set of all (r+1)-saturated graphs on n vertices with

at least tr(n)−m edges. Then define

gr(n,m) = max{gr(G) : G ∈Sr(n,m)}.

The quantitative form of our main theorem, stated below, gives an upper bound for the

function gr(n,m) under some modest conditions on n.

Theorem 1.1.2. Let r,n be integers satisfying r ≥ 2, n≥ 900r6. Every (r+1)-saturated

graph with tr(n)−m edges contains a complete r-partite subgraph on (1−Crmn−
r+1

r )n

vertices, where Cr is a constant depending only on r.

We shall also give a construction in Section 1.3 showing that this result is tight, up to

the value of Cr, in a certain range of m. More precisely, if ε > 0, n≥ 210r/ε and

( r−1
r + ε)n≤ m≤ n

r+1
r , then

cr,εmn−1/r ≤ gr(n,m)≤Crmn−1/r,

where cr,ε is a constant depending on r and ε , and Cr is a constant depending only on r.

This explicit form of our main result takes a major step towards a further question of

Tyomkyn and Uzzell [68, 69], who asked for the determination of g3(n,cn). While we
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have determined gr(n,m) up to constants for m ∈
[
( r−1

r + ε)n,n
r+1

r

]
, our construction

giving the lower bound does not work for m ∈
[n

r ,
r−1

r n
]
. This is essentially due to the fact

that in order to preserve maximality while avoiding creating copies of Kr+1, we have to

remove enough edges. It seems difficult to preserve these properties (while also having

small complete r-partite subgraphs) with the additional constraint of removing very few

edges. We therefore leave the determination of gr(n,m) for m ∈
[n

r ,
r−1

r n
]

as an open

problem (see Section 1.5).

We also consider the situation for (r+1)-saturated graphs with tr(n)−Cn
r+1

r edges;

that is, just beyond the edge threshold in Theorem 1.1.1. In this range it is perhaps most

natural to consider “balanced” r-partite complete subgraphs or, in other words, r-partite

Turán subgraphs. Recall that an r-partite graph with vertex classes V1, . . . ,Vr is balanced

if
∣∣|Vi|− |Vj|

∣∣≤ 1 for all i, j ∈ [r]. With this in mind, we set

g∗r (G) = min{|T | : G−T is an r-partite Turán graph},

and, for m,n ∈ N, define

g∗r (n,m) = max{g∗r (G) : G ∈Sr(n,m)}.

Thus, g∗r (n,m) is the maximum number of vertices one is required to delete from an

(r+1)-saturated graph on n vertices with at least tr(n)−m edges such that the remaining

graph is an r-partite Turán graph.

How are the functions gr(n,m) and g∗r (n,m) related? Since g∗r (G)≥ gr(G) for every

graph G, it easily follows that g∗r (n,m)≥ gr(n,m). Furthermore, when m = o(n
r+1

r ) (as

n→∞) we claim that g∗r (n,m) = gr(n,m) = o(n). Essentially this is due to the fact that we

can remove a relatively small fraction of the vertices to produce a Turán subgraph from a

possibly unbalanced complete r-partite subgraph. More precisely, let G be an

4



(r+1)-saturated graph on n vertices and with at least tr(n)−o(n
r+1

r ) edges. Then

Theorem 1.1.1 grants us a complete r-partite subgraph G′ with vertex partition, say,

V1∪·· ·∪Vr on (1−o(1))n vertices. Now, no two distinct sets Vi, Vj can differ by more

than o(n) vertices. To see this, let |V (G′)|= n′, and suppose that, say, |V1|= |V2|+αn′ for

some constant α > 0. Then clearly (by removing the αn′ extra vertices from V1) we have

e(G′)≤ tr((1−α)n′)+αn′
(

1− 1
r

)
(1−α)n′.

On the other hand, it is not too hard to check, using the basic inequalities

tr(n)≥ (1− 1
r )
(n

2

)
and tr(n)≤ (1− 1

r )
n2

2 together with the fact that n′ = (1−o(1))n, that

tr(n)− e(G′) = Ω(n2).

Since |V (G\G′)|= o(n) we have that e(G′,G\G′) and e(G\G′) are both o(n2).

Accordingly,

e(G) = e(G′)+ e(G′,G\G′)+ e(G\G′)≤ tr(n)−O(n2),

as n→ ∞, but this contradicts the edge condition on G. Therefore, these sets can differ by

at most o(n) vertices. Thus, for each of the
(r

2

)
pairs Vi,Vj we remove at most o(n)

vertices (and hence o(n) vertices in total) to create a Turán subgraph on (1−o(1))n

vertices. This shows that in the edge range m = o(n
r+1

r )

gr(n,m) = g∗r (n,m) = o(n),

and so there is little quantitative difference between these functions.

What happens in the ‘critical window’, i.e., in the edge range m = O(n
r+1

r )? In order

to understand the structure of (r+1)-saturated graphs with e(G) = tr(n)−Cn
r+1

r , we wish

5



to rule out degenerate situations where we may find large complete r-partite subgraphs,

but they are rather lopsided, with some parts much smaller or larger than others. Thus, in

this edge range, we prefer to study the function g∗r (n,m). The following theorem shows

that there exist (r+1)-saturated graphs with at least tr(n)−Cn
r+1

r edges for which the

largest Turán subgraph covers a vanishing fraction of the whole vertex set. In other words,

we show that g∗r (n,Cn
r+1

r ) increases rapidly as C increases.

Theorem 1.1.3. Let r ≥ 2 be an integer and let δ > 0. There exists a constant C =C(r,δ )

such that, for n sufficiently large, there exists an n-vertex (r+1)-saturated graph G that

contains no copy of Tr(δ rn) and e(G)≥ tr(n)−Cn
r+1

r . In terms of the function g∗r , we

show that for any sufficiently large D > 0 (depending on r) we have

g∗r (n,Dn
r+1

r )≥
(

1− c′ log(Dr)
D

)
n,

for sufficiently large n and an absolute constant c′.

Let us see how the lower bound on g∗r follows from the first statement. We will see

that in the proof of Theorem 1.1.3 we can take C =C(r,δ ) = 26r−1δ−1 log(2e/δ ).

According to the above theorem, there is an (r+1)-saturated graph G on n vertices (n

sufficiently large) with e(G)≥ tr(n)−Cn
r+1

r and no Tr(δ rn) subgraph. Thus we have

g∗r (n,Cn
r+1

r )> (1−δ r)n.

We claim that

δ r ≤ 26 log(Cr)
C

,

which gives the desired lower bound on g∗r . Indeed, note that by our choice of C we have

C > 1/r so the right-hand side is nonnegative. Then Cδ r = 26 log(2e/δ ), so we need that

26 log(2e/δ )≤ 26 log(26δ−1 log(2e/δ )). But this holds, since after dividing by the factor

of 26 and taking exponentials, we obtain the inequality 2e/δ ≤ 26 log(2e/δ )/δ , which is

6



clearly true.

Unfortunately, we do not have any good upper bounds on g∗r (n,m) in this range of m,

and we leave this as an open problem.

1.1.1 Organization and Notation

This chapter is organized as follows. In Section 1.2, we prove our main result,

Theorem 1.1.2. Roughly speaking, we first show that any Kr+1-free graph with many

edges has a rather substantial r-partite subgraph. We then show that one can refine this

resultant r-partite graph by making each bipartite graph between partition classes

complete, while removing relatively few vertices. In Section 1.3, we provide the

aforementioned constructions which exhibit the tightness of Theorems 1.1.1 and 1.1.2; in

Section 1.4, we prove Theorem 1.1.3. Finally, in Section 1.5 we state some further

questions.

Our notation is mostly standard (see, for example, [11]). For a subset S⊆V (G) we

denote by NG(S) =
⋂

v∈S NG(v) the common (or joint) neighborhood of S in G. We shall

omit the subscript ‘G’ if the underlying graph is understood. If X1, . . . ,Xr are disjoint

subsets of V (G), we denote by G[X1, . . . ,Xr] the r-partite graph induced in G with vertex

classes X1, . . . ,Xr. We write f � g to mean f (n)/g(n)→ 0 as n→ ∞. All other notation

we need shall be introduced as necessary.

1.2 The Proof of Theorem 1.1.2

1.2.1 Preliminary lemmas

Let us now work towards establishing Theorem 1.1.2. For that we state and prove two

lemmas, the second of which is the core of the proof. For the first lemma we use the

following classical theorem of Andrásfai, Erdős, and Sós [8], although the precise value of

7



the constant 3r−4
3r−1 is unimportant for us; we only need that it is strictly less than the Turán

density.

Theorem 1.2.1. For r ≥ 2 let G be a Kr+1-free graph on n vertices which is not r-partite.

Then there is a vertex v of G with

d(v)≤ 3r−4
3r−1

n.

We shall also use the following result of Brouwer [17], mentioned in the introduction.

We include the proof of Tyomkyn and Uzzell [68] for completeness, which uses a tool

known as ‘Zykov symmetrization’ that we now describe. Given a graph G and

nonadjacent vertices u,v ∈V (G) let Zu,v(G) be the graph obtained from G by deleting all

edges incident with u and adding all edges between u and N(v). Recall that ω(G) denotes

the clique number of G, the order of the largest complete subgraph in G. Then under this

operation, the clique number and chromatic number cannot increase: we have

ω(G−u) = ω(Zu,v(G)) and χ(G−u) = χ(Zu,v(G)). Therefore,

ω(G)−1≤ ω(Zu,v(G))≤ ω(G) and similarly χ(G)−1≤ χ(Zu,v(G))≤ χ(G). Note that

if d(u)< d(v) then the number of edges increases under the operation Zu,v, and if

d(u) = d(v) we can either apply Zu,v or Zv,u to G, preserving the above properties of ω and

χ , while leaving the number of edges unchanged. We call Zu,v(G) an increasing Zykov

symmetrization provided d(u)≤ d(v).

The following proposition is due to Zykov [70], which he used in his proof of Turán’s

Theorem.

Proposition 1.2.2. Let G be a Kr+1-free graph. Then there exists a sequence of increasing

Zykov symmetrizations transforming G into a complete t-partite graph for some t ≤ r.

Proof. Call two vertices of G twins if they have the same neighborhood in G, and note that

the application of Zu,v to G turns u into a twin of v. Since the relation ‘is a twin of’ is an

8



equivalence relation, we can partition V (G) into equivalence classes T1, . . . ,Tq where

u,v ∈ Ti if and only if they are twins in G. Now, note that the bipartite graphs G[Ti,Tj] for

i 6= j are either complete or empty. Indeed, if there is an edge xy with x ∈ Ti and y ∈ Tj,

then every vertex in Tj must be joined to x; i.e., x is joined to all of Tj, so all of Ti is joined

to all of Tj. If G[Ti,Tj] is empty, apply increasing Zykov symmetrizations until the classes

Ti and Tj are merged into a single class. By doing this for every pair which induces an

empty bipartite graph, we obtain a complete t-partite graph for some t. But since Zykov

symmetrization does not increase the clique number, we must have t ≤ r.

We are now in a position to give Tyomkyn and Uzzell’s proof of Brouwer’s theorem.

Theorem 1.2.3. Let r ≥ 2, n≥ 2r+1, and let G be an Kr+1-free, n-vertex graph. If

e(G)≥ tr(n)−bn
r c+2, then G is r-partite.

Proof. Let Gr(n) denote the following graph. Take a copy of Tr(n−1) with vertex

partition V1, . . . ,Vr and let V (Gr(n)) =V1∪·· ·∪Vr∪{u} with u /∈
⋃

iVi. Suppose that

V1,V2 are the smallest two classes in the partition and pick v1 ∈V1 and v2 ∈V2. Now join u

to every vertex in V3∪·· ·∪Vr, remove the edge v1v2, and join u only to v1 and v2 in

V1∪V2. Note that Gr(n) is Kr+1-free, not r-colorable, and has

e(Gr(n)) = tr(n)−bn/rc+1

edges. Thus Gr(n) shows that Theorem 1.2.3 is tight. One can, in fact, classify the

extremal examples for this theorem (there is more than one), and also consider the

situation for n≤ 2r (one must consider a different extremal example in this case).

However, since we do not need these facts, we shall content ourselves with proving that if

n≥ 2r+1 and G is an n-vertex Kr+1-free graph which is not r-colorable, then

e(G)≤ e(Gr(n)).

9



To this end, by Proposition 1.2.2 we can apply a sequence of increasing Zykov

symmetrizations so that the final graph is Kr+1-free and r-colorable. In particular, since

χ(G)> r, there exists an increasing symmetrization for which the chromatic number

drops. Hence, without loss of generality, we may assume that χ(G) = r+1 and for some

u,v we have χ(Zu,v(G)) = χ(G−{u}) = r. This means that G can be colored with r+1

colors so that u is the only vertex of its color. Hence write V (G) =V1∪·· ·∪Vr∪{u}

where each Vi is independent and u /∈
⋃

iVi. Observe that u is joined to some vertex in each

Vi (otherwise χ(G) = r). Moreover, there must be at least one missing edge between some

Vi and Vj (otherwise we obtain a Kr+1 containing u).

Our graph now shares some similar structural properties with Gr(n); we wish now to

make some edge exchanges which make G look more like Gr(n), and such that we do not

decrease the total number of edges. Suppose u has neighbors x ∈Vi, y ∈Vj for i 6= j. If

xy /∈ E(G) and u has another neighbor, say x′ ∈Vi, then remove the edge ux and add xy.

We claim that our graph remains Kr+1-free after this operation. Indeed, any copy of Kr+1

must contain the vertex u, and therefore cannot contain x. Repeat this operation until there

are two classes, say V1,V2 and two vertices v1 ∈V1, v2 ∈V2 such that u is joined only to v1

and v2, and v1 and v2 are nonadjacent (note that this process must terminate since the

degree of u decreases at each step). Call the resulting graph G′. Now form the graph G′′

from G′ by adding all missing edges between each Vi and Vj (except v1v2), and between u

and V3∪·· ·∪Vr. Then G′′ is (r+1)-partite, Kr+1-free, and its number of edges is

maximized whenever each vertex class is equal as possible. In other words,

e(G) = e(G′)≤ e(G′′)≤ e(Gr(n)),

as claimed.

Here, then, is our first lemma, which grants us a sizable induced r-partite subgraph.

10



We remark that a lemma of this type is not new and appears in a similar form in [68].

Lemma 1.2.4. For r ≥ 2 there is a constant dr, depending only on r, such that the

following holds. Let n≥ 4r and 0≤ ε ≤ (30r3)−1. If G is an n-vertex Kr+1-free graph

with e(G)≥ tr(n)− εn2, then there is a subset T ⊆V (G) with |T | ≤ drεn such that G−T

is r-partite.

Proof. If ε < (2rn)−1, then e(G)> tr(n)− n
2r ≥ tr(n)−bn

r c+1, where the second

inequality follows by our assumption that n≥ 4r. Therefore by Theorem 1.2.3, G is

r-partite, and there is nothing to prove. Accordingly, we may assume ε ≥ (2rn)−1.

Set G1 = G. Suppose that G1, . . . ,Gi have been defined for some i ∈ [n]. If Gi is not

r-partite then pick a vertex vi ∈V (Gi) with dGi(vi)≤ 3r−4
3r−1 |Gi| according to

Theorem 1.2.1. Set Gi+1 = Gi− vi. Suppose this process terminates at stage t ∈ [n]. Then

Gt+1 = G−{v1, . . . ,vt} is r-partite. We claim that t ≤ drεn for some constant dr

depending only on r. This follows from a simple calculation. Indeed as

e(Gi+1)≤ r−1
2r (n− i)2 holds for every i ∈ [t], by Turán’s theorem we have

e(G)≤ 3r−4
3r−1

(
n+(n−1)+ · · ·+(n− i+1)

)
+

r−1
2r

(n− i)2

=
3r−4
3r−1

(
ni−

(
i
2

))
+

r−1
2r

(n− i)2,

and using the lower bound on e(G) we obtain

tr(n)−
r−1

2r
(n− i)2 +

3r−4
3r−1

(
i
2

)
≤ 3r−4

3r−1
ni+ εn2. (1.1)

Further, using the lower bound tr(n)≥ (1−1/r)
(n

2

)
applied to (1.1) and rearranging yields

the equivalent inequality

i
(

1− i
2n
− r(3r−4)

2n

)
− 1

2
(r−1)(3r−1) ≤ r(3r−1)εn,

11



which is easily shown to fail if i = 10r2(3r−1)εn when (2rn)−1 ≤ ε ≤ (30r3)−1. Since

the resulting function in (1.1) is quadratic in i, it is indeed enough to demonstrate that it

fails for one value. Accordingly, t < 10r2(3r−1)εn as claimed.

The next lemma is the heart of the proof of our main theorem. Before stating it we

introduce some notation and a bit of terminology. If G is an r-partite graph with vertex

partition V1, . . . ,Vr, then we denote by G̃[V1, . . . ,Vr] the r-partite complement of G with

respect to the partition V1, . . . ,Vr. In other words G̃[V1, . . . ,Vr] has vertex set V1∪·· ·∪Vr

and its edges are precisely the non-edges of G which join two vertices belonging to

distinct vertex classes of V1, . . . ,Vr. Often we simply speak of the r-partite complement in

the case that the vertex partition we are using is clear from context, and we shall simply

write G̃. We say that a subset S⊆V (G) of the vertices of a graph G covers an edge e if at

least one of the endpoints of e lies in S. Further, we let IG(S) denote the collection of

edges of G covered by S. An r-saturating edge in G is an edge of the complement G the

addition of which creates a copy of Kr in G. If X ,Y ⊆V (G) are subsets of vertices, then

we say that a non-edge e is an r-saturating (X ,Y ) edge if it is r-saturating with one

endpoint in X and the other in Y . A Kr-matching in a graph G is a collection of vertex

disjoint copies of Kr in G. Lastly, before stating and proving the lemma, let us collect a

simple observation that will be of use.

Observation 1.2.5. Suppose that G is a bipartite graph with vertex classes V1 and V2 with

e(G) = α|V1||V2|, where α ∈ [0,1]. Then for any 1≤ t ≤ |V2| there is a subset W ⊆V2 of

size t such that the induced graph on V1∪W has at least α|V1|t edges.

Proof. This assertion follows from a simple averaging argument. For Y ⊆V2 let e(V1,Y )

denote the number of edges of G with an endpoint in Y . Then

∑
Y∈V (t)

2

e(V1,Y ) = e(G)

(
|V2|−1

t−1

)
= α|V1|t

(
|V2|

t

)
,

12



so there exists a subset W ∈V (t)
2 with e(V1,W )≥ α|V1|t.

Lemma 1.2.6. Let r ≥ 2 be an integer and let G be a Kr-free, r-partite graph with vertex

classes A, B,X1 . . . ,Xr−2. Then the following statements hold.

1. There is a subset R⊆ A∪B that covers all r-saturating (A,B) edges in G and

|IG̃(R)| ≥ cr|R|
r

r−1 ,

for some constant cr > 0 depending only on r.

2. Suppose that t ≥ 1 is an integer with r− t ≥ 2, that E ⊆ EG̃(A,B) is a collection of

non-edges between A,B, and that there exist Kr−t-free subgraphs H1, . . . ,Hs ⊆ G

such that every element of E is (r− t)-saturating in at least one of the graphs

H1, . . . ,Hs. Then there exists a set R′ ⊆ A∪B covering every element of E with

|IG̃(R
′)| ≥ c′r,ts

− 1
r−t−1 |R′|

r−t
r−t−1 ,

where c′r,t is a constant depending only on r, t.

Proof. We prove these two statements simultaneously by induction on r. The case r = 2 is

trivial: G must be empty. The first part holds by simply choosing the smaller of the two

parts of the bipartite graph G and the second part of the statement is vacuous as there is no

appropriate choice for t.

So, assuming that the result holds for r−1≥ 2, we prove it for r. To this end, let G be

a Kr-free, r-partite graph with vertex sets A, B, X1, . . . ,Xr−2. We start with the proof of

Part 2 as we shall need it to prove Part 1.

Proof of Part 2: Suppose we are given a collection E of non-edges between A,B and

subgraphs H1, . . . ,Hs satisfying the requirements of the lemma. Start by enumerating the

13



collection of subgraphs

{
Hi
[
A∪B∪Xi1 ∪·· ·∪Xir−t−2

]
: i ∈ [s],1≤ i1 < · · ·< ir−t−2 ≤ r−2

}
by H ′1, . . . ,H

′
s′ , where s′ =

( r−2
r−t−2

)
s (if t = r−2, then we are just listing the subgraphs

Hi[A∪B] for i = 1, . . . ,s). We now iteratively apply induction inside each of the graphs

H ′1, . . . ,H
′
s′ : at each stage we remove a set granted by the induction hypothesis before

moving to the next graph in the enumeration.

We shall define a sequence of disjoint subsets R1, . . . ,Rs′ of A∪B and a sequence of

subgraphs G1, . . . ,Gs′+1 of G with the following properties:

1. G1 = G and Gi+1 = Gi−Ri for all i≥ 1.

2. |IG̃i
(Ri)| ≥ cr,t |Ri|

r−t
r−t−1 for each i≥ 1, where cr,t is the constant given by the

induction hypothesis of the lemma (here, the r-partite complement G̃i is with

respect to the ‘obvious’ r-partition of Gi).

3. Every non-edge of E is covered by R1∪·· ·∪Rs′ .

Suppose that, for i ∈ [s′], the graphs G1, . . . ,Gi have been defined. Apply the induction

hypothesis of Lemma 1.2.6 to the (r− t)-partite, Kr−t-free graph H ′i ∩Gi to find a set

Ri ⊆V (H ′i ∩Gi)∩ (A∪B) with |IG̃i
(Ri)| ≥ cr,t |Ri|

r−t
r−t−1 that covers all (r− t)-saturating

(A,B) edges in H ′i . Finally set Gi+1 = Gi−Ri. To check that every non-edge of E is

covered by R1∪·· ·∪Rs′ , simply recall that we assumed that every non-edge of E is

(r− t)-saturating in one of the subgraphs H1, . . . ,Hs and therefore (r− t)-saturating in one

of the subgraphs H ′1, . . . ,H
′
s′ . Thus, a non-edge e ∈ E is (r− t)-saturating in some H ′j for

some j ∈ [s′], and so it will be covered by one of R1, . . . ,R j. That is, it will be covered in

stage j, if it has not been covered already.

To finish the proof of Part 2 of the lemma, we write R′ = R1∪·· ·∪Rs′ . Noting that the

14



sets R1, . . . ,Rs′ are pairwise disjoint, we apply Hölder’s inequality to obtain

|R′| =
s′

∑
i=1
|Ri| ≤ s′

1
r−t

(
s′

∑
i=1
|Ri|

r−t
r−t−1

) r−t−1
r−t

,

and therefore

s′−
1

r−t−1 |R′|
r−t

r−t−1 ≤
s′

∑
i=1
|Ri|

r−t
r−t−1 .

Now, since the sets of edges {IG̃i
(Ri)}i∈[s′] are pairwise disjoint (as the sets R1, . . . ,Rs′ are

pairwise disjoint, and we remove Ri from Gi to define Gi+1) we may estimate

|IG̃(R
′)| =

s′

∑
i=1
|IG̃i

(Ri)| ≥
s′

∑
i=1

cr,t |Ri|
r−t

r−t−1

≥ cr,ts′−
1

r−t−1 |R′|
r−t

r−t−1

≥ c′r,ts
− 1

r−t−1 |R′|
r−t

r−t−1 ,

where c′r,t is a constant depending only on r, t. Note that the first equality holds since the

sets IG̃i
(Ri), i ∈ [s′] are pairwise disjoint and the sum ∑

s′
i=1 |IG̃i

(Ri)| counts edges in G̃

covered by R′. This completes the proof of Part 2 of Lemma 1.2.6.

To prove the first part we use the second part along with an extra ingredient.

Proof of Part 1 : We may assume that there is some saturating (A,B)-edge, otherwise

we are trivially done with the choice of R = /0. So, let M be a Kr−2-matching of

maximum size in the graph G[X1, . . . ,Xr−2] and let Y denote the collection of vertices

contained in a clique of M . Note that M is nonempty as there is some saturating

(A,B)-edge, and put L = |M | so that |Y |= (r−2)L > 0. For each y ∈ Y , let G(y) be the

(r−1)-partite graph induced on the neighborhood of y in G with vertex classes

N(y)∩A,N(y)∩B along with N(y)∩Xi for y 6∈ Xi, i ∈ [r−2]. Our first claim asserts that

we may assume there are many non-edges between Y and either A or B.
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Claim 1.2.7. There are either at least 1
4(r−2) |A||Y | non-edges between Y and A, or at least

1
4(r−2) |B||Y | non-edges between Y and B.

Proof. For each K ∈M and S⊆V (G) we denote by dS(K) the number of vertices of S

joined to every vertex of K, so that dS(K) = |NG(K)∩S|. We may assume that, for every

K ∈M , either dA(K)≤ 1
2 |A| or dB(K)≤ 1

2 |B|. Indeed, suppose that there is K ∈M with

dA(K)> 1
2 |A| and dB(K)> 1

2 |B|. As G is Kr-free we must then count more than 1
4 |A||B|

non-edges between A and B. Setting R to be the smaller of A and B, we see that trivially R

covers all r-saturating (A,B) edges and

|IG̃(R)| >
1
4
|A||B| ≥ 1

4
|R|2,

so we are done (with room to spare). Therefore, we may assume that for every K ∈M

either dA(K)≤ 1
2 |A| or dB(K)≤ 1

2 |B|.

Write M = MA∪MB, where MA are those K ∈M which satisfy dA(K)≤ 1
2 |A| and

MB are those that satisfy dB(K)≤ 1
2 |B|. Then, without loss of generality, we have

|MA| ≥ 1
2 |M |. Now since each K ∈MA sends at least 1

2 |A| non-edges to A and since each

clique in M is vertex-disjoint, we have that there are at least 1
4 |A||M |=

1
4(r−2) |A||Y |

non-edges between Y and A.

Now, observe that, by the maximality of M , every r-saturating (A,B) edge is

(r−1)-saturating in one of the graphs {G(y)}y∈Y . Hence we may apply the bound in

Part 2 of the lemma to obtain a set R0 which covers every r-saturating (A,B) edge and

|IG̃(R0)| ≥ c′r,1(r−2)−
1

r−2 L−
1

r−2 |R0|
r−1
r−2 . (1.2)

However, this bound is not useful if L is too large. In order to deal with this issue we

shall randomly augment R0 with a set R′0 of |R0| vertices. The resulting set R = R0∪R′0
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will only be a factor of two larger than R0 but will cover ‘many’ edges of G̃ — enough to

achieve a better lower bound on |IG̃(R)|.

To this end, note that by Claim 1.2.7 we may assume that, without loss of generality,

there are at least 1
4(r−2) |A||Y | non-edges between Y and A. Further, we may assume that

|R0| ≤ |A|. Indeed, suppose otherwise that |R0|> |A|. If |A||M | ≥ |A|
r

r−1 , we are done by

choosing R = A, since then |IG̃(A)| ≥
1
4 |A||M | ≥

1
4 |A|

r
r−1 . Otherwise,

L = |M |< |A|
1

r−1 < |R0|
1

r−1 , and using (1.2) yields |IG̃(R0)| ≥ c′r|R0|
r

r−1 , so we are done

with the choice R = R0.

Hence, assuming that |R0| ≤ |A|, by Observation 1.2.5, one can find a subset R′0 ⊆ A of

size |R0| such that the number of non-edges between R′0 and Y is at least

1
4(r−2) |R0||Y |= 1

4 |R0|L.

We now set R = R0∪R′0 and claim that R is our desired set. First note that R covers all

r-saturating (A,B) edges in G, as R0 already does. To count the total number of non-edges

covered by R, we note that |R| ≤ 2|R0|, and so we have (using (1.2))

2|IG̃(R)| ≥ |IG̃(R0)|+ |IG̃(R
′
0)|

≥ c′r,1(r−2)−
1

r−2 L−
1

r−2 |R0|
r−1
r−2 +

1
4
|R0|L

≥ c′L−
1

r−2 |R|
r−1
r−2 +

1
8
|R|L, (1.3)

where c′ = c′r,12−
r−1
r−2 (r−2)−

1
r−2 . A simple analysis reveals that the quantity on the

right-hand side of (1.3) is minimized in L if L = (8c′/(r−2))
r−2
r−1 |R|

1
r−1 . Substituting this

value of L back into (1.3) yields

|IG̃(R)| ≥ cr|R|
r

r−1 ,

where cr is a constant depending only on r.

We remark that a more careful reading of the proof shows that we may take cr ≥ 1
2r+2 .
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Therefore, we have cr,t ≥ 1
2r+2−t and c′r,t = cr,t

( r−2
r−t−2

)− 1
r−t−1 ≥ 1

(r−2)2r+2−t .

1.2.2 Finishing the proof

We can now proceed to finish the proof of Theorem 1.1.2.

Proof (of Theorem 1.1.2). Let r,n be integers with r ≥ 2 and n≥ 900r6, and suppose that

G is an n-vertex (r+1)-saturated graph with e(G)≥ tr(n)−m. For notational

convenience we shall write m = εn2. Thus we must find a complete r-partite subgraph of

G on at least (1−Crεn
r−1

r )n vertices, for some constant Cr depending only on r. We shall

additionally insist that Cr ≥ 1. The result is then trivial if ε > n−
r−1

r and so we may

assume that ε ≤ n−
r−1

r . Since n≥ (30r3)2 we have that ε ≤ (30r3)−1, so we may apply

Lemma 1.2.4 to obtain a subset T ⊆V (G) such that |T | ≤ drεn and G−T is r-partite. Let

the vertex classes of G−T be V1, . . . ,Vr. We now simply apply Part 2 of Lemma 1.2.6 to

common neighborhoods of appropriate subsets of T . But before we do this we need a

bound on e(G̃[V1, . . . ,Vr]), the number of non-edges between the parts V1, . . . ,Vr, which is

the content of the following claim.

Claim 1.2.8. e(G̃[V1, . . . ,Vr])≤ (dr +1)εn2.

Proof. First note that if |T |= 0, then G is r-partite and e(G̃[V1, . . . ,Vr]) = 0 since G is

(r+1)-saturated. So, we may assume that |T | ≥ 1. In this case, the number of non-edges

e
(
G
)

satisfies e
(
G
)
≤
(n

2

)
− tr(n)+ εn2, and also

e
(
G
)
≥

r

∑
i=1

(
|Vi|
2

)
+ e(G̃[V1, . . . ,Vr])≥ r

(n−|T |
r
2

)
+ e(G̃[V1, . . . ,Vr]),

by convexity of the function x 7→
(x

2

)
. By using the estimate tr(n)≥

(
1− 1

r

)(n
2

)
,

combining the lower and upper bounds on e
(
G
)
, and rearranging, we get

18



e(G̃[V1, . . . ,Vr])≤ εn2 +
1
r

(
n
2

)
− r
(n−|T |

r
2

)
< εn2 +

r−1
2r

n+
n|T |

r
(1.4)

= εn2 +2n|T |
(

r−1
4r|T |

+
1
2r

)
. (1.5)

Now, if |T | ≥ r/2, then (1.5) is at most εn2 + 2n|T |
r , and we are done. If |T |< r/2, then by

(1.4) we have e(G̃[V1, . . . ,Vr])< εn2 +n =
(
1+ 1

εn

)
εn2. But clearly 1

εn ≤ dr, as otherwise

|T |< 1. Hence, the desired bound on e(G̃[V1, . . . ,Vr]) holds.

For t ∈ [r−1] let Ct denote the collection of copies of Kt contained in G[T ], the graph

induced on T . We say a non-edge e is of type t if it lies between two of the classes

V1, . . . ,Vr, and the addition of e to G creates a Kr+1 with exactly t vertices in T . Since G is

(r+1)-saturated and G[V1, . . . ,Vr] is a Kr+1-free graph, every non-edge between two of

the classes V1, . . . ,Vr is of type t for some t ∈ [r−1]. For t ∈ [r−1] we let Et denote the

collection of type t non-edges.

Set V =V1∪·· ·∪Vr and define Gt = {G[N(K)∩V ] : K ∈ Ct} for t ∈ [r−1]. For each

i 6= j ∈ [r], we show that one can make the induced bipartite graph G[Vi,Vj] complete by

removing a relatively small number of vertices. Doing this in succession for each of the(r
2

)
pairs Vi, Vj with i 6= j then yields a complete r-partite subgraph.

So fix i 6= j ∈ [r] and note that for each t ∈ [r−1], each graph in the collection Gt is

Kr+1−t-free and every (Vi,Vj) non-edge of Et is (r+1− t)-saturating in one of the graphs

of Gt . So for each t ∈ [r−1] we may invoke Part 2 of Lemma 1.2.6 to obtain a set

St(i, j)⊆Vi∪Vj that covers every (r+1)-saturating (Vi,Vj) edge of type t and

∣∣∣IG̃[V1,...,Vr]
(St(i, j))

∣∣∣≥ c′r+1,t |Ct |−
1

r−t |St(i, j)|
r+1−t

r−t .

Moreover, by Claim 1.2.8 we have |IG̃[V1,...,Vr]
(St(i, j))| ≤ e(G̃[V1, . . . ,Vr])≤ (dr +1)εn2,
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and using the bound |Ct | ≤ |T |t ≤ (drεn)t , we obtain

|St(i, j)|
r+1−t

r−t ≤ (c′r+1,t)
−1(dr +1)εn2|Ct |

1
r−t

≤ (c′r+1,t)
−1(dr +1)d

t
r−t
r ε

r
r−t n

2r−t
r−t .

It follows that

|St(i, j)| ≤Cr,t

(
ε

r
r+1−t n

r−1
r+1−t

)
n,

where Cr,t is a constant depending only on r, t, for each t ∈ [r−1], and i 6= j ∈ [r].

As every edge between the parts V1, . . . ,Vr is of type t for some t ∈ [r−1], we

conclude that the set S =
⋃r−1

t=1
⋃

i 6= j∈[r] St(i, j) covers every non-edge between the parts

V1, . . . ,Vr. It follows that G−S−T is a complete r-partite graph. To bound |S| recall that

ε ≤ n−
r−1

r . Then we have

|S| ≤
r−1

∑
t=1

∑
i6= j∈[r]

Cr,t

(
ε

r
r+1−t n

r−1
r+1−t

)
n

≤ (r−1)
(

r
2

)
max

t∈[r−1]
{Cr,t}

(
εn

r−1
r

)
n

≤C′r
(

εn
r−1

r

)
n,

where the constant C′r depends only on r. It is here that we have used the condition

ε ≤ n−
r−1

r , since this implies that the dominating term in the sum above is the one with

t = 1. Hence we have found a complete r-partite subgraph on

n−|S|− |T | ≥ n−C′r
(

εn
r−1

r

)
n−drεn≥

(
1−Crεn

r−1
r

)
n

vertices, for some constant Cr. This completes the proof.
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1.3 Constructions

The aim of this section is to describe a family of constructions that demonstrate the

optimality of Theorem 1.1.1. Indeed, the construction described in the next two

subsections will show that in the large edge range ( r−1
r + ε)≤ m≤ n

r+1
r we have

gr(n,m)≥ cr,εmn−1/r,

for some constant cr,ε depending on r,ε .

1.3.1 Removed edges

We begin by inductively constructing a family of auxiliary graphs Gr,s, for each r,s ∈ N,

r,s≥ 2. It is useful to keep in mind that the edges of the r-partite graph Gr,s record edges

to be removed from a later graph. First let us introduce a family of r-partite graphs

Gr,s1,s2,...,sr−1 for which Gr,s will be a special case.

Construction of Gr,s1,...,sr−1 : Let s1, . . . ,sr−1 ≥ 2 be integers. We define a sequence of

graphs G2,s1,G3,s1,s2, . . . ,Gr,s1,...,sr−1 inductively, where Gi,s1,...,si−1 will be an i-partite

graph. First, we define G2,s1 to be the complete bipartite graph Ks1,s1 . Now let

2≤ t ≤ r−1 and assume that we have defined the t-partite graph Gt,s1,...,st−1 . We define

Gt+1,s1,...,st as follows. Let H1, . . . ,Hst be vertex disjoint copies of Gt,s1,...,st−1 and suppose

Hp has vertex classes Ap
1 , . . . ,A

p
t , for each p ∈ [st ]. Define Gt+1,s1,...,st to be the

(t +1)-partite graph with the first t vertex classes defined as Ai := A1
i ∪·· ·∪Ast

i , for i ∈ [t],

and with the (t +1)st vertex class defined as a collection of new vertices

At+1 = {x1, . . . ,xst}. We define the edge set

E(Gt+1,s1,...,st ) =
⋃st

p=1 E(Hp)∪
{

xpy : y ∈ Hq, p,q ∈ [st ], p 6= q
}

.

Now for simplicity we let Gr,s := Gr,2s,s,...,s, for s≥ 2. The following proposition

records several useful properties of our family of graphs Gr,s.
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Proposition 1.3.1. The graph Gr,s has the following properties.

1. Gr,s is r-partite with vertex partition A1∪·· ·∪Ar (and hence it makes sense to

consider the r-partite complement of Gr,s with respect to this partition).

2. The r-partite complement G̃r,s is Kr-free.

3. For each i ∈ [r], there is a copy of Kr−1 in G̃r,s \Ai.

4. Every edge between two different vertex classes of Gr,s is r-saturating in G̃r,s.

5. |Gr,s|= ∑
r−2
i=1 si +4sr−1 = s

s−1(4sr−1−3sr−2−1)≤ 4 sr

s−1 .

6. e(Gr,s)≤ 4(r−1)sr.

7. The size of the largest two vertex classes is 2sr−1.

8. All other vertex classes have size at most sr−2.

9. There is a matching between the largest two vertex classes of Gr,s.

10. Any independent set in Gr,s has at most |Gr,s|−2sr−1 vertices.

Proof. We shall use induction on r. The base case r = 2 is trivial. Suppose the assertions

hold for r ≥ 2. Clearly Gr+1,s is (r+1)-partite and G̃r+1,s is Kr+1-free. To show Part 3,

suppose first that i = r+1. By induction hypothesis there is a copy of Kr−1 in

H̃1 \A1 = H̃1 \A1
1 which together with any x ∈ H̃2∩A1 form a copy of Kr in G̃r+1,s \Ar+1.

The argument is very similar for the case when i ∈ [r]. To show Part 4, notice that the only

edges between vertex classes in Gr+1,s are either inside Hp or between xp and Hq, for

some p,q ∈ [s], p 6= q. If we add an edge to G̃r+1,s (which corresponds to removing that

edge from Gr+1,s) of the former type, the assertion holds simply by induction. If we add

an edge xpy with y ∈ Ai, i ∈ [r], of the latter type, first observe that it follows from Part 3

of the induction hypothesis that H̃p \Ai contains a copy of Kr−1, say K. Hence, both xp

22



and y are joined to every vertex in K, thus forming a Kr+1 in G̃r+1,s. The number of

vertices satisfies the relation |Gr+1,s|= s+ s|Gr,s| while |G2,s|= 4s, and thus the claim

follows. The number of edges satisfies the recurrence

e(Gr+1,s) = s · e(Gr,s)+ s(s−1)|Gr,s| ≤ s · e(Gr,s)+ s(s−1)4 sr

s−1 = s · e(Gr,s)+4sr+1 so,

by induction, e(Gr+1,s)≤ 4(r−1)sr+1 +4sr+1 = 4rsr+1. Parts 7,8,9 follow immediately

by induction. Finally, to argue Part 10, simply notice that for each p ∈ [s], by induction,

there is no independent set in Hp with more than |Hp|−2sr−1 vertices. Therefore, from

disjointness of the Hp’s, any independent set in Gr+1,s has at most |Gr+1,s|−2sr

vertices.

1.3.2 The final construction

We can now proceed to construct a family of graphs Hr,s,t(n) that will demonstrate the

tightness of Theorem 1.1.2. We let H1, . . . ,Ht be vertex disjoint copies of Gr,s with vertex

partitions Hp = Ap
1 ∪·· ·∪Ap

r for each p ∈ [t]. We now augment the vertex set of the Hp’s

to be the vertex set for our G. First note that since n≥ 4sr−1tr+ t, we can find

`1, . . . , `r ∈ N, so that for each i ∈ [r] we have ∑
t
p=1 |A

p
i |+ `i ∈

{
bn−t

r c,d
n−t

r e
}

and

∑
r
i=1

(
∑

t
p=1 |A

p
i |+ `i

)
= n− t. Note that as n is large enough, we may assume that

`1, . . . , `r > 0. We now define the sets A1, . . . ,Ar as

Ai = A1
i ∪·· ·∪At

i ∪Yi,

for i ∈ [r], where Yi is a collection of `i new vertices. We additionally define

Ar+1 = {x1, . . . ,xt} as a collection of t new vertices and finally set V (G) =
⋃r+1

i=1 Ai.

We define the edge set as follows: the vertex xp is joined to V (Hp), for each p ∈ [t],

and for i, j ∈ [r], x ∈ Ai,y ∈ A j, xy is an edge if and only if i 6= j and the edge xy is not in

any of the graphs H1, . . . ,Ht . We then add a maximal set of edges among Ar+1 that leaves
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the graph Kr+1-free. That is, we first define a graph G′ by V (G′) =V (G) and

E(G′) = {xpy : y ∈V (Hp), p ∈ [t]}∪
{

xy : x ∈ Ai,y ∈ A j ,1≤ i < j ≤ r
}
\

t⋃
p=1

E(Hp),

and then augment the edge set to form E(G):

E(G) = E(G′)∪X ,

where X ⊆ A(2)
r+1 is maximal in the sense that adding any further edge of A(2)

r+1 will yield a

Kr+1 in G. Call this final graph Hr,s,t(n).

The following Proposition shows that Hr,s,t(n) has all of the properties that are of

interest to us. Before proceeding, let us note the following easy observation.

Observation 1.3.2. For integers r, t ≤ n with r ≥ 2 we have

tr(n− t)≥ tr(n)− (1−1/r)tn.

Proof. If x is a vertex of minimum degree in Tr(n), then Tr(n)− x = Tr(n−1) and so

tr(n) = tr(n−1)+δ (Tr(n)). Iterating this fact yields

tr(n) = tr(n− t)+
t−1

∑
j=0

δ (Tr(n− j))≤ tr(n− t)+ t ·δ (Tr(n))≤ tr(n− t)+(1−1/r)tn,

as claimed.

Proposition 1.3.3. Suppose that n,r,s, t ∈ N with r,s≥ 2 satisfy n≥ 4sr−1tr+ t. Then

there exists an (r+1)-saturated graph G on n vertices with

e(G)≥ tr(n)− r−1
r tn−4(r−1)tsr such that any complete r-partite subgraph has at most

n−2tsr−1 vertices.
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Proof. Let G = Hr,s,t(n). We see that G satisfies

e(G)≥ tr(n− t)− t · e(Gr,s)≥ tr(n)−
r−1

r
tn− t · e(Gr,s)

≥ tr(n)−
r−1

r
tn−4(r−1)tsr,

where in the second inequality we have used Observation 1.3.2. We first note that any

complete r-partite subgraph is of order at most n−2tsr−1, as for each p ∈ [t], at most

|Hp|−2sr−1 vertices from V (Hp) can be included in a complete r-partite subgraph of G,

by Part 10 of Proposition 1.3.1.

To see that G is (r+1)-saturated we may argue as we did in the proof of

Proposition 1.3.1. First, notice that G is Kr+1-free. Indeed, if there were a copy of Kr+1 in

G then, by construction, it would contain exactly one vertex from Ar+1, say xp for some

p ∈ [t]. Since the neighborhood of xp outside Ar+1 is exactly Hp, which is Kr-free, it

follows that xp cannot be contained in any copy of Kr+1, which yields a contradiction.

There are only three types of edges that one could add to G: edges from E(Hp), for some

p ∈ [t], edges between Ar+1 and one of the Ai, i ∈ [r], and edges within a vertex class. Note

that the first option must create a Kr by Proposition 1.3.1, which then extends to a Kr+1

when we include xp. If we add an edge xpy, for some y ∈ Ai, p ∈ [t], i ∈ [r], first notice that

by Part 3 of Proposition 1.3.1 we may choose a copy of Kr−1, say K, in the graph induced

on V (Hp)\Ai. We then form a Kr+1 by observing that xp and y are joined to all of K. If

we add an edge within one of the classes A1, . . . ,Ar, then we find a Kr−1 among Y1, . . . ,Yr

that does not intersect the class that contains the added edge. Clearly this Kr−1 is in the

common neighborhood of both points of the added edge and hence we extend to a Kr+1.

Adding an edge within Ar+1 guarantees a Kr+1 by the construction of G.

By choosing s and t appropriately, we arrive at the following.

Theorem 1.3.4. Let r ≥ 2 be an integer and let ε > 0. Then there exist n0,b0,c0 > 0
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which are constants depending on r and ε such that the following holds. Let n ∈ N and

m > 0 be such that n≥ n0 and ( r−1
r + ε)n≤ m≤ b0n

r+1
r . Then there exists an

(r+1)-saturated graph G on n vertices and e(G)≥ tr(n)−m, with no complete r-partite

subgraph on more than
(

1− c0mn−
r+1

r

)
n vertices.

Proof. Fix any ε > 0 and let c′ =
( r−1

r + ε
)−1

, c = ε/4(r−1). We set s =
⌊
(cn)

1
r

⌋
and

t =
⌊
c′mn−1⌋ in Proposition 1.3.3. Observe that t ≥ 1, and as long as n≥ n0 ≥ 2r

c , then

s≥ 2. It is easy to check that for b0 ≤
(

8c′c
r−1

r r
)−1

the condition n≥ 4sr−1tr+ t holds

for this choice of s and t. Indeed, we have:

4sr−1tr+ t ≤ 8sr−1tr ≤ 8(cn)
r−1

r rc′mn−1 ≤ 8(cn)
r−1

r rc′b0n
r+1

r n−1

= 8c′c
r−1

r rb0n≤ n,

where the penultimate inequality follows from the assumption that m≤ b0n
r+1

r .

Let G be as in the conclusion of Proposition 1.3.3. It follows that

e(G)≥ tr(n)−
r−1

r
tn−4(r−1)tsr ≥ tr(n)−

r−1
r

tn−4(r−1)ctn

≥ tr(n)− tn
(

r−1
r

+4(r−1)c
)
≥ tr(n)−m.

To finish the proof, notice that t ≥ c′mn−1

2 and s≥ (cn)
1
r

2 . Therefore we have

gr(G)≥ 2tsr−1 ≥ 2
c′mn−1

2
(cn)

r−1
r

2r−1 ≥ c′c
r−1

r

2r−1 mn−
1
r .

Hence we have that there is no complete r-partite subgraph on more than (1− c0mn−
r+1

r )n

vertices, where c0 =
c′c

r−1
r

2r−1 .
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1.4 Beyond the threshold: (r+1)-saturated graphs on tr(n)−O(n
r+1

r ) edges

If G is an (r+1)-saturated graph with tr(n)−o(n
r+1

r ) edges, then Theorem 1.1.1 tells us

that G has a complete r-partite subgraph G′ =V1∪·· ·∪Vr on (1−o(1))n vertices. It is

easy to see that no two classes Vi,Vj can differ by more than o(n) vertices (otherwise,

there would be too few edges in G), and so we may remove at most o(n) vertices to make

G′ a r-partite Turán graph. In other words, as we showed in the introduction to this

chapter, there is little quantitative difference between the maximum sized (in terms of

number of vertices) r-partite Turán subgraph and the maximum sized complete r-partite

subgraph in the edge regime tr(n)−o(n
r+1

r ). However, if e(G) = tr(n)−O(n
r+1

r ) we find

it most natural to restrict our attention to balanced complete r-partite subgraphs or,

equivalently, r-partite Turán subgraphs.

Recall that for n,m ∈ N, the quantity g∗r (n,m) is the maximum number vertices that one

must remove from an (r+1)-saturated graph on tr(n)−m edges so that the remaining

graph is an r-partite Turán graph. In this section, we show that, for C sufficiently large

compared to r, we have

g∗r (n,Cn
r+1

r )≥
(

1− c′ log(Cr)
C

)
n,

for an absolute constant c′ and sufficiently large n. In other words, the vertex set of the

largest r-partite Turán subgraph can cover an arbitrarily small fraction of the vertices in

the edge range e(G) = tr(n)−O(n
r+1

r ). We remind the reader of the statement of

Theorem 1.1.3 for convenience.

Theorem 1.4.1. Let r ≥ 2 be an integer and let δ > 0. There exists a constant C =C(r,δ )

such that, for n sufficiently large, there exists an n-vertex (r+1)-saturated graph G that

contains no Tr(δ rn) and e(G)≥ tr(n)−Cn
r+1

r . In terms of the function g∗r , we show that,
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for sufficiently large D > 0, we have

g∗r (n,Dn
r+1

r )≥
(

1− c′ log(Dr)
D

)
n,

for sufficiently large n.

Proof. Fix δ ∈ (0,1) and choose C(δ ) = 26r−1δ−1 log(2e/δ ) = 4rB(δ ), where we have

set B(δ ) = 16r−2δ−1 log(2e/δ ). With foresight, we select s = n
1
r , t = B(δ )n

1
r and note

that for large enough n we have δ

4 n > 2sr−1.

We build our desired graph G in three stages. We start by defining our first stage graph

GI . Let Tr(n− t) be the Turán graph on n− t vertices with vertex classes V1, . . . ,Vr and let

Vr+1 = {x1, . . . ,xt} be a set of vertices disjoint from V (Tr(n− t)). Define

V (GI) =V (Tr(n− t))∪Vr+1 and E(GI) = E(Tr(n− t)). In the second stage, we use a

probabilistic construction to form the graph GII by removing edges between the classes

Vi,Vj, where i, j ∈ [r], and adding edges between the classes Vr+1,Vi, i ∈ [r]. After this

second stage we will almost be finished: GII will be a Kr+1-free graph with many edges;

GII will not contain a Tr(δ rn); and adding non-saturating edges to GII will not ruin these

properties. In the final stage we augment GII by choosing an arbitrary maximal Kr+1-free

graph which contains GII . This will serve as our final graph G.

We now prepare for the second stage. For each i ∈ [r], fix a vertex vi ∈Vi and then

define V ′i =Vi \{vi}. The edges incident to the vertices v1, . . . ,vr will go unaltered

throughout this construction. This is to ensure that the addition of any edge within any of

the classes V1, . . . ,Vr creates a Kr+1 with v1, . . . ,vr, even after the edge deletions in stage

II. We now define an auxiliary graph H on V ′1, . . . ,V
′
r which records edges that we shall

delete from Tr(n− t) to form GII .

For p ∈ [t], let H p be a copy of the r-partite graph Gr,s, as defined in Section 1.3,

where we think of the vertex sets of the H p as being disjoint and H p
1 ,H

p
2 as being the two
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largest vertex classes (each of order 2sr−1) in the vertex partition H p
1 , . . . ,H

p
r .

We shall randomly embed each H p into V ′1∪·· ·∪V ′r in a manner that respects the

partition V ′1, . . . ,V
′
r . To this end, we define a probability space on tuples of injections

( f1, . . . , ft) with fp : V (H p)→
⋃r

i=1V ′i . We choose each fp so that { fp(H
p
i )}p are (fixed)

vertex disjoint sets for each 3≤ i≤ r, while for i ∈ {1,2}, fp(H
p
i ) is a uniform random

subset of V ′i of size |H p
i | and each { fp(H

p
i ) : i ∈ {1,2}, p ∈ [t]} is chosen independently.

Note that since |H p
3 |, . . . , |H

p
r | ≤ sr−2 (by Part 8 of Proposition 1.3.1) it is indeed possible

to request that |H1
i |, . . . , |Ht

i | are disjoint subsets of V ′i , as

sr−2t = B(δ )n1−1/r < (n−1− t)/r, for large enough n.

Define the graph H( f1, . . . , ft) to have vertex set V ′1∪·· ·∪V ′r and edge set

E(H( f1, . . . , ft)) =
⋃

p∈[t]
{xy : f−1

p (x) f−1
p (y) ∈ E(H p)}.

We define G( f1, . . . , ft) to be a graph on the same vertex set as GI and with edge set

E(G( f1, . . . , ft)) = {xpy : y ∈ fp(H p), p ∈ [t]}∪E(Tr(n− t))\E(H( f1, . . . , ft)).

In what follows, we show that the probability of making a “good” choice for G( f1, . . . , ft)

is non-zero.

Claim 1.4.2. Let f1, . . . , ft be any functions as described above. The graph G( f1, . . . , ft) is

Kr+1-free.

Proof of Claim 1.4.2: If a copy of Kr+1 is contained in G( f1, . . . , ft), it must have

exactly one vertex in each class V1, . . . ,Vr+1. Hence there must exist p ∈ [t] so that

G( f1, . . . , ft) induced on fp(V (H p)) contains a copy of Kr. This induced graph is

contained in a copy of G̃r,s (as in Proposition 1.3.1), which is Kr-free, a contradiction.

We now show that every “missing” edge between V1,V2 are saturating edges. This is
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important as we need to ensure that the edges we remove in stage II are not just added

back in, in the final stage.

Claim 1.4.3. Let f1, . . . , ft be functions as described above. Adding any edge, which is not

already present, between the classes V1,V2 in G( f1, . . . , ft) creates a Kr+1.

Proof of Claim 1.4.3: Suppose that e 6∈ EG( f1,..., ft)(V1,V2). This means that

e ∈ EH( f1,..., ft)(V1,V2) and thus e ∈ E fp(H p)(V1,V2), for some p ∈ [t]. Every such edge in

fp(H p), if deleted from H p, is contained in an independent set I with exactly one vertex in

each part V1, . . . ,Vr; this holds by Part 4 in Proposition 1.3.1. Since each of the H1, . . . ,Ht

are disjoint on V3, . . . ,Vr, I is a set containing only e, in H. This is the same as saying that

e is a r-saturating edge in G( f1, . . . , ft) in the graph induced on fp(V (H p)). Since the

vertex xp ∈Vr+1 joins to all of fp(V (H p)), e is (r+1)-saturating in G( f1, . . . , ft).

The following claim will help us show that we cannot find a large r-partite Turán

graph in our final graph.

Claim 1.4.4. The probability that G( f1, . . . , ft) contains a complete bipartite graph

Kδn/2,δn/2 between V1,V2 is less than 1/2.

Proof of Claim 1.4.4: Let E(A,B) be the “bad” event that the pair A⊂V ′1, B⊂V ′2 have

no edge of H( f1, . . . , ft) between them. We define the random variable X to be the number

of pairs of subsets A⊂V ′1, B⊂V ′2 of size δn/2 each, that have no edge of H( f1, . . . , ft)

between them.

To estimate the expectation of X we fix two sets A⊆V ′1, B⊆V ′2 of size δn/2, and let

Ep = Ep(A,B), for p ∈ [t], denote the event that fp(H p) has no edge between A,B. By

independence, P(E(A,B)) = ∏pP(Ep). We fix p ∈ [t] and look to bound P(Ep). We

explicitly express the two largest vertex classes of H p, H p
1 = {y1, . . . ,y2sr−1}, and

H p
2 = {z1, . . . ,z2sr−1}, where yizi, i ∈ [2sr−1], are the edges of a perfect matching in H p

between the two largest classes (which is guaranteed by Proposition 1.3.1). For ease of
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notation, let f = fp and let us say that a pair f (yi), f (zi) hits A,B if f (yi) ∈ A and

f (zi) ∈ B. We will say that f (yi), f (zi) misses the pair, otherwise. We define Ep(i) to be

the event that f (yi), f (zi) misses A,B.

Note that P(Ep) is at most

P

2sr−1⋂
i=1

Ep(i)

=
2sr−1

∏
i=1

P(Ep(i)|Ep(i−1), . . . ,Ep(1)) . (1.6)

So to bound P(Ep), we need only to bound the terms in the above product. This is easily

done as the conditional probabilities P(Ep(i)|Ep(i−1), . . . ,Ep(1)) do not differ too much

from the unconditioned probabilities P(Ep(i)). To this end, note that Ep(1), . . . ,Ep(i−1)

depend only on the choices of Yi−1 = { f (y1), . . . , f (yi−1)},Zi−1 = { f (z1), . . . , f (zi−1)}.

Thus, we have

P(Ep(i)|Ep(i−1), . . . ,Ep(1))≤ max
Yi−1,Zi−1

P(Ep(i)|Yi−1,Zi−1)

= 1− min
Yi−1,Zi−1

P( f (yi), f (zi) hits A,B|Yi−1,Zi−1)

≤ 1− min
Yi−1,Zi−1

|A\Yi−1||B\Zi−1|
(|V ′1|− (i−1))2

≤ 1−
(

r(δn/2−2sr−1)

n

)2

≤ exp(−δ
2r2/16),

where the third inequality follows by recalling that |V ′1|, |V ′2| ≤ n/r and the last

inequality follows by recalling that δ

4 n > 2sr−1. So, from (1.6), we have

P(Ep)≤ exp(−r2
δ

2sr−1/8),
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for each p ∈ [t], and therefore

P(E(A,B)) =
t

∏
p=1

P(Ep)≤ exp
(
−r2δ 2sr−1t

8

)
.

So, by linearity of expectation, we have

EX ≤
(

n
δn/2

)2

exp
(
−r2δ 2sr−1t

8

)
.

Using the standard inequality
(n

k

)
≤
(ne

k

)k, we have

EX ≤ (2e/δ )δn exp
(
−r2δ 2sr−1t

8

)
= exp

(
δn log(2e/δ )− r2δ 2sr−1t

8

)
.

Recalling our choices of s = n1/r and t = B(δ )n1/r = 16r−2δ−1 log(2e/δ )n1/r, we have

EX < 1/2 for sufficiently large n. This completes the proof of Claim 1.4.4.

We now define GII to be a graph of the form G( f1, . . . , ft) for which there are no

copies of Kδn/2,δn/2 between vertex classes V ′1,V
′
2. Such a graph G( f1, . . . , ft) exists with

non-zero probability, by Claim 1.4.4.

To define our final graph G, we choose a maximal Kr+1-free graph which contains GII .

Since GII is Kr+1-free, G is also Kr+1-free and, trivially, G is (r+1)-saturated. Using

inequalities tr(n− t)≥ tr(n)− tn and e(Gr,s)≤ 4(r−1)sr, we have that

e(G)≥ e(GII)

≥ tr(n)− tn− te(Gr,s)

≥ tr(n)−B(δ )n
r+1

r −4(r−1)srt

≥ tr(n)−4rB(δ )n
r+1

r = tr(n)−C(r,δ )n
r+1

r .

We now observe that G cannot contain a copy T of Tr(δ rn). Suppose, towards a
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contradiction, that G contains T . First note that G−Vr+1 is r-partite with vertex partition

V1, . . . ,Vr. This is because the addition of any pair e = uv to GII , within some Vi, would

form a copy of Kr+1 on vertex set {u,v}∪ ({v1, . . . ,vr}−{vi}). Therefore G−Vr+1 is

r-partite. This means that G must contain a copy K of Kδn/2,δn/2 between V ′1,V
′
2, as

|T ∩Vr+1| ≤ |Vr+1|= t < δn/4 and therefore |T ∩ (V1∪·· ·∪Vr)| ≥ δ rn/2. Now since all

non-edges between V1,V2 are (r+1)-saturating in GII (Claim 1.4.3), we have that no

edges were added between V1,V2 in forming G. In other words, GII[V1,V2] = G[V1,V2].

This implies that K ∼= Kδn/2,δn/2 is also a subgraph of GII , which contradicts Claim 1.4.4.

This completes the proof of Theorem 1.1.3.

1.5 Final remarks and open problems

Recall that gr(n,m) is defined to be the maximum number of vertices that one is required

to remove from an n-vertex, (r+1)-saturated graph with at least tr(n)−m edges, so that

the remaining graph is complete r-partite. Combining Theorems 1.1.2 and 1.3.4 we see

that for any ε > 0, if n≥ n0(r,ε) and ( r−1
r + ε)n≤ m≤ n

r+1
r one has

cr,εmn−1/r ≤ gr(n,m)≤Crmn−1/r,

where cr,ε depends on r,ε , and Cr depends only on r. However, our construction does not

work if n/r ≤ m≤ r−1
r n (note that when m < n/r the problem becomes trivial, since

Brouwer’s theorem (Theorem 1.2.3) implies that the graph must be r-partite, in which

case, by maximality, must be complete r-partite). We leave the determination of gr(n,m)

in this range of m as an open problem.

Problem 1.5.1. Determine gr(n,m) for n/r ≤ m≤ r−1
r n.

We remark that when r = 2 these ranges coincide; the lower bound coming from our
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construction in Theorem 1.3.4 by plugging in r = 2 yields that for any ε > 0

g2(n,(1/2+ ε)n)≥ 1
4
(εn)1/2.

However, we can do slightly better with the following modified construction, G0.

Consider a copy of the Turán graph T2(n−1) with vertex partition V1∪V2 and let

V (G0) =V1∪V2∪{u} for a vertex u /∈V1∪V2. Let X ⊂V1,Y ⊂V2 with

|X |= (εn)1/2 = |Y | and remove from T2(n−1) all edges between X and Y . Finally, join u

to every vertex in X ∪Y , but to no other vertices. It is easy to see that G0 is

triangle-saturated and has at least t2(n)− (1/2+ ε)n edges. On the other hand, the largest

complete bipartite subgraph is on n− (εn)1/2 vertices, showing that

g2(n,(1/2+ ε)n)≥ (εn)1/2.

Unfortunately, we do not see how to extend this construction to larger values of r.

It is also natural to consider the largest k such that the Turán subgraph Tr(k) must

appear in every (r+1)-saturated graph G, with e(G)≥ tr(n)−m edges, where m∼Cn
r+1

r .

This amounts to the following problem regarding the function g∗r (n,m), the “balanced”

analogue of gr(n,m).

Problem 1.5.2. Determine g∗r (n,Cn
r+1

r ), for each C ∈ R+ and sufficiently large n.

Recall that Theorem 1.1.3 shows that g∗r (n,Cn
r+1

r )≥
(

1− c′ log(Cr)
C

)
n, for C large

(depending on r) and fixed, and n→ ∞, but we have no non-trivial upper bounds for

g∗r (n,Cn
r+1

r ), when C is large.
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CHAPTER 2

THE HOMOMORPHISM THRESHOLD OF {C3,C5}-FREE GRAPHS

2.1 Introduction

In this chapter, we are interested in the structure of graphs of high minimum degree which

forbid specific subgraphs. For a fixed graph H, a graph is said to be H-free if it does not

contain H as a subgraph. Let Forb(H) denote the class of H-free graphs, and let Forbn(H)

denote the class of n-vertex graphs in Forb(H). Furthermore, let Forb(H,d) denote the

class of H-free graphs G with minimum degree at least d|V (G)|. Analogous definitions

hold if we replace H by some family H of graphs. Finally, we say that a graph G is

homomorphic to a graph H if there exists a map f : V (G)→V (H) such that

f (u) f (v) ∈ E(H) whenever uv ∈ E(G). For example, G is homomorphic to Kr if and only

if χ(G)≤ r

A classical result of Andrásfai, Erdős and Sós [9] (mentioned in the previous chapter)

states that if G is a Kr+1-free graph on n vertices with minimum degree δ (G)> 3r−4
3r−1n,

then G is r-colorable. This result can be viewed as a significant strengthening of the

following fact, which is a consequence of Turán’s theorem: the minimum degree of a

Kr+1-free graph on n vertices is at most (1−1/r)n. Note also here that the chromatic

number χ(G) of G is bounded by a constant independent of n. In general, one may ask

whether or not this behavior persists when the minimum degree condition is weakened.

Along these lines, Häggkvist [33] showed that any n-vertex triangle-free graph of

minimum degree greater than 3n/8 is homomorphic to a 5-cycle, and accordingly has

chromatic number at most 3. Note that this is indeed an extension of the

Andrásfai-Erdős-Sós result when the minimum degree condition is weakened, since a

balanced blow-up of a 5-cycle exhibits the tightness of that result. Jin [38] took up the

investigation and significantly extended the work of Häggkvist: he proved that for all
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1≤ d ≤ 9, any n-vertex triangle-free graph with minimum degree larger than d+1
3d+2n is

homomorphic to the graph F2
d , which is obtained by adding all chords joining vertices at

distances 1(mod3) along a cycle of length 3d−1. Observe that F2
d is triangle-free and

3-colorable for every d. The graphs F2
d are a special case of a larger family of graphs, Fk

d ,

which we shall discuss shortly. We note that Jin’s result [38] is best possible, in the sense

that such a statement does not hold for d = 10. Indeed, by taking a suitably chosen

unbalanced blow-up of the Grötzsch graph (see Figure 2.1) one can obtain a triangle-free

graph on n vertices and minimum degree b10n/29c which is not 3-colorable, so in

particular it is not homomorphic to F2
d for any d. This blow-up is defined as follows. Give

weight 3t to the vertices along the outer 5-cycle of the Grötzsch graph, weight 4t to the

central vertex, and weight 2t to the remaining 5 vertices. Blow-up each vertex proportional

to its weight: we obtain a graph on 29t vertices which is 10t-regular, as required.

Building on this work, Chen, Jin, and Koh [18] showed, in particular, that any n-vertex

3-colorable triangle-free graph G with δ (G)> n/3 is homomorphic to F2
d , for some d.

Again, the Grötzsch graph shows that the assumption that the graph is 3-colorable is

necessary.

Figure 2.1: The Grötzsch graph

In general, one may ask for the smallest minimum degree condition we may impose

on an H-free graph which guarantees that it has bounded chromatic number. To be

precise, this prompts us to define the chromatic threshold δχ(H) of a graph H:

δχ(H) = inf{d : there exists C =C(H,d) such that if G ∈ Forb(H,d), then χ(G)≤C}.
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In other words, δχ(H) is the infimum over all d ∈ [0,1] such that every H-free graph on n

vertices and with minimum degree at least dn has bounded chromatic number

(independent of n). This definition was implicit in the works of Andrásfai [7] and Erdős

and Simonovits [25], and was first explicitly formulated by Łuczak and Thomassé [49].

For every ε > 0, Hajnal (appearing in [25]) constructed graphs in Forb(K3,1/3− ε)

with arbitrarily large chromatic number, thereby proving the bound δχ(K3)≥ 1/3.

Thomassen [65] thereafter established the matching upper bound, showing that

δχ(K3) = 1/3. In fact, Brandt and Thomassé [16] strengthened this by showing that

triangle-free graphs of minimum degree larger than n/3 have chromatic number at most

four, answering a question of Erdős and Simonovits [25]. Extensions of these results were

obtained by Goddard and Lyle [32] and Nikiforov [54], who showed that δχ(Kr) =
2r−5
2r−3 .

More precisely, they showed that any Kr-free graph with minimum degree larger than

2r−5
2r−3 |V (G)| has χ(G)≤ r+1. Finally, building off of ideas of Łuczak and Thomassé [49]

and Lyle[50], Allen, Böttcher, Griffiths, Kohayakawa and Morris [4] determined the value

of δχ(H) for every graph H with χ(H)> 2.

Note that the results of Häggkvist [33], Jin [38], and Chen, Jin, and Koh [18]

mentioned earlier not only show that triangle-free graphs of large enough minimum

degree have bounded chromatic number, but that they are actually homomorphic to some

specific 3-colorable triangle-free graph. One may ask then, with respect to the above

discussion, whether we can replace the property of having bounded chromatic number

with the property of admitting a homomorphism to a graph of bounded order with

additional properties. This question was posed by Thomassen [65] in the specific case of

triangle-free graphs, and motivated Oberkampf and Schacht [57] to introduce the

homomorphism threshold δhom(H) of a graph H:

δhom(H) = inf{d : ∃C =C(H,d) s.t. ∀G ∈ Forb(H,d)

∃G′ ∈ ForbC(H) s.t. G is homomorphic to G′}.

37



In words, δhom(H) is the infimum over all d ∈ [0,1] such that every H-free graph with

n vertices and minimum degree at least dn is homomorphic to an H-free graph of bounded

order (independent of n). Note that the definition of δhom(H) extends naturally if we

replace H by a family H of graphs.

Łuczak [48] proved that δhom(K3)≤ 1/3. Note that if G is homomorphic to G′, then

χ(G)≤ |V (G′)|. Accordingly, we always have δhom(H)≥ δχ(H), and so, since

δχ(K3) = 1/3, it follows that δhom(K3) = 1/3. The earlier mentioned papers of Goddard

and Lyle [32] and Nikiforov [54] actually provide a structural characterization of Kr-free

graphs with δ (G)> 2r−5
2r−3 |V (G)| (for r ≥ 4). In particular, we know that

δhom(Kr) = δχ(Kr) =
2r−5
2r−3 .

Aside from these results, not much is known in general about the homomorphism

threshold. Note that if H contains a bipartite graph, then δhom(H ) = 0. Thus, it suffices

to determine the homomorphism threshold for families which do not contain any bipartite

graphs. Let ex(n,H ) denote the Turán function of the family H , i.e., ex(n,H ) is the

maximum number of edges in an H -free graph on n vertices. Further, let

π(H ) = limn→∞
ex(n,H )

(n
2)

denote the Turán density of H . Then it is easy to see that

δhom(H )≤ π(H ). Summarizing, we have the general bounds

δχ(H )≤ δhom(H )≤ π(H ).

In studying the homomorphism threshold, we are looking at the global structural

properties of graphs in Forb(H ,d) as d ranges from 0 to π(H ). Moreover, as d ranges

from 0 to π(H ) we expect this to place more restrictions on the possible homomorphism

types, as this restricts membership in Forb(H ,d) (all H -free graphs belong to

Forb(H ,0)).

Oberkampf and Schacht [57] gave a new proof of the fact that δhom(Kr) =
2r−5
2r−3

avoiding the Regularity Lemma (which was used in Łuczak’s proof), and asked for the
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determination of the homomorphism threshold of the two simplest yet unknown families

of graphs: the odd cycle, δhom(C2k−1), and graphs of odd-girth 2k+1,

δhom({C3, . . . ,C2k−1}) for k ≥ 3. As our first main result, we determine the value of the

second of these two parameters in the case k = 3.

Theorem 2.1.1. The homomorphism threshold of {C3,C5} is 1/5.

In other words, Theorem 2.1.1 states that, for every ε > 0, if G is a {C3,C5}-free graph

on n vertices and minimum degree at least (1/5+ ε)n, then G is homomorphic to a

{C3,C5}-free graph of order at most C, where C depends on ε but not on n. Moreover,

there is a sequence of graphs (Gn)n∈N where Gn has order n, is {C3,C5}-free, has

minimum degree approximately n/5, but does not admit a homomorphism to any

{C3,C5}-free graph of bounded order. We also establish an upper bound on δhom(C5).

This is a consequence of Theorem 2.1.1, since C5-free graphs of large minimum degree

end up being triangle-free as well. In particular, we have the following.

Corollary 2.1.2. The homomorphism threshold of C5 is at most 1/5.

By a result of Thomassen [66], we know that δχ({C3,C5}) = 0. Therefore,

Theorem 2.1.1 gives the first example of a family of graphs for which the chromatic

threshold and the homomorphism threshold differ. We do not know if there is a single

graph for which these two parameters differ.

We are able to say much more about the structure of {C3,C5}-free graphs with n

vertices and minimum degree larger than n/5. First we need to define a family of graphs,

sometimes known as generalized Andrásfai graphs. For k ≥ 2, let C2k−1 denote the family

of odd-cycles {C3, . . . ,C2k−1}. For integers d ≥ 1 and k ≥ 2, denote by Fk
d the graph

obtained from a ((2k−1)(d−1)+2)-cycle (an edge, when d = 1) by adding all chords

joining vertices at distances clockwise along the cycle of the form j(2k−1)+1 for

j = 1, . . . ,d−2 (with the convention of adding no chords when d = 2). Equivalently, Fk
d is
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the Cayley graph on Z(2k−1)(d−1)+2 with generating set C consisting of all elements in

Z(2k−1)(d−1)+2 congruent to 1 modulo 2k−1. In other words, we have

C = { j(2k−1)+1 : j = 0,1, . . . ,d−1},

and it is easy to see that C is an inverse closed subset of Z(2k−1)(d−1)+2 so that this Cayley

graph is indeed undirected.

We can also give an alternative description of these graphs as the complement of the

(k−1)(d−1)-th power of a cycle of length (2k−1)(d−1)+2 (recall that for an integer

m≥ 1, the m-th power Gm of G is the graph on vertex set V (G) where we join all pairs of

vertices which are distance at most m in G). However, we shall not utilize this description

in the sequel.

It is not difficult to check that Fk
d is d-regular, maximal C2k−1-free (i.e., has odd-girth

2k+1) and 3-colorable. Let us summarize some facts about these graphs in the following

proposition.

Proposition 2.1.3. Let d ≥ 1,k ≥ 2 be integers. The following properties of Fk
d hold:

1. Fk
d is d-regular.

2. Fk
d is a subgraph of Fk

d+1.

3. χ(Fk
d ) = 3 for all d ≥ 2.

4. Fk
d is C2k−1-free.

5. Every two distinct vertices in Fk
d (d ≥ 2) are contained in a (2k+1)-cycle.

Therefore, for any two distinct vertices there is a path of length 1,3, . . . , or 2k−1

between them.

Proof. The first item above is immediate from the definition, so let us turn to the second

item. Clearly it is true for d = 1, and if d ≥ 2, then removing any consecutive 2k−1
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vertices from the cycle of Fk
d+1 results in a copy of Fk

d . For the third item, we can write

V (Fk
d ) = A∪B∪C, where A consists of all residues 0,3,6, . . . modulo (2k−1), B consists

of all residues 1,4,7, . . . modulo (2k−1), and C consists of all residues 2,5,8, . . . modulo

(2k−1). If x,y ∈ A, then x−y is a multiple of 3 and at most 2k−1, hence is not congruent

to 1 modulo (2k−1). The same holds for B and C. So each of A, B, and C are independent

sets giving us our desired 3-coloring. Of course, we cannot do better when d ≥ 2, since Fk
d

contains an odd-cycle.

The fourth item is clearly true for d = 1,2, so we may assume that d ≥ 3. Let us view

Fk
d as a Cayley graph with vertex set Z(2k−1)(d−1)+2, and suppose that there is an odd

cycle (a0 . . .al−1) of length l = 2 j−1 for 2≤ j ≤ k. Note that the sum (indices modulo l)

∑
l−1
i=0(ai+1−ai) is 0 in Z(2k−1)(d−1)+2; thus there is an integer m such that

l−1

∑
i=0

(ai+1−ai) = ((2k−1)(d−1)+2)m. (2.1)

On the other hand, each term ci := ai+1−ai in that sum is congruent to 1 mod 2k−1, and

so reducing the above equation mod 2k−1 yields 2m = l (mod 2k−1). This implies that

m≥ k+ j−1≥ l. Using this bound, Equation (2.1), and the fact that each ci has the form

1+(2k−1)bi for some bi ∈ {0, . . . ,d−1}, we get

l +(2k−1)
l−1

∑
i=0

bi =
l−1

∑
i=0

ci ≥ (2k−1)(d−1)l +2l.

Since bi ≤ d−1 for each i we have (2k−1)(d−1)l ≥ (2k−1)(d−1)l + l, a

contradiction.

Finally, let us prove the last item in the proposition. We prove this by induction on d.

Note that this easily holds for d = 2, since Fk
2 by definition is a (2k+1)-cycle. Now, given

d ≥ 3, let us suppose the result holds for smaller values of d. Let x,y be two distinct

vertices. If these vertices are at distance at most 2k clockwise along the cycle, then they
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are contained in a C2k+1, so we may suppose otherwise. Thus there exists an interval I of

length 2k−1 separating x and y. Removing this interval creates a copy of Fk
d−1 containing

x and y, so by induction we obtain that x and y are contained in a cycle of length 2k+1.

In the odd-girth 7 case we have k = 3 and we shall write Fd instead of F3
d for

simplicity. In particular, F1 is an edge, F2 is a C7 (a cycle of length 7) and F3 is the graph

obtained by adding all diagonals to a C12 (by a diagonal in an even cycle C2r, r ≥ 2, we

mean an edge joining vertices at distance r along the cycle). This graph is also known as

the Möbius ladder on 12 vertices (see Figure 2.2).

Figure 2.2: F3, the Möbius ladder

As our second main result, we determine the structure of {C3,C5}-free graphs on n

vertices with minimum degree larger than n/5, thus answering a question of Messuti and

Schacht [53].

Theorem 2.1.4. Let G be a {C3,C5}-free graph on n vertices with δ (G)> n/5. Then G is

homomorphic to Fd , for some d.

As a consequence of Theorem 2.1.4, we are able to obtain the following.

Corollary 2.1.5. Let G be a {C3,C5}-free graph on n vertices with δ (G)> d
5d−3n. Then G

is homomorphic to Fd−1.
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As Fd is not homomorphic to Fd−1, a suitable blow-up of Fd shows that this result is

tight. For {C3,C5}-free graphs and graphs of higher odd-girth, similar results have been

obtained before. Häggkvist and Jin [34] proved that any n-vertex {C3,C5}-free graph with

minimum degree larger than n/4 is homomorphic to C7, which is a special case of

Corollary 2.1.5 when d = 3.

2.1.1 Organization and Notation

The remainder of this chapter is organized as follows. In Section 2.2 we shall provide an

outline of the technical results needed to prove our main theorem. Many of these state that

certain subgraphs cannot appear in maximal {C3,C5}-free graphs of minimum degree

larger than n/5. In the next three sections (Section 2.3 to Section 2.5) we shall prove each

of these technical results. In Section 2.6, we deduce our main theorem, Theorem 2.1.4.

Finally, Section 2.7 includes our results concerning homomorphism thresholds,

Theorem 2.1.1 and Corollary 2.1.2.

Our notation is standard. In particular, for a graph G, we use |V (G)| to denote the

number of vertices of G, V (G) denotes the vertex set, E(G) the edge set, and δ (G) denotes

the minimum degree. For a vertex v, NG(v) denotes the neighborhood of v, and for a

subset X ⊆V (G), NG(v,X) denotes the neighborhood of v in X , i.e. NG(v,X) = NG(v)∩X .

We shall often omit the use of the subscript ‘G’. If X ,Y ⊆V (G), then we say an edge e is

an X−Y edge if one endpoint of e is in X , the other in Y . If X={x}, then we simply say e

is an x−Y edge. We denote by (v1 . . .v`) the cycle on vertices v1, . . .v` taken in this order.

Similarly, we denote by v0 . . .v` the path on vertices v0, . . . ,v` taken in this order. A cycle

(path) with ` edges is an `-cycle (`-path). For any path P we shall let l(P) denote the

length of P (similarly, for any cycle); moreover, if u,v ∈V (P), then uPv denotes the

subpath of P with endpoints u and v. If C is a cycle in G and u,v ∈V (C), then uCv denotes

the shortest path along C joining u,v. For a path P = ax1 . . .xtb between a and b, the

interior of the path, denoted int(P), is the subpath x1 . . .xt .
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2.2 Overview

In this section we provide a tour through the technical results needed to establish our main

theorem. Note that in proving Theorem 2.1.4 we may assume our graph is maximal

{C3,C5}-free. Accordingly, the following results concern maximal {C3,C5}-free graphs.

The main tool needed for the proof of Theorem 2.1.4 is the following result.

Theorem 2.2.1. Let G be a maximal {C3,C5}-free graph on n vertices with δ (G)> n/5.

Then every vertex in G has a neighbor in every 7-cycle in G.

We remark that Jin [39] proved the analogous theorem for 5-cycles in triangle-free

graphs of large enough minimum degree. In order to establish Theorem 2.2.1 we shall

need a sequence of lemmas which show that certain subgraphs cannot appear in maximal

{C3,C5}-free graphs of large minimum degree. The first of these lemmas, which shows

that {C3,C5}-free graphs with large minimum degree do not have induced 6-cycles, proves

very useful, and we shall use it throughout the paper. Brandt and Ribe-Baumann [15]

mention it without proof. In fact, we are able to prove that induced 6-cycles do not appear

in dense graphs of given odd-girth, which are edge-maximal with respect to this property.

Lemma 2.2.2. Let k ≥ 3 be an integer and suppose G is an n-vertex maximal odd-girth

2k+1 graph with δ (G)> n
2k−1 . Then G contains no induced 6-cycle.

We believe that this result may of independent interest, as it may be useful for tackling

further structural problems for dense graphs of given odd-girth. In particular, the

triangle-free case admits 4-colorable examples, which contain induced 6-cycles. We

believe that Lemma 2.2.2 is evidence that all odd-girth 2k+1 (k ≥ 3) graphs with

minimum degree larger than n
2k−1 are, in fact, 3-colorable.

We shall also need the fact that a ‘partial’ Möbius ladder cannot appear as a subgraph

in the graphs we consider. More precisely, we need the following lemma.
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Lemma 2.2.3. Let G be a maximal {C3,C5}-free graph on n vertices with δ (G)> n/5. If

(x1 . . .x12) is a 12-cycle with two consecutive diagonals x1x7 and x2x8 present. Then either

(x1 . . .x12) or (x2x3 . . .x7x1x12 . . .x8) induces a Möbius ladder.

We note, and prove, the following useful corollary of Lemma 2.2.3.

Corollary 2.2.4. Let G be a maximal {C3,C5}-free graph on n vertices with δ (G)> n/5.

If u is a vertex with no neighbors in a 7-cycle C, then u has no neighbor with two

neighbors in C.

Proof. Suppose that C = (x1 . . .x7) and u has no neighbors in C, but a neighbor v of u has

two neighbors in C. Say, v is adjacent to x2 and x7 (see Proposition 2.2.6 below).

x6

x1

x4

x5

x3 x2

x7

y2y3

v u

y1

Figure 2.3: Creating a Möbius Ladder

Since u is not adjacent to x1 and G is maximal {C3,C5}-free, there must be a path of

length 2 or 4 between them; but a path of length 2 is impossible (it would complete the

path uvx2x1 to a 5-cycle), so there is a 4-path uy1y2y3x1. One may check that none of

y1,y2,y3 is equal to one of the vertices of C or to v (see Figure 2.3). But then

(x1 . . .x7vuy1y2y3) is a 12-cycle with two consecutive diagonals x1x7 and x2v. It follows

from Lemma 2.2.3 that all diagonals in the cycle must be present (or we need to consider

the 12-cycle (x2 . . .x7x1y3y2y1uv) with diagonals x1x2 and x7v). In particular, u has a

neighbor in C, a contradiction.

Finally, in order to prove Theorem 2.2.1, we establish the following, which is the last

of our results regarding forbidden subgraphs in maximal {C3,C5}-free graphs of large
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minimum degree.

Lemma 2.2.5. Let G be a maximal {C3,C5}-free graph on n vertices with δ (G)> n/5.

Then G does not contain, as an induced graph, the graph obtained by two 7-cycles whose

intersection is a path of length 3 (see Figure 2.5).

Before proceeding to the proofs of the above forbidden subgraph lemmas, we shall

show how to prove Theorem 2.2.1 using Lemma 2.2.2, Lemma 2.2.3, and Lemma 2.2.5.

The proofs of these lemmas shall be deferred to Sections 2.3, 2.4, and 2.5, respectively. In

order to aid in their proofs, we introduce the following definition.

Definition. A subgraph H of a graph G is called well-behaved (in G) if for every vertex u

in G, there is a vertex v in H, such that NG(u,H)⊆ NH(v).

In particular, this implies that G[H ∪{u}] is homomorphic to H for every u ∈V (G).

Many of the subgraphs we consider are actually well-behaved (in their respective host

graphs). For example, we note the following useful fact.

Proposition 2.2.6. Let k ≥ 2 be an integer and let G be an odd-girth 2k+1 graph. Then

C2k+1 is well-behaved in G.

Proof. Let k ≥ 2 and let C = (x1 . . .x2k+1) be a (2k+1)-cycle in G, labelled

counterclockwise. Suppose without loss of generality that w ∈V (G)\V (C) is joined to

x1. We claim that either N(w,C)⊆ NC(x2) or N(w,C)⊆ NC(x2k+1). Let w′ be another

neighbor of w in C and suppose to the contrary that w′ 6= x3,x2k. Let P denote the path

x1x2x3 . . .w′ and P′ denote the path x1x2k+1x2k . . .w′. Now, note that

l(P)≤ (2k+1)−3 = 2k−2 and similarly l(P′)≤ 2k−2. Moreover, one of P,P′ must be

odd, say P. But then the cycle (wx1Pw′) is odd and has length at most 2k−1, a

contradiction.

We need the following observation before proving Theorem 2.2.1.
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Observation 2.2.7. Let G be a maximal {C3,C5}-free graph on n vertices with

δ (G)> n/5. Suppose that u has no neighbors in a 7-cycle C. Then u has a common

neighbor with at most one of the vertices in C.

Proof. Suppose that u has no neighbor in the cycle C = (x1 . . .x7). Furthermore, suppose

that u has a common neighbor v with x1. By symmetry, it suffices to show that u has no

common neighbors with x2, x3 or x4. It easily follows that u and x2 have no common

neighbors (otherwise, a cycle of length 3 or 5 is formed). Suppose that u and x3 have a

common neighbor w. Consider the 6-cycle (vuwx3x2x1). Recall that G has no induced

6-cycles; thus one of the pairs ux2,vx3,wx1 is an edge in G. But ux2 is not an edge, by the

assumption that u has no neighbor in C, and if one of vx3 and wx1 is an edge, a

contradiction to Corollary 2.2.4 is reached. Finally, if u and x4 have a common neighbor

w, then the set {u,v,w,x1, . . . ,x7} induces a graph that consists of two 7-cycles whose

intersection is a path of length 3, contradicting Lemma 2.2.5.

Proof of Theorem 2.2.1. Suppose that the theorem is false and choose a vertex u and a

7-cycle C which minimise the distance between u and C such that u has no neighbor in C.

Since G must be connected, it easily follows that there is a path of length two between u

and C. Therefore, we may assume without loss of generality that u has no neighbors in the

7-cycle C = (x1 . . .x7) and v is a common neighbor of u and x1. Since u is not joined to x2

and G is maximal {C3,C5}-free, there is a 4-path uy1y2y3x2 between u and x2 (a 2-path

would create a 5-cycle). We note that y1 cannot be joined to x1, otherwise a 5-cycle is

formed, so in particular y1 6= v. Thus, by Observation 2.2.7, y1 has no neighbors in C. We

note that no two of the four vertices {u,x2,x3,x6} have a common neighbor; this follows

from Observation 2.2.7 and the assumption that G is {C3,C5}-free. It follows from the

minimum degree condition that y1 has a common neighbor with one of u,x2,x3,x6. But y1

does not have a common neighbor with either u or x2 (otherwise, a cycle of length 3 or 5 if

formed). Thus y1 has a common neighbor with either x3 or x6. Assume that y1 has a
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common neighbor with x3 (with x6). Then, by Observation 2.2.7, y1 has no common

neighbors with any other vertex in C. It follows that no two of the vertices in

{u,y1,x2,x5,x6} (in {u,y1,x3,x4,x7}) have a common neighbor, a contradiction to the

minimum degree condition.

In the next three sections we shall prove Lemma 2.2.2, Lemma 2.2.3, and

Lemma 2.2.5. The general strategy is the following. We want to show that some graph F

cannot appear in a maximal {C3,C5}-free graph G of large minimum degree. If F is a

subgraph of G, and if every vertex has a ‘small’ number of neighbors in F , then double

counting the edges between V (F) and V (G)\V (F) will produce a contradiction with the

minimum degree condition. Often the original target graph F does not satisfy this goal,

and we shall need to pass to some suitable subgraph of F which meets our needs. This

requires detailed analysis of the possible neighborhoods of vertices in F (or some

subgraph of F).

2.3 No induced 6-cycles

Brandt and Ribe-Baumann [15] stated that maximal {C3,C5}-free graphs of high

minimum degree forbid induced 6-cycles. However, they did not provide a proof. In this

section, we prove that induced 6-cycles do not appear in dense graphs of any given

odd-girth which is at least 7. The proof of Lemma 2.2.2 is broken up into the next three

subsections. A brief sketch of the proof goes as follows. Assuming there is an induced C6

in G, we use the edge-maximality of G to conclude that there must exist three paths

joining the diametrically opposite pairs of vertices in the 6-cycle. We shall argue that each

of these paths must have length precisely 2k−2, and are pairwise vertex disjoint. Call this

resulting graph H. The idea is then to show that each vertex of G must send ‘few’

neighbors into H, or to some small subgraph of H. In order to execute this part of the

proof, we need to show that some auxiliary graphs do not appear in dense odd-girth 2k+1
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graphs. These auxiliary graphs can be formed from suitable subdivisions of K4, which we

describe next.

2.3.1 No graphs Θk,` and Θ∗k,`

For an integer k ≥ 3 and ` ∈ [k−1] we define the graphs Θk,` and Θ∗k,` from a particular

subdivision of K4 as follows. Label the branch vertices of the subdivision as a,b,c,d

(written counterclockwise). Subdivide the edges ab,cd with an additional 2k−3 vertices

each; call the resulting paths Pab = ax1 . . .x2k−3b and Pcd = cy1 . . .y2k−3d, respectively.

Subdivide the edge ac with a new vertex e, and subdivide bd with a new vertex f . Call this

graph Θk. Note that each of the paths Pab and Pcd creates two (2k+1)-cycles. For

example, Pab creates the (2k+1)-cycles Cabce := (aPabbcea) and Cab f d := (aPabb f da).

We shall label the other two cycles analogously. Construct a ‘diagonal’ path D = tuv such

that t = x` ∈ Pab and v = y` ∈ Pcd . We shall call this graph Θk,`. Finally, Θ∗k,` shall denote

the graph obtained from Θk,` by adding a ‘reflected’ diagonal path D′ = t ′u′v′ such that

t ′ = y2k−2−` ∈ Pcd and v′ = x2k−2−`. Note that l(t ′Pcdd) = l(v′Pabb) = `. A priori, u could

be any common neighbor of t,v, and u′ could be any common neighbor of t ′,v′. However,

if Θk,` or Θ∗k,` is a subgraph of an odd-girth 2k+1 graph, then we have the following.

Observation 2.3.1. Suppose that G is a graph of odd-girth 2k+1 and suppose that

Θk,` ⊂ G and Θ∗k,` ⊂ G are labelled as above. Then u /∈V (Θk) and u′ /∈V (Θk,`).

Proof. Every ‘face’ of Θk and Θk,` is a (2k+1)-cycle.

Before proving the main lemma in this section we need one small result concerning

neighborhoods in the graphs Θk.

Proposition 2.3.2. Let k ≥ 3, G be a graph of odd-girth 2k+1, and suppose H ⊂ G is a

copy of Θk labelled as above. Then the only possible 3-vertex neighborhoods in

int(Pab)∪ int(Pcd) are (up to relabelling) of the form {xi,xi+2,y2k−3−i} for i ∈ [2k−5].
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Proof. Let w be a vertex of G and suppose it has 3 neighbors

w1,w2,w3 ∈ int(Pab)∪ int(Pcd). We may assume w1,w2 ∈ int(Pab) and w3 ∈ int(Pcd).

Consider the paths P+
ab = a . . .w1, P−ab = w2 . . .b, P−cd = c . . .w3, and P+

cd = w3 . . .d, with

lengths l+ab, l−ab, l−cd , and l+cd , respectively. We have w3 = y j for some j ∈ [2k−3] and

w1 = xi for some 1≤ i≤ 2k−5, and therefore by Proposition 2.2.6 (using the

(2k+1)-cycle Cab f d), w2 = xi+2. Then

• l+ab = i and l−ab = 2k−4− i.

• l−cd = j and l+cd = 2k−2− j.

Now, each pairing of an a−b-path with a c−d-path yields a cycle. For instance, pairing

P+
ab with P−cd yields the cycle C+,− := (ww1P+

abaecP−cdw3w) which has length

l+ab + l−cd +4 = i+ j+4. Similarly, we have

• C+,+ = (ww1P+
abadP+

cdw3w) with length l+ab + l+cd +3 = 2k+1+ i− j.

• C−,+ = (ww2P−abb f dP+
cdw3w) with length l−ab + l+cd +4 = 4k−2− (i+ j).

• C−,− = (ww2P−abbcP−cdw3w) with length l−ab + l−cd +3 = 2k−1+ j− i.

Now, since l(Pab) = l(Pcd) = 2k−2 is even, we have that P+
ab,P

−
ab have the same parity,

and P+
cd,P

−
cd have the same parity. Suppose first that P−cd is even. If P+

ab is odd, then the

cycles C+,− and C−,+ are odd. So if i+ j ≤ 2k−4, then l(C+,−)≤ 2k, a contradiction

with the odd-girth assumption. Otherwise, l(C−,+)≤ 4k−2− (2k−3)≤ 2k+1, which is

a contradiction unless i+ j = 2k−3, i.e., j = 2k−3− i. If P+
ab is even then the cycles

C+,+ and C−,− are odd. If j > i, then since i and j are even, we have j− i≥ 2 and so

l(C+,+)≤ 2k−1, a contradiction. Therefore, i≥ j ≥ 2. But if i≥ j, then

l(C−,−)≤ 2k−1, again a contradiction.

Thus, we may suppose that P−cd is odd. We shall proceed along the lines of the

argument in the previous paragraph. Suppose that P+
ab is even. Then C+,− and C−,+ are
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odd cycles, and the same argument as in the previous paragraph applies: we get a

contradiction unless j = 2k−3− i. We may therefore assume that P+
ab is an odd path. It

follows that C+,+ and C−,− are odd cycles. Similarly as before, if j ≥ i then since they are

both odd, we have j ≥ i+2, so l(C+,+)≤ 2k−1; and if i≥ j, then l(C−,−)≤ 2k−1. It

follows that if w has 3 neighbors in int(Pab)∪ int(Pcd), then they are precisely

xi,xi+2,y2k−3−i for some i ∈ [2k−5], as claimed.

In what follows we shall show that Θk,` for ` ∈ [2,k−1] and Θ∗k,1 cannot appear as a

subgraph of a graph with odd-girth 2k+1 and minimum degree larger than n
2k−1 . This is

the key tool to show that induced 6-cycles cannot appear as subgraphs either.

Lemma 2.3.3. Let k ≥ 3 be an integer and let G be an odd-girth 2k+1 graph on n

vertices with δ (G)> n
2k−1 . Then the following hold:

1. Θk,` is not a subgraph of G, for any ` ∈ [2,k−1].

2. Θ∗k,1 is not a subgraph of G.

Proof. Let G be as in the statement of the Lemma, and suppose that there is a copy Θ of

Θk,` in G, for some 1≤ `≤ k−1. Moreover, if `= 1, then we shall assume Θ is actually a

copy of Θ∗k,1. Label this copy as usual, and note that by Observation 2.3.1,

u /∈ Pab∪Pcd ∪{e, f} (and u′ /∈ Pab∪Pcd ∪{e, f ,u}, if `= 1). Let

H = G[V (Θ)\{e, f ,u}] = G[V (Pab)∪V (Pcd)] if `≥ 2; if `= 1, H shall denote the graph

induced on V (Θ)\{e, f ,u,u′}. Observe that |H|= 2(2k−1). There are a number of paths

and cycles that will be of interest to us during the course of the proof. In addition to the

four (2k+1)-cycles Cabce,Cab f d,Ccdae, and Ccd f b defined earlier, we shall consider the

following:

• C`
+ = (tuvPcddaPabt), C`

− = (tuvPcdcbPabt) — the two (2k+1)-cycles created by

the addition of the diagonal path D = tuv.
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• P+
ab = aPabt, P−ab = tPabb.

• P−cd = cPcdv, P+
cd = vPcdd.

With notation out of the way, the following claim asserts that every vertex of G has

few neighbors in H.

Claim 2.3.4. Every vertex of G has at most 2 neighbors in H.

Proof. Let w ∈V (G). We shall break the proof up according to the number of neighbors

of w in the set of branch vertices X = {a,b,c,d}. Note that w can have at most 2

neighbors in X .

So let us suppose first that |N(w,X)|= 2; by symmetry, we may assume

N(w,X) = {a,c}. Then w can have no other neighbors in Pab∪Pcd , since otherwise w

would have 3 neighbors in one of the (2k+1)-cycles Ccdae,Cabce, contradicting

Proposition 2.2.6.

Now assume |N(w,X)|= 1 and, by symmetry, let N(w,X) = {a}. Suppose that w has

2 additional neighbors w1,w2 ∈ int(Pab)∪ int(Pcd), and note that by Proposition 2.2.6 we

may assume w1 ∈ Pab and w2 ∈ Pcd . Suppose first that w1 ∈ P+
ab. Then, since C`

+ is a

(2k+1)-cycle and by Proposition 2.2.6, it follows that w2 ∈ P−cd . However, this contradicts

the fact that Ccdae is well-behaved. Therefore, we may assume that w1 ∈ P−ab so that

`= 1,w1 = x2. In particular, since `= 1, we are assuming that Θ is a copy of Θ∗k,1 with

‘reflected diagonal’ D′ = t ′u′v′ where t ′ = y2k−3 and v′ = x2k−3. Now, we cannot have

w1 = v; otherwise the 5-cycle (wvutw1w) is formed (recall that we are assuming k ≥ 3, so

in particular G has odd-girth at least 7). It follows that w2 ∈ P+
cd , and so w2 belongs to the

(2k+1)-cycle C`
+. By Proposition 2.2.6 we must have that w2 = y2k−3 = t ′. However, this

creates the cycle (wt ′u′v′Pabw1w) which has length exactly 2k−1, a contradiction. Hence,

we have shown that w can have at most 2 neighbors in H whenever |N(w,H)|= 1.
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Finally, assume that N(w,X) = /0 so that N(w,H)⊂ int(Pab)∪ int(Pcd). Since

V (H)∪{e, f} induces a copy of Θk in G, we have that if w has 3 neighbors in H, then they

are xi,xi+2, and y2k−3−i for some i ∈ [2k−5] by Proposition 2.3.2. Now, we cannot have

i≤ ` as then xi,y2k−3−i ∈C`
+; but since they are both in the interiors of their respective

paths, they cannot satisfy Proposition 2.2.6 applied to C`
+. It follows that we have i > `

and xi,xi+2 ∈C`
−, y2k−3−i ∈C`

+. Consider the cycle C = (wy2k−3−iPcdvutPabxiw), which

has length precisely ((2k−2− `)− (i+1))+(i− `)+4 = 2k−3−2`+4, which is odd

and has length at most 2k−1, a contradiction. Accordingly, w can have at most 2

neighbors whenever N(w,X) = /0. This completes the proof of Claim 2.3.4.

Using Claim 2.3.4, we can complete the proof of Lemma 2.3.3. Indeed, let us double

count the edges between V (H) and V (G)\V (H). Recall that |H|= 2(2k−1). By the

minimum degree condition,

e(H,G\H)> 2(2k−1)
(

n
2k−1

−2
)
= 2n−4(2k−1).

On the other hand, by Claim 2.3.4, e(H,G\H)≤ 2(n−2(2k−1)) = 2n−4(2k−1), a

contradiction. This completes the proof of Lemma 2.3.3.

2.3.2 Neighborhoods in Φk
6

Let Φk
6 be the following graph. Let C = (aecb f da) be a 6-cycle (labelled

counterclockwise). Then Φk
6 is the graph obtained from C by adding pairwise vertex

disjoint (2k−2)-paths Pab = ax1 . . .x2k−3b, Pcd = cy1 . . .y2k−3d, and Pe f = ez1 . . .z2k−3 f ,

whose interiors are vertex disjoint from C. We shall call C the outer cycle of Φk
6. Later

(see Section 2.3.3) we shall show that if an induced C6 appears in a maximal odd-girth

(2k+1) graph G, then Φk
6 must be a subgraph of G. The aim of this section is to
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characterize the possible neighborhoods in Φk
6 whenever it appears as a subgraph of a

graph with odd-girth 2k+1.

Suppose that G has odd-girth 2k+1 and minimum degree δ (G)> n
2k−1 , and let H be a

copy of Φk
6 in G. If every vertex of G has at most 3 neighbors in H, then we arrive at the

following contradiction:

3(2k−1)
(

n
2k−1

−3
)
< e(H,G\H)≤ 3(n−3(2k−1)),

where we have used the minimum degree condition and the fact that |H|= 3(2k−1).

Unfortunately, there are possible 4-vertex neighborhoods in H. Our aim in this subsection

is to classify such neighborhoods. We shall first show that if a vertex has either 0 or at

least 2 neighbors in the outer cycle C of H, then it must have at most 3 neighbors in H. To

state this result, if H is a copy of Φk
6 with outer cycle C, then we shall denote by int(H) the

graph G[V (H)\V (C)].

Lemma 2.3.5. Let k ≥ 3 be an integer, and let G be an n-vertex graph with odd-girth

2k+1 and δ (G)> n
2k−1 . Suppose that H ⊂ G is a copy of Φk

6 with outer cycle C. If w is a

vertex of G such that either |N(w,C)| ≥ 2 or N(w,H)⊂ int(H), then w has at most 3

neighbors in H.

Proof. Let H ⊂ G be labelled as in the definition of Φk
6, and suppose first that w ∈V (G)

such that |N(w,C)| ≥ 2; in particular, we may assume that w is joined to a and c. Recall

that each path Pab,Pcd,Pe f creates two (2k+1)-cycles. For example, Pab creates the

(2k+1)-cycles Cabce = (aPabbcea) and Cab f d = (aPabb f da). We label the other cycles

analogously. Since w is joined to both a and c, it follows by Proposition 2.2.6 that w has

no more neighbors in Pcd nor in Pab (simply consider the (2k+1)-cycles Ccdae and Cabce).

Therefore, w can only have additional neighbors in Pe f . However, if w has 2 neighbors in

Pe f , then it has 3 neighbors in the (2k+1)-cycle Ce f da, a contradiction with

Proposition 2.2.6. So, w has at most one additional neighbor in Pe f .
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Let us assume now that N(w,H)⊂ int(H). We shall show that |N(w,H)| ≤ 3. Indeed,

if w has 2 neighbors in the interior of one of the paths Pab, Pcd , Pe f , then it must have no

other neighbors in int(H). Otherwise, if w has 2 neighbors in, say int(Pab), then look at

the subdivision Θk with branch vertices {a,b,c,d}, and note that by Proposition 2.3.2, its

neighbors are from the set {xi,xi+2,y2k−3−i}, for some i≥ 1. On the other hand, looking

at the the copy of Θk with branch vertices {a,b, f ,e}, we see that w’s neighbors belong to

the set {xi,xi+2,zi+1}. However, we claim that w cannot be joined to both y2k−3−i and

zi+1. Indeed, look at the copy of Θk with branch vertices {c,d, f ,e}. If w is joined to

y2k−3−i and zi+1, then we obtain a copy of Θk,i+1 (with diagonal path zi+1wy2k−3−i),

contradicting the first part of Lemma 2.3.3. Therefore, w has at most one neighbor in the

interior of each of the paths Pab,Pcd and Pe f , or has at most 2 neighbors in int(H). This

completes the proof of Lemma 2.3.5.

By Lemma 2.3.5 we have that no vertex has more than 4 neighbors in H, and

moreover, we may assume that if w has 4 neighbors in H, then |N(w,C)|= 1. The

following asserts that there is essentially only one possible 4-vertex neighborhood in H.

Lemma 2.3.6. The only 4-vertex neighborhood in H (up to isomorphism) is

{a,x2,y2k−3,z1}.

Proof. By symmetry we may suppose that N(w,C) = {a}. Note that w cannot have 2

neighbors in the interior Pab. Indeed, otherwise w has 3 neighbors in the (2k+1)-cycle

Cabce, contradicting Proposition 2.2.6. Similarly, w cannot have 2 neighbors in the interior

of Pcd or Pe f ; so it has precisely one neighbor in each of Pab,Pcd , and Pe f . Using the cycle

Cabce and Proposition 2.2.6 we must have N(w, int(Pab)) = {x2}. Similarly, using the

appropriate (2k+1)-cycle we have that N(w, int(Pcd)) = {y2k−3} and

N(w, int(Pe f )) = {z1}, and the proof is complete.
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2.3.3 Finishing the proof of Lemma 2.2.2

In this subsection, we complete the proof of Lemma 2.2.2.

Proof. Suppose that C = (aecb f da) is an induced 6-cycle in G, where the vertices are

labelled counterclockwise. Owing to the missing edge ab and the edge-maximality of G,

there must exist an even path Pab between a and b of length at most 2k−2. Similarly,

there exist paths Pcd and Pe f between c,d and e, f , respectively. Let Pab = ax1 . . .xrb,

Pcd = cy1 . . .ysd, and Pe f = ez1 . . .zt f , where r,s, t ≤ 2k−3 are odd. Let

H = G[V (Pab)∪V (Pcd)∪V (Pe f )]. Our first claim asserts that H is, in fact, a copy of the

graph Φk
6.

Claim 2.3.7. H is a copy of Φk
6.

Proof. We first note that V (Pab)∩V (C) = {a,b}. Indeed, if otherwise, let i be maximal

such that xi ∈V (C). By symmetry, we may assume that xi ∈ {e,c}. Suppose xi = e. It

follows that the path xiPabb is even and so the subpath ax1 . . .xi must be even. But then

ax1 . . .xia is an odd-cycle of length at most 2k−1, contradicting the odd-girth assumption.

If xi = c, then xiPabb must be odd, so that ax1 . . .xi is also odd. But then ax1 . . .xiCa is an

odd closed walk of length at most 2k−1, so contains an odd cycle of length at most

2k−1. The same argument shows that V (Pcd)∩V (C) = {c,d} and

V (Pe f )∩V (C) = {e, f}. Observe that this implies l(Pab) = l(Pcd) = l(Pe f ) = 2k−2.

The only remaining task is to show that the paths Pab,Pcd,Pe f are pairwise vertex

disjoint. To the contrary, suppose that V (Pab)∩V (Pcd) 6= /0, and let u be the first vertex in

which they intersect. Let i = l(aPabu), i′ = l(uPabb) and j = l(cPcdu), j′ = l(uPcdd), so

that (i+ j)+(i′+ j′) = 2(2k−2). Then without loss of generality, assume i+ j ≤ 2k−2.

It follows that the cycle (aPabuPcdcea) has length at most 2k, and so i and j must be of the

same parity. On the other hand, since l(Pab) = l(Pcd) = 2k−2 is even, it follows that i′

and j′ also have the same parity. Now, if i+ j′ ≤ 2k−2, then we obtain a contradiction
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with the odd-girth assumption considering the cycle (aPabuPcdda). It follows that

i′+ j ≤ 2k−3. Then (uPcdcbPabu) is an odd closed walk (which contains an odd cycle) of

length at most 2k−2, a contradiction. Therefore, Pab∩Pcd =∅, and the other cases

follow symmetrically.

Now, as mentioned earlier, if every vertex has at most 3 neighbors in H, then we reach

a contradiction by double counting the edges between H and G−H. Therefore, we may

assume there is at least one vertex of degree 4 in H. In particular, by Lemma 2.3.6, we

may assume that x1y2k−3 and x1z1 are edges. We may therefore obtain the following

subdivision of K4: the branch vertices are {z1, f ,c,y2k−3}; z1 f is subdivided with vertices

z2, . . . ,z2k−3; cy2k−3 is subdivided with vertices y1, . . . ,y2k−4; z1y2k−3 with x1; z1c with e;

f y2k−3 with d; and f c with b. We shall denote by H ′ the graph induced in G on the vertex

set of this subdivided K4. The following claim asserts that certain pairs of vertices of H ′

cannot have a common neighbor in G.

Claim 2.3.8. Let H ′ be as above. Then the pairs {yi,z2k−i−2} for i ∈ [2k−4] have disjoint

neighborhoods in G.

Proof. Consider the copy Θ of Θk induced on V (Pcd)∪V (Pe f )∪{a,b}. If y1,z2k−3 have a

common neighbor we construct a copy of Θ∗k,1 from Θ using the fact that z1,y2k−3 have

common neighbor x1. If yi and z2k−i−2 have a common neighbor for some 2≤ i≤ 2k−4

then we may construct a copy of Θk,i from Θ. This contradicts Lemma 2.3.3.

For ease of notation, let x := x1,z := z1, and y := y2k−3. Furthermore, let

Pz f = zz2 . . .z2k−3 f , Pcy = cy1 . . .y2k−4y, and Pxb = xx2 . . .x2k−3b. Let H ′′ be the graph

induced on V (Pz f )∪V (Pcy)∪{x,b} and note that |H ′′|= 2(2k−2)+2 = 2(2k−1). Our

final claim asserts that every vertex has at most 2 neighbors in H ′′, which leads to the

usual contradiction via double counting.
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Claim 2.3.9. Every vertex of G has at most 2 neighbors in H ′′.

Proof. Let w be a vertex of G and suppose that w has 3 neighbors w1,w2,w3 in H ′′. First

assume that {w1,w2,w3}∩{x,b} 6= /0; without loss of generality suppose w1 = x. Note

that w cannot be joined to b since l(Pxb) = 2k−3. By considering the appropriate

(2k+1)-cycles and using Proposition 2.2.6, we have that the only possibility for w2 and

w3 is w2 = z2 and w3 = y2k−4. However, this is impossible, since by Claim 2.3.8, z2 and

y2k−4 have no common neighbor. Accordingly, w can have at most 2 neighbors in H ′′

whenever {w1,w2,w3}∩{x,b} 6= /0.

Hence, we may suppose that {w1,w2,w3} ⊂V (Pz f )∪V (Pcy), and that

w1,w2 ∈V (Pz f ), w3 ∈V (Pcy). We first claim that we may assume

{w1,w2,w3} ⊂ int(Pz f )∪ int(Pcy). Indeed, suppose otherwise that w1 = z. Then we must

have w2 = z3 and, by considering the (2k+1)-cycle ( f dyxzPz f f ), we also must have that

w3 = y. Then w has 3 neighbors in this (2k+1)-cycle, a contradiction.

Accordingly, we shall assume that w1,w2 ∈ int(Pz f ) and w3 ∈ int(Pcy). Suppose

w1 = z2k−i−2 and w2 = z2k−i = z2k−(i−2)−2 for some i ∈ [2k−4], and let w3 = y j for some

j. By Claim 2.3.8, we have that j 6= i, i−2; moreover, a simple parity argument shows that

j 6= i−1. So we have j /∈ {i−2, i−1, i}. Hence we have that either 1≤ j ≤ i−3 or

i+1≤ j ≤ 2k−4. By symmetry of the graph H ′, we may assume the former holds. We

shall consider the following paths:

• P+
z f = zPz f w1; P−z f = w2Pz f f .

• P+
cy = yPcyy j; P−cy = y jPcyc.

Now, since l(Pz f ) = 2k−3 is odd, one of P+
z f and P−z f has different parity from P−cy ;

assume first this is P+
z f and consider the cycle C0 := (wy jPcycezPz f w1w). It has length
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precisely

l(C0) = l(P−cy)+ l(P+
z f )+4 = j+(2k− i−3)+4

≤ (i−3)+(2k− i−3)+4 = 2k−2,

which is a contradiction, since C0 is odd. Now, suppose that P−z f and P−cy have different

parity and consider the cycle C′0 := (wy jPcycb f Pz f w2w). Then

l(C′0) = l(P−cy)+ l(P−z f )+4 = j+(i−2)+4 = i+ j+2. Since C′0 is an odd-cycle, we

reach a contradiction provided i+ j ≤ 2k−3. Therefore, we may assume that

i+ j ≥ 2k−2. In that case, P+
cy and P+

z f have different parity and so the cycle

(wy jPcyyxzPz f w1w) is odd and has length

l(P+
cy)+ l(P+

z f )+4 = (2k− i−3)+(2k−3− j)+4

= 4k− (i+ j)−2≤ 4k− (2k−2)−2 = 2k,

a contradiction.

In all possibilities for w3 = y j we have reached a contradiction with the odd-girth

assumption. It follows that every vertex must have at most 2 neighbors in H ′′, completing

the proof of Claim 2.3.9.

The proof of Lemma 2.2.2 is now complete using Claim 2.3.9: double counting the

edges between H ′′ and G−H ′′ produces the usual contradiction.
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2.4 12-cycles with few diagonals

Our aim in this section is to prove Lemma 2.2.3. We divide the proof into steps, according

to the number of diagonals. Note that the case of having precisely five diagonals is

immediate from Lemma 2.2.2 that forbids induced 6-cycles. The subsequent subsections

deal with the remaining cases.

Proposition 2.4.1. Let G be a maximal {C3,C5}-free graph on n vertices with

δ (G)> n/5. Then G has no 12-cycle with exactly four diagonals.

Proof. Suppose that (x1 . . .x12) is a 12-cycle with exactly four diagonals. Let H be the

graph induced by {x1, . . . ,x12}. In light of Lemma 2.2.2, G has no induced 6-cycle, so we

may assume that the edges x1x7,x2x8,x3x9,x4x10 are present in the graph and that

x5x11,x6x12 are non-edges. In fact, it is easy to verify that the only edges in H are the

edges of the 12-cycle and the four aforementioned diagonals.

x3

x4

x5

x2

x6x8

x9

x10

x11

x12

x7

x1

y1

y2y3

Figure 2.4: Constructing the graph H ′ in the case of four diagonals

Recall that a subgraph F of a graph G is called well-behaved if for every vertex u in G

there is a vertex v in F such that NG(u,F)⊆ NF(v). Before returning to the proof, we

make the following observation.

Claim 2.4.2. H is well-behaved as a subgraph of G.
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Proof. We first point out that no vertex u in G can be adjacent to all of {x4,x6,x11}.

Indeed, otherwise, (ux11x12x1x7x6) is an induced C6 (the addition of any chord to this

cycle creates a triangle or a pentagon), contradicting Lemma 2.2.2. By symmetry, no

vertex can be adjacent to all vertices in one of the following sets: {x5,x7,x12},

{x1,x6,x11}, {x5,x10,x12}. We conclude that no vertex can be adjacent to both x6 and x11.

Indeed, by considering the 6-cycle (x1x7x6ux11x12), since there is no induced C6, u must

be adjacent to x1, contradicting the above. Similarly, no vertex is adjacent to both x5 and

x12. One may check that any other possible neighborhood of a vertex of G in H is

contained in the neighborhood of a vertex in H.

The pair {x5,x11} is a non-edge in G, and so, by the assumption that G is maximal

{C3,C5}-free, there is a path of length two or four between x5 and x11. In fact, the length

must be four because, otherwise, a cycle of length 3 or 5 will be created. Let x5y1y2y3x11

be this 4-path. One may verify that y2 /∈V (H), and possibly y3 = x12 or y1 = x6, but not

both. We shall assume, without loss of generality, that y1 6= x6.

Claim 2.4.3. We may assume that y1x3 is an edge in G.

Proof. No two of the following vertices have a common neighbor: x3,x6,x9,x12 (they are

at distance one or three from each other). In other words, their neighborhoods are pairwise

disjoint, and so, by the minimum degree condition, every vertex in G has a common

neighbor with at least one of these four vertices. Note that y2 does not have a common

neighbor with either x6 or x12 (this will create a C5). By symmetry, we may assume that y2

and x3 have a common neighbor u. If u = y1, Claim 2.4.3 follows. Thus, we suppose

otherwise. Consider the 6-cycle (uy2y1x5x4x3). Since there are no induced 6-cycles, one

of the following is an edge: y1x3,y2x4,ux5. If y1x3 is an edge, the claim follows; y2x4

cannot be an edge (because of the 5-cycle (y2x4x10x11y3)); if ux5 is an edge, we replace y1

by u to obtain the required property.

Claim 2.4.4. We may assume that y2x2 is an edge.
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Proof. As before, by considering the neighbors of x2,x5,x8,x11, we have that y3 has a

common neighbor with x2 or x8. If u is a common neighbor of y3 and x2, we may assume

that u 6= y2 (otherwise, we are done). By considering the 6-cycle (ux2x3y1y2y3), either

y2x2 or uy1 is an edge. We may assume that uy1 is an edge. Then, by replacing y2 by u we

obtain the required property. Now suppose that y3 and x8 have a common neighbor u. By

considering (ux8x9x10x11y3), u is adjacent to x10. This, in turn, implies that u is adjacent to

x3 (see (ux8x2x3x4x10)), a contradiction: the 5-cycle (ux3y1y2y3) is formed.

Denote by H ′ the graph induced by {x5, . . . ,x12,y1,y2} (see the black vertices in

Figure 2.4). We shall show that every vertex of G has few neighbors in H ′, yielding a

contradiction to the minimum degree condition on G. More precisely, we have the

following:

Claim 2.4.5. No vertex in G has more than two neighbors in H ′.

Proof. We note that by Claim 2.4.2, no vertex in G has more than two neighbors in

V (H ′)∩V (H). Thus, if a vertex u has three neighbors in H ′, at least one of them is either

y1 or y2. If u is adjacent to y1, then the only other neighbors u can have in H ′ are

x6,x9,x12, but no two of these vertices may have a common neighbor. Similarly, if u is

adjacent to y2, its other possible neighbors in H ′ are x5,x8,x11, no two of which have a

common neighbor. The claim follows.

Using Claim 2.4.5, we may now finish the proof of Proposition 2.4.1 by double

counting the number of edges between H ′ and V (G)\V (H ′), as usual.

Now we deal with the remaining case, of a 12 cycle with two or three diagonals, and

thereby complete the proof of Lemma 2.2.3.

Proposition 2.4.6. Let G be a maximal {C3,C5}-free graph on n vertices with

δ (G)> n/5. Then G induces no 12-cycle with two diagonals and at most one additional

chord.
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Proof. Suppose that C = (x1 . . .x12) is a 12-cycle with two consecutive diagonals x1x7 and

x2x8, and at most one additional chord. We note that any additional chord is a diagonal in

one of the following 12-cycles (x1 . . .x12) or (x2 . . .x7x1x12 . . .x8), both of which have two

consecutive diagonals. Hence, and by symmetry, we may assume that the additional chord

is either x6x12 or x5x11. However, if x5x11 is the additional chord, then (x1x7x6x5x11x12) is

an induced 6-cycle, contradicting Lemma 2.2.2. Thus we assume that, if there is an

additional chord, it is x6x12. Furthermore, if x6x12 is not an edge, we assume that G

contains no 12-cycles with two consecutive diagonals and exactly one extra chord. Let H

be the graph induced by {x1, . . . ,x12} and denote H ′ = H \{x1,x7}.

Claim 2.4.7. Every vertex of G has at most two neighbors in H ′.

Proof. Observe that for any 7-cycle C and any vertex u in G, u has at most two neighbors

in C, and if it does have two neighbors, they are at distance 2 in C. Suppose that u has

three neighbors in H ′. It follows by symmetry that u has two neighbors in {x2, . . . ,x6},

which we can denote by xi−1 and xi+1 for some i ∈ {3,4,5}, and another neighbor x j for

some j ∈ {8, . . . ,12}. But then, by replacing xi by u, we may assume that xi is joined to x j.

This is a contradiction: either to Proposition 2.4.1 (if C had three chords, i.e. if x6x12 is an

edge, then now it has four chords); or, if x6x12 is not an edge, to the assumption that there

is no 12-cycle with two consecutive diagonals and an additional chord.

Proposition 2.4.6 follows from Claim 2.4.7 by double counting the number of edges

between H ′ and V (G)\V (H ′). The proof of Lemma 2.2.3 is therefore complete.

2.5 Two 7-cycles intersecting in a 3-path

In this section we prove Lemma 2.2.5; that is, the graph in Figure 2.5 cannot appear as an

induced subgraph of a maximal {C3,C5}-free graph on n vertices and minimum degree

63



Figure 2.5: Two 7-cycles intersecting in a 3-path

larger than n/5. The proof follows the same strategy as the proofs in the previous two

sections, though it requires more effort.

Proof of Lemma 2.2.5. Suppose that H is an induced subgraph of G which is the union of

two 7-cycles intersecting in a path of length 3. Denote the two 7-cycles by

(x1x2x3x4x5x6x7) and (x1x2x3x4x8x9x10) (see Figure 2.5). We start by showing that H is a

well-behaved subgraph of G.

Claim 2.5.1. The graph H is well-behaved.

Proof. Suppose that H is not well-behaved. Then, up to relabelling, one of the two

following pairs has a common neighbor in G: {x6,x9} or {x5,x10}. If u is a neighbor of x6

and x9 then, by Lemma 2.2.2, u is also a neighbor of x1 (consider the 6-cycle

(ux6x7x1x10x9)). But then, x9 has no neighbors in the 7-cycle C = (x1 . . .x7) and its

neighbor u has two neighbors in C (x1 and x6), contradicting Corollary 2.2.4. Now

suppose that u is a neighbor of both x5 and x10. Consider the 6-cycle (ux5x4x8x9x10).

Since G contains no induced 6-cycle, u must be adjacent to x8. Now consider the 7-cycle

(ux10x1x2x3x4x8). The vertex x6 has no neighbors in C (x6 cannot be adjacent to u), but x5

has two neighbors in C (x4 and u). This is a contradiction to Corollary 2.2.4.

Arguments as in Claim 2.5.1, using Corollary 2.2.4 and Lemma 2.2.2 will appear

frequently in the proof of Lemma 2.2.5.
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Since x6 and x8 are nonadjacent, there is a 4-path with ends x6 and x8 (a 2-path would

create a C5). Up to relabelling, three cases arise:

1. There is a 3-path x6y1y2x9 between x6 and x9. The vertices y1 and y2 are not in H.

2. There is a 3-path x7y1y2x8 between x7 and x8. The vertices y1 and y2 are not in H.

3. There is a 4-path x6y1y2y3x8 between x6 and x8. The vertices y1,y2,y3 are not in H.

In the rest of the proof, we show that each of the three cases is impossible, thus

completing the proof of Lemma 2.2.5. Case 2 will be the most difficult to resolve. Case 1

follows since we have already shown, during the course of proving that induced 6-cycles

do not exist, that the graph induced on {x1, . . . ,x10,y1,y2} cannot exist as a subgraph (see

Claim 2.3.8 and Claim 2.3.9).

2.5.1 Case 2: a 3-path between x7 and x8

Denote by H ′ the graph induced by {x1, . . . ,x10,y1,y2} (see Figure 2.6).

Claim 2.5.2. The graph H ′ is well-behaved.

Proof. If H ′ is not well-behaved, then up to relabelling, y1 and x3 have a common

neighbor u (recall that H is well-behaved by Claim 2.5.1). Consider the 6-cycle

(uy1x7x1x2x3). Since there is no induced 6-cycle (Lemma 2.2.2), either y1 is adjacent to

x2, or u is adjacent to x1. The former case leads to a contradiction: then x1 has two

neighbors in the 7-cycle (x2x3x4x5x6x7y1) whereas its neighbor x10 has no neighbors there,

contradicting Corollary 2.2.4. So, suppose the latter case holds, i.e. u is adjacent to x1. But

then u has two neighbors in the 7-cycle (x1x2x3x4x8x9x10) whereas y1 has none, a

contradiction.

As before, in light of the missing edge x6x10, one of the following three cases holds.
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x1

x7

x10

x6

x9

x3x2 x4

x5

x8

y1

y2

Figure 2.6: Case 2: a path of length 3 between x7 and x8

(a) There is a 3-path x6z1z2x9 between x6 and x9.

(b) There is a 3-path x5z1z2x10 between x5 and x10.

(c) There is a 4-path x6z1z2z3x10 between x6 and x10.

However, (a) does not hold, as we have seen in the previous subsection. So it remains to

consider (b) and (c).

Case 2b: 3-paths between x7 and x8 and between x5 and x10

Denote by F the graph induced by {x1, . . . ,x10,y1,y2,z1,z2}. It is easy to check that the

vertices y1,y2,z1,z2 are distinct. Now, as in Case 1, we have already shown that the graph

induced on the subset {x1,x7,x6,x5,x4,x8,x9,x10,y1,y2,z1,z2} ⊂V (F) cannot exist as a

subgraph (see Claim 2.3.8 and Claim 2.3.9). Therefore we may dispel with Case 2b.

Case 2c: a 3-path between x7 and x8 and a 4-path between x6 and x10

Denote by F the graph induced by {x1, . . . ,x10,y1,y2,z1,z2,z3} (see Figure 2.7).

Claim 2.5.3. The only edges spanned by F are those spanned by H and the edges of the

two paths x6z1z2z3x10 and x7y1y2x8.
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Figure 2.7: Case 2c: the graph F

Proof. First we note that y1 and y2 do not have additional neighbors in {x1, . . . ,x10}.

Indeed, by symmetry we assume that y1 has an additional neighbor in H. The only

possible such neighbor is x2. We reach a contradiction to Corollary 2.2.4 (consider the

7-cycle (y1x2x3x4x5x6x7) and the vertices x1 and x10).

We now show that z1, z2 and z3 do not have additional edges into H. Using the fact

that H ′ is well-behaved, the only possible additional neighbor of z1 is x4. But then, by

replacing x5 by z1, we may assume that there is a 3-path from x5 to x10. This leads to a

contradiction, as we have seen in Case 2b. Similarly, the possible additional neighbors of

z3 in H are x8 and x2. If z3 is adjacent to x8 then, by replacing x9 by z3, we may assume

that there is a 3-path between x6 and x9, contradicting Case 1. If z3 is adjacent to x2 we

reach a contradiction to Corollary 2.2.4 (x1 has two neighbors in the 7-cycle

(z3x2x3x4x8x9x10) while x7 has none). The possible neighbors of z2 in H are x3, x5 and x9.

But z2 is not adjacent to x5 or x9, because, otherwise, there is a 3-path between x5 and x10

or between x6 and x9, contradicting previous cases. Furthermore, z2 is not adjacent to x3

because, otherwise, (z1z2x3x4x5x6) is an induced 6-cycle, contradicting Lemma 2.2.2.

Finally, we show that there are no edges between {z1,z2,z3} and {y1,y2}. The only

such edges that do not create a triangle or pentagon are z1y1 and z2y2. If z1 is adjacent to

y1 we reach a contradiction to Corollary 2.2.4 (see (z1y1y2x8x4x5x6) and the vertices x1,

x7), and if z2y2 is an edge, a contradiction to Lemma 2.2.2 is reached (consider the
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induced 6-cycle (z1z2y2y1x7x6)). This completes the proof of Claim 2.5.3.

The following claim states that no vertex has more than three neighbors in F . Since

|F |= 15, this is a contradiction to the minimum degree condition on G by the usual

double counting argument, hence the proof of Lemma 2.2.5 in this case follows.

Claim 2.5.4. No vertex has more than three neighbors in F.

Proof. Since H ′ is well-behaved (see Claim 2.5.2; recall that H ′ is the graph induced by

the set {x1, . . . ,x10,y1,y2}) and has maximum degree 3, if there is a vertex u with four

neighbors in F , it must be adjacent to at least one of z1,z2,z3. We note that u cannot be

adjacent to both z1 and z3 because then, by replacing z2 by u, we may assume that z2 has

an additional edge in F , a contradiction to Claim 2.5.3. It follows that u has one neighbor

among z1,z2,z3 and at least three neighbors in H ′. Since H ′ is well-behaved, u is adjacent

to all three neighbors of a vertex v in H ′ of degree three (in H ′). But then, by replacing v

by u, we may assume that v has an additional edge in F , a contradiction to

Claim 2.5.3.

2.5.2 Case 3: a 4-path between x6 and x8

Denote by H ′ the graph induced by {x1, . . . ,x10,y1,y2,y3}, and let H ′′ = H ′ \{x5,x7,y3}

(see Figure 2.8).

x1

x7

x10

x6

x9

x3x2 x4

x5

x8

y1

y2

y3

Figure 2.8: Case 3: the graphs H ′ and H ′′(marked in black)
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Claim 2.5.5. The only edges in H ′ are those spanned by H or by the path x6y1y2y3x8.

Proof. Suppose that there are additional edges. These must be between {y1,y2,y3} and

V (H). The only possible neighbor (that is not already accounted for) of y1 in H ′ is x1. But

then, by replacing x7 by y1, we reach a contradiction to Case 2.

The only possible additional neighbors of y3 in H are x3 and x10. If y3 is adjacent to x3,

then x4 has two neighbors in (x1x2x3y3x8x9x10) whereas x5 has none, a contradiction to

Corollary 2.2.4. If y3 is adjacent to x10 then, by replacing x9 with y3, we reduce to Case 1.

The only possible additional neighbors of y2 in H are x2,x7,x9. If y2 is adjacent to x7

or x9 we reduce to previous cases. Finally, if y2 is adjacent to x2 then (x6x7x1x2y2y1) is an

induced 6-cycle, a contradiction to Lemma 2.2.2.

Claim 2.5.6. No vertex in G has more than two neighbors in H ′′.

Proof. Suppose that there is a vertex u in G with three neighbors in H ′′. Since H is

well-behaved (see Claim 2.5.1), u must be a neighbor of either y1 or y2.

Suppose first that u is a neighbor of y1. The other possible neighbors of u in H ′′ are

x2,x3,x9,x10. Out of these four vertices, the only two that may have a common neighbor

are x2 and x10. By considering the 6-cycle (ux2x1x7x6y1), it follows that u is adjacent also

to x7, i.e. u is adjacent to x2,x7,x10,y1. By replacing x1 by u, we may assume that y1 is

adjacent to x1, a contradiction to Claim 2.5.5.

We may now assume that u is adjacent to y2. The other possible neighbors of u in H ′′

are x1,x2,x3,x6,x8,x10. If u is adjacent to x6 or x8, then by replacing y1 or y3 by u we see

that u cannot have any additional neighbors in H ′′: otherwise we reach a contradiction to

Claim 2.5.5. It follows that u is not adjacent to x1, because otherwise, (ux1x7x6y1y2) is an

induced 6-cycle. Similarly, u is not adjacent to x10 (see (x10x9x8y3y2u)). This completes

the proof of Claim 2.5.6, since the only remaining possible neighbors of u are x2 and x3,

and these do not have a common neighbor.
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By Claim 2.5.6, we reach a contradiction using the usual double counting argument.

This completes the proof of Lemma 2.2.5.

2.6 The proof of Theorem 2.1.4

In this section we shall finish the proof of Theorem 2.1.4 by combining Theorem 2.2.1

along with some facts we have obtained regarding forbidden substructures in maximal

{C3,C5}-free graphs of large minimum degree. First, we prove the following proposition,

which records several useful properties of the graphs Fd that we shall need in the sequel.

Proposition 2.6.1. The following properties of Fd hold.

1. Let F be a copy of Fd in a maximal {C3,C5}-free graph G with δ (G)> n/5. Then

every vertex in G has either d−1 or d neighbors in F.

2. Let F be a copy of Fd in a maximal {C3,C5}-free graph G with δ (G)> n/5. Denote

the vertices of F by x1, . . . ,x5d−3 and its edges by the pairs xix j for which |i− j| ≡ 1

(mod 5).

Then for every vertex u in G there is a vertex xi in F such that the neighbors of u in

F are the neighbors of xi in F, except at most one of xi−1 and xi+1. In particular, F

is well-behaved as a subgraph of G.

Proof. We prove Property 1 by induction on d. For d = 1 the result is clear (recall that F1

is an edge). For d = 2, the result easily follows from Theorem 2.2.1. So suppose that d ≥ 3

and the result holds for smaller values of d. Let F be a copy of Fd in G as in the statement

of Property 1, denote its vertices and edges as before, and let u be a vertex of G. Assume

first that u has d +1 neighbors in F . If u has at most one neighbor in some consecutive

interval xi, . . . ,xi+4 of five vertices, then u has at least d neighbors in the copy of Fd−1

induced on F \{xi, . . . ,xi+4}, a contradiction to the induction hypothesis. Therefore, u has
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at least two neighbors in every consecutive interval of five vertices. Suppose, without loss

of generality, that u is adjacent to x1. Then u has at least 1+2(d−2)≥ d neighbors

(recall that d ≥ 3) in the copy of Fd−1 induced on F \{x5d−7, . . . ,x5d−3}, a contradiction.

If u has at most d−2 neighbors in F , one of which is, say, x1, then u has at most d−3

neighbors in the copy of Fd−1 induced on F \{x1, . . . ,x5}, contradicting the induction

hypothesis. It follows that u has either d−1 or d neighbors in F , as required.

Finally, let us prove Property 2. Let F and G be as before, and suppose that u has d−1

neighbors in F . Then one may find five consecutive vertices x`, . . . ,x`+4 which are not

neighbors of u. Let F ′ be the copy of Fd−1 given by F \{x`, . . . ,x`+4}. Then by induction

there is a vertex x of F ′ such that u is joined to all neighbors of x in F ′. We claim that

x = x`−1 or x = x`+5. Indeed, note that x must be adjacent to precisely one of x`−1,x`+5 (it

cannot be adjacent to both); otherwise, u has no neighbor in the 7-cycle (x`−1x` . . .x`+5),

contradicting Theorem 2.2.1. Suppose, without loss of generality, that x is joined to x`−1.

Since u must have a neighbor in the 7-cycle (x`x`+1 . . .x`+6), u is also adjacent to x`+6. It

follows that x = x`+5 and u has d−1 neighbors in F which are precisely the neighbors of

x`+5, except for x`+4. Now, suppose that u has precisely d neighbors in F . Then we may

find two neighbors of u that are at distance at most four. We claim that this implies there

must be two neighbors at distance two apart. Indeed, they cannot be at distance three (this

would produce a 5-cycle). So suppose these neighbors are at distance four and suppose

they are xi and xi+4. Then (uxi+4xi+5xi+6xi) is a 5-cycle in G, a contradiction.

Accordingly, we may assume without loss of generality that u is adjacent to both x2 and

x5d−3. Consider the copy of Fd−1 given by F \{x3, . . . ,x7} and apply induction. Clearly,

we must have u joined to x7 (u’s only possible neighbor in {x3, . . . ,x7}) and the

neighborhood of u in F is precisely the neighborhood of x1 in F . This completes the proof

of Property 2.

We actually prove the following theorem, which clearly implies Theorem 2.1.4. It is
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the odd-girth 7 analogue of a result of Chen, Jin, and Koh [18] concerning triangle-free

graphs of large minimum degree.

Theorem 2.6.2. Let G be a maximal {C3,C5}-free graph on n vertices with δ (G)> n/5.

For every integer d ≥ 2, if G contains no copy of Fd , then G is homomorphic to Fd−1.

Proof. We shall use induction on d. For d = 2 we need to show that if G contains no copy

of C7, then G must be bipartite. Suppose otherwise and let C = (x1 . . .x2`+1) be an odd

cycle in G of minimal length. Note that, by assumption, `≥ 4. Also, the minimality of C

implies that it is induced. Since the edge x1x4 is missing there must be a 4-path connecting

x1 and x4 (a 2-path is impossible). It follows that there is an odd closed walk of length at

most 7 between x1 and x4 which contains an odd cycle of length at most 7. Hence G

contains a C7, contrary to our assumption, and so G must indeed be bipartite.

Now fix d ≥ 3 and suppose the result holds for smaller values of d. Let G be as in the

statement of the theorem and suppose it contains no copy of Fd . If G contains no copy of

Fd−1, then by induction G is homomorphic to Fd−2. But Fd−1 contains Fd−2 (see

Proposition 2.1.3), so we are done. Hence we may assume that G contains a copy of Fd−1.

Let H be a vertex-maximal blow-up of Fd−1 in G with vertex classes X1, . . . ,X5d−8, where

the edges of H are Xi−X j edges for which |i− j| ≡ 1 (mod 5). Our aim is to show that G

is a blow-up of Fd−1, or, in other words, that H spans all vertices in G. Note that by

Property 1 in Proposition 2.6.1, every vertex in V (G)\V (H) has at most d−1 neighbors

in Fd−1.

Suppose u ∈V (G)\V (H) is adjacent to vertices in precisely d−1 of the classes of H.

Without loss of generality, by Property 2, we may assume that these classes are those in

the neighborhood of vertices in X1, i.e., X2,X7, . . . ,X5d−8, and let J = {2,7, . . . ,5d−8} be

the set of indices j such that u has a neighbor in X j. We claim that u must be adjacent to

every vertex in each of these classes, contradicting the assumption that H is a

vertex-maximal blow-up in G. Suppose this is not the case. By Property 1, u has a
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non-neighbor in at most one of the sets X j with j ∈ J (indeed, otherwise we find a copy of

Fd−1 in which u has at most d−3 neighbors). Furthermore, by Property 2, we may assume

that this set is X2. Let y ∈ X2 be a neighbor of u and let z ∈ X2 be a non-neighbor of u.

Owing to the missing edge uz, and by the edge-maximality of G, there must exist a

4-path uw1w2w3z in G between u and z (a 2-path is impossible). Consider the

(5d−3)-cycle C = (uw1w2w3zx1x5d−8 . . .x3y), where xi ∈ Xi (see Figure 2.9).

x3

x4

x5

x6x8

x9

x10

x11

x12

x7

x1 y
z

w3

w2

w1

u

Figure 2.9: The (5d−3)-cycle C obtained from u and H, d = 4

Our aim is to show that V (C) induces a copy of Fd , contrary to our assumption on G.

Relabel the cycle C in order as (z0z1 . . .z5d−4), so that z0 = u,zi = wi for i = 1,2,3,

z4 = z,z5 = x1, zi = x5d−2−i for 6≤ i≤ 5d−5, and z5d−4 = y. We must check that all

chords of lengths 1+5t for t = 0, . . .d−1 are present in the graph induced on V (C). Note

that all possible chords of these lengths that are not incident with a vertex in

S = {u,w1,w2,w3}= {z0,z1,z2,z3} are present, since all vertices in V (C)\S are in an

appropriate copy of Fd−1. So we must check that all possible chords incident with a vertex

in S are present. This is summarized in the following claim, where we temporarily revert

to the original labelling of C:

Claim 2.6.3. The following hold:

• N(u,V (C)) = {w1,y}∪{x5`+2 : 1≤ `≤ d−2}.
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• N(w1,V (C)) = {u,w2}∪{x5`+1 : 1≤ `≤ d−2}.

• N(w2,V (C)) = {w1,w3}∪{x5` : 1≤ `≤ d−2}.

• N(w3,V (C)) = {z,w2}∪{x5`−1 : 1≤ `≤ d−2}.

Proof. Observe that the first item is immediate from our choice of u. Fix some ` with

1≤ `≤ d−2. Note that every vertex in X2 is joined to x5(`−1)+3 = x5`−2. In particular, y

and z are joined to x5`−2. Consider the 12-cycle C′ = (uw1w2w3zx5`−2 . . .x5`+2x1y), with

two consecutive diagonals yx5`−2 and x1z. Observe that C′ gives rise to another 12-cycle

C′′ = (uw1w2w3zx1x5`+2x5`+1 . . .x5`−2y) with two consecutive diagonals yx1 and ux5`+2.

By Lemma 2.2.3, either C′ or C′′ has all of its diagonals present. However, it cannot be C′,

since u cannot be adjacent to x5`−1. Therefore, C′′ has all diagonals present: w1x5`+1,

w2x5`, and w3x5`−1 are edges in G. This completes the proof of Claim 2.6.3.

It remains to check that Claim 2.6.3 produces chords of the right lengths. We do this

for chords incident with w1; the other cases follow identically. Indeed, w1 = z1 so we must

check that z1 is joined to z1+(1+5t) for t = 0,1, . . . ,d−1. This is obviously true for t = 0

and t = d−1, so let 1≤ t ≤ d−2. Then the above is equivalent to w1 being joined to

x5d−2−(1+(1+5t)) = x5(d−t−1)+1, where 1≤ d− t−1≤ d−2, which clearly follows by

Claim 2.6.3. Accordingly, there is a copy of Fd in G contrary to our assumption, so u must

be adjacent to every vertex in X j for all j ∈ J. But then we may place u in X1 and produce

a blow-up of Fd−1 of larger order, which is impossible by our choice of H. It follows that

every vertex in V (G)\V (H) is adjacent to vertices in at most d−2 of the sets Xi. In fact,

by Item 2 of Proposition 2.6.1, it follows that every vertex in V (G)\V (H) is adjacent to

precisely d−2 of the Xi’s.

Before proceeding, let us introduce a bit of notation and terminology. Let H̃ be the

graph with vertex set {X1, . . . ,X5d−8}, where an edge XiX j is present whenever the pair

(Xi,X j) induces a complete bipartite graph in G. As H is a blow-up of Fd−1, H̃ is
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isomorphic to Fd−1. We say that a vertex v is joined to a subset X ⊆V (G) if v is adjacent

to every vertex of X .

If a vertex v is joined to vertices in the neighborhood of Xi, then by Property 2 of

Proposition 2.6.1 we have that v misses vertices in at most the two sets Xi−1,Xi+1; by

symmetry, we may assume that each such vertex v misses Xi−1. Thus the following sets Yi,

where i = 1, . . . ,5d−8, defined below, form a partition of V (G)\V (H) (see Figure 2.10).

Note that each of these sets is independent (as G is triangle-free):

Yi = {u ∈V (G)\V (H) : u is joined to Xi+1,Xi+6, . . . ,Xi+5d−14 (indices modulo 5d−8)}

y1

y2

y3
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y6y7
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x1 x2
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x5
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x11

x12

Figure 2.10: The sets Xi and Yi

The next claim asserts that whether or not there are edges between Yi and Yj depends

on whether or not there are edges between Xi and X j. We are then able to ‘absorb’ Yi into

Xi, for each i.

Claim 2.6.4. Let d ≥ 3 and 1≤ i, j ≤ 5d−8. If j is such that X j /∈ NH̃(Xi), then there are

no edges between Yi and Yj.

Proof. Without loss of generality, set i = 1. Suppose j is such that X j /∈ NH̃(X1). We may
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assume that j 6= 1, as each Yi is independent. Then j = 5l+ r, where l ∈ {0, . . . ,d−3} and

r ∈ {3,4,5,6}. Towards a contradiction, suppose there is an edge y1y j between Y1 and Yj.

We consider four cases, according to the value of r. Suppose first that r = 3. Then we find

the following 5-cycle (y1x2x5l+3x5l+4y j). If r = 4, we find the induced 6-cycle

(y1x2x5l+3x5l+4x5l+5y j). If r = 5, there is, again, an induced 6-cycle (y1x2x1x5l+7x5l+6y j).

Finally, if r = 6, there is a 5-cycle (y1x2x5l+8x5l+7y j).

For each of the possible values of r, we reached a contradiction by showing that G

contains either a 5-cycle or an induced 6-cycle. Claim 2.6.4 follows.

Let Zi = Xi∪Yi. Note that the sets Zi are independent and they partition V (G). It

follows from Claim 2.6.4 that there are no Zi−Z j edges if XiX j /∈ E(H̃). By maximality of

G, all Zi−Z j edges are present if XiX j ∈ E(H̃), implying that G is a blow-up of Fd−1. In

particular, G is homomorphic to Fd−1, as required to complete the proof of

Theorem 2.6.2.

We are then able to establish the following result, as stated in the Introduction, which

gives a precise minimum degree condition (depending on d) for forcing a {C3,C5}-free

graph to be homomorphic to Fd−1.

Proof of Corollary 2.1.5. Note that we may assume that G is maximal {C3,C5}-free. By

Theorem 2.6.2, if G is not homomorphic to Fd−1, it contains a copy F of Fd . The number

of edges between V (F) and V (G)\V (F) is at most d(n− (5d−3)), since every vertex in

G has at most d neighbors in F , by Proposition 2.6.1. It follows that there is a vertex u in

F with at most dn
5d−3 −d neighbors outside of F . Since u has d neighbors in F , it follows

that u has degree at most dn
5d−3 , a contradiction to the minimum degree condition.

We remark that the proof of Theorem 2.1.4 rests heavily upon the fact that if G is an

n-vertex maximal {C3,C5}-free graph with δ (G)> n/5, then every vertex of G has a

neighbor in every copy of C7 in G. Let us say that a graph H is attractive in another graph
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G if every vertex of G has at least one neighbor in every copy of H in G. Then the proof

given in this section generalizes in a straightforward way to give the following statement.

Theorem 2.6.5. Let k≥ 2 be an integer and suppose G is an n-vertex graph with odd-girth

2k+1 such that C2k+1 is attractive in G. Then G is homomorphic to Fk
d for some d.

2.7 Homomorphism thresholds

Recall that, given a family of graphs H , the homomorphism threshold δhom(H ) of H is

the infimum of d such that every H -free graph with n vertices and minimum degree at

least dn is homomorphic to a bounded H -free graph. In this section we provide the proof

of Theorem 2.1.1, which states that the homomorphism threshold of {C3,C5} is 1/5. We

also prove that δhom(C5)≤ 1/5 by showing that C5-free graphs of large enough minimum

degree are also triangle-free.

Proof of Theorem 2.1.1. Denote δ = δhom({C3,C5}). First, we show that δ ≥ 1/5. We

note that Fd is not homomorphic to a {C3,C5}-free graph H with fewer than |Fd| vertices.

Indeed, suppose otherwise. Then two vertices x and y in Fd are mapped to the same vertex

u in H. By Proposition 2.1.3, there is a path P of length 1, 3 or 5 between x and y. Clearly,

P cannot have length 1 (because the set of vertices mapped to the same vertex is

independent). It follows that P has length 3 or 5. This implies that the path P is mapped to

a cycle of length 3 or 5, a contradiction. It follows that, for each d ≥ 1, Fd is a

{C3,C5}-free graph with minimum degree at least |Fd|/5, which is not homomorphic to a

{C3,C5}-free graph on fewer than |Fd| vertices. Hence, indeed, δ ≥ 1/5.

It remains to show that δ ≤ 1/5. Let ε > 0 be fixed. Suppose that G is a {C3,C5}-free

on n vertices and minimum degree at least (1/5+ ε)n. Let d be such that d
5d−3 < 1/5+ ε .

Then, by Corollary 2.1.5, G is homomorphic to Fd−1. This shows that δ ≤ 1/5+ ε . Since

ε was arbitrary, we conclude that δ ≤ 1/5.
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It would be interesting to determine the homomorphism threshold of C5. The

following lemma enables us to easily obtain an upper bound.

Lemma 2.7.1. Let G be a C5-free graph on n vertices with δ (G)> n/6+1. Then G is

triangle-free provided n is sufficiently large.

Before proving Lemma 2.7.1, we use it to prove Corollary 2.1.2, which provides an

upper bound on the homomorphism threshold δhom(C5). We currently do not have any

nontrivial lower bound on δhom(C5).

Proof of Corollary 2.1.2. Suppose that G is a C5-free graph on n vertices and minimum

degree at least (1/5+ ε)n for some fixed ε > 0. Then, by Lemma 2.7.1, G is also

triangle-free. It follows from Theorem 2.1.1 that G is homomorphic to a C5-free (and

C3-free) graph H of order at most C =C(ε). Hence, indeed, δhom(C5)≤ 1/5.

We now turn to the proof of Lemma 2.7.1.

Proof of Lemma 2.7.1. We start by showing that every vertex in G is incident with at most

13 triangular edges (i.e. edges on triangles). To see this, suppose that u is incident with at

least 14 triangular edges. In other words, the neighborhood N(u) of u contains edges that

span at least 14 vertices. The following claim implies that there is a set X of seven

neighbors of u such that every vertex in X has a neighbor in N(u)\X .

Claim 2.7.2. Let H be a graph with n vertices and no isolated vertices. Then there is a set

X of size at least n/2 such that every vertex in X has a neighbor outside of X.

Proof. We note that it suffices to prove the claim under the assumption that H is

connected. Indeed, for each component Hi of H, we may pick a set Xi as in the claim, and

let X be the union of the Xi’s. So now we assume that H is connected. Because of the

assumption that there are no isolated vertices, we may assume that |H| ≥ 2.
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Let u be a vertex for which H \{u} is connected. Let v be a neighbor of u. Consider

the graph H ′ = H \{u,v}. Let H1, . . . ,Ht be the connected components of H ′. We pick a

set Xi for each i ∈ [t] as follows: if Hi consists of a single vertex xi, then xi must be

adjacent to v, and we take Xi = {xi}; otherwise, if Hi has at least two vertices, then by

induction there is a set Xi of size at least |Hi|/2 such that every vertex in Xi has a neighbor

outside of Xi (but in Hi). Let X =
⋃t

i=1 Xi∪{u}. It is easy to check that X satisfies the

requirements of Claim 2.7.2.

Let Y be a set of at most seven neighbors of u, which is disjoint from X and satisfies

that every vertex in X has a neighbor in Y . Due to the minimum degree condition, we may

find two distinct vertices x1 and x2 in X that have a common neighbor z outside of

X ∪Y ∪{u}. Let y ∈ Y be a neighbor of x1. Then we find the 5-cycle (x1yux2z), a

contradiction. Thus, indeed, every vertex is incident with at most 13 triangular edges.

We now show that G contains no two triangles that intersect in an edge.

Claim 2.7.3. G contains no distinct vertices x1,x2,x3,x4 such that x1x2x3 and x2x3x4 are

triangles.

Proof. We note that x1 and x4 do not have common neighbors (apart from x2 and x3).

Indeed, suppose that y is such a common neighbor. Then (yx1x2x3x4) is a 5-cycle.

Similarly, x1 and x2 do not have a common neighbor. By symmetry, the following pairs do

not have common neighbors (outside of x1,x2,x3,x4): {x1,x3}, {x2,x4} and {x3,x4}.

Finally, x2 and x3 have at most 13 common neighbors (because every vertex is incident

with at most 13 triangular edges). Denote by Ni the set of neighbors of xi, that are not in

{x1,x2,x3,x4} and are not common neighbors of x2 and x3.

The following properties of Ni holds.

• The sets Ni are pairwise disjoint.

• |Ni| ≥ n/6−14 for i ∈ [4].
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• The edges induced by Ni span at most 13 vertices (by Claim 2.7.2).

• There are no edges between Ni and N j for i 6= j.

Indeed, if i = 1 and j = 2 then (y1x1x3x2y2) is a 5-cycle, a contradiction. A

contradiction may be reached similarly for all other choices of i and j.

• There are no vertices with neighbors in two of the sets N1,N2,N3.

Indeed, suppose that z is a neighbor of y1 and y2 from N1 and N2. Then (zy1x1x2y2)

is a 5-cycle, a contradiction.

Denote by Mi the set of neighbors of Ni (apart from Ni∪{xi}. We note that

|Mi| ≥ n/6−14. Indeed, every vertex in Ni has at most 13 neighbors in the neighborhood

of xi, thus all but 14 of its neighbors are in Mi. The sets N1,N2,N3,N4,M1,M2,M3 are

seven pairwise disjoint sets of size at least n/6−14, a contradiction.

Finally, suppose that G contains a triangle x1x2x3. By Claim 2.7.3, the sets Ni of

neighbors of xi (outside of {x1,x2,x3}) are disjoint. As in Claim 2.7.3, there are no edges

between Ni and N j for i 6= j. Similarly, no two of the sets N1,N2,N3 have a common

neighbor. Denote by Mi the sets of neighbors of Ni outside of Ni∪{xi}. Note that

|Ni|> n/6−1 and |Mi|> n/6 (by Claim 2.7.2, there is a vertex u in Ni with no neighbors

in Ni; all of u’s neighbors, apart from xi, are in Mi). The sets

N1,N2,N3,M1,M2,M3,{x1,x2,x3} are pairwise disjoint. Thus, their union has size larger

than n, a contradiction. It follows that G is triangle-free.

We remark that the minimum degree condition in Lemma 2.7.1 is best possible, as can

be seen by the example depicted in Figure 2.11.
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Figure 2.11: A C5-free but not C3-free graph with minimum degree
n/6+1

2.8 Final remarks and open problems

We are able to determine precisely the structure of {C3,C5}-free graphs with high

minimum degree, and thereby deduce the value of the homomorphism threshold

δhom({C3,C5}). It would be very interesting to extend this result to {C3, . . . ,C2k−1}-free

graphs. Recall that, for integers k ≥ 2,d ≥ 1, Fk
d is the graph obtained from a

((2k−1)(d−1)+2)-cycle by adding all chords joining vertices at distances j(2k−1)+1

for j = 0,1, . . . ,d−1. In light of our Theorem 2.1.4 it is natural to ask whether or not a

{C3, . . . ,C2k−1}-free graph on n vertices with minimum degree larger than n
2k−1 is

homomorphic to Fk
d for some d. In particular, is it true that every n-vertex maximal

{C3,C5, . . . ,C2k−1}-free graph G with δ (G)> n
2k−1 has the property that every vertex has

at least one neighbor in every copy of C2k+1 in G?

Rather surprisingly it turns out that this is false when k ≥ 4 is even, as shown by the

following construction due to Oliver Ebsen [21].

Suppose that k ≥ 4 is even. Starting with a complete graph on 4 vertices, subdivide

two independent edges by an additional 2k−6 vertices and subdivide the remaining four

edges by an additional two vertices each. Denote the resulting graph by Tk. It is easy to
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check that this graph is maximal {C3, . . . ,C2k−1}-free. To obtain large minimum degree

assign weight 2 to each vertex of the original K4 and to k−4 vertices of the ‘long’

subdivided edges, and assign weight 1 to the remaining vertices. This may be done in such

a way that each vertex has weight 3 in its neighborhood (as k is even). To obtain an

unweighted graph of order n simply blow up each vertex with an independent set of size

proportional to its weight. Then the resulting graph T ∗k is maximal {C3, . . . ,C2k−1}-free

and δ (T ∗k ) =
3n

6k−4 > n
2k−1 . However, we claim that Tk is not homomorphic to Fk

d , for any

d (and therefore no blow-up of Tk is homomorphic to any Fk
d ). Indeed, suppose otherwise

and let d0 be minimal such that Tk is homomorphic to Fk
d0

(obviously d0 ≥ 2). It is easy to

check that, for d ≥ 2 and any vertex v, Fk
d −{v} is homomorphic to Fk

d−1. Since Tk is not

homomorphic to Fk
d0−1, it follows that Tk must be a blow-up of Fk

d0
with all parts

nonempty. Since Tk has precisely 4k vertices this implies that d0 ≤ 3, and so either Tk is a

blow-up of Fk
2 =C2k+1 or of Fk

3 . But no two vertices of Tk have the same neighborhood so

the former case is impossible. Moreover, Fk
3 has exactly 4k vertices as well, but clearly Tk

is not isomorphic to Fk
3 (as Tk is not regular, for example). It follows that Tk is not

homomorphic to any Fk
d , as claimed.

We do not know whether Theorem 2.1.4 extends naturally to {C3, . . . ,C2k−1}-free

graphs when k ≥ 5 is odd, and it would be interesting to pursue this line of research

further.

Recall that the homomorphism threshold of a family of graphs H is the infimum of d

satisfying that every H -free graph with n vertices and minimum degree at least dn is

homomorphic to an H -free graph of bounded order (depending on d but not on n).

Despite the above remarks concerning the extension of Theorem 2.1.4 to general odd-girth

graphs, we made the conjecture that δhom({C3,C5, . . . ,C2k−1}) = 1
2k−1 for all k ≥ 4. This

conjecture was proved correct by Ebsen and Schacht [20] very recently, during the

preparation of this thesis.

We have also obtained an upper bound on δhom(C5), namely, that it is at most 1/5. We
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ask if it is true that 1/5 is the correct value.

Question 2.8.1. Is it true that δhom(C5) = 1/5?

In fact, any nontrivial (i.e. non-zero) lower bound on δhom(C5) would be interesting.

In order to obtain such a lower bound, one would have to find, in particular, a family of

graphs that have large minimum degree, are C5-free and are not 4-colorable (indeed,

otherwise, the graphs are homomorphic to K4, which is clearly C5-free). Although it is

well known that such graphs exist, it seems hard to find explicit examples, especially with

the added condition that they are not homomorphic to C5-free graphs of bounded order.

Finally, what about the colorability of dense graphs of given odd-girth? Recall that the

Erdős-Simonovits problem was to determine whether or not all n-vertex triangle-free

graphs with δ (G)> n/3 are 3-colorable. As we mentioned in the introduction to this

chapter, this problem initiated an intensive amount of research, finally culminating in

Brandt and Thomassé’s result that all such dense triangle-free graphs are 4-colorable.

They proved this by characterizing the structure of these graphs. The 4-colorable

structures come from a family of graphs obtained from an induced 6-cycle. Since we

proved that induced 6-cycles no longer appear in dense graphs of odd-girth 2k+1 for

k ≥ 3, we believe the following conjecture might be true.

Conjecture 2.8.2. Let k ≥ 3 be an integer and suppose G is an n-vertex graph of

odd-girth 2k+1 and minimum degree larger than n
2k−1 . Then χ(G)≤ 3.

Note that by Theorem 2.1.4, this conjecture is true for k = 3. However, we do not yet

see how to prove Conjecture 2.8.2 for larger values of k.
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CHAPTER 3

HIGHLY LINKED TOURNAMENTS WITH LARGE MINIMUM OUT-DEGREE

3.1 Introduction

A graph G is connected if for every two vertices there is path in G joining them.

Connectivity problems are some of the most natural in graph theory. Viewing a graph as a

communication network, how robust is the network to faulty nodes? In other words, if a

set of nodes drop out from the network, does the network remain connected? Formalizing

this notion of robustness, we say that a graph is k-connected if it remains connected after

the removal of any set of k−1 vertices. Thus a graph is 1-connected if and only if it is

connected. Menger’s theorem provides a very useful characterization of k-connected

graphs. It states that a graph is k-connected if and only if between any two distinct vertices

there exist k internally vertex disjoint paths. This easily implies that if X and Y are any

two disjoint sets of k vertices, then there exist k vertex disjoint paths from X to Y , and

which are internally disjoint from X ∪Y : just form an auxiliary graph by adding two new

vertices x and y, and adding all edges between x and X and between y and Y . However, we

do not have control over the endpoints of these paths: we cannot specify that a given

vertex of X must be joined by one of these paths to a given vertex of Y . This leads to the

notion of k-linkedness. A graph is k-linked if for any two disjoint sets of vertices

{x1, . . . ,xk} and {y1, . . . ,yk} there are vertex disjoint paths P1, . . . ,Pk such that Pi joins xi to

yi for i = 1, . . . ,k.

Clearly, k-linkedness is a stronger notion than k-connectivity. But how much stronger

is it? Larman and Mani [46] and Jung [40] showed that there is an f (k) such that any

f (k)-connected graph is k-linked. They used a theorem of Mader [51], which states that

any sufficiently dense graph contains a subdivision of a complete graph K3k, and noticed

that any 2k-connected graph containing a subdivided K3k must be k-linked. Their proofs
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show that f (k) can be taken to be exponential in k. Later, Bollobás and Thomason [14]

proved that f (k) = 22k will do.

The definitions for k-connectivity and k-linkedness carry over similarly for directed

graphs. A directed graph is strongly connected if for any pair of distinct vertices x and y

there is a directed path from x to y, and is strongly k-connected if it remains connected

upon removal of any set of at most k−1 vertices. In the sequel, we shall omit the use of

the word ‘strongly’ with the understanding that we always mean strong connectivity (as

opposed to connectivity of the underlying undirected graph). Menger’s theorem carries

over in the directed case as well and asserts that a directed graph is k-connected if and

only if for any two distinct vertices x and y there are k internally vertex disjoint directed

paths from x to y. A directed graph D is k-linked if for any two disjoint sets of vertices

{x1, . . . ,xk} and {y1, . . . ,yk} there are vertex disjoint directed paths P1, . . . ,Pk such that Pi

has initial vertex xi and terminal vertex yi for each i ∈ [k]. Thus, D is 1-linked if and only

if it is connected.

It turns out that directed graphs exhibit quite different behavior than undirected graphs

with respect to the relations they bear between connectivity and linkedness. Indeed,

Thomassen [64] constructed directed graphs with arbitrarily large connectivity which are

not even 2-linked. Since large connectivity does not necessarily imply linkedness for

general directed graphs, it is natural to consider the situation for a restricted class of

directed graphs, namely, tournaments. A tournament on n vertices is a directed graph

formed by orienting each edge of the complete graph Kn. In this line of research,

Thomassen [62] proved that there is a g(k) such that every g(k)-connected tournament is

k-linked, with g(k) =Ck!, for some absolute constant C. Greatly improving Thomassen’s

bound on g(k), Kühn, Lapinskas, Osthus, and Patel [45] showed that one may take

g(k) = 104k logk and still ensure k-linkedness. They went on to conjecture that g(k) may

be taken to be linear in k. Pokrovskiy [58] resolved this conjecture by showing that any

452k-connected tournament is k-linked. Except for small k, an optimal bound for g(k) is
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not known. Bang-Jensen [10] showed that any 5-connected tournament is 2-linked, and

there exists a family of 4-connected tournaments which are not 2-linked. For general k, it

is not difficult to construct (2k−2)-connected tournaments with high minimum out and

in-degree, which are not k-linked. For example, consider the blow-up of a directed triangle

with vertex sets A,B,C, such that |C|= 2k−2 and |A|, |B| ≥ 2k. Direct the edges from A

to B, from B to C, and from C to A; inside each set, orient the edges in any way. Note that

this tournament is (2k−2)-connected: if we do not remove one of A,B, or C, then the

resulting tournament is still a blow-up of a directed triangle, and hence is still strongly

connected. To see that this tournament is not k-linked, just split C into two sets C1,C2 of

size k−1, and let X = {b}∪C1 for some b ∈ B and Y = {a}∪C2 for some a ∈ A. Then we

cannot link X to Y , since there is no way to get from b to a without using a vertex from C.

Going back to undirected graphs for a moment, if some density conditions are

assumed on the graph, then Bollobás and Thomason’s 22k can be taken all the way down

to 2k. This is due to the result of Mader [51] mentioned earlier, that a graph with

sufficiently large average degree contains a subdivision of a complete graph of order 3k.

Indeed, if S denotes our subdivision of K3k, and X and Y are the k-sets we want to link,

then by Menger’s theorem there are 2k pairwise vertex disjoint paths from X ∪Y to a

subset U of the branch vertices of S of size 2k. Moreover, these paths are internally vertex

disjoint from U . Then, provided these paths are chosen to minimize the number of edges

outside of S, it is possible to show that one can link X to Y utilizing the k unused branch

vertices of S.

Note that 2k is close to the theoretical minimum connectivity in any k-linked graph:

any k-linked graph must be (2k−1)-connected. Supposing otherwise, let W be a vertex

cut of size 2k−2 and arbitrarily partition W into two sets W1,W2 of size k−1. Since

G−W consists of at least two nonempty components C1,C2, pick a vertex c1 ∈C1 and

c2 ∈C2. Then let X =W1∪{c1} and Y =W2∪{c2}. Clearly, there is no way to get from

c1 to c2 without using a vertex of W1∪W2.
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Recently, Thomas and Wollan [61] showed that any 2k-connected graph with average

degree at least 10k is k-linked, greatly reducing the bound on the required average degree

(which was initially exponential in k). Motivated by this result, Pokrovskiy [58]

conjectured that a similar phenomenon should occur for tournaments with a natural

‘density’ condition: high minimum out-degree and in-degree. In particular, he conjectured

that there is a function f : N→ N such that any 2k-connected tournament with minimum

out and in-degree at least f (k) is k-linked. Here is our main result, which makes progress

on this conjecture.

Theorem 3.1.1. For every positive integer k there exists f (k) such that every

4k-connected tournament T with δ+(T )≥ f (k) is k-linked.

Note that we do not assume any lower bound on the minimum in-degree. Moreover,

we remark our f (k) in the above theorem can be taken to be 22ck4
, for an absolute constant

c. It would be nice to determine the smallest function f such that this theorem holds; this

is related to determining the smallest function d for which the next theorem

(Theorem 3.1.2) holds.

Recall that the complete directed graph
−→
K k is the directed graph on k vertices where,

for every pair x,y of distinct vertices, both xy and yx are present. In order to prove

Theorem 3.1.1 we shall show that large minimum out-degree allows us to embed

subdivisions of the complete directed graph
−→
K k. As mentioned above, Mader showed that

for any positive integer k there is g(k) such that any graph with average degree at least

g(k) contains a subdivision of Kk. The following theorem can be viewed as an analogue of

Mader’s result for tournaments, replacing ‘average degree’ with ‘minimum out-degree’,

and may be of independent interest.

Theorem 3.1.2. For any positive integer k there exists a d(k) such that the following

holds. If T is a tournament with δ+(T )≥ d(k), then T contains a subdivision of
−→
K k.
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We prove this theorem with d(k) = 22Ck2
for some absolute constant C, and leave the

determination of the smallest possible function d as open problem. This theorem does not

hold if we replace T by a general digraph, as was shown by Mader [52] (in fact, he

showed that it need not hold even if we also assume large minimum in-degree). This fact

also follows from a result of Thomassen [63], who showed that for every integer n there

exist digraphs on n vertices with minimum out-degree at least 1
2 logn which do not contain

an even directed cycle. But since any subdivision of
−→
K 3 must contain an even directed

cycle, these digraphs do not contain any subdivision of a complete directed graph.

In order to prove Theorem 3.1.1, we shall need a little more than Theorem 3.1.2.

Roughly speaking, we shall first embed in T a subdivided
−→
K k, and then attach a few

additional paths to it (see Section 3.2).

3.1.1 Organization and Notation

The remainder of this chapter is organized as follows. In Section 3.2, we shall prove

Theorem 3.1.2 which allows us to embed subdivisions of a complete directed graph and

related structures in tournaments with high minimum out-degree. In Section 3.3, we shall

prove one preparatory lemma and then finish our proof of Theorem 3.1.1. Our final

section concludes with some open problems.

Our notation is standard. Thus, for a directed graph D we use N+(x),N−(x),d+(x),

and d−(x) to denote the out-neighborhood, in-neighborhood, out-degree, and in-degree of

a vertex x, respectively. We use δ+(D) to denote the minimum out-degree of D. A

directed path P = x1 . . .x` in D is a sequence of distinct vertices such that xixi+1 is an edge

for every i = 1, . . . , `−1. We call x1 the initial vertex and x` the terminal vertex of P. The

length of P is the number of its directed edges. We say that P is internally disjoint from

some subset X ⊂V (D) if `≥ 3 and {x2, . . . ,x`−1}∩X =∅. If A and B are subsets of

V (D), then we shall write A→ B if every edge with one endpoint in A and the other
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endpoint in B is directed from A to B. Lastly, if P is a family of directed paths in a

digraph, then we use
⋃

P to denote the set
⋃

P∈P V (P).

3.2 Proof of Theorem 3.1.2

The first proofs of the result that graphs with sufficiently large connectivity are k-linked

use a result of Mader, which allows one to embed a subdivision of a complete graph in a

graph with sufficiently large average degree. Our proof of Theorem 3.1.1 follows a similar

strategy. In order to proceed, we need a directed analogue of Mader’s result for

tournaments: we prove this in the present section. We shall use the following simple

lemma of Lichiardopol [47] (independently rediscovered by Havet and Lidický [36]). We

include the short proof for convenience of the reader.

Lemma 3.2.1. Every tournament with minimum out-degree at least k has a

subtournament with minimum out-degree k and order at most 3k2.

Proof. Let T be a tournament with minimum out-degree at least k, and let T ′ be a

vertex-minimal subtournament of T such that δ+(T ′)≥ k. Denote by L the collection of

vertices in T ′ with out-degree k in T ′, and let |T ′|= t and |L|= `. By minimality, for

every vertex v ∈ T ′ we have δ+(T ′ \{v})≤ k−1. Hence, every vertex in T ′ \L has an

in-neighbor in L, and so there are at least t− ` edges from L to T ′ \L. On the other hand,

the number of such edges is exactly

`k−
(
`

2

)
,

and so t− `≤ `k− `2/2+ `/2. It follows that

`2− `(2k+3)+2t ≤ 0,
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implying the bound (2k+3)2−8t ≥ 0. In other words, t ≤ 1
8(2k+3)2, so since t must be

an integer we get t ≤ 1
8((2k+3)2−1) = k2/2+3k/2+1≤ 3k2, as required.

We are now ready to prove Theorem 3.1.2. In the following, for a positive integer k

and nonnegative integer m≤ 2
(k

2

)
, an m-partial

−→
K k is any spanning subdigraph of

−→
K k

with precisely m directed edges present. Our proof shows how to find a subdivision of
−→
K k

by inductively finding subdivisions of m-partial
−→
K k’s for each m≤ 2

(k
2

)
.

Proof of Theorem 3.1.2. For a positive integer k and nonnegative integer m≤ 2
(k

2

)
, let

d(k,m) denote the smallest positive integer such that any tournament with

δ+(T )≥ d(k,m) contains a subdivision of an m-partial complete directed graph on k

vertices. We shall show that if m < 2
(k

2

)
, then d(k,m+1)≤ 7d(k,m)2. We use induction

on k, and for each fixed k, induction on m. For k = 1 there is nothing to show and we can

take d(1,0) = 1. So let us assume k ≥ 2 is given and that we can embed a subdivision of

an m-partial
−→
K k in any tournament with minimum out-degree at least d(k,m), and let T be

a tournament with δ+(T )≥ 7d(k,m)2.

Claim 3.2.2. We may assume that there is a subdivision of an m-partial
−→
K k contained in

the out-neighborhood of some vertex of T , and which spans at most 3d(k,m)2 vertices.

Proof. Since certainly we have δ+(T )≥ d(k,m), by Lemma 3.2.1 we may find a

subtournament T ′ of size at most 3d(k,m)2 and with minimum out-degree at least d(k,m).

By induction we may embed in T ′ a subdivision of an m-partial
−→
K k. Denote this

subdivision by K. We wish to add a missing directed edge, say xy. In other words, we

must find a directed path from x to y in T such this path is internally disjoint from V (K).

Let T ′′ = T \T ′ and partition it into strongly connected subtournaments T ′′ = S1∪·· ·∪S`

such that Si→ S j for all 1≤ i < j ≤ ` (unless, of course, T ′′ itself is strongly connected).

Observe that since d+(x)≥ 7d(k,m)2 and |T ′| ≤ 3d(k,m)2, we have that x has an
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out-neighbor in T ′′. Therefore, if some vertex of S` is joined to y we are done, as we can

find a directed path from x to y outside of T ′. So we may assume that S` ⊆ N+(y). Now, as

|T ′| ≤ 3d(k,m)2 and no vertex of S` is joined to any vertex of Si for i < `, we have that

δ
+(S`)≥ 7d(k,m)2−3d(k,m)2 ≥ d(k,m),

Applying Lemma 3.2.1 to S`, we find a subtournament S⊆ S` such that δ+(S)≥ d(k,m)

and with size at most 3d(k,m)2. It follows by induction that we may embed a subdivision

of an m-partial
−→
K k in S. But since S⊆ S` ⊆ N+(y) and |S| ≤ 3d(k,m)2, the claim

holds.

By Claim 3.2.2, choose a vertex z with the smallest possible minimum out-degree

satisfying the property that there is a subdivision of an m-partial
−→
K k contained in N+(z)

spanning at most 3d(k,m)2 vertices. Denote by N the out-neighborhood of z and Kz the

subdivision with Kz ⊆ N. We wish to add one more directed edge to this subdivision, say

uv with u,v ∈ Kz. From N remove all vertices of Kz except for u and v and call this set N′.

If T [N′] is strongly connected then we are done; otherwise, partition T [N′] into strongly

connected subtournaments, say T [N′] = S′1∪·· ·∪S′t where S′i→ S′j for all 1≤ i < j ≤ t.

Suppose that some vertex w ∈ S′t is joined to a vertex w′ ∈ N−(z). Then since there is a

directed path P from u to w in T [N′] we have that uPww′zv is a directed path from u to v

which avoids Kz \{u,v}. Hence we may assume that every vertex of N−(z) dominates S′t .

But then, since |Kz| ≤ 3d(k,m)2 and there are no edges from S′t to S′i for i < t, one has that

δ+(S′t)≥ 7d(k,m)2−3d(k,m)2 = 4d(k,m)2. So we can repeat the argument in

Claim 3.2.2 to S′t with minimum out-degree 4d(k,m)2 instead of 7d(k,m)2 (observe that

we need 4d(k,m)2−3d(k,m)2 ≥ d(k,m) to hold, which is clearly true). Accordingly,

there is a vertex q ∈ S′t such that N+(q) contains a subdivision of an m-partial
−→
K k

spanning at most 3d(k,m)2 vertices. However, since
⋃

i<t S′i 6=∅ (as T [N′] is not strongly

connected), and q is not joined to any vertex of
⋃

i<t S′i∪N−(z), we have d+(q)< d+(z), a
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contradiction to the minimality of z. This completes the proof of Theorem 3.1.2, as we

may take d(k) = d(k,2
(k

2

)
).

We now need to embed a slightly more complicated structure in T . In particular, we

shall need to attach a few special paths to our subdivided complete directed graph. Say a

subdivision S is minimal in a tournament T if all of its paths have minimal length. This

implies that every path in S is backwards transitive: if x1 . . .xt is a path in S between

branch vertices, then xix j /∈ E(T ) whenever i ∈ [t−2] and i < j+1. Let K min
r denote a

minimal subdivision of a
−→
K r. Since any subdivision of

−→
K r contains a minimal

subdivision, Theorem 3.1.2 allows us to find a K min
r in tournaments with sufficiently

large out-degree. If U denotes the set of branch vertices of this subdivision, then for every

u,v ∈U , K min
r consists of directed paths Puv,Pvu going from u to v and from v to u,

respectively. Since T is a tournament and K min
r is minimal, precisely one of these paths is

a directed edge.

Now we define our augmented subdivision, denoted by K ∗
r , as follows. Let K denote

a copy of K min
r in T . The branch vertices of K ∗

r are precisely the branch vertices of K ;

denote this set by U . We form K ∗
r by adding a collection L of special ‘loop’ paths in the

following manner. For each pair u,v ∈U , if, say, Puv is the path between u and v in K of

length at least two, then each of u and v has an associated directed path from L : one

directed path Lu
uv going from the second vertex of Puv to u, and another directed path Lv

uv

going from v to the penultimate vertex of Puv; we require that these paths are internally

disjoint from V (K ). We also impose that the paths in L are minimal and hence

backwards transitive. For u ∈U , we let Lu denote the collection of paths in L which

contain u. Note that K ∗
r and K min

r really denote families of subdigraphs which depend

on the underlying tournament T . When we speak of ‘a K ∗
r ’ we really mean ‘a member of

K ∗
r in T ’; we hope this usage of notation does not cause confusion, but we think that it is
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simpler. Now the proof of the existence of a K ∗
r follows exactly in the same way as the

proof of Theorem 3.1.2, namely by induction on the number of ‘loops’. We state it as a

corollary and provide only a sketch of the proof.

Corollary 3.2.3. For any positive integer k there exists a d∗(k) such that the following

holds. If T is a tournament with δ+(T )≥ d∗(k), then T contains a K ∗
k .

Proof sketch. Similarly as in Theorem 3.1.2, for a positive integer k and nonnegative

integer m≤ 2
(k

2

)
, an m-partial K ∗

k is any minimal subdivision of
−→
K k with precisely m

loop paths present. Let d∗(k,m) denote the smallest positive integer such that any

tournament with δ+(T )≥ d∗(k,m) contains a subdivision of an m-partial K ∗
k . We show,

as before, that if m < 2
(k

2

)
, then d∗(k,m+1)≤ 7d∗(k,m)2. For k = 1 there is nothing to

show and we can take d∗(1,0) = 1. So assume k ≥ 2 is given. Then d∗(2,0) exists by

Theorem 3.1.2 (i.e., we can embed a subdivision of
−→
K 2 which contains a minimal such

subdivision). Thus let m≥ 1 and suppose we can embed an m-partial K ∗
k in any

tournament with minimum out-degree at least d∗(k,m). Let T be a tournament with

δ+(T )≥ 7d∗(k,m)2. Then the same proof used to show Theorem 3.1.2 gives that we may

attach one more loop path, which we may assume has minimal length. Therefore we can

embed an (m+1)-partial K ∗
k in T , as claimed.

3.3 Proof of the main theorem

In this section we finish the proof of Theorem 3.1.1. The structure of the proof is as

follows. First, assuming the minimum degree of our tournament is sufficiently large, we

shall embed in T a copy S of K ∗
r where r = r(k) is sufficiently large. If x1, . . . ,xk,

y1, . . . ,yk are the vertices we want to link, then we shall show that there exists a collection

of k directed paths going from the xi’s to the branch vertices of S , and a collection of k

directed paths going from the branch vertices of S to the yi’s, all of these paths being

pairwise vertex disjoint. Here we only use the assumption that T is 4k-connected (see
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Lemma 3.3.1 below). Finally, we show that, provided one chooses these paths

appropriately, one can link each xi to yi by rerouting the paths through S . The rerouting

step is more complicated than one might expect, and we shall see that we do need the

slightly richer structure K ∗
r rather than just a subdivided complete directed graph.

We need a small bit of terminology first before proceeding. If X and Y are two disjoint

sets of vertices in a directed graph, then we say that there is an out-matching (resp.,

in-matching) of X to Y if there is a matching from X into Y such that all matching edges

are directed from X to Y (resp., directed from Y to X).

Lemma 3.3.1. Let T be a 4k-connected tournament. Suppose A,B⊂V (T ) are two

disjoint subsets of size k, and let L⊂V (T ) be a set of 4k vertices disjoint from A∪B. Then

there are k directed paths from A to L, and k directed paths from L to B, all these paths

pairwise vertex disjoint and internally disjoint from L.

Proof. Choose two disjoint subsets WA,WB disjoint from A∪B∪L with maximum size

subject to the following properties:

• Every vertex in WA has at least 2k out-neighbors in L, and every vertex in WB has at

least 2k in-neighbors in L.

• There is an in-matching MA from WA to A, and an out-matching MB from WB to B.

We shall assume, without loss of generality, that |WA| ≤ |WB|. Let A′ denote the set of

|WA| vertices in A that are incident with an edge of MA, and let A′′ = A\A′. Let B′,B′′

denote the analogous sets of vertices in B. As T is 4k-connected, we can find pairwise

vertex disjoint directed paths from some k−|WB| vertices of L to B′′ avoiding

A∪WA∪B′∪WB. Choose a collection of such paths P which minimizes |
⋃

P|, and

subject to that, maximizes the number of paths whose second vertex has at least 2k

in-neighbors in L. Partition P into sets P ′,P ′′ where the former denotes the collection

of paths in P whose second vertex has at least 2k in-neighbors in L, and the latter denotes
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the collection of remaining paths. Denote by X ′ the set of all second and third vertices on

paths in P ′, and denote by X ′′ the set of all first and second vertices on paths in P ′′.

Consider the set Y := A′∪WA∪X ′∪X ′′∪B∪WB and note that we can bound the size of Y

as

|Y | ≤ 2|WA|+3(k−|WB|)+2|WB|.

We shall now find k−|WA| disjoint directed paths from the vertices in A′′ to some subset

of L, avoiding Y . This is possible since T is 4k-connected and

4k−|Y | ≥ 4k− (2|WA|+3(k−|WB|)+2|WB|)

= k−2|WA|+ |WB| ≥ k−|WA|,

where the last inequality holds since we are assuming that |WA| ≤ |WB|. Therefore, choose

a collection Q of pairwise disjoint directed paths from A′′ to L avoiding Y with |
⋃

Q| as

small as possible. We claim that these new paths do not intersect any path from P:

Claim 3.3.2. No path from Q intersects a path from P .

Proof. Suppose that some path Q ∈Q intersects a path P ∈P . Let P = x1 . . .xs and

Q = y1 . . .yt , and let LA = (
⋃

Q)∩L and similarly LB = (
⋃

P)∩L. We shall consider two

cases, according to whether P ∈P ′ or P ∈P ′′. Suppose first the former holds, and let yi

(i≥ 2) be the first vertex of Q that intersects P. We may assume that yi 6= x1; indeed, if

yi = x1, then |LA∪LB| ≤ 2k−1, and since P ∈P ′, we have that x2 has at least 2k

in-neighbors in L. Therefore, we may choose some in-neighbor x′ disjoint from LA∪LB

and replace P with P′ := x′x2 . . .xs. Moreover, since the paths in Q avoid {x2,x3} we may

assume that yi = x4. Consider yi−1 and pick any vertex z ∈ L\ (LA∪LB). If yi−1z ∈ E(T ),

then we may replace Q with the shorter directed path y1 . . .yi−1z, contradicting the

minimality of |
⋃

Q|. So we have zyi−1 ∈ E(T ). But then as long as i≥ 3 we may replace

P with the shorter path zyi−1x4 . . .xs, contradicting the initial minimal choice of |
⋃

P|. It
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remains to consider when i = 2. In this case, zy2 /∈ E(T ) for every z ∈ L\ (LA∪LB), since

otherwise we can replace P with a shorter directed path. Thus y2 has at least 2k

out-neighbors in L, and we can add y1y2 to the matching MA, a contradiction to the

maximality of this matching. It follows that P∩Q =∅ for P ∈P ′.

So let us assume that P ∈P ′′. Since the paths in Q avoid {x1,x2}, we may assume in

this case that yi = x3. The same argument as in the previous paragraph shows that we may

assume i≥ 3 (otherwise, we obtain a larger matching than MA). Also, as before, if

z ∈ L\ (LA∪LB), then yi−1z /∈ E(T ); otherwise we can replace Q with the shorter path

y1 . . .yi−1z. Hence yi−1 has at least |L|− |LA∪LB| ≥ 2k in-neighbors in L. Choose one of

these in-neighbors u (disjoint from LA∪LB) and consider the path P∗ := uyi−1x3 . . .xs.

Then P∗ has the same length as P and its second vertex has at least 2k in-neighbors in L,

so we could replace P with P∗, contradicting the maximality of P ′. Therefore, we must

have P∩Q =∅, and the proof of Claim 3.3.2 is complete.

Armed with Claim 3.3.2, the proof of Lemma 3.3.1 is essentially complete. Indeed,

every vertex in WA has at least 2k out-neighbors in L, and so each of these vertices has at

least

2k−|LA∪LB|= |WA|+ |WB|,

out-neighbors in L\ (LA∪LB). So for each vertex in WA we may select a distinct

out-neighbor in L\ (LA∪LB). Then every vertex in WB has at least |WB| in-neighbors from

the remaining vertices of L, so we can pick a distinct in-neighbor for every vertex of WB.

The paths of length 2 using vertices of WA∪WB together with P and Q form the required

collection of paths.

We can now finish the proof of Theorem 3.1.1.
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Proof of Theorem 3.1.1. Let k ≥ 2 be an integer and let f (k) := d∗(12k2)+2k, where

d∗ : N→ N is the function provided by Corollary 3.2.3. Suppose that T is a 4k-connected

tournament with minimum out-degree at least f (k), and let X = {x1, . . . ,xk},

Y = {y1, . . . ,yk} be two disjoint k-sets of vertices. We wish to find pairwise vertex disjoint

directed paths going from xi to yi for each i ∈ [k]. Remove X ∪Y from T ; the tournament

induced on V (T )\ (X ∪Y ) has minimum out-degree at least d∗(12k2), so by

Corollary 3.2.3 we may embed in T a K ∗
12k2 disjoint from X ∪Y . Denote this subdivision

by S . We shall use the same notation as in Section 3.2, namely, U denotes the branch

vertices of S , K denotes the underlying minimal subdivision of
−→
K 12k2 composed of

minimal paths Puv,Pvu for every pair of branch vertices u,v ∈U , and L denotes the

collection of minimal paths attached to K . We call a path of S any path Puv between

branch vertices of length at least 2, and any member of L . We consider the following

edges to belong to the structure S :

• The edges belonging to paths in K , except the paths of length one.

• The edges belonging to paths in L .

• For every pair u,v ∈U , every edge in T between {u,v} and V (Puv)∪V (Pvu).

• For every u ∈U , every edge in T between u and
⋃

Lu.

We denote the set of edges of S by E(S ). For example, whenever we speak of

distances in S , we insist that they are computed using only these directed edges. Let P

and Q be any two collections of pairwise disjoint directed paths such that every path in P

goes from U to Y , every path in Q goes from X to U , and all of these paths are internally

vertex disjoint from U ; by Lemma 3.3.1, such collections exist. We say that a pair

(u,x) ∈U×V (S ) is at in-distance d in S if d is the smallest integer such that there is a

directed path P′ of length d using only edges of S , and such that P′ goes from u to x. We

shall also sometimes say that x has in-distance d in S from u. Similarly, we say that
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(u,x) ∈U×V (S ) is at out-distance d in S if d is the smallest integer such that there is a

directed path Q′ of length d using only edges of S , and such that Q′ goes from x to u in

S ; we shall also sometimes say that x has out-distance d in S from u. We denote

in-distance by din(u,x) and out-distance by dout(u,x) (where we have suppressed the

dependence on S ).

Observation 3.3.3. Let x ∈V (S )\U. Then x is at in-distance (or out-distance) at least 3

from every vertex of U, except possibly the branch vertex (or vertices) belonging to the

path of S containing x.

Proof. If x ∈V (S )\U , then either x ∈ Puv for some u,v ∈U or x ∈ Lu
uv ∈Lu (or possibly

both). Let w ∈U \{u,v}. In order to get from w to x using only edges of S , we must first

reach either u or v. However, recall that the single edge paths in K are not edges of S , so

the path from w to u or v in S has length at least 2. Therefore, x has in-distance at least 3

from w, as required. A symmetric argument shows that the observation remains true with

‘out-distance’ instead of ‘in-distance’.

In the following, we shall always assume that any family F of directed paths in T

between X ∪Y and U are internally disjoint from U . We also denote by UF the set

U ∩ (
⋃

F ). Our first claim asserts that we may assume the paths in one of the collections

P , Q contains few vertices which are ‘close’ in S to a vertex in U .

Lemma 3.3.4. We may choose either P or Q such that there are at most 8k2 +4k

vertices u ∈U \UP (resp., U \UQ) with din(u,x)≤ 2 (resp., dout(u,x)≤ 2) for some

x ∈
⋃

P \UP (resp., for some x ∈
⋃

Q \UQ).

Proof. Apply Lemma 3.3.1 with A = X , B = Y , and L =U . Using the proof and notation

of Lemma 3.3.1, assume that |WX | ≤ |WY |. Then recall that we may choose the paths from

U to Y first minimally (with respect to the number of vertices used) upon the removal of
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WX ∪WY , a set of at most 2k vertices. Recall also that each such path which uses a vertex

of WX ∪WY has length two. Suppose there is a set U ′ ⊂U \UP of more than 8k2 +4k

vertices such that for every u ∈U ′ there is x ∈
⋃

P \UP with din(u,x)≤ 2. We claim that

this contradicts minimality. Indeed, by pigeonhole there is a set U ′0 ⊂U ′ of size more than

8k+4, and a path P ∈P such that for each u ∈U ′0 there is some x ∈ P with din(u,x)≤ 2.

From Observation 3.3.3, it follows that for each interior vertex v of P there are at most two

vertices of U ′0 that are at in-distance 2 from v. Therefore P must have more than two edges

so does not intersect WX ∪WY . For each vertex u ∈U ′0, pick some vertex vu ∈ P at

in-distance exactly 2 from u, and denote by D the set containing all such vertices vu. Note

that P contains at most one vertex at in-distance 1 from a vertex in U \UP , as otherwise

we may reroute P and obtain a shorter path avoiding WX ∪WY . Using Observation 3.3.3

again, there is a set D′ of at least 1
2(8k+4) = 4k+2 vertices in D corresponding to

distinct vertices of U ′0. Let P = p0 . . . p`, where p0 ∈U and p` ∈ X , F := D′ \{p1, p2}.

For each p j ∈ F , we may choose vertex disjoint directed paths u jm j p j of length 2 in S ,

where u j ∈U ′0. Accordingly, there are at least 4k ‘middle vertices’ m j, at least 2k of which

are disjoint from WX ∪WY ; let M denote the set of middle vertices disjoint from WX ∪WY .

Now, suppose some m j ∈M does not intersect any path in P . Then we may replace P

with the path u jm j p jP, which is shorter and still avoids WX ∪WY , a contradiction. Thus,

each middle vertex in M belongs to some member of P and so by pigeonhole there is a

path P′ which contains at least two vertices of M. But both of these vertices are at

in-distance 1 from a vertex in U \UP , which, as noted before, is a contradiction. Hence at

most 8k2 +4k vertices in U \UP have the stated property, as claimed. A symmetric

argument shows that we may choose Q with the stated property in the event that

|WY | ≤ |WX |. This completes the proof of the lemma.

Suppose F is a collection of pairwise disjoint directed paths from U to Y (internally

disjoint from U), and let P = p0 . . . pt be any path in F . We call the pairs (p0, p1) and

(p0, p2) trivial if they have in-distance at most 2 in S ; any other pair with in-distance at
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most 2 is nontrivial. For a subset U ′ ⊆U we shall say that F is U ′-good if no nontrivial

pair of vertices from U ′× (
⋃

F \UF ) is at in-distance at most 2 in S . In particular, each

path P ∈F intersects U ′ in at most one vertex, namely its initial vertex. Suppose that F

satisfies the property stated in Lemma 3.3.4. Then we have the following:

Claim 3.3.5. There exists a subset U ′ ⊂U \UF of size at least 2k such that F is U ′-good.

Proof. This follows immediately from the previous lemma. Indeed, remove from U every

vertex in UF and every vertex in U \UF at in-distance at most 2 in S from some vertex

of
⋃

F \UF ; let U ′ denote the remaining set of vertices. By Lemma 3.3.4, we have

removed at most 8k2 +5k vertices. As |U |= 12k2 we have |U ′| ≥ 12k2− (8k2 +5k)≥ 2k,

since k ≥ 2. Clearly F is U ′-good.

We shall assume without loss of generality that we may choose the paths from U to Y

with the property stated in Lemma 3.3.4. So the previous two claims show that we may

find collections of vertex disjoint directed paths P,Q which are internally disjoint from

U and such that the paths in P go from U to Y , the paths in Q go from X to U , and P is

U ′-good for some U ′ ⊂U \UP with |U ′| ≥ 2k. Conditioned on this, we assume that

P ∪Q minimizes the number of edges outside of S , and again conditioned on this, we

take such a pair with |
⋃

P|+ |
⋃

Q| as small as possible. Let U ′′ =U ′ \UQ so that

|U ′′| ≥ k and it is disjoint from UP ∪UQ; we may assume that U ′′ = {u1, . . . ,uk} has

precisely k elements. We now show that one can reroute the paths in P ∪Q through U ′′

in order to create the desired paths linking xi to yi for each i ∈ [k]. Let UP = {z1, . . . ,zk}

and UQ = {w1, . . . ,wk} so that zi is the initial vertex in U of the path Pi ∈P with terminal

vertex yi ∈ Y , and wi is the terminal vertex in U of the path Qi ∈Q with initial vertex

xi ∈ X . Recall that for every pair of branch vertices u,v ∈U , Puv and Pvu denotes the path

in K from u to v, and from v to u, respectively. The following sequence of claims show

that we can control intersections of paths in P ∪Q with appropriate paths in S in order

to link each xi to yi.
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Claim 3.3.6. Suppose some path Q ∈Q intersects Lui
wiui ∈Lui , for some i ∈ [k]. Let z be

the first vertex of Lui
wiui in the intersection. Then one of the following holds: z is the

terminal vertex of Lui
wiui and z ∈ Qi, or z is the second vertex of Lui

wiui .

Proof. Suppose z is not the second vertex of Lui
wiui . If z is an interior point of Lui

wiui , then

zui ∈ E(T ) by minimality of the path Lui
wiui . Note that if Q has an edge which is not in

E(S ) after z then we have a contradiction: indeed replacing Q with Qzui yields a

collection of paths with fewer edges outside of E(S ). Otherwise, Q = Qi and it must use

at least 2 edges after z, so we obtain a contradiction to the minimality of |
⋃

P|+ |
⋃

Q|

by rerouting the path as before. Therefore, z must be the terminal vertex of Lui
wiui . Finally, z

must belong to Qi, otherwise we may similarly reroute Q through ui, decreasing the

number of edges used outside E(S ).

Claim 3.3.7. No path in P intersects Pwiui . Moreover, if qi denotes the last vertex in Pwiui

which occurs as the intersection of some path in Q, then qi ∈ Qi.

Proof. No path in P intersects {ui,wi}, so it suffices to show that no such path intersects

the interior of Pwiui . Therefore, we may assume that Pwiui has length at least 2. Suppose

first that some P ∈P contains a vertex v in the interior. Note that v must be the

penultimate vertex of Pwiui . Otherwise, uiv ∈ E(T )∩E(S ) by the minimality of the

subdivision K , and this contradicts the fact that P is U ′-good. Consider the loop path

L = Lui
wiui ∈Lui at ui ending at v, and recall that the edges of L are edges of S . Let z be

the first vertex in Lui
wiui belonging to some path P′ ∈P: such a vertex and path exist since

we may take z = v and P′ = P. Let L′ be the initial segment of the path Lui
wiui ending at z.

Suppose first that no path in Q ∈Q intersects L′, and replace P with P′′ = uiL′zP′.

Since P′ cannot intersect ui or wi it must have an edge which is not in E(S ) before z. It

follows that P′′ has fewer edges outside of S . This is a contradiction to our choice of

P ∪Q, provided P ′′ := (P \{P′})∪{P′′} is U ′-good. To see this, observe that any

vertex of L\{v} is at in-distance at least 3 from wi. Moreover, if wi ∈U ′, and z = v (and
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hence P′ = P), then z is also at in-distance at least 3 from wi. Accordingly, if wi ∈U ′, then

every vertex of P′′ is still at in-distance at least 3 from wi. By the minimality of L, every

vertex in the interior of L (except the second) is directed towards ui; thus, the only vertices

at in-distance at most 2 from ui are the second and third vertices of L, say x and y,

respectively. But the pairs (ui,x) and (ui,y) are trivial pairs, and thus do not contradict

U ′-goodness. Lastly, by Observation 3.3.3 every vertex of P′′ (except possibly ui) is at

in-distance at least 3 from every vertex of U ′ \{ui,wi}. It follows that P ′′ is U ′-good,

which is a contradiction to our choice of P ∪Q.

On the other hand, if some path Q′ ∈Q intersects L′ in some vertex r, then by

Claim 3.3.6 r must the second vertex of Lui
wiui . Note that by U ′-goodness, no path in P

contains the third vertex r1 of Lui
wiui , hence we can replace Q′ by Q′rr1ui thus decreasing

the number of edges outside E(S ). Therefore we conclude that no path in P can

intersect Pwiui . Let us now show the second part of the claim. Suppose that qi ∈ Q j for

some j 6= i. Since Q j must avoid {ui,wi} it contains an edge which is not in E(S ) after

qi. Replace Q j with Q′ = Q jvPwiui . Then by the previous paragraph, no path in P

intersects Q′ and the resulting collection of paths has fewer edges outside of S , a

contradiction. This completes the proof of the claim.

It remains to establish the analogous claims for the path Puizi , namely that intersections

of paths in P ∪Q with Puizi and Lui
uizi behave as one expects. The arguments are similar to

those in the previous two claims. Theorem 3.1.1 will then be an immediate consequence.

Claim 3.3.8. For every i ∈ [k], no path in P intersects Lui
uizi ∈Lui .

Proof. Suppose some P ∈P intersects Lui
uizi in a vertex z. Then z cannot be the first vertex

of Lui
uizi , as this would contradict the fact that P is U ′-good. Therefore, if z′ denotes the

vertex preceding z in Lui
uizi , then by the minimality of paths in L , we have

uiz′ ∈ E(T )∩E(S ). But then z is at in-distance 2 from ui, contradicting U ′-goodness.
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Claim 3.3.9. Let pi denote the first vertex in Puizi which occurs as the intersection of some

path in P . Then no path in Q intersects Puizi and pi ∈ Pi.

Proof. As before, it suffices to show that no path in Q intersects the interior of Puizi , so we

may assume that Puizi has length at least 2. Suppose some Q ∈Q intersects the interior of

Puizi at v. Note that since Q does not meet {ui,zi}, it must leave S at some time after v. If

v is not the second vertex of Puizi , then vui ∈ E(T )∩E(S ), and so we may replace Q with

Qvui. This path has fewer edges outside of S than Q, and this contradicts our minimal

choice of P ∪Q. If v is the second vertex, then let L = Lui
uizi ∈Lui be the loop path at ui

directed from v to ui. Let z be the last vertex of L which occurs as the intersection of some

path Q′ ∈Q (z and Q′ exist since we may take z = v and Q′ = Q), and let L′ be the subpath

of L from z to ui. By Claim 3.3.8, no path in P intersects L′, so replace Q′ with Q′zL′ui.

Again, the edges of L′ are in E(S ) so this path has fewer edges outside S than Q′, a

contradiction. It follows that no path in Q intersects Puizi as claimed. For the second part

of the claim, suppose that pi ∈ Pj for some j 6= i. Then Pj avoids {ui,zi} and therefore

leaves S at some time before pi. Now, no path in P ∪Q intersects the interior of the

subpath Puizi pi so replace Pj with P′ = Puizi piPj. This path has fewer edges outside of S .

We claim that P ′ = (P \{Pj})∪{P′} is U ′-good. Indeed, note that since P is U ′-good,

the subpath Puizi pi has length at least 3. Also, for every v ∈ Puizi we have that vui ∈ E(T )

by the minimality of K . So the only pairs at in-distance at most 2 in U ′× (
⋃

P ′ \UP ′)

are the trivial pairs (ui,x) and (ui,y), where x,y are the second and third vertices,

respectively, of Puizi . But these pairs, by definition, do not contradict U ′-goodness. It

follows that j = i, and the claim is proved.

By Claims 3.3.7 and 3.3.9, the directed paths QiqiPwiuiuiPuiwi piPi, for each i ∈ [k], are

pairwise vertex disjoint and link xi to yi. This completes the proof of Theorem 3.1.1.
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3.4 Final remarks and open problems

The most obvious open problem is to reduce our bound of 4k on the connectivity in

Theorem 3.1.1. We remark that an improvement on the connectivity bound in

Lemma 3.3.1 translates directly into a better bound in Theorem 3.1.1. Unfortunately, we

could not go beyond 4k. Furthermore, Lemma 3.3.1 does not hold if we replace 4k with

anything smaller than 3k. The following construction, of a (3k−1)-connected tournament

T where Lemma 3.3.1 fails, was communicated to us by Kamil Popielarz. Suppose

V (T ) = [n] and partition V (T ) into disjoint sets A,S,B,L, where L =V (T )\ (A∪S∪B),

and |A|= |B|= k, |S|= 2k−1. Direct the edges from L to A; from B to L; from A to S and

from S to B; and from A to B. Inside L we place a balanced blow-up of a directed triangle.

That is, equitably partition L into sets L1,L2,L3 with directed edges L1→ L2, L2→ L3,

L3→ L1, and inside each of the Li’s we orient the edges arbitrarily. Now, join every vertex

in S to all of L1 and join every vertex of L2 to all of S. Finally, orient the edges between S

and L3, and the edges inside A,B, and S, arbitrarily.

Provided n is sufficiently large (depending on k), it is not hard to show that T is

(3k−1)-connected. Indeed, suppose n is large enough so that |Li| ≥ 3k−1 for i = 1,2,3,

and let K be a vertex cut of size 3k−2. Note that removing K from T does not destroy any

of the Li. Also, observe that T [A∪S∪L1], T [B∪S∪L2], T [A∪B∪L] are blow-ups of

directed triangles and hence strongly connected. Furthermore, T [L∪S] is strongly

connected. From these facts it is easy to see that the only way to disconnect T is to

remove either A∪S or B∪S, which are both sets of size 3k−1. Hence T \K is connected,

showing that T is (3k−1)-connected.

Now, we cannot get from A to L (disjointly from B) without using vertices of S.

Similarly, we cannot get from L to B (disjointly from A) without using vertices of S. As
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|S|= 2k−1, any path system as in Lemma 3.3.1 will not be pairwise disjoint.

Accordingly, Lemma 3.3.1 fails for this tournament, T . We remark that a slight

modification of this construction yields a tournament which additionally has large

minimum in and out-degree. Notice, however, that in this example there is an easy way to

link the vertices from A to B. Accordingly, our approach to proving Theorem 3.1.1 might

still be able to be extended to prove Pokrovskiy’s conjecture.

Aside from improving our bound of 4k on the connectivity and resolving completely

Pokrovskiy’s conjecture, there are a few other open problems of interest. For example,

what is the smallest function d(k) such that Theorem 3.1.2 holds?

Problem 3.4.1. Determine the smallest function d : N→ N such that any tournament T

with δ+(T )≥ d(k) contains a subdivision of the complete directed graph
−→
K k.

Note that our proof gives a doubly exponential bound on d(k). Indeed, it is easy to

check that d(k)≤ 22Ck2
for an absolute constant C. Furthermore, one can obtain a

quadratic lower bound on d(k): any subdivision of
−→
K k must contain at least 3

(k
2

)
vertices.

So an appropriate balanced blow-up of a directed triangle on, say, k2/2 vertices contains

no subdivision of
−→
K k, yet has minimum out-degree quadratic in k. Accordingly, there is

quite a large gap in our understanding of the function d(k).

Finally, while the conclusion of Theorem 3.1.2 does not hold if we replace T with a

general digraph, can we embed subdivisions of acyclic digraphs in digraphs of large

minimum out-degree? We end by recalling the following beautiful conjecture of

Mader [52] from 1985.

Conjecture 3.4.2. For every positive integer k, there exists a function f (k) such that every

digraph with minimum out-degree at least f (k) contains a subdivision of the transitive

tournament of order k.

Of course, since every acyclic digraph is contained in the transitive tournament of the

same order, this conjecture (if true) would give an affirmative answer to the preceding
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question. Since large minimum out-degree (and in-degree) is not enough to embed

subdivisions of a complete directed graph, it is natural to wonder whether some other

parameter might allow us to do so. For example, if κ(D) denotes the strong connectivity

of a digraph, is it true that for every k there is an f (k) such that any digraph D with

κ(D)≥ f (k) contains a subdivision of
−→
K k? (see Problem 16 in [1]). The answer to this

question is still unknown.
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CHAPTER 4

DISJOINT PAIRS IN SET SYSTEMS WITH RESTRICTED INTERSECTION

4.1 Introduction

Before getting into some mathematics let us recall a bit of notation, most of which is

standard. Let [n] denote the set {1, . . . ,n}, P[n] denote the power set of [n], and let [n](r)

denote the collection of all subsets of [n] of size r. For two set systems A , B ⊂P[n], we

let d(A ,B) denote the number of disjoint pairs; that is, the number of pairs

(A,B) ∈A ×B with A∩B =∅. Similarly, for a set system F ⊂P[n] we let d(F )

denote the number of disjoint pairs in F . Accordingly, d(F ) = 1
2d(F ,F ) (unless, of

course, ∅ ∈F , in which case d(F ) = 1
2(d(F ,F )−1)). We are interested in the

maximum number of disjoint pairs a set system F can have under certain restrictions on

the possible intersection sizes of elements of F . For a set L of nonnegative integers, a set

system F is said to be L-intersecting if |F1∩F2| ∈ L for all distinct F1,F2 ∈F . Similarly,

a pair of set systems (A ,B) is L-cross-intersecting if |A∩B| ∈ L whenever

A ∈A ,B ∈B. When L = {t, . . . ,n} we say F is t-intersecting, and when t = 1 we shall

simply say F is intersecting. Finally, if L = [n]\{t}, we shall say that F (resp., (A ,B))

is t-avoiding (resp., t-cross-avoiding).

4.1.1 Background

The problem of bounding the size of a set system under certain intersection restrictions

has a central place in Extremal Set Theory. We shall not give a full account of such

problems, but only touch upon some results that are particularly relevant for our purposes

(for a broader account we refer the interested reader to the recent survey of Frankl and

Tokushige [31]). The Erdős-Ko-Rado Theorem [24] is perhaps the most foundational

result in this area, determining the maximum size of an intersecting r-uniform set system.
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More precisely, if n≥ 2r and F ⊂ [n](r) is an intersecting set system, then |F | ≤
(n−1

r−1

)
,

and moreover, if n > 2r, then equality holds only when F consists of all r-sets containing

a fixed element of the ground set. Numerous extensions and variations have been

addressed over the years. Perhaps most notably, The Complete Intersection Theorem of

Ahlswede and Khachatrian [3] determines the maximum size of a t-intersecting set system

F ⊂ [n](r) for all values of n. In the non-uniform case, Katona [43] showed that any

(t +1)-intersecting set system F satisfies

|F | ≤ |F (n, t)|,

where F (n, t) is {A : |A| ≥ n+t+1
2 } if n+ t is odd, or {A : |A∩ ([n]\{1}))| ≥ n+t

2 } if n+ t is

even. Trivially, if a set system is (t +1)-intersecting then it is also t-avoiding. Erdős asked

what happens when we weaken the condition that all F1,F2 ∈F satisfy |F1∩F2|> t to

|F1∩F2| 6= t. Frankl and Füredi [27] answered this question, showing that when n≥ n0(t)

we recover the same asymptotic solution as in Katona’s theorem. In particular, letting

F ∗(n, t) = F (n, t)∪ [n](≤t−1),

they showed that as long as n≥ n0(t) and F ⊂P([n]) is t-avoiding, then

|F | ≤ |F ∗(n, t)|.

In this paper, instead of focusing on the size of set systems with imposed intersection

conditions, we are interested in the maximum number of disjoint pairs they can have.

Alon and Frankl [5] addressed the problem of determining the maximum number of

disjoint pairs in a set system of fixed size. Obviously, we always have d(F )< |F |2, but

for large families they showed that this bound is far off: if F has size m = 2n/2+δn, then

d(F )< m2−δ 2/2. Problems concerning the minimum number of disjoint pairs in set

systems have been studied by Ahlswede [2], Frankl [26], Bollobás and Leader [12], and

Das, Gan, and Sudakov [19].
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What happens to the maximum number of disjoint pairs if we impose the condition

that F forbids a single intersection size? Our first result provides an upper bound for the

maximum number for disjoint pairs in t-avoiding set systems for any t ≥ 1.

Theorem 4.1.1. Let n, t be positive integers with t ≤ n and suppose that F ⊂P[n] is

t-avoiding. Then

d(F )≤ 1
2

(
t−1

∑
k=0

(
n
k

)
2n−k−1

)
.

Note that the number of disjoint pairs in F ∗(n, t) is at least (assuming for simplicity

that n+ t is odd)

t−1

∑
k=0

(
n
k

)
·

n−k

∑
j=(n+t+1)/2

(
n− k

j

)
=

t−1

∑
k=0

(
n
k

)
(1−o(1))2n−k−1

= (1−o(1))
1
2

t−1

∑
k=0

(
n
k

)
2n−k,

as n→∞. Therefore, for large n the upper bound we obtain in Theorem 4.1.1 is essentially

best possible. We conjecture that F ∗(n, t) in fact maximizes the number of disjoint pairs

for t-avoiding set systems (see Section 4.4). We shall actually prove a ‘two-family’

version which bounds the number of disjoint pairs in a pair (A ,B) of t-cross-avoiding set

systems. In particular, Theorem 4.1.1 immediately follows from the following result.

Theorem 4.1.2. Let n, t be positive integers with t ≤ n and suppose that

(A ,B)⊂P[n]×P[n] is a pair of t-cross-avoiding set systems. Then

d(A ,B)≤
t−1

∑
k=0

(
n
k

)
2n−k.

We remark that this is a generalization of a result in [41], where the case t = 1 was

established. We are also able to classify the extremal examples for Theorem 4.1.2.

Namely, if t = 1, then equality occurs if and only if A = P(S),B = P([n]\S) for some

subset S⊆ [n], and if t ≥ 2, equality holds if and only if A = [n](≤t−1),B = P[n].
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Note that Theorem 4.1.2 has the following immediate corollary.

Corollary 4.1.3. Let L be a set of s nonnegative integers and suppose that (A ,B) is a

pair of L-cross-intersecting set systems. Then

d(A ,B)≤
s−1

∑
k=0

(
n
k

)
2n−k,

with equality if and only if L = {0, . . . ,s−1}.

Of course, the most trivial bound upper bound on d(A ,B) is given by the product

|A ||B|, and the problem of bounding |A ||B| for L-cross-intersecting (A ,B) has been

studied before. For example, Keevash and Sudakov [44] proved that if L is a set of s

nonnegative integers and n is sufficiently large (depending on s), then

|A ||B| ≤ ∑
s−1
k=0

(n
k

)
2n for any L-cross-intersecting pair (A ,B) in P[n]×P[n], with

equality if and only if L = {0, . . . ,s−1}. Therefore, the same example that maximizes the

number of disjoint pairs in Corollary 4.1.3 maximizes the product |A ||B|, when n is

sufficiently large. It is still unknown whether this bound holds for every s and n. The only

general upper bound was given by Sgall [59]. In contrast, note that in Corollary 4.1.3, our

bound holds for all s and n.

Motivated by Theorem 4.1.2, it is natural to ask what happens to the parameter

d(A ,B) when we impose that A ,B ⊂ [n](r) are both uniform. Here it turns out that

avoiding an intersection is not that much of a restriction, at least when r is fixed and n is

large. Consider the following family of examples.

Example 4.1.4. For integers r ≥ 1, s≥ 0 and a non-empty proper subset X ⊂ [n] let

FX ,s = {F ∈ [n](r) : |F ∩X | ≥ r− s}. For a positive integer t ≤ r and nonnegative integers

a,b with a+b≤ t−1, consider the pair
(
FX ,a, FXc,b

)
. It is easy to see that this pair is

t-cross-avoiding (in fact, it is {0, . . . , t−1}-cross-intersecting). Intuitively, the number of

disjoint pairs should be maximized when a = b t
2c and b = b t−1

2 c are as equal as possible.
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It is easy to see that d
(
FX ,b t

2c
, FXc,b t−1

2 c

)
= Θr,t

(
n2r) and similarly

|FX ,b t
2c
||FXc,b t−1

2 c
|= Θr,t

(
n2r), when |X | ∼ cn for some constant c ∈ (0,1). While we

began our investigation by considering maximizing the number of disjoint pairs, this

example suggests that the problem of determining the maximum number of disjoint pairs

in a t-cross-avoiding pair (A ,B) of r-uniform set systems is roughly equivalent to

determining the maximum of the product |A ||B| when n is large and r, t remain fixed. In

other words, good upper bounds on |A ||B| translate into good upper bounds on

d(A ,B). To formalize this we shall introduce two functions. Let

• d(n,r, t) = max{d(A ,B) : (A ,B)⊂ [n](r)× [n](r) is t-cross-avoiding},

• p(n,r, t) = max{|A ||B| : (A ,B)⊂ [n](r)× [n](r) is t-cross-avoiding}.

We prove the following theorem, which states that these two functions are

asymptotically equivalent. Here, and in the sequel, we assume that r and t are fixed and

n→ ∞.

Theorem 4.1.5. Let r ≥ t ≥ 1 be integers. Then

p(n,r, t) = (1+o(1))d(n,r, t),

as n→ ∞.

In view of Theorem 4.1.5, it is perhaps more natural to provide upper bounds for the

function p(n,r, t) in the context of trying to obtain upper bounds for d(n,r, t). The function

p(n,r, t) has been investigated before by Frankl and Rödl [30] when r and t are both linear

in n. When n≥ n0(r, t), the problem of determining p(n,r, t) can be viewed as the

cross-analogue of a problem resolved by Frankl and Füredi [28]. They showed, in

particular, that if n is sufficiently large and F ⊂ [n](r) is t-avoiding, then the family

consisting of all r-sets containing a fixed (t +1)-set is optimal. Now, note that we may
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assume that t < r, as trivially p(n,r,r) = 1
4

(n
r

)2. We make progress in determining p(n,r, t)

in the first two cases, t = 1 and t = 2.

Theorem 4.1.6. Let r ≥ 2 be an integer. There exists n0 = n0(r) such that if n > n0 and

(A ,B) is a pair of 1-cross-avoiding r-uniform set systems, then

|A ||B| ≤
(
bn/2c

r

)(
dn/2e

r

)
.

This result is clearly tight: just consider the pair (FX ,0,FXc,0) where X ⊂ [n] has size

bn/2c. It is also tight for the problem of maximizing d(A ,B).

Our last theorem gives an asymptotically tight upper bound for p(n,r,2).

Theorem 4.1.7. Suppose r ≥ 3 and let (A ,B) be a pair of 2-cross-avoiding r-uniform set

systems. Then

|A ||B| ≤ (γr +o(1))
(

n
r

)2

,

where γr = maxα∈[0,1]{αr(1−α)r + rαr+1(1−α)r−1}.

The pair (FX ,1,FXc,0) with |X |= αn, where α ∈ [0,1] gives the maximum value γr

above, shows that this upper bound is asymptotically optimal. Indeed, one need only

apply the inequality (
θx
r

)
≤ θ

r
(

x
r

)
,

which is valid for all θ ∈ (0,1] with θx > r. Moreover, using Theorem 4.1.5, we have that

p(n,r,2) = (γr +o(1))
(n

r

)2 and d(n,r,2) = (γr +o(1))
(n

r

)2. Notice that in the case of both

Theorem 4.1.6 and Theorem 4.1.7, pairs
(
FX ,a,FXc,b

)
where a and b are as equal as

possible are optimal. We conjecture that this phenomenon persists for higher forbidden

intersection sizes (see Section 4.4). The asymmetry suggested by the construction for the

2-cross-avoiding case may indicate, however, that this problem is difficult. For example,

the value of α ∈ [0,1] giving γ3 is 1
8 +

√
17
8 ≈ .6404.
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4.1.2 Organization and Notation

The remainder of this chapter is organized as follows. In Section 4.2 we prove

Theorem 4.1.2, which implies Theorem 4.1.1. In Section 4.3, we shall prove

Theorem 4.1.5, Theorem 4.1.6, and Theorem 4.1.7. In the final section, we shall state

some open problems.

Our notation is standard. For a set X we let X (r) (resp., X (≤r)) denote the collection of

all r-element subsets of X (resp., subsets of X of size at most r). Any set system F ⊂ X (r)

is said to be r-uniform and its elements are r-sets. For F ⊂P[n] and T ⊂ [n] we let

F (T ) denote the collection of sets in F that contain T . When T = {x} is a singleton we

shall simply write F (x).

4.2 Disjoint pairs in t-avoiding set systems

Our aim in this section is to establish Theorem 4.1.2, which we restate for convenience.

Theorem 4.1.2. Let n, t be positive integers with t ≤ n and suppose that

(A ,B)⊂P[n]×P[n] is a pair of t-cross-avoiding set systems. Then

d(A ,B)≤
t−1

∑
k=0

(
n
k

)
2n−k.

Let us point out one fact before giving a proof of the theorem. Note that if we let

f (n, t) = ∑
t−1
k=0

(n
k

)
2n−k, then f satisfies the recurrence

f (n, t) = 2 f (n−1, t)+ f (n−1, t−1),

for natural numbers n, t ≥ 1.

Proof. We shall apply induction on n and t. The base case t = 0 holds trivially for every

value of n. Therefore, we fix t > 0 and assume the theorem holds for t ′ < t (and every
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value of n), and we may suppose the theorem holds for t ′ = t and all n′ < n. We aim to

show it holds for t ′ = t and n′ = n.

To do so, suppose that (A ,B)⊂P[n]×P[n] is t-cross-avoiding. We shall split A

and B into certain subfamilies. More specifically, let An = {A ∈A : n ∈ A} and

A0 = {A ∈A : n 6∈A }, and define Bn and B0 analogously. We further identify three

subfamilies of An, namely,

• A ∗
n = {A ∈An : A\{n} ∈A },

• A t+1
n = {A ∈An : ∃B ∈Bn with |A∩B|= t +1}, and

• X = An \ (A ∗
n ∪A t+1

n ).

We define similarly the corresponding subfamilies B∗n,B
t+1
n , and

Y = Bn \ (B∗n ∪Bt+1
n ) of Bn. Note that the subfamilies defined above actually partition

An and Bn. Indeed, suppose A ∈A ∗
n ∩A t+1

n . Then there exists B ∈Bn such that

|A∩B|= t +1. But we also have that A\{n} ∈A and then |A\{n}∩B|= t, a

contradiction. The same argument shows that B∗n and Bt+1
n are disjoint.

For a subset A⊂ [n], a family F ⊂P[n], and i ∈ [n] let Di(A) = A\{i} and

Di(F ) = {Di(A) : A ∈F}.

To reduce clutter we shall simply write D for Dn. Our aim is to apply D to a suitable pair

of families and apply induction. Indeed, consider the pairs

(A0∪D(X ∪A t+1
n ),B0∪D(Y )),

and

(A0∪D(X ),B0∪D(Y ∪Bt+1
n )).
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Of course, each of the families in these pairs belongs to P[n−1]. We also need that the

above pairs are t-cross-avoiding, which we formulate in the following claim.

Claim 4.2.1. (A0∪D(X ∪A t+1
n ),B0∪D(Y )) and (A0∪D(X ),B0∪D(Y ∪Bt+1

n ))

are t-cross-avoiding pairs of set systems.

Proof. We only prove that the first pair is t-cross-avoiding. The second follows by a

similar argument. By way of contradiction, suppose there exists A ∈A0∪D(X ∪A t+1
n )

and B ∈B0∪D(Y ) such that |A∩B|= t. Clearly, either B ∈B or B∪{n} ∈B. If

A ∈A0, then |A∩B|= |A∩ (B∪{n})|= t, which is a contradiction. So we may assume

that A∪{n} ∈A and similarly B∪{n} ∈B. Hence |A∪{n}∩B∪{n}|= t +1 which

would imply B∪{n} ∈Bt+1
n , which is again a contradiction. This completes the

proof.

Our second claim exhibits a pair of subfamilies that are, in fact, (t−1)-cross-avoiding.

Claim 4.2.2. The pair of set systems (D(A ∗
n ),D(B∗n)) is (t−1)-cross-avoiding in

P[n−1]×P[n−1].

Indeed, suppose there is A ∈ D(A ∗
n ) and B ∈ D(B∗n) such that |A∩B|= t−1. But

since A′ = A∪{n} ∈An and B′ = B∪{n} ∈Bn, we have that |A′∩B′|= t, a contradiction.

We shall now count the disjoint pairs (A,B) with A ∈A and B ∈B in such a way that

every such pair gets counted except those disjoint pairs in (D(A ∗
n ),B

∗
n). The following

lemma summarizes this, from which our theorem follows easily. Before stating it we shall

rename some families in order to make the statement cleaner. Let

• (A0∪D(X ∪A t+1
n ),B0∪D(Y )) = (F1,F2), and

• (A0∪D(X ),B0∪D(Y ∪Bt+1
n )) = (F3,F4).
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With this in mind we shall prove the following.

Lemma 4.2.3. d(F1,F2)+d(F3,F4)≥ d(A ,B)−d(D(A ∗
n ),D(B∗n)).

Proof. Let us see how the left-hand side d(F1,F2)+d(F3,F4) counts disjoint pairs.

Note that it counts every disjoint pair in (A t+1
n ∪X ,B0) and (A0,B

t+1
n ∪Y ) once (it

may count more; namely, disjoint pairs in (D(X ),D(Y )) that do not exist in (A ,B)).

Furthermore, it counts disjoint pairs in (A0,B0) twice. Such pairs between A0 and B0

can be broken up into the following three types:

• those in (D(A ∗
n ),D(B∗n));

• those in (D(A ∗
n ),B0 \D(B∗n));

• those in (A0 \D(A ∗
n ),D(B∗n)).

The remaining disjoint pairs to be counted are those in (A ∗
n ,B0) and (A0,B

∗
n). Since

d(D(A ∗
n ),B0 \D(B∗n)) = d(A ∗

n ,B0 \D(B∗n)),

and, similarly, d(A0 \D(A ∗
n ),D(B∗n)) = d(A0 \D(A ∗

n ),B
∗
n), we have that the disjoint

pairs in (A ∗
n ,B0 \D(B∗n)) and (A0 \D(A ∗

n ),B
∗
n) get counted when we count those

disjoint pairs in (A0,B0). Furthermore, since d(D(A ∗
n ),D(B∗n)) = d(A ∗

n ,D(B∗n)), the

disjoint pairs in (A ∗
n ,D(B∗n)) also get counted whenever we count pairs in (A0,B0). As

d(F1,F2)+d(F3,F4) counts the disjoint pairs in (A0,B0) twice we can equivalently

say that it counts

• disjoint pairs in (A0,B0) once;

• disjoint pairs in (A0 \D(A ∗
n ),B

∗
n) once;

• disjoint pairs in (A ∗
n ,B0 \D(B∗n)) once;
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• disjoint pairs in (A ∗
n ,D(B∗n)) once.

Thus the only disjoint pairs not counted are those in (D(A ∗
n ),B

∗
n), and since

d(D(A ∗
n ),B

∗
n) = d(D(A ∗

n ),D(B∗n)) we have that

d(F1,F2)+d(F3,F4)≥ d(A ,B)−d(D(A ∗
n ),D(B∗n)),

as claimed.

Theorem 4.1.2 now follows easily from Lemma 4.2.3. Indeed, by Claim 4.2.1,

(F1,F2) and (F3,F4) are both t-cross-avoiding in P[n−1]×P[n−1], so by induction

we have d(F1,F2)≤ f (n−1, t) and d(F3,F4)≤ f (n−1, t). By Claim 4.2.2,

(D(A ∗
n ),D(B∗n))⊂P[n−1]×P[n−1] is (t−1)-cross-avoiding, and so

d(D(A ∗
n ),D(B∗n))≤ f (n−1, t−1). Therefore, by Lemma 4.2.3 and using the recurrence

for f , we have

d(A ,B)≤ 2 f (n−1, t)+ f (n−1, t−1) = f (n, t),

as claimed.

To end this section, let us classify the extremal examples occurring in Theorem 4.1.2.

We must break the analysis up into two cases, when t = 1 and when t > 1, as the extremal

behavior is different. We consider first the case t > 1.

• t > 1

Observe that when n = t equality is trivially only attained when the families are

(P[n]\{[n]},P[n]) = ([n](≤n−1),P[n]). We may assume now that n > t. From the proof

of Theorem 4.1.2, both pairs (F1,F2) and (F3,F4) must satisfy

d(F1,F2) = d(F3,F4) = f (n−1, t). By induction on n, we may assume without loss of
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generality that A0∪D(X ∪A t+1
n ) = P[n−1] and B0∪D(Y ) = [n−1](≤t−1). Since

∅ ∈A0 (as t ≥ 1) and, by the definition of Y , for any element B ∈ Y , B\{n} can be

added to B0 implying that Y is empty. We then have that B = B0∪B∗n ∪Bt+1
n and

B0 = [n−1](≤t−1). Similarly we must have that X is empty and so

A = A0∪A ∗
n ∪A t+1

n and A0∪D(A t+1
n ) = P[n−1]. Moreover, we must have that

d(F3,F4) = d(A0,B0∪D(Bt+1
n )) = f (n−1, t) and again by induction, either

A0 = P[n−1] and B0∪D(Bt+1
n ) = [n−1](≤t−1) or A0 = [n−1](≤t−1) and

B0∪D(Bt+1
n ) = P[n−1]. We split our analysis into two parts according to whether the

former or latter case holds.

(i). Suppose the latter case holds. Then any set A ∈ [n−1](t) must be of the form

D(A′) for some A′ ∈A t+1
n and similarly of the form D(B′) for some B′ ∈Bt+1

n . If

n > t +1 then we reach an immediate contradiction as we can find two elements

A,B ∈ [n−1](t) with |A∩B|= t−1 which would imply |(A∪{n})∩ (B∪{n})|= t. So

suppose that n = t +1. Now, neither A t+1
n nor Bt+1

n can be empty. For if A t+1
n =∅, then

P[t] = A0 = [t](≤t−1), which is a contradiction. Similarly, Bt+1
n 6=∅. Then

A t+1
n = Bt+1

n = {[n]}, and so no set A ∈ [n](t) can belong to either A or B. It follows

that the only sets that can belong to A ∗
n are of the form A∪{n} for some A ∈A0 with

|A| ≤ t−2 (and similarly for the sets in B∗n). Accordingly, A = B = [n](≤t−1)∪{[n]},

which is impossible as the number of disjoint pairs is smaller than f (n, t).

(ii). Suppose the former case holds, that A0 = P[n−1] and

B0∪D(Bt+1
n ) = [n−1](≤t−1). Since we cannot have an element A ∈A t+1

n and

D(A) ∈ A0, we must have At+1
n =∅ and, analogously, Bt+1

n =∅. It follows that

A = A ∗
n ∪P[n−1] and B = B∗n ∪ [n−1](≤t−1). Let us first deal with the case t = 2. If

B∗n contains no sets of the form {i,n}, then B∗n = {{n}} and we are done. Our aim is to

show that if B∗n contains a 2-set, then the number of disjoint pairs is strictly smaller than

f (n,2). So suppose, by way of contradiction, that B∗n contains sets {i1,n}, . . . ,{il,n} for

some i1, . . . , il ∈ [n−1]. It follows that A ∗
n can consist of only sets containing n and
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avoiding i1, . . . , il . Therefore, we may assume |A ∗
n |= 2n−1−l . The number of disjoint pairs

between P[n−1] and B is 2n−1 +(n−1)2n−2 +2n−1 + l2n−2 = 2n +(n−1+ l)2n−2.

The number of disjoint pairs between A ∗
n and B is (l +1)2n−1−l +(n−1− l)2n−2−l .

Since f (n,2) = 2n +n2n−1 we have to check that

(n−1+ l)2n−2 +(l +1)2n−1−l +(n−1− l)2n−2−l < n2n−1, (4.1)

for 1≤ l ≤ n−1. It is easy to check that (4.1) holds for l = 1,2 (bearing in mind that we

may assume n > 2). Further, (4.1) is equivalent to n > 2l(l−1)+l+1
2l−1 , which is true since

2l(l−1)+l+1
2l−1 ≤ l for l ≥ 3, and also since l < n. Accordingly, B∗n contains no 2-sets, and so

the proof is complete for t = 2.

Finally, we see in the proof of Theorem 4.1.2 that in order to have equality, it must

hold that d(D(A ∗
n ),D(B∗n)) = f (n−1, t−1). By induction on n and t (t = 2 being the

base case), we have that D(A ∗
n ) = P[n−1] and D(B∗n) = [n−1](≤t−2). So, since

A = A ∗
n ∪P[n−1] and B = B∗n ∪ [n−1](≤t−1), it follows that A = P[n] and

B = [n](≤t−1) as required.

• t = 1

We claim that equality holds only if A = P(S),B = P([n]\S) for some S⊆ [n]. This is

certainly true for n = 1. Let n≥ 2 and suppose the result holds for smaller values of n. As

before, since both pairs (F1,F2) and (F3,F4) must satisfy

d(F1,F2) = d(F3,F4) = f (n−1,1), by induction on n, we may assume

F1 = A0∪D(X ∪A 2
n ) = P(W ) for some W ⊆ [n−1] and

F2 = B0∪D(Y ) = P([n−1]\W ). Similarly F3 = A0∪D(X ) = P(W ′) and

F4 = B0∪D(Y ∪B2
n) = P([n−1]\W ′). Note that as before we may assume X and

Y are empty.

Clearly we have that W ′ ⊆W and we shall show they actually must be equal. Suppose
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first that |W \W ′| ≥ 2 and let i1, i2 be two distint elements in W \W ′. By definition, the

sets {i1},{i2} belong to A0∪D(A 2
n ) and to B0∪D(B2

n). But this implies both

{i1,n},{i2,n} belong to A 2
n and to B2

n , which is a contradiction since we generate a

cross-intersection of size 1. So we may assume that W \W ′ = {i}, which implies {i,n}

belongs to A 2
n and to B2

n . Note that both A ∗
n ,B

∗
n are empty. Indeed, for any element

A ∈A ∗
n (or B∗n), the set A\{n} belongs to A0(or B0) and therefore A\{n} ⊆W ′ (or

A\{n} ⊆ [n−1]\W ). In any case, A∩{i,n}= {n}, which is impossible. We must then

have that A = P(W ′)∪ ({i,n}∨P(W ′)) and

B = P([n−1]\W )∪ ({i,n}∨P([n−1]\W )), for some W ∈P([n−1]) and i ∈ [n−1]

with W ′ =W \{i} (as usual, for a set A and a family F , A∨F := {A∪F : F ∈F}). A

simple calculation shows there are exactly 2n−2 +2n−1 < 2n disjoint pairs in (A ,B), a

contradiction. It follows that W =W ′. Hence A 2
n and B2

n must be empty. Clearly at most

one of the sets A ∗
n ,B

∗
n can be non-empty, and our result follows.

4.3 Disjoint pairs in uniform set systems

Our aim in this section is prove Theorems 4.1.5, 4.1.6, and 4.1.7. We first prove

Theorem 4.1.5 which provides a relation between the maximum number of disjoint pairs

and the maximum size of the product of two t-cross-avoiding r-uniform set systems.

Recall that, for positive integers t ≤ r we have defined d(n,r, t) to be the maximum of

d(A ,B) over all t-cross-avoiding r-uniform (A ,B) on the ground set [n]. Analogously,

we have defined p(n,r, t) to be the maximum of the product |A ||B| over all such pairs of

set systems. To these two functions we add a third:

p∗(n,r, t) := max{|A ||B| : (A ,B)⊂ [n](r)× [n](r) is {0, . . . , t−1}-cross-intersecting}.

Clearly, p∗(n,r, t)≤ p(n,r, t). In order to prove Theorem 4.1.5, we first show that

p(n,r, t)∼ p∗(n,r, t) as n→ ∞. First, let us recall a notion that will be useful in the proof.
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Let F be a family of subsets of [n]. A delta-system in F of size s with core C is a

collection of sets F1, . . . ,Fs ∈F such that for every i 6= j, Fi∩Fj = ∩s
k=1Fk =C. We shall

prove the following.

Lemma 4.3.1. Let t,r be positive integers with t ≤ r. Then

p(n,r, t)≤ p∗(n,r, t)+Cr,tn2r−1,

for some constant Cr,t depending on r and t.

Proof. Let (A ,B) be a t-avoiding pair of r-uniform families with |A ||B|= p(n,r, t). We

say that a t-set T ⊂ [n] is A -good (resp., B-good) if there exists a delta-system in A

(resp., B) of size at least r− t +1 with core T . Observe that if T is A -good, then no set in

B contains T (the symmetric claim holds if T is B-good). Indeed, suppose otherwise that

some B ∈B contains T . Let ∆⊂A be the corresponding delta-system with core T , so

that |∆| ≥ r− t +1. Then B\T has size r− t and accordingly there exists A ∈ ∆ such that

(A\T )∩ (B\T ) =∅.

It follows that |A∩B|= t, a contradiction.

Let T be the collection of t-sets which are neither A -good nor B-good and let

A0 =
⋃

T∈T
A (T ) and B0 =

⋃
T∈T

B(T ).

We claim that the subfamilies A0 and B0 are small. Indeed, suppose T ∈T . Then

any maximum-sized delta-system ∆⊂A with core T has size |∆| ≤ r− t. It follows that

any set in A (T ) must non-trivially intersect a set in ∆ outside of T . Therefore, somewhat

crudely, we may bound

|A (T )| ≤ 2(r− t)2
(

n
r− t−1

)
,
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and the same bound holds for |B(T )|. Accordingly, |A0|, |B0| ≤ cr,tnr−1 for some

constant cr,t , depending only on r and t. Now, let

A ′ = A \A0 and B′ = B \B0,

and note that the pair (A ′,B′) is {0, . . . , t−1}-intersecting, for if A′ ∈A ′ and B′ ∈B′

intersect in t points, then this t-set is both A -good and B-good, which is impossible.

Finally, we see that

p∗(n,r, t)≥ |A ′||B′|= (|A |− |A0|)(|B|− |B0|)

≥ |A ||B|−Or,t
(
n2r−1)

= p(n,r, t)−Or,t
(
n2r−1) ,

completing the proof.

With Lemma 4.3.1 in mind we can now complete the proof of Theorem 4.1.5, which

asserts that the functions p(n,r, t) and d(n,r, t) are essentially equivalent as n→ ∞.

Proof of Theorem 4.1.5. First note that p∗(n,r, t)≤ d(n,r, t)+Cr,tn2r−1 for some constant

Cr,t depending on r, t. Indeed, if (A ,B) is {0, . . . , t−1}-cross-intersecting with

|A ||B|= p∗(n,r, t), then we can count

|A ||B|= d(A ,B)+ ∑
A∈A ,B∈B

A∩B6=∅

1.

Now, for each element A ∈A there are at most 2t(n−r
r−1

)
sets in [n](r) which have

non-empty intersection with A. Hence, the second summand on the right-hand side is

bounded by |A |2t(n−r
r−1

)
≤ 2t(n

r

)(n−r
r−1

)
≤Cr,tn2r−1.
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Now, applying Lemma 4.3.1 we see that

p(n,r, t)≤ d(n,r, t)+ cr,tn2r−1,

for some constant cr,t depending on r, t. Example 4.1.4 shows that d(n,r, t) = Ωr,t
(
n2r),

and so the result holds as claimed.

In the next two subsections we shall shift our focus to proving upper bounds for

p(n,r, t) in the first two cases t = 1,2. When t = 1, the extremal example exhibits some

symmetry (in particular, both families have the same size). This symmetry disappears

when t = 2, indicating that the problem of bounding p(n,r, t) for general t could be quite

challenging.

4.3.1 Forbidding an intersection of size 1

It is very easy to give an upper bound for p∗(n,r,1), and so, by Lemma 4.3.1, this

translates to an asymptotic upper bound for p(n,r,1). Indeed, if A ,B ⊂ [n](r) are

{0}-cross-intersecting, then rather trivially (
⋃

A∈A A)∩ (
⋃

B∈B B) =∅, so we may assume

that A = X (r) and B = ([n]\X)(r) for some set X ⊂ [n]. If |X |= x, then we have

|A ||B|=
(

x
r

)(
n− x

r

)
.

It can be shown that the function f (x) =
(x

r

)(n−x
r

)
is concave for r−1≤ x≤ n− r+1.

Hence, we have

f (x) =
1
2
( f (x)+ f (n− x))≤ f (n/2).

Therefore,
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p(n,r,1) = (1+o(1))
(

n/2
r

)2

.

However, in this case we are able to remove the error term and prove that

p(n,r,1)≤
(bn/2c

r

)(dn/2e
r

)
, for n sufficiently large compared with r.

Theorem 4.1.6. Let r ≥ 2 be an integer. There exists n0 = n0(r) such that if n > n0 and

(A ,B) is a pair of 1-cross-avoiding r-uniform set systems, then

|A ||B| ≤
(
bn/2c

r

)(
dn/2e

r

)
.

Proof. Suppose that A ,B are 1-avoiding and maximize |A ||B|, and suppose without

loss of generality that |A | ≥
(bn/2c

r

)
. As in the proof of Lemma 4.3.1, we give a reduction

via delta-systems. More precisely, recall that we say x ∈ [n] is A -good (resp., B-good) if

there exists a delta-system in A (resp., B) of size at least r with core {x}. Let X and Y

denote the set of A -good and B-good points, respectively, and observe that A∩Y =∅ for

every A ∈A and B∩X =∅ for every B ∈B. We therefore obtain a partition

[n] = X ∪Y ∪Z where Z denotes the set of points which are neither A -good nor B-good.

We may also assume that X (r) ⊂A and Y (r) ⊂B. It also follows from the proof of

Lemma 4.3.1 that, if A0 := {A ∈A : A∩Z 6=∅} and B0 := {B ∈B : B∩Z 6=∅}, then

|A0|, |B0| ≤ 2(r−1)2( n
r−2

)
n≤ 2(r−1)2

(r−2)! nr−1. Let us write |A |=
(x

r

)
+ |A0| and

|B|=
(y

r

)
+ |B0|, where x := |X | and y := |Y |, so

|A ||B|=
(

x
r

)(
y
r

)
+ |A0|

(
y
r

)
+ |B0|

(
x
r

)
+ |A0||B0|.

The rest of the proof will be broken into two claims. The first claim asserts that we

may assume that the size of Y is large (i.e., linear in n). The second claim states that,

under the assumption that A ,B maximize |A ||B|, no point of [n] can be neither A -good

nor B-good. We therefore obtain the structural information that A = X (r) and B = Y (r).
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Claim 4.3.2. We may assume that y≥ βn, where β = β (r) = (r!)2/r

2001/r4r2 (as long as n is

sufficiently large).

Proof. Put cr =
2(r−1)2

(r−2)! , let β be as above, and suppose that y < βn. Using the fact that

|A0|, |B0| ≤ crnr−1 and crudely bounding
(x

r

)
≤
(n

r

)
, we have that

|A ||B| ≤
(

n
r

)(
βn
r

)
+2crn2r−1 + c2

r n2r−2

≤ β r

(r!)2 n2r +3crn2r−1,

where in the first line we have used the monotonicity of the function z 7→
(z

r

)
(for z≥ r−1)

and the inequality
(

θn
r

)
≤ θ r(n

r

)
, valid for any θ ∈ (0,1) with θn > r. Assuming that

n≥ 600cr4rr2r we have that 3cr/n≤ 1/2004rr2r, and therefore by our assumption on β

|A ||B|< 1
100

n2r

4rr2r ≤
1

100

(
n/2

r

)2

≤
(
bn/2c

r

)(
dn/2e

r

)
,

completing the proof of Claim 4.3.2.

The proof of Theorem 4.1.6 will be nearly finished once we establish that the set Z of

points which are neither A -good nor B-good is empty. Our second claim asserts just this.

Claim 4.3.3. Z =∅.

Proof. Suppose to the contrary that there is some x ∈ Z. Form a new pair A ′,B′ of

1-avoiding families in the following way. First, create A ′ by removing all sets of A that

contain x. We are then free to add to B all sets of the form B∪{x} where B⊂ Y is a

subset of size r−1 (note that as long as A (x) 6=∅, none of these sets originally belonged

to B as otherwise there would be a cross-intersection of size 1). It follows that A ′,B′ are

1-avoiding and

|A ′||B′|= (|A |− |A (x)|)
(
|B|+

(
y

r−1

))
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= |A ||B|+ |A |
(

y
r−1

)
−|A (x)||B|− |A (x)|

(
y

r−1

)
,

so if |A |>
(
|B|
( y

r−1

)−1
+1
)
|A (x)|, then we reach a contradiction to the maximality of

|A ||B|. But by Claim 4.3.2 we have
( y

r−1

)
≥ β r−1

(r−1)r−1 nr−1 and so the right-hand side is at

most

crnr−2
(

1+
cr(r−1)r−1

β r−1r!
n
)
≤ 2c2

r (r−1)r−1

β r−1r!
nr−1 (4.2)

Now, as long as n > 1002r+1c2
r rr(r−1)r−1

β r−1r! , the right-hand side of (4.2) is strictly less than

nr

1002rrr ≤
1

100

(
n/2

r

)
≤
(
bn/2c

r

)
≤ |A |,

and the proof of Claim 4.3.3 is complete.

Since Z =∅ it follows that A = X (r) and B = Y (r). Accordingly, |A ||B|=
(x

r

)(n−x
r

)
,

where x = |X | is an integer. This product is maximized when x and n− x are as equal as

possible, so since x≥ bn/2c we must have x = bn/2c, establishing Theorem 4.1.6.

We have not made an attempt to optimize the value of n0(r) in our proof. The value

we obtain is exponential in r; on the other hand, n0 must be exponential in r for such a

result to hold. To see this, consider the following example (A0,B0) where

A0 = B0 = {A ∈ [n](r) : 1,2 ∈ A}. This pair is certainly 1-cross-avoiding and

|A0||B0|=
(

n−2
r−2

)2

It is not difficult to check that
(n−2

r−2

)2
is larger than

(n/2
r

)2
whenever n < (r−1)4r/4. Thus
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the above star construction dominates whenever n is small, and it would be interesting to

investigate our problem in this regime of n.

4.3.2 Forbidding an intersection of size 2

The extremal example showing that Theorem 4.1.6 is tight is symmetric in the sense that

both families in the pair have the same size. We shall see now that this kind of symmetry

is lost when forbidding a cross-intersection of size 2. However, in view of our reduction

via Lemma 4.3.1, Theorem 4.1.7 will follow quite easily from a result of Huang, Linial,

Naves, Peled and Sudakov [37], and independently in a weaker form by Frankl, Kato,

Katona and Tokushige [29]. In order to state this result we need to introduce some

notation. Following the first set of authors, for a k-vertex graph H and an n-vertex graph G

let Ind(H;G) denote the collection of induced copies of H in G. The induced H-density in

G is defined as

d(H;G) =
|Ind(H;G)|(n

k

) .

Theorem 4.3.4. Let r,s≥ 2 be integers and suppose that d
(
Kr;G

)
≥ p where G is an

n-vertex graph and 0≤ p≤ 1. Let q be the unique root of qr + rqr−1(1−q) = p in [0,1].

Then d (Ks;G)≤Mr,s,p +o(1), where

Mr,s,p := max{(1− p1/r)s + sp1/r(1− p1/r)s−1,(1−q)s}.

After these preparations, Theorem 4.1.7 easily follows.

Proof of Theorem 4.1.7. Let (A ,B) be a pair of r-uniform families. By Lemma 4.3.1, we

may assume that (A ,B) is {0,1}-cross-intersecting. Thus, the pair (A ,B) gives rise to a

red-blue coloring of the edges of Kn such that every r-set in A induces a red copy of Kr,

and every r-set in B induces a blue copy of Kr. We may assume that |A |= αr(n
r

)
for

some α ∈ (0,1). Then in Theorem 4.3.4 we may take G = Kn, r = s, and p = αr. It
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follows that

|B| ≤ (Mr,r,αr +o(1))
(

n
r

)
,

and hence

|A ||B| ≤ (γr +o(1))
(

n
r

)2

,

where γr = maxα∈[0,1]{αrMr,r,αr}= maxα∈[0,1]{αr(1−α)r + rαr+1(1−α)r−1}.

Accordingly, from Theorem 4.1.7 we get that p∗(n,r,2)≤ p(n,r,2)≤ (γr +o(1))
(n

r

)2

as n→ ∞, and hence the same is true for d(n,r,2) by Theorem 4.1.5. This bound is

asymptotically tight for these problems by considering the pair (FX ,1,FXc,0) where

|X |= αn, and α ∈ [0,1] yields the maximum value of γr, as above.

4.4 Final remarks and open problems

We have addressed a variety of problems concerning the maximum number of disjoint

pairs in set systems with certain intersection conditions. Many problems remain open. For

example, Theorem 4.1.1 shows that the family F ∗(n, t) (see Section 4.1) that maximizes

the size of t-avoiding set systems for n sufficiently large also is asymptotically optimal for

maximizing the number of disjoint pairs. We conjecture that F ∗(n, t) indeed maximizes

the number of disjoint pairs among all t-avoiding set systems, for n sufficiently large.

Conjecture 4.4.1. For every integer t ≥ 1 there exists an integer n0 = n0(t) such that the

following holds. If n≥ n0 and F ⊂P[n] is t-avoiding, then

d(F )≤ d (F ∗(n, t)) .

We also considered the analogue of Theorem 4.1.2 when both set systems are

r-uniform, and we introduced three functions d(n,r, t), p(n,r, t), and p∗(n,r, t), each of
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which turned out to be asymptotically equivalent (see Section 4.3). Further, we made

progress in determining p(n,r,1) (and hence also d(n,r,1) and p∗(n,r,1)) for n large, and

also p(n,r,2), asymptotically. The extremal constructions for all three of these problems

turned out to be of the form
(
FX ,a,FXc,b

)
, for suitable X ⊂ [n] and nonnegative integers

a,b, as equal as possible. We conjecture that this phenomenon persists for all t < r.

Conjecture 4.4.2. Let r and t be positive integers with t < r. Then there exist nonnegative

integers a,b and X ⊂ [n] such that

p(n,r, t) = (1+o(1))|FX ,a||FXc,b|.

By Theorem 4.1.5, Conjecture 4.4.2 would imply that

d(n,r, t) = (1+o(1))d
(
FX ,a,FXc,b

)
. Note that by Lemma 4.3.1 we may pass from a

t-cross-avoiding pair to a {0, . . . , t−1}-cross-intersecting pair of set systems when

attempting to prove Conjecture 4.4.2. When t = 2k+1 is odd we expect that the product

|FX ,a||FXc,b| is maximized with the most symmetric parameters: |X |= bn/2c and

a = b = k (recall that when t = 1, the pair (FX ,0,FXc,0) is best possible). Hence, we

expect the extremal construction to exhibit some symmetry when t is odd. On the other

hand, when t is even we expect the extremal construction to be asymmetric, as evidenced

by the optimal configuration in Theorem 4.1.7. Note that in order to deal with this

asymmetry, we relied on a result of Huang, Linial, Naves, Peled and Sudakov [37],

concerning densities of red and blue cliques in 2-edge-colorings of the complete graph.

One way of tackling Conjecture 4.4.2 might be to give a suitable hypergraph

generalization of their result. In particular, consider the case t = 3. If A ,B are

cross-3-avoiding r-uniform families, then we may pass to a cross-{0,1,2}-intersecting

pair (incurring a o(1) error term). Thus, our families of sets give rise to a red-blue

coloring of the edges of the complete 3-uniform hypergraph K(3)
n where each r-set of A is

a red copy of K(3)
r and each r-set of B is a blue copy of K(3)

r . Our question, then, reduces
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to the following one: which 3-uniform hypergraph H on [n] maximizes the product

d(K(3)
r ;H )d(K(3)

r ;H )? The answer to this question should be the following hypergraph

(or its complement): split the ground set [n] = X ∪Y as evenly as possible and let H

consist of X (3) together with all triples which intersect Y in exactly 1 point.

Let us close by mentioning a connection to isoperimetric problems. We believe that

the pairs
(
FX ,a,FXc,b

)
with a+b≤ t−1 as equal as possible should be optimal for

maximizing p∗(n,r, t). For simplicity, let us specialize to the case when r = 3 and t = 2

(this case has a pleasant interpretation as the maximum product of monochromatic

triangles in a 2-edge-coloring of Kn). Thus, if (A ,B) is a pair of 3-uniform

{0,1}-intersecting hypergraphs and n is sufficiently large, is it true that the exact bound

|A ||B| ≤ γ
(n

3

)2 holds, where γ = γ3 = maxα∈[0,1]{α3(1−α)3 +3α4(1−α)2}? One way

of establishing this might be to prove a lower bound on the lower-upper shadow. Recall

that the lower shadow of a set system F ⊂ [n](r), denoted ∂F , is the set

{A ∈ [n](r−1) : A⊂ F, for some F ∈F}. The upper shadow is defined similarly, and

denoted ∂+F .

Question 4.4.3. Suppose that A ⊂ [n](3) with |A |=
(x

3

)
for some real number x≥ 3. Is it

true that

|∂+
∂A | ≥

(
x
3

)
+

(
x
2

)
(n− x)?

Let (A ,B) be a pair of {0,1}-intersecting 3-uniform set systems and write |A |=
(x

3

)
for some real x≥ 3. If Question 4.4.3 is true, then, since B ⊂ (∂+∂A )c, we have that

|B| ≤
(n−x

3

)
+
(n−x

2

)
x, and hence |A ||B| ≤

(x
3

)((n−x
3

)
+
(n−x

2

)
x
)
. Setting x = αn, using

the inequality
(

αn
3

)
≤ α3(n

3

)
, and optimizing yields |A ||B| ≤ γ

(n
3

)2. We finally remark

that Question 4.4.3 is related to several stronger (and most likely difficult) conjectures

made by Bollobás and Leader [13] concerning minimizing mixed shadows.
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