
University of Memphis University of Memphis

University of Memphis Digital Commons University of Memphis Digital Commons

Electronic Theses and Dissertations

2020

VALUE ESTIMATION OF SOFTWARE FUNCTIONAL TEST CASES VALUE ESTIMATION OF SOFTWARE FUNCTIONAL TEST CASES

Yao Shi

Follow this and additional works at: https://digitalcommons.memphis.edu/etd

Recommended Citation Recommended Citation
Shi, Yao, "VALUE ESTIMATION OF SOFTWARE FUNCTIONAL TEST CASES" (2020). Electronic Theses and
Dissertations. 2771.
https://digitalcommons.memphis.edu/etd/2771

This Dissertation is brought to you for free and open access by University of Memphis Digital Commons. It has
been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of University of
Memphis Digital Commons. For more information, please contact khggerty@memphis.edu.

https://digitalcommons.memphis.edu/
https://digitalcommons.memphis.edu/etd
https://digitalcommons.memphis.edu/etd?utm_source=digitalcommons.memphis.edu%2Fetd%2F2771&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.memphis.edu/etd/2771?utm_source=digitalcommons.memphis.edu%2Fetd%2F2771&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:khggerty@memphis.edu

VALUE ESTIMATION OF SOFTWARE FUNCTIONAL TEST CASES

by

Yao Shi

A Dissertation

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Major: Business Information and Technology

The University of Memphis

May 2020

 ii

Copyright© Yao Shi

All right reserved

 iii

Acknowledgments

Pursuing this Ph.D. has been a truly life-changing experience for me. It would not

have been possible without the support and guidance that I received from many people.

I am indebted to my parents and would like to say a heartfelt thank-you to my

Mom and Dad for always believing in me, for the unconditional love and sacrifice, and

for the unending encouragement and support that help me in chasing my dreams

throughout the last decade.

I would like to express my deepest and sincere gratitude to my research advisor

and dissertation committee chair, Dr. Mark Gillenson, for giving me the opportunities to

do research with him and providing invaluable personal and professional guidance.

Numerous tableside discussions and chats with him in his office where I gained the

knowledge and wisdom were unforgettable. His vision, sincerity, trust, and patience have

deeply inspired me. It was a great privilege and honor to work and study under his

mentoring.

I cannot express enough gratitude and thanks to my committee members, Dr.

Robin Poston and Dr. Euntae “Ted” Lee, for their unwavering support throughout my

dissertation. Their encouragement when my study and research got rough is much

appreciated and duly noted.

My dissertation could not have been accomplished without constant feedback of

my committee member, Dr. Xihui “Paul” Zhang. I offer my sincere appreciation for his

friendship and patience in training me during the entire period of pursuing my doctoral

 iv

degree. The countless times he taught me in improving all the details of methodology to

carry out and to present the research will not be forgotten.

 My special praise and respect go out to Dr. Thomas Stafford for his professional

advice, inspiration, trust, and empathy. He has taught and supported me more than I could

ever give him credit. He has shown me, by example, what a good research scholar should

be.

I am thankful to all faculty, staff, and fellow Ph.D. students in the Department of

Business Information and Technology for their collaboration and support in different

ways. It truly has been a very good time studying in the department.

Last, I would like to cite one of my favorite songs, “You Raise Me Up,” to thank

all my family members, professors, and friends who have supported me on this precious

academic journey.

“You raise me up so I can stand on mountains;

You raise me up to walk on stormy seas;

I am strong when I am on Your shoulders;

You raise me up to more than I can be!”

 v

Abstract

Software testing is becoming more and more critical to ensure that software will

function properly in the production environment. Consequently, the effort, time, and funds

invested in software testing activities have been increased significantly. However, these

resources cannot meet the increasing demand of software testing. As such, managers have

to allocate testing resources to the test cases that are more critical to uncover defects. This

study builds a value function that can quantify the value of a test case and thus provide an

approach in selecting key functional test cases. Following the guidance of case study

research and using an innovative methodology to develop a mathematical function, we took

three steps to develop a value function of software functional test cases. First, we built an

initial value function based on a systematic analysis of the pertaining literature and

theoretical background. Next, we interviewed industrial professionals and managerial staff

who are working in testing to provide expert comments and give practical feedback on the

initial value function. Finally, based on an in-depth analysis of the comments and feedback

from the interviews, we revised and finalized the value function by incorporating some of

the new factors that emerged from the interviews and modifying some of the initial factors

that varied in meaning according to the viewpoints of the interviewees. This finalized value

function can play a significant role in prioritizing test cases and addressing the resource

constraint issues in software testing.

Keywords—value estimation; test case; software testing; resource constraint; case

study.

 vi

CONTENTS

Chapter Page

List of Tables ... ix

List of Figures .. x
List of Abbreviations ... xi

CHAPTER 1 INTRODUCTION ... 1
1.1 Software Testing Practical Issues ... 1

1.1.1 Untested Code ... 2
1.1.2 Untested Combination of Input Values ... 3
1.1.3 Untested Path ... 3
1.1.4 Untested Operating Environment .. 4
1.1.5 Defective Testing Procedure ... 4
1.1.6 Summary ... 5

1.2 Software Testing Research Issues .. 6
1.2.1 Effort Estimation ... 7
1.2.2 Value-Based Estimation .. 9
1.2.3 Summary ... 11

1.3 Research Objective and Research Question ... 12
1.4 Research Structure .. 13

CHAPTER 2 RESEARCH FOUNDATION ... 15
2.1 Nature of Software Testing and Test Case .. 16

2.1.1 Nature of Software Testing ... 16
2.1.2 Nature of Software Test Case ... 18

2.2 Nature of Value .. 21
2.2.1 Value in Philosophy ... 22
2.2.2 Value in Business ... 22
2.2.3 Value in Information Technology .. 24
2.2.4 Value in Software Engineering ... 26
2.2.5 Value in Software Testing ... 28
2.2.6 Value in Software Test Cases .. 29

2.3 Nature of Cost in Software Test Cases .. 32
2.3.1 Cost Elements of Test Cases .. 33
2.3.2 Cost Function of Test Cases .. 35

CHAPTER 3 RESEARCH METHODOLOGY .. 36
3.1 Research Process .. 36
3.2 Research Method ... 37

3.2.1 Data Collection ... 39
3.2.2 Data Coding and Analysis ... 40

CHAPTER 4 INITIAL VALUE FUNCTION .. 44
4.1 Process of Proposing Initial Value Function ... 44

 vii

4.2 Factors in Initial Value Function ... 45
4.2.1 Risk Factors .. 45
4.2.2 Use Factors ... 47
4.2.3 Cost Factors .. 48

4.3 Factor Relationships in Initial Value Function ... 49
CHAPTER 5 DATA ANALYSIS ... 51

5.1 Data Description .. 51
5.2 Findings from Function Codes ... 52

5.2.1 Internal Risk ... 53
5.2.2 Production Risk .. 54
5.2.3 Technical Risk .. 55
5.2.4 Amount of Use .. 57
5.2.5 Function Coverage ... 58
5.2.6 Test Frequency ... 60
5.2.7 Cost of a Test Case ... 61
5.2.8 Execution Value ... 61
5.2.9 Value of a Test Case ... 62

5.3 Findings from Non-Function Codes ... 63
5.3.1 Regression Suite ... 63
5.3.2 Test Utility .. 64
5.3.3 Revenue Generation ... 65
5.3.4 Simplicity .. 67
5.3.5 Priority .. 68
5.3.6 ROI .. 69

CHAPTER 6 FINAL VALUE FUNCTION ... 71
6.1 Final Value Function ... 71
6.2 Factor Score and Weight .. 73
6.3 Factor Score Normalization .. 75

CHAPTER 7 GUIDE FOR APPLYING FUNCTION ... 77
7.1 Steps of Value Estimation ... 77
7.2 Who are the Function Users? ... 79
7.3 How to Collect Value Function Data? ... 80
7.4 How to Estimate Score and Weight for Factors? ... 80
7.5 How to Interpret Results? ... 81

CHAPTER 8 CONCLUSION .. 85
8.1 Contributions ... 85
8.2 Limitations and Future Research .. 87

REFFERENCES ... 90
APPENDIX A ... 96

APPENDIX B ... 99
APPENDIX C ... 100

 viii

APPENDIX D .. 115

 ix

LIST OF TABLES

Table Page

TABLE 1. EFFORT ESTIMATION APPROACHES .. 8

TABLE 2. VALUE-BASED ESTIMATION APPROACHES ... 10

TABLE 3. GROWTH STAGES OF SOFTWARE TESTING .. 16

TABLE 4. TEST CASE CATEGORY (SOURCE OF TEST GENERATION) 20

TABLE 5. TEST CASE CATEGORY (LIFE CYCLE PHASE) ... 21

TABLE 6. QUALITATIVE RESEARCH METHODS IN IS DOMAIN .. 39

TABLE 7. CODING EXAMPLE .. 42

TABLE 8. FACTORS IN INITIAL VALUE FUNCTION .. 47

TABLE 9. FACTORS IN COST FUNCTION .. 48

TABLE 10. ITEMS OF TECHNICAL RISK ... 57

TABLE 11. FACTORS IN FINAL VALUE FUNCTION .. 72

TABLE 12. SCORE AND WEIGHT OF THE KEY FACTORS .. 74

TABLE 13. SCORE AND WEIGHT OF TECHNICAL RISK ITEMS .. 74

TABLE 14. VALUE FUNCTION APPLICATION IN SCENARIO I ... 82

TABLE 15. VALUE FUNCTION APPLICATION IN SCENARIO II .. 83

TABLE 16. AN EXAMPLE OF TEST CASES ... 96

TABLE 17. INTERVIEW INSTRUMENT .. 99

TABLE 18. CODE BOOK V1 ... 100

TABLE 19. CODE BOOK V2 ... 115

 x

LIST OF FIGURES

Figure Page

FIGURE 1. PRACTICAL ISSUES IN SOFTWARE TESTING ... 6

FIGURE 2. MODEL OF TEST CASES COST .. 33

FIGURE 3. RESEARCH PROCESS .. 37

FIGURE 4. PROCESS OF PROPOSING INITIAL VALUE FUNCTION .. 45

FIGURE 5. FREQUENCY OF CODE .. 52

FIGURE 6. STEPS OF APPLYING VALUE FUNCTION ... 78

FIGURE 7. PRE-CONDITION OF THE TEST CASES ... 97

FIGURE 8. TEST RESULT OF THE TEST CASES ... 98

 xi

LIST OF ABBREVIATIONS

AI Artificial Intelligence

AU Amount of Use

CC Code Coverage

CEO Cost to Determine Expected Outcome of a Test Case

CER Cost to Evaluate Test Results

CFC Cost to Determine Failure Category

CI Complexity Issues

CIV Cost to Create a Test Case Input Values

CMD Cost to Manage a Defect

CME Cost to Collect and Record Test Metrics

COCOMO Constructive Cost Model

CRF Cost to Resolve Test Case Failure

CRR Cost to Record and Report Test Results

CRT Cost to Run a Test Case

CTC Cost of a Test Case

DI Dependency Issues

ER External Risk

EV Execution Valve

FC Function Coverage

FIPS Federal Information Processing Systems

IEEE Institute of Electrical and Electronics Engineers

IR Internal Risk

 xii

IT Information Technology

MOS Microsoft Office Suite

PI Personnel Issues

PR Production Risk

PTI Previous Testing Issues

RI Requirements Issues

ROI Return on Investment

SUT Software under Test

TEI Test Environment Issues

TF Test Frequency

TI Technology Issues

TR Technical Risk

TU Test Utility

VI Vender Issue

VTC Value of a Test Case

XP Extreme Programming

 1

CHAPTER 1

INTRODUCTION

1.1 Software Testing Practical Issues

As software applications permeate everywhere in the world, people are becoming

more sensitive to the validity and reliability of software applications (Juristo et al., 2006).

Defects in the applications may result in tremendous monetary loss, time lost, and even

innocent death (Felderer & Ramler, 2014). According to a recent annual report by

Tricentis, a leading company providing software testing solutions, about 606 major

software failures from 314 companies occurred around world in 2017. These failures

 2

caused about $1.7 trillion financial losses, 268 years of the cumulative downtime, and

affected 3.6 billion people (Tricentis, n.d.). Billions of dollars are invested in software

development every year around the world (Cresswell, 2004), and approximately 50

percent of the total elapsed time and more than 50 percent of the total cost were expended

in testing the program or system being developed in a typical software development

project (Boehm & Papaccio, 1988; Myers et al., 2011). Despite that software testing has

been considered as an important step in the software development life cycle to assure

software quality, the defects still cannot be entirely eradicated due to inadequate testing

(Tricentis, n.d.; Whittaker, 2000).

In order to reveal the causes of inadequate software testing, we identified five

practical issues in software testing based on Whittaker’s (2000) study. Since a series of

testing for different purposes (e.g., functional testing, performance testing, and security

testing) needs to be carried out before a software program is released (Mathur, 2013), we

only focus on functional testing in this study because functional testing is to examine the

functionality of a program and is also the fundamental testing for the other types of testing

such as integration testing and system testing.

1.1.1 Untested Code

An application usually cannot be released until the appropriate testing has been

conducted. However, as software becomes much larger and more complex, some code

may not be tested or may be untestable before the application is released due to time

constraints or testing techniques not being able to keep pace with the software

development techniques (Whittaker, 2000). To avoid late delivery, a very common

strategy in practice is to test the critical code with important functions and features while

 3

delaying the testing of unimportant or untestable code. Despite this method benefiting the

pace of software development, software quality is put at risk as the amount of untested

code increases (Felderer & Ramler, 2014). Therefore, test engineers always face tough

decisions in striking an acceptable balance between the pace of software delivery and

software quality.

1.1.2 Untested Combination of Input Values

Multiple input variable values are typically needed when testing a program. As the

number of variables and values of individual variables increase, the combinations of input

values become more complex in the set of test cases. In this situation, using a large

number of test cases is neither feasible nor valuable (Goodenough & Gerhart, 1975; Myers

et al., 2011). Similar to the aforementioned method, software testers adopt the same

strategy to conduct testing where the main or critical combinations of the input values are

the focus. Although this maximizes the yield from the testing process, some uncommon

combinations of the input values that may lead to software crashes might never be tested.

1.1.3 Untested Path

The source code of a program generates multiple executable paths. In practice,

users sometimes follow different sequences which may not be fully considered in the

software design. Such scenario often occurs, especially when the users are not familiar

with the specific operation of the program, whereas test engineers usually conduct critical

path tests to try to pinpoint important software faults (Hass, 2014). However, software

programs typically consist of multiple functions and features involving numerous paths.

Trying to test all of the paths is not feasible. In order to reduce redundant tests and

increase test efficiency, software engineers usually conduct only critical path tests which

 4

check the paths that are most likely to be used rather than all the paths in a program

(Jorgensen, 2018). As a result, this test strategy may create a potential risk where the

program could crash due to a defective path triggered by users if the path has not been

tested.

1.1.4 Untested Operating Environment

Nowadays, a popular application is usually made in several versions which are

compatible in different platforms and operating environments. For instance, Microsoft

Office Suite (MOS) is one of the most popular productivity applications around the world.

As it has evolved in the last thirty years, MOS has been developed in many versions that

can be used on PC, Mac, and mobile devices. Although it is a highly mature application,

MOS is still continuously being improved in increasing the compatibility on different

platforms and operating environments (“History of Microsoft Office,” 2020). Moreover,

the users’ operating environments are much more complicated and dynamic than they

used to be. Software engineers find it almost impossible to simulate all possible conditions

to test a software program. In other words, users’ operating system configurations are so

diverse that no one has a way of capturing all the configurations for testing (Jorgensen,

2018). For instance, users might install different peripheral devices in their systems; or the

operating environment might be changed as different tasks are executed at the same time,

even though the operating system configurations are the same. Therefore, test engineers

only simulate primary operating environments which means that their testing strategy

might lead to software faults occurring in the untested operating environments (Juristo et

al., 2006).

1.1.5 Defective Testing Procedure

 5

Differing from prior issues which are constrained by non-technical

factors/resources such as time and computing capability, the defective testing procedure

issue is constrained by technical factors. In fact, a software program becomes more

complex as its size increases and a large number of features is required to be integrated

within one system (Felderer & Ramler, 2014). In the meantime, software testing also faces

big challenges because those testing procedures derived from traditional development

methods are not able to detect software faults efficiently or effectively if the program is

developed through new methods or new languages (Burnstein, 2006). Under this situation,

the testing procedures need to be either updated or replaced by new procedures to prevent

hidden bugs in a program.

1.1.6 Summary

Inadequate software testing usually results in defective applications and negative

outcomes. Inspired by Whittaker’s (2000) study, we identified five primary software

testing practical issues (untested code, untested combinations of input values, untested

paths, untested operating environments, and defective testing procedures) causing the

inadequate software testing. And these five testing issues are rooted in resource constraints

and technical constraints in software testing. On the one hand, a company might not have

adequate resources such as budget, time, or personnel to run sufficient tests, resulting in

four testing issues (untested code, untested combinations of input values, untested paths,

and untested operating environments). On the other hand, a company might have enough

resources but without key technical support such as sophisticated algorithm, powerful

testing tools, or expert testing engineers, incurring the issue of defective testing

procedures. Considering most practical software testing issues result from resource

 6

constraints (see Figure 1), we therefore focus on exploring the value of software test cases

in this study, which we think is an effective method to deal with resource constraints of

software testing.

Figure 1. Practical Issues in Software Testing

1.2 Software Testing Research Issues

There are fundamental disagreements regarding the resource allocation in software

development. Although a huge amount of dollars is spent in software development and

testing, resource allocation is still considered as the dominate cause of software

development failures such as defected software and aborted software development

 7

projects (Tassey, 2002). Researchers ascribe the software failure to insufficient

requirement and design analysis in the early stage or the invalid software testing regarding

the requirements elicitation (Boehm, 1981; Charette, 2005; Jalote & Vishal, 2003); in

practice, however, most of the resources are allocated to coding due to release pressure

(Yiftachel et al., 2011). Moreover, there is a widely accepted view of software testing:

exhaustive software testing is impossible due to resource constraints such as limited time,

funds, and personnel (Myers et al., 2011). To deal with the resource constraint issue in

software testing, two main research streams emerged during the last decades.

1.2.1 Effort Estimation

The first stream, effort estimation, mostly emerged in the 1980’s and 1990’s

(Molokken & Jorgensen, 2003). Originally, researchers attempted to estimate the effort

consumed in the whole process of software development where software testing is a part

of the entire development process. The main purpose of the effort estimation is to learn the

extent of the deviation between an actual software development project and its original

plan, regarding cost, schedule, and functionality (Jorgensen, 2004). In this time period,

most effort estimation studies were developed for the entire software project, while the

effort estimation of software testing was considered as a part of the effort.

Table 1 shows the methods of software estimation that have been studied in

academia and used in practice. Expert judgement, which relies on intuition, experience,

historical data, and process guideline (Jorgensen, 2004, 2005), is the most frequently used

method. The strength of this method is that it can be applied in almost any context without

a high threshold because it heavily relies on the expert’s experience. Additionally, it can

be applied in software size, effort, schedule, and cost estimation. The weakness of this

 8

method is that the accuracy might be very low especially when the software is too

complex. To increase the estimate accuracy, experts usually use historical data of the

similar software projects to assist the estimation. To estimate software project size, source

lines of code and function points are the two common methods. Source lines of code

method measures the size by counting the number of lines in the program’s source code

(Albrecht & Gaffney, 1983). Since line of code is a physical entity, this method is feasible

and reliable. However, same function in a program could be written differently, it cannot

count the size while considering created functions. Function points is the method that

expresses the amount of business functionality a program provides (Dreger, 1989). This

method avoids the issue that using large number of lines of code to create relative fewer

functions in a program. The model-based method is another main approach. A well-known

such model is the Constructive Cost Model (COCOMO) developed by Boehm (1981). To

accurately estimate the cost of software, the model’s parameters are derived from

historical projects and rely on size estimation through source lines of code. The method

estimates not only the project schedule but also cost of the software project. Although this

method enables to provide a relatively accurate estimation, it still cannot provide the

adequate information about the critical or valuable process deserving to be invested more

resources.

Table 1. Effort Estimation Approaches

Estimation
Approach Description Estimation Type Major Study

Expert judgement Relies on expert intuition
and experience.

Project size, schedule,
cost Jorgensen, 2004, 2005

Source lines of code
Counting the number of
lines in the program’s
source code.

Project size Albrecht & Gaffney,
1983

 9

Function points
Express the amount of
business functionality a
program provides to users.

Project size Dreger, 1989

Model-based (e.g.,
COCOMO)

A model based on source
lines of code to estimate
software project schedule
and cost.

Project schedule, cost Boehm, 1981

1.2.2 Value-Based Estimation

Despite the fact that the effort estimation methods provide some information

regarding expenditures of software development including software testing, it is still

difficult for software engineers to judge what software testing should be performed. A

large effort in software testing may or may not increase software quality. Therefore, value-

based estimation is intended to apply the effort expended in the most effective way

(Boehm, 2006). Along with the value-based view, Biffl et al. (2006) maintain that the

major value arises from a few software testing processes. Software engineers thus take

into account various factors in selecting software test as well as corresponding test cases to

attempt to achieve a maximal contribution. However, assembling an optimal portfolio of

software tests drawn from an extensive list of available testing approaches is not an easy

task. Software testing as a support activity intertwined with other parts of the software life

cycle cannot deliver a significant contribution to the software development process unless

the particular high-value software testing activities are identified and implemented (Hass,

2014).

Several dimensions have been studied in generating value-based software (see

Table 2). First, value-based requirements. Since the objectives of systems as well as

following steps rely on the requirements, identifying a system’s critical stakeholders,

 10

eliciting their valuable requirements, and reconciling the requirements to the system are

critical. To this end, Wohlin and Aurum (2006) use survey to identify the critical

stakeholders as well as requirement criteria. Second, value-based architecting. This

dimension focuses on reconciling the system objectives with achievable architectures.

Kazman et al. (2001) built an economic model of architectural decision making, which is

based on cost benefit analysis of system quality attributes. Third, value-based design and

development, which involves inheriting the system objectives and value considerations

into system design and development. Van Solingen (2004) used return on investment

(ROI) rather than other complicated models to measure the improvement in the software

development process. Last, value-based verification and validation process, which

involves testing, is considered as an investment activity. It focuses on ensuring the

verification and validation process to satisfy value objectives. Felderer and Ramler (2014)

argue that risk should be considered when planning software testing. Although risk is not

easily to measure in practice, neglecting the risk from software testing would decrease the

effectiveness of software testing since the resource is limited. Therefore, they propose a

process model to integrate risk analysis and software testing.

Table 2. Value-Based Estimation Approaches

Estimation
Approach Description Estimation Type Major Study

Survey

Identifying a system’s
critical stakeholders,
eliciting their valuable
requirements, and
reconciling the requirements
to the system.

Value-based
requirements

Wohlin & Aurum,
2006

Cost benefit analysis
Reconciling the system
objectives with achievable
architectural.

Value-based
architecting Kazman et al., 2001

 11

Return on investment
analysis

Inheriting the system
objectives and value
considerations into system
design and development.

Value-based design
and development Van Solingen, 2004

Risk-based testing

Ensuring verification and
validation process satisfies
value objectives;
considering verification and
validation process as
investing activity.

Value-based
verification and

validation

Felderer & Ramler,
2014

1.2.3 Summary

To deal with the resource constraint issue in software testing, effort estimation and

value-based estimation are two research streams that are formed for allocating testing

resources. However, they have some critical drawbacks: (1) effort estimation only focuses

on the resources expended in the process of software development which includes

software testing, and it cannot assist software engineers in choosing software testing

processes which contribute the most to software quality; and (2) existing studies of value-

based estimation focuses on value of each process of software development rather than

software testing. Therefore, those value-based estimation studies cannot provide a break-

down or specific estimation within software testing.

Given the shortcomings, we cannot simply use existing studies from the prior two

streams for solving the resource constraint issue in software testing. Therefore, it is

necessary to establish a new mechanism in value-based estimation focusing on software

test cases. Because generating test cases is a critical step in functional software testing no

matter the program is developed in the traditional waterfall paradigm or the agile

paradigm. This new method would make significant contributions to selecting test cases

and systematically allocating resources in functional software testing.

 12

1.3 Research Objective and Research Question

As the primary practical issues in software testing are identified, we find resource

constraint is the root cause of inadequate testing. Given that exhaustive software testing is

impossible (Myers et al., 2011), how to maximize the efficiency and the effectiveness of

software testing with limited resources becomes the most important question in the

software testing domain (Juristo et al., 2006). Although researchers have dedicated to

solving the problem of resource constraint in software testing from different perspectives

in the last few decades (Biffl et al., 2006; Boehm, 2006; Felderer & Ramler, 2014; Wohlin

& Aurum, 2006), the shortcomings of the prior studies from the two research streams

indicate that the existing approaches cannot appropriately address the problem. This is

because that the software testing methods either lag behind software development methods

or just take into account software engineering factors which cannot provide adequate

guidance for improving software testing (Juristo et al., 2006; Talby et al., 2006).

Therefore, the research objective of this study is to explore a new mechanism

involving the comparative value of test cases to increase the efficiency of software testing.

Since test cases are the core part of software testing and are also the critical steps to

optimize the efficiency of the software testing, all else being equal, choosing the test cases

producing relative high value can optimize the software testing in a resource constrained

environment (Biffl et al., 2006). To specify the research objective, we intend to develop a

function that assigns a value of a test case for the purpose of comparing it with the value

of other test cases. We therefore initiate the research question surrounding the evaluation

of software test cases: What is the relative value of a functional test case in software

testing?

 13

The potential contribution of this study is threefold. First, the function we develop

reveals the essence of value for a context-specific test case. In this way, individual

assessment for optimization decision making can be enhanced. Second, the value function

of test cases fills a notable gap in the literature, as there currently exists no specific method

to systematically determine and justify the value of test cases. Knowing this will enhance

the capabilities of software testing managers. Last, the specific exploration of the notion of

test cases establishes an important reference point for software testing as well as systems

development in the critical corporate governance task of resource allocation.

1.4 Research Structure

This study is organized into nine chapters. Chapter 1 introduces the current

practical issues and research issues of software testing. Following that, research

objectives, research questions, and the structure of this study are presented. Chapter 2

explores the research foundation from nature of software testing and test cases, nature of

value, nature of cost in software test cases. Chapter 3 describes the research process,

methodology, data collection, and coding process. Chapter 4 delivers the initial value

function of test cases based on a systematic analysis of the pertaining literature and

theoretical foundation. The function presents the value of the test cases from two

dimensions consisting of four levels: business dimension (risk level and cost level) and

software engineering dimension (application level and unit level). Chapter 5 demonstrates

the interview results, which are the comments upon the given initial value function that we

collected from industrial testing professionals. Each factor in the function is then analyzed

and the new factors derived from the interviews are illustrated as well. In Chapter 6, we

 14

deliver the final form of the value function of test cases. The components of each factor in

the final value function, factor scoring, factor weighting, and calculating mechanism of the

final value function are introduced. Chapter 7 compares the final value function of test

cases with other value determination rubrics applied in software testing. In Chapter 8, we

provide guidance for the general application for the final value function. Chapter 9

addresses the limitations of the final value function and offers future research directions in

improving the function.

 15

CHAPTER 2

RESEARCH FOUNDATION

To address the research question, we aim at building a function to calculate the

value of software test cases. Yet a sound function cannot be established without a solid

foundation for the concepts. In other words, the essences of software testing, test cases,

and value are still vague because they have been discussed for different purposes and in

different contexts (Biffl et al., 2006; Boehm, 2006; Gelperin & Hetzel, 1988; Jorgensen,

2018; Mathur, 2013; Myers et al., 2011; Perry, 2007). Therefore, adopting those concepts

into the field of software testing without adapting them would result in failure in

distinguishing the value of test cases. Therefore, before establishing the function, we

attempt to build the research foundation regarding the core concepts, including the nature

of software testing and test case, nature of value, and nature of cost in software test cases.

 16

2.1 Nature of Software Testing and Test Case

2.1.1 Nature of Software Testing

Since the earliest article on program checkout was written by Alan Turing in 1949

(Gelperin & Hetzel, 1988), software testing has been growing for almost eight decades

and the nature of software testing has been changing as the use of digital computers

increased and diversified. Based on Gelperin and Hetzel’s (1988) narration of software

testing growth, we added a new growth stage of software testing starting from 1990’s (see

Table 3).

Table 3. Growth Stages of Software Testing

Period Category Interpretation of Software Testing

- 1950’s The Debugging-Oriented Period
Testing and debugging are used
interchangeablely. Selecting test cases relies
on programmers’ experience.

1950’s –
1970’s The Demonstration-Oriented Period

Testing focuses on “make sure the program
solves the problems.” Debugging focuses
on “make sure the program runs.”

1970’s –
1980’s The Destruction-Oriented Period

Testing is concerned with revealing the
faults existed in the program. Debugging is
concerned with locating and fixing those
faults.

1980’s -1990’s The Evaluation & Prevention Oriented
Period

Software testing is integrated into the
evaluation phase for assessing how well the
products in each phase of software life-
cycle meet their requirements.

1990’s - The Test-Driven-Oriented Period

Testing lead and intensively interact
software development. Testing activities
widely spread among development (sprint)
and closure phases.

Adapted from Gelperin & Hetzel (1988)

In the debugging-oriented period (prior to 1950’s), testing focused on hardware

and programs were written and checked out by the programmers until all the outstanding

 17

bugs had been identified and fixed (Gelperin & Hetzel, 1988; Turing, 1950). There is no

clear distinction between testing and debugging, resulting in these two terms being used

interchangeably. The criteria used for selecting test cases are entirely ad hoc and relied

exclusively on programmers’ experience and understanding of the system.

In the demonstration-oriented period (1950’s to 1970’s), testing and debugging

were considered as different activities. Testing focuses on “make sure the program solves

the problems” and debugging focuses on “make sure the program runs” (Baker, 1957). In

other words, testing ensures that the program conforms to its requirements whereas

debugging attempts to prevent the program from any crashes.

In the destruction-oriented period (1970’s to 1980’s), the description of testing in

Myers et al.’s (2011) book has gained wide acceptance where testing is defined as “the

process of executing a program with the intent of finding errors.” With that, testing and

debugging were differentiated and demonstrated in new meanings. Testing is concerned

with revealing the faults existed in the program, but debugging is concerned with locating

and fixing those faults (Deutsch, 1981; Miller & Howden, 1981).

In the evaluation & prevention-oriented period (1980’s to 1990’s), several

standards were proposed to pave the way of regulating the testing activities. The U.S.

National Bureau of Standards issued a guideline in 1982 (Neumann, 1982), which

specifically targeted at federal information processing systems (FIPS). Software testing is

integrated into the evaluation phase for assessing how well the products in each phase of

software life-cycle meet their requirements. Following that milestone, the Institute of

Electrical and Electronics Engineers (IEEE), the world’s largest technical professional

organization, published the “IEEE standard for software verification and validation plans”

 18

in 1986 (IEEE, 1986). This standard provides uniform and minimum requirements for the

format and content of software testing in evaluating each phase of the software project.

The goal of those standards is to identify and correct the faults in the software in an early

stage.

In the test-driven-oriented period (after 1990’s), testing has been shifting from

evaluating and preventing function to leading or intensively interacting software

development. In 1997, Ken Schwaber published SCRUM (Schwaber, 1997), an entirely

new software development methodology differing from the traditional waterfall method.

SCRUM assumes that the systems development process is an unpredictable, complicated

process rather than a well understood process that can be perfectly planned, estimated, and

successfully completed. Testing activities widely spread among development (sprint) and

closure phases. In the sprint phase, all the development activities are assessed

continuously by testing and adequate controls and responses put in place. Extreme

Programming (XP), another software development methodology with similar philosophy

of SCRUM, was released by Kent Beck in 1999 (Beck, 1999). Rather than planning,

analyzing, designing, implementing, and testing in conventional software development

process, XP blends all these activities in several iterations and then breaks the iterations

down into tasks which are estimable and testable. To implement a task, two programmers

are paired and write their own tests before they start coding. This reverse process not only

shortens the feedback time to the programmers but also provides a dynamic way for

software development.

2.1.2 Nature of Software Test Case

 19

Although software testing is illustrated in prior sections, unscrambling the nature

of test cases is necessary because software testing and test cases are a cohesive unit. The

deeper narrowing test cases, the better understanding software testing and estimating the

value of test cases. In this section, we addressed the definition and category of a test case.

In the international standard of systems and software engineering (ISO/IEC/IEEE,

2017), a test case is defined as “a set of test inputs, execution conditions, and expected

results developed for a particular objective; and software testing is demonstrated as an

activity in which a system or component is executed under specified conditions, the results

are observed or recorded, and an evaluation is made of some aspect of the system or

component.”

Obviously, as the two definitions explicitly described, test cases are developed for

different software testing and inherently serve for the corresponding software testing on a

particular objective. Therefore, an appropriate method to categorize test cases is to classify

the test cases based on existing software testing classification. After reviewing the primary

classification of software testing (e.g., Jorgensen, 2018; Mathur, 2013; Myers et al., 2011;

Perry, 2007), we found that there was no consensus on this: some types of testing overlap,

while others are referred to in different terms. To build a systematic classification of

typical test cases, we chose two primary classifiers for the test case classification: (1)

source of test generation, and (2) lifecycle phase.

In terms of source of test generation, functional test cases are classified into the

test cases generated from black-box testing and those generated from white-box testing.

These two types of testing are designed to ensure that the system requirements and

specifications are achieved (Perry, 2007). Therefore, the purpose of the test cases

 20

generated from black-box testing and white-box testing is to test whether the program

functions work correctly. The typical black-box test cases incorporate equivalence

partitioning test cases, boundary-value analysis test cases, cause-effect graphing test cases,

and error guessing test cases. White-box test is also known as structural testing, which is

concerned with the degree to which test cases exercise or cover the logic of the program

(Mathur, 2013; Myers et al., 2011). The typical white-box test cases incorporate statement

coverage test cases, decision coverage test cases, condition coverage test cases, decision-

condition coverage test cases, and multiple-condition coverage test cases (see Table 4).

Table 4. Test Case Category (Source of Test Generation)

Category Type of Test Case

Black-box

Equivalence partitioning test case

Boundary-value analysis test case

Cause-effect graphing test case

Error guessing test case

White-box

Statement coverage test case

Decision coverage test case

Condition coverage test case

Decision-condition coverage test case

Multiple-condition coverage test case

In terms of lifecycle phase, test cases are classified into five types to test the

corresponding phases (Mathur, 2013). In coding phase, unit testing cases are usually

applied to test the individual units or components of a software. In integration phase,

integration testing cases take place to test several individual modules which are combined

together. Integration testing cases are usually created after unit testing. In system

integration phase, system testing cases are to test a complete and fully integrated software

 21

product. In the maintenance phase, most regression testing cases are derived from

previous test cases and executed automatically because regression test retests the existing

software applications to make sure that a change or addition has not broken any existing

functionality. In the last post system/pre-release phase, beta-test cases take place to test the

software prior to commercial or official release. The category and typical example of test

cases are listed in Table 5.

Table 5. Test Case Category (Life Cycle Phase)

Category Type of Test Case

Coding Unit test case

Integration Integration test case

System integration System test case

Maintenance Regression test case

Post system/pre-release Beta-test case

In general, functional testing involves all the life cycle phases of software

development from coding phase to pre-release phase, but performance testing and security

testing usually play roles in the middle or end stage of software testing, such as module

integration and system integration. We focus on functional test cases (see an example of a

functional test case in Appendix A) in this study and attempt to build a value function

which is able to assess the functional test cases in all the life cycle phases.

2.2 Nature of Value

To uncover the value of software test cases, another critical step is to probe and

define the nature of value. We therefore cascade down the nature of value from its origin

 22

in philosophy to the extended regions in business, information technology, software

engineering, software testing, and test cases.

2.2.1 Value in Philosophy

Value in philosophy presents an original meaning. The Cambridge dictionary

defines “value” as “the amount of money that can be received for something; or the

importance or worth of something for someone” (Cambridge Dictionary, n.d.). In

axiology, philosophical inquiry into value is structured around three related concerns.

“First, determining what we are doing when we ascribe value to the entities. Second,

saying whether value is subjective or objective. Last, specifying what things are valuable

or good” (New World Encyclopedia, 2016).

From the above definitions, we conclude that the meaning of value consists of

three dimensions that need to be taken into account when exploring the nature of value in

the following perspectives: business, information technology, software engineering,

software testing, and software test cases (Cambridge Dictionary, n.d.; New World

Encyclopedia, 2016). First, value refers to the benefit which is generated from certain

activities. The benefit could be measured as tangible things such as money and also as

intangible things such as prevented risks. Second, value is only related to its stakeholders.

In other words, the benefit created from certain activities is only valuable to relevant

entities rather than all the entities. Last, value needs to consider both benefit and the

corresponding cost.

2.2.2 Value in Business

Value in business has been portrayed by Harvard’s Michael Porter, who is well-

known in the business domain for his notions of value analysis. He mainly demonstrates

 23

the implication of value from the firm level, noting that it is the amount buyers are willing

to pay for what a firm provides (Porter, 1985). Generic competitive strategies, then,

revolve around creating value for buyers who are willing to pay more than the cost of

providing that value. Although one of the basic strategies is, indeed, cost-based, Porter is

of the opinion that value rather that cost is the best factor to use in analyzing competitive

position (Porter, 1985; Porter & Millar, 1985).

In a broad term, value is created through products or services which are

transactable and acceptable by customers (Porter, 1985; Porter & Millar, 1985). The

purpose of a business is to create value through producing products or providing services.

In general, business value consists of two dimensions (Porter & Millar, 1985). The first

dimension is the business value in firm level. Porter’s value chain breaks down the

production process in a firm into several connecting activities. The primary activities

involve inbound logistics, operations, outbound logistics, marketing and sales, and service.

In inbound logistics activities, the materials are received, stored, and distributed to

designated places. All the raw materials, labor, as well as other necessary things are

converted into products or services in operations activities. In outbound logistics activities,

the final products are moved from the end of the production line to the end users. In

marketing and sales activities, selling products or services, communicating with

customers, and researching on competitors are the main purposes. To keep all the products

or services working effectively after being sold is the primary activities in service stage.

Other than the primary activities that enable to add the value in the production, the support

activities play a complementary role in facilitating the primary activities to add value in

the business. The support activities include firm infrastructure, human resource

 24

management, technology, and procurement. No matter what activities to be taken in the

firm, every activity is supposed to add value (Porter & Millar, 1985).

The second dimension is the business value in industry level, which is known as

value system. In value system, value is not only created within a firm but also added and

delivered among the different entities from upstream to downstream. In upstream,

suppliers provide valuable raw materials or components to production companies (Porter

& Millar, 1985). The production companies’ products usually pass through downstream

channels on their way to the ultimate buyers.

To conclude, value in business is realized through providing products or services

to fulfill the customers’ requirements and obtain the return for the business. During the

business process, value is added from the very beginning step to the very end step. In

order to optimize the value creation, the value and cost occurred in each step should be

evaluated that can help identify, modify, or eliminate the process which is not able to

contribute to the value in the business. As the method of producing goods or services

changes, the business process and business model also need to be changed accordingly to

keep value creation. A typical example is information technology applied in business

domain. The value in information technology is demonstrated in the next section.

2.2.3 Value in Information Technology

In the traditional corporate era, factory’s goods are the primary products in

exchange. In the information era, information technology becomes an important good in

our life because both individuals and organizations need information to make better and

quicker decisions. In information systems domain, value in information technology (IT)

has been demonstrated as IT’s impact on an organizational performance in efficiency and

 25

competition (Melville, 2004). With the IT revolution propagated around the world,

organizations are able to create, share, and analyze information more efficiently in

business activities than ever before and ultimately create value in the form of process

improvements, profitability, consumer surplus, supply chains, or organizational innovation

(Kohli & Grover, 2008).

To realize the value from IT, four attributes of information are critical, including

intrinsic information, contextual information, representational information, and accessible

information (Lee et al., 2002). The intrinsic information indicates the accuracy and

validity of the information. The contextual information refers to the relevant, timely,

complete, and appropriate information that enables to present the context. The

representational information focuses on the interpretation of the information. In other

words, the information should be easy to be interpreted, presented, understood, and

manipulated. The accessible information emphasizes that the information can be obtained

appropriately, securely, and timely.

Although the four attributes of information provide a good guideline for building

information systems that enable to create valuable information, in most cases, to

completely meet all the attributes or requirements of the information through IT is not

feasible or necessary (Cook et al., 1998). Because information systems not only face

different users who have various requirements but also need to compromise on

functionality due to limited resources. In practice, people always try to find an appropriate

balance between the value created by IT and the resources consumed by IT (Cook et al.,

1998). For instance, a retailer information system might provide different users different

information about the on-sale products due to the diverse requirements. The customers are

 26

only able to obtain the information about the price, function, customer review of the

products, while the managers are able to browse more detailed information such as

inventory, size, supplier, and cost of the products. Moreover, less critical information such

as customer review and product supplier might be unsynchronized due the tradeoff

between the value of the information and limited IT resources.

2.2.4 Value in Software Engineering

Value in software engineering focuses on stakeholders’ expectations. The goal of

software engineering is to create products, services, and processes that add value. “To

maximize the value, software engineering decisions at all levels can be optimized to meet

or reconcile explicit objectives of the involved stakeholders, from marketing staff and

business analysts to developers, architects, and quality experts, and from process and

measurement experts to project managers and executives” (Biffl et al., 2006, p. ix). That

is, the value of software engineering is to provide high-quality programs which enable to

satisfy the involved stakeholders’ requirements.

Differing from the business value which spreads in the nodes of the value chain,

the value in software engineering is created in each phase of software development life

cycle (Biffl et al., 2006). In the requirement design stage, requirements engineering needs

to identify the valuable stakeholders and elicit their value proposition for the software

(Wohlin & Aurum, 2006). If the requirements of the program are not collected sufficiently

and completely, it might result in the requirement change in the following steps such as

software design or software development and in turn raises huge unforeseen resource

consumption rather than value creation.

 27

The architecture stage is about making a decision on the fundamental software

architecture which is costly to change once implemented. According to IEEE standard

(ISO/IEC/IEEE, 2011), software architecture is defined as “the fundamental concepts or

properties of a system in its environment embodied in its elements, relationships, and in

the principles of its design and evolution.” In simple words, architecture is the foundation

of software development. To add value in software engineering, a good software

architecture has to reconcile the software objectives with achievable architectural

solutions.

In the design and development stage, software design usually involves problem

solving and planning a software solution including both the high-level design, architecture

design, and the low-level design, component and algorithm design (Boehm, 2006).

Following software design, software development is a process of writing and maintaining

the source code. But in a broader sense, it could include all the activities from the

conception of the desired software through the final manifestation of the software. To add

value in software engineering, developers cannot only focus on their own tasks, but rather

they should always make good decisions in connecting the feasible development tasks to

software requirements as well as achievable architectural solutions (Boehm, 2006). In

practice, failed software projects usually distort this connection which cannot create any

value.

Testing is one of the most widely used approaches for verification and validation

and involves monitoring whether the software satisfies its objectives (Wallace & Fujii,

1989). Value-based view considers that not all the potential testing deserves to be seen or

treated equally because different testing might create different value. For example,

 28

functional testing heavily involves the early and middle stage of software development life

cycle, such as module coding and system integration. Compared with performance testing

and security testing, functional testing is the fundamental means of verification and

validation to the eventual operation of the application, which is then supplemented by

other testing such as performance testing and security testing.

2.2.5 Value in Software Testing

Value in software testing is defined as ensuring that a software solution satisfies its

objectives and organizing testing tasks to operate as an investment activity to optimize the

software testing (Boehm & Huang, 2003). In a long time period, a large number of

software testing tasks is treated equally important in practice, resulting in limited

resources in software testing not being able to achieve its optimal goal. To that end, a

value-based view of software testing (Biffl et al., 2006; Hass, 2014) emerged which

provides an effective approach for differentiating the importance of software testing

activities.

According to the study by Ramler et al. (2006), value-based software testing

incorporates two dimensions: An internal dimension and an external dimension. The

internal dimension of testing covers costs and benefits of testing. This dimension includes

the test activities in a project which are handled by the test group. Compare to other

software development activities, software testing is not able to directly create value.

Rather, its value is realized from supporting the critical software development tasks. For

instance, testing the function of user registration in a program presents the value creating

from internal dimension. Registration cannot directly stimulate user increase, but if users

 29

have troubles with registration when they use the program, the registration test thus has a

prominent value.

The external dimension emphasizes the opportunities and risks for the future

system that need to be addressed. Differing from internal dimension, external dimension

focuses on people outside the range of test activities such as end users, who may directly

raise the risks and opportunities for the software. Although software testing engineers and

developers are the people who directly get the benefit from the software testing, the

stakeholders who are not directly involved in the software testing still need to be

considered (Ramler et al., 2006).

Additionally, to optimize the value of software testing, we also need to take

execution time into account. Specifically, a test executed in an early stage of software

development is much more valuable than a test executed in a late stage. Because the

earlier the test being taken, the faster developers are able to find and fix the bugs, and in

turn to avoid huge loss if the defects are found after release. However, in a software

project, there are numerous tests need to be executed where testers are not able to

implement all the tests in an early time. Therefore, aligning the internal and external

stakeholders’ expectations in software testing plays an important role in prioritizing the

tests (Biffl, S., 2006; Boehm, 2006; Boehm & Huang, 2003).

To summarize, the value of software testing could be maximized when the tradeoff

between benefit and cost generated for internal and external stakeholders is optimized, and

the critical tests are executed timely.

2.2.6 Value in Software Test Cases

 30

First, value could be derived from monetary or benefit creation in something

exchanged. In software testing, all the necessary testing processes provide the information

about the validity and variability of the software application and also assist the software

testing engineers in identifying defects. As a part of software testing, designing test cases

is about creating input and predicting output that enable to test the certain parts of the

program (Hass, 2014). Therefore, software test cases create the value for the software

testing as the application failure is prevented from getting into the production

environment, which might lead to significant losses after the application release. In other

word, test cases create value in preventing different risks which are not supposed to

emerge in the program. For instance, if a program is designed to be executed in different

operation systems (Windows, Mac OS, and Android), the test cases for testing the

compatibility are much valuable in multiple operation systems circumstance than in a

single operation system circumstance (Cohen et al., 2003). Furthermore, any process in

software testing including test cases is not free of charge. All companies attempt to

decrease cost (e.g., software testing cost, cost of creating test cases) and increase benefit

(e.g., application is reliable and free of defects) when they develop a program. Therefore,

the value of software test cases is derived from identifying software defects and in turn

preventing software failures (i.e., preventing risk) while, as the exchange, certain amount

of resource is consumed in test cases (Hass, 2014).

Second, value is only able to be applied to the relevant people or stakeholders who

are using the program (Biffl et al., 2006; Boehm, 2006). Test cases are usually created by

software testing engineers, but other people may also be involved in software testing such

as users or business people in marketing department because a defective application might

 31

neither satisfies users nor increases sales in a market especially in a fierce competition

environment. In general, the stakeholders of software test cases should include not only

developers and testers but also business and marketing analysts, managers, and ender

users.

Last, value occurs when something has unique utility (New World Encyclopedia,

2016). Test cases are generated to fulfill different functional testing purposes. In other

words, each test case has its unique utility in software testing. If multiple test cases serve

for the same goal without substantial difference, only one of them could create value for

the software testing and the rest of the test cases might only waste limited resources. For

instance, to test whether a program is able to show properly the delivery rate as users input

the weight of a package, the test cases might be constituted by three types of numbers for a

package: the number below the minimum weight limit or above the maximum weight

limit, the number within the weight range, and the number on the minimum or maximum

weight limit. If no any other factors need to be considered, only one test case should be

created from each type of numbers.

Given the analysis in nature of value from different perspectives, we conclude that

the value of test cases should incorporate two core elements: the risks being intentionally

avoided by different stakeholders in the test cases, and the cost of the test cases. This

finding provides a direction in proposing the value function, but it is not sufficient to build

a deliberate value function. To this end, we design a case study in the following sections to

explore the detailed elements in the value of test cases as well as the mechanism underling

the value function.

 32

2.3 Nature of Cost in Software Test Cases

Any value created must be based on a certain amount of resource consumption,

which is also known as cost. The cost could be tangible such as money consumption or

intangible such as time consumption. However, some costs are be easier to measure than

some other costs due to the pattern of the consumed resources (Cooper & Kaplan, 1988).

For example, the personnel expenditure for software testing is a more feasible cost metric

than time or other types of effort consumed in software testing.

Given above attributes, cost has been successfully applying in business where the

boundary and measurement for cost are very clear. Cost not only helps managers

understand where resource has been allocated but also contributes to financial report as

well as other managerial reports in a company. Although cost is a key index in practice

and widely applied in different areas, the cost paradigm in software testing is still not well

developed as that in business domain. Specifically, there is little research that objectively

demonstrates the way in which testing contributes to the overall value of software

development process (Talby et al., 2006). As software testing is increasingly costly,

building a solid cost paradigm in software testing becomes more critical.

To this end, Gillenson et al. (2020) built a cost function of test cases that enables to

help software testers estimate the resource allocation when creating test cases. We use

their cost function as a part of basis in this research for the following reasons. First, the

cost function focuses on test cases which are critical and fundamental in software testing.

In contrast, other prior research studies demonstrate software testing cost as a whole which

is not able to decompose the value of test cases. Moreover, the function breaks down the

test cases cost into four categories based on testing process and demonstrate the

 33

relationships among the four costs. Last, the cost function is applicable in various software

testing methodologies such as traditional water-fall software testing or agile software

testing. This wide spectrum builds a concrete foundation for value function of test cases in

this current research.

2.3.1 Cost Elements of Test Cases

Gillenson et al. (2020) identified four types of cost: preparation cost (prep cost),

creation cost, run cost, and failure cost. Each type of cost is constituted by several basic

costs. The prep cost and creation cost are the one-time cost because these two costs

usually occur once when starting to create test cases. The run cost and failure cost are the

repeating cost because they might occur several times as long as the cases are executed

multiple times, especially when bugs are found and fixed in software testing process. The

cost of test cases is graphically represented in Figure 2, which is adapted from Gillenson et

al.’s (2020) study.

Figure 2. Model of Test Cases Cost

 34

The prep cost is one-time cost to the whole testing effort. It occurs when creating

and reviewing test plan, and setting up test environment where software and hardware are

set up to execute test cases. When setting up the test environment, several challenges

might render additional cost. For example, if test environment is located geographically

apart, the test team and test assets may need more resources (e.g., time, people) in the

coordination than in a local test environment. Moreover, complex test usually requires

more complicated configuration in test environment, resulting in challenges to the test

team (Gillenson et al., 2020).

The creation cost is one-time cost for an individual test case, which includes the

cost to create input values (CIV) and the cost to determine the expected outcome of the

testing process (CEO). Since test cases need to be very specific and cover all the

possibility derived from a test scenario, input and output values might be a huge volume

(Gillenson et al., 2020).

The run cost is a summation of repeating cost in executing test cases, which

includes the cost to run the test case (CRT), the cost to record and report the results

(CRR), the cost to evaluate the results (CER), and the cost to collect and record test

metrics (CME) (Gillenson et al., 2020).

The failure cost is also a repeating cost but only when a defect is found. Failure

cost is constituted by three basic costs. First, the cost to manage a defect (CMD), which is

a cost that will always be charged to the testers. This defect management activity includes

tracking the failure through assigning it to the responsible party for correction, making

sure the correction has been completed, and reintroducing the test case into the mix.

 35

Second, the cost to determine the failure category (CFC) should also be borne by the

testers. There are four major failure categories: a code error, an error in calculating the

expected output of the test case, a hardware or software problem with the test

environment, or an error in the intended input values (derived from requirements) leading

to an unintended negative test case. Third, the cost of resolving the test case failure (CRF)

should be assigned to the party responsible for the error that caused the failure. A code

error should certainly be charged to the developers. A problem with the test environment

should be charged to the testers. Errors in calculating the test case input values or the

expected output should be charged to whoever was responsible (Gillenson et al., 2020).

2.3.2 Cost Function of Test Cases

The cost function of test cases (Gillenson et al., 2020) incorporates all

aforementioned costs. The pattern of the costs (i.e., one-time and repeating) is also

presented in the function as follows:

Cost of a test case = Prep Costs + CIV + CEO + ∑ (!" CRT + CRR + CER + CME)

+ ∑ (#$ CMD + CFC + CRF) (1)

where n is the number of times the test case is run and a is the number of times the test case fails.

 Notice that the upper limit n in the summation reflects the number of times the test

case is run independently of any issue of test case failures. Also note that the lower limit

of the second summation factor is 0 because some test cases may never produce a failure.

 36

CHAPTER 3

RESEARCH METHODOLOGY

3.1 Research Process

Following the prior theoretical exploration of software test cases, we initiate this

research regarding the importance and value of software test cases. The research process is

based on the principle of the single case study research methodology (Yin, 2017) and the

study is conducted in the process illustrated in Figure 3. In the initial stage, we introduce

the practical and research issues in software testing that hinder organizations from

optimally choosing effective software testing and allocating resources for software

development. To address this complex issue, we form the research objectives and research

questions to build a value function of a test case comprehensively representing the

 37

importance of a test case, which is a critical part of software testing. In the middle stage,

the nature of value, software testing, and test cases are theoretically explored to build the

initial value function. Next, we collect the data regarding to the comments of the initial

function through 27 in-depth interviews with software testing professionals and

managerial staff who are working in a global Fortune 500 company and its American

branches. Through analyzing the data, we finalize the value function and evaluate the

revised value function in comparison with other popular estimation tools in the last stage.

Figure 3. Research Process

3.2 Research Method

In this study, we choose case study research methodology (Yin, 2017) which is

one of the widely accepted qualitative methods in social sciences, education, law,

business, IS, as well as many other disciplines such as health and computer science. We

select this method for two reasons. First, qualitative research methods are developed to

help researchers understand people and the social and cultural contexts within which they

live (Myers, 1997). In the software engineering field, many studies are related not only to

 38

technical issues (e.g., algorithm) but also to non-technical issues (e.g., resource

management) as well as to the intersection between the technical and non-technical

aspects (e.g., database management). Since no one can directly and accurately calculate

value and no unique standard of value of test case exists, estimating value of a test case is

more complex than other software engineering issues. Considering this situation, we

contend that qualitative method is more appropriate than quantitative approach which

heavily relies on the findings from numerical analysis and statistics without adequate

contextual exploration.

Second, action research, ethnography, grounded theory, and case study research

are the primary qualitative research methods (Myers, 1997). Action research aims to

contribute both to the practical concerns of people in an immediate problematic situation

and to the goal of social science by joint collaboration within a mutually acceptable ethical

framework (Rapoport, 1970). According to Myers’s (1999) study, ethnography is the

study that needs researchers to immerse themselves in the life of people they study and

seek to place the phenomena studied in their social and cultural context. Ground theory is

a research method that seeks to develop theory that is grounded in data systematically

gathered and analyzed (Myers, 1997). The case study methodology, as defined by Yin

(2017), investigates contemporary phenomenon in its real-world context when the

boundaries between phenomenon and context may not be clearly evident (see Table 6).

In contrast with case study, we discovered that the former three research methods

focus on either intensive and long-time observation of the phenomenon (e.g., action

research and ethnography) or theoretical development (e.g., grounded theory).

Considering our research objective and research condition constraints, we considered that

 39

case study is more suitable to this study because this method enables to develop an in-

depth description of the software testing context and explore the value function of a test

case within an economic time period.

Table 6. Qualitative Research Methods in IS Domain

Method Description Reference

Action Research

Aim to contribute both to the practical concerns of people
in an immediate problematic situation and to the goal of
social science by joint collaboration within a mutually
acceptable ethical framework.

(Rapoport, 1970)

Ethnography
Need researchers to immerse themselves in the life of
people they study and seek to place the phenomena studied
in their social and cultural context.

(Myers, 1999)

Grounded Theory Seek to develop theory that is grounded in data
systematically gathered and analyzed. (Myers, 1997)

Case Study
Investigate contemporary phenomenon in its real-world
context when the boundaries between phenomenon and
context may not be clearly evident.

(Yin, 2017)

3.2.1 Data Collection

Initial value function of test cases is proposed before the data collection whose

purpose is to get feedback on the initial value function. We conduct in-depth interviews

over a three-month period with 27 software testing professionals and managerial staff

from industry. Interview is a very common method in case study requiring researchers (1)

to follow their own line of inquiry, as reflected by the case study protocol, and (2) to ask

interview questions in an unbiased and fluid rather than rigid manner (Yin, 2017). In order

to achieve a consistent and fluid line of inquiry and promote objective responses,

interview questions were general and not related to specific test cases or circumstances.

Each interview lasted about one hour and was guided by a documented and uniform

 40

procedure (see Appendix A): introducing the initial function, explaining key function

concepts, presenting the prepared questions, and providing time for ad-hoc questions that

might arise in the process of the interview. All the interviews are conducted by two

researchers while an interview note is created. To ensure the note is consistent with the

respondent’s original insight, each interview note is finalized in an interview summary as

the respondent comments on the interview note via a follow-up email.

All the interviewees are working in a global Fortune 500 company and its

American branches, which heavily rely on IT in its worldwide business. To promptly

adapt continuous changing environment and fierce business competition, the company has

more than 5,000 software developers and about 800 test engineers scattered at multiple

locations internationally where most of the required systems are developed and tested.

In Marshall et al.’s (2013) research about the sample size of qualitative study in IS

research, they found that single case studies should generally contain 15 to 30 interviews.

As such, 27 interviewees were recruited in this study.

3.2.2 Data Coding and Analysis

A code in qualitative inquiry is most often a word or short phrase that symbolically

assigns a summative, salient, essence-capturing, and/or evocative attribute for a portion of

language-based or visual data (Saldaña, 2015). In order to systematically analyze

interview data, we follow Saldaña’s (2015) coding manual to generate a code book for

clustering the interview transcripts which express similar topics. Specifically, the coding

process is to create a short phrase to describe the main idea of similar comments. As the

critical foundation of data analysis, the code book needs to be reliable and accurate to

reflect the essence of the entire interview data. In raising the reliability and accuracy of the

 41

code book, we generate two code books during the process: code book v1 (see Appendix

C), the initial version, and code book v2 (see Appendix D), the final version.

First, to generate code book v1, two coders start coding the interview transcripts

separately and generate two drafts of the code book based on their understanding of the

same interview data. Since there is not a unified standard and different coders may make

different judgements, the differences between the two drafts of the code book are

expected. To reconcile the difference, a third coder playing the role of coordinator is

invited to hold a meeting where the first two coders have to justify their codes if

differences exist. Through the thorough discussion, the two coders, in most cases, can

understand each other’s judgements and achieve an agreement on the different codes.

Otherwise, the third coder makes the final decision by listening to the two coders’

discussion. Then, code book v1 (see Appendix C) is generated as the agreement has been

reached among the coders.

Second, to generate code book v2, we make several revisions based on the code

book v1 to facilitate data analysis. A code book usually needs to be adjusted in several

rounds to reach a mature state where the entire data can be exhibited clearly and

concisely (Saldaña, 2015). To improve the code book, we conduct code merging, for

simplifying the structure of the code book, and code splitting, for separating multiple

semantic meanings within a single code.

Code Merging: Code “litigation” and “globalization” as well as their

corresponding interview transcripts (i.e., 5(6), 5(7)) in code book v1 are merged into code

“External Risk.” Code “Special Case” and its interview transcript (i.e., 1(4)) in code book

v1 are merged into code “Amount of use.” There is only one interview transcript

 42

belonging to each code (i.e., “litigation”, “globalization”, and “Special Case”). To

simplify the structure of the code book, they are merged into the existing codes which

enable to cover the semantic meaning of the merged codes.

Code Splitting: Code “Unit Value” and its corresponding interview transcripts in

code book v1 are split into four codes: “Unit Value,” “Regression Suite,” “Test Utility,”

and “Dynamic Function.” When generating code book v1, we categorized the interview

transcripts into code “Unit Value” if they could not be classified into other codes. “Unit

Value” becomes a code which incorporates broad perspectives regrading value of a test

case. This results in a problem that the diverse interview transcripts in the “Unit Value”

cannot be extracted from a unique angle or discussed adequately. To separate multiple

semantic meanings within a code, we conduct code splitting. The four resulting codes and

their corresponding interview transcripts can be found in Appendix D.

Table 7 presents coding examples with the interview transcripts in code book v2.

Be aware that coding is not a precise science. Therefore, different people may come up

with different code upon the same material. The rule of thumb is that a good code is

usually able to summarize, distill, or condense data (Saldaña, 2015).

Table 7. Coding Example

Excerpt of Interview Transcript Code

“Maintaining the line items of Technical Risk in a table rather than
putting each of them separately in the unit value function is a good
idea.”

Technical Risk

“The amount of use is a very critical factor. Multiplying external risk
by it might be insufficient to elaborate its important role. Multiplying
the entire set of risk factors is an option for this point.”

Amount of Use

 43

“The value of a test case is directly related to the amount of revenue
that the software under test is likely to generate. The more revenue
the software is likely to generate, the more value the test case
possesses. This could be an additional factor in the unit value
function.”

Revenue Generation

Third, condensed viewpoints are distilled from the converged interview transcripts

in code book v2. Those distilled practical comments constitute the guideline of revising

the value function. To present a clear analysis, the codes in code book v2 are classified

into two groups: function codes and non-function codes. If the codes are substantially

supported by their interview transcripts to be added in the value function, the code will be

classified into the function codes group. If the codes are not incorporated in the value

function based on the interview transcripts and justification, the code will be classified

into the non-function code group.

In the following chapters, we adopt the function codes into the value function and

adjust their mathematical expression of the factors (i.e., function codes) as well as items of

the factors. Then, the final value function is developed.

 44

CHAPTER 4

INITIAL VALUE FUNCTION

4.1 Process of Proposing Initial Value Function

To incorporate knowledge from both industry and academia, we propose the initial

value function as the process exhibited in Figure 3. First, we consult a software testing

expert (key informant) about the primary factors in influencing a test case. Based on the

real environment of software testing, he contends that risks mitigated by a test case

(positive influence) and cost occurred for the corresponding test case (negative influence)

contribute the value of a functional test case. The expert is a veteran in software testing

and has been working as a senior director for more than 10 years in the software testing

department of a global fortune 500 company where we recruit the interviewees in the data

collection process. Next, having the knowledge from the key informant, we further

explore the nature of value, risk, and cost associated with test cases from the existing

 45

research. The findings have been illustrated in the prior section. Last, we reconcile the

knowledge from the two sources and then propose the initial value function.

Figure 4. Process of Proposing Initial Value Function

4.2 Factors in Initial Value Function

4.2.1 Risk Factors

Based on our exploration of the nature of value, software testing, and test case in

the research foundation, we consider that the initial testing value function would contain

two specific kinds of factors that influence the level of value in the process. One category

is the expected return (or, benefit) which provides a positive influence on the function – it

is able to increase value. In practice, there are countless factors that could add value. As

Hass (2014) aptly notes, the best tests reduce the risk of defects remaining in the product

when it is released to the customer. Hence, a good way of evaluating positive factors in a

proposed testing value function is to identify the capability such factors have for reducing

the likelihood of defects escaping notice in testing. Fewer defects means higher value,

essentially, and this is a risk-reduction calculation of value.

 46

In terms of characterizing types of risk in software testing, there is currently no

uniform classification scheme, although Hass (2014) has offered a classification of four

risk types: business risk, processes risk, project risk, and product risk. From the company-

wide perspective, risks can be categorized as strategic, compliance-related, financial,

operational, and reputational (Griffin, 2019). Combining the key informant’s viewpoints

and the nature of the value in test cases, we contend risks in software testing (when the

risk event is the unintended release of a defect to the customer) are either indirect risks

(comprised of business and operational issues without directly implicating the testing

process) or testing-specific and direct risks, characterized as “technical risk”.

Business & operational risk relates to the importance of the software to the

operation, integrity, or financial stability of the company. We think of these indirect risks

as either Internal Risk (IR), which refers to risks arising from events taking place within

the organization and External Risk (ER), which refers to the risk arising from the events

taking place outside of the organization. To aid the reader in conceptualizing the risk

factors in a value-laden framework, Table 8 provides a visual characterization of the risk

factors juxtaposed against specific operational instances that may manifest in company

operation. For internal risk, we consider that executive pressure within the company and

either resource deficiencies or poor organization of resources are the two primary items

impacting the goodness of testing results. Externally, crucial impacts are failure in

production, relevant regulations, and fierceness of competition.

Technical risk (TR) begins with the complexity of the software. A more complex

piece of software is inherently riskier in production and testing than a less complex piece

of software. Furthermore, a larger program or portion thereof is riskier than a smaller

 47

program simply because the larger program presents more opportunities for error.

Technical risk also involves factors related to programmers, test engineers, and their tools.

More experienced programmers present less risk to the finished product than less

experienced programmers do, for example. New testing technologies in use are riskier

than established technologies. To that end, we have derived primary components of

technical risk listed in Table 8: complexity issues, technology issues, requirements issues,

personnel issues, dependency issues, previous testing issues, and test environment issues.

Table 8. Factors in Initial Value Function

Category Primary Item

Business & Operational Risk

Internal Risk (IR)
Executive pressure within the company
Deficiency or poor organization of resources

External Risk (ER)
Crucial impacts of failure in production
Relevant regulations
Fierce competition

Amount of Use (AU) The relative amount of use in production

Technical Risk (TR)

Complexity issues
Technology issues
Requirements issues
Personnel issues
Dependency issues
Previous testing issues
Test environment issues

Cost of a Test Case (CTC)

Preparation costs
Creation costs
Run costs
Failure costs

4.2.2 Use Factors

Besides the two main factors discussed in regard to our proposed value function,

another special factor related to external risk is the amount of use (AU) of the software

under test. A frequently used piece of software, whether it is a full application or a feature

of an application, is inherently riskier than an infrequently used piece of software. This

 48

may seem counter intuitive, until one considers that external risk increases for widely used

applications that experience failures, as the impact of the failure is more widely distributed

and more costly to correct. Therefore, we combine external risk and amount of use

together in the initial function to demonstrate this potential negative impact on value. In

sum, we consider the business and operational risks, technical risks, unit costs, as well as

amount of use as the primary factors to evaluate the value of a test case (see Table 8).

4.2.3 Cost Factors

The other major factor is related to costs that negatively impact value. Specifically,

value decreases with increased costs, and, all things being equal, decision makers prefer to

choose the functional test cases that are less costly in order to preserve value in the

process. Therefore, in the initial unit value function, cost of a test case (CTC) becomes a

key factor. When estimating CTC, one must take into account the costs of test case

creation, the costs of running a case, the costs of determining success or failure for the

case, and, possibly, the related costs of using it to fix a subsequently uncovered defect in

the code. A detailed explication of the cost structure for test cases can be found in

Gillenson et al. (2020). The value function, derived from these costs, is characterized by

the factors represented in Table 9.

Table 9. Factors in Cost Function

Category Code Items

Prep Costs Cost to create and review test plan; set up test
environment

Creation Costs
CIV Cost to create the test case input values
CEO Cost to determine the expected output of the test case

Run Costs

CRT Cost to run the test case
CRR Cost to record and report the test results
CER Cost to evaluate the test results
CME Cost to collect and record test metrics, if required

 49

Failure Costs
CMD Cost to manage a defect
CFC Cost to determine failure category
CRF Cost to resolve test case failure

4.3 Factor Relationships in Initial Value Function

In the previous section, we introduced IR, ER and TR as the three key elements

which can increase the unit value of a test case when the risks are properly managed. Each

of those risks, when judiciously resolved in the software testing process, act to decrease

the probability of software failure and hence increases the value of the test case. On the

other hand, any test case will consume resources such as funds and personnel, and this is

also represented in the unit cost calculation. It is important to recognize that different test

cases present different IR, ER, TR and CTC elements. In order to adjust the diverse

influence of the four factors in the function, weighting is applied to each factor in the

calculation. The initial function of unit value of a test case is represented as follows:

Value of a Test Case = IR*w1 + (ER*w2) * (AU*w3) + TR*w4 - CTC*w5 (2)

where wi for i = 1, …, n is the weight of each factor.

In this function, there are several points should be noted. First, value is the relative

worth of expending additional resources to add the test case under consideration to the

testing effort. Also, software under test (SUT) can be a feature of an application

component, an entire application, or even a collection of integrated applications. IR, ER,

AU, and TR are all based on the SUT while CTC is based on the test case under

consideration. Mathematically, all five of the factors are scaled from 1-n in whole

numbers; factor weights can range from 0, upwards, and can include fractional

 50

components but the sum of the five weights should equal one. This could present the

different impacts from the five factors when estimating different test cases. The point of

multiplying ER and AU arises from the consideration that a major failure in a heavily used

application should likely have synergistically deleterious effects; further refinement can be

made with the weighting coefficients w2 and w3. Lastly, for CTC the entire cost function

should be used, because an estimate of the eventual run costs and failure costs based on

history is an important component in the calculation.

 51

CHAPTER 5

DATA ANALYSIS

5.1 Data Description

Although the initial value function was derived from theoretical foundations, a gap

might exist between the theoretical insights and the practical situation. Therefore, we

interview and analyze the feedback of initial value function from industry experts. In the

interview process, we primarily collect two types of information from interviewees: What

are the necessary factors of the value function? What are the relationships among the

factors? Following the aforementioned coding and analyzing process, 16 codes (internal

risk, external risk, technical risk, amount of use, code coverage, test frequency, weight,

unit cost, dynamic function, unit value, test utility, regression suite, revenue generation,

 52

simplicity, priority, and ROI) are identified in code book v2 (see Appendix D). Figure 5

exhibits the frequency of code occurrence in the interview data. The blue columns and

orange columns respectively represent function code (factors included in the final

function), and non-function code (factors excluded from the final function). Note that

different factor names are used in the value function for some function codes: external

risk, code coverage, and dynamic function. The explanation can be found in the following

code analysis.

Figure 5. Frequency of Code

5.2 Findings from Function Codes

Function codes are the factors incorporated in the final value function. In the

previous section of proposing the initial value function, internal risk, external risk, amount

of use, technical risk, weight, cost of a test case, value of a test case are incorporated in the

initial function. In the following section, those existing codes as well as other new codes

(function coverage, test frequency, execution value) are discussed and justified based on

the knowledge obtained from the code book v2 (see Appendix D). The interview

comments of the code usually provide three types of information of the code: (1) whether

15 17

30
36

19

5 3 2

12

29

5

14 13
10

13

1
0
5

10
15
20
25
30
35
40

Inter
na

l R
isk

Ext
ernal R

isk

Te
chn

ica
l R

isk

Amount o
f U

se

Code
 Cove

rag
e

Te
st F

req
uen

cy

Weig
ht

Unit C
ost

Dyna
mic F

unct
ion

Unit V
alu

e

Te
st U

tili
ty

Reg
res

sio
n Su

ite

Reve
nue

 Gen
era

tio
n

Sim
plici

ty

Prio
rity ROI

Frequence of Code

Function Code Non-Function Code

 53

the code is closely related to the value of a test case. In other words, if the code is

appropriate to be included in the value function; (2) the definition of the code, including

what lower level items constitute the code; and (3) the relationship with other factors in

the value function. The function code analysis will be developed from these three

perspectives.

5.2.1 Internal Risk

Internal risk (IR) is the risk arising from the events which take place within the

organization but are not related to technical operations, which could result in potential

losses that could be eliminated or eased by the testing. There are 15 interview transcripts

coded as internal risk. Three critical points of emphasis requisite to justify internal risk:

the risk derives from internal operations of the organization, the risk may directly or

indirectly lead to near-term loss, and the risk could be resolved by testing (Iversen et al.,

2004).

From the interviews, most comments focus on the nature of internal risk and the

executive pressure and poor organization of resources are reflected as the main sources

arising the internal risk to applications. Some typical comments are suggested by

interviewees:

IR is assigned at the executive level. Testers on the front

lines, normally have to follow the high level managers’

directions regarding risk factors.

Executive pressure in Internal Risk (IR) can go two

ways. “Do it well,” in which case the unit value of a test

case should go up.

 54

Executive pressure may be about quality or speed of

development, or both.

Based on the consensus of the interview data, two pervasive administrative issues -

- executive pressure within the company and deficient or poor organization of resources --

are considered as the main indicators of internal risk.

5.2.2 Production Risk

Production risk refers to the risks arising from application failure which is not

related to technical operations. Losses arising from production risks could be eliminated or

eased by testing. In the initial function, production risk is mainly represented by external

risk (ER) which only arises from events outside the firm (Hoodat & Rashidi, 2009).

However, some applications are developed for internal use rather than for public or

external use. The external risk cannot entirely reflect this special case. Thus, we use

production risk instead of external risk in the final value function. Seventeen interview

transcripts are coded in this category.

Similar to internal risk, production risk is constituted by three items which are

identified from the interview data. They are impact of failure in production, relevant

regulations from law and convention, and fierce competition. Some interviewees stated:

ER is based on the probability of the software failing in

production.

The ER could be affected by the impact from social

media that may influence the potential customers’

judgement.

 55

External risk increases if the software is intended to be

used in many countries on a global basis. Therefore, test

cases that test this software are more valuable.

Some interviewees mentioned, external risk/production risk and internal risk can

dynamically interact with each other. For example, as marketplace competition subsides,

internal executive pressure, which is part of IR, might be eased accordingly. However, we

contend that, in most circumstance, the two risks are distinct and should be identified as

they influence the value differently. Therefore, we add the production risk in the value

function.

5.2.3 Technical Risk

Technical risk (TR) is derived from technical issues regarding the application

which could not be included in the business and operational risk factors (i.e., internal risk

and production risk). In this case, IR, PR, and the potential loss TR could be eliminated or

eased by testing. Thirty interview transcripts are coded in this category.

In the interview data, those test practitioners point out TR may arise due to

different perspectives. Some interviewees suggested:

All the items listed in TR help people from diverse

perspectives evaluate the confidence of the testing staff

for completing a test case well. Different testing groups

in different situations, however, perceive different TR

line items to be more or less important. Thus, the TR

line items should be weighted separately to allow for the

needed diversity.

 56

Complexity and dependency of the software are more

critical than the other items of TR. However, the critical

level of the items could vary in different situations, so

having TR line items with separate weights is a good

solution.

As such, all seven TR items in the initial value function are retained in the revised

function based upon comments from the interviewees. Complexity issues (CI) refers to TR

arising from a complex application (Gefen et al., 2008). Technology issues (TI) refers to

TR arising from technology problems which cannot be well resolved when developing the

application (Hoodat & Rashidi, 2009). Requirements issues (RI) involves TR arising from

requirement management where users’ expectations of the application cannot be fully

satisfied or are out of control (Iversen et al., 2004). Personnel issues (PI) involves TR

arising from the application which was not developed by experienced developers (Hoodat

& Rashidi, 2009). Dependency issues (DI) involves TR arising from the application which

couples with other applications. Previous testing issues (PTI) refers to TR arising from a

poor historical test record of the application. Test environment issues (TEI) refers to TR

arising from the test environment generated for the application. Moreover, an interviewee

suggested:

The function also should be considered from vendor

group perspective rather than only from testing group

perspective.

 57

Therefore, vender issue (VI) is added to the function as a new item which represents issues

caused by software testing vendors in regard to the test case (Gefen et al., 2008) (see Table

10).

Table 10. Items of Technical Risk

Item Weight
Complexity issues (CI) w1
Technology issues (TI) w2

Requirements issues (RI) w3
Personnel issues (PI) w4

Dependency issues (DI) w5
Previous testing issues (PTI) w6

Vendor Issues (VI) w7
Test environment issues (TEI) w8

Since those items may have different impact as the test context varies, it is necessary to

add weight for adjusting the variance as an interviewee suggested:

It is better to break down the TR into several

subcategories, each of which has its own weight.

So, the eight items of TR with separate weights are listed in the following revision of the

function:

 (3)

where wi for i = 1, …, n is the weight of each factor.

5.2.4 Amount of Use

Amount of use (AU) is the relative index indicating the extent to which an

application is being used. Thirty-six interview transcripts are coded in this category. Since

AU is a relative index and may vary in different industries, this factor needs to be

independently estimated by experts for different contexts. For example, AU should vary

4321 w*PI w*RI w*TI w*CI TR +++= 8765 w*TEI w*VI w*PTI w*DI ++++

 58

widely between the context of a globally utilized social networking application and a local

weather report application as well as a private application. One interviewee suggested:

The amount of use is a very critical factor. Multiplying

external risk by it might be insufficient to elaborate its

important role. Multiplying the entire set of risk factors

is an option for this point.

Some other interviewees argued:

ER multiplied by AU is preferable, since AU is much

more directly correlated with ER than with the

remaining factors. If the software fails, you are going to

lose revenue or customers.

Uncertain about whether AU should be expanded to

multiply more risk factors or not.

Although the point of views regarding AU is discrete, we think AU is dependent

upon both the software customers who come from outside of the organization, the

software users within the organization, and technical risk which shall impact the

application development. For this reason, we contend that AU is a significant factor

directly influencing both IR, PR and TR. So, the three risks are multiplied by AU to

present this relationship in the final function.

5.2.5 Function Coverage

Function coverage (FC) is a concept of testing which is not included in the initial

value function. We identified FC when analyzing the interview data of code coverage

 59

(CC), which is totally different from the approach of getting PR. FC refers to how many

features of a program are covered by a given test case. A program usually consists of

multiple features which are represented by resource codes. Therefore, a test case with high

function coverage indicates a higher capability of the test case in testing the features as

well as the corresponding resource code also known as code coverage. Consequently, such

a test case would decrease the number of test cases needed during the testing process (Lin

et al., 2012). Nineteen interview transcripts are coded in this category.

In interview data, both function coverage and code coverage are supported. An

interviewee stated:

The value of a test case should be based on the function

points (i.e., requirements) instead of the amount of code

or of specific parts of the code covered.

Some other interviewees believe that code coverage is also a critical factor

influencing the value. Some interviewees suggested:

A test case that covers more code is more valuable than

a test case that covers less code but helps find the

location of a defect.

Code coverage (and therefore application features

implemented) should be considered when evaluating the

value of a test case. A test case that tests more of the

code (and by extension more of the application features)

has a higher value than test cases that cover less code.

 60

Although function coverage and code coverage are supported in the relationship of

test case value, we find function coverage positively influences code coverage but it fails

in the reverse relationship. In other words, higher function coverage leads to higher code

coverage, but higher coder coverage would not necessarily result in higher function

coverage. Others being equal, generating fewer test cases which are able to cover all the

functions that are supposed to be tested can save more resources and thus create value. As

such, we decide to incorporate function coverage but not code coverage in the value

function.

5.2.6 Test Frequency

Test frequency (TF) is another critical standard which can be utilized to evaluate

value of a test case. Five interview transcripts are coded in this category. High usage

frequency of a test case always presents greater value and higher priority compared to test

cases with low usage frequency (Lin et al., 2012). This viewpoint is strongly supported in

practice. Some interviewees pointed out:

The more places in the development cycle a test case is

used, the more valuable it is.

Repeatability, meaning whether a test case can be used

across different regions, devices, or platforms, is a

factor in the value of a test case. High repeatability

indicates high value of a test case.

To save time and effort, testers usually prefer to use a test case in a regression test suite

rather than writing a new test case. As test frequency rises, the value of a test case

increases. Moreover, as we discussed in the prior section, test case value can be reflected

 61

by function coverage. Therefore, the test frequency of a test case can enhance the value of

the test case in terms of function coverage. Thus, we multiply function coverage by test

frequency in the function to reflect the close relationship of the two factors.

5.2.7 Cost of a Test Case

In the prior study, Gillenson et al. (2020) have developed a cost function of a test

case and considered the cost as an inherent element of the value of a test case. Since this

study focuses on exploring the value of a test case, we directly adopt the cost function as

part of the value function and do not intend to revise this factor in the following study. So,

we treated this factor differently from other factors during the interview process. The

structure of cost of a test case was introduced to help interviewees understand the initial

value function, but we did not ask interviewees to make comments on revising the cost of

a test case (CTC).

5.2.8 Execution Value

Execution value (EV) refers to the value of a test case after being executed. This

new factor is derived from analyzing the interview data of “dynamic function” which is

constituted by twelve interview transcripts. From the data, a lot of interviewees believe the

value of a test case is not static. It may change as the impact of the test case is different

from the expectation which was supposed to be after the test case has been used. Some

interviewees stated:

Recursive use of the value function – do you find greater

value after you start running the test case because, for

example, it finds a lot of defects.

 62

The value of a test case may change as you use it in

testing. There is a scenario that is pervasive in practice.

A test case that was considered to be low value in the

initial stage may increase in value due to more defects

being detected after the test case execution.

Although the value function is intended to reveal a test case value and help testers

in optimizing testing resource allocation on different test cases before execution,

reconsidering the value of a test case in real-time is necessary because this enables us to

reflect ex-post evaluation of the test case. To make the final function dynamic, we add EV

in the function, which could be derived from the value estimation after the test case

execution. Then the function incorporates two pieces of information reflecting the value.

One piece is EV reflecting the value adjustment after the test case execution. Another

piece is the remaining part of the value function reflecting the value estimation before the

test case execution. If the test case has never been executed, the recursive value of the test

case should be zero. To summarize, the value of a test case could become dynamic as EV

is incorporated in the function where the impact after the test case being executed has been

taken into account.

5.2.9 Value of a Test Case

Value of a test case (VTC) is a fundamental concept to the entire notion of test

case valuation. Twenty-nine interview transcripts are coded in this category where

interviewees provide ample insights on understanding and deconstructing the value of a

test case. In order to explicitly demonstrate the value of a test case, it was necessary to

clarify the assumptions of the study for our respondents during the interview process. In

 63

our study we were only focusing on the value of functional test cases. In other words,

other types of test cases such as performance test cases were specifically not under

consideration.

Given the assumption, all the interviewees addressed their insight based on the

initial function. Subsequent data suggests the value of a test case is a comprehensive

concept that presents the predicted return projected by the tested application, potential

direct or indirect loss decreased by the tested application, the effectiveness and efficiency

of the test case, and the cost of a test case. All the above function factors except the cost

factor positively impact on the value of a test case. To summarize, internal risk,

production risk, technical risk, and amount of use are associated with the application under

test where indirectly influence the value of a test case. In contrast, function coverage, test

frequency, and cost of a test case directly impact the value of the test case.

5.3 Findings from Non-Function Codes

Non-Function codes are the factors excluded from the final value function. In this

section, the comments regarding the non-function codes (regression suite, test utility,

revenue generation, simplicity, priority, and ROI) are discussed and justified based on the

knowledge obtained from code book v2 (see Appendix D).

5.3.1 Regression Suite

Regression suite is widely used in the process of software testing. To save time

and effort in generating test cases, testers usually add the test cases which may be

repeatedly executed in a file known as a regression suite (Lin et al., 2012). The regression

suite can be used to thoroughly test the application rather than running each test case

 64

separately. When an application is modified, it is convenient to test it with regression

suite. There are fourteen interview transcripts coded in this category, and some

interviewees argued that:

A test case in a regression suite is more valuable than

one that is not.

The value of a test case increases somewhat if it is

added to a regression suite.

However, some interviewees suggested that:

The value of a test case is determined up front and a

high-value test case is added into the regression suite.

Value is not determined by the decision of whether or

not to add it to the regression suite.

Considering that the test frequency is the factor reflecting the extent to which

testers use the test case, we exclude the regression suite from the final value function.

5.3.2 Test Utility

Test utility (TU) indicates the capability of the test case in defect finding. There

are five interview transcripts coded in this category. A debate arising from the interview

data is whether defects found by the test case could increase the value of the test case.

Some interviewees argued:

Quality of a test case is important and is based on the

number of defects found by it.

 65

The value of a test case increases if it detects defects in

risky code.

However, some interviewees have an opposite opinion regarding the test utility. They

stated:

A test case that finds no defect is just as valuable as one

that finds defects. This has no effect on the value of a

test case.

Differing from the prior statements focusing on error-finding, this argument emphasizes

the importance of information which is obtained after executing the test case. Regardless

of whether any defect has been identified, the test case is still worthy to be considered as

long as the test case is responsible to fulfill the test objectives.

With the discussion, we contend that test utility is an inherent element of the value

of a test case. The value of a test case is reflected by the information/result after the test

case execution regardless of whether any defects are found or not. Specifically, if defects

are found by the test case, it indicates that the test case is useful in checking the

application. If no any defects are found, it may imply good quality of the application

which is also a valuable piece of information for the testers. Therefore, whether a test case

is able to test vast features of the application becomes more important. Since function

coverage plays a similar role in the value function, we do not add test utility as a new

factor in the value function.

5.3.3 Revenue Generation

There are thirteen interview transcripts coded in this category where several

respondents had strong views about revenue generation as a possible factor in the value

 66

function. The concern for revenue in the value function spanned both business

management roles and technology development roles, alike. Generally speaking, with

regard to for-profit organizations, the most important goal of operation is revenue

generation. In such contexts, where revenue generation underlying the profit motive is a

key concern, testing as a necessary part of application development would also have to

create some direct or indirect revenue stream to justify its own value as an organizational

function. An interview respondent said:

The value of a test case is directly related to the amount

of revenue that the software under test is likely to

generate. The more revenue the software is likely to

generate, the more value the test case possesses.

A different view suggests that revenue generation implies a degree of internal risk,

given the high visibly of the revenue production process for executive oversight and

competitive capabilities. And not all the software product is used to serve or sell to public.

An interview respondent pointed out:

The business value of an application is the key issue and

is more important than the revenue it brings in. Some

applications are internal and do not bring in revenue.

An interview respondent also argued:

The unit value of a test case depends on the business

value of the software. Generating revenue is only part of

the value of the software along with other business

“options.”

 67

Given the comments, we find revenue generation is a very general factors

associating with various factors. Adding the revenue generation in the value function may

arise the confusion in understanding the value of the test case. Therefore, we think that

including revenue generation as a new factor in the final value function is not an

appropriate choice.

5.3.4 Simplicity

Simplicity discusses simplifying either the construct of the value function or the

structure of the factors in the value function. There are ten interview transcripts coded in

this category where most test practitioners expressed their preference of having a simple

value function. Because keep the function simple could be easily understood and also

calculated. For example, some interviewees suggested:

Do not promote any line items in the table into the main

function. It would get too complicated.

Keeping function simple would help people readily

comprehend the meaning of the function. Do not

promote table rows into the function.

To keep the function simple, expand out TR and UC in

accompanying tables.

Considering the application and interpretation of the value function, we keep the

value function in a simple format, where detailed items of the factors (e.g., Technical risk

is constituted by eight items) are not listed in the value function. Also, no extra factors

need to be added in the value function regarding the viewpoint of simplicity.

 68

5.3.5 Priority

The notion of priority is best expressed in the operational wisdom. Other

conditions being equal, test cases with high priority always have a higher value than those

with low priority. There are thirteen interview transcripts coded in this category where a

sharp dichotomy among respondents arose as to what priority implies in practical terms.

One view is that the priority given a particular case should be a separate factor in

the function. Suppose that there are two test cases developed for assessing the same

financial calculation application, one test case testing an ordering function and the other

testing a character-display function. It seems clear that the ordering function would have a

higher priority than the character display function because if the former malfunctions, the

critical financial calculations might be flawed. Compared with the test case for character-

display functions, in which accurate calculations might simply be displayed poorly, the

test case for the ordering function would appear to have the higher value between the two.

As an interview respondent argued:

The priority of a test case is influenced by how critical

the application feature is that the software is

implementing, such as handling customer complaints,

dealing with cutting edge technologies being used by

competitors, etc.

A contrasting view is that priority is already embedded in internal and production

risk factors and would be hard to differentiate as a separate factor on its own. For example,

the releasing deadline for an application pertains to internal risk, applications designed for

handling customer complaints imply production risk, and dealing with cutting edge

 69

technologies being used by competitors might suggest both internal and production risk

factors. An interview respondent stated:

Priority always accompanies risk, especially in internal

risk and external risk. It is hard to list priority

separately. The standards of priority vary from one case

to another. Sometimes satisfying customers, which is an

element of external risk, is prioritized. In some other

situations, release time, which is an element of internal

risk, is considered the most critical element.

The point of contention among respondents is that priority could be taken into

account at much more than its normal impact if it was listed in the value function as a

separate factor.

Considering that priority somehow plays roles in IR, PR and TR, setting up

priority as a separate factor might cause confusion. Because separate setting raises an issue

that priority is closely related to not only the value of a specific test case but also to the

value of an entire application in which the case resides. To that end, we opt not to institute

a new factor for priority in the value function.

5.3.6 ROI

ROI (return on investment) is one performance measure widely used for evaluating

business projects which shares some features with and bears some similarity to the value

function. In Phillips’ (1997) study, ROI is defined as a percentage figure, arising from net

program benefits divided by program costs, with net program benefits represented by total

 70

program benefits minus costs. There is only one interview transcript coded in this

category, suggesting that ROI could be a candidate tool for estimating the value of

functional test cases.

From the functional calculations underlying both value function and ROI, we find

several distinct differences. The value function is constituted not only by revenue/benefit

factors but also considers the impact of risks, utility and use frequency factors. In contrast,

ROI does not include these factors, and, accordingly, is not able to wholly present the

value of test cases. To that end, the value function is much more comprehensive than ROI.

Despite the more complex functional form, the calculation of unit values is easily

programmed for processing by computer. Interestingly, the value function organizes

various factors with different characteristics at the unitary level. In other words, all the

factors are represented by their relative score and weight. In contrast, only the factors

measured by monetary units are included in ROI. Lastly, the value function is able to

present the scale of impact on value, whereas ROI is a basic ratio that can compare any

project or program, regardless of size. This potentially leads to misdirection when the

easily foreseeable outcome of a very small test case with extremely high ROI results in

preferential choice, in contrast to a very large test case with relative lower ROI. Therefore,

we think the ROI is neither an appropriate method to evaluate the value of a test case nor a

good factor for being included in the value function.

 71

CHAPTER 6

FINAL VALUE FUNCTION

6.1 Final Value Function

Based on the previous discussion of the new factors and existing factors, the final

value function is finalized and the key factors in the final function are listed in Table 11.

Specifically, the value of a test case is a relative value that is comprised of a series of

positive impact factors, negative factors, and an ad hoc factor in the function. Positive

factors are constituted by internal risk, production risk, technical risk, amount of use,

function coverage, test frequency, stimulating the VTC increase as those factors’ score

increasing. Among the positive factors, internal risk, production risk, and technical risk are

associated with an application. The three application-level risks would increase in

 72

importance as the use of the application increases. So, internal risk, production risk, and

technical risk are multiplied by the amount of use in the function. Similar to the test-case

level factors, function coverage is multiplied by test frequency. The cost of a test case is

the negative impact factor, which leads the value of a test case to decrease as the cost

score goes up. The ad hoc factor is execution value, adjusting the value of the test case

after the test case execution. Given the prior findings, the final value function of test cases

is:

where wi for i = 1, …, n is the weight of each factors.

Table 11. Factors in Final Value Function

Category Primary Items

Application
Level

Business &
Operational

Risk

Internal Risk (IR)
Executive pressure within the company

Deficiency or poor organization of resources

Production Risk
(PR)*

Crucial impacts of failure in production*

Relevant regulations from law and convention*

Fierce competition

Technical Risk (TR)

Complexity issues

Technology issues

Requirements issues

Personnel issues

Dependency issues

Previous testing issues

(4)

 73

Vendor Issues✝

Test environment issues

Amount of Use (AU) The relative amount of use in production

Test Case
Level

Function Coverage (FC)✝ The relative amount of function of the program
being tested

Test Frequency (TF)✝ The general use frequency of the test case

Cost of a Test Case (CTC)

Preparation Costs

Creation Costs

Run Costs

Failure Costs

Execution Value (EV)✝ The value after the latest execution of the test case
Note: ✝new concept which does not exist in initial function; * revised concept which exists in initial function.

6.2 Factor Score and Weight

The factor score indicates the level to which the factor contributes to the value of a

test case. Factor weight is a percentage that indicates the contribution of the factor among

the other factors in the function. The ranges of score and weight for each factor in the final

value function are listed in Table 12. Internal risk, production risk, and technical risk are

subjective factors, which have to be estimated by the function users in their real testing

environment. The score of the factors is a relative index in whole numbers ranging from 0,

indicating the lowest possible value, to n, indicating a higher possible value. Amount of

use, function coverage, test frequency, cost of a test case, and execution value are

objective factors, whose value is directly derived from the real testing environment. A

higher score indicates a higher level of the factors. The cost of a test case is calculated by

the cost function which is proposed by Gillenson et al. (2020). To differentiate the level of

importance among the factors in the value function, factor weights can range from 0%,

upwards, and can include fractional components but the sum of all the weights should

equal to 1. As the value of the factor weight goes up, the impact of the factor in the

 74

function increases. 0% indicates the factor has no contribution in the value function. 100%

represents the factor fully contributes to the value function.

Table 12. Score and Weight of the Key Factors

Category Score Range Weight Range

Application
Level

Internal Risk (IR) 1 – n, whole number w1

Value range of each
factor weight (0% -
100%)

w1+w2+w3+w4+w5=10
0%

Production Risk (PR) 1 – n, whole number w2
Technical Risk (TR) Sum of items score w3
Amount of Use (AU) as real value -

Test Case
Level

Function Coverage (FC) as real value w4
Test Frequency (TF) as real value -
Cost of a Test Case (CTC) as real value -
Execution Value (EV) as real value w5

Table 13 exhibits the range of score and weight for each technical risk item. All

the items are scaled from 1 to n in whole number. The weight range for the technical risk

items is the same as the above weight rule for the factors in the final value function.

Table 13. Score and Weight of Technical Risk Items

Category Score Range Weight Range
Complexity Issues (CI) 1 – n, whole number

Value range of each item
weight (0% - 100%)

Sum weight of all items
equals to 1

Technology Issues (TI) 1 – n, whole number
Requirements Issues (RI) 1 – n, whole number

Personnel Issues (PI) 1 – n, whole number
Dependency Issues (DI) 1 – n, whole number

Previous Testing Issues (PTI) 1 – n, whole number
Test Environment Issues (TEI) 1 – n, whole number

Vendor Issues (VI) 1 – n, whole number

When scoring or weighting, two general rules have to be paid attention to. The first

is integrity. Users should prudently differentiate the difference among the scored/weighted

factors in the function. The difference should be accurately presented by the assigned

score or weight. The second is consistency. The score or weight of the same test case may

vary among different users in the same context due to the diversity of subjective judgment.

 75

In order to mitigate the potential impact of such variation, we suggest users build their

own specific scoring and weighting standards.

6.3 Factor Score Normalization

The final value function aggregates different factors to obtain a final score for

representing the value of a test case. Yet, this brings up an issue as each factor is measured

in different units (Chatterjee & Chakraborty, 2014). For example, internal risk (no unit,

but an approximate number representing the level of the risk), amount of use (numeric

value), function coverage (number of features being tested), cost of a test case (currency).

Although the score of the factors is restricted to the range (1-n, whole number), the score

of the factors might be very discrete due to the characteristics of the factors. For instance,

the score of amount of use may be 10 as the application is only used 10 times in an

expected time period. Internal risk maybe scored 150 and cost of a test case is scored 3000

as some expenditure (e.g., personnel cost, testing software) occurred due to generating and

executing the test case. To allow aggregation into a final value score for a test case, the

score of each factor in the function has to be normalized when calculating the value. In

other words, the score of each factor needs a common scale.

Normalization is widely applied in statistics as well as many other areas (e.g.,

management, biomedicine, psychology) for addressing the issue of measurement on

different scales. One of the common methods is logarithm transformation where transform

x to log base 10 of x (i.e., x Þ lg x) (“Data transformation,” 2020). This method is usually

used for positive data which fits the scale range (i.e., 1-n) of the factors in the value

function. Following this guidance, we build the normalization function as below:

 76

Yi = lg Xi (5)

Yi represents the transformed value and Xi represents the factors in the value function.

As in the above discussion, the normalization function should be used before

applying the value function. In other words, all the original score of the factors in the

value function have to be transformed to a normalized score through the normalization

function. Then the normalized score of the factors can be fed into the value function.

 77

CHAPTER 7

GUIDE FOR APPLYING FUNCTION

Now that the value function has been developed and demonstrated, we offer

helpful tips for users who may wish to apply the function’s principles. In this section, we

demonstrate the goal of the function, identify relevant users, and detail procedural

attention matters for using the function.

7.1 Steps of Value Estimation

Given the value function as well as scoring and weighting standards, the

calculation process requires a degree of orientation for proper use of the function, and for

providing users a map for applying the function. There are four steps in applying the

function as demonstrated in Figure 6.

 78

Figure 6. Steps of Applying Value Function

Step 1 is the application level procedure which processes the factors affected by

the application under test. Specifically, IR, PR, TR, AU, as well as those risks’ weight

from w1 to w3 are considered. Note that the score and weight of the factors are based on

the impact of the application under test, and this differs from the second step.

Step 2 is the test case level procedure that processes the positive effectiveness of

the test case. Specifically, FC, TF, as well as FC weight w4 are considered. In contrast to

the first step, this step focuses specifically on the test case rather than the application

under test.

Step 3 is to obtain the real cost of the test case, which is the negative factor in the

test case level. We recommend setting the CTC in real cost terms which could be obtained

 79

from financial or operational data. That would contribute to the CTC score being more

reliable and consistent (Aboody & Lev, 1998).

Step 4 is to adjust the value of the test case after the test case execution. Execution

value is an execution factor in the test case level. It would be effective only when the

value of the test case was considerably underestimated or overestimated as the testers

execute the test case. In other words, the prior three steps provide the pre-execution value

of the test case, and EV in step 4 is the factor to adjust the pre-execution value to the post-

execution value of the test case. EV could be zero if the real performance of the test case

is close to what the test case is supposed to act.

Based on the prior four steps, the final value of the test case can be achieved by

subtracting the result of in step 3 from the sum of the result of step 1, 2, and 4.

Considering the wide range of test cases and testing cost and value factors across different

industries, the final value may result in several potential outcomes: positive value,

negative value, or zero. For the latter two results, it does not mean that a test case either

has a negative value or no value. Remember that regardless of what type of outcome is,

the value of the test case is just a relative value. Its value becomes meaningful only when

comparing the result of one test case with that of others. As such, value calculation

informs users as to which test cases are better than others, based on their relative values.

7.2 Who are the Function Users?

The purpose of the value function is to aid decisions on choosing the most valuable

test cases by providing a quantitative method to discriminate between the difference of

relative value rather than absolute value amongst a given set of potential test cases. To this

 80

end, primary users might be managerial people of testing groups, ranging from middle to

top level positions such as director or project manager, or testing professionals who bears

responsibility for scheduling test cases execution. Other users could be departmental

accountants responsible for project budgets or marketing executives responsible for the

cost-effective launch of software brands.

7.3 How to Collect Value Function Data?

Although the function is reasonably easy to understand, finding the data with

which to fit it is more challenging. Such data might be derived from different departments

and workgroups, and in some cases it might not even be recorded by the firm. In order to

reveal the value of a test case objectively and efficiently, we suggest that application-level

data should be collected from marketing or business operational departments and that test-

case-level data could be collected directly from testing or development groups.

For existing data, the form it might take could include budgets, accounting reports,

and operational statistics. For non-existing data, estimates could be made based on

corporate plans and strategic documents and from industry news reports. For example, the

CTC data of a test case maybe acquired from the development or testing department, but

AU data of an application might not be recorded, requiring an estimate derived from a

related statistics index in the company or even from news reports or other data created by

a third-party.

7.4 How to Estimate Score and Weight for Factors?

 81

As we have indicated, nonexistent data may need to be estimated or interpolated,

and this method also applies to developing the weights for factors when objective

information is not available. Naturally, when data underlying key factors is estimated, this

has the potential to skew unit valuations, so it is important to do so as objectively as

possible. To that end, we strongly recommend that users who are developing value

functions in the same company should establish, a priori, specific standards and

procedures for estimating scores and weights.

7.5 How to Interpret Results?

Each application of the value function calculates a result for one specific test case,

and the value is the relevant scale that is used to compare the assessed case with others to

determine their relative worth in use. Therefore, when two or more test case values have

been acquired from the function, the accurate interpretation of these results lies in

comparisons of magnitudes of the relative value between cases. To that end, we

recommend strongly against interpreting the calculated value as the real and objective

value of a given test case. The value function has little meaning in consideration of only

one test case. It is meant to be used as a comparative tool across cases for optimizing the

selection process. There is little meaning in the process without the relative comparison

process it implies. In the following section, we provide two scenarios to demonstrate using

the value results within one application and across several applications.

Scenario I: Using Value Results within One Application

In this case, the value function will be used to choose the highest value test cases

for the one application under consideration. Within one application, IR, PR, TR, and AU

 82

are all the same because they are based on the same application, not on the test cases. So,

they have no effect on which test cases to choose. Only the cost and other test-case-centric

items, like function coverage, play a role in choosing test cases for execution. Remember

that cost is subtracted from value because a higher cost makes the test case less valuable.

An example of value function application in scenario I is exhibited in Table 14. There are

six test cases serving for testing application A. As such, the value at application level is

identical (i.e., 30), which is the result of mathematical operation among IR, PR, TR, and

AU. The value differences among the test cases appear at test case level (e.g., #1 is 58, #2

is 4), resulting different total values (e.g., #1 is 88, #2 is 34), which are calculated by

summing up the value at application level and that at test case level (e.g., #1 total value 88

= 30 + 58). Based on the total value from high to low, the six test cases are ranked from 1,

indicating a relatively most important test case, to 6, indicating a relatively least important

test case.

Table 14. Value Function Application in Scenario I

Test Case

Application
Under Test

Value at
Application

Level

Value at Test
Case Level

Total
Value

Value
Rank

#1 Application A 30 58 88 1

#2 Application A 30 4 34 6

#3 Application A 30 35 65 3

#4 Application A 30 26 56 4

#5 Application A 30 17 47 5

#6 Application A 30 50 80 2

Scenario II: Using Value Results across Several Applications

 83

In this scenario, the value function will be used primarily to allot test cases to the

individual applications, in order to develop the highest quality software across the

collection of applications, while trying to minimize the risks. Each test case under

consideration is associated with one particular application in the application set. So, the

value function result for each test case takes into account both the factors for its associated

application (i.e., IR, PR, TR, and AU) and the factors of the test case itself (i.e., FC, TF,

CTC, and EV). After calculating the value of each test case, the test cases can be allotted

to the applications based on their relative value.

Table 15. Value Function Application in Scenario II

Test Case

Application
Under Test

Value at
Application

Level

Value at Test
Case Level

Total
Value

Value
Rank

#1 Application A 30 24 54 3

#2 Application A 30 2 32 5

#3 Application B 15 2 17 6

#4 Application B 15 83 98 1

#5 Application C 27 20 47 4

#6 Application C 27 53 80 2

An example of value function application in scenario II is exhibited in Table 15,

where six test cases serve for testing application A, B, and C, respectively. As such, the

difference of value among the test cases appears not only at test case level (e.g., #1 is 24,

#3 is 2) but also at application level (e.g., #1 is 30, #3 is 15), resulting in different total

value for each case (e.g., #1 is 54, #3 is 6). The approach in calculation of value at

application level, value at test case level, total value, and value rank is the same as the

means in scenario I. According to the value rank, the first test case chosen will be test case

 84

#4 for application B. The second test case chosen will be test case #6 for application C. the

third test case chosen will be test case #1 for application A, and so on.

However, some adjustments may have to be made because testers probably do not

want to leave even a lower priority application totally untested. Remember that IR and PR

take into account the importance of the applications to the company from a business point

of view. TR represents risk from a technical point of view. The concept is that the higher

IR, PR, and TR are, the more valuable test cases are for that application. We have the

usual assumption that testing resources are limited, leading to a limit on the number of test

cases that can be used in total for several applications. So, the value function results can be

used to intelligently distribute test cases across the several applications. Secondly, if it is

determined that the number of test cases for a particular application is above a given

threshold, then the set of test cases for that application can be reduced based on the value

of each test case.

 85

CHAPTER 8

CONCLUSION

8.1 Contributions

The potential contributions and applications of this study are threefold. First, the

nature of the value in test cases explored in this study fills a notable gap in the literature,

as there currently exists no specific method to determine and justify the value of test cases.

Most prior research studies associated with test cases are involved in test case generation,

test suite reduction, and test case prioritization. Exploring the nature of value in test cases

can offer generic guidance and systematically integrate those studies.

Second, the value function reveals the essence of value for a context-specific test

case and enhances an individual’s decision making in allocating limited resources in

 86

software testing. Differing from existing research focusing on test cases per se, the value

function incorporates not only the direct value generated by the test cases but also the

indirect value projected by the applications which the test cases test.

Last, the value function builds a foundation to create substantial parameters in test

automation and artificial intelligence (AI) for software testing. Test automation can be

conducted in any phase across the software testing process, which is primarily constituted

by test-case design, test scripting, test execution, test evaluation, test-result reporting, and

test management and other test engineering activities (Garousi & Elberzhager, 2017). To

optimize test resource allocation before test case execution, the value function can be

applied in the test-case design phase, generating a list of test cases to satisfy coverage

criteria and engineering goals. To advance the level of test management, the value

function can be used in the test management phase, which is usually conducted after test

case execution for control and monitoring testing.

According to the definition coined by the Artificial Intelligence for Software

Testing Association (AISTA), AI for software testing is an emerging field aimed at

development of AI systems to test software, methods to test AI systems, and ultimately

designing software which is capable of self-testing and self-healing (AISTA, n.d.). We

believe this study has probed into the core layer of development of AI systems to test

software from two perspectives (i.e., test strategy optimization, risk coverage

optimization) out of the ten perspectives in reality which are delineated in the whitepaper

by Philipp (2018). In test strategy optimization, the main challenge for AI systems is to

find a measurement that can optimize which features to be tested in terms of the business

impact derived from the features. In practice, this work still heavily relies on experts’

 87

judgement and is performed manually. In risk coverage optimization, AI needs to find the

optimal test sets which enable maximizing business risk coverage and defect detection

under the given testing resource. This optimization can be achieved by mathematical

algorithms.

Consdiering these challenges that practitioners face in reality, we believe our

function provides a specific approach to enhance the efficiency of test automation. To

imitate the human process of organizing and optimizing the set of test cases, the value

function incorporates the factors associated with business, technique, and resource. The

application of the function in test automation and artificial intelligence testing would

considerably decrease manual work and promote the efficiency of the software testing.

8.2 Limitations and Future Research

Although we think the value function can be used as a comprehensive method for

estimating the value of a test case, it does have some limitations that need to be specified

herein.

First, we assume that all test cases are conducted within a waterfall software

development environment. In practice, another approach widely applied in software

development today is agile development, which advocates adaptive planning and

evolutionary development (Lee & Xia, 2010). Compared to waterfall testing, agile testing,

as part of software development in each scrum sprint, is conducted from the earliest stages

to the last stage. Therefore, application development and functional test are usually

completed in the same phase. In this situation, application level factors, such as estimating

the risks that arise due to application defects, cannot be taken into consideration in the

 88

value function. Moreover, agile development is driven by testing where providing testing

results in a timely manner for the agile development group is the core feature of test cases.

In this dynamic environment, it is unlikely to have the situation where testers or

developers select the most valuable test cases among several choices at the same time. In a

future research project, we recommend extending our value function to enable it to adapt

to the agile testing environment. Another direction for future research is applying the

value function to all types of test cases because only functional test cases are considered in

this study. In practice other types of test cases, such as test cases for security testing, also

play a significant role in detecting defects in applications and consume considerable test

resources. To optimize the allocation of the entire testing resource, all types of test cases

need to be considered and estimated by an appropriate standard.

Second, the interview data was collected from one organization, which may limit

the generalizability of the value function. Although the company we chose in the study has

a large number of test professionals around the world, it is still difficult to represent all of

the available software testing contexts. The remedy for enhancing the value function in

future research is to obtain interview data from multiple companies in different industrial

sectors.

Last, the value function is a conceptual model which heavily relies on a subjective

estimation technique, especially for the “cold start,” the early stage of utilizing the

function. A subjective estimation technique is advocated for the situations, where there is

no initial data or weighting information is difficult to obtain. The results can only be as

good as the dedication to standards in the subjectivity in estimation that is employed when

real data is not easily available. As more data and experience are gained from using the

 89

function, the results of value estimation should become more reliable and more accurate.

Therefore, applying the value function in real software test environments and evaluating

its effect is another future research direction.

 90

REFFERENCES

Aboody, D., & Lev, B. (1998). The Value Relevance of Intangibles: The Case of
Software Capitalization. Journal of Accounting Research, 36, 161-191.

Albrecht, A. J., & Gaffney, J. E. (1983). Software Function, Source Lines of Code, and

Development Effort Prediction: A Software Science Validation. IEEE
Transactions on Software Engineering, (6), 639-648.

AISTA (n.d.). Artificial Intelligence for Software Testing. https://www.aitesting.org/

Baker, C. (1957). Review of D.D. McCracken’s “Digital Computer Programming”.

Mathematical Tables and Other Aids to Computation, 11(60), 298-305.

Beck, K. (1999). Embracing Change with Extreme Programming. Computer, 32(10), 70-

77.

Biffl, S., Aurum, A., Boehm, B., Erdogmus, H., & Grünbacher, P. (Eds.). (2006). Value-

Based Software Engineering. Springer Science & Business Media.

Boehm, B. W. (1981). Software Engineering Economics. Upper Saddle River, NJ, USA:

Prentice Hall.

Boehm, B. W. (2006). Value-Based Software Engineering: Overview and Agenda. In

Biffl, S., Aurum, A., Boehm, B., Erdogmus, H., & Grünbacher, P. (Eds.), Value-
Based Software Engineering (pp. 3-14). Springer.

Boehm, B., & Huang, L. G. (2003). Value-Based Software Engineering: A Case Study.

Computer, 36(3), 33-41.

Boehm, B. W., & Papaccio, P. N. (1988). Understanding and Controlling Software Costs.

IEEE Transactions on Software Engineering, 14(10), 1462-1477.

Burnstein, I. (2006). Practical Software Testing: A Process-Oriented Approach. Springer

Science & Business Media.

Cambridge Dictionary. (n.d.). Value. In Cambridge Dictionary, Retrieved April 4, 2020,

from https://dictionary.cambridge.org/us/dictionary/english/value#dataset-cald4.

Charette, R. N. (2005). Why Software Fails. IEEE Spectrum, 42(9), 42-49.

Chatterjee, P., & Chakraborty, S. (2014). Investigating the Effect of Normalization

Norms in Flexible Manufacturing Sytem Selection Using Multi-Criteria Decision-
Making Methods. Journal of Engineering Science & Technology Review, 7(3),
141-150.

 91

Cohen, M. B., Gibbons, P. B., Mugridge, W. B., & Colbourn, C. J. (2003, May).
Constructing Test Suites for Interaction Testing. In Proceedings of the 25th
International Conference on Software Engineering (pp. 38-48). IEEE Computer
Society.

Cook, J. E., Votta, L. G., & Wolf, A. L. (1998). Cost-Effective Analysis of In-Place

Software Processes. IEEE Transactions on Software Engineering, 24(8), 650-663.

Cooper, R., & Kaplan, R. S. (1988). Measure Costs Right: Make the Right Decisions.

Harvard Business Review, 66(5), 96-103.

Cresswell, A. M. (2004). Return on Investment in Information Technology: A Guide for

Managers. Center for Technology in Government, University at Albany, SUNY.
http://www.ctg.albany.edu/media/pubs/pdfs/roi.pdf

Data transformation (statistics). (2020, January 12). In Wikipedia.

https://en.wikipedia.org/wiki/Data_transformation_(statistics)

Deutsch, M. S. (1981). Software Project Verification and Validation. Compurer, 14(4),

54-70.

Dreger, J. B. (1989). Function Point Analysis. Prentice-Hall.

Felderer, M., & Ramler, R. (2014). Integrating Risk-Based Testing in Industrial Test

Processes. Software Quality Journal, 22(3), 543-575.

Garousi, V., & Elberzhager, F. (2017). Test Automation: Not Just for Test Execution.

IEEE Software, 34(2), 90-96.

Gefen, D., Wyss, S., & Lichtenstein, Y. (2008). Business Familiarity as Risk Mitigation

in Software Development Outsourcing Contracts. MIS Quarterly, 32(3), 531-551.

Gelperin, D., & Hetzel, B. (1988). The Growth of Software Testing. Communications of

the ACM, 31(6), 687-695.

Gillenson, M. L., Stafford, T. F., Zhang, X. & Shi, Y. (2020). Use of Qualitative

Research to Generate a Function for Finding the Unit Cost of Software Test
Cases. Journal of Database Management, 31(2), 42-63.

Goodenough, J. B., & Gerhart, S. L. (1975). Toward a Theory of Test Data Selection.

IEEE Transactions on Software Engineering, (2), 156-173.

Griffin, D. (2019). Types of Business Risk. Chron. http://smallbusiness.chron.com/types-

business-risk-99.html

 92

Hass, A. M. (2014). Guide to Advanced Software Testing (2nd ed.). Norwood, MA:
Artech House.

History of Microsoft Office. (2020, March 3). In Wikipedia.

https://en.wikipedia.org/wiki/History_of_Microsoft_Office

Hoodat, H., & Rashidi, H. (2009). Classification and Analysis of Risks in Software

Engineering. International Journal of Computer, Electrical, Automation, Control
and Information Engineering, 3(8), 2044-2050.

IEEE. (1986). 1012-1986 - IEEE Standard for Software Verification and Validation

Plans. https://standards.ieee.org/standard/1012-1986.html

ISO/IEC/IEEE. (2017). 24765:2017 Systems and Software Engineering — Vocabulary.

https://www.iso.org/standard/71952.html

ISO/IEC/IEEE. (2011). 42010:2011 Systems and Software Engineering — Architecture

Description. https://www.iso.org/standard/50508.html

Iversen, J. H., Mathiassen, L., & Nielsen, P. A. (2004). Managing Risk in Software

Process Improvement: An Action Research Approach. MIS Quarterly, 28(3), 395-
433.

Jalote, P., & Vishal, B. (2003). Optimal Resource Allocation for the Quality Control

Process. In Proceedings of the 14th International Symposium on Software
Reliability Engineering, Denver, Colo, USA, November 2003.

Jorgensen, M. (2004). A Review of Studies on Expert Estimation of Software

Development Effort. Journal of Systems and Software, 70(1-2), 37-60.

Jorgensen, M. (2005). Practical Guidelines for Expert-Judgment-Based Software Effort

Estimation. IEEE Software, 22(3), 57-63.

Jorgensen, P. C. (2018). Software Testing: A Craftsman’s Approach (4th ed.). CRC Press.

Juristo, N., Moreno, A. M., & Strigel, W. (2006). Guest Editors' Introduction: Software

Testing Practices in Industry. IEEE Software, 23(4), 19-21.

Kazman, R., Asundi, J., & Klein, M. (2001). Quantifying the Costs and Benefits of

Architectural Decisions. In Proceedings of the 23rd International Conference on
Software Engineering (pp. 297-306). Washington, DC, USA: IEEE Computer
Society.

Kohli, R., & Grover, V. (2008). Business Value of IT: An Essay on Expanding Research

Directions to Keep up with the Times. Journal of the Association for Information
Systems, 9(2), 23-39.

 93

Lee, Y. W., Strong, D. M., Kahn, B. K., & Wang, R. Y. (2002). AIMQ: A Methodology

for Information Quality Assessment. Information & Management, 40(2), 133-146.

Lee, G., & Xia, W. (2010). Toward agile: an integrated analysis of quantitative and

qualitative field data on software development agility. MIS quarterly, 34(1), 87-
114.

Lin, Y., Chou, C., Lai, Y., Huang, T., Chung, S., Hung, J., & Lin., F. (2012). Test

Coverage Optimization for Large Code Problems. Journal of Systems and
Software, 85(1), 16-27.

Marshall, B., Cardon, P., Poddar, A., & Fontenot, R. (2013). Does Sample Size Matter in

Qualitative Research?: A Review of Qualitative Interviews in IS research. Journal
of Computer Information Systems, 54(1), 11-22.

Mathur, A. P. (2013). Foundations of Software Testing (2nd ed.). Pearson Education

India.

Melville, N., Kraemer, K., & Gurbaxani, V. (2004). Information Technology and

Organizational Performance: An Integrative Model of IT Business Value. MIS
Quarterly, 28(2), 283-322.

Miller, E., & Howden, W. E. (Eds.). (1981). Tutorial: Software Testing and Validation

Techniques. IEEE Computer Society Press. New York.

Molokken, K., & Jorgensen, M. (2003). A Review of Software Surveys on Software

Effort Estimation. In Proceedings of the 2003 International Symposium on
Empirical Software Engineering (pp. 223-230). IEEE.

Myers, G. J., Sandler, C., & Badgett, T. (2011). The Art of Software Testing. John Wiley

& Sons.

Myers, M. D. (1997). Qualitative Research in Information Systems. MIS Quarterly,

21(2), 241-242.

Myers, M. D. (1999). Investigating Information Systems with Ethnographic Research.

Communications of the Association for Information Systems, 2(23), 1-20.

Neumann, A. J. (Ed). (1982). NBS FIPS Software Documentation. Institute for Computer

Sciences and Technology, National Bureau of Standards.
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nbsspecialpublication500-94.pdf

New World Encyclopedia. (2016). Value, Philosophical Theories of. In New World

Encyclopedia. Retrieved April 4, 2020, from

 94

http://www.newworldencyclopedia.org/p/index.php?title=Value,_Philosophical_t
heories_of&oldid=993311

Perry, W. E. (2007). Effective Methods for Software Testing: Includes Complete

Guidelines, Checklists, and Templates. John Wiley & Sons.

Philipp, I. (2018). AI in Software Testing: A Reality Check. Tricentis.

https://www.tricentis.com/resources/ai-in-software-testing-reality-check/

Phillips, J. J. (Ed.). (1994). In Action: Measuring Return on Investment. American

Society for Training and Development.

Porter, M. E. (1985). Competitive Advantage: Creating and Sustaining Superior

Performance. New York: FreePress.

Porter, M. E., & Millar, V. E. (1985). How Information Gives You Competitive

Advantage. Harvard Business Review, 63(4), 149-160.

Ramler, R., Biffl, S., & Grünbacher, P. (2006). Value-Based Management of Software

Testing. In Biffl, S., Aurum, A., Boehm, B., Erdogmus, H., & Grünbacher, P.
(Eds.), Value-Based Software Engineering (pp. 225-244). Springer.

Rapoport, R. N. (1970). Three Dilemmas in Action Research: With Special Reference to

the Tavistock Experience. Human Relations, 23(6), 499-513.

Saldaña, J. (2015). The Coding Manual for Qualitative Researchers. Sage.

Schwaber, K. (1997). SCRUM Development Process. In J. Sutherland, C. Casanave, J.

Miller, P. Patel, & G. Hollowell (Eds.), Business Object Design and
Implementation (pp. 117-134). Springer.

Talby, D., Keren, A., Hazzan, O., & Dubinsky, Y. (2006). Agile Software Testing in a

Large-Scale Project. IEEE Software, 23(4), 30-37.

Tassey, G. (2002). The Economic Impacts of Inadequate Infrastructure for Software

Testing. National Institute of Standards and Technology.
https://www.nist.gov/system/files/documents/director/planning/report02-3.pdf

Tricentis. (n.d.). Software Fail Watch: 5th Edition.

https://www.tricentis.com/resources/software-fail-watch-5th-edition/

Turing, A. M. (1950). Computing Machinery and Intelligence. Mind, 49, 433-460.

http://cogprints.org/499/1/turing.html

Van Solingen, R. (2004). Measuring the ROI of Software Process Improvement. IEEE

Software, 21(3), 32-38.

 95

Wallace, D. R., & Fujii, R. U. (1989). Software Verification and Validation: An

Overview. IEEE Software, 6(3), 10-17.

Whittaker, J. A. (2000). What is Software Testing? And Why is It So Hard? IEEE

Software, 17(1), 70-79.

Wohlin, C., & Aurum, A. (2006). Criteria for Selecting Software Requirements to Create

Product Value: An Industrial Empirical Study. In Biffl, S., Aurum, A., Boehm, B.,
Erdogmus, H., & Grünbacher, P. (Eds.), Value-Based Software Engineering (pp.
179-200). Springer.

Yiftachel, P., Hadar, I., Peled, D., Farchi, E., & Goldwasser, D. (2011). The Study of

Resource Allocation among Software Development Phases: An Economics-Based
Approach. Advances in Software Engineering, 2011, 1-21.

Yin, R. K. (2017). Case Study Research and Applications: Design and Methods. Sage

Publications.

 96

APPENDIX A

An Example of Functional Test Cases

Functional test case is created for checking the functionality of a program. In a test

scenario, one or several test cases are initiated by specifying input values, expected results,

and other relevant elements which support executing test, such as test pre-condition, test

steps, etc. Through comparing the actual result and expected result of the test cases,

defects are found when two results are not reconciled. This situation is also called test fail.

In Table 16, we provide an example of functional test cases for checking login

functionality on FedEx company’s homepage. Given the scenario, four test cases with

their IDs (T001, T002, T003, T004) are created for verifying the login functionality in

four possible situations. All the test cases start from the same pre-condition where the

homepage is on log off status as shown in Figure 7. Next, the four test cases are executed

separately in the same test steps: 1. go the site (http://www.fedex.com); 2. click “Sign Up

or Log In” button; 3. enter user ID; 4. enter password; and 5. click “LOGIN” button. Note

that four different combinations of user ID and password are given to the four test cases.

In the meanwhile, four expected results are also established for the test cases based on

their designated user ID and password (see Table 16).

Table 16. An Example of Test Cases

Test
Scenario

Test
Case
ID

Pre-
condition Test Steps Test

Data*
Expected
Results

Actual
Results

Pass/
Fail

Check
login
function
on the
homepage

T001

1.
homepage
is on log
off status.

1. Go the site
http://www.fedex.com
2. Click “Sign Up or
Log In” button
3. Enter user ID
4. Enter password
5. Click “LOGIN”
button

User ID:
ABC
(valid)
Password:
12345678
(valid)

1. User’s
name
(ABC)
should be
displayed
next to “log
off” button
on the right
top corner.

As
expected Pass

 97

T002

User ID:
AAA
(invalid)
Password:
12345678
(valid)

1. User
should not
login.
2. No any
name
should be
displayed
on the right
top corner.
3. Display
the
information
“Login
incorrect...”

As
expected
(see
Figure 8
right
image)

Pass

T003

User ID:
ABC
(valid)
Password:
000000
(invalid)

As
expected
(see
Figure 8
left
image)

Pass

T004

User ID:
AAA
(invalid)
Password:
000000
(invalid)

As
expected
(see
Figure 8
right
image)

Pass

* The user IDs and passwords are not real data and only used for the example demonstration.

Figure 7. Pre-condition of the Test Cases

Specifically, T001 is designated with a valid user ID “ABC” and its valid

password “12345678”. Its expected result is that user’s name “ABC” should be displayed

next to “log off” button on the right top corner of the homepage. In contrast, T002, T003,

and T004 are designated with either an invalid user ID or an invalid password or with both

 98

(T002: invalid user ID “AAA” and valid password “12345678”; T003: valid user ID

“ABC” and invalid password “000000”; T004: invalid user ID “AAA” and invalid

password “000000”). Since the login functionality is the portal that prevents anyone from

accessing FedEx’s systems by using any invalid user ID or password, the expected result

of T002, T003, and T004 should appear as follows: 1. user should not login; 2. no any

name should be displayed on the right top corner of the homepage; and 3. display the

information “Login incorrect...” as shown in Figure 8.

For each test case, the actual result after executing the test case has to be

compared with the expected result. The test is passed if the two results are exactly the

same. Otherwise, the test is failed while extra procedure is required for investigating the

root of the failure. Figure 8 shows T002 and T004’s actual results in right image and

T003’s actual result in left image. Those actual results are the same as their expected

results. Therefore, those tests are passed.

Figure 8. Test Result of the Test Cases

 99

APPENDIX B

Interview Instrument

This interview is related to evaluating value of a functional test case. Each

participant is assumed that they have a bunch of test cases that can be applied, but to

implement all of them is not practical. In this situation, participant should make some

choices from those tests based on their testing experience and justification. Please answer

the following questions and give your reason (see Table 17).

Table 17. Interview Instrument

Interview #: () Company: ()

Interviewee: () Interview Date: ()

Interview Questions Note

1. Do you agree or disagree with the initial function of unit value of a test

case if you consider Unit Value is the key factor to impact your choice?

Why?

2. If you agree with the initial function of unit value of a test case, should

Business & Operational Risk, Technical Risk and Unit Cost be expanded in

the function, as opposed to having a separate table for its components?

Why?

3. Do you agree or disagree with the components of Business & Operational

Risk and Technical Risk? Give your opinion?

4. Do you think Weight, standard scale setting for each factors and Amount

of Use can establish a relatively clear and practical approach to assess the

unit value of a test case? What’s your opinion?

5. Do you have any other comments on this function?

 100

APPENDIX C

Code Book v1

Table 18. Code Book v1

Code Definition Interview Transcript

Simplicity

To simplify the
function or to
expand the
function in detail.

1(1) To keep the function simple, expand out TR and UC in
accompanying tables.

7(6) Do not promote any line items in the table into the main
function. It would get too complicated.

8(6) Keeping function simple would help people readily
comprehend the meaning of the function. Do not promote table
rows into the function.

10(8) Leaving the function with a limited number of factors while
providing the table below it with further details is good.

13(5) Leave the mail function as it is. Don’t expand any of the
factors in the main function.

13(6) Leave the function as multiple factors; don’t try to combine
them.

14(7) Do not expand TR and UC in the function.

16(6) It is not necessary to expand the UC factor in the main
function.

21(8) Too much detail in the function could be confusing.

25(8) Keeping the equation simple without promoting the TR line
items to the equation is a good way to present the unit value of a
test case.

Priority

A factor has
relative higher or
lower level of
importance
against another
factor.

1(2) Risk is not equal to priority. The priority should be considered
as a separate factor in the function.

2(1) A priority factor should be added in the function. Priority
might be rated as high, medium, and low.

4(1) The priority of a test case is influenced by how critical the
application feature is that the software is implementing, such as
handling customer complaints, dealing with cutting edge
technologies being used by competitors, etc.

5(1) The priority of a test case should be a separate factor. But the
relationship between revenue generation and priority is very
limited, since it is hard for a testing group to figure out the amount
of revenue generated by a feature or application.

8(1) Priority always accompanies risk, especially in internal risk
and external risk. It is hard to list priority separately. The standards

 101

of priority vary from one case to another. Sometimes satisfying
customers, which is an element of external risk, is prioritized. In
some other situations, release time, which is an element of internal
risk, is considered the most critical element.

8(2) Every risk is a matter or measure of priority. They are two
sides of the same coin.

9(1) Risk significantly differs from priority. Priority is an aspect of
risk. Priority varies in different contexts. Priority might focus on
the number of customers affected or what would happen to the
brand if a problem hit the media.

9(2) Priority is a piece of both Internal Risk (IR) and External Risk
(ER).

9(4) Death is a top priority. Safety is a top priority.

10(2) The priority of a piece of software falls if there are work-
arounds that render the software unnecessary.

11(1) The priority of a test case is not the same as the unit value of
a test case, but they are closely related to each other.

12(1) Priority can be based on different reasons. How important is
the software to the customer, to the business, or to marketing
efforts?

14(4) Priority is a part of risk; high priority leads to high risk. For
example, the media attention of the software would raise the ER of
the test case.

Amount of
Use

The amount of
use of the
application.

1(3) The amount of use is a very critical factor. Multiplying
external risk by it might be insufficient to elaborate its important
role. Multiplying the entire set of risk factors is an option for this
point. Different people may have different views on the importance
of amount of use.

2(5) Amount of use, AU, is an ideal concept for estimating the
importance of a test case. It may be easier to estimate AU for a
customer-facing application than for an internal application.

2(7) Uncertain about whether AU should be expanded to multiply
more risk factors or not.

2(8) The estimate of AU varies depending on whether the software
is a new application or a revision of an existing application.

3(4) The amount of use is an expected and subjective number, not
an accurate number in practice. Multiplying the external risk by the
amount of use makes more sense than multiplying the entire risk by
the amount of use.

4(2) It is better to multiply the entire risk by the amount of use
(AU) rather only multiplying the external risk by the amount of
use.

 102

5(3) Multiplying only ER by AU is appropriate in the function.

6(4) It makes sense to use AU for calibrating the UV of a test case.
But there are several options (listed below) for AU to combine with
other factors. The AU could be considered as the probability of
software failure. (IR+ER)*TR*AU/UC IR+(ER*TR*AU)-UC
(IR+ER+TR)*AU-UC

7(3) It is appropriate to include AU as it currently appears in the
function. It applies to External Risk (ER), not to the other risk
factors.

8(8) AU is particularly relevant to External Risk (ER.)

8(11) External Risk (ER) is the only factor that should be
multiplied by Amount of Use (AU).

10(1b) Customer satisfaction, amount of use, etc. In a word, all of
those perspectives are subject to or related to revenue generation,
including not overcharging or undercharging customers.

10(5) ER multiplied by AU is preferable, since AU is much more
directly correlated with ER than with the remaining factors. If the
software fails, you are going to lose revenue or customers.

11(4) Multiplying ER by AU is better than multiplying the other
factors by AU.

12(3) AU Multiplying only ER, rather than the other factors, by
AU, is correct.

13(4) Leans towards multiplying all three risk factors by Amount
of Use (AU).

14(1) Agree with the AU multiply by ER. If the software has
higher customer rate, it implies the software would be used much
more frequently and the highest risk is if it affects the most
customers.

15(1) AU is related to some aspects of ER rather than all of the
elements of ER. For instance, relevant regulations are part of ER
but are not affected by AU, while other aspects of ER are affected
by AU.
15(6) Multiply only ER by AU, not the other risk factors.

16(1) Multiply all risks by AU.

17(1) The AU should multiply all three risk factors: IR, ER, and
TR.

18(8) AU influences the value in revenue potential. This is separate
from IR and ER.

18(9) The insight for the function: (IR+ER) [AU-(UC+TR)]. Note
that this implies that AU multiplies all risk factors.

 103

19(1) AU should multiply all risk factors: IR, ER, and TR.

19(2) AU may not always be a good indicator of the value of a test
case. One-time use of an application could be critical and present a
very high risk if the software fails. For example, signing-up a new
customer could mean the loss of the customer if the application
fails. This also implies that AU and revenue generation may not
directly correlate.

20(2) AU should multiply all of IR, ER, and TR.

20(8) AU could mean how many new customers need to be signed-
up, not just how many times the customers use the application.

22(1) AU should only multiple ER.

22(2) AU of the critical path is crucial. You have to be careful
about multiplying ER by AU because not all features of the
software might be used all of the time.

23(5) The IR of a piece of software increases if its use goes across
multiple divisions within a company. Therefore, test cases that test
this software are more valuable.

23(6) External risk increases if the software is intended to be used
in many countries on a global basis. Therefore, test cases that test
this software are more valuable.

23(10) AU should be associated with “failure costs” in ER. AU
should also multiply TR.

24(7) Different parts of the code may be important for different
reasons. The code for particular exception conditions may be very
important even if infrequently used. Therefore AU is only one of
the influential factors representing the critical level of the software.
In some cases, software may have very low AU but still have a
very high critical level which cannot be ignored.

26(1) AU should multiply both IR and ER.

27(1) AU multiplying just ER or multiplying all risk factors could
go either way.

Special Case
A special case of
using the
function.

1(4) The special case, high risk but low amount of use, should be
demonstrated.

External
Risk

Risks arising
from the events
taking place
outside of the
organization.

1(5) Look into risk in other areas, such as mergers and acquisitions
in the financial field.

6(2b) Regulations, and unique feature with extremely competitive
strength in the market. It is appropriate to separate priority from the
risks.

6(3) External risk factors influence internal risk factors.

7(1) When considering the priority of test cases, risks such as
crucial impacts of failure in production and relevant regulations, as

 104

well as other risk items listed but not limited in the table, always
influence the priority of a test case. Therefore, priority should not
necessarily be listed as a new factor in the function. Priority should
be listed as another row in Internal Risk (IR).

7(7) In External Risk (ER), split out crucial versus non-crucial
impacts. For example, a failure that impacts revenue is one kind of
problem while a usability issue is another kind of problem.

10(3) The regulation issue listed in ER is not parallel with the
legislation issue. In some cases, products may not violate
applicable laws but could be in violation of conventional
regulations.

11(2a) Business impact could impact the priority of the software.
This could be an additional line item in TR.

11(3) ER is based on the probability of the software failing in
production.

15(8) An issue of ER is impact to the brand.

18(6) The value of a test case depends on the potential loss of
customers if the software fails in production.

23(8) Test cases that test software that could affect customer
satisfaction are more valuable.

24(8) ER should be changed to an overall production risk (PR) to
take into account both external facing and internal facing
applications.

25(1) The ER could be affected by the impact from social media
that may influence the potential customers’ judgement.

25(2) ER can be considered as a production risk because the
application may be either external facing or internal facing.

27(2) Production risk as a general issue is more realistic than what
we had been considering as failure in production of an external
application.

Weight
The weight of
factors in the
function.

1(6) Write a description of how to use the weights in the function.

14(5) Weights should be different for each factor because each
item has different effect and risk in different context.

21(7) Weights can go to zero if a factor is not important.

Internal Risk

Risks arising
from events
taking place
within the
organization.

2(2) They currently consider priority, but do not consider executive
pressure, which is another reason for splitting out priority as a
separate factor.

2(3) Executive pressure may be about quality or speed of
development, or both.

6(2a) An additional factor is urgency, such as the deadline for
release.

 105

8(3) Executive pressure in Internal Risk (IR) can go two ways. “Do
it well,” in which case the unit value of a test case should go up;
“Do it fast,” in which case the unit value of a test case should go
down.

8(4) If a test case encounters resource limitations such as budget,
time, or personnel, the value of the test case may appear to
decrease even though the effectiveness of the test case is
significant. In other words, it’s not the test case’s fault if the project
has run out of time or other resources for it. For this research
project, the assumption has to be that if a test case is being
considered, there is enough time for it.

8(10) Change the rows in the table for Internal Risk (IR) to time,
quality, and cost.

10(4) Both high quality and time pressure apply to IR.

13(1) Need to consider business criticality/mission criticality in
Internal Risk (IR). “Tier 1” mission critical system.

13(2) Speed to market and agility are Internal Risk (IR) factors.

15(5) Regarding IR, is the test case important “to someone who
matters?”

15(9) IR can change over time, especially in agile development as
requirements change.

16(3) Executive pressure in IR could be dependent on the area of
the company the application is being developed for.

18(7) Risk factors are assigned at different levels of the company.
For example, IR is assigned at the executive level. Testers on the
front lines, normally have to follow the high level managers’
directions regarding risk factors.

19(7) IR includes time pressure, resource pressure, and opportunity
cost.

20(6) The time dimension is a critical factor that should be added
into the function. The unit value of a test case is subject to release
time pressure in IR and competitive pressure in ER. There is a
tradeoff: Time pressure is a zero-sum game. If there is time
pressure it may be more important to have defect-free software but
it requires more time to test.

Unit Cost
Comments
regarding the cost
of a test case.

2(4) Unit cost is always evaluated in terms of dollars, especially in
those departments concerned with preparing budgets. Those
departments usually can estimate a relatively accurate estimate of
the unit cost based on historical records.

15(4) Breaking down UC into two categories: one time costs
(preparation costs, creation costs) and multiple times costs (run
costs, failure cost), would make clear sense.

 106

Technical
Risk

Risks arising
from technical
perspectives
regarding the
application.

2(6) The function also should be considered from vendor group
perspective rather than only from testing group perspective.
“Vendor issues” should be a line item in TR.

3(7) Add History of the SUT as an additional Technical Risk (TR)
line item in the table.

3(8) In the Technical Risk (TR) table, replace “dependency issues”
with the degree to which this piece of software affects or interacts
with other pieces of software.

4(4) Maintaining the line items of Technical Risk (TR) in a table
rather than putting each of them separately in the unit value
function is a good idea.

7(2) Since test cases always encounter various kinds of Technical
Risk (TR) in the software under test, each line item of TR listed in
the table should be weighted separately and then combined to form
the total TR. Without this there is a degree of inconsistency. This
may not be necessary for IR and ER.

9(5) The time factor, which often influences a decision maker’s
judgment, should be taken into account in the function as a
significant factor. A proposed test case which, based on history, is
projected to run in a shorter amount of time is more valuable.

9(6) An automated test case is more valuable than a manual test
case.

10(6) All the items listed in TR help people from diverse
perspectives evaluate the confidence of the testing staff for
completing a test case well. Different testing groups in different
situations, however, perceive different TR line items to be more or
less important. Thus, the TR line items should be weighted
separately to allow for the needed diversity.

11(2b) level of change of the application are two dimensions that
could impact the priority of the software. This could be an
additional line item in TR.

11(7) Another line item in TR should be the complexity of database
interfaces and issues of the application being in the cloud.

12(4) In his situation, complexity and dependency of the software
are more critical than the other items of TR. However, the critical
level of the items could vary in different situations, so having TR
line items with separate weights is a good solution.

13(7) Difference in the value of a test case based on whether it’s
new or if we have experience with it.

16(4) The newness of the testing technology, either to the industry
or to the company, is a factor in TR.

 107

16(5) Cooperation in different departments or groups is common
and is a factor in TR.

17(4) It is better to break down the TR into several subcategories,
each of which has its own weight.

19(8) We need more detail for each TR factor, including individual
weights.

21(11) A new line for TR is the complexity of the test data.

21(12) The previous testing line in TR includes “brittle code.”

21(13) TR includes badly designed test cases.

21(14) A poor test environment doesn’t make a test case more or
less valuable.

21(15) Does the “test environment issues” line in TR belong there?

22(6) The TR line items should have individual weights.

22(7) The TR line items should be promoted into the main
function.

22(8) Another TR line item should be architectural complexity, e.g.
asynchronous versus synchronous web service calls.

23(9) The line items in TR should be weighted separately.

25(7) TR is also influenced by the project, which can be called
project risk. Project risk is normally caused by limited resources,
such as having a fixed date by which the project must be
completed.

26(4) Another line item for TR is if the code comes in late to the
testers.

27(3) Lacking staff or other resources such as servers because of a
delay in acquiring ordered hardware are TR factors.

27(5) Regime change, i.e. changing from full-time employees to
contractors is a TR factor.

27(9) The individual line items of TR should be weighted
individually.

Unit Value

General
comments
regarding the
component and
structure of the
value function.

3(1) The unit value may be positive or negative, it depends on
whether the risk value is greater than the cost.

5(2) The Unit Value of a test case is projected before application
execution rather than after the process.

5(4) There is no difference in the value of a test case whether it
tests a small piece of software or a large piece of software.

 108

5(8) Keep the unit value function simple while providing a table
with details below it.

5(9) Future research: What is the value of continuing to have a test
case in a regression suite?

7(4) A test case that goes into a regression suite is more valuable
than one that does not.

7(5) A test case that tests a series of applications is more valuable
than one that does not.

8(5) The meaning of unit value is to explain why one test case
should be implemented versus another.

9(3) Some items of Internal Risk (IR) and External Risk (ER)
should be clarified, such as “crucial impacts of failure in
production”.

9(9) The definition of unit value should be clarified. In different
contexts, it may be comprehended as customer satisfaction-
oriented, or revenue generation-oriented, or margin increase-
oriented, or other related perspectives. The value of a test case
depends on the context in which it is used.

9(10) Comparing the value of different groups of test cases is
future research.

9(11) We have to define what we mean by “value.”

13(3) If this is a good test case, the testing process will be better.

13(8) Quality of a test case is important and is based on the number
of defects found by it.

13(9) A test case in a regression suite is more valuable than one
that is not.

14(2) Adding a test case to the regression suite is not a necessary
condition for evaluating the value of the test case. A special test
case that is specifically targeted for a reason and used once can be
just as important as a test case that goes into a regression suite.

14(3) A test case that finds no defect is just as valuable as one that
finds defects. This has no effect on the value of a test case.

14(6) In practice, choosing a test case among several choices
depends on good guess or experience the test group has. The value
function is a good tool for testing people in selecting an appropriate
test case in terms of the value.

14(8) Using this value function will help prioritize the work to
make the products better.

 109

14(9) Recursive use of the value function – do you find greater
value after you start running the test case because, for example, it
finds a lot of defects.

15(2) The value of a test case may change as you use it in testing.
There is a scenario that is pervasive in practice. A test case that was
considered to be low value in the initial stage may increase in value
due to more defects being detected after the test case execution.

15(3) The value of a test case may increase as you use it in testing
as you realize that the code it is testing is more complex than
originally thought.

15(7) The value of a test case changes over time and so value
should be considered to be in a feedback loop.

16(7) Normally, they would add a test case into the regression suite
unless it’s too complex to run. This is not a matter of the test case’s
value.

16(8) The value of a test case increases if it detects defects in risky
code.

16(9) “After the fact” increases in test case value can occur if the
test case finds defects. This could cause you to decide to add it to
the regression suite.

17(3) The value of a test case increases somewhat if it is added to a
regression suite.

18(1) Whether the test case is eligible to be added into a regression
suite cannot significantly affect the value of the test case because
all test cases are added to a regression suite.

19(3) If a test case is added into a regression suite, it indicates that
the test case has higher value than test cases that are not added to a
regression suite.

19(5) The value function should be considered as a dynamic
function rather than a static function because the value of a test
case may change after the test case is executed.

19(6) A test case is more valuable if it is used in end-to-end testing.

19(9) The entire value model should be dynamic because
everything can change, “in a heartbeat.”

20(3) We are not comparing adding a test case at the unit level to
another level.

20(5) The value of a test case is determined up front and a high-
value test case is added into the regression suite. Value is not
determined by the decision of whether or not to add it to the
regression suite.

 110

20(7) Risk values should not be on a linear scale but should be on
an exponential, modified Fibonacci scale. Doing this may eliminate
or reduce the need for weights.

21(4) Adding a test case into a regression suite could be the
standard to evaluate the value of a test case.

21(5) Especially for a new system where you’re not sure about the
critical path, the unit value of a test case function could be
dynamic.

21(6) Risk values should be on an exponential scale.

21(9) A test case that is targeted to a part of an application is just as
valuable as a test case that goes into a regression suite.

21(10) Another use of the unit value of a test case function is to
reevaluate the test cases in an existing regression suite.

22(3) The value of a test case should be a factor of producing
revenue or reducing cost.

22(4) The value of a test case should be based on the function
points (i.e. requirements) instead of the amount of code or of
specific parts of the code covered.

22(5) The most valuable test cases are the ones that go into the
regression suite.

22(9) Risk values should be on an exponential scale.

23(2) A test case is more valuable if it tests an application in such a
way that it makes sure that applications that are communicate with
it are not adversely affected.

23(3) A test case is more valuable if it covers multiple countries
that an application is intended to be used in.

23(4) The value of a test case is based on the business value of the
software under test.

24(1) ScaledAgileFramework.com (SAFe) orders the development
of software as the “weighted shortest job first.” Business value plus
time criticality plus risk reduction value.

24(2) The cost of delaying a project is a risk.

24(3) The unit value of the test case is determined by how the test
case ensures that the software will be delivered quickly.

24(4) The unit value function can be used in both a static and
dynamic way.

24(5) The combination of multiple test cases impacts the unit value
of each test case, because one test case might be correlated with

 111

another test case. Our test case value function does not incorporate
this factor of this complex situation.

24(9) Re-evaluate the value of an unused test case based on finding
that the use of a related test case turned out to be valuable.

25(5) The function needs a business value factor that allows for
both the importance of revenue generation by the software and the
value of internal facing applications.

25(6) For choosing a test case, managers usually endow a value to
the test case based on their working experience and intuition. After
implementing the test case, the value maybe changed according to
the test result. So the value of a test case is dynamic.

25(9) A use of the function is to justify requests for testing
resources.

26(2) The value function should be used to evaluate the value of a
test case up front in a static sense.

26(3) The value of a test case can be changed in a dynamic sense
over time, but that is the exception rather than the rule.

27(7) 90% of test cases are new test cases for testing new
functionality. Before running test cases, senior managers always
have a list of test cases in their minds based on their initial
expectations of the effect of the test cases.

27(8) The value of a test case may or may not depend on whether it
is added to a regression suite up front.

Revenue

The impact of
revenue
generation
resulting from the
test case failing or
unfailing to find
bugs in an
application.

3(2) Priority is influenced by the amount of revenue that the
software will generate.

3(3) The value of a test case is directly related to the amount of
revenue that the software under test is likely to generate. The more
revenue the software is likely to generate, the more value the test
case possesses. This could be an additional factor in the unit value
function.

3(6) Try to remove as much subjectivity as possible from the
function. Objectivity can be based at least partly on revenue
projections of the software.

5(5) Revenue generation is not a separate factor but is part of
priority.

8(7) We need a new factor in the unit value function that considers
the revenue generation of the software under test.

10(1a) Priority significantly influences the judgment of unit value.
In practice, priority of a test case always associates with revenue
generation.

12(2) Although revenue generation is a terrific factor to evaluate
the unit value, cash flow is also a valuable factor. In some cases, a

 112

successful test case ensuring that the application runs normally
could result in a large cash flow, which is extremely important for a
company to be operating persistently.

17(2) Risk partly depends on the potential revenue that the
software will produce.

18(5) The value of the test case depends on the amount of revenue
that the software is projected to bring in.

20(1) The business value of an application is the key issue and is
more important than the revenue it brings in. Some applications are
internal and do not bring in revenue.

21(1) The unit value of a test case depends on the business value of
the software. Generating revenue is only part of the value of the
software along with other business “options.”

25(3) The unit value is a comprehensive concept that presents more
than just the revenue generation from the application.

27(4) Revenue generation is a factor in projecting the value of test
case, but it is not the only factor to be considered.

Code
Coverage

The lines of code
tested in a given
testing case.

3(5) Code coverage (and therefore application features
implemented) should be considered when evaluating the value of a
test case. A test case that tests more of the code (and by extension
more of the application features) has a higher value than test cases
that cover less code. This could be an additional factor in the unit
value function.

6(5) The value of a test case is greater if it tests a specific part of
the software because it can help locate the source of a defect in the
code more easily. Thus, Utility of Test Case could be a new factor
to be added in the function.

8(9) To justify what kind of code coverage is great depends on
whether the requirement of testing is satisfied rather than whether
the code coverage is complicated or simple.

9(7) The purpose of test cases is the most important criterion for
justifying whether code coverage is good or bad.

9(8) The issue of code coverage as a factor in the value of a test
case depends on what you are trying to accomplish. A test case
needs to support the type or level of testing for which it is
proposed.

10(7) It is hard to say whether a test case with great code coverage
is better than one with small code coverage and vice versa. Each
has its advantages. However, a test case in a regression test suite is
more valuable than one that is not.

11(5) The utility of a test case is more critical than the code
coverage of a test case. Test cases that have a multi-function effect
are preferred.

 113

12(5) There is no significant difference between simple code
coverage and complicated code coverage. Whether the code
coverage works well is the most important point.

13(11) The amount of software that a test case covers may or may
not increase its value.

16(2) Code coverage is part of TR.

18(3) A special, single use test case has greater value if it tests a
critical part of the code.

18(4) The value of a test case cannot be determined by the amount
of code coverage.

19(4) The code coverage would affect the value of a test case.

20(4) The value of a test case increases with the amount of its code
coverage because it helps to reduce the number of test cases.

21(3) The code coverage of a test case is a simple concept that
neither indicates the complexity of the test case nor the coverage of
tested function.

23(1) A test case that test the code’s critical path is more valuable
than one that does not.

24(6) Code coverage is not a good measure for projecting the value
of the test case. In contrast, the functional coverage is more
effective.

25(4) The more of the critical path that test case covers, the more
value the test case creates.

27(6) Code coverage is not the only factor to determine the value
of the test case. A test case is valuable if it tests any amount of
code if that code is a critical part of the application.

 114

Frequency
The amount of
use of the test
case.

4(3) In practice, the frequency of using a test case is a critical
standard in evaluating its value. High usage frequency of a test case
always presents greater value and priority compared to test cases
with low usage frequency. Is the test case used once or does it
become a member of a regression test suite? How often is the
regression test suite run? This could become an additional factor in
the unit value function.

13(10) The more places in the development cycle a test case is
used, the more valuable it is.

18(2) A test case that is used to test multiple versions of software
or packages is more valuable.

21(2) Repeatability, meaning whether a test case can be used across
different regions, devices, or platforms, is a factor in the value of a
test case. High repeatability indicates high value of a test case.

23(7) Test cases that test software across multiple mobile platforms
are more valuable.

Litigation

Risks arising
from litigation
regarding an
application.

5(6) Test cases become higher in priority if there is a danger of
litigation regarding the software.

Globalization

Risks arising
from
globalization
regarding an
application.

5(7) Many factors, for example localization/globalization go into
priority. Possibly list these factors in a table.

ROI

The value
estimation of a
test case from
ROI angle.

6(1) Consider a Return of Investment (ROI) approach when
considering the unit value of a test case. This entails a relative
value by ratio in which the Unit Value (UV) of the function comes
out an absolute value. Instead of subtracting the unit cost from the
risk factors, consider dividing the risk factors by the unit cost. The
numerator and denominator do not have to be of the same units.
· Case 1: If UV of test case A is 100 (whole risk 200 – unit cost
100) and UV of test case B is almost 100 (whole risk 100 – unit
cost 1), plus ROIs of the two cases are equal, how does a test case
stand out via the evaluation approaches? The problem is that the
UV is basically the same for both but the numbers are very
different.
· Case 2: test case A and B have the same unit value as well as
ROIs, but the vast distinction between A and B is that A need to
spend 100 in unit costs and the return period is very long, but B
costs much less and the return period is pretty short. How to
demonstrate the time issue in the function in the case of UV and
ROI being equal?

 115

APPENDIX D

Code Book v2

Table 19. Code Book v2

Code Definition Interview Transcript

Internal
Risk

Risks arising from
events taking
place within the
organization.

2(2) They currently consider priority, but do not consider executive
pressure, which is another reason for splitting out priority as a
separate factor.

2(3) Executive pressure may be about quality or speed of
development, or both.

6(2a) An additional factor is urgency, such as the deadline for
release.

8(3) Executive pressure in Internal Risk (IR) can go two ways. “Do it
well,” in which case the unit value of a test case should go up; “Do it
fast,” in which case the unit value of a test case should go down.

8(4) If a test case encounters resource limitations such as budget,
time, or personnel, the value of the test case may appear to decrease
even though the effectiveness of the test case is significant. In other
words, it’s not the test case’s fault if the project has run out of time or
other resources for it. For this research project, the assumption has to
be that if a test case is being considered, there is enough time for it.

8(10) Change the rows in the table for Internal Risk (IR) to time,
quality, and cost.

10(4) Both high quality and time pressure apply to IR.

13(1) Need to consider business criticality/mission criticality in
Internal Risk (IR). “Tier 1” mission critical system.

13(2) Speed to market and agility are Internal Risk (IR) factors.

15(5) Regarding IR, is the test case important “to someone who
matters?”

15(9) IR can change over time, especially in agile development as
requirements change.

16(3) Executive pressure in IR could be dependent on the area of the
company the application is being developed for.

18(7) Risk factors are assigned at different levels of the company.
For example, IR is assigned at the executive level. Testers on the
front lines, normally have to follow the high level managers’
directions regarding risk factors.

19(7) IR includes time pressure, resource pressure, and opportunity
cost.

 116

20(6) The time dimension is a critical factor that should be added into
the function. The unit value of a test case is subject to release time
pressure in IR and competitive pressure in ER. There is a tradeoff:
Time pressure is a zero-sum game. If there is time pressure it may be
more important to have defect-free software but it requires more time
to test.

External
Risk

Risks arising from
the events taking
place outside of
the organization.

1(5) Look into risk in other areas, such as mergers and acquisitions in
the financial field.

5(6) Test cases become higher in priority if there is a danger of
litigation regarding the software.

5(7) Many factors, for example localization/globalization go into
priority. Possibly list these factors in a table.

6(2b) Regulations, and unique feature with extremely competitive
strength in the market. It is appropriate to separate priority from the
risks.

6(3) External risk factors influence internal risk factors.

7(1) When considering the priority of test cases, risks such as crucial
impacts of failure in production and relevant regulations, as well as
other risk items listed but not limited in the table, always influence
the priority of a test case. Therefore, priority should not necessarily
be listed as a new factor in the function. Priority should be listed as
another row in Internal Risk (IR).

7(7) In External Risk (ER), split out crucial versus non-crucial
impacts. For example, a failure that impacts revenue is one kind of
problem while a usability issue is another kind of problem.

10(3) The regulation issue listed in ER is not parallel with the
legislation issue. In some cases, products may not violate applicable
laws but could be in violation of conventional regulations.

11(2a) Business impact could impact the priority of the software.
This could be an additional line item in TR.

11(3) ER is based on the probability of the software failing in
production.

15(8) An issue of ER is impact to the brand.

18(6) The value of a test case depends on the potential loss of
customers if the software fails in production.

23(8) Test cases that test software that could affect customer
satisfaction are more valuable.

24(8) ER should be changed to an overall production risk (PR) to
take into account both external facing and internal facing
applications.

 117

25(1) The ER could be affected by the impact from social media that
may influence the potential customers’ judgement.

25(2) ER can be considered as a production risk because the
application may be either external facing or internal facing.

27(2) Production risk as a general issue is more realistic than what
we had been considering as failure in production of an external
application.

Technical
Risk

Risks arising from
technical
perspectives
regarding the
application.

2(6) The function also should be considered from vendor group
perspective rather than only from testing group perspective. “Vendor
issues” should be a line item in TR.

3(7) Add History of the SUT as an additional Technical Risk (TR)
line item in the table.

3(8) In the Technical Risk (TR) table, replace “dependency issues”
with the degree to which this piece of software affects or interacts
with other pieces of software.

4(4) Maintaining the line items of Technical Risk (TR) in a table
rather than putting each of them separately in the unit value function
is a good idea.

7(2) Since test cases always encounter various kinds of Technical
Risk (TR) in the software under test, each line item of TR listed in
the table should be weighted separately and then combined to form
the total TR. Without this there is a degree of inconsistency. This
may not be necessary for IR and ER.

9(5) The time factor, which often influences a decision maker’s
judgment, should be taken into account in the function as a
significant factor. A proposed test case which, based on history, is
projected to run in a shorter amount of time is more valuable.

9(6) An automated test case is more valuable than a manual test case.

10(6) All the items listed in TR help people from diverse perspectives
evaluate the confidence of the testing staff for completing a test case
well. Different testing groups in different situations, however,
perceive different TR line items to be more or less important. Thus,
the TR line items should be weighted separately to allow for the
needed diversity.

11(2b) level of change of the application are two dimensions that
could impact the priority of the software. This could be an additional
line item in TR.

11(7) Another line item in TR should be the complexity of database
interfaces and issues of the application being in the cloud.

12(4) In his situation, complexity and dependency of the software are
more critical than the other items of TR. However, the critical level
of the items could vary in different situations, so having TR line
items with separate weights is a good solution.

 118

13(7) Difference in the value of a test case based on whether it’s new
or if we have experience with it.

16(4) The newness of the testing technology, either to the industry or
to the company, is a factor in TR.

16(5) Cooperation in different departments or groups is common and
is a factor in TR.

17(4) It is better to break down the TR into several subcategories,
each of which has its own weight.

19(8) We need more detail for each TR factor, including individual
weights.

21(11) A new line for TR is the complexity of the test data.

21(12) The previous testing line in TR includes “brittle code.”

21(13) TR includes badly designed test cases.

21(14) A poor test environment doesn’t make a test case more or less
valuable.

21(15) Does the “test environment issues” line in TR belong there?

22(6) The TR line items should have individual weights.

22(7) The TR line items should be promoted into the main function.

22(8) Another TR line item should be architectural complexity, e.g.
asynchronous versus synchronous web service calls.

23(9) The line items in TR should be weighted separately.

25(7) TR is also influenced by the project, which can be called
project risk. Project risk is normally caused by limited resources,
such as having a fixed date by which the project must be completed.

26(4) Another line item for TR is if the code comes in late to the
testers.

27(3) Lacking staff or other resources such as servers because of a
delay in acquiring ordered hardware are TR factors.

27(5) Regime change, i.e. changing from full-time employees to
contractors is a TR factor.

27(9) The individual line items of TR should be weighted
individually.

Amount of
Use

The amount of use
of the application
under testing. The
comments
discussed the
relationship

1(3) The amount of use is a very critical factor. Multiplying external
risk by it might be insufficient to elaborate its important role.
Multiplying the entire set of risk factors is an option for this point.
Different people may have different views on the importance of
amount of use.

 119

between amount
of use and other
factors.

1(4) The special case, high risk but low amount of use, should be
demonstrated.

2(5) Amount of use, AU, is an ideal concept for estimating the
importance of a test case. It may be easier to estimate AU for a
customer-facing application than for an internal application.

2(7) Uncertain about whether AU should be expanded to multiply
more risk factors or not.

2(8) The estimate of AU varies depending on whether the software is
a new application or a revision of an existing application.

3(4) The amount of use is an expected and subjective number, not an
accurate number in practice. Multiplying the external risk by the
amount of use makes more sense than multiplying the entire risk by
the amount of use.

4(2) It is better to multiply the entire risk by the amount of use (AU)
rather only multiplying the external risk by the amount of use.

5(3) Multiplying only ER by AU is appropriate in the function.

6(4) It makes sense to use AU for calibrating the UV of a test case.
But there are several options (listed below) for AU to combine with
other factors. The AU could be considered as the probability of
software failure. (IR+ER)*TR*AU/UC IR+(ER*TR*AU)-UC
(IR+ER+TR)*AU-UC

7(3) It is appropriate to include AU as it currently appears in the
function. It applies to External Risk (ER), not to the other risk
factors.

8(8) AU is particularly relevant to External Risk (ER.)

8(11) External Risk (ER) is the only factor that should be multiplied
by Amount of Use (AU).

10(1b) Customer satisfaction, amount of use, etc. In a word, all of
those perspectives are subject to or related to revenue generation,
including not overcharging or undercharging customers.

10(5) ER multiplied by AU is preferable, since AU is much more
directly correlated with ER than with the remaining factors. If the
software fails, you are going to lose revenue or customers.

11(4) Multiplying ER by AU is better than multiplying the other
factors by AU.

12(3) AU Multiplying only ER, rather than the other factors, by AU,
is correct.

13(4) Leans towards multiplying all three risk factors by Amount of
Use (AU).

 120

14(1) Agree with the AU multiply by ER. If the software has higher
customer rate, it implies the software would be used much more
frequently and the highest risk is if it affects the most customers.

15(1) AU is related to some aspects of ER rather than all of the
elements of ER. For instance, relevant regulations are part of ER but
are not affected by AU, while other aspects of ER are affected by
AU.

15(6) Multiply only ER by AU, not the other risk factors.

16(1) Multiply all risks by AU.

17(1) The AU should multiply all three risk factors: IR, ER, and TR.

18(8) AU influences the value in revenue potential. This is separate
from IR and ER.

18(9) The insight for the function: (IR+ER) [AU-(UC+TR)]. Note
that this implies that AU multiplies all risk factors.

19(1) AU should multiply all risk factors: IR, ER, and TR.

19(2) AU may not always be a good indicator of the value of a test
case. One-time use of an application could be critical and present a
very high risk if the software fails. For example, signing-up a new
customer could mean the loss of the customer if the application fails.
This also implies that AU and revenue generation may not directly
correlate.

20(2) AU should multiply all of IR, ER, and TR.

20(8) AU could mean how many new customers need to be signed-
up, not just how many times the customers use the application.

22(1) AU should only multiple ER.

22(2) AU of the critical path is crucial. You have to be careful about
multiplying ER by AU because not all features of the software might
be used all of the time.

23(5) The IR of a piece of software increases if its use goes across
multiple divisions within a company. Therefore, test cases that test
this software are more valuable.

23(6) External risk increases if the software is intended to be used in
many countries on a global basis. Therefore, test cases that test this
software are more valuable.

23(10) AU should be associated with “failure costs” in ER. AU
should also multiply TR.

24(7) Different parts of the code may be important for different
reasons. The code for particular exception conditions may be very
important even if infrequently used. Therefore AU is only one of the
influential factors representing the critical level of the software. In

 121

some cases, software may have very low AU but still have a very
high critical level which cannot be ignored.

26(1) AU should multiply both IR and ER.

27(1) AU multiplying just ER or multiplying all risk factors could go
either way.

Code
Coverage

The lines of code
tested in a given
test case.

3(5) Code coverage (and therefore application features implemented)
should be considered when evaluating the value of a test case. A test
case that tests more of the code (and by extension more of the
application features) has a higher value than test cases that cover less
code. This could be an additional factor in the unit value function.

6(5) The value of a test case is greater if it tests a specific part of the
software because it can help locate the source of a defect in the code
more easily. Thus, Utility of Test Case could be a new factor to be
added in the function.

8(9) To justify what kind of code coverage is great depends on
whether the requirement of testing is satisfied rather than whether the
code coverage is complicated or simple.

9(7) The purpose of test cases is the most important criterion for
justifying whether code coverage is good or bad.

9(8) The issue of code coverage as a factor in the value of a test case
depends on what you are trying to accomplish. A test case needs to
support the type or level of testing for which it is proposed.

10(7) It is hard to say whether a test case with great code coverage is
better than one with small code coverage and vice versa. Each has its
advantages. However, a test case in a regression test suite is more
valuable than one that is not.

11(5) The utility of a test case is more critical than the code coverage
of a test case. Test cases that have a multi-function effect are
preferred.

12(5) There is no significant difference between simple code
coverage and complicated code coverage. Whether the code coverage
works well is the most important point.

13(11) The amount of software that a test case covers may or may not
increase its value.

16(2) Code coverage is part of TR.

18(3) A special, single use test case has greater value if it tests a
critical part of the code.

18(4) The value of a test case cannot be determined by the amount of
code coverage.

19(4) The code coverage would affect the value of a test case.

 122

20(4) The value of a test case increases with the amount of its code
coverage because it helps to reduce the number of test cases.

21(3) The code coverage of a test case is a simple concept that
neither indicates the complexity of the test case nor the coverage of
tested function.

23(1) A test case that test the code’s critical path is more valuable
than one that does not.

24(6) Code coverage is not a good measure for projecting the value
of the test case. In contrast, the functional coverage is more effective.

25(4) The more of the critical path that test case covers, the more
value the test case creates.

27(6) Code coverage is not the only factor to determine the value of
the test case. A test case is valuable if it tests any amount of code if
that code is a critical part of the application.

Test
Frequency

The amount of use
of the test case.

4(3) In practice, the frequency of using a test case is a critical
standard in evaluating its value. High usage frequency of a test case
always presents greater value and priority compared to test cases with
low usage frequency. Is the test case used once or does it become a
member of a regression test suite? How often is the regression test
suite run? This could become an additional factor in the unit value
function.

13(10) The more places in the development cycle a test case is used,
the more valuable it is.

18(2) A test case that is used to test multiple versions of software or
packages is more valuable.

21(2) Repeatability, meaning whether a test case can be used across
different regions, devices, or platforms, is a factor in the value of a
test case. High repeatability indicates high value of a test case.

23(7) Test cases that test software across multiple mobile platforms
are more valuable.

Weight
The weight of
factors in the
function.

1(6) Write a description of how to use the weights in the function.

14(5) Weights should be different for each factor because each item
has different effect and risk in different context.

21(7) Weights can go to zero if a factor is not important.

Unit Cost
Comments
regarding the cost
of a test case.

2(4) Unit cost is always evaluated in terms of dollars, especially in
those departments concerned with preparing budgets. Those
departments usually can estimate a relatively accurate estimate of the
unit cost based on historical records.

15(4) Breaking down UC into two categories: one time costs
(preparation costs, creation costs) and multiple times costs (run costs,
failure cost), would make clear sense.

Dynamic
Function

Value of test case
may vary after
execution.

5(2) The Unit Value of a test case is projected before application
execution rather than after the process.

 123

14(9) Recursive use of the value function – do you find greater value
after you start running the test case because, for example, it finds a
lot of defects.

15(2) The value of a test case may change as you use it in testing.
There is a scenario that is pervasive in practice. A test case that was
considered to be low value in the initial stage may increase in value
due to more defects being detected after the test case execution.

15(3) The value of a test case may increase as you use it in testing as
you realize that the code it is testing is more complex than originally
thought.

15(7) The value of a test case changes over time and so value should
be considered to be in a feedback loop.

19(5) The value function should be considered as a dynamic function
rather than a static function because the value of a test case may
change after the test case is executed.

19(9) The entire value model should be dynamic because everything
can change, “in a heartbeat.”

21(5) Especially for a new system where you’re not sure about the
critical path, the unit value of a test case function could be dynamic.

24(4) The unit value function can be used in both a static and
dynamic way.

25(6) For choosing a test case, managers usually endow a value to the
test case based on their working experience and intuition. After
implementing the test case, the value maybe changed according to the
test result. So the value of a test case is dynamic.

26(2) The value function should be used to evaluate the value of a
test case up front in a static sense.

26(3) The value of a test case can be changed in a dynamic sense
over time, but that is the exception rather than the rule.

Unit Value

General
comments
regarding the
component and
structure of the
value function.

3(1) The unit value may be positive or negative, it depends on
whether the risk value is greater than the cost.

5(4) There is no difference in the value of a test case whether it tests
a small piece of software or a large piece of software.

5(8) Keep the unit value function simple while providing a table with
details below it.

7(5) A test case that tests a series of applications is more valuable
than one that does not.

8(5) The meaning of unit value is to explain why one test case should
be implemented versus another.

9(3) Some items of Internal Risk (IR) and External Risk (ER) should
be clarified, such as “crucial impacts of failure in production”.

 124

9(9) The definition of unit value should be clarified. In different
contexts, it may be comprehended as customer satisfaction-oriented,
or revenue generation-oriented, or margin increase-oriented, or other
related perspectives. The value of a test case depends on the context
in which it is used.

9(10) Comparing the value of different groups of test cases is future
research.

9(11) We have to define what we mean by “value.”

13(3) If this is a good test case, the testing process will be better.

14(6) In practice, choosing a test case among several choices depends
on good guess or experience the test group has. The value function is
a good tool for testing people in selecting an appropriate test case in
terms of the value.

14(8) Using this value function will help prioritize the work to make
the products better.

19(6) A test case is more valuable if it is used in end-to-end testing.

20(3) We are not comparing adding a test case at the unit level to
another level.

20(7) Risk values should not be on a linear scale but should be on an
exponential, modified Fibonacci scale. Doing this may eliminate or
reduce the need for weights.

21(6) Risk values should be on an exponential scale.

22(3) The value of a test case should be a factor of producing revenue
or reducing cost.

22(9) Risk values should be on an exponential scale.

23(2) A test case is more valuable if it tests an application in such a
way that it makes sure that applications that are communicate with it
are not adversely affected.

23(3) A test case is more valuable if it covers multiple countries that
an application is intended to be used in.

23(4) The value of a test case is based on the business value of the
software under test.

24(1) ScaledAgileFramework.com (SAFe) orders the development of
software as the “weighted shortest job first.” Business value plus time
criticality plus risk reduction value.

24(2) The cost of delaying a project is a risk.

24(3) The unit value of the test case is determined by how the test
case ensures that the software will be delivered quickly.

 125

24(5) The combination of multiple test cases impacts the unit value
of each test case, because one test case might be correlated with
another test case. Our test case value function does not incorporate
this factor of this complex situation.

24(9) Re-evaluate the value of an unused test case based on finding
that the use of a related test case turned out to be valuable.

25(5) The function needs a business value factor that allows for both
the importance of revenue generation by the software and the value
of internal facing applications.

25(9) A use of the function is to justify requests for testing resources.

27(7) 90% of test cases are new test cases for testing new
functionality. Before running test cases, senior managers always have
a list of test cases in their minds based on their initial expectations of
the effect of the test cases.

Test
Utility

The effect of the
test case.

13(8) Quality of a test case is important and is based on the number
of defects found by it.

14(3) A test case that finds no defect is just as valuable as one that
finds defects. This has no effect on the value of a test case.

16(8) The value of a test case increases if it detects defects in risky
code.

16(9) “After the fact” increases in test case value can occur if the test
case finds defects. This could cause you to decide to add it to the
regression suite.

22(4) The value of a test case should be based on the function points
(i.e. requirements) instead of the amount of code or of specific parts
of the code covered.

Regression
Suite

Value of the test
case may or may
not associate with
incorporating in
regression suite.

5(9) Future research: What is the value of continuing to have a test
case in a regression suite?

7(4) A test case that goes into a regression suite is more valuable than
one that does not.

13(9) A test case in a regression suite is more valuable than one that
is not.

14(2) Adding a test case to the regression suite is not a necessary
condition for evaluating the value of the test case. A special test case
that is specifically targeted for a reason and used once can be just as
important as a test case that goes into a regression suite.

16(7) Normally, they would add a test case into the regression suite
unless it’s too complex to run. This is not a matter of the test case’s
value.

17(3) The value of a test case increases somewhat if it is added to a
regression suite.

 126

18(1) Whether the test case is eligible to be added into a regression
suite cannot significantly affect the value of the test case because all
test cases are added to a regression suite.

19(3) If a test case is added into a regression suite, it indicates that
the test case has higher value than test cases that are not added to a
regression suite.

20(5) The value of a test case is determined up front and a high-value
test case is added into the regression suite. Value is not determined
by the decision of whether or not to add it to the regression suite.

21(4) Adding a test case into a regression suite could be the standard
to evaluate the value of a test case.

21(9) A test case that is targeted to a part of an application is just as
valuable as a test case that goes into a regression suite.

21(10) Another use of the unit value of a test case function is to
reevaluate the test cases in an existing regression suite.

22(5) The most valuable test cases are the ones that go into the
regression suite.

27(8) The value of a test case may or may not depend on whether it is
added to a regression suite up front.

Revenue
Generation

The impact of
revenue
generation
resulting from the
test case failing or
unfailing to find
bugs in an
application.

3(2) Priority is influenced by the amount of revenue that the software
will generate.

3(3) The value of a test case is directly related to the amount of
revenue that the software under test is likely to generate. The more
revenue the software is likely to generate, the more value the test case
possesses. This could be an additional factor in the unit value
function.

3(6) Try to remove as much subjectivity as possible from the
function. Objectivity can be based at least partly on revenue
projections of the software.

5(5) Revenue generation is not a separate factor but is part of priority.

8(7) We need a new factor in the unit value function that considers
the revenue generation of the software under test.

10(1a) Priority significantly influences the judgment of unit value. In
practice, priority of a test case always associates with revenue
generation.

12(2) Although revenue generation is a terrific factor to evaluate the
unit value, cash flow is also a valuable factor. In some cases, a
successful test case ensuring that the application runs normally could
result in a large cash flow, which is extremely important for a
company to be operating persistently.

 127

17(2) Risk partly depends on the potential revenue that the software
will produce.

18(5) The value of the test case depends on the amount of revenue
that the software is projected to bring in.

20(1) The business value of an application is the key issue and is
more important than the revenue it brings in. Some applications are
internal and do not bring in revenue.

21(1) The unit value of a test case depends on the business value of
the software. Generating revenue is only part of the value of the
software along with other business “options.”

25(3) The unit value is a comprehensive concept that presents more
than just the revenue generation from the application.

27(4) Revenue generation is a factor in projecting the value of test
case, but it is not the only factor to be considered.

Simplicity
To simplify the
function with
main factors.

1(1) To keep the function simple, expand out TR and UC in
accompanying tables.

7(6) Do not promote any line items in the table into the main
function. It would get too complicated.

8(6) Keeping function simple would help people readily comprehend
the meaning of the function. Do not promote table rows into the
function.

10(8) Leaving the function with a limited number of factors while
providing the table below it with further details is good.

13(5) Leave the main function as it is. Don’t expand any of the
factors in the main function.

13(6) Leave the function as multiple factors; don’t try to combine
them.

14(7) Do not expand TR and UC in the function.

16(6) It is not necessary to expand the UC factor in the main
function.

21(8) Too much detail in the function could be confusing.

25(8) Keeping the equation simple without promoting the TR line
items to the equation is a good way to present the unit value of a test
case.

 128

Priority

A factor has
relative higher or
lower level of
importance
against another
factor.

1(2) Risk is not equal to priority. The priority should be considered as
a separate factor in the function.

2(1) A priority factor should be added in the function. Priority might
be rated as high, medium, and low.

4(1) The priority of a test case is influenced by how critical the
application feature is that the software is implementing, such as
handling customer complaints, dealing with cutting edge
technologies being used by competitors, etc.

5(1) The priority of a test case should be a separate factor. But the
relationship between revenue generation and priority is very limited,
since it is hard for a testing group to figure out the amount of revenue
generated by a feature or application.

8(1) Priority always accompanies risk, especially in internal risk and
external risk. It is hard to list priority separately. The standards of
priority vary from one case to another. Sometimes satisfying
customers, which is an element of external risk, is prioritized. In
some other situations, release time, which is an element of internal
risk, is considered the most critical element.

8(2) Every risk is a matter or measure of priority. They are two sides
of the same coin.

9(1) Risk significantly differs from priority. Priority is an aspect of
risk. Priority varies in different contexts. Priority might focus on the
number of customers affected or what would happen to the brand if a
problem hit the media.

9(2) Priority is a piece of both Internal Risk (IR) and External Risk
(ER).

9(4) Death is a top priority. Safety is a top priority.

10(2) The priority of a piece of software falls if there are work-
arounds that render the software unnecessary.

11(1) The priority of a test case is not the same as the unit value of a
test case, but they are closely related to each other.

12(1) Priority can be based on different reasons. How important is
the software to the customer, to the business, or to marketing efforts?

14(4) Priority is a part of risk; high priority leads to high risk. For
example, the media attention of the software would raise the ER of
the test case.

 129

ROI

The value
estimation of a
test case from
ROI angle.

6(1) Consider a Return of Investment (ROI) approach when
considering the unit value of a test case. This entails a relative value
by ratio in which the Unit Value (UV) of the function comes out an
absolute value. Instead of subtracting the unit cost from the risk
factors, consider dividing the risk factors by the unit cost. The
numerator and denominator do not have to be of the same units.
· Case 1: If UV of test case A is 100 (whole risk 200 – unit cost 100)
and UV of test case B is almost 100 (whole risk 100 – unit cost 1),
plus ROIs of the two cases are equal, how does a test case stand out
via the evaluation approaches? The problem is that the UV is
basically the same for both but the numbers are very different.
· Case 2: test case A and B have the same unit value as well as ROIs,
but the vast distinction between A and B is that A need to spend 100
in unit costs and the return period is very long, but B costs much less
and the return period is pretty short. How to demonstrate the time
issue in the function in the case of UV and ROI being equal?

	VALUE ESTIMATION OF SOFTWARE FUNCTIONAL TEST CASES
	Recommended Citation

	Microsoft Word - Dissertation_Yao_Shi_20200410.docx

