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Abstract 

This dissertation presents and tests a methodology for predicting the adoption rate of Connected 

Autonomous Trucks (CATs) in transportation organizations using peer effects. There are a 

number of different factors that must be considered when developing innovation adoption 

models for organizations. This dissertation briefly describes each of the relevant variables and 

combines them into a discrete choice model for predicting the adoption rate of CATs by 

transportation organizations. The model incorporates new peer effect modeling techniques to 

simulate competition and the informal communication network. A stated-preference survey is 

conducted, and information from 400 freight transportation organizations is gathered. The survey 

focuses on two hypothetical CAT adoption scenarios; the first scenario loosely describes a level 

3 autonomous vehicle, and the second scenario describes a level 4 autonomous vehicle which is 

introduced 10 years after the first generation of CATs are made available. By analyzing the 

responses to these scenarios, we are able to generate a prediction for how quickly freight 

transportation organizations will choose to test and adopt CATs. Smaller organizations were far 

more likely to reject CATs than larger organizations, and almost all of the responses agreed that 

the first generation of CATs are a high-risk investment. Despite this, roughly 30% of 

organizations claim that they plan to fully adopt and integrate CATs into their fleet as soon as 

they are made available and safe. 
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1. Introduction 

 The concept of Connected Autonomous Vehicles (CAVs) has gained much popularity 

over the last decade. Many modern vehicles are implementing some automation technologies 

such as lane departure warnings, adaptive cruise control, and collision avoidance systems, and 

test vehicles have already been allowed onto public roads in some areas (Bagloee et al., 2016; 

Steward, 2017; The Tesla Team, 2016). There are many expected benefits for CAVs, including 

reduced collisions and increased safety, increased mobility for disabled persons, a reduction in 

traffic congestion, more environmentally sustainable vehicles, increased road capacity, reduced 

fuel consumption, consistent travel times, and an increase in productivity.  (Anderson et al., 

2014; Bagloee et al., 2016; Bansal & Kockelman, 2017; Bullis, 2011; Fagnant & Kockelman, 

2015; Kunze et al., 2011; Lutin et al., 2013; Maddox, 2012).  

 However, despite the potential benefits to CAV technology, a number of issues with 

CAVs remain unresolved. Aside from operational concerns, questions about legality, liability, 

security, privacy, and infrastructure must be addressed before CAVs can be fully adopted by the 

public. However, it is difficult to prepare for these problems unless policymakers and legislators 

know how quickly the public is likely to adopt CAVs.  

 Some studies have already been performed to estimate the adoption of CAVs for private 

consumers (Lavasani et al., 2016; Talebian & Mishra, 2018), but despite the depth of research in 

the field of innovation adoption behavior, one area of study that has received less attention from 

academia is the behavior of organizations such as corporations and governmental agencies. 

While some studies have been performed regarding organizational innovation adoption behavior 

(Crossan & Apaydin, 2010; Damanpour, 1991; Damanpour & Schneider, 2006; N. Kim & 

Srivastava, 1998; Pierce & Delbecq, 1977; Rye & Kimberly, 2007; Simpson et al., 2019; 
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Subramanian & Nilakanta, 1996), these studies tend to be theoretical in nature, examining the 

effects of specific aspects of organizational adoption behavior such as managerial influence 

(Damanpour & Schneider, 2006; Leonard-Barton & Deschamps, 1988) or the structure of the 

organization (Damanpour, 1992; Moch & Morse, 1977; Pierce & Delbecq, 1977). While these 

studies are useful in that they provide further insight into the factors that influence organizational 

innovation adoption behavior, they fail to establish a solid baseline from which other works may 

begin (Crossan & Apaydin, 2010).  

 The purpose of this study is to establish a generalized methodology for estimating 

organizational innovation adoption behavior using a hypothetical dataset regarding the adoption 

of Connected Autonomous Trucks (CATs). Utilizing the findings of previous studies in the field 

of organizational innovation adoption behavior, a discrete choice modeling framework is 

developed to estimate the adoption of CATs by transportation organizations. This model 

incorporates elements from both traditional innovation adoption theories and peer effects 

research.  

The remainder of the dissertation is organized as follows. The following section discusses 

the technological innovations currently in development in the transportation field and the various 

innovation and organizational variables that influence the innovation adoption process. Section 3 

provides details about the methodology used in the dissertation, and section 4 contains a 

breakdown of the data gathered to test the model. Section 5 provides the results of the model and 

concludes the study with a discussion of the findings and information about future research 

opportunities in this field. 
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2. Literature Review 

Organizational Innovations in Transportation 

 Over the last several years, a number of new technologies have created opportunities to 

address many of the challenges facing transportation organizations. Innovations such as CAVs, 

truck platooning, drone transportation, smart parking systems, and collaborative/shared logistics 

systems may very well reshape the field of transportation. These innovations are influencing the 

behavior of consumers and organizations alike, altering the network of freight supply chains at all 

levels. While this dissertation focuses on the adoption of CATs, the methodology has been 

generalized so that it can be utilized for any number of innovations within the field of 

transportation. Therefore, it is important to briefly discuss these innovations and the state of 

research surrounding them.  

Connected autonomous vehicles 

The idea of self-driving cars has long been a fantasy of both transportation planners and 

the general public, but recent advancements in automation technologies point to the promise of 

truly autonomous vehicles in the near future. While most vehicles currently being sold possess 

some small degree of automation such as adaptive cruise control, collision avoidance systems, 

parking assist, route assignment via GPS, and lane departure warning systems, true connected 

autonomous vehicles (CAVs) have not yet been made available to the general public (Bagloee et 

al., 2016; Bansal & Kockelman, 2017; Fagnant & Kockelman, 2015). Companies such as 

Google, Tesla, and Uber are currently testing prototype CAVs on specific roads in the United 

States (Bagloee et al., 2016; Steward, 2017; The Tesla Team, 2016), and both federal and state-

level DoTs are examining potential regulations concerning future autonomous vehicles (Lari et 

al., 2015; U.S. Department of Transportation, 9/16). 
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According to the National Highway Traffic Safety Administration (NHTSA), 

autonomous vehicles are divided up into different levels based on the degree of automation, from 

minor automation features at level one to complete automation with no driver controls at level 

five (Lutin et al., 2013). Most modern vehicles can be categorized as a level 1 or 2 autonomous 

vehicle, but the term “connected autonomous vehicle” tends to refer to levels 3 through 5. Level 

3 CAVs may become commercially available as soon as 2020, with the higher levels of 

automation arriving in the following years (Fagella, 2017). On top of driving autonomously, 

CAVs must also be able to communicate with other vehicles, pedestrians, the infrastructure, or a 

centralized control center to operate without introducing significant disruption to the flow of 

traffic (Milakis et al., 2015; O’sullivan, 2010). 

Integrating CAVs into the fleet is expected to have many benefits. The most commonly 

referenced benefit is an increase in vehicle safety and a reduction in collisions (Bagloee et al., 

2016; Bansal & Kockelman, 2017; Bullis, 2011; Fagnant & Kockelman, 2015; Lutin et al., 

2013). By removing human distractions and relying on the much faster reflexes of an 

autonomous system, advocates of CAVs hope to greatly reduce or even eliminate collisions 

altogether (Anderson et al., 2014; Lutin et al., 2013; Maddox, 2012). Other anticipated benefits 

include a reduction in congestion, more environmentally friendly vehicles, greater mobility for 

those unable to drive, increased road capacity, reduced fuel consumption, increased productivity, 

and more predictable travel times (Anderson et al., 2014; Bagloee et al., 2016; Fagnant & 

Kockelman, 2015; Kunze et al., 2011).  

CAVs may also have additional benefits to freight transportation. Automation may 

reduce the number of drivers required to move goods, greatly reducing the overall cost of 

transportation operations and providing a possible answer to driver shortage issues (Rossman, 
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2017; Shankwitz, 2017). Between reducing labor costs and increased fuel efficiency, CAVs have 

the potential to alleviate the two largest costs of freight transportation organizations (Anderson et 

al., 2014; Bagloee et al., 2016; Bullis, 2011; Fagnant & Kockelman, 2015; Kockelman et al., 

2017; Shankwitz, 2017). Automation will also increase the comfort of drivers, which may in turn 

help organizations address the issue of frequent driver turnaround. Overall productivity may also 

increase if CAVs lead to changes in regulations regarding the number of hours of service a driver 

may work before he or she is required to rest.  

CAVs will also likely be attractive to organizations responsible for public transportation 

systems for similar reasons. Research has shown that individuals may be wary about the prospect 

of transitioning to shared CAVs, but using automated public transportation systems is less of a 

concern (Fagnant et al., 2015; Fagnant & Kockelman, 2018; Lam et al., 2016; Litman, 2017; 

Menouar et al., 2017). Automated bus services could greatly increase total passenger capacity 

while requiring minimal infrastructure changes, and reducing the cost of operating a public 

transit system would allow for lower tolls, leading to increased utility for public transportation 

options (R. Bishop, 2000). 

It should be noted that the technology required to enable CAVs will also have additional 

use in transportation organizations outside of freight. The imaging and short-range 

communications technology will be useful in monitoring traffic, re-routing in case of detours, 

enabling smart parking systems, and reducing collisions in traditional vehicles (Milakis et al., 

2015; O’sullivan, 2010).  

Truck platooning 

Truck platooning is the act of using connectivity technology to link two or more trucks 

into a convoy. The lead truck may be automated or manned, and all other trucks in the convoy 
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automatically react to the actions of the lead truck. Because the trucks rely on automation 

technology rather than human reaction times, they are able to maintain a much smaller headway 

than is safe in traditional driving. The potential benefits of truck platooning include lower fuel 

consumption, reduced emissions, and increased driver safety (ACEA, 2016). 

Most of the research that has been conducted so far in Truck Platooning focuses on 

investigating ways to minimize fuel consumption and energy usage by efficiently implementing 

the technology. The most common optimization solutions involve adjusting the platoon speeds 

and the headways between the trucks (Alam et al., 2015; Deng & Ma, 2014; Kunze et al., 2011; 

Tsugawa et al., 2011; Van De Hoef et al., 2015). Also, another important aspect in truck 

platooning is managing and integrating the technology with normal traffic flow conditions. 

Another focus of the literature is on how truck platoons interact with normal traffic patterns. 

Current traffic models are unable to account for truck platoons, and so updated models are 

presented in the literature to account for the disruption caused by the platoons (Farokhi & 

Johansson, 2013; Larsson et al., 2015). Studies on how to implement truck platoons, the 

infrastructure required to support platoons, vehicle-to-vehicle communication technologies, and 

required automation are also found in the literature (Bergenhem et al., 2012; Gehring & Fritz, 

1997; Nowakowski et al., 2015). 

Drones in transportation 

Drones, also sometimes referred to as “unmanned aerial vehicles,” have been used by 

militaries for some time. However, the use of drones by civilian transportation organizations has 

only recently begun to attract the attention of investors. Drones come in a wide variety of shapes 

and sizes, and the term can be used to describe flying vehicles from hand-held devices to 

vehicles the size of commercial airplanes. However, organizations seem to be focusing primarily 
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on the applications that the smaller drones can offer, including the transportation of medical 

supplies (Amukele et al., 2017; Lippi & Mattiuzzi, 2016; Thiels et al., 2015), passenger 

transportation (Clarke, 2014b), monitoring traffic patterns (Karl Kim et al., 2017), air cargo 

transportation (Chalupníčková et al., 2014; Karl Kim et al., 2017; Karl Kim & Davidson, 

2015)and augmenting ground-based freight transportation by assisting with last-mile operations 

(Campbell et al., 2018; Clarke, 2014b; Tavana et al., 2017). 

 There are a number of potential benefits to using drones to assist in transportation 

operations, aside from the obvious reduction in manpower necessary to transport goods. Drones 

would be largely immune to traffic issues that may delay ground or air-based freight operations, 

and would be able to travel virtually anywhere within a certain radius of the operation’s center 

(Amukele et al., 2017; Chalupníčková et al., 2014). They would have a much lower overhead 

cost than today’s delivery vehicles, and would prove to be easier to monitor, as well (Amukele et 

al., 2017; Chalupníčková et al., 2014; D’Andrea, 2014). An underexamined aspect of drones in 

transportation is that drones would produce far less CO2 and other emissions compared to the 

trucks which are used today (Goodchild & Toy, 2018). 

 However, there are also a number of drawbacks to drone technology that have not yet 

been addressed. One of the most prevalent concerns regarding drone adoption revolves around 

privacy and security. Drones could be used to monitor traffic and improve transportation, but 

they could also easily be used to spy on citizens and gather data without consent (Clarke, 2014b, 

2014a; D’Andrea, 2014; Rao et al., 2016). Similar to CAVs, there is the problem of drone 

decision-making capabilities potentially being insufficient to deal with real-time events. Without 

adequate reaction and decision-making capabilities, drones may prove to be little more than 

dangerous, high-speed projectiles (Clarke, 2014c; Clarke & Moses, 2014; Karl Kim et al., 2017; 
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Lippi & Mattiuzzi, 2016). Drones may also be hijacked if they are not adequately protected from 

cyberattacks (Clarke & Moses, 2014) There is little safety data on civilian drone usage to draw 

upon to predict how dangerous drones may actually become if their use becomes widespread 

(Amukele et al., 2017). 

 While there are many concerns surrounding civilian drone use, most research on the 

technology and its applications tend to be positive about the eventual adoption of drones in 

transportation. Researchers are focusing on improving the technology to make drones 

economically viable and capable of carrying larger payloads (D’Andrea, 2014; Floreano & 

Wood, 2015), ensuring the safety of drone operations (Clarke, 2014b, 2014a, 2014c; Clarke & 

Moses, 2014; Karl Kim et al., 2017; Lippi & Mattiuzzi, 2016), theorizing ways that drone 

technology might be applied to freight operations (Amukele et al., 2017; Chalupníčková et al., 

2014; Karl Kim et al., 2017; Karl Kim & Davidson, 2015; Tavana et al., 2017), measuring the 

environmental impact of drone usage (Goodchild & Toy, 2018), and integrating drones into 

current transportation processes (Campbell et al., 2018; Tavana et al., 2017)  

Smart parking 

Smart parking technology enables communication between drivers and the parking lot. 

This can take the form of reserving parking spaces ahead of time, directing drivers to the most 

convenient open parking space, or gathering data on parking lot preferences and providing 

insight for future infrastructure projects. The results of smart parking systems include more 

optimal parking space usage and better traffic flow through parking facilities.  

Much of the current research in this field is focused on identifying the most critical 

aspects of smart parking systems and providing algorithms that optimize the performance of the 

parking lot by balancing proximity to the destination, costs, and overall utilization of parking 
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capacity in real time (Bachani et al., 2016; Geng & Cassandras, 2012; Hanif et al., 2010; 

Polycarpou et al., 2013; Shin & Jun, 2014). Another focus of research is how best to allow 

drivers to reserve parking spaces while still balancing cost and overall capacity (Hanif et al., 

2010; H. Wang & He, 2011). Other research in this field focuses on problems such as how to 

best establish sensors and other pieces of infrastructure needed for smart parking technology to 

function (Chinrungrueng et al., 2007), or the potential costs and benefits of adopting smart 

parking systems (Mahmud et al., 2013; Pala & Inanc, 2007). 

Collaborative and shared logistics 

Collaborative and shared logistics refer to the strategy of utilizing unused capacity in 

both passenger and freight transportation systems. Collaboration can be horizontal (between 

competitors) or vertical (between different parts of a supply chain) (Saenz et al., 2015). 

Collaboration between transportation organizations can result in more optimal systems, 

improved reliability, reduced delivery time, and increased cost efficiency (Angerhofer & 

Angelides, 2006; Bates et al., 2017; de Souza et al., 2014; Guo et al., 2016; O’sullivan, 2010; 

Tyan et al., 2003).  

 Research on this subject is largely computational in nature. Organizations involved in 

collaborative and shared logistics recognize that there is a benefit to the system, but sophisticated 

technology is required to achieve the optimal solution, as resource allocation and vehicle routing 

problems are constantly changing (Curtois et al., 2017; Dai & Chen, 2009; de Souza et al., 2014; 

Gonzalez-Feliu et al., 2013; Guajardo & Rönnqvist, 2015; Stefansson, 2006; Trentini et al., 

2012; Verdonck et al., 2013). The literature discusses models that range from full-system 

collaboration transportation management (Feng & Yuan, 2007; Gonzalez-Feliu et al., 2013; 

O’sullivan, 2010; Stefansson, 2006; Trentini et al., 2012; Verdonck et al., 2013), to models that 
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deal with very specific situations such as last-mile and less-than-truckload transportation (Dai & 

Chen, 2009; de Souza et al., 2014).  

Factors in Innovation Adoption 

The study of innovation adoption behavior stretches back to the 1930s when a new 

variety of corn was introduced to farmers in the American Midwest, and it has remained a 

popular domain for research to this day (B. Ryan & Gross, 1950). Researchers have studied 

innovation adoption in nearly every field, including health care (Berwick, 2003; Cain, 2002; 

Greenhalgh et al., 2004; Plsek, 2003; Rye & Kimberly, 2007), transportation (Lavasani et al., 

2016; Orbach & Fruchter, 2011; Shafiei et al., 2014; Talebian & Mishra, 2018; Wolf et al., 2015; 

Zsifkovits & Günther, 2015), information systems and technologies (AlAwadhi & Morris, 2008; 

Kijsanayotin et al., 2009; Lin & Anol, 2008; Martins, 2013; H.-Y. Wang & Wang, 2010; Zhou, 

2012), communications (Daft & Lengel, 1986; Fidler & Johnson, 1984; Leonard-Barton & 

Deschamps, 1988; Van Slyke et al., 2007), education (Borrego et al., 2010; Graham et al., 2013; 

Mintrom & Vergari, 1998), and entertainment (Atkin, 1993; Kihyun Kim et al., 2009; Leong et 

al., 2011), to name a few. These studies provide insight into why some innovations have 

successfully permeated throughout society while others fail to reach their market potential. By 

analyzing the psychological (Marcati et al., 2008; Ram & Sheth, 1989; Sheth & Stellner, 1979; 

Wood & Swait, 2002), sociological (Boahene et al., 1999; Mahler & Rogers, 1999; Valente, 

1996; Valeri et al., 2016), and economic factors (C. P. Bishop et al., 2010; Gopalakrishnan & 

Damanpour, 1997; Greenhalgh et al., 2004; Mahler & Rogers, 1999; Rogers, 2003) that 

influence innovation adoption behavior, researchers have been able to come to understand not 

only why innovations succeed or fail but also how potential adopters may respond to future 

innovations.  



11 
 

 Because innovation adoption behavior is such an advanced field of research, there are 

many variables that have been identified as influencing adoption behavior. Different variables 

are chosen for any given study depending on the field of research and the theoretical framework 

that is being used, but there are several common elements to most innovation adoption studies. 

The variables can generally be grouped into innovation variables, organization variables, and 

social variables, as demonstrated by Table 1.  

Depending on the innovation, there may be additional, non-universal variables which 

may need to be considered. For example, CAT adoption studies may need to include variables 

such as driver opinion, organization fleet sizes, average miles traveled per trip, and whether the 

organization owns, contracts with, or rents their vehicles. These additional variables should be 

considered on a case-by-case basis. 

Innovation Variables 

 The first innovation variable that most studies mention is “Relative Advantage” (Aubert 

& Hamel, 2001; Cain, 2002; Greenhalgh et al., 2004; Hoerup, 2001; Premkumar et al., 1997; 

Rogers, 2003; Sahin, 2006). Relative advantage is the degree to which an innovation is perceived 

as being better than the idea or system it supersedes. It can be stated in economic terms if saving 

time, energy or money is the primary goal of the innovation. It could also be considered in social 

terms if it is considered desirable or prestigious to adopt an innovation (Rogers, 2003). Relative 

advantage is based on the perception of the potential adopter; not every individual will place the 

same value on the advantages an innovation may bring (Cain, 2002). Some studies choose to 

separate relative advantage from cost (Hoerup, 2001), but the prevailing tendency is to assume 

that cost is a factor included in relative advantage (Hoerup, 2001; Rogers, 2003). 



 
 

Table 1 

Organizational Innovation Adoption Variables 

Variable Type Definition Sources 

Relative Advantage Innovation The degree to which an innovation is  

perceived as being better than the idea or  

system it supersedes 

(Aubert & Hamel, 2001; Cain, 2002; Greenhalgh 

et al., 2004; Hoerup, 2001; Premkumar et al., 

1997; Rogers, 2003; Sahin, 2006) 

Compatibility Innovation The degree to which an innovation is  

consistent with the goals and needs of the  

adopter 

(Aubert & Hamel, 2001; Greenhalgh et al., 2004; 

Hoerup, 2001; A. D. Meyer & Goes, 1988; 

Premkumar et al., 1997; Rogers, 2003; Sahin, 

2006) 

Observability Innovation The degree to which an innovation’s effects  

are easily noticed and understood 

(Aubert & Hamel, 2001; Cain, 2002; Greenhalgh 

et al., 2004; A. D. Meyer & Goes, 1988; Parisot, 

1997; Rogers, 2003; Sahin, 2006) 

Complexity Innovation The degree to which an innovation is  

difficult or understand 

(Greenhalgh et al., 2004; A. D. Meyer & Goes, 

1988; Plsek, 2003; Premkumar et al., 1997; 

Rogers, 2003; Sahin, 2006). 

Trialability Innovation The degree to which an innovation may be  

experimented with on a limited basis 

(Aubert & Hamel, 2001; Greenhalgh et al., 2004; 

Hoerup, 2001; Plsek, 2003; Rogers, 2003; Sahin, 

2006) 

Reinventability Innovation The degree to which an innovation is able to  

be modified for purposes other than its  

original intended use 

(Greenhalgh et al., 2004; M. Meyer et al., 1997; 

Robinson, 2009) 

Perceived Risk Innovation The degree of uncertainty surrounding the  

innovation 

(Greenhalgh et al., 2004; Hudson et al., 2019; 

Martins, 2013; A. D. Meyer & Goes, 1988; Ram & 

Sheth, 1989; Schoettle & Sivak, 2014; Sheth & 

Stellner, 1979) 

Organizational Size Organizational A description of the size of the organization  

in question, typically in terms of  

employment 

(Damanpour, 1992; Frambach & Schillewaert, 

2002; Moch & Morse, 1977; Pierce & Delbecq, 

1977; Premkumar et al., 1997; Rogers, 2003; 

Subramanian & Nilakanta, 1996) 
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Table 1 Cont.    

Variable Type Definition Sources 

Specialization Organizational A measurement of the knowledge and 

expertise of an organization’s members 

(Damanpour, 1991; Moch & Morse, 1977; Rogers, 

2003; Subramanian & Nilakanta, 1996) 

Formalization Organizational A measurement of how strictly an  

organization requires its members to follow  

established rules and protocol 

(N. Kim & Srivastava, 1998; Rogers, 2003; 

Subramanian & Nilakanta, 1996). 

Centralization Organizational The degree to which power and control in a  

system are concentrated in the hands of  

relatively few individuals 

(Frambach & Schillewaert, 2002; N. Kim & 

Srivastava, 1998; Moch & Morse, 1977; Pierce & 

Delbecq, 1977; Rogers, 2003). 

Privatization Organizational The degree to which an organization is  

controlled by private owners, rather than  

the general public 

(Aarons et al., 2009; Damanpour, 1991; 

Damanpour & Schneider, 2008; Hartley, 2005; 

Rainey et al., 1976; Van der Wal et al., 2008; Van 

der Wal & Huberts, 2008) 

Managerial  

Innovativeness 

Social The degree to which the decision-maker(s)  

of an organization are inclined to innovate 

(Aguila-Obra & Padilla-Meléndez, 2006; 

Damanpour & Schneider, 2006, 2008; Leonard-

Barton & Deschamps, 1988; Rogers, 2003). 

Governmental  

Influences 

Social The degree to which regulations and  

legislation restricts or promotes the  

adoption of the innovation 

(Hall & Van Reenen, 2000; Litman, 2017; Welch 

& Thompson, 1980) 

Public Opinion Social The perceived attitude of the public toward  

the innovation 

(Burstein, 2003) 



 
 

“Compatibility” is the degree to which an innovation is consistent with the goals and 

needs of the adopter (Aubert & Hamel, 2001; Greenhalgh et al., 2004; A. D. Meyer & Goes, 

1988; Premkumar et al., 1997; Rogers, 2003; Sahin, 2006). This attribute is also largely based on 

the perception of potential adopters. An innovation may be intended to solve a problem or meet a 

need, but if the adopter does not recognize the need for the innovation, he or she is less likely to 

choose to adopt (Sahin, 2006). The perception of compatibility for an innovation is mostly reliant 

on effective marketing. Everything from the name of the innovation to the intended purpose and 

use of the innovation effects potential adopters’ perceived compatibility (Hoerup, 2001).  

“Observability” – sometimes referred to as visibility - is a measure of how easily the 

effects of an innovation are noticed and understood, especially by other potential adopters 

(Aubert & Hamel, 2001; Greenhalgh et al., 2004; A. D. Meyer & Goes, 1988; Rogers, 2003; 

Sahin, 2006). Observability is important to adoption rate because an innovation which is easily 

observable will be noticed and accepted more rapidly than an innovation which is difficult to 

observe (Rogers, 2003). Direct observation is often a key factor in motivating potential adopters 

to more thoroughly investigate an innovation (Parisot, 1997). Some effects of innovations may 

be readily apparent to a casual observer, whereas other aspects may be much harder to observe 

(Aubert & Hamel, 2001; Rogers, 2003). Observability is often inversely correlated with 

perceived complexity, because more complex innovations are more difficult to understand, and 

so it is more difficult to perceive the effects they may have (Cain, 2002). 

Like compatibility, “complexity” is largely based on the perception of the potential 

adopter. Complexity is the belief that an innovation will be either difficult to use or difficult to 

understand. Complexity is an inherently negative attribute of an innovation (Greenhalgh et al., 

2004; A. D. Meyer & Goes, 1988; Premkumar et al., 1997; Rogers, 2003; Sahin, 2006). More 
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complex innovations are less likely to be adopted and will permeate throughout a field more 

slowly than simpler innovations. Proper instruction and a user-friendly interface can reduce the 

perceived complexity of an innovation, causing it to be diffused more rapidly (Cain, 2002; Sahin, 

2006). Innovations which can be adopted in small, manageable pieces over time can also greatly 

increase the innovation’s attractiveness (Greenhalgh et al., 2004; Plsek, 2003; Rogers, 2003). 

Some studies prefer to capture the effect of complexity with its opposite attribute, which is 

typically referred to as “Ease of Use” (Aubert & Hamel, 2001; Venkatesh et al., 2016). 

“Trialability” is a measurement of how easily an innovation can be tested before full 

adoption (Aubert & Hamel, 2001; Greenhalgh et al., 2004; Rogers, 2003; Sahin, 2006). The 

adoption of innovations is a process of reducing the uncertainty surrounding an innovation, and 

the ability to test an innovation before fully adopting it is an effective way to reduce uncertainty 

(Rogers, 2003). Trialability is especially important early in the diffusion process, because at that 

time there are few existing examples of the innovation succeeding. As more people successfully 

adopt the innovation, potential adopters have more references to draw from to reduce their 

uncertainty, reducing the impact of an innovation’s trialability (Hoerup, 2001; Plsek, 2003). 

“Risk” is the degree of uncertainty surrounding the innovation (Greenhalgh et al., 2004; 

A. D. Meyer & Goes, 1988; Sheth & Stellner, 1979). Risk is typically viewed in the context of 

the innovation’s relative advantage, as it can be considered in physical, economic, social, or 

political terms, and it is dependent on the perception of the individual adopter (Greenhalgh et al., 

2004; Martins, 2013; A. D. Meyer & Goes, 1988; Ram & Sheth, 1989; Sheth & Stellner, 1979).  

 “Reinvention” is the degree to which an innovation is able to be modified for purposes 

other than its original intended use (Greenhalgh et al., 2004; M. Meyer et al., 1997; Robinson, 

2009). Innovations that are perceived to be flexible are likely to be perceived as more  
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advantageous (Greenhalgh et al., 2004). In addition, an innovation with a high reinvention 

capacity is more likely to be perceived as compatible with the adopter’s needs (Robinson, 2009). 

Organization Variables 

“Organizational size” is the most commonly discussed organizational characteristic for 

innovation adoption studies. The size of an organization can be measured as total employment, 

the number of clients or customers, or the annual budget/revenue of an organization. Larger 

organizations tend to display greater innovativeness than organizations which are smaller 

(Frambach & Schillewaert, 2002; Premkumar et al., 1997; Rogers, 2003; Subramanian & 

Nilakanta, 1996). Some studies suggest that organizational size is merely a useful proxy for other 

organizational variables such as specialization and centralization, and that size is not actually 

indicative of greater innovativeness (Moch & Morse, 1977; Pierce & Delbecq, 1977). While 

further research is needed to determine whether or not organizational size in isolation promotes 

innovative behavior, there does seem to be a correlation between the size of an organization and 

its ability or desire to innovate (Damanpour, 1992; Frambach & Schillewaert, 2002; Moch & 

Morse, 1977; Pierce & Delbecq, 1977; Rogers, 2003; Subramanian & Nilakanta, 1996).  

“Specialization” is defined as the level of knowledge and expertise that the organization 

can draw upon (Damanpour, 1991; Moch & Morse, 1977; Rogers, 2003; Subramanian & 

Nilakanta, 1996). Highly specialized members of an organization will require less training to 

acquire the skills necessary to adopt innovations. Specialization is a counterbalance for the 

complexity of an innovation; if an organization has highly specialized members, then that 

organization will be better able to adopt and integrate complex innovations (Damanpour, 1991; 

Moch & Morse, 1977; Subramanian & Nilakanta, 1996). 
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“Centralization” is defined as “the degree to which power and control in a system are 

concentrated in the hands of relatively few individuals” (Frambach & Schillewaert, 2002; N. 

Kim & Srivastava, 1998; Moch & Morse, 1977; Pierce & Delbecq, 1977; Rogers, 2003). More 

centralized organizations tend to be slower to adopt than less centralized organizations, as the 

decision-makers are further removed from the places where the innovation is needed (Frambach 

& Schillewaert, 2002; N. Kim & Srivastava, 1998; Moch & Morse, 1977; Rogers, 2003). 

However, once the decision to adopt has been made, organizations which are more centralized 

tend to implement the innovations more quickly (Frambach & Schillewaert, 2002; Rogers, 

2003). 

“Formalization” is the degree to which an organization expects its members to follow 

pre-established protocol (N. Kim & Srivastava, 1998; Rogers, 2003; Subramanian & Nilakanta, 

1996). More formal organizations are less likely to consider innovation as a solution to a 

problem, but they are also better able to implement an innovation after the adoption decision has 

been made (N. Kim & Srivastava, 1998; Rogers, 2003; Subramanian & Nilakanta, 1996).   

“Organizational slack” is a quantification of the resources that are available to an 

organization that have not been committed to other tasks (Cheng & Kesner, 1997; Nohria & 

Gulati, 1996; Subramanian & Nilakanta, 1996). Businesses often view organizational slack as a 

negative attribute, but high levels of organizational slack indicate that the organization is able to 

experiment with innovations (Cheng & Kesner, 1997; Nohria & Gulati, 1996; Subramanian & 

Nilakanta, 1996). Higher levels of organizational slack are associated with lower perceived risk, 

which is intuitive because many of the resources that would be devoted to adopting and 

implementing an innovation will not be needed for other tasks (Moses, 1992). 
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“Privatization” is the degree to which an organization is controlled by private owners 

rather than the general public. Many organizations are strictly public or private, but there are 

other organizations that can be most accurately described as “quasi-public,” and so the degree of 

privatization for each organization needs to be accounted for. Private organizations tend to be 

more innovative than public organizations, as public organizations tend to be less focused on 

competition and more focused on public opinion (Aarons et al., 2009; Damanpour, 1991; 

Damanpour & Schneider, 2008; Hartley, 2005; Van der Wal et al., 2008; Van der Wal & 

Huberts, 2008). Contrary to popular belief, public organizations do not tend to have higher 

formalization than private organizations (Rainey et al., 1976). Also of note is that the decisions 

of public organizations tend to be less influenced by many of the other organizational 

characteristics, and they tend towards lower estimations of relative advantage for innovations 

than private organizations (Damanpour, 1992; Rainey et al., 1986; Van der Wal et al., 2008).  

Social Variables 

 Another factor to consider is the effect of managerial innovativeness. An organization 

with an innovative manager or a manager which champions a particular innovation will be much 

more likely to adopt (Aguila-Obra & Padilla-Meléndez, 2006; Damanpour & Schneider, 2006, 

2008; Leonard-Barton & Deschamps, 1988; Rogers, 2003). Youth and advanced education tend 

to be correlated with increased managerial innovativeness (Hambrick & Mason, 1984). 

 Governmental influences must also be taken into account when examining organizational 

innovation adoption behavior. In some cases, regulations have been introduced that encourage or 

even mandate adoption (Litman, 2017). However, legislation can just as easily discourage or 

prohibit the use of a particular innovation. The weight of these influences must be examined on a 

case-by-case basis (Hall & Van Reenen, 2000; Welch & Thompson, 1980). In a similar manner, 
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it is important to consider the influence that public opinion may have on an organization’s 

decision to adopt an innovation. While organizations are typically less influenced by social 

factors, public opinion is still a powerful indicator of what an organization will decide to do 

(Burstein, 2003).  

Peer Effects 

One important factor to consider in innovation adoption studies is the effect of social 

influences on the adopter (Bass, 2004; Boahene et al., 1999; Clearfield & Osgood, 1986; 

Mahajan et al., 1995; Mahler & Rogers, 1999; Rogers, 2003; Valente, 1996; Wright & Charlett, 

1995). Individuals tend to make decisions based on not only their own interests but the actions of 

their peers. Figure 1 illustrates the impact of peer effects on a network. 

 

 

Fig. 1.  Impact of Peer Effects on a Network 

 

The left panel of Figure 1 shows a network of organizations in one of four adoption 

states. The thickness of arrows in which each organization is connected with other shows the 
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strength of connection, and size of each node represent their firm size in terms of employees. 

Organizations which change their adoption decision due to peer influences are highlighted. Each 

organization is connected with others to form a sub-network. The peer effect literature in non-

transportation domains suggest that organizations who have adopted a specific innovation will 

potentially affect others who are in their subnetwork (Bramoullé et al., 2009; Calvó-Armengol et 

al., 2009). Similarly, organizations who have not adopted and pose a negative view towards the 

innovation may affect others towards non-adoption or deferred adoption. The current literature 

lacks quantification of peer effects, i.e. some organizations adoption decisions because of their 

size, business pattern, geographical operation boundaries, etc.  

One of the difficulties that must be considered when developing a peer effects model is 

how to establish the social network. It is often difficult to determine whether or not there should 

be a link between two agents, and the way that the network is structured can have a large impact 

on the results of the peer effects evaluation (Bramoullé et al., 2009; Dugundji & Walker, 2005; 

Le Pira, Inturri, et al., 2017). This dissertation proposes that the social network can be formed 

using a modification of the gravity model, where the links between nodes depends on the 

distance between the nodes and the respective weights of the nodes. 

An important aspect of peer effects is the concept that not all players are equal in their 

ability to influence their peers (Ballester et al., 2006). Depending on factors such as personality, 

position within the social network, experience, and authority, individuals have widely varying 

levels of influence over their peers (Calvó-Armengol et al., 2009). Agent-based modeling 

techniques may be particularly useful in accounting for this heterogeneity (Biondo et al., 2017; 

Le Pira, Marcucci, et al., 2017; Marcucci et al., 2017). When applying the concept of peer effects 

to organizations, this variability in influence is greatly magnified due to the extreme 
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heterogeneity found in organizations (Frambach & Schillewaert, 2002; Marcucci & Gatta, 2016; 

S. P. Ryan & Tucker, 2012). Organizations which are larger tend to have greater spheres of 

influence than smaller organizations. 

Recent studies have demonstrated the power of these peer effects in other fields, but 

innovation adoption behavior studies have not yet incorporated many of the findings that this 

research has provided (Ballester et al., 2006; Calvó-Armengol et al., 2009; Goldsmith-Pinkham 

& Imbens, 2013; Kline & Tamer, 2014; Liu et al., 2012; Noll et al., 2014). Innovation adoption 

studies almost always include some way of measuring how peers of a potential adopter influence 

the decision-making process (Bass, 2004; Escobar-Rodríguez & Carvajal-Trujillo, 2014; 

Martins, 2013; Massiani & Gohs, 2015; Rogers, 2003; Venkatesh et al., 2016). While 

organizations tend to be much less reliant on social influences than individuals (Pierce & 

Delbecq, 1977), informal communication networks and inter-organizational competition are still 

strong social influences that must be considered (Czepiel, 1975). 

3. Methodology 

Data is gathered on N organizations, including all relevant characteristics and perceived 

attributes for the innovation. The innovation is denoted as set I, where i can take values from 1 to 

4 (such as 1= complete rejection of the innovation, 2= a decision to test a prototype of the 

innovation, 3= a partial adoption, and 4 = full adoption).  The dependent variable is denoted as 

𝑌𝑛𝑖, which is the choice that organization 𝑛 makes regarding adoption of the innovation i. 𝑌𝑛𝑖 is 

an integer with values from 1 to 4 and the vector of all 𝑌𝑛𝑖 outcomes is denoted as Y. Each 

organization n also has K attributes, which are denoted as the K-vector 𝑋𝑛 (organization size, 

number of employees, centralized or decentralized business approach, local, regional or national 

operation etc.) and each alternative as unique characteristics such as 𝑋𝑖 (capital cost of the 
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innovation, operation and maintenance cost of the innovation, technological advantages, 

reduction in labor cost, annual profit accrued etc.). We can form an N by K matrix X, where the 

𝑛th row is equal to the vector 𝑋𝑛 (Goldsmith-Pinkham & Imbens, 2013). 

 The organizations will be connected in a network, and this network will be captured in 

the adjacency matrix M, where the typical element 𝑀𝑝𝑞 is a continuous variable greater than 0. 

Greater values of 𝑀𝑝𝑞 indicate that strong communication, competition, or influence exists 

between organizations 𝑝 and 𝑞. Because some organizations are more influential than others, 

Matrix M is not symmetrical. A graph theory model is used to generate matrix M. We first 

define a 𝛿-dimensional coordinate system. We then place each organization within the 𝛿-

dimensional space (Talebian & Mishra, 2018). The distance between each organization 𝐷𝑝𝑞 is 

calculated as  

𝐷𝑝𝑞 = √∑𝜎𝐴 (
𝑉𝐴𝑖𝑝

− 𝑉𝐴𝑗𝑞

𝑚𝑎𝑥𝑉𝐴
)

2

𝐴∈𝑆

 

 

(1) 

where 𝑆 is the set of characteristics that define the 𝛿-dimensional space, 𝑉𝐴𝑝
 is the value of 

attribute 𝐴 for organization 𝑝, and 𝜎𝐴 is the weight given to attribute 𝐴. We also assign a weight 

𝑊𝑛 to each organization according to the organizational size and fleet size. 𝑊𝑛 is calculated as 

𝑊𝑛 = ∑
𝑍𝐶𝑖𝑛

𝑚𝑎𝑥𝑍𝐶
𝐶∈𝑅

 
(2) 

where 𝑅 is the set of H attributes that define the weight of the organizations, and 𝑍𝐶𝑖𝑛
 is the value 

of attribute 𝐶 for organization 𝑝. 𝑀𝑝𝑞 is then calculated as 

𝑀𝑝𝑞 = 
𝑊𝑖𝑝

𝐷𝑝𝑞
 

(3) 
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Note that 𝑀𝑝𝑞 does not account for the weight of organization 𝑞 because 𝑀𝑝𝑞  ≠  𝑀𝑞𝑝. The 

influence of organization 𝑝 on organization 𝑞 is dependent only on the distance between them in 

the 𝛿-dimensional space and the weight of organization 𝑝. Although 𝑀𝑝𝑞 will always be greater 

than zero, very low values for 𝑀𝑝𝑞 may indicate that there is no significant connection between 

organizations 𝑖 and 𝑗. Therefore, a cutoff value γ should be determined on a case-by-case basis 

where all 𝑀𝑝𝑞 lower than γ are assumed to be equal to 0. Once 𝑀𝑝𝑞 is defined, we can calculate 

the influence that the organizational network exerts on organization 𝑛 using equation 4: 

𝜃𝑛 = 
1

𝑅𝑝
∑ 𝑀𝑞𝑝𝑌𝑞

𝑁
𝑞=1  for all 𝑀𝑞𝑝 ≠ 0 (4) 

where 𝜃𝑛 is the influence of the organizational network on organization 𝑛, and 𝑅𝑛 = ∑ 𝑀𝑞𝑝
𝑁
𝑞=1  

for all 𝑀𝑞𝑝 ≠ 0.  

 The organization’s choice for a specific innovation can be obtained using discrete choice 

models. We propose to utilize a linear in parameter specification to determine the utility of an 

organization n towards an innovation i, i.e. Uin.  :  𝑈𝑖𝑛 = 𝜷𝑖
′𝑿𝑖𝑛 + 𝜀𝑖𝑛 where 𝑿𝑖𝑛 is a 𝐾𝑖 × 1 

vector of exogenous covariates (including organizational characteristics such as number of 

employees, geography of operation, centralized or decentralized business, number of CEOs, 

male female employee ratio etc., and innovation attributes such as capital cost, operation and 

maintenance cost, expected annual profit, labor cost reduction, etc.).  𝜷𝑖
′ is the corresponding 

𝐾𝑖 × 1 vector of coefficients and 𝜀𝑖𝑛 denotes all the unobserved factors that influence the 

innovation function for outcome i in organization n.  

The choice modeling framework can be unordered or ordered. In unordered framework, 

the stochastic components 𝜀𝑖𝑛 in the latent innovation adoption functions 𝑈𝑖𝑛 are assumed to be 

independent and identically distributed (i.i.d.) across different adoption outcomes and 

organizations. Moreover, the identical distribution is assumed to be standard type-1 extreme 
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value distribution (also known to as Gumbel distribution). Given these assumptions on the 

stochastic term 𝜀𝑖𝑛, 𝑃𝑛(𝑖) is: 

𝑃𝑛(𝑖) =
exp(𝜷𝑖

′𝑿𝑖𝑛)

∑ exp(𝜷𝑗
′ 𝑿𝑗𝑛)∀𝐼

 
 

(5) 

 The ∑ 𝐾𝑖
𝐼
𝑖=1  parameters in the multinomial model are estimated by maximizing the log-

likelihood (ML) function obtained by taking the natural logarithm of the product of probabilities 

of observed severity outcomes given by Equation (2) as follows: 

𝐿𝐿 = ∑ (∑𝛿𝑖𝑛

𝐼

𝑖=1

)

𝑁

𝑛=1

 
(6) 

where  𝛿𝑖𝑛 is defined as 1 if the observed adoption outcome for organization 𝑛 is 𝑖 and zero 

otherwise. 

In the ordered framework, latent propensity 𝑦𝑛
∗ is translated into observed innovation 

adoption outcomes by threshold parameters. We propose a linear-in-parameter specification for 

the observed part of 𝑦𝑛
∗ and a standard logistic distribution that is i.i.d. across organizations for 

the stochastic component 𝜀𝑛. The equation system for the ordered logit model is (McKelvey & 

Zavoina, 1975): 

𝑦𝑛
∗ = 𝜷′𝑿𝑛 + 𝝆′𝜽𝑛 + 𝜀𝑛 (7) 

𝑃𝑛(𝑖) = 𝑃(𝜓𝑖−1 < 𝑦𝑛
∗ < 𝜓𝑖) (8) 

           = 𝑃(𝜓𝑖−1 < 𝜷′𝑿𝑛 + 𝝆′𝜽𝑛 + 𝜀𝑛 < 𝜓𝑖) 

           = 𝑃(𝜓𝑖−1 − 𝜷′𝑿𝑛 − 𝝆′𝜽𝑛 < 𝜀𝑛 < 𝜓𝑖 − 𝜷′𝑿𝑛 − 𝝆′𝜽𝑛) 

           = 𝐹(𝜓𝑖 − 𝜷′𝑿𝑛 − 𝝆′𝜽𝑛) − 𝐹(𝜓𝑖−1 − 𝜷′𝑿𝑛 − 𝝆′𝜽𝑛)   

where 𝑿𝑛 is 𝐾 × 1 vector of covariates and 𝜷 is the corresponding 𝐾 × 1 vector of coefficients; 

𝜓𝑖
′𝑠 are threshold parameters; 𝜓0 = −∞ 𝑎𝑛𝑑 𝜓𝐼+1 = ∞;  𝐹(. ) is the standard logistic cumulative 

distribution function. The model structure requires that the thresholds to be strictly ordered for 
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the partitioning of the latent risk propensity measure into the ordered innovation in adoption 

categories(𝑖. 𝑒. , −∞ < 𝜓1 < 𝜓2 < ⋯ < 𝜓𝐼−1 < ∞). The parameters in the ordered logit model 

(𝜷 and 𝜓𝑖
′𝑠) can be estimated using the ML method. 

Demonstrating peer effects on a network 

 In order to help demonstrate the effectiveness of the proposed methodology, an example 

problem has been provided. Because the framework for choice modelling has been discussed 

extensively in other works, the example problem will focus exclusively on the generation of the 

peer effect network and the value of 𝜃𝑛 for all organizations.  

 The example dataset includes 2 spatial variables, a weight variable, and a decision 

variable for 10 organizations. The spatial variables are distributed between 1 and 10, the weight 

variable is distributed between 1 and 6, and the decision variable is ordered from 1 to 4 as 

discussed in the above methodology section. Table 2 contains the example dataset. 

 

Table 2   

Example Dataset 

Organization Spatial Variable 1 Spatial Variable 2 Weight Variable Decision 

1 2 2 5 1 

2 2 8 6 4 

3 1 7 5 1 

4 1 2 2 3 

5 6 2 6 1 

6 7 1 2 2 

7 4 4 3 2 

8 7 8 3 1 

9 10 3 4 2 

10 8 4 5 1 
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 Given the information provided in Table 2, the distance between each organization 𝐷𝑝𝑞 

can be calculated using equation 1. For example, the value of 𝐷1,3 would be calculated as 

𝐷1,3  =  √(
(2−1)

10
)
2

+ (
(2−7)

10
)
2

= 0.5099 
(9) 

Table 3 provides the distance matrix containing all of the values of 𝐷𝑝𝑞 calculated using equation 

1. The distance matrix is, of course, mirrored over the diagonal. The diagonal itself is zero, as the 

distance between an agent and itself is zero. 

Using the distance matrix and the weight variable, the values of 𝑀𝑝𝑞 can be calculated 

using equations 2 and 3. For example, the value of 𝑀1,3 would be calculated as 

𝑀1,3  =  
(5 6⁄ )

0.51
= 1.634 

 

(10) 

 

Table 3   

Example Distance Matrix  

0.00 0.60 0.51 0.10 0.40 0.51 0.28 0.78 0.81 0.63 

0.60 0.00 0.14 0.61 0.72 0.86 0.45 0.50 0.94 0.72 

0.51 0.14 0.00 0.50 0.71 0.85 0.42 0.61 0.98 0.76 

0.10 0.61 0.50 0.00 0.50 0.61 0.36 0.85 0.91 0.73 

0.40 0.72 0.71 0.50 0.00 0.14 0.28 0.61 0.41 0.28 

0.51 0.86 0.85 0.61 0.14 0.00 0.42 0.70 0.36 0.32 

0.28 0.45 0.42 0.36 0.28 0.42 0.00 0.50 0.61 0.40 

0.78 0.50 0.61 0.85 0.61 0.70 0.50 0.00 0.58 0.41 

0.81 0.94 0.98 0.91 0.41 0.36 0.61 0.58 0.00 0.22 

0.63 0.72 0.76 0.73 0.28 0.32 0.40 0.41 0.22 0.00 

 

 Table 4 provides the network adjacency matrix M containing all values of 𝑀𝑝𝑞 calculated 

using equations 2 and 3. 
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For this example, we choose the cutoff point for 𝑀𝑝𝑞 to be equal to 1.7. This was the 

value that limited the network to the 25 strongest links out of a possible 90, and this value was 

chosen to ensure that the following figure would be clear and informative. Applying this cutoff 

value to matrix M generates the adjusted network adjacency matrix provided by Table 5. 

 

Table 4   

Example Network Adjacency Matrix 

0.000 1.389 1.634 8.333 2.083 1.634 2.946 1.067 1.034 1.318 

1.667 0.000 7.071 1.644 1.387 1.162 2.236 2.000 1.060 1.387 

1.634 5.893 0.000 1.667 1.179 0.982 1.964 1.370 0.846 1.094 

3.333 0.548 0.667 0.000 0.667 0.548 0.925 0.393 0.368 0.458 

2.500 1.387 1.414 2.000 0.000 7.071 3.536 1.644 2.425 3.536 

0.654 0.387 0.393 0.548 2.357 0.000 0.786 0.476 0.925 1.054 

1.768 1.118 1.179 1.387 1.768 1.179 0.000 1.000 0.822 1.250 

0.640 1.000 0.822 0.589 0.822 0.714 1.000 0.000 0.857 1.213 

0.827 0.707 0.677 0.736 1.617 1.849 1.096 1.143 0.000 2.981 

1.318 1.156 1.094 1.145 2.946 2.635 2.083 2.021 3.727 0.000 

 

Table 5   

Adjusted Example Network Adjacency Matrix 

0 0 0 8.333 2.083 0 2.946 0 0 0 

0 0 7.071 0 0 0 2.236 2.000 0 0 

0 5.893 0 0 0 0 1.964 0 0 0 

3.333 0 0 0 0 0 0 0 0 0 

2.500 0 0 2.000 0 7.071 3.536 0 2.425 3.536 

0 0 0 0 2.357 0 0 0 0 0 

1.768 0 0 0 1.768 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1.849 0 0 0 2.981 

0 0 0 0 2.946 2.635 2.083 2.021 3.727 0 
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Using the data contained in Table 5, we create a visualization of the network where the strength 

of the connection between the nodes is represented by the thickness of the line. Figure 2 provides 

this visualization. 

 

Fig. 2. Visualization of Example Network 

 

Using equation 4, we are able to generate the 𝜃𝑛 term for the network influence on each 

agent, as shown by Table 6. For example, the value of 𝜃9 would be calculated as: 

𝜃9 =
(2.425 ∗ 1 + 3.727 ∗ 2)

2
=  4.94 

(12) 

We can see that in this example, the organization that was most strongly influenced to adopt in 

the future was organization 3. This is intuitive because it was very close to organization 2, and 

organization 2 had both a high weight value and had chosen to fully adopt.  
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Table 6   

Influence of Example Network on Organizations 

Organization Influence of Network 𝜃𝑛 

1 5.35 

2 5.89 

3 28.28 

4 5.17 

5 4.06 

6 4.73 

7 4.31 

8 6.02 

9 4.94 

10 3.26 

 

Survey Sampling Methodology 

While it would be ideal to survey the entire population to obtain the most accurate 

dataset, it is rarely a feasible option to do so. Increasing the sample size carries with it an 

increased cost, and so optimal survey design must find a balance between obtaining an accurate 

dataset and minimizing cost. In the literature, the most common approaches to estimate the 

optimal sample size are Cochran’s formula and Yamane’s formula.  

 Cochran’s formula has two variations depending on whether or not the population is 

considered to be infinite or finite. The infinite population formula can be calculated as: 

𝑛0 =
𝑧2𝑝𝑞

𝑒2
 

(11) 

where 𝑛0 is the sample size, 𝑧 is the critical value for the desired confidence level, 𝑒 is the 

desired level of precision, 𝑝 is the degree of variability, and 𝑞 is equal to 1 – 𝑝. 

 When the population is considered finite, the formula can be calculated as: 



30 
 

𝑛 = [
𝑛0

1 +
(𝑛0 − 1)

𝑁

] =

[
 
 
 
 𝑧2𝑝𝑞

𝑒2⁄

1 +
(
𝑧2𝑝𝑞

𝑒2⁄ − 1)

𝑁 ]
 
 
 
 

 

 

 

(12) 

where 𝑁 is the population size, and 𝑛 is the sample size corrected for a finite population.  

 Yamane’s formula provides an alternative estimation for optimal sample size at a 95% 

confidence level. The formula can be calculated as: 

𝑛 =
𝑁

1 + 𝑁(𝑒2)
 

(13) 

This modified formula is most appropriate when the size of the total population is relatively 

small. For large populations, the difference between the two formulas will be negligible.  

For most studies, finding information about the population is relatively straightforward 

because of the United States Census datasets. However, because this study is directed at freight 

transportation organizations and their employees, the available information about our population 

is significantly more limited. According to the American Trucking Association and the U.S. 

Department of Transportation, there are roughly 900,000 for-hire carriers in the United States. Of 

those companies, 91.3% operate 6 or fewer trucks, and 97.4% operate fewer than 20 trucks. 7.8 

million people were employed in jobs that relate to trucking activity, and 3.5 million people were 

employed as truck operators (American Trucking Association, 2019).  

While this does not give us extremely detailed information about the population we are 

interested in, it does provide enough information to calculate the optimal sample size. Assuming 

the standard values of 95% confidence level and ±5% level of precision, and assuming the 

maximum degree of variability at 0.5, Cochran’s formula gives us an optimal sample size of 385. 

Including the population size has a negligible effect on the optimal sample size because the 

population in this scenario is very large, and the modified Cochran’s formula was intended for 
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small populations. The population in this scenario is large enough to be considered infinite for 

Cochran’s formula. 

In order to be thorough, we also calculated the optimal sample size using Yamane’s 

formula. The sample size from Yamane’s formula is 400. While there is a slight discrepancy 

between the two formulas, both Cochran and Yamane’s formulas suggest roughly the same 

sample size. To ensure that we obtain an accurate dataset, we choose to obtain the larger 

recommended sample size of 400 responses. 

Survey Methodology 

 The survey was split into three main sections. The first section contained questions about 

the respondent’s organization, and the other two sections presented two hypothetical CAT 

models and asked the respondent how they thought their organization would react to the given 

scenarios. From these sections, we are able to construct the social network, estimate the 

organizations’ decisions to adopt or reject CATs, and establish the values of the other covariates 

in 𝑿𝑛.  

Social Network 

For this study, the 𝛿-dimensional space of our social network consists of 4 dimensions. 

Respondents were asked to identify 1) regions of the United States in which their organization 

operates, 2) whether they own and operate their own vehicles, rent their vehicles, or contract 

with other vehicle owners, 3) the types of cargo that they typically transport, and 4) the average 

distance that one of their vehicles will usually drive per trip. Organizations that have similar 

values for these variables are more likely to be in competition with each other due to possessing 

similar business models or providing similar services in the same area.  
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Aside from the average distance question, each of these questions was designed to be 

“mark all that apply,” which means that a respondent could potentially select multiple answers. 

For example, it is reasonable to expect that some organizations would operate in all regions of 

the United States. However, allowing for multiple answers to these questions causes problems 

when using equation 4 from the previous section, as that equation expects single values for each 

variable rather than a set of values. Therefore, for this particular case study, we have slightly 

modified the distance equation to account for the possibility of an organization possessing 

multiple values for the same variable. The total distance 𝐷𝑝𝑞 between organization 𝑝 and 

organization 𝑞 is calculated here as:  

𝐷𝑝𝑞 = √∑𝜎𝐴 (1 −
|𝑉𝐴𝑝

∩ 𝑉𝐴𝑞
|

|𝑉𝐴𝑝
∪ 𝑉𝐴𝑞

|
)

2

𝐴∈𝑆

 

 

(14) 

  

where 𝑆 is the set of characteristics that define the 𝛿-dimensional space, 𝑉𝐴𝑝
 is the set of values 

for attribute 𝐴 for organization 𝑝, and 𝜎𝐴 is the weight given to attribute 𝐴. With this framework, 

the maximum distance for each of the four variables is 1 when there are no values in common, 

and 0 when all values are in common. In the case where some but not all values are shared 

between two organizations, the distance for that variable will be somewhere between 0 and 1. 

 The weights for each organization are determined from three variables: the number of 

truck drivers employed by the organization, the number of trucks owned, rented, or contracted by 

the organization, and the size of the organization’s total market. Because these questions did not 

need to be structured as “mark all that apply,” we can use equation 5 from the previous section 

without issue.  
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Adoption Decision 

 For this case study, 𝑌𝑛𝑖 is an integer given values from 1 to 4 corresponding to the 

decision to reject, test, partially adopt, and fully adopt CATs, respectively. Both sections of the 

survey that discuss CAT adoption begin with a description of a hypothetical CAT model, as seen 

in the figures below. The first section loosely describes a level 3 autonomous truck, and the 

second section describes a level 4 autonomous truck that is introduced 10 years after the first 

generation of level 3 autonomous trucks was introduced. 

 After these descriptions, the respondent is asked three direct questions about how they 

believe their organization would respond to the presented CAT model. The first question asks if 

their company would be likely to purchase or contract with at least one CAT model for 

experimentation. The second question asks if their organization would be likely to replace older 

trucks at the end of their lifespan with the CAT model, and the third question asks if they would 

replace its working fleet with CATs. If the respondent answers negatively to the first question, 

then the decision variable for that organization is set to “reject.” If, instead, the respondent 

answers positively, then we move to the second question. A negative response to the second 

question sets the decision variable to “test,” and a positive response leads to the third question. 

Negative responses to the third question set the decision variable to “partial adoption,” and 

positive responses set the decision as “full adoption.” 

 When calculating 𝑌𝑞 for equation 7 in the methodology section, we convert the decision 

variable into a numeric value. We allow “reject” to be equal to -1 to account for negative word of 

mouth effects. “Test” is set to 0, since an organization that is testing CATs will likely not have 

formed strong opinions yet. “Partial adoption” is set to 1, and “full adoption” is set to 2. This 

allows for organizations to be influenced by members of their network to reject or accept CATs. 
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Other Covariates  

 Each of the other covariates included in 𝑿𝑛 are tied to individual questions in the survey. 

The variables included in this study are listed and defined in Table 7. 

Note that not all of these variables may be applicable to other innovation adoption 

studies. For example, physical risk in this particular case is meant to represent the fear that 

autonomous vehicles may result in collisions that would not have happened in standard models. 

An innovation such as a new computer software would likely not need to include a variable like 

physical risk into its model. Any future innovation adoption study should consider which 

variables will be required to accurately model adoption behavior. 

Table 7   

Variables Included in Stated-Preference Survey 

Variable Definition 

Specialization A measurement of the knowledge and expertise of an organization’s members 

Centralization The degree to which power and control in a system are concentrated in the  

hands of relatively few individuals 

Formalization A measurement of how strictly an organization requires its members to follow  

established rules and protocol 

Relative Advantage The degree to which an innovation is perceived as being better than the idea or  

system it supersedes 

Complexity The belief that an innovation will be either difficult to use or understand 

Physical Risk The degree to which the innovation is likely to cause physical damage 

Financial Risk The degree to which the innovation is likely to cost more money than it will  

make 

Liability Risk The degree to which the innovation is likely to result in legal troubles 

Cost Effectiveness The degree to which the innovation is expected to be less costly to operate 

Familiarization A measure of how much an organization knows about the innovation  

Advocate or  

Champion 

Whether or not an individual exists in an organization who is advocating for the  

adoption of the innovation 

Preparedness A measurement of how ready an organization is to adopt the innovation 

Government  

Regulations 

The degree to which regulations and legislation restricts or promotes the  

adoption of the innovation 

Competition The effect that decisions of competing organizations has on the adoption  

decision 
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4. Data 

 Data was gathered from 400 organizations across the United States. An effort was made 

to ensure that the responses were not skewed towards large or small organizations, and so 

organizational size responses are relatively symmetric. Descriptive statistics of the survey results 

are presented in Table 8.  

Small companies with 50 or fewer employees numbered 145, mid-sized companies 

between 50 and 500 employees numbered 129, and large companies with over 500 employees 

had 126 responses. As shown by Figure 3, most companies transported at least two types of 

cargo, and large organizations were very likely to transport multiple cargo types. 

 

 

Fig. 3. Distribution of Cargo Types by Company Size 

 

Each respondent was asked to predict how their company would respond to hypothetical 

CAT scenarios as shown in Table 9. 
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Table 8   

Descriptive Statistics of the Survey Results 

Variable Level Frequency  Variable Level Frequency 

Age    Number of employees   

 Under 20 years 3 (1%)   1-10 59 (15%) 

 21-25 years 15 (4%)   11-50 86 (22%) 

 26-30 years 37 (9%)   51-100 63 (16%) 

 31-35 years 42 (11%)   101-250 30 (8%) 

 36-40 years 64 (16%)   251-500 36 (95) 

 41-45 years 55 (14%)   501-1000 39 (10%) 

 46-50 years 58 (15%)   1001-2500 24 (6%) 

 51-55 years 49 (12%)   Over 2500 63 (16%) 

 56-60 years 38 (10%)     

 61-65 years 28 (7%)  Number of trucks   

 Over 65 years 11 (3)   1-10 72 (18%) 

Education     11-50 91 (23%) 

 Some high school 5 (1%)   51-100 66 (17%) 

 High school/GED 87 (22%)   101-250 38 (10%) 

 Some college 81 (20%)   251-500 28 (7%) 

 Trade/Vocational 41 (10%)   501-1000 30 (8%) 

 Associate’s 53 (13%)   1001-2500 22 (6%) 

 Bachelor’s 101 (25%)   Over 2500 53 (13%) 

 Master’s 25 (6%)      

 Professional Degree 1 (0.3%)  Operating Regions   

 Doctorate 6 (2%)   Northwest U.S. 150 (38%) 

Employment     Southwest U.S. 181 (45%) 

 Less than one year 34 (9%)   South U.S. 242 (61%) 

 1-2 years 70 (18%)   Midwest U.S. 221 (55% 

 3-5 years 91 (23%)   Northeast U.S. 186 (47%) 

 5-10 years 77 (19%)   Outside of U.S. 15 (4%) 

 11-15 years 52 (13%)     

 16-20 years 38 (10%)  Market Size   

 21-25 years 16 (4%)   Local 62 (16%) 

 Over 25 years 22 (6%)   Regional 113 (28%) 

     National 163 (41%) 

Cargo Types     International 27 (7%) 

 Live Animals 20 (5%)   Global 35 (9%) 

 Foodstuffs 185 (46%)     

 Construction Material 194 (49%)  Average Trip   

 Fuels 60 (15%)   0-50 miles 30 (8%) 

 Chemicals 106 (27%)   51-200 miles 111 (28%) 

 Textiles 130 (33%)   201-500 miles 136 (34%) 

 Machinery/Electronics 197 (49%)   Over 500 miles 123 (31%) 

 Motorized Vehicles 106 (27%)     

 Waste or Scrap Metals 86 (22%)  Vehicle   

 Other 70 (18%)   Own 304 (76%) 

     Rent 100 (25%) 

     Contract 121 (30%) 
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Table 8 Cont.       

       

Organization     µ σ 

(likert-7) Employees have specialized skillsets for specific tasks 2.330 1.165 

 Company authority is heavily centralized 2.348 1.281 

 Company values stability over innovation 2.915 1.429 

    

1st-Gen CAT    

(likert-7) My company would experiment with CATs 3.640 1.908 

 My company would begin replacing old trucks with CATs 4.078 1.817 

 My company would fully convert to CATs 4.213 1.805 

 CATs will be better than standard models 4.048 1.782 

 CATs will be more complex than standard models 3.243 1.505 

 CATs will cause more collisions than standard models 3.440 1.453 

 CATs will be more financial risk than standard models 3.365 1.566 

 CATs will be more liability risk than standard models 2.965 1.498 

 CATs will be more cost effective than standard models 3.753 1.583 

 Members of my company are familiar with CATs 4.328 1.686 

(binary) Members of my company are advocating for CATs 0.310  0.462 

(likert-7) My company is prepared to adopt and implement CATs 4.368 1.830 

 Govt. regulations would encourage CAT adoption 4.005 1.654 

 Our competitors would likely experiment with CATs 3.590 1.645 

 Our competitors would likely adopt CATs 3.908 1.620 

 Our competitors’ decisions would not affect our adoption 3.088 1.437 

    

2nd-Gen CAT    

(likert-7) My company would experiment with 2nd-Gen CATs 3.293 1.767 

 My company would replace old trucks with 2nd-Gen CATs 3.625 1.707 

 My company would fully convert to 2nd-Gen CATs 3.773 1.734 

 2nd-Gen CATs will be better than standard models 3.278 1.575 

 2nd-Gen CATs will be more complex than standard models 3.245 1.419 

 2nd-Gen CATs will cause more collisions than standard models 3.640 1.599 

 2nd-Gen CATs will be more financial risk than standard models 3.505 1.576 

 2nd-Gen CATs will be more liability risk than standard models 3.293 1.559 

 Success of 1st-Gen CATs encourage adoption of 2nd-Gen 3.160 1.687 

 My company would adopt 2nd-Gen to stay competitive 3.528 1.704 

 CATs will be more cost effective than standard models 2.998 1.805 

 Our competitors would likely adopt 2nd-Gen CATs 3.583 1.590 
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Table 9   

Description of CAT Adoption Scenarios 

 First-Generation CAT Second Generation CAT 

Availability Available immediately Available 10 years after first- 

generation CAT 

Driver Requirement Autonomous, but requires  

driver 

Autonomous, does not require  

driver 

Fuel Efficiency 5% greater fuel efficiency 5% greater fuel efficiency 

Safety 10x less likely to be involved in  

a collision 

100x less likely to be involved in a  

collision 

Cost $10,000 higher price compared  

to standard models 

$10,000 higher price compared to  

standard models 

Testing Has not been extensively used  

outside of prototype tests 

20% of all trucks at this time are  

autonomous 

 

Based on the responses given to questions about these scenarios, each organization was 

marked as either rejecting, testing, partially adopting, or fully adopting CATs. Figure 4 shows 

the initial adoption decisions by organizational size for the first-generation CAT. 

 

Fig. 4. First-Generation CAT Adoption Decisions by Organizational Size 
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 Interestingly, the majority of the organizations stated that they would either reject CATs 

or choose to fully adopt, regardless of organizational size. Small organizations were much more 

likely to reject CATs, which is intuitive because of the inherent risk associated with new, 

revolutionary technologies such as CATs. As Figure 5 demonstrates, CATs are considered to be 

very risky, even among organizations that stated that they wanted to fully adopt first-generation 

CATs as soon as they become available. 

 

Fig. 5. Levels of Perceived Risk for First-Generation CATs 

 

Less than 20% of respondents believed that adopting CATs is a low-risk decision. Unlike 

the general public, which is primarily concerned with the physical risk of automated vehicles, 

organizations seem to be most concerned about potential liability risks.  

 Figure 6 shows the initial adoption decisions by organizational size for the second-
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0%

5%

10%

15%

20%

25%

30%

35%

40%

0

20

40

60

80

100

120

140

160

Very High High Somewhat

High

Moderate Somewhat

Low

Low Very Low

P
er

ce
n
t 

o
f 

C
o
m

p
an

ie
s

Physical Risk Financial Risk Liability Risk



40 
 

Compared to the first-generation adoption decisions in Figure 4, the second-generation 

CATs show a slight reduction in the number of rejections and an increase in the number of full 

adoptions. It should be noted that some of the companies that chose to partially or fully adopt the 

first-generation CAT did not show the same enthusiasm for upgrading to the second-generation 

CAT, indicating that they may be satisfied with the advantages provided by first-generation 

CATs. 

 

Fig. 6. Second-Generation CAT Adoption Decisions by Organizational Size 

 

5. Results, Discussion, and Conclusion 

Results 

Using the data gathered from the stated preference survey, we are able to construct our 

discrete choice model for the first-generation CAT. Each of the variables and coefficients 
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Table 10 

Variables and Coefficients Used in First-Generation CAT Discrete Choice Model 

Logit Model Results Marginal Effects 

Variable Name Coeff. S.E. p-Value Reject Test Partial 

Adoption 

Full 

Adoption 

Age (36 to 45 years) -0.3753 0.2802 0.1804 0.084 -0.003 -0.035 -0.046 

        (46 to 55 years) -0.4887 0.2917 0.0939 0.110 -0.007 -0.045 -0.058 

        

Education (Bachelor’s  

                 or higher) 

0.3304 0.2520 0.1898 -0.071 -0.004 0.030 0.044 

        

Relative Advantage 2.4609 0.2803 0.0000 -0.458 -0.073 0.148 0.382 

        

Cost Effectiveness 1.3003 0.2643 0.0000 -0.269 -0.020 0.109 0.180 

        

Champion 1.7157 0.2874 0.0000 -0.320 -0.073 0.118 0.275 

        

Centralization 0.7445 0.3241 0.0216 -0.174 0.025 0.068 0.081 

        

Cargo (Foodstuffs) 0.6626 0.2432 0.0064 -0.142 -0.005 0.060 0.087 

           (Waste) -0.9741 0.3202 0.0024 0.227 -0.035 -0.088 -0.104 

        

Region (Midwest US) -0.6317 0.2793 0.0074 -0.139 -0.010 0.059 0.091 

           (Northwest US) 0.6619 0.2943 0.0245 0.135 0.005 -0.057 -0.084 

        

Market Size: National 0.6842 0.2554 0.0074 -0.145 -0.009 0.061 0.093 

        

Average Trip Length 

(Over 500 miles) 

-0.3858 0.2773 0.0074 0.086 -0.003 -0.036 -0.047 

        

Annual Mileage 

(Less than 100,000 

miles) 

0.5177 0.3006 0.0850 -0.110 -0.007 0.047 0.070 

(100,000 to 200,000 

miles) 

0.6414 0.3176 0.0434 -0.133 -0.013 0.057 0.090 

        

Decision Thresholds Estimate S.E. z-Value 

Reject/Test 2.3515 0.4247 5.537 

Test/Partial Adoption 3.7958 0.4602 8.248 

Partial Adoption/Full Adoption 4.8137 0.4906 9.811 

  

Null Log-Likelihood -497.968 

Final Log-Likelihood -322.302 

AIC 680.605 

BIC 752.451 

Adj. Rho-Square 0.353 

Observations 400 
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Interestingly enough, the variables pertaining to the perceived level of risk are highly 

insignificant, with the exception of financial risk when combined with competition. This is a 

surprising result, as one would anticipate perceived risk to be highly correlated with the decision 

to adopt CATs. However, there is a logical explanation for this insignificance. When examining 

the levels of perceived risk shown above in Figure 5, it becomes clear that almost the entire 

population considers CATs to be higher risk, including the organizations that chose to adopt. The 

level of perceived risk is a poor indicator of behavior because both adopters and rejecters agree 

that first-generation CATs are a high-risk innovation. The “Complexity” variable is also 

insignificant, presumably for similar reasons. 

To ensure that the model accurately fits the gathered data, we use k-fold cross validation. 

The data is divided into k = 5 folds of 80 observations each; the model is trained on k – 1 folds 

and tested on the excluded fold. This process repeats until every fold had been used as the test 

set, and the validation model outputs are combined. The cross-validation model correctly 

predicts 66.5% of the observations’ behaviors. The predicted and actual values are presented in 

Table 11. 

 

Table 11  

Predicted and Actual Decisions for First-Generation CAT Adoption 

 Predicted  

“Reject” 

Predicted  

“Test” 

Predicted  

“Partial Adopt” 

Predicted  

“Full Adopt” 

Sum 

Reject 154 12 3 8 177 

Test 25 16 3 20 64 

Partial Adopt 10 2 13 15 40 

Full Adopt 25 6 5 83 119 

Sum 214 36 24 126  

  



43 
 

Figure 7 demonstrates a representation of the network. Note that the distances between 

organizations in this figure are not completely to-scale, since the figure is attempting to replicate 

a 4-dimensional space in two dimensions. 

The larger and therefore more influential organizations tend to be clustered around the 

center, suggesting that they are very close to one another. This is intuitive, as the larger 

organizations are also likely to have broad business interests that cause them to come into 

competition with other organizations. Conversely, small organizations are likely to operate only 

in their local area, and so they will not often be competing with faraway companies. 

 

Fig. 7.  Visual Representation of the Initial First-Generation CAT Decision Network 
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 The network displayed in Figure 7 does not account for peer effects because initial 

decisions will be made without knowledge of other organizations’ choices. However, the peer 

effect network will be critical to understanding how the network evolves over time. Utilizing 

equations 4-7 and 11 from the above sections, we generate the peer effects network and find the 

variable 𝜃𝑝 for each organization in the network. At the initial time period T = 0, 𝜃𝑝 has a 

minimum value of -0.95822, a maximum value of 2.01002, a mean of 0.73354, and a standard 

deviation of 0.33236. This means that the majority of the organizations are influenced to adopt 

by their network, but a minority will actually be influenced to reject CATs due to negative word-

of-mouth from their competitors. 

The cutoff value 𝛾 was chosen to be 1.65; this value eliminated 84.5% of the connections 

between organizations, leaving an average of 62 connections for each organization. Selecting 

values smaller than 1.65 had little change on the network, indicating that the eliminated 

connections were not significant. Values greater than 1.65 caused the network to dissolve into 

smaller, isolated networks dominated by a few large organizations by removing too many 

connections.  

Establishing the coefficient associated with 𝜃𝑝 is more complicated, since the influence 

of peer effects cannot be measured in a stated-preference survey. However, it is possible to 

establish lower and upper bounds on the coefficient based on expected social behavior. Peer 

effects will influence some organizations to change their behavior, and so a coefficient which 

does not result in any behavioral change is too small. Peer effects are also not strong enough to 

completely change the network to a single behavior, and so an upper bound on the coefficient’s 

value can be established, as well. Based on these criteria, we estimate that the coefficient for the 
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peer effects variable should be somewhere between 0.65 and 0.9. Figures 8-11 demonstrate the 

influence of peer effects on the network over time at different coefficient values. 

 

Fig. 8.  The Changes to “Reject” Decisions Over Time Based on Peer Effect Coefficient Values 

 

 

Fig. 9.  The Changes to “Test” Decisions Over Time Based on Peer Effect Coefficient Values 
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Fig. 10. The Changes to “Partial Adoption” Decisions Over Time Based on Peer Effect 

Coefficient Values 

 

 

Fig. 11. The Changes to “Full Adoption” Decisions Over Time Based on Peer Effect Coefficient 

Values 
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 As expected, the most drastic change in behavior comes in the time immediately after the 

initial decisions are made. This is because the initial decisions are made without knowledge of 

other organizations’ behavior, whereas decisions in subsequent time periods are adjusted based 

on the influence of peer effects. Therefore, we should expect organizational adoption behavior to 

change quickly in the early time periods and then achieve a more stable decision after all of the 

organizations have had time to adjust their behavior to better match their peers.  

 It is difficult to say with certainty what value we should place for the coefficient of the 

peer effects variable within the established bounds of 0.65 and 0.9, but we can compare the 

results of each coefficient value with the decisions on second-generation CATs generated by the 

stated-preference survey. With the technological improvements promised by second-generation 

CATs, we would expect there to be a relatively sharp increase in partial and full adoptions and a 

decrease in rejections. Based on this information, we would expect that the peer effect coefficient 

should be somewhere between 0.7 and 0.75.  

Discussion 

 Despite the expected benefits of autonomous vehicle technology, the majority of 

organizations are hesitant to adopt the hypothetical first-generation CAT. There are many 

potential reasons for this reluctance to adopt. As discussed earlier, one of the primary reasons 

why organizations may choose to reject CATs is an aversion to the physical, financial, and 

liability risks associated with autonomous vehicle technology. At the time of writing, the 

technologies needed to create safe and dependable autonomous vehicles are still in development, 

and so many of the respondents do not trust the idea of self-driving trucks. Until autonomous 

vehicles are more thoroughly tested – likely by the general public – the perceived risk associated 

with CATs is likely to be one of the greatest barriers to adoption. 
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 It is also possible that some of the perceived risk of CATs comes from a lack of 

familiarity and education surrounding the technology. It is reasonable to assume that most people 

have at least heard of the concept of self-driving cars, but because CAVs are not commercially 

available at this time, there are many people who do not understand how they will work. While 

this study did not find a statistically significant link between the respondents’ familiarity with 

CATs and their hypothetical adoption rate, most innovation adoption studies claim that an 

increase in education about an innovation tends to correlate with an increased adoption rate 

(Aubert & Hamel, 2001; Rogers, 2003). Again, more widespread use of CAVs by the general 

public will promote education on autonomous technologies, but manufacturers and developers 

can boost early adoption through demonstrations and by providing more information on how the 

vehicles are capable of operating themselves.  

 Another barrier preventing the early adoption of CATs is the fact that the expected 

benefits of the technology are not yet proven. While autonomous vehicles are predicted to reduce 

fuel consumption and collisions, it is still uncertain if those expectations will be met. Even 

though the survey designed for this dissertation clearly stated that the first and second-generation 

CAT models would have reduced fuel consumption and collisions, many of the respondents did 

not believe that they would be cost effective, and the majority of the respondents said that the 

models possessed a high risk of collisions. Until the general public comes to the consensus that 

CAVs are safe and efficient, there will be companies that will hesitate to adopt them due to the 

uncertainty surrounding their benefits. 

 Finally, the adoption of CATs may be slower than CAVs simply due to inertia. The 

freight transportation industry has a history of innovating slowly compared to other industries 

and private consumers (Simpson et al., 2019). Unless the benefits of CATs are so high that non-
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autonomous freight transportation operations are unable to compete, it is very likely that the 

adoption of CATs will be slower than the adoption of CAVs.  

Conclusion 

 With autonomous vehicle technology expected to be made widely available within the 

next ten years, it is essential that we be able to predict how freight organizations will respond. By 

utilizing a new methodological process involving peer effects, and by gathering real-world data 

on organizational innovation adoption behavior, we have been able to generate a reasonable 

prediction for how CATs will be adopted over the first 10 years after they have been made 

commercially available. Most of the organizations have chosen to either fully adopt or reject the 

hypothetical first-generation CAT, with much fewer choosing to only test or partially adopt. 

Considering how revolutionary autonomous technology promises to be, this division within the 

freight transportation industry is expected.  

  Of particular interest is the fact that levels of perceived risk (financial, physical, and 

liability) proved to be a poor indicator for adoption behavior. Both adopters and rejects agreed 

that first-generation CATs will be a risky endeavor. It is also noteworthy that smaller 

organizations were much more likely to reject CATs than medium and larger organizations. This 

could be attributed to a number of factors such as lower risk tolerance, available resources, and 

lack of specialized personnel to make optimal use of the technology. 

 It should be mentioned that the stated-preference survey was conducted in the United 

States during March and April of 2020. It is likely that the sudden outbreak of COVID-19 and 

the subsequent economic turbulence influenced many of the responses gathered by the survey, 

although it is impossible to gauge in what way the responses may have changed without 

additional studies gathering data on organizational CAT adoption behavior.  
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Future studies may wish to investigate how the frequency of technological updates 

impacts the adoption rate. This study limited itself to two generations of CATs set 10 years apart, 

but it is likely that real-world technological developments will be smaller and more frequent. 

This may have a sizeable impact on the overall adoption rate and should be the focus of future 

work.  

 The methodology utilized in this dissertation was optimized for organizational CAT 

adoption, but it has been designed such that it can be useful for any organizational innovation 

adoption studies. Future work may use this dissertation’s methodology to examine any number 

of organizational innovations from both the freight transportation industry and other industries. 

Such works would prove very valuable in understanding how peer effects is influenced by the 

nature of the innovation and the structure of the social network. For example, it would be 

expected that the healthcare industry would be much faster at adopting new technologies than the 

freight transportation industry because the incentives for innovating are greater, but future 

studies using this dissertation’s methodology would be able to establish exactly why and to what 

degree certain innovations are adopted.  
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Fig. 12. Distribution of Respondent Age 

 

Fig. 13. Distribution of Respondent Education 
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Fig. 14. Distribution of Respondent Employment Length 

 

Fig. 15. Number of Drivers Employed by Respondents’ Companies 
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Fig. 16. Number of Trucks Operated by Respondents’ Companies  

 

Fig. 17. Distribution of Companies by Geographic Regions 
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Fig. 18. Distribution of Market Sizes 

 

Fig. 19. Distribution of Truck Ownership Types 
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Fig. 20. Distribution of Cargo Types 

 

Fig. 21. Distribution of Average Trip Length 
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Fig. 22. Distribution of Average Annual Mileage per Truck 

 

Fig. 23. Distribution of Responses about Company Specialization 
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Fig. 24. Distribution of Responses about Company Centralization 

 

Fig. 25. Distribution of Responses about Company Formalization 
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Fig. 26. Distribution of Responses about the Relative Advantage of CATs  

 

Fig. 27. Distribution of Responses about the Complexity of CATs  
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Fig. 28. Distribution of Responses about the Physical Risk of CATs  

 

Fig. 29. Distribution of Responses about the Financial Risk of CATs  
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Fig. 30. Distribution of Responses about the Liability Risk of CATs  

 

Fig. 31. Distribution of Responses about the Cost Effectiveness of CATs  
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Fig. 32. Distribution of Responses about Familiarization with CATs  

 

Fig. 33. Distribution of Responses about Willingness to Pay for CATs  

 

0%

5%

10%

15%

20%

25%

30%

0

20

40

60

80

100

120

Strongly Agree Agree Somewhat

Agree

Neither Agree

nor Disagree

Somewhat

Disagree

Disagree Strongly

Disagree

P
er

ce
n
ta

g
e 

o
f 

R
es

p
o

n
d

en
ts

0%

5%

10%

15%

20%

25%

30%

0

20

40

60

80

100

120

P
er

ce
n
ta

g
e 

o
f 

O
rg

an
iz

at
io

n
s



82 
 

 

Fig. 34. Distribution of Responses about Preparation to Adopt CATs  

 

Fig. 35. Distribution of Responses about Governmental Regulations Encouraging CAT Adoption  
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Fig. 36. Distribution of Responses about Competitors’ Likelihood to Experiment with CATs  

 

Fig. 37. Distribution of Responses about Competitors’ Likelihood to Adopt CATs  
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Fig. 38. Distribution of Responses about the Influence Competitors’ Decisions Would Have on 

Adoption Decisions  
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