IDENTIFICATION OF EPIGENETIC MARKERS FOR ALLERGIC DISEASES VIA GENOME-SCALE ASSOCIATION STUDIES

Aniruddha Rathod

Follow this and additional works at: https://digitalcommons.memphis.edu/etd

Recommended Citation

Rathod, Aniruddha, "IDENTIFICATION OF EPIGENETIC MARKERS FOR ALLERGIC DISEASES VIA GENOMESCALE ASSOCIATION STUDIES" (2021). Electronic Theses and Dissertations. 2729.
https://digitalcommons.memphis.edu/etd/2729

This Dissertation is brought to you for free and open access by University of Memphis Digital Commons. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of University of Memphis Digital Commons. For more information, please contact khggerty@memphis.edu.

GENOME-SCALE ASSOCIATION STUDIES

by

Aniruddha Bhadresh Rathod

A Dissertation
Submitted in Partial Fulfillment of the
Requirements for the Degree of
Doctor of Philosophy

Major: Epidemiology

The University of Memphis
December 2021

Copyright© Aniruddha Bhadresh Rathod All rights reserved

Dedication

I dedicate this dissertation to my loving and caring wife, Rutu Rathod. Her love, support and care have been invaluable to my success, and it is my honor to share this accomplishment with her. I thank my parents, Dr. Bhadresh Rathod and Poorvaxi Rathod for instilling the value of education and hard work in me, and for their constant love, support, and encouragement. I also thank my sister Mrunande and her husband Michael III, for their support throughout this journey. I also dedicate this achievement to our son, Shivansh Rathod. He has given us the most beautiful moments by coming in our lives. I am forever indebted for the unconditional love and support of my family.

Acknowledgements

I gratefully acknowledge the guidance and support of my dissertation committee members Hongmei Zhang (Dissertation Chair), Wilfried Karmaus, Fawaz Mzayek, Syed Hasan Arshad, and John W. Holloway. I am extremely grateful to my advisor, Dr. Hongmei Zhang for her instrumental support, patience, and encouragement. I would like to thank her for her time to teach me and her invaluable guidance throughout these studies. I extend my sincerest gratitude to Dr. Wilfried Karmaus for giving me opportunities to explore the field of epigenetics through the eye of epidemiology in the context of public health. I would like to particularly thank, Dr. John Holloway for his guidance and support to answer difficult questions throughout these studies. I highly acknowledge, Dr. Fawaz Mzayek and Dr. Hasan Arshad for their support and continuous feedback throughout these studies. I am truly appreciative of my entire committee for their mentorship, guidance, and their patience throughout this dissertation.

I am thankful to the School of Public Health (SPH) for providing all the support and building wonderful memories over the years. It was my privilege to be your student and I will forever be grateful to all the professors. I also extend my deepest gratitude to Dr. Rajesh Miranda from Texas A\&M University for opening the doors of his laboratory to me and introducing me to the field of research. He has been the most influential person in the field of science that I have come across. You continue to inspire me every day. A special thank you to a wonderful friend, mentor and colleague, Dr. Amanda Mahnke for her support both socially and professionally. I thank my SPH friends- Ashley Lauren Robison, Liang Li, Emily San Diego, Kristen Howell and Parnian Kheirkhah for being an extraordinary support system.

The studies conveyed in this publication was supported by the National Institute of Allergy and Infectious Diseases under Award Number R01 AI121226, R01 AI091905 and National Heart,

Lung, and Blood Institute under Award Number R01 HL132321. The UK Medical Research Council (MRC) and Wellcome (Grant's ref: 102215/2/13/2) and the University of Bristol provide core support for ALSPAC. A comprehensive list of grants funding is available on the ALSPAC website (http://www.bristol.ac.uk/alspac/external/documents/grant-acknowledgements.pdf). The author gratefully acknowledges the cooperation of the children and parents who participated in this study and appreciate the hard work of the Isle of Wight and ALSPAC research team in collecting data. We thank the High-Throughput Genomics Group at the Wellcome Trust Centre for Human Genetics (funded by Wellcome Trust grant reference 090532/Z/09/Z and MRC Hub grant G0900747 91070) for the generation of the methylation data. I am thankful to the HighPerformance Computing facility at the University of Memphis.

Abstract

Asthma is a global public health concern with limited preventive strategies. Recently, DNA methylation (DNAm) has been studied to understand the underlying pathogenesis of asthma. The role of DNAm in asthma acquisition from pre- to post- adolescence is unclear, and how its role changes from adolescence to adulthood is also unknown. The studies in this dissertation were carried out using data in two birth cohorts with one as a discovery cohort and the other as replication cohort. Longitudinal assessments in both cohorts revealed that the associations of DNAm at 62 Cytosine-Guanine sites (CpG sites) with asthma acquired during adolescence were different from those with asthma acquired in young adulthood since post-adolescence. Asthma can be atopic and non-atopic, and their underlying mechanisms are likely to be different in terms of DNAm markers. To this end, I further examined the mediating role of atopy in childhood on the association of DNAm in newborns with childhood asthma acquisition. I identified 30 CpGs that showed only indirect effects, i.e., DNAm in newborns at these CpGs might play a role in the development of atopic asthma with atopy being a mediator. Also, I found 103 CpGs showing only direct effects, which may contribute to the occurrence of non-atopic asthma. Asthma and rhinitis commonly coexist and share common biomarkers. I examined CpGs in newborns for their association in DNAm with these two allergic conditions during pre-adolescence. I detected 133 CpGs at birth that were associated with preadolescent asthma and/or rhinitis in both cohorts. Further, for all the studies, pathway enrichment analyses were conducted to understand the biological functionality of the identified CpGs. Additionally, biological relevance of the CpGs showing consistent findings between the two cohorts was evaluated using gene expressions. Findings from this dissertation will help identify epigenetic biomarkers for asthma acquisition and coexisting asthma and/or rhinitis as well as understand the underlying pathogenesis of these

conditions. More importantly, it will benefit our future efforts in allergic disease prediction and consequently prevention of these common allergic conditions.

Table of Contents

List of Tables vii
List of Figures ix
Abstract x
Chapter 1: Introduction 1
Chapter 2: Aims and Research question 5
Chapter 3
Background 8
Methods. 9
Results. 16
Discussion 31
Chapter 4
Background 36
Methods 38
Results 43
Discussion 49
Chapter 5
Background 54
Methods. 55
Results 59
Discussion 65
Chapter 6: Summary 68
References 71
Appendix. 81

List of Tables

Table		Page
Table 1(A)	Asthma acquisition and never asthma subjects included in the current study compared to subjects in the complete cohort for 10-18 period (IOWBC).	16
Table 1(B)	Asthma acquisition and never asthma subjects included in the current study compared to subjects in the complete cohort for 18-26 period (IOWBC).	17
Table 2(A)	Top 10 most statistically significant GO terms and its biological processes from pathway enrichment analysis along with the number of genes in each pathway for males, for the identified CpGs.	27
Table 2(B)	Top 10 most statistically significant GO terms and its biological processes from pathway enrichment analysis along with the number of genes in each pathway for females, for the identified CpGs.	28
Table 3	Differentially methylated regions (DMRs) for asthma acquisition identified by DMRcate package for males and females.	29
Table 4	Top 5 most significant associations of DNAm with expression of neighboring mapped genes.	30
Table 5	Comparison of analytical subsample with complete cohort	43
Table 6(A)	Top 10 most statistically significant GO terms and its biological processes from pathway enrichment analysis in each pathway for males, for the identified CpGs.	45
Table 6(B)	Top 10 most statistically significant GO terms and its biological processes from pathway enrichment analysis in each pathway for females, for the identified CpGs.	45
Table 7	Top 5 most significant associations of DNAm with expression of neighboring mapped genes in each sex.	47
Table 8	Comparison of analytical subsample with complete cohort	60
Table 9(A)	Top 10 most statistically significant GO terms and its biological processes from pathway enrichment analysis in each pathway for males, for the CpGs that passed screening	61
Table 9(B)	Top 10 most statistically significant GO terms and its biological processes from pathway enrichment analysis in each pathway for females, for the CpGs that passed screening.	62
Table 10	Top 5 most significant associations of DNAm with expression of neighboring mapped genes in each sex.	64

List of Figures

Figure		Page	
Figure 1	Overview of epigenetic mechanisms. Epigenetic processes contribute to sustaining patterns of gene expression that define a cell's function.	$\mathbf{2}$	
Figure 2 (A)	Bar graph showing the direction of DNAm effect at each of the 17 identified CpGs in IOWBC from pre- to post- adolescence asthma acquisition in males. Gene names corresponding to each CpG site are also labeled on the X- axis.	$\mathbf{1 9}$	
Figure 2(B)	Bar graph showing the direction of effect at each of the 17 identified CpGs in IOWBC from post-adolescence to adulthood asthma acquisition in males. Gene names corresponding to each CpG site are also labeled on the X- axis.	$\mathbf{2 0}$	
Figure 3(A):Bar graph showing the direction of effect at each of the 98 identified CpGs in IOWBC from pre- to post-adolescence asthma acquisition in females. Gene names corresponding to each CpG site are also labeled on the X-axis.	$\mathbf{2 1}$		
Figure 3(B)	Bar graph showing the direction of effect at each of the 17 identified CpGs in IOWBC from post-adolescence to adulthood asthma acquisition in females. Gene names corresponding to each CpG site are also labeled on the X- axis Bar graph showing the main effects of DNAm on asthma acquisition at each of the 38 identified CpGs in IOWBC in males. Gene names corresponding to each CpG site are also	$\mathbf{2 2}$	$\mathbf{2 3}$
Figure 4(A)labeled on the X-axis. Bar graph showing the main effects of DNAm on asthma acquisition at each of the 52 identified CpGs in IOWBC in females. Gene names corresponding to each CpG site are also labeled on the X-axis.	$\mathbf{2 4}$		
Figure 4(B)			
Figure 5	Flowchart of the study design and brief summaries of findings in each step. Structural equation analyses model with atopy at 10 years as the mediator in the association of DNAm in newborns with asthma acquisition at young adulthood	$\mathbf{4 1}$	$\mathbf{2 6}$

Chapter 1. Introduction

Epigenetics represents mitotically heritable and reversible changes in gene expression without changes to the DNA sequence [1, 2]. It was first coined as the 'study of the interactions between genes and their products that bring the phenotype into being' by Conrad Hal Waddington in 1942 [3]. It plays an important role in transcription, nuclear organization, genome stability and imprinting [1]. Environmental exposures and genetics only partly explain the pathogenesis of a disease, and recent epidemiologic research have demonstrated epigenetics as an important missing link in the etiological puzzle between genes and phenotypes/exposures [1, 2, 4]. Epigenetic epidemiology has the potential to help explain underlying biological mechanisms for diseases. It may play a mechanistic etiologic role by serving as a biomarker of exposure or disease [1]. Altered epigenetics has been shown to be associated with several exposures and diseases [5]. The clinical utility of epigenetic data may include its use as a biomarker for diagnosis, prognosis, treatment or as a performance metric in clinical trials [1]. DNA methylation, histone modifications, microRNA and prions are different types of epigenetic mechanisms (Figure 1). Most epigenetic studies focus on DNA methylation (DNAm) because of its long-term stable nature and availability of several analytical platforms $[2,6]$.

Figure 1. Overview of epigenetic mechanisms. Epigenetic processes contribute to sustaining patterns of gene expression that define a cell's function. DNA methylation (labeled C in the figure) affects transcription without altering the coding sequence of genes. When placed within the promoter of a gene (CpG islands), it favors reduced transcription (gene switch-off) [7].

DNAm at Cytosine-phosphate-Guanine (CpG) site is an addition of a methyl group (CH3) to the DNA strand. DNAm is mitotically heritable, highly stable and plays an important role in gene expression regulation [6]. As DNAm can be influenced by both genetic and environmental factors, it can be an exposure (risk factor), mediator or consequence of a disease. Therefore, DNAm can serve as biomarker of exposure or risk factor, and disease. Several epigenome-wide association studies (EWAS) have demonstrated the association between DNAm and exposures such as smoking [8-12], body mass index [13-16], air pollution [17-19], breastfeeding [20-23], alcohol [24-26], drugs [27, 28]. Similarly, studies have shown association of DNAm with several diseases such as cancers [29, 30], autoimmune [31-34], allergic [35-37], metabolic [38-41],
neurological [42, 43], cardiovascular [44-46] diseases. My dissertation focuses on allergic diseases including asthma and rhinitis.

The prevalence of allergic diseases is increasing globally with children and young adults bearing a large burden. According to World Allergy Organization and World Health Organization, more than 300 million people worldwide suffer from asthma and 400 million from rhinitis [47]. Asthma is responsible for 250,000 deaths annually worldwide [47]. The prevalence of allergic diseases is steadily increasing in the United States and 23 million people have asthma, of which 7 million are children [47]. Allergic diseases are a global public health concern and preventive efforts are needed to reduce its prevalence, death, and economic costs [47]. Several epidemiologic studies have identified prenatal and early-life environmental exposures such as tobacco smoke [47-49], air pollution [47, 48, 50, 51], allergen exposure [48,52] that contribute towards the increasing burden of asthma and allergic diseases. Control measures for these exposures will prevent the incidence of asthma and allergic diseases. Apart from these exposures, genetics also play an important role in the susceptibility and development of asthma and allergic diseases. Studies have identified several loci related to asthma [53-56] and allergic rhinitis [57]; however, these explain only a fraction of variation in the disease risk and its replication in other populations have largely failed [58]. Because of these limitations, recently there has been an increased focus towards epigenetic studies to understand the pathogenesis of asthma and allergic rhinitis.

Several EWAS studies have demonstrated association of DNAm with the status of asthma [59$62]$ and rhinitis [35, 63, 64], and identified biomarkers for the same. However, the role of DNAm in asthma acquisition, especially during the critical transition period from pre- to postadolescence, and how its role changes over time, e.g., from adolescence to adulthood, is
unknown. Atopy is a risk factor for asthma acquisition [65], but asthma can also be non-atopic. The underlying mechanisms of different types of asthma may be explainable by DNAm at earlier ages. Additionally, co-existence of asthma and rhinitis is common and have been known to share common genetic variants [57]. However, it is unclear whether these two conditions share common epigenetic factors, and if so, whether they are consistent with findings in genetic studies. These "unknowns" motivated the projects of this dissertation, as findings in these areas will improve our understanding of allergic disease development from the angle of epigenetics and benefit allergic disease prediction at a much earlier age. In the next chapter, I will outline the projects and related study questions.

Chapter 2. Aims and Research Questions

The proposed dissertation is comprised of three aims with an emphasis on identification of epigenetic markers that has the potential to explain the underlying pathogenesis of allergic diseases in childhood and early adulthood. In aim 1, using an epigenome-wide approach, I will identify novel epigenetic loci during pre- and post- adolescence that are associated with asthma acquisition during adolescence and in later adulthood in males and females separately. In aim 2, using a longitudinal epigenome-wide approach, the direct and indirect effects of DNA methylation (DNAm) in newborns on asthma acquisition across adolescence via pre-adolescence atopy will be evaluated in both sexes separately. In aim 3, I will examine sex-specific associations of DNAm in newborns and pre-adolescence asthma and rhinitis in an epigenomewide study. Pathway enrichment analysis and association of gene expression with DNAm will be assessed for all the aims to gain better understanding elucidating the biological significance of the identified CpGs.

Abstract

Aim 1 To examine the association of pre- and post-adolescence DNAm with asthma acquisition during adolescence and in later adulthood.

Research question 1.1: Are pre- and post-adolescence (age 10 and 18 years) DNAm associated with asthma acquisition during adolescence (age 10 to 18 years) and in later adulthood (age 18 to 26 years) for each gender in discovery cohort, Isle of Wight Birth Cohort (IOWBC)?

Research question 1.2: Does replication analysis in an independent cohort, ALSPAC support the findings from the IOWBC?

Research question 1.3: Are there any differentially methylated regions (DMRs) at preadolescent DNAm associated with asthma acquisition from pre- to post-adolescence.

Research question 1.4: What are the biological pathways of genes corresponding to the identified CpGs in IOWBC?

Research question 1.5: Is there an association between DNAm at ages 10 and 18 years and gene expression of nearby genes i.e., within 250 kb upstream and downstream region of the identified CpGs at 26 years?

Aim 2

To examine whether atopy in childhood mediates the association of DNAm in newborns with asthma acquisition across adolescence.

Research question 2.1: Does pre-adolescence atopy mediate the association of DNAm in newborns with asthma acquisition across adolescence in IOWBC?

Research question 2.2: Can the findings of research question 2.1 be replicated in ALSPAC?
Research question 2.3: What are the biological pathways of genes corresponding to the identified CpGs in IOWBC?

Research question 2.4: Is there an association between DNAm at age 26 years and gene expression of nearby genes i.e., within 250 kb upstream and downstream region of the identified CpGs at 26 years?

Aim 3
 To examine sex-specific associations of DNAm in newborns with pre-adolescence asthma and/or rhinitis

Research question 3.1: Is the association of DNAm in newborns with pre-adolescence asthma and/or rhinitis sex-specific?

Research question 3.2: What are the biological pathways of genes corresponding to the identified CpGs in IOWBC?

Research question 3.3: Is there a genetic influence on the identified CpGs, i.e., are they methQTLs?

Research question 3.4: Is there an association between DNAm at age 26 years and gene expression of nearby genes i.e., within 250 kb upstream and downstream region of the identified CpGs at 26 years?

Research question 3.5: Is there a genetic influence on DNAm at the replicated CpGs, i.e., are there any methQTLs?

Chapter 3

Aim 1: To examine the association of pre- and post-adolescence DNAm with asthma acquisition during adolescence and in later adulthood.

Background

Asthma is the most prevalent chronic respiratory condition[66] affecting 1-18\% of population in several countries[67]. Over recent decades, childhood asthma has become a major public health issue[68] with an increasing prevalence worldwide[69]. Environmental factors such as air pollution, infectious agents, and tobacco smoke have been shown to be associated with the development of asthma[70].

DNA methylation (DNAm), a robust and stable epigenetic mark, represents a potential mechanism mediating environmental impacts on human diseases[71]. Recent studies suggest that DNAm signatures of cytosine-phosphate-guanines (CpG) sites are associated with asthma[58, 61, 72]. Since peripheral blood is readily obtainable and easy to handle in laboratory processing, and information of immune cells in blood is relevant to asthma pathogenesis[73], DNAm in peripheral blood cells has been commonly examined in epigenome-wide studies of asthma[62, 74, 75].

While the development of asthma clearly reflects the combination of inherited susceptibility and environmental exposures, the pathogenesis and underlying biological mechanisms involved in the onset of asthma later in life are not well understood. Asthma most commonly develops during early childhood[76], and the prevalence of asthma depends on gender and age. Asthma is more prevalent among pre-adolescent boys, while it becomes more prevalent among females after puberty with prevalence in males and females being approximately equal in adulthood[77-

79]. However, the pathogenesis of these sex differences in asthma across adolescence and adulthood remains unclear.

Although previous studies have demonstrated association between DNAm and asthma, the role that DNAm plays in asthma acquisition, especially during the critical transition period from preto post- adolescence, and how its role changes over time, e.g., from adolescence to adulthood, are unknown. Findings from this type of studies will not only identify important markers for asthma acquisition, and more importantly, benefit our future efforts in asthma prediction and consequently asthma prevention. To this end, in this study, for each gender, we examined the association between DNAm at pre-adolescence and asthma acquisition from pre- to postadolescence (10 to 18 years), and between DNAm at post-adolescence and asthma acquisition from post-adolescence to adulthood ($18-26$ years), utilizing genome-wide DNA methylation data. We hypothesized that DNAm at specific CpG sites measured before disease onset, either in pre- or post-adolescence would be associated with asthma acquisition both during adolescence and in later adulthood and that there would be differences in such DNA methylation patterns by time window (adolescence or post-adolescence) and by gender. Additionally, differentially methylated regions (DMRs) were identified to incorporate CpGs located close to one another which may be associated with asthma acquisition as a group or cluster of CpGs. These CpGs might have been missed when looking at the associations using individual CpG sites.

Methods

IOWBC study population

The study population comprised of children born between January 1, 1989 and February 28, 1990 on the Isle of Wight (IoW), UK (IOWBC)[80]. Out of the 1,536 children born and recruited, 1,456 in IOWBC were available for further follow-up at ages $1,2,4,10,18$ and 26
years. Ethics approval was obtained by the local research ethics committee (NRES Committee South Central - Hampshire B) (06/Q1701/34)[81]. The details on study design, enrollment, and follow-up procedures for the IoW birth cohort (IOWBC) are described elsewhere [80, 82].

Asthma acquisition

Questionnaires that included the questions of the International Study of Asthma and Allergy in Childhood (ISAAC) was filled by parents/participants at ages 4, 10, 18 and 26 years[61, 83-85]. Asthma was defined as "physician diagnosed asthma" and "wheezing or whistling in the chest in the last 12 months" or "current treatment for asthma." Subjects with asthma at age four years were excluded. The outcome used in this study, asthma acquisition, was defined as individuals who were asthma free at age 10 years and recorded as having asthma at age 18 years (no \rightarrow yes). The same definition was applied for asthma acquisition from 18 to 26 years (no \rightarrow yes). Subjects who did not have asthma at both the transition periods were taken as reference ($n \mathrm{n} \rightarrow \mathrm{no}$).

Covariates

Atopic status was evaluated at ages 10 and 18 years based on results from skin prick test (SPT) on 11 common allergens (house dust mite, cat dander, dog dander, grass pollen mix, tree pollen mix, Alternaria alternate, Cladosporium herbarium, cow's milk, hen's egg, peanut, and cod). Being SPT positive to one or more of the 11 allergens was treated as being atopic. Active smoking status at 18 and 26 years was recorded as 'yes' if the participant was a current smoker at that respective age. Second-hand smoke exposure was coded at age 18- and 26-years using information obtained from smoking status of parents and other smokers in the household. To evaluate the contribution of transition periods, 10-18 and 18-26 years, to the association of DNAm with asthma transition, transition periods will be included in the analyses as adjusting factors.

DNA methylation

Using a standardized salting procedure, DNA was extracted from peripheral whole blood samples collected at ages 10 and 18 years[86]. Fluorometric quantitation was used to estimate DNA concentration. Methylation levels at each CpG site was measured using Illumina Infinium HumanMethylation450 or MethylationEPIC BeadChips (Illumina, Inc., San Diego, ca, USA). Probes that did not reach a p-value of 10^{-16} in at least 95% of samples were exclude. The same criterion was applied to exclude samples, i.e., samples with p-value $>10^{-16}$ in at least 95% of the CpGs. CpGs on sex chromosome were excluded. Probes that contained single nucleotide polymorphisms (SNPs) within 10 base pairs of a targeted CpG site with a minor allele in at least 0.7% subjects (corresponding to at least 10 subjects in IoW with $n=1,456$) were excluded due to their influence on the measures of DNAm.

Using CPACOR pipeline, DNA methylation (DNAm) was pre-processed for the data from both HumanMethylation450 and MethylationEPIC. DNAm intensities were quantile normalized using the minfi R computing package [87]. The quantile normalized intensities at autosomal probes were then converted to beta values. β values is a ratio of methylated (M) over the sum of methylated and unmethylated (U) probes $(\beta=M /[c+M+U])$, where c is a constant to prevent from zero in the denominator. Often β values suffer from severe heteroscedasticity, so in statistical analyses, logit transformed DNAm levels, i.e., M values, were used. Principal components (PCs) inferred based on control probes were used to represent latent chip to chip and technical variation. We determined PCs based on DNAm at shared control probes of the two DNAm platforms HumanMethylation450 and MethylationEPIC. In total, 195 shared control probes were used to calculate the control probe PCs with top 15 PCs included in our study to represent latent batch factors [88]. In this study, CpG sites common between Illumina 450k platform and EPIC
platform will be examined. In additions, CpG sites were excluded if the minor allele frequency of a probe SNP at that site is $>0.7 \%$ (i.e., $\sim \geq 10$ out of 1456 subjects expected to have the minor allele in the cohort) and the probe SNP was within 10 base pairs of the targeted CpG site. After quality control and pre-processing, $442,475 \mathrm{CpG}$ sites will be included in subsequent analysis. Since whole blood is a mixture of distinct cell types[89], there is a need to adjust for cell type composition to account for their potentially confounding effects[90]. Cell type proportions were estimated using the Bioconductor minfi package[91] [92]. The estimated cell type proportions of CD4+ T cells, natural killer cells, neutrophil, B cells, monocytes, and eosinophil cells will be included in the analyses as confounders.

Genome-wide RNA-seq gene expression data generation

Gene expression levels from peripheral blood samples collected at 26 years from the IOWBC was determined using paired-end ($2 \times 75 \mathrm{bp}$) RNA sequencing with the Illumina Tru-Seq Stranded mRNA Library Preparation Kit with IDT for Illumina Unique Dual Index (UDI) barcode primers following the manufacturer's recommendations. All samples were sequenced twice using the identical protocol and for each sample the output from both runs were combined. FASTQC were run to assess the quality of the FASTQ files (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Reads were mapped against Human Genome (GRch37 version 75) using HISAT2 (v2.1.0) aligner [93]. The alignment files, produced in the Sequence Alignment Map (SAM) format, were converted into the Binary Alignment Map (BAM) format using SAMtools (v1.3.1) [94]. HTseq (v0.11.1) was used to count the number of reads mapped to each gene in the same reference genome used for alignment [95]. Normalized read count FPKM (Fragments Per Kilobase of transcript per Million
mapped reads) were calculated using the countToFPKM package (https://github.com/AAlhendi1707/countToFPKM) and their log-transformed values were used for data analysis.

Statistical analyses

Research question 1.1: Are pre- and post-adolescence DNAm associated with asthma acquisition during adolescence and in later adulthood for each gender in discovery cohort, Isle of Wight Birth Cohort (IOWBC)?

By regressing the M -values (base-2 logit transformed beta values of DNAm) at each CpG site on the aforementioned 15 PCs and 6 cell type proportions, we obtained cell-type and batch-adjusted DNAm (residuals) at each of the 442,475 CpG sites for each gender in IOWBC. Screening of CpG sites was done to obtain DNAm potentially associated with asthma acquisition from pre- to post-adolescence using simple linear regressions. Here, asthma acquisition from 10 to 18 years of age was the independent variable and DNAm at age 10 years was the dependent variable. The analysis was stratified by gender. For the screening purpose, multiple testing was adjusted by controlling false discovery rate (FDR) at a higher rate of 0.2 . CpG sites that pass screening were included in subsequent analyses.

Logistic regressions with repeated measurements were applied to the CpGs that pass screening to evaluate the association of asthma acquisitions (no \rightarrow yes) at two transition periods (10-18 years and 18-26 years) with DNAm at earlier ages (10 and 18 years, respectively). Adolescence is a period accompanied by significant physical and mental development and such changes gradually stabilize as children enter post-adolescence [96, 97]. The unique phenomenon in each transition period motivated a study question, i.e., are the associations between asthma acquisition and DNAm different at different transition periods, in addition to the main effects of DNAm? To
answer this question, I included an interaction term in the final model to test interaction effects between DNAm and transition period. For both situations (the models with main effects only, and the models that included interaction effects) multiple testing was adjusted by controlling FDR of 0.05 .

Research question 1.2: Does replication analysis in an independent cohort, ALSPAC support the findings from the IOWBC?

CpGs showing significant interaction effects with transition periods in IOWBC were further tested in the Avon Longitudinal study of Parents and Children (ALSPAC) cohort [98-100]. Pregnant women residing in the Southwest of England and expecting to deliver between April 1, 1991 and December 31, 1992 were eligible to be recruited. Of the 14,541 pregnant women eligible for recruitment, 13,761 were included in the study with 10,321 participants having their DNA sampled. DNAm in the ALSPAC cohort was assessed using the Infinium HumanMethylation450 BeadChip. DNAm data on 604 children in the ALSPAC cohort are available at ages 7 and 17 years [101]. DNAm pre-processing was performed by correcting for batch effects using the minfi package [87] and removing CpGs with detection p-value ≥ 0.01. Samples were flagged that contained sex-mismatch based on X-chromosome methylation. Estimated cell type proportions of CD4+ T cells, natural killer cells, neutrophil, B cells, monocytes, and granulocytes cells were used in the analyses to adjust for cell heterogeneity. Asthma acquisition status from 7 to 17 years, and 17 to 22 years was included in the analysis. It was defined as having no asthma at age 7 years and having asthma at age 17 years. The same definition was applied for asthma acquisition from 17 to 22 years. Logistic regression with repeated measurements were used with similar covariates (as those in IOWBC) available in ALSPAC, i.e., atopy status at age 7 years and second-hand smoke exposure status at age 17 and

24 years. Please note that the study website contains details of all the data that is available through a fully searchable data dictionary and variable search tool (http://www.bristol.ac.uk/alspac/researchers/our-data/).

Research question 1.3: Are there any differentially methylated regions (DMRs) at preadolescent DNAm associated with asthma acquisition from pre- to post-adolescence?

Differentially methylated regions (DMRs) were identified using the DMRcate package in $\mathrm{R}[102]$. To secure enough CpGs for DMR enrichment analysis and to avoid missing important DMRs, CpGs with DNAm (in M values) associated with asthma acquisition via logistic regression at FDR of 0.4 were included in the analysis.

Research question 1.4: What are the biological pathways of genes corresponding to the identified CpGs in IOWBC?

For CpGs showing associations of DNAm with asthma acquisition status, the genes annotated to the CpGs will be summarized along with information such as gene location, chromosome number based on Illumina's manifest file and USCS genome browser (https://genome.ucsc.edu). Pathway enrichment analysis of the identified CpGs were conducted using the gometh function [103] in the R package to better understand their biological functionality.

Research question 1.5: Is there an association between DNAm at ages 10 and 18 years and gene expression of nearby genes i.e., within 250 kb upstream and downstream region of the identified CpGs at 26 years?

Genes annotated to the replicated CpGs associated with asthma acquisition were extracted along with information such as gene location, chromosome number from the Illumina's manifest file or UCSC genome browser (https://genome.ucsc.edu/). To assess the biological relevance of these CpGs, linear regressions were applied to test the association of DNAm (in M-values;
independent variable) at ages 10 and 18 years separately at each CpG site with expression of its neighboring genes (250k base pairs [bps] upstream and 250 k bps downstream of the CpG site) in blood at 26 years of age. Paired DNAm and expression data of $\mathrm{n}=140$ subjects were included in the analyses. As we previously have found the association between gene expression and DNAm to be different in both males and females, the analysis was stratified by sex [61, 104].

Results

Since our study focused on asthma acquisition starting from age 10 years in IOWBC, subjects with asthma at four years were excluded. Participants in IOWBC with both asthma transition and DNAm data available at ages 10 and 18 years were included in the study. The subsamples represented the complete IOWBC (such that no asthma at age 4 years) with respect to asthma acquisition, active and second-hand smoking, and atopy status, (Table 1 A \& B). The flow chart of samples included in the study is in Supplement Figure S3

Table 1(A): Asthma acquisition and never asthma subjects included in the current study compared to subjects in the complete cohort for 10-18 period (IOWBC).

Variables N (\%)		Females			Males		
		$\begin{aligned} & \hline \text { Subsample } \\ & \mathrm{N}=102 ; \\ & \mathrm{n}(\%) \end{aligned}$	Complete cohort $\mathrm{N}=431 ;$ $\mathrm{n}(\%)$	p-value	$\begin{aligned} & \text { Subsample } \\ & \mathrm{N}=133 ; \\ & \mathrm{n}(\%) \end{aligned}$	Complete cohort $\mathrm{N}=402$ $\mathrm{n}(\%)$	p-value
Asthma transition	Acquisition	7 (6.86)	41 (9.51)	0.40	11 (8.27)	26 (6.47)	0.98
	Never Asthma	95 (93.14)	$\begin{aligned} & 390 \\ & (90.49) \end{aligned}$		122 (91.73)	$\begin{aligned} & 376 \\ & (93.53) \end{aligned}$	
Active smoking	Yes	25 (23.36)	$\begin{aligned} & \hline 120 \\ & (25.86) \end{aligned}$	0.59	33 (21.85)	$\begin{aligned} & \hline 105 \\ & (22.98) \end{aligned}$	0.48
	No	82 (76.64)	$\begin{aligned} & 344 \\ & (74.14) \end{aligned}$		118 (78.15)	$\begin{aligned} & 352 \\ & (77.02) \end{aligned}$	
Secondhand smoking	Yes	54 (50)	$\begin{aligned} & 212 \\ & (44.92) \end{aligned}$	0.34	66 (43.42)	$\begin{aligned} & 204 \\ & (43.59) \end{aligned}$	0.78
	No	54 (50)	$\begin{aligned} & 260 \\ & (55.08) \end{aligned}$		86 (56.58)	$\begin{aligned} & 264 \\ & (56.41) \end{aligned}$	

Table 1(A): Continue

Variables N (\%)		Females		Males		
Atopy	Yes	$14(12.96)$	$76(19.1)$	0.14	$42(27.81)$	108
		No	$94(87.04)$	322		$109(72.19)$
			(80.9)			0.97
					(72.09)	

Table 1(B): Asthma acquisition and never asthma subjects included in the current study compared to subjects in the complete cohort for 18-26 period (IOWBC).

Variables N (\%)		Females			Males		
		$\begin{aligned} & \text { Subsample } \\ & \mathrm{N}=156 ; \\ & \mathrm{n}(\%) \end{aligned}$	Complete cohort $\begin{aligned} & \mathrm{N}=330 ; \\ & \mathrm{n}(\%) \\ & \hline \end{aligned}$	p-value	$\begin{aligned} & \text { Subsample } \\ & \mathrm{N}=121 ; \\ & \mathrm{n}(\%) \end{aligned}$	Complete cohort $\mathrm{n}=286$ $\mathrm{n}(\%)$	p-value
Asthma transition	Acquisition	5 (3.21)	12 (3.64)	0.81	3 (2.48)	10 (3.5)	0.59
	Never Asthma	$\begin{aligned} & 151 \\ & (96.79) \end{aligned}$	$\begin{gathered} 318 \\ (96.36) \end{gathered}$		$\begin{aligned} & 118 \\ & (97.52) \end{aligned}$	$\begin{aligned} & 276 \\ & (96.5) \end{aligned}$	
Active smoking	Yes	46 (27.54)	$\begin{aligned} & 107 \\ & (26.95) \end{aligned}$	0.89	46 (31.94)	$\begin{aligned} & 99 \\ & (28.95) \end{aligned}$	0.51
	No	$\begin{aligned} & 121 \\ & (72.46) \end{aligned}$	$\begin{aligned} & 290 \\ & (73.05) \end{aligned}$		98 (68.06)	$\begin{aligned} & 243 \\ & (71.05) \end{aligned}$	
Second- hand smoking	Yes	35 (20.96)	$\begin{aligned} & \hline 98 \\ & (24.75) \end{aligned}$	0.33	27 (18.75)	$\begin{aligned} & \hline 80 \\ & (23.39) \end{aligned}$	0.26
	No	$\begin{aligned} & 132 \\ & (79.04) \end{aligned}$	$\begin{aligned} & 298 \\ & (75.25) \end{aligned}$		$\begin{aligned} & 117 \\ & (81.25) \end{aligned}$	$\begin{aligned} & 262 \\ & (76.61) \end{aligned}$	
Atopy	Yes	55 (29.73)	$\begin{aligned} & 115 \\ & (32.63) \end{aligned}$	0.36	73 (42.2)	$\begin{aligned} & 146 \\ & (46.65) \end{aligned}$	0.35
	No	130(70.27)	$\begin{aligned} & 227 \\ & (66.37) \end{aligned}$		100 (57.8)	$\begin{aligned} & 167 \\ & (53.35) \\ & \hline \end{aligned}$	

In total, 55 CpGs for males and 183 CpGs for females in IOWBC passed screening based on their potential associations with asthma acquisition from 10 to 18 years of age. These CpGs were included in subsequent analyses for their longitudinal associations of DNAm with asthma acquisition from pre- to post-adolescence and from post-adolescence to young adulthood and for
interaction effects between DNAm and transition periods, using logistic regressions with repeated measurements.

After adjusting for multiple testing by controlling FDR of 0.05 , statistically significant interaction effects of DNAm and transition period were observed at 17 CpGs in males and 98 CpGs in females (no common CpGs identified between males and females), controlling for atopy status, active and second-hand smoking (Figures 2 and 3, Supplemental Table S1). Of the 17 identified CpGs in males, 4 CpGs (23.5%) were located in the promoter region, while for the 98 CpGs identified in females, a much larger portion of CpGs ($54 \mathrm{CpGs}, 55.1 \%$) were in the promoter region. For 7 of the 17 CpGs in males, an increase in DNAm is associated with an increased odds of asthma acquisition in the 10-18 transition period but decreased odds in the 1826 period (Figures 2A and 2B, Supplemental Table S1a). For 47 of the 98 CpGs in females, an increase in DNAm is associated with a decreased odds of asthma acquisition in the 10-18 transition period, but increased odds in the 18-26 period (Figures 3A and 3B, Supplemental Table S1b). In addition, the overall effect sizes at the first transition period were larger than the effect sizes in the second transition period.

Figure 2 (A): Bar graph showing the direction of DNAm effect at each of the 17 identified CpGs in IOWBC from pre- to post-adolescence asthma acquisition in males. Gene names corresponding to each CpG site are also labeled on the X -axis.

Figure 2(B): Bar graph showing the direction of effect at each of the 17 identified CpGs in IOWBC from post-adolescence to adulthood asthma acquisition in males. Gene names corresponding to each CpG site are also labeled on the X -axis.

Figure 3(A): Bar graph showing the direction of effect at each of the 98 identified CpGs in IOWBC from pre- to post-adolescence asthma acquisition in females. Gene names corresponding to each CpG site are also labeled on the X -axis.

Figure 3(B): Bar graph showing the direction of effect at each of the 17 identified CpGs in IOWBC from post-adolescence to adulthood asthma acquisition in females. Gene names corresponding to each CpG site are also labeled on the X -axis.

For CpGs not showing significant interaction effects between DNAm and transition period, we assessed the main effects of DNAm on asthma acquisition via logistic regression models with repeated measures. After adjusting for multiple testing at $\mathrm{FDR}=0.05$, we identified 38 CpGs in males and 52 CpGs in females (Figure 4, Supplemental Table 3S.2) showing association of DNAm with asthma acquisition status (no common CpGs between males and females). Of the 38 CpGs in males, 13 CpGs (34.2%) were in the promoter region, while for the 52 CpGs identified in females, a much larger portion of CpGs ($25 \mathrm{CpGs}, 48.1 \%$) were in the promoter region. At 25 of the 38 CpGs in males, an increase in DNAm is associated with a decreased odds of asthma acquisition (Supplemental Table S2a). At 45 of the 52 CpGs in females, an increase in DNAm is associated with a decreased odds of asthma acquisition (Supplemental Table S2b). Overall, the
effect sizes of DNAm on asthma acquisition were larger in males than in females.

Figure 4(A): Bar graph showing the main effects of DNAm on asthma acquisition at each of the 38 identified CpGs in IOWBC in males. Gene names corresponding to each CpG site are also labeled on the X -axis.

Figure 4(B): Bar graph showing the main effects of DNAm on asthma acquisition at each of the 52 identified CpGs in IOWBC in females. Gene names corresponding to each CpG site are also labeled on the X -axis.

Altogether, we identified 115 CpGs (17 in males) showing interactions with transition period and 90 CpGs (38 in males) showing main effects (excluded CpGs with interaction effects), leading to a total of 205 identified CpGs. We further tested these CpGs in the ALSPAC cohort. For the 115 CpGs (17 in males) showing interaction effects in IOWBC, consistent directions of interaction effects were observed at 9 CpGs in males, with 1 CpG being statistically significant, and 53 CpGs in females, with 3 CpGs being statistically significant, compared to the directions of associations identified in the IOWBC (Supplemental Tables S1a and S1b). Of the 9 CpGs showing consistent interactions in males, 2 CpGs (22.2%) were in the body region of gene, while of the 53 such CpGs in females, $34(64.2 \%)$ were in the promoter region. For the 90 CpGs (38 in males) showing main effects on asthma acquisition, 13 CpGs in males (3 CpGs [23.1\%] in the
promoter region) and 37 CpGs in females (19 CpGs [51.4\%] in the promoter region) showed consistent directions of main effects (Supplemental Table S2a and S2b) between the two cohorts.

The flowchart of the study along with brief summaries of results is in Figure 5.

Figure 5. Flowchart of the study design and brief summaries of findings in each step.
\# - Out of 38 CpGs after excluding significant interaction
\$ = Out of 85 CpGs after excluding significant interaction

Pathway enrichment analyses was conducted based on CpGs identified for each sex (55 in males and 150 in females with 205 CpGs in total) to better understand their biological functionality. These CpGs were mapped to 54 and 149 genes in males and females respectively. Using these CpGs in the gometh function in R, we identified 212 biological processes in males and 228 in females that were enriched at p -value of 0.05 . Although none of the biological processes survived multiple testing at FDR of 0.05 , genes involved in the top processes for each sex based on statistical significance (top 10 processes in Table 2) were potentially important and may deserve a further assessment. For males, multiple biological processes among the top 10 for males focus on catabolic processes (breakdown glucose for energy), while for females they are biosynthetic processes (synthesizing glucose from food). Among these top processes identified for males, 13 genes corresponding to the identified CpGs were involved in those processes, and for females, 60 genes were involved (Supplemental Table S3).

Table 2(A): Top 10 most statistically significant GO terms and its biological processes from pathway enrichment analysis along with the number of genes in each pathway for males, for the identified CpGs.

GO term	Biological processes	P-value	No. of Genes
GO:1901575	organic substance catabolic process	0.0005	12
GO:0046657	folic acid catabolic process	0.001	1
GO:0042219	cellular modified amino acid catabolic process	0.002	1
GO:0038111	interleukin-7-mediated signaling pathway	0.002	2
GO:1990261	pre-mRNA catabolic process	0.002	1
GO:0071544	diphosphoinositol polyphosphate catabolic process	0.002	1
GO:0042365	water-soluble vitamin catabolic process	0.003	1
GO:0009056	catabolic process	0.003	13
GO:0098760	response to interleukin-7	0.003	2

Table 2 (A): continue

GO term	Biological processes	P-value	No. of Genes
GO:0098761	cellular response to interleukin-7	0.003	2

Table 2(B): Top 10 most statistically significant GO terms and its biological processes from pathway enrichment analysis along with the number of genes in each pathway for females, for the identified CpGs.

GO term	Biological processes	P-value	No. of Genes
GO:0019438	aromatic compound biosynthetic process	0.0004	57
GO:0032774	RNA biosynthetic process	0.0007	49
GO:0008589	regulation of smoothened signaling pathway	0.0007	5
GO:0018130	heterocycle biosynthetic process	0.0008	56
GO:1903506	regulation of nucleic acid-templated transcription	0.0008	49
GO:2001141	regulation of RNA biosynthetic process	0.0008	49
GO:1901362	organic cyclic compound biosynthetic process	0.001	57
GO:0034654	nucleobase-containing compound biosynthetic process	0.001	55
GO:0006355	regulation of transcription, DNA-templated	0.001	48
GO:0009757	hexose mediated signaling	0.001	2

For DMR enrichment analysis, we used CpGs in the screening process that were statistically significant at FDR of 0.4 to cover epigenetic information comprehensively on asthma acquisition. In total, 427 CpGs in males and 372 CpGs in females were included in the DMR analysis. We identified three DMRs in males and three DMRs in females after adjusting for multiple testing at $\mathrm{FDR}=0.05$ level based on the Stouffer test statistics. (Table 3).

Table 3: Differentially methylated regions (DMRs) for asthma acquisition identified by DMRcate package for males and females.

Sex	Chr. ${ }^{\text {s }}$	Start ${ }^{\#}$	End ${ }^{\text {® }}$	Gene ${ }^{\text {£ }}$	CpGs ${ }^{*}$	P -value
M	3	196065106	196065569	TM4SF19	$\begin{aligned} & \operatorname{cg} 05556202, \\ & \operatorname{cg} 05445326 \end{aligned}$	$4.89 * 10^{-206}$
	12	57472396	57472611	TMEM194A	$\begin{aligned} & \operatorname{cg} 10919222, \\ & \text { cg09934365 } \end{aligned}$	$3.03 * 10^{-150}$
	17	27899874	27899966	TP53I13	$\begin{aligned} & \operatorname{cg} 05877788, \\ & \operatorname{cg} 04498198 \end{aligned}$	$2.69 * 10^{-53}$
F	2	224903369	224903487	SERPINE2	$\begin{aligned} & \operatorname{cg} 15353444, \\ & \operatorname{cg} 11719885 \end{aligned}$	$5.84 * 10^{-177}$
	1	156721844	156722068	HDGF	cg04402095, $\operatorname{cg} 18593717$	$5.35 * 10^{-162}$
	17	79633496	79633565	$\begin{aligned} & \text { CCDC137, } \\ & \text { C17orf90 } \end{aligned}$	$\begin{aligned} & \operatorname{cg} 199963747, \\ & \operatorname{cg} 11820993 \end{aligned}$	$1.70 * 10^{-160}$

${ }^{\text {s }}$ Chr.: Chromosome
\#Start: Start position of the region
${ }^{\&}$ End: End position of the region
${ }^{£}$ Gene: Genes corresponding to the CpGs in the region
${ }^{¥}$ CpGs: CpGs in the region

To assess the biological relevance of CpGs showing consistent association with asthma acquisition in both cohorts, we evaluated the association of DNAm at the identified 113 CpGs (22 in males) with the expression of genes that the CpGs were mapped to. Nearby genes were also examined defined as genes in a window of 500k base pairs (bps) of each identified CpG site (250k bps up and down stream). In this analysis, DNAm was measured at 10 and 18 years and gene expression levels were assessed at age 26 years. Significant effects of DNAm at 10 years were observed at 14 CpGs on their association with expression of 29 genes in males, and at 73 CpGs with expression of 321 genes in females. Similarly, for DNAm at 18 years, significant associations were found at 10 and 51 CpGs with expression of 29 and 117 genes in males and
females, respectively (Table 4 and Supplemental Table S4). Of the 350 genes' expression (29 in males) associated with DNAm at 10 years, increased DNAm was associated with increased expression of 310 genes (18 in males). Similarly, of the 146 gene expressions associated with DNAm at 18 years, increased DNAm was associated with increased expression of 91 genes (24 in males). Of the CpGs showing associations with expression of their neighbouring genes, 8 genes in males and 39 in females were commonly identified at both ages (10 and 18 years). Among the top 5 most significant associations for each age and sex, 4 genes associated with 3 CpGs in males were found to be common at both ages, i.e., they may represent stable biological relevance of the CpGs during adolescence.

Table 4: Top 5 most significant associations of DNAm with expression of neighboring mapped genes.

CpG site	DNAm age in years	Gene name	Estimate	P-value	Sex
cg06684259	10	ACAA2	0.57	0.0006	Males
	18		0.84	3.40×10^{-5}	Males
	10	ACP2	0.67	0.001	Males
	18				Males
			0.60	2.08×10^{-5}	
cg09852187	10	ABCD3	0.53	0.0006	Males
	18				Males
			0.48	3.40×10^{-5}	
$\operatorname{cg} 08354614$	10	CPM	0.42	0.003	Males
cg12009697	10	ABAT	0.27	0.004	Males
	18				Males
			0.40	0.0003	

Table 4: Continue

CpG site	DNAm age in years	Gene name	Estimate	P-value	Sex
cg25518386	10	AKAP10	0.89	1.24×10^{-10}	Females
cg26791126	10	AIM1	0.30	5.14×10^{-10}	Females
cg24173551	10	ALKBH5	0.75	5.64×10^{-10}	Females
cg06060137	10	$A C E$	0.84	1.31×10^{-9}	Females
cg25156443	10	ACVRL1	0.87	2.27×10^{-9}	Females
cg14056357	18	ACSF3	0.45	0.0002	Males
cg13063405	18	C5	-0.11	0.0002	Females
		MRC2	-0.11	0.0008	Females
cg02516257	18	ZHX3	0.73	0.0003	Females
cg00907843	18	SOS1	0.67	0.0007	Females
cg04535371	18	AKR7A3	-0.75	0.002	Females

Note: Top 5 most statistically significant associations for each sex and age are shown here.

Discussion

Strengths and limitations

The strength of this study exists in its focus on longitudinal assessment of asthma acquisition at two important transition periods, pre- to post-adolescence and to later adulthood, along with DNAm at two critical time points, pre- and post-adolescence. Although for the CpGs discovered in IOWBC, more than 50% showed consistent findings in ALSPAC, statistical significance was observed at a small number of CpG sites. One reason for this lack of significance might be the age differences between the two cohorts. In addition, there is a potential concern of data double dipping. However, we do not see this as a significant concern in that the statistical model applied
in the screening process (linear regression without covariates such as atopic and smoking status) was different from the model in the final analyses (logistic regression with potential covariates). Another potential limitation is in the design of data analyses, which focused on each individual CpG site. However, CpG sites might be correlated and work jointly to impact the risk of asthma acquisition, which certainly deserves future investigations accompanied by carefully designed analytical plans. Finally, both cohorts, although independent, are mainly Caucasians. Thus, our findings are likely limited to only this population.

Innovation

To our knowledge, this is the first study to examine the epigenetics of asthma acquisition from pre- to post- adolescence, and post-adolescence to young adulthood with respect to gender and transition period specificity.

Conclusion

We assessed the longitudinal association of DNAm measured at earlier ages with asthma acquisition at later ages for each sex based on data in two independent cohorts with IOWBC as the discovery cohort and ALSPAC as the replication cohort. In the IOWBC, at 205 CpGs , preadolescence DNAm was shown to be associated with the odds of asthma acquisition from pre- to post-adolescence, and post-adolescence DNAm was associated with asthma acquisition from post-adolescence to adulthood. At 112 of these 205 CpGs, (54.6\%), consistent associations were observed in the ALSPAC cohort, including statistically significant findings at 7 CpGs. These 112 CpGs included 62 CpGs (9 in males) showing transition-specific associations with asthma acquisition in that the association of DNAm with asthma acquisition at these 62 CpGs was different between the pre- to post-adolescence transition period and the post- to adulthood transition period. The identified CpGs based on two independent cohorts have a potential to
guide future studies in asthma acquisition prediction at different transition periods. Assessment of biological relevance of the identified CpGs indicated a potential epigenetic regulatory functionality of these CpGs on expression of their mapped and neighboring genes using a window size of 500 kbps .

Our findings also indicated significant differences between males and females. For the 62 CpGs showing consistent transition-specific effects between the two cohorts, at most of the CpGs in males, we found that an increase in DNAm was associated with an increased odds of asthma acquisition during the period from pre- to post-adolescence transition, while for the next transition period, at most of the CpGs, increased DNAm was associated with decreased odds. However, in females, at most of the CpGs, the associations were opposite compared to those in males; in females, an increase in DNAm was shown to be associated with a decreased odds of asthma acquisition from pre- to post-adolescence at most CpGs , but with increased odds at most of the CpGs in the transition period from post-adolescence to adulthood. Among the 50 CpGs (13 in males) showing main effects on asthma acquisition, although at most of the CpGs, an increase in DNAm was associated with a decreased odds of asthma acquisition for both males and females, the proportion of such CpGs was larger in females than in males. Furthermore, the effect sizes were overall weaker in females than in males. Before adolescence, asthma is more prevalent in males but during adolescence, more females acquire asthma and the prevalence of asthma in females surpasses that of males. The unique CpGs identified for each sex without any overlap and the inconsistent associations of DNAm with asthma acquisition between males and females seemed to be related to the gender-reversal phenomenon of asthma prevalence from preto post-adolescence.

In order to make sure that the identified CpGs are unique to each sex, the CpGs that were replicated in both cohorts were re-analyzed in opposite sex. For this, CpGs identified in males were evaluated for their association with asthma acquisition in females, and vice-versa. But I did not identify significant associations in either sex through this re-analysis. This ensures that the identified CpGs are unique to each sex.

Although we did not identify statistically significant biological processes after adjusting for multiple testing, biological processes involved in host immune function related to IL7 (i.e., interleukin-7-mediated signaling pathway, response to interleukin-7, cellular response to interleukin-7) were among the top processes determined based on statistical significance. IL7 signaling has been suggested to promote immunopathogenesis of asthma [105, 106], indicating the potentially informativity of the identified CpGs on asthma acquisition. In addition, the TMEM194A gene identified based on DMR analyses in males has been previously shown to be associated with asthma in GWAS catalog [107]. For females, gene SERPINE2 in one of the identified DMRs has been connected with asthma based on genetic studies [108]. The gene $A K A P 1$, mapped to the CpG showing consistent and statistically significant interaction effects in both cohorts in females, has been showed to be associated with asthma in the Agricultural Lung Health Study[109]. Although there was no overlap in identified CpGs between males and females, the gene ENO1 was among the mapped genes of the associated CpGs in both sexes. The detection of IgG autoantibodies to alpha-enolase has been shown to be the most significant indicator for distinguishing severe asthma from mild-to-moderate asthma (OR=5.2, $95 \% \mathrm{CI}=2.1-12.9, \mathrm{p}$-value $<.001$). It has been shown that alpha-enolase, an autoantigen, was associated with severe asthma[110]. The connection of gene ENO1 with asthma acquisition
shown in our study is consistent with its differentiation between severe and mild-to-moderate asthma.

Chapter 4

Aim 2: To examine whether atopy in childhood mediates the association of DNAm in newborns with asthma acquisition across adolescence.

Background

Asthma is a common chronic respiratory condition and a major public health concern. Globally, it is ranked 16th among the leading causes of years lived with disability and 28th among the leading causes of burden of disease, as measured by disability-adjusted life years [111]. Atopy is defined as tendency to produce immunoglobulin $\mathrm{E}(\operatorname{IgE})$ antibodies in response to small amounts of common environmental exposures. It is a risk factor of asthma incidence [112] and affects 10$30 \%$ of general population in developed countries [113]. A number of studies have shown atopic diseases in early childhood are associated with asthma development later in life [114-116]. Carroll et.al. have shown a dose-response relationship in the association of atopic sensitization and asthma among children, i.e., the severity of asthma increases with increase in atopic sensitization to allergens [117].

For childhood asthma, a gender reversal in asthma prevalence from pre- to post-adolescence has been observed; more boys remit asthma than girls during adolescence whereas more girls acquire asthma than boys [118-121]. The underlying mechanisms involved in these sex differences of asthma across adolescence are unclear. The pathogenesis of asthma reflects a combination of genetic and epigenetic components; however, genetics explain only a fraction of variation in asthma risk. In addition to the effect of genetic factors, their interaction with changing environmental factors may also be responsible for atopy susceptibility and consequently contribute to the increase in prevalence of atopy-related disorders [122]. Several studies have explained the role of epigenetics in response to environmental factors in the development of
asthma [123-125]. One of the widely studied epigenetic mechanism is DNA methylation (DNAm) [71, 126]. DNAm or longitudinal changes in DNAm at specific cytosine-phosphateguanine (CpG) sites have been shown to be associated with both atopy [127-130] and asthma or asthma acquisition $[58,59,61,75,129,130]$ in children and young adults. Among these studies, most utilized cross-sectional design to assess the associations of DNAm with atopy or asthma, except for the studies of Danielewicz, et al. and Reese, et al. Danielewicz, et al., via an epigenome-wide association study of 96 mother-child pairs, identified 83 CpG sites in cord blood of newborns that were associated with maternal atopy [127]. Reese et.al. demonstrated using 8 cohort studies that 9 CpGs in newborns were differentially methylated in relation to asthma [59]. However, no studies have focused on identification of methylation sites in newborns that are associated with these chronic conditions at later age. DNAm in embryonic and pluripotent stem cell is close to zero [131] and it changes extensively from fertilization to implantation [132]. DNAm in newborns has been shown to be influenced by several maternal factors, such as smoking during pregnancy, pre-pregnancy BMI and gestational weight gain [133-136], potentially increase their offspring's risk of atopy and asthma. DNAm in newborns, as a memory of accumulated prenatal exposure, may serve as effective markers and be applied to predict the risk of later age atopy and asthma at a much earlier age.

However, as a risk factor of asthma, the role of atopy on the association of DNAm in newborns with asthma at a later age is unknown. Asthma can be atopic and non-atopic, and the underlying mechanisms is likely to be different in terms of DNAm markers. That is, at certain CpGs, it is possible that effects of DNAm at these CpGs in newborns on asthma at a later age are not mediated by atopy, and these CpGs might play a role in the development of non-atopic rather than atopic asthma. All these motivated the current study. In particular via path analyses, we
examine whether atopy in childhood mediates the association of DNAm in newborns with asthma acquisition at a later age. In addition to using SPT to determine atopic status, specific IgE have been used to assess the status of allergic sensitization against a specific allergen. The agreement between these two methods has been demonstrated in the literature [137]. Furthermore, one of our earlier studies showed that specific IgE-based and SPT-based assessment of atopic status were consistent in terms of their association with DNAm [138]. Such an agreement further supported the use of atopic status determined based on SPT in this study. We specifically focus on asthma acquisition from pre- to post-adolescence to identify epigenetic markers in newborns to facilitate our understanding of the phenomenon on gender reversal of asthma prevalence during this period. Direct and indirect effects (via pre-adolescence atopy status) of DNAm in newborns on asthma acquisition are evaluated using path analyses, based on which we identify potential epigenetic markers for asthma acquisition and at least some of the markers are associated with asthma acquisition via atopy.

Methods

IOWBC Study Population, asthma acquisition and gene expression at 26 years were explained previously in Chapter 3.

Covariates

Information regarding sex, breastfeeding duration in weeks and age at specific pubertal events, i.e., age at onset of voice deepening in males and age at onset of menarche in females, was extracted from questionnaire data. Socio-economic status (SES) was defined based on household income, number of rooms and maternal education. Active smoking status at 18 years was recorded as 'yes' if the participant was a current smoker. Second-hand smoke exposure at 18 years was determined using information obtained for tobacco smoke exposure from mother,
father, others, or outside home. Smoke exposure at 18 years was defined by combing active and second-hand smoke exposure at 18 years.

DNA methylation

DNA was extracted from Guthrie cards (blood collected within 5 days of birth) using standard procedures. One microgram of DNA was bisulfite-treated for cytosine to thymine conversion using the EZ 96-DNA methylation kit (Zymo Research, Irvine, CA, USA) for each sample, following the manufacturer's standard protocol. Genome-wide DNAm for each CpG was assessed using the Infinium MethylationEPIC BeadChip (Illumina, Inc, San Diego, CA, USA), which interrogate $>850,000 \mathrm{CpG}$ sites. Arrays were processed using a standard protocol as described elsewhere [139], with multiple identical control samples assigned to each bisulfite conversion batch to assess assay variability.

Preprocessing and quantile-normalization of DNAm intensity data was done similarly as explained previously for ages 10 and 18 years. The R package ComBat [140] was then applied to the M-values to adjust for batch effects. Cell type compositions were adjusted similarly as explained for ages 10 and 18 years.

Statistical analysis

Chi-square tests for categorical variables and one-sample t-tests for continuous variables were applied, stratified by sex to examine whether the analytic sample ($\mathrm{n}=796$) reasonably represents the complete cohort ($\mathrm{n}=1456$). Considering the observed phenomenon of gender reversal in asthma prevalence from pre-adolescence to post-adolescence, we performed the analyses separately for each sex.

Research question 2.1: Does pre-adolescence atopy mediate the association of DNAm in newborns with asthma acquisition across adolescence in IOWBC?

Screening for CpGs related to atopy status at 10 years and asthma acquisition at 18 years

Regression of M-values of DNAm at each CpG site on the 6 cell type proportions [92] was done to obtain cell-type-adjusted DNAm (residuals) for each sex, and residuals were used in the subsequent analyses. Genome-wide screening of CpGs in newborns for their potential association with atopic status at 10 years and asthma acquisition from 10 to 18 years was done separately using an R package, ttScreening [141]. The screenings were performed on 551,710 CpGs separately for each sex.

In addition, via epigenome-wide DNAm data, we identified candidate CpGs based on detection of differentially methylated regions (DMRs) for their association with asthma acquisition from 10 to 18 years using DMRff package in R [142]. DMRff overcomes the shortcomings of DMRcate by consistently controlling for false positive rates, and more importantly, considers the uneven distribution of CpGs on the arrays. CpGs in DMRs that were statistically significant, after adjusting for multiple testing by controlling false discovery rate (FDR) of 0.2 , along with CpGs that passed $t t$ Screening, were included in subsequent analysis as candidate CpGs.

Structural equation analyses
We evaluated the mediating effects of atopy at 10 years in the association of DNAm in newborns and asthma acquisition from 10 to 18 years using structural equation analyses (Figure 6), with potential confounders included in each path. The path coefficients (direct and indirect estimates) represent a partial correlation between the independent and dependent variables after adjusting for confounders and covariates in the model [143]. An R package, MplusAutomation, was
implemented to iteratively call MPlus from R to perform structural equation analyses with each CpGs as an independent variable (Figure 6) [144]. Goodness of fit was determined using Chisquare test p-value $>0.05, \mathrm{RMSEA} \leq 0.06, \mathrm{TLI} \geq 0.95$, and $\mathrm{CFI} \geq 0.95$ [145].

Figure 6: Structural equation analyses model with atopy at 10 years as the mediator in the association of DNAm in newborns with asthma acquisition at young adulthood $a=$ effects of DNAm in newborns on atopic status at 10 years, controlled for socio-economic status (SES) and breastfeeding duration $\mathrm{b}=$ effects of atopy at 10 years on asthma acquisition from 10 to 18 years, controlled for breastfeeding duration, socio-economic status (SES), smoke exposure at 18 years, pubertal events (age at onset of voice deepening in males and age at onset of menarche in females) $\mathrm{c}=$ direct effects of DNAm in newborns on asthma acquisition from 10 to 18 years

Research question 2.2: Can the findings of research question 2.1 be replicated in ALSPAC?

CpGs in newborns showing association with asthma acquisition from 10 to 18 years via atopy at 10 years were further tested in an independent cohort, the Avon Longitudinal Study of Children and Parents (ALSPAC) [98-100]. DNAm from cord blood in the ALSPAC cohort was assessed using the Infinium HumanMethylation450 BeadChip. The pre-processing of DNAm was performed using the minfi package [87] and CpGs with detection p -value ≥ 0.01 were excluded. Samples that contained sex-mismatch based on X-chromosome methylation were also excluded. In total, 420,399 probes are available for analysis after excluding probes that failed quality control. Estimated cell type proportions of CD4+ T cells, natural killer cells, B cells, monocytes, and granulocytes cells were adjusted to control for cell heterogeneity in the analysis. DNAm in
newborns was included in our study and its residuals were calculated by regression of M -values on cell type proportions (cell-type adjusted DNAm).

Asthma acquisition was assessed from 7 to 17 years, i.e., not having asthma at 7 years and having asthma at 17 years (no \rightarrow yes). Identical structural equation analyses_models with comparable covariates available in ALSPAC, including SES, breastfeeding duration, smoke exposure at 15 and 17 years and pubertal events were used.

Research question 2.3: What are the biological pathways of genes corresponding to the identified CpGs in IOWBC?

Using the screened CpGs in newborns showing potential association with atopy and/or asthma acquisition, the genes annotated to the CpGs were summarized based on Illumina's manifest file. Pathway enrichment analysis of the genes were conducted using gometh package [146] in R software [147] using statistical significance level of 0.05.

Research question 2.4: Is there an association between DNAm at age 26 years and gene expression of nearby genes i.e., within 250 kb upstream and downstream region of the identified CpGs at 26 years?

Genes annotated to the replicated CpGs showing indirect and direct effects on asthma acquisition were extracted along with information such as gene location, chromosome number from the Illumina's manifest file or UCSC genome browser (https://genome.ucsc.edu/). To assess the biological relevance of these CpGs, linear regressions were applied to test the association of DNAm (in M- values; independent variable) at age 26 years at each CpG site with expression of its neighboring genes (250 k base pairs [bps] upstream and 250 k bps downstream of the CpG site) in blood at 26 years of age. Paired DNAm and expression data of $n=140$ subjects were included
in the analyses. As we previously have found the association between gene expression and DNAm to be different in both males and females, the analysis was stratified by sex [61, 104].

Results

We included 401 male and 395 female participants in our study. Our subsample represented the complete cohort in terms of variables included in our study, shown by p-value >0.05 in Table 5 . The flow chart of sample selection for the present study is in Supplement Figure S4.

Table 5: Comparison of analytical subsample with complete cohort

Variables		Males			Females		
Categorical variables		$\begin{aligned} & \text { Subsample } \\ & (\mathrm{n}=285) ; \\ & \mathrm{n}(\%) \end{aligned}$	Complete cohort ($\mathrm{n}=401$); n (\%)	P- value	$\begin{aligned} & \text { Subsample } \\ & (\mathrm{n}=323) ; \\ & \mathrm{n}(\%) \end{aligned}$	Complete cohort $(\mathrm{n}=395) ;$ $\mathrm{n}(\%)$	Pvalue
Asthma transition	Acquisition	27 (9.47)	36 (5.87)	0.23	43 (13.31)	59 (9.50)	0.28
	Never asthma	$\begin{aligned} & 258 \\ & (90.53) \end{aligned}$	$\begin{aligned} & 473 \\ & (77.16) \end{aligned}$		$\begin{aligned} & 280 \\ & (86.69) \end{aligned}$	$\begin{aligned} & 485 \\ & (78.10) \end{aligned}$	
Atopy at 10 years	Yes	$\begin{aligned} & 111 \\ & (31.18) \end{aligned}$	$\begin{aligned} & 160 \\ & (31.01) \end{aligned}$	0.96	87 (24.37)	$\begin{aligned} & 119 \\ & (22.88) \end{aligned}$	0.61
	No	$\begin{aligned} & 245 \\ & (68.82) \\ & \hline \end{aligned}$	$\begin{aligned} & 356 \\ & (68.99) \\ & \hline \end{aligned}$		$\begin{aligned} & 270 \\ & (75.63) \\ & \hline \end{aligned}$	$\begin{aligned} & 401 \\ & (77.12) \end{aligned}$	
Socioeconomic status	Low	61 (15.52)	$\begin{aligned} & \hline 106 \\ & (15.5) \end{aligned}$	0.68	48 (12.37)	$\begin{aligned} & 103 \\ & (15.30) \end{aligned}$	0.38
	Mid	303 (77.1)	$\begin{aligned} & 517 \\ & (75.58) \end{aligned}$		$\begin{aligned} & 307 \\ & (79.12) \end{aligned}$	$\begin{aligned} & 520 \\ & (77.27) \end{aligned}$	
	High	29 (7.38)	61 (8.92)		33 (8.51)	50 (7.43)	
Smoke exposure (18 years)	Yes	$\begin{aligned} & \hline 241 \\ & (65.85) \end{aligned}$	$\begin{aligned} & \hline 428 \\ & (65.64) \end{aligned}$	0.95	$\begin{aligned} & \hline 250 \\ & (66.31) \end{aligned}$	$\begin{aligned} & \hline 451 \\ & (68.33) \end{aligned}$	0.51
	No	$\begin{aligned} & 125 \\ & (34.15) \\ & \hline \end{aligned}$	$\begin{aligned} & 224 \\ & (34.36) \\ & \hline \end{aligned}$		$\begin{aligned} & 127 \\ & (33.69) \\ & \hline \end{aligned}$	$\begin{aligned} & 209 \\ & (31.67) \end{aligned}$	
Continuous variables		$\begin{aligned} & \text { Mean } \pm \\ & \text { SD } \end{aligned}$	$\begin{aligned} & \text { Mean } \pm \\ & \text { SD } \end{aligned}$		$\begin{aligned} & \text { Mean } \pm \\ & \text { SD } \end{aligned}$	$\begin{aligned} & \text { Mean } \pm \\ & \text { SD } \end{aligned}$	
Age at puberty		$14.21 \pm$	$\begin{aligned} & 14.24 \pm \\ & 1.24 \end{aligned}$	0.67	$12.74 \pm$	$12.72 \pm$	0.69
Duration of breastfeeding		$\begin{aligned} & 14.95 \pm \\ & 14.18 \end{aligned}$	$\begin{aligned} & 14.55 \pm \\ & 14.62 \end{aligned}$	0.65	$\begin{aligned} & 14.37 \pm \\ & 15.05 \\ & \hline \end{aligned}$	$\begin{aligned} & 13.99 \pm \\ & 14.99 \\ & \hline \end{aligned}$	0.62

The t tScreening package in R was applied to 551,710 CpGs to identify candidate CpGs potentially associated with atopy at 10 years or asthma acquisition from 10 to 18 years, stratified by sex. In males, 126 CpGs were potentially associated with atopy at 10 years of age and 93 CpG with asthma acquisition from 10 to 18 years. In females, 196 CpGs were potentially associated with atopy and 182 CpG with asthma acquisition. No common CpGs were found between atopy and asthma in both sexes, and there were no overlapping CpGs between males and females. Thus, in total 597 CpGs passed screening by use of the $t t$ Screening package in R. To incorporate CpG sites located in differentially methylated regions into the analyses, we further analyzed DNAm at the genome-scale to identify DMRs with respect to asthma acquisition as an additional screening process. At $\mathrm{FDR}=0.2$, in males, we identified one DMR located on chromosome 6 . The region starts at nucleotide position 33255784 and covers 432 base pairs. Four CpGs, $\operatorname{cg} 17131579, \operatorname{cg} 19048360$ and $\operatorname{cg} 27355501$ on gene PFDN6 and $\operatorname{cg} 02272258$ on WDR46, are in this region. For females, no DMRs were identified. Altogether, 223 CpGs in males and 378 CpGs in females (in total, 601 CpGs) were analyzed for their enrichment in pathways or biological processes and tested via path analysis to assess their effects on asthma acquisition in adolescence via childhood atopy.

To better understand the biological function of the screened CpGs showing potential association with atopy and asthma acquisition (223 CpGs in males and 378 CpGs in females), pathway enrichment analyses was conducted for. The 223 CpGs in males were mapped to 192 genes and 378 CpGs in females to 324 genes. Using these CpGs in gometh package in R, we identified 152 biological processes in males and 215 in females that were enriched at p -value <0.05. Among the total 192 and 324 genes in males and females respectively, 45 genes in males and 82 in females
were involved in the identified pathways (Table 6 and Supplemental Table S5). No common biological processes were identified between males and females.

Table 6(A): Top 10 most statistically significant GO terms and its biological processes from pathway enrichment analysis in each pathway for males, for the identified CpGs.

GO term	Biological processes	P-value
GO:0046380	N-acetylneuraminate biosynthetic process	0.005
GO:0035459	vesicle cargo loading	0.006
GO:0042700	luteinizing hormone signaling pathway	0.007
GO:0033140	negative regulation of peptidyl-serine phosphorylation of	0.007
GO:0032462	STAT protein	regulation of protein homooligomerization
GO:0006045	N-acetylglucosamine biosynthetic process	0.008
GO:1901073	glucosamine-containing compound biosynthetic process	0.008
GO:0072665	protein localization to vacuole	0.009
GO:0044727	DNA demethylation of male pronucleus	0.009
GO:1903895	negative regulation of IRE1-mediated unfolded protein	
response	0.009	

Table 6(B): Top 10 most statistically significant GO terms and its biological processes from pathway enrichment analysis in each pathway for females, for the identified CpGs.

GO term	Biological processes	P-value
GO:1901985	positive regulation of protein acetylation	0.0009
GO:0033144	negative regulation of intracellular steroid hormone	0.001
GO:0051582	positive regulation of neurotransmitter uptake	0.002
GO:0045214	sarcomere organization	0.003
GO:0021853	cerebral cortex GABAergic interneuron migration	0.003
GO:1904936	interneuron migration	0.003
GO:0001188	RNA polymerase I preinitiation complex assembly	0.004
GO:0043438	acetoacetic acid metabolic process	0.004

Table 6(B): continue

GO term	Biological processes	P-value
GO:0035066	positive regulation of histone acetylation	0.004
GO:0021894	cerebral cortex GABAergic interneuron development	0.004

After controlling for confounders, DNAm in newborns at 68 CpGs in males and 41 CpGs in females were found to be indirectly associated with asthma acquisition via atopy. It is worth noting that at 60 of the 68 and 37 of the 41 CpGs, only indirect effects were statistically significant. Of these, at 21 CpGs in males and 18 CpGs in females, a higher DNAm was indirectly associated with an increased risk of asthma acquisition via an increased risk of atopy. Whereas, at the remaining CpGs (39 CpGs in males and 19 CpGs in females), an increase in DNAm was indirectly associated with decreased risk of asthma acquisition via decreased risk of atopy (Supplemental Table S6). DNAm at certain number of CpGs only showed direct effects on asthma acquisition; in particular, DNAm in newborns at 99 CpGs in males and 192 CpGs in females were directly associated with asthma acquisition from 10 to 18 years age. Of these, for 50 (51\%) CpGs in males and 72 (38\%) CpGs in females, an increase in DNAm was directly associated with an increase in the risk of asthma acquisition (Supplemental Table S7). CpGs showing indirect associations in IOWBC were further tested in the ALSPAC cohort to assess their potential of reproducibility. In ALSPAC cohort, DNAm data in newborns was available for 41 CpGs (of the 68 in IOWBC) in males and 18 CpGs (of the 41 in IOWBC) in females. Of these, the direction of indirect effects was consistent with those in IOWBC at 20 (49\%) CpGs in males and 10 (56\%) CpGs in females, although none of these CpGs were statistically significant. It is worth mentioning that of the 20 and 10 CpGs in males and females, all CpGs showed only indirect effects (Supplement Table S6). For CpGs showing only direct
effects in IOWBC (99 in males and 192 in females), DNAm in ALSPAC was available for 54 and 113 CpGs in males and females respectively. Of these, at 25 CpGs in males and 78 CpGs in females were in the same direction with one $\mathrm{CpG}(\operatorname{cg} 12938020)$ in males and 11 in females as being statistically significant (Supplemental Table S7).

The biological relevance of CpGs showing consistent direct and indirect effects on asthma acquisition between the two cohorts were further assessed. We evaluated the association of DNAm at the identified 133 CpGs (45 in males) with the expression of nearby genes (measure at age 26 years) that the CpGs were mapped to. To identify nearby genes, we used a range of 500 k base pairs (bps) (i.e., 250 k bps up and down stream) of the CpG site were also included in the assessment. In this analysis, DNAm and gene expression levels were assessed at age 26 years. Significant effects of DNAm were observed at 35 CpGs on their association with expression of 213 genes in males, and at 61 CpGs with expression of 357 genes in females (Table 7 and Supplement Table S8). Of the 570 genes' expression (213 in males) associated with DNAm, increased DNAm was associated with increased expression of 289 genes (130 in males).

Table 7: Top 5 most significant associations of DNAm with expression of neighboring mapped genes in each sex.

CpG site	Gene name	Estimate	P-value	Sex
cg25121621	COPRS	1	5.14×10^{-11}	Males
	PAGR1	1.34	1.48×10^{-9}	
	GDPD3	0.79	7.66×10^{-9}	
	TBX6	0.52	1.16×10^{-8}	
	LTN1	0.65	1.85×10^{-8}	
$\operatorname{cg} 04720635$	CCDC7	-1.84	3.01×10^{-26}	Females

Table 7: Continue

CpG site	Gene name	Estimate	P-value	Sex
	TP53INP2	-0.93	5.38×10^{-10}	Females
	MAK16	-0.69	2.16×10^{-9}	
	AQP3	-1.36	3.74×10^{-9}	
	N4BP2L2	-0.40	3.79×10^{-8}	

Note: Top 5 most statistically significant associations for each sex are shown here.
Connections with findings in Chapter 3. There was no overlap in the CpGs identified in this study (indirect or direct) and those identified in aim 1 for both sexes. DNAm in aim 1 was measured at 10 and 18 years while in aim 2 was at birth. The different sets of identified CpGs at this two time points may reflect potential dynamicity of epigenetic markers of asthma acquisition. Denser DNAm assessment between birth and age 10 years may help reveal the drifting effects of DNAm at birth as markers for asthma acquisition during adolescence. Atopic status at 10 years of age was included as a mediator in the assessment on the association of DNAm in newborns with asthma acquisition in aim 2 . While in aim 1, atopic status at 10 years was used as a confounder. It is possible that atopic status in aim 1 may have played a role as a mediator as well. However, since atopic status determination and DNAm assessment both happened at the same age (10 years), the role of atopic status as a mediator conceptually may not hold under this specific design, but rather a potential confounder as done in aim 1. Nevertheless, it will be of interest to examine the role of atopy as a mediator at different time points.

Discussion

Strengths and limitations

The availability of asthma status at two key time points, pre- and post-adolescence, offered the possibility to examine asthma acquisition during adolescence. Identification of DNAm markers in newborns provides epigenetic insights in fetal life that potentially offered us an opportunity to predict the risk of later-life allergic and respiratory morbidity much earlier before disease manifestation. This study design with a clear time order (birth, pre-adolescence, and postadolescence) allowed dissection of the total effects of DNAm in newborns on the risk of childhood asthma and whether and how atopy played a role in between.

Although the direction of mediating effects was consistent between the two cohorts at 16 and 7 CpG sites in males and females, respectively, none of them were statistically significant in the ALSPAC cohort. A possible reason for the statistical insignificance in the ALSPAC cohort might be due to the differences in the ages of assessment. In the ALSPAC cohort, atopy at age 7 years and asthma acquisition from 7 to 17 years was included, while in IOWBC, atopy was at age 10 years and asthma acquisition from 10 to 18 years. It is possible that the effect of DNAm in newborns on atopy was not strong enough to be detected at age 7 years. In addition, DNAm in IOWBC was measured in Guthrie cards while DNAm in ALSPAC was measured in cord blood. A recent study noted that when outcome or exposure are binary, agreement in findings between these two sources is expected to be at 70% of all CpGs under investigation [148]. This discrepancy between these two different sources of DNA might also have affected the statistical power in the replication analyses in the ALSPAC cohort.

In addition, our study evaluated the contributions of each individual CpG site. These CpGs may be correlated and jointly impact asthma acquisition, which could not be addressed by the present
study. Nevertheless, the consistency in the results between the two cohorts indicate that the identified CpGs in newborns are likely to play a role in the underlying mechanisms of asthma acquisition across adolescence. The recognized CpGs have a potential to improve our understanding of different underlying pathways (through atopy or not) from DNAm in newborns to asthma acquisition during adolescence.

Innovation

To our knowledge, this is the first study to examine the direct and indirect effects of DNAm in newborns on asthma acquisition from pre- to post-adolescence via pre-adolescence atopy status.

Conclusion

We examined the direct and indirect effects of DNAm in newborns on asthma acquisition from pre- to post-adolescence via pre-adolescence atopy status in two independent cohorts. In the IOWBC discovery cohort, DNAm in newborns at 68 CpGs in males and 41 CpGs in females were found to be indirectly associated with asthma acquisition from 10 to 18 years via atopy. Of these discovered CpGs that were available in the ALSPAC replication cohort (41 CpGs in males and 18 in females), 20 (49\%) CpGs in males and $10(56 \%)$ in females showed consistent direction of mediation effects in the ALSPAC, although not statistically significant. All these 30 CpGs showed only indirect effects. Of these 30 CpGs , at six CpGs in males and two CpGs in females, an increase in DNAm was indirectly associated with an increase in asthma acquisition risk via an increase in risk of atopy. For the remaining 22 of the 30 CpGs , an increase in DNAm was indirectly associated with decreased risk of asthma acquisition via decreased risk of atopy at 14 CpGs in males and eight CpGs in females.

In addition to these CpGs showing an effect on asthma acquisition via atopy, we discovered in total 291 CpGs (99 in males) that only had direct effects on asthma acquisition. Among these

291 CpGs, 103 showed consistent direction of effects in the ALSPAC cohort (25 in males) with one CpG site $(\operatorname{cg} 12938020)$ in males and 11 in females showing statistical significance at 0.05 , and at about half of these CpGs, a higher DNAm was associated with a higher odds of asthma acquisition.

Re-analysis of the DNAm sites (direct and indirect) replicated in both cohorts were evaluated in opposite sex. For this, CpGs identified in males were analyzed in females for their association with asthma acquisition, and vice versa. At 4 CpGs in males and 4 in females, statistically significant direct effects of DNAm on asthma acquisition were detected. Of these 8 CpGs (4 in males), 4 CpGs (3 in males) had same direction of effects. These 4 CpGs (cg18694780, $\operatorname{cg} 16622920, \operatorname{cg} 06365057$ in males and $\operatorname{cg} 13331559$ in females) may represent common underlying mechanisms for non-atopic asthma development during adolescence in both sexes. No such CpGs were identified for atopic asthma.

Assessment of biological relevance of the replicated CpGs indicated a potential epigenetic regulatory functionality of these CpGs on expression of their neighboring genes using a window size of 500 kbps . DNAm at 35 CpGs were associated with expression of 213 genes in males, and at 61 CpGs with expression of 357 genes in females. At 130 of the 213 genes in males and at 159 of the 357 genes in females, an increase in DNAm was associated with increased gene expression levels.

Allergic asthma can be atopic or non-atopic asthma. Atopic asthma is IgE mediated while nonatopic asthma is non-IgE mediated, i.e., eosinophilic or Th2 (T-helper 2) asthma.

We postulate that the 30 CpGs showing only indirect effects might play a role in the development of atopic asthma due to the involvement of atopy as a mediator. On the other hand, the 103 CpGs showing direct effects only may contribute to the occurrence of non-atopic asthma
since whether an individual was atopic or non-atopic did not influence the association of DNAm in newborns with asthma acquisition. CpG site cg12938020 showing significant direct effects in both cohorts is mapped to HOXD3 gene, and Wang et.al. have shown rs10954213, located in HOXD3 gene, influences IRF5 gene expression, which is further linked to asthma [149]. In the top biological pathways detected through enrichment analysis based on CpGs that passed screening, several pathways and biological processes drew our attention and have been suggested to play an important role in the pathogenesis of asthma and allergy. In relation to the luteinizing hormone signaling pathway identified based on CpGs that passed screening for males, studies have shown lower levels of luteinizing hormone in patients with bronchial asthma [150, 151]. Annotated genes of the CpGs that passed screening were possibly also enriched in two biological processes related to biosynthesis of glucosamine, N -acetylglucosamine biosynthetic process and glucosamine-containing compound biosynthetic process, and glucosamine has been linked to atopy and respiratory tract secretions of asthmatic patients [152]. For the identified pathways of positive regulation of protein acetylation and histone acetylation, they are likely to be involved in the development of allergic diseases and asthma [153, 154]. The airway epithelium from asthmatic subjects displayed increased histone acetylation levels compared to non-asthmatic subjects [155]. These previous studies support the findings from our enrichment analyses and strengthen the possible connection between those CpGs with atopy and/or asthma. PEX14 gene was involved in the top biological processes in males and also showed only indirect effects in both the cohorts. It has been found to be associated with asthma [156-158] as well as atopy [159]. TMED10, BFAR in males and OBSL1 in females were among the top 10 biological processes and showed only direct effects in both cohorts. Previous studies have shown TMED10 to be differentially- expressed in severe asthma [160], and OBSL1 is overexpressed in asthma
cases compared to controls (foldchange $=1.305937$, FDR p-value $=0.00217526$) [161]. These findings may support the role of PEX14 gene in atopic asthma while TMED10 and OBSL1 gene in non-atopic asthma. The identified CpGs from both cohorts may serve as biomarkers of atopic and non-atopic asthma. Future studies are encouraged to investigate the role of DNAm at these CpGs as mediator in the association of exposures during fetal development with asthma.

Chapter 5

Aim 3: To examine sex-specific associations of DNAm in Guthrie cards of newborns with pre-adolescence asthma and/or rhinitis

Background

Asthma affects more than 300 million people worldwide [162], and is ranked $16^{\text {th }}$ among the leading causes of years lived with disability. Asthma most often originates in childhood and so higher incidence and prevalence is found among children. Asthma incidence and prevalence is different between males and females. A higher incidence, prevalence and hospitalization is seen in pre-pubertal boys than girls of same age, while a reverse trend is observed during adolescence [61, 163]. Another closely related airway disease, rhinitis, has been treated as a risk factor of asthma [164]. Among different types of rhinitis, allergic rhinitis affects 10-40\% of world population with a prevalence of 8.4% in children and 14.9% in adolescents. It is the most common allergic disease among children [165] leading to long-term consequences in adulthood. Asthma and rhinitis are common chronic conditions that occur as comorbidities. About 40% of patients with allergic rhinitis have asthma, and 94% of patients with allergic asthma have allergic rhinitis [166-169]. Another study found allergic rhinitis patients have three times increased risk of developing asthma. Also, relief of rhinitis symptoms over time had a correlation with improvement in asthma symptoms, and subjects with severe and persistent rhinitis are at increased risk of developing asthma [170]. It has been found that the prevalence of coexisting asthma and allergic rhinitis in pre-adolescence is predominant in males[171].

Both these conditions have complex etiologies involving both genetic and epigenetic mechanisms. The heritability estimates representing genetic contribution vary substantially, 35$95 \%$ for asthma and $33-91 \%$ for allergic rhinitis [172]. Studies have found genetic similarities
between asthma and rhinitis as shared phenotypes [57, 173] explained by concept of united airway disease, IgE and non-IgE sensitizations [174]. Recent studies further incorporated epigenetics to explain the pathogenesis of asthma [58] and allergic conditions due to its ability to mediate environmental effects. DNA methylation (DNAm) at 5'-C-phosphate-G-3' (CpG) sites is one of the most studied epigenetic mechanisms. Several studies have shown an association of DNAm in blood with the status of asthma [13, 58, 61] and allergic diseases [175-177]. A recent meta-analysis demonstrated that DNAm in newborns was associated with asthma in school-aged children in 8 cohorts [59]. However, literature on the connection between DNAm and rhinitis is limited. A study of allergic rhinitis (AR) participants identified 42 CpG sites showing correlations of AR symptoms with DNAm [64].

In this study, we focused on subjects with asthma and/or rhinitis (Ast_Rh) and aim to identify CpG sites with DNAm in newborns associated with these two allergic diseases, asthma, and rhinitis, among pre-adolescent children. Genome-scale DNAm data and clinical data collected in the Isle of Wight birth cohort (IOWBC) were included in the study. Previously, a cross-sectional study with focus on Ast_Rh was conducted among children aged 16 years based on DNAm in nasal epithelium [63]. Our study, on the other hand, is longitudinal with DNAm in blood on Guthrie cards of newborns. Findings from this study has a potential to identify individuals with higher risk of Ast_Rh at a much earlier age.

Methods

IOWBC Study Population and gene expression data at 26 years was explained in Chapter 3. DNAm at birth is explained in Chapter 4.

Asthma and/or Rhinitis (Ast_Rh)

Asthma at 10 years was defined using ISAAC questionnaire as "ever had asthma" and "wheezing or whistling in the chest in the last 12 months" and/or "current treatment for asthma". Based on responses to these questions, a participant was determined to have asthma if she/he had experienced recurrent wheezing in the last 12 months and been given a clinical diagnosis of asthma by the physician with or without being treated with asthma medications. Rhinitis at 10 years was defined as 'In the past 12 months have you had a problem with sneezing or a runny or a blocked nose when you did not have a cold or the flu?' [180]. The outcome of the study was asthma and/or rhinitis (Ast_Rh) at 10 years, i.e., subjects with asthma only, rhinitis only, or both asthma and rhinitis were included in the study. Participants who did not have asthma nor rhinitis at 10 years were included in our study as a reference group.

Covariates

Atopic status at 10 years and SES are explained in Chapter 4. Second-hand smoke exposure at 10 years was determined using information obtained from tobacco smoke exposure from mother, father, others, or outside home at 1, 2, 4 and 10 years.

Statistical analysis

Chi-square tests for categorical variables and one-sample t-tests for continuous variables were applied, stratified by sex to examine whether the analytic sample $(\mathrm{n}=796)$ reasonably represents the complete cohort ($\mathrm{n}=1456$).

Research question 3.1: Is the association of DNAm in newborns with pre-adolescence asthma and/or rhinitis sex-specific?

Screening for CpGs in newborns related to asthma and/or rhinitis at 10 years

Regression of M-values of DNAm at each CpG site on the 6 cell type proportions [92] was done to obtain cell-type-adjusted DNAm (residuals) for each sex, and residuals were used in the subsequent analyses.

Screening of genome-scale CpGs potentially associated with Ast_Rh was performed from two directions, separately for each sex, with the first direction focusing on individual CpGs and the second on CpGs in regions. To screen individual CpGs with DNAm in newborns possibly associated with Ast_Rh at 10 years, an R package, $t t S$ Screening [141], was implemented. The method implemented in $t t$ Screening can control both type I and type II errors.

In the second approach of screening, we identified candidate CpGs based on detection of differentially methylated regions (DMRs) for their association with Ast_Rh at 10 years using the DMRff package in R [142]. CpGs in DMRs that were statistically significant at the level of false discovery rate (FDR) of 0.2 along with CpGs that passed $t t$ Screening were included in subsequent analysis as candidate CpGs.

Association of DNAm in newborns with Ast Rh at 10 years

Multivariable logistic regression analysis was conducted to evaluate the association of DNAm in newborns (independent variable) at CpGs that passed screening with Ast_Rh at 10 years (dependent variable). Sex, SES, duration of breastfeeding, atopy, and second-hand smoke at 10 years were included in the model as potential confounders. An interaction term of DNAm and sex was included in the model as an attempt to address sex difference in childhood asthma or rhinitis prevalence. For CpGs not showing significant interaction effects, their main effects were evaluated. In both situations (the models with main effects only, and the models that included interaction effects) multiple testing was adjusted by controlling FDR of 0.05.

Research question 3.2: What are the biological pathways of genes corresponding to the identified CpGs in IOWBC?

For candidate CpGs showing associations of DNAm with Ast_Rh, genes annotated to the CpGs were summarized along with information including gene location and chromosome number extracted from the Illumina's manifest file and USCS genome browser (https://genome.ucsc.edu). Pathway enrichment analysis of the identified candidate CpGs was conducted using the R function gometh [103] to gain insight of their biological functionality.

Research question 3.3: Can the findings of research question 3.1 be replicated in ALSPAC? CpGs in newborns showing association with Ast_Rh at 10 were further tested in an independent cohort, the Avon Longitudinal Study of Children and Parents (ALSPAC) [98-100]. DNAm measurement from cord blood has been explained previously in Chapter 4 (Research question 2.2).

Ast_Rh was assessed at 7 years, i.e., subjects with asthma only, rhinitis only, or both asthma and rhinitis. Logistic regressions with comparable covariates available in ALSPAC, including SES, sex, atopy at 7 years and second-hand smoke at 7 years were used.

Research question 3.4: Is there an association between DNAm at age 26 years and gene expression of nearby genes i.e., within 250 kb upstream and downstream region of the identified CpGs at 26 years?

Genes annotated to the replicated CpGs showing association with Ast_Rh were extracted along with information such as gene location, chromosome number from the Illumina's manifest file or UCSC genome browser (https://genome.ucsc.edu/). To assess the biological relevance of these CpGs, linear regressions were applied to test the association of DNAm (in M- values; independent variable) at age 26 years at each CpG site with expression of its neighboring genes
(250k base pairs [bps] upstream and 250 k bps downstream of the CpG site) in blood at 26 years of age. Paired DNAm and expression data of $\mathrm{n}=140$ subjects were included in the analyses. As we previously have found the association between gene expression and DNAm to be different in both males and females, the analysis was stratified by sex [61, 104].

Research question 3.5: Is there a genetic influence on DNAm at the replicated CpGs, i.e., are there any methQTLs?

Single nucleotide polymorphisms (SNPs) associated with methylation levels of CpGs are known as methQTLs [179]. SNPs to be included in the analyses for methQTL assessment were the ones located on the CpGs' mapping genes using the Illumina manifestation file. Linear regression was used to evaluate this association where DNAm at birth was the dependent variables and SNPs was independent variables. CpGs with p-value <0.05 indicated its statistical significance on its association with SNPs (as methQTLs).

Results

Descriptive statistics on the status of Ast_Rh and variables potentially associated with the childhood asthma and rhinitis indicated that the subsamples represented the complete IOWBC (Table 8). The consort diagram for the study on samples included in the analyses is in Supplement Figure S5. Additionally, I looked at atopic status to make sure not all participants in Ast_Rh are atopic (Supplement Figure S6).

Table 8: Comparison of analytical subsample with complete cohort

Variables		Males			Females		
Categorical variables		$\begin{aligned} & \text { Subsample } \\ & (\mathrm{n}=392) ; \\ & \mathrm{n}(\%) \end{aligned}$	Complete cohort $(\mathrm{n}=401)$ $\mathrm{n}(\%)$	Pvalue	$\begin{aligned} & \text { Subsample } \\ & (\mathrm{n}=387) ; \\ & \mathrm{n}(\%) \end{aligned}$	Complete cohort $(\mathrm{n}=395)$ $\mathrm{n}(\%)$	Pvalue
Ast_Rh	Yes	144 (36.7)	222 (31.9)	0.1	119 (30.8)	192 (28.4)	0.42
	No	248 (63.3)	475 (68.1)		268 (69.2)	484 (71.6)	
Atopy at 10 years	Yes	111 (31.2)	$\begin{aligned} & \hline 160 \\ & (31.01) \end{aligned}$	0.9	87 (24.4)	$\begin{aligned} & \hline 119 \\ & (22.88) \end{aligned}$	0.61
	No	245 (68.8)	$\begin{aligned} & 356 \\ & (68.99) \end{aligned}$		270 (75.6)	$\begin{aligned} & 401 \\ & (77.12) \end{aligned}$	
Socio-economic status	Low	61 (15.5)	106 (15.5)	0.68	48 (12.4)	$\begin{aligned} & 103 \\ & (15.30) \end{aligned}$	0.38
	Mid	303 (77.1)	$\begin{aligned} & 517 \\ & (75.58) \end{aligned}$		307 (79.1)	$\begin{aligned} & 520 \\ & (77.27) \end{aligned}$	
	High	29 (7.4)	61 (8.92)		33 (8.5)	50 (7.43)	
Second-hand smoke at age 10 years	Yes	266 (66.8)	489 (64.3)	0.38	246 (62.3)	445 (68.4)	0.77
	No	132 (33.2)	272 (35.7)		149 (37.7)	280 (31.6)	
Continuous variables		$\begin{aligned} & \text { Mean } \pm \\ & \text { SD } \end{aligned}$	$\begin{aligned} & \text { Mean } \pm \\ & \text { SD } \end{aligned}$		$\begin{aligned} & \hline \text { Mean } \pm \\ & \text { SD } \end{aligned}$	$\begin{aligned} & \text { Mean } \pm \\ & \text { SD } \end{aligned}$	
Duration of breastfeeding		$\begin{aligned} & 14.95 \pm \\ & 14.81 \end{aligned}$	$\begin{aligned} & 14.55 \pm \\ & 14.62 \end{aligned}$	0.6	$\begin{aligned} & 14.37 \pm \\ & 15.05 \end{aligned}$	$\begin{aligned} & 13.99 \pm \\ & 14.99 \\ & \hline \end{aligned}$	0.63

To identify candidate CpGs potentially associated with Ast_Rh at 10 years of age, $t t S c r e e n i n g$ stratified by sex was applied to 551,710 CpGs using residuals (cell-type adjusted DNAm) in newborns. In total, 154 CpGs in males and 339 in females in IOWBC passed screening. There were no overlapping CpGs between males and females, and union of these CpGs, i.e., 493 CpGs , were included in subsequent analyses. Additionally, using the R package DMRff, at FDR 0.2 level, we identified one DMR with 2 CpGs (cg00701456, $\operatorname{cg} 08196106)$ in females on chromosome 12. As these 2 CpGs were in one DMR, they may work together. We treated these two CpGs as one CpG unit and used the mean of their cell-type-adjusted DNAm levels to represent DNAm of the CpG unit. No DMRs were identified in males. One CpG (cg08196106)
was common between the CpGs identified via $t t$ Screening and those by DMRff. Thus, in total, 492 CpGs plus one CpG unit were included in further analyses.

Pathway enrichment analysis was conducted to better understand the biological functionality of the 154 screened CpGs in males and 340 CpGs ($=339$ CpGs from ttScreening +1 CpG from DMRff) in females. The 154 CpGs in males were mapped to 123 genes, and 340 CpGs were mapped to 266 genes. Using these CpGs in gometh package in R, we identified 110 biological processes in males and 278 in females that were enriched at p -value <0.05. Among the mapped 123 and 266 genes in males and females respectively, 10 genes in males and 29 in females were involved in the identified pathways (Table 9 and Supplemental Table S9). No common biological processes were identified between males and females.

Table 9(A): Top 10 most statistically significant GO terms and its biological processes from pathway enrichment analysis in each pathway for males, for the CpGs that passed screening.

GO term	Biological processes	P-value
GO:0045116	protein neddylation	0.001
GO:0033622	integrin activation	0.004
GO:0045956	positive regulation of calcium ion-dependent exocytosis	0.004
GO:1905078	positive regulation of interleukin-17 secretion	0.004
GO:0008049	male courtship behavior	0.004
GO:0042407	cristae formation	0.005
GO:0006393	termination of mitochondrial transcription	0.006
GO:1904235	regulachment to substrate-dependent cell migration, cell positive regulation of substrate-dependent cell migration,	0.006
GO:1904237	cell attachment to substrate	0.006
GO:0002636	positive regulation of germinal center formation	0.007

Table 9(B): Top 10 most statistically significant GO terms and its biological processes from pathway enrichment analysis in each pathway for females, for the CpGs that passed screening.

GO term	Biological processes	P-value
GO:0014834	skeletal muscle satellite cell maintenance involved in	0.0007
GO:0035264	multicellular organism growth	0.001
GO:0001678	cellular glucose homeostasis	0.002
GO:0089718	amino acid import across plasma membrane	0.002
GO:0071499	cellular response to laminar fluid shear stress	0.003
GO:0035902	response to immobilization stress	0.003
GO:0043090	amino acid import	0.003
GO:1904491	protein localization to ciliary transition zone	0.003
GO:0060563	neuroepithelial cell differentiation	0.003
GO:0046324	regulation of glucose import	0.003

Via logistic regressions, we examined the interaction effects of DNAm and sex on the odds of Ast_Rh at the 492 CpGs and one CpG unit, controlling for second-hand smoke exposure at 10 years, SES, duration of breastfeeding and atopy. After adjusting for multiple testing by controlling FDR at 0.05 level, 404 CpGs and one CpG unit showed significant interaction with sex. Of these, opposite effects of DNAm were observed at 330 CpGs in males and females, i.e., at 130 CpGs , an increase in DNAm was associated with a decreased odds of Ast_Rh in males but increased odds in females. And at 199 CpGs and one CpG unit, an increase in DNAm was associated with an increased odds of Ast_Rh in males but decreased odds in females. (Supplemental Table S10a). For CpGs not showing interaction effects between DNAm and sex, main effects of DNAm were assessed at 88 CpGs. After adjusting for FDR at 0.05 level, we identified 70 CpGs showing association of DNAm with Ast_Rh controlling for sex and
previously mentioned covariates. At 32 of the 70 CpGs , an increase in DNAm was associated with an increased odds of Ast_Rh while at the remaining 38 CpGs , the association was in the opposite direction (Supplemental Table S10b).

Altogether, we identified $475(=405+70)$ CpGs in newborns with DNAm associated with Ast_Rh at 10 years. We further tested these CpGs in the ALSPAC cohort. For the 405 CpGs showing interaction effects in IOWBC, consistent directions of interaction effects were observed at 116 CpGs of the available 242 CpGs, with 3 CpGs being statistically significant in ALSPAC. For the 70 CpGs showing main effects in IOWBC, 17 CpGs of the available 37 CpGs in ALSPAC showed same directions of associations identified in the IOWBC.

To assess the biological relevance of replicated CpGs showing association with Ast_Rh, we evaluated the association of DNAm at the identified 129 CpGs with the expression of genes that the CpGs were mapped to as well as their nearby genes by considering a window of 500 k base pairs (bps) of the CpG site (250k bps up and down stream). In this analysis, DNAm and gene expression levels were assessed at age 26 years. Significant effects of DNAm were observed at 86 CpGs on their association with expression of 396 genes in males, and at 96 CpGs with expression of 589 genes in females (Table 10 and Supplemental Table S11). Of the genes' expression associated with DNAm, increased DNAm was associated with increased expression of 208 genes in males and 345 genes in females.

Table 10: Top 5 most significant associations of DNAm with expression of neighboring mapped genes in each sex.

CpG site	Gene name	Estimate	P-value	Sex
cg01662869	DPYSL4	0.92	4.30×10^{-7}	Males
	QRFP	0.83	6.55×10^{-7}	
cg19248893	RGS6	-1.8	8.53×10^{-7}	Males
$\operatorname{cg} 01662869$	JADE2	1.05	1.56×10^{-6}	Males
	JAM3	1.92	2.18×10^{-6}	
	JADE2	0.93	1.72×10^{-11}	Females
	DPYSL4	0.83	2.99×10^{-10}	
	MOSPD1	0.56	8.41×10^{-8}	
	GLB1L2	0.62	1.66×10^{-7}	
	LAMC3	0.68	1.67×10^{-7}	

Note: Top 5 most statistically significant associations for each sex are shown here.

For replicated 133 CpGs , their genetic influence was further assessed by evaluating if those CpGs had methQTLs. SNPs were extracted using the Illumina manifestation file and SNPs on the mapping genes of these CpGs were included in the analyses. In total, 791 SNPs for 47 CpGs were included in the analyses to assess methQTL. The analysis was sex stratified. We identified 29 CpGs in males and 31 CpGs in females (25 CpGs in common) showing association with SNPs i.e., methQTLs existed at those CpGs (Supplement Table S12).

Discussion

Strengths and limitations

The strength of this study exists in its focus on a longitudinal assessment of DNAm at a critical time point, less than a week after birth, with pre-adolescent asthma and/or rhinitis. In addition to assess contribution of individual CpG sites, we examined joint effects of CpGs identified via DMR analyses and some of those CpGs were otherwise excluded from analyses based on individual CpGs. Several limitations of the study exist. First, the study population was mainly Caucasians. This may be a limiting factor in the external validity of findings, and hence generalization of these findings should be implemented with caution. Second, the focus of the study was on associations rather than causality, and this analytical approach does not allow predictions or inferring causality. Third, DNA was extracted from blood cells while asthma and rhinitis primarily affect cells of the respiratory tract. Although DNAm of the blood cells has concordance with that of the respiratory system cells [181], some differences exist between the two. Hence, DNAm in blood may not fully reflect the DNAm in respiratory tract cells.

Innovation

To our knowledge, this is the first longitudinal study to examine the association of epigenetics in newborns with pre-adolescent asthma and/or rhinitis in blood with respect to gender specificity.

Conclusion

We assessed the longitudinal association of DNAm in newborns with pre-adolescent asthma and/or rhinitis. At 404 CpGs and a CpG unit of $\operatorname{cg} 00701456$ and $\operatorname{cg} 08196106$, we identified significant interaction effects of DNAm and sex in the association with Ast_Rh at FDR 0.05 level. Of these, an increase in DNAm at 199 CpGs and one CpG unit was associated with an increased odds of Ast_Rh in males but a decreased odds in females. Of the CpGs not showing
interaction effects, 70 CpGs were found to be associated with Ast_Rh adjusting for sex, of which an increase in DNAm at 32 CpGs was associated with an increased odds of Ast_Rh. Of the 404 CpGs and a CpG unit showing significant interaction effects in IOWBC, at 116 of the available 242 CpGs, (48%), consistent associations were observed in the ALSPAC cohort, including statistically significant findings at 3 CpGs . Of the 70 CpGs showing main effects in IOWBC, 17 of the available 37 CpGs (46\%) showed same direction of association in ALSPAC. Assessment of biological relevance of the replicated CpGs indicated a potential epigenetic regulatory functionality of these CpGs on expression of their neighboring genes using a window size of 500 kbps . DNAm at 86 CpGs were associated with expression of 396 genes in males, and at 96 CpGs with expression of 589 genes in females. At 208 of the 396 genes in males and at 345 of the 589 genes in females, an increase in DNAm was associated with increased gene expression levels. Of the replicated $133 \mathrm{CpGs}, 29 \mathrm{CpGs}$ in males and 31 CpGs in females were linked to genetic variants (methQTLs) indicating potential contribution of genetic factors on the identified CpGs. It is worth noting that between these 29 and 31 CpGs , 25 were in common, strengthening the existence of methQTLs. That is, the observed epigenetic effects at these CpG sites were likely due to the contribution of genetic factors, supporting the findings on the genetic connection between asthma and rhinitis [57, 173]. On the other hand, CpGs with DNAm not associated with SNPs may represent epigenetic effects only without significant genetic contribution.

Although we did not identify statistically significant biological processes after adjusting for multiple testing, biological processes such as integrin activation and interleukin-17 secretion were among the top processes determined based on statistical significance. Activation of integrins have been shown to be correlated with eosinophil recruitment and pulmonary
function in asthma [182]. Eosinophil arrest and recruitment to the airway in asthma are mediated, at least in part, by integrins [182-184]. Therefore, antagonists targeting integrins may potentially be involved in asthma treatment [184]. Expression of IL-17A in nasal mucosa is associated with pathophysiology of allergic rhinitis including its severity and nasal eosinophilia [185].

Neutralization of IL-17 has been found to improve symptoms of allergic rhinitis [186].

Chapter 6. Summary

Epigenetic investigations of asthma will help us better understand its etiology and help direct preventive measures. The summary of main findings of this dissertation from two independent cohorts are:

- I identified DNAm at 62 CpGs (9 in males) showing transition-specific associations with asthma acquisition (AA) such that the associations were different between the pre- to post-adolescence transition period and the post- to adulthood transition period. I also found significant differences between males and females at these CpGs i.e., at most of the CpGs in males, an increase in DNAm was associated with an increased odds of AA from pre- to post-adolescence transition, while from post-adolescence to adulthood, increased DNAm at most of the CpGs was associated with decreased odds. The associations in females for both transition periods were opposite compared to those in males. Among the 50 CpGs (13 in males) showing main effects on AA , at most of the CpGs, an increase in DNAm was associated with a decreased odds of AA for both males and females, although the proportion of such CpGs was larger in females than in males. Furthermore, the effect sizes were weaker in females than in males,
- I identified 30 CpGs (20 in males) in newborns that are associated with AA via atopy. Of these, an increase in DNAm at 22 CpGs (14 in males) was indirectly associated with decreased risk of AA via decreased risk of atopy. These CpGs might play a role in atopic asthma. At 103 CpGs, only direct effects of DNAm in newborns on AA during adolescence were observed which might contribute towards non-atopic asthma.
- Sex-specific effects of DNAm in newborns on preadolescent Ast_Rh were observed at 116 CpGs , and at most CpGs opposite effects in males and females were detected.

For each aim, it will be informative to examine DNAm trajectories at the identified CpGs and the longitudinal associations between DNAm and the endpoint (asthma acquisition or asthma/rhinitis status). Such an investigation will allow us to assess the potential of dynamicity of DNAm along with its potentially changing effect, if any.

Within each aim, it was noticed that a small number of CpGs in IOWBC were replicated in ALSPAC showing the same direction of effects with statistical significance. There is a possibility of false-positive findings. Other factors such as age and sources of DNAm might have also caused the discrepancy in the findings between the two cohorts. Further assessment of the identified CpGs is desired in large scale cohort studies.

In addition, none of the identified CpGs showed overlap in these 3 studies, which was expected. The DNAm was assessed at 10 and 18 years for aim 1, while in newborns for aim 2 and 3 . Reflected in my analyses was that CpGs identified in newborns are likely not to continue their association at ages 10 or 18 years with AA at later ages. This may be the result of changes in environmental exposures over time, from birth to adolescence. Also, the outcomes for the three studies are different. Aim 1 and 2 focused on AA, i.e., transition during adolescence (while the DNAm ages were different) and aim 3 focused on the status of preadolescent Ast_Rh rather than changes in asthma status. The CpGs identified in aim 1 and 2 may represent involvement in the development of asthma during a critical period of adolescent, while those in aim 3 are related to the status of asthma and/or rhinitis before adolescence (i.e., conditions are already developed, and some may have persistent asthma).

The unique CpGs identified for each sex without any overlap in these findings and the inconsistent associations of DNAm with AA between males and females might be related to the gender-reversal phenomenon of asthma prevalence from pre- to post-adolescence. It is worth
noting that for most of the associations of DNAm with AA, a greater number of CpGs were identified in females compared to males. The reason for this observation is unknown and remains to be biologically determined through future investigations. I speculate that X chromosome inactivation due to genetic mechanism may be related to such a difference in number of identified CpGs in each sex [187]. These identified CpGs can guide future studies in AA prediction at different transition periods in both sexes, whether atopic or non-atopic asthma. The biological functionality of the identified CpGs will strengthen their potential as causal factors in addition to epigenetic markers. The CpGs identified in this dissertation have a potential to serve as epigenetic biomarkers due to the strength of associations assessed based on statistical significance.

References

1. Ladd-Acosta, C. and M.D. Fallin, The role of epigenetics in genetic and environmental epidemiology. Epigenomics, 2016. 8(2): p. 271-83.
2. Bakulski, K.M. and M.D. Fallin, Epigenetic epidemiology: promises for public health research. Environ Mol Mutagen, 2014. 55(3): p. 171-83.
3. Waddington, C.H., CANALIZATION OF DEVELOPMENT AND THE INHERITANCE OF ACQUIRED CHARACTERS. Nature, 1942. 150(3811): p. 563-565.
4. Mill, J. and B.T. Heijmans, From promises to practical strategies in epigenetic epidemiology. Nat Rev Genet, 2013. 14(8): p. 585-94.
5. Relton, C.L. and G. Davey Smith, Epigenetic Epidemiology of Common Complex Disease: Prospects for Prediction, Prevention, and Treatment. PLOS Medicine, 2010. 7(10): p. e1000356.
6. Gunasekara, C.J. and R.A. Waterland, A new era for epigenetic epidemiology. Epigenomics, 2019. 11(15): p. 1647-1649.
7. Kobow, K., et al., Epigenetics explained: a topic "primer" for the epilepsy community by the ILAE Genetics/Epigenetics Task Force. Epileptic Disorders, 2020. 22(2): p. 127-141.
8. Kheirkhah Rahimabad, P., et al., Nicotine and Its Downstream Metabolites in Maternal and Cord Sera: Biomarkers of Prenatal Smoking Exposure Associated with Offspring DNA Methylation. Int J Environ Res Public Health, 2020. 17(24).
9. Kheirkhah Rahimabad, P., et al., Nicotine and Its Downstream Metabolites in Maternal and Cord Sera: Biomarkers of Prenatal Smoking Exposure Associated with Offspring DNA Methylation. International journal of environmental research and public health, 2020. 17(24): p. 9552.
10. Christiansen, C., et al., Novel DNA methylation signatures of tobacco smoking with transethnic effects. Clinical Epigenetics, 2021. 13(1): p. 36.
11. Philibert, R.A., S.R.H. Beach, and G.H. Brody, The DNA methylation signature of smoking: an archetype for the identification of biomarkers for behavioral illness. Nebraska Symposium on Motivation. Nebraska Symposium on Motivation, 2014. 61: p. 109-127.
12. Tsai, P.-C., et al., Smoking induces coordinated DNA methylation and gene expression changes in adipose tissue with consequences for metabolic health. Clinical Epigenetics, 2018. 10(1): p. 126.
13. Rathod, R., et al., BMI trajectory in childhood is associated with asthma incidence at young adulthood mediated by DNA methylation. Allergy, Asthma \& Clinical Immunology, 2021. 17(1): p. 77.
14. Wahl, S., et al., Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature, 2017. 541(7635): p. 81-86.
15. Do, W.L., et al., Examining the association between adiposity and DNA methylation: A systematic review and meta-analysis. Obes Rev, 2021: p. e13319.
16. Vehmeijer, F.O.L., et al., DNA methylation and body mass index from birth to adolescence: meta-analyses of epigenome-wide association studies. Genome Medicine, 2020. 12(1): p. 105.
17. Ferrari, L., M. Carugno, and V. Bollati, Particulate matter exposure shapes DNA methylation through the lifespan. Clin Epigenetics, 2019. 11(1): p. 129.
18. Plusquin, M., et al., DNA methylation and exposure to ambient air pollution in two prospective cohorts. Environ Int, 2017. 108: p. 127-136.
19. Rider, C.F. and C. Carlsten, Air pollution and DNA methylation: effects of exposure in humans. Clinical Epigenetics, 2019. 11(1): p. 131.
20. Hartwig, F.P., et al., Breastfeeding effects on DNA methylation in the offspring: A systematic literature review. PloS one, 2017. 12(3): p. e0173070-e0173070.
21. Ozkan, H., et al., Epigenetic Programming Through Breast Milk and Its Impact on MilkSiblings Mating. Frontiers in Genetics, 2020. 11(1141).
22. Mallisetty, Y., et al., Epigenome-Wide Association of Infant Feeding and Changes in DNA Methylation from Birth to 10 Years. Nutrients, 2020. 13(1).
23. Verduci, E., et al., Epigenetic effects of human breast milk. Nutrients, 2014. 6(4): p. 1711-1724.
24. Liu, C., et al., A DNA methylation biomarker of alcohol consumption. Molecular Psychiatry, 2018. 23(2): p. 422-433.
25. Wilson, L.E., et al., Alcohol and DNA Methylation: An Epigenome-Wide Association Study in Blood and Normal Breast Tissue. American Journal of Epidemiology, 2019. 188(6): p. 1055-1065.
26. Zakhari, S., Alcohol metabolism and epigenetics changes. Alcohol Res, 2013. 35(1): p. 616.
27. Fragou, D. and L. Kovatsi, Chapter 14 - Drugs of Abuse and DNA Methylation in the Brain: Ethanol, Cocaine, Amphetamine-Methamphetamine, Heroin, Antidepressants, and Antipsychotics, in Neuropathology of Drug Addictions and Substance Misuse, V.R. Preedy, Editor. 2016, Academic Press: San Diego. p. 137-143.
28. Lax, E. and M. Szyf, The Role of DNA Methylation in Drug Addiction: Implications for Diagnostic and Therapeutics. Prog Mol Biol Transl Sci, 2018. 157: p. 93-104.
29. Ulaner, G.A., et al., Loss of imprinting of IGF2 and H19 in osteosarcoma is accompanied by reciprocal methylation changes of a CTCF-binding site. Hum Mol Genet, 2003. 12(5): p. 535-49.
30. Leick, M.B., et al., Loss of imprinting of IGF2 and the epigenetic progenitor model of cancer. American journal of stem cells, 2011. 1(1): p. 59-74.
31. Sukapan, P., et al., Types of DNA methylation status of the interspersed repetitive sequences for LINE-1, Alu, HERV-E and HERV-K in the neutrophils from systemic lupus erythematosus patients and healthy controls. J Hum Genet, 2014. 59(4): p. 178-88.
32. Cai, X.Y., et al., [Effect of interleukin-6 promoter DNA methylation on the pathogenesis of systemic lupus erythematosus]. Zhonghua Yi Xue Za Zhi, 2017. 97(19): p. 1491-1495.
33. Meng, W., et al., DNA methylation mediates genotype and smoking interaction in the development of anti-citrullinated peptide antibody-positive rheumatoid arthritis. Arthritis Research \& Therapy, 2017. 19(1): p. 71.
34. Marabita, F., et al., Smoking induces DNA methylation changes in Multiple Sclerosis patients with exposure-response relationship. Scientific Reports, 2017. 7(1): p. 14589.
35. Xu, C.J., et al., Shared DNA methylation signatures in childhood allergy: The MeDALL study. J Allergy Clin Immunol, 2021. 147(3): p. 1031-1040.
36. DeVries, A. and D. Vercelli, Epigenetics in allergic diseases. Curr Opin Pediatr, 2015. 27(6): p. 719-23.
37. Lockett, G.A., et al., Epigenomics and allergic disease. Epigenomics, 2013. 5(6): p. 685699.
38. Braun, K.V.E., et al., Epigenome-wide association study (EWAS) on lipids: the Rotterdam Study. Clinical Epigenetics, 2017. 9(1): p. 15.
39. de Toro-Martín, J., et al., A CpG-SNP Located within the ARPC3 Gene Promoter Is Associated with Hypertriglyceridemia in Severely Obese Patients. Ann Nutr Metab, 2016. 68(3): p. 203-12.
40. Dick, K.J., et al., DNA methylation and body-mass index: a genome-wide analysis. Lancet, 2014. 383(9933): p. 1990-8.
41. Guay, S.P., et al., Epigenome-wide analysis in familial hypercholesterolemia identified new loci associated with high-density lipoprotein cholesterol concentration. Epigenomics, 2012. 4(6): p. 623-39.
42. Andrews, S.V., et al., Cross-tissue integration of genetic and epigenetic data offers insight into autism spectrum disorder. Nat Commun, 2017. 8(1): p. 1011.
43. Nour El Huda, A.R., et al., DNA methylation of membrane-bound catechol-Omethyltransferase in Malaysian schizophrenia patients. Psychiatry Clin Neurosci, 2018. 72(4): p. 266-279.
44. Zhong, J., G. Agha, and A.A. Baccarelli, The Role of DNA Methylation in Cardiovascular Risk and Disease. Circulation Research, 2016. 118(1): p. 119-131.
45. Westerman, K., et al., DNA methylation modules associate with incident cardiovascular disease and cumulative risk factor exposure. Clinical Epigenetics, 2019. 11(1): p. 142.
46. Soler-Botija, C., C. Gálvez-Montón, and A. Bayés-Genís, Epigenetic Biomarkers in Cardiovascular Diseases. Frontiers in Genetics, 2019. 10(950).
47. Pawankar, R., Allergic diseases and asthma: a global public health concern and a call to action. The World Allergy Organization journal, 2014. 7(1): p. 12-12.
48. Burbank, A.J., et al., Environmental determinants of allergy and asthma in early life. The Journal of allergy and clinical immunology, 2017. 140(1): p. 1-12.
49. Wittig, H.J., et al., Risk factors for the development of allergic disease: analysis of 2,190 patient records. Ann Allergy, 1978. 41(2): p. 84-8.
50. To, T., et al., Early life exposure to air pollution and incidence of childhood asthma, allergic rhinitis and eczema. Eur Respir J, 2020. 55(2).
51. Kozyrskyj, A.L., S. Bahreinian, and M.B. Azad, Early life exposures: impact on asthma and allergic disease. Curr Opin Allergy Clin Immunol, 2011. 11(5): p. 400-6.
52. Ly, N.P. and J.C. Celedón, Family history, environmental exposures in early life, and childhood asthma. J Allergy Clin Immunol, 2007. 120(2): p. 271-2.
53. Pividori, M., et al., Shared and distinct genetic risk factors for childhood-onset and adultonset asthma: genome-wide and transcriptome-wide studies. Lancet Respir Med, 2019. 7(6): p. 509-522.
54. Wjst, M., M. Sargurupremraj, and M. Arnold, Genome-wide association studies in asthma: what they really told us about pathogenesis. Curr Opin Allergy Clin Immunol, 2013. 13(1): p. 112-8.
55. Demenais, F., et al., Multiancestry association study identifies new asthma risk loci that colocalize with immune-cell enhancer marks. Nat Genet, 2018. 50(1): p. 42-53.
56. Galanter, J.M., et al., Genome-wide association study and admixture mapping identify different asthma-associated loci in Latinos: the Genes-environments \& Admixture in Latino Americans study. The Journal of allergy and clinical immunology, 2014. 134(2): p. 295-305.
57. Ferreira, M.A., et al., Shared genetic origin of asthma, hay fever and eczema elucidates allergic disease biology. Nat Genet, 2017. 49(12): p. 1752-1757.
58. Rathod, A., et al., Interweaving Between Genetic and Epigenetic Studies on Childhood Asthma. Epigenet Insights, 2020. 13: p. 2516865720923395.
59. Reese, S.E., et al., Epigenome-wide meta-analysis of DNA methylation and childhood asthma. J Allergy Clin Immunol, 2018.
60. den Dekker, H.T., et al., Newborn DNA-methylation, childhood lung function, and the risks of asthma and COPD across the life course. Eur Respir J, 2019. 53(4).
61. Patel, R., et al., Sex-specific associations of asthma acquisition with changes in DNA methylation during adolescence. Clin Exp Allergy, 2020.
62. $\mathrm{Xu}, \mathrm{C} . \mathrm{J} .$, et al., DNA methylation in childhood asthma: an epigenome-wide meta-analysis. Lancet Respir Med, 2018. 6(5): p. 379-388.
63. Qi, C., et al., Nasal DNA methylation profiling of asthma and rhinitis. J Allergy Clin Immunol, 2020. 145(6): p. 1655-1663.
64. North, M.L., et al., Blood and nasal epigenetics correlate with allergic rhinitis symptom development in the environmental exposure unit. Allergy, 2018. 73(1): p. 196-205.
65. Holt, P.G., et al., The role of allergy in the development of asthma. Nature, 1999. 402(6760): p. 12-17.
66. Fuchs, O., et al., Asthma transition from childhood into adulthood. Lancet Respir Med, 2017. 5(3): p. 224-234.
67. Asthma, G.I.f., Global Strategy for Asthma management and prevention. 2020.
68. Castro-Rodriguez, J.A., et al., Risk and Protective Factors for Childhood Asthma: What Is the Evidence? J Allergy Clin Immunol Pract, 2016. 4(6): p. 1111-1122.
69. Loftus, P.A. and S.K. Wise, Epidemiology of asthma. Curr Opin Otolaryngol Head Neck Surg, 2016. 24(3): p. 245-9.
70. Murrison, L.B., et al., Environmental exposures and mechanisms in allergy and asthma development. The Journal of Clinical Investigation, 2019. 129(4): p. 1504-1515.
71. Joubert, B.R., et al., DNA Methylation in Newborns and Maternal Smoking in Pregnancy: Genome-wide Consortium Meta-analysis. Am J Hum Genet, 2016. 98(4): p. 680-96.
72. DeVries, A. and D. Vercelli, Early predictors of asthma and allergy in children: the role of epigenetics. Curr Opin Allergy Clin Immunol, 2015. 15(5): p. 435-9.
73. Vercelli, D., Does epigenetics play a role in human asthma? Allergol Int, 2016. 65(2): p. 123-126.
74. Reese, S.E., et al., Epigenome-wide meta-analysis of DNA methylation and childhood asthma. J Allergy Clin Immunol, 2019. 143(6): p. 2062-2074.
75. Arathimos, R., et al., Epigenome-wide association study of asthma and wheeze in childhood and adolescence. Clin Epigenetics, 2017. 9: p. 112.
76. Martinez, F.D., et al., Asthma and wheezing in the first six years of life. The Group Health Medical Associates. N Engl J Med, 1995. 332(3): p. 133-8.
77. Koper, I., K. Hufnagl, and R. Ehmann, Gender aspects and influence of hormones on bronchial asthma - Secondary publication and update. World Allergy Organ J, 2017. 10(1): p. 46.
78. Pignataro, F.S., et al., Asthma and gender: The female lung. Pharmacol Res, 2017. 119: p. 384-390.
79. Osman, M., et al., Gender-specific presentations for asthma, allergic rhinitis and eczema in primary care. Prim Care Respir J, 2007. 16(1): p. 28-35.
80. Arshad, S.H., et al., Cohort Profile: The Isle Of Wight Whole Population Birth Cohort (IOWBC). Int J Epidemiol, 2018. 47(4): p. 1043-1044i.
81. Zhang, H., et al., DNA methylation and allergic sensitizations: A genome-scale longitudinal study during adolescence. Allergy, 2019. 74(6): p. 1166-1175.
82. Arshad, S.H., et al., Multigenerational cohorts in patients with asthma and allergy. J Allergy Clin Immunol, 2017. 139(2): p. 415-421.
83. Soto-Ramirez, N., et al., The interaction of genetic variants and DNA methylation of the interleukin-4 receptor gene increase the risk of asthma at age 18 years. Clin Epigenetics, 2013. 5(1): p. 1.
84. Zhang, H., et al., Acquisition, remission, and persistence of eczema, asthma, and rhinitis in children. Clin Exp Allergy, 2018. 48(5): p. 568-576.
85. Ziyab, A.H., et al., Association of filaggrin variants with asthma and rhinitis: is eczema or allergic sensitization status an effect modifier? Int Arch Allergy Immunol, 2014. 164(4): p. 308-18.
86. Zhang, H., et al., The interplay of DNA methylation over time with Th2 pathway genetic variants on asthma risk and temporal asthma transition. Clin Epigenetics, 2014. 6(1): p. 8.
87. Aryee, M.J., et al., Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics, 2014. 30(10): p. 13639.
88. Lehne, B., et al., A coherent approach for analysis of the Illumina HumanMethylation450 BeadChip improves data quality and performance in epigenome-wide association studies. Genome Biol, 2015. 16: p. 37.
89. Reinius, L.E., et al., Differential DNA methylation in purified human blood cells: implications for cell lineage and studies on disease susceptibility. PLoS One, 2012. 7(7): p. e41361.
90. Koestler, D.C., et al., Blood-based profiles of DNA methylation predict the underlying distribution of cell types: a validation analysis. Epigenetics, 2013. 8(8): p. 816-26.
91. Jaffe, A.E. and R.A. Irizarry, Accounting for cellular heterogeneity is critical in epigenomewide association studies. Genome Biol, 2014. 15(2): p. R31.
92. Houseman, E.A., et al., DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics, 2012. 13: p. 86.
93. Kim, D., B. Langmead, and S.L. Salzberg, HISAT: a fast spliced aligner with low memory requirements. Nat Methods, 2015. 12(4): p. 357-60.
94. Li, H., et al., The Sequence Alignment/Map format and SAMtools. Bioinformatics, 2009. 25(16): p. 2078-9.
95. Anders, S., P.T. Pyl, and W. Huber, HTSeq--a Python framework to work with highthroughput sequencing data. Bioinformatics, 2015. 31(2): p. 166-9.
96. Council, N.R. and I.o. Medicine, Challenges in Adolescent Health Care: Workshop Report. 2007, Washington, DC: The National Academies Press. 90.
97. Blakemore, S.J., Adolescence and mental health. Lancet, 2019. 393(10185): p. 20302031.
98. Boyd, A., et al., Cohort Profile: the 'children of the 90s'--the index offspring of the Avon Longitudinal Study of Parents and Children. Int J Epidemiol, 2013. 42(1): p. 111-27.
99. Fraser, A., et al., Cohort Profile: the Avon Longitudinal Study of Parents and Children: ALSPAC mothers cohort. Int J Epidemiol, 2013. 42(1): p. 97-110.
100. Northstone, K., et al., The Avon Longitudinal Study of Parents and Children (ALSPAC): an update on the enrolled sample of index children in 2019. Wellcome Open Res, 2019. 4: p. 51.
101. Relton, C.L., et al., Data Resource Profile: Accessible Resource for Integrated Epigenomic Studies (ARIES). Int J Epidemiol, 2015. 44(4): p. 1181-90.
102. Peters, T.J., et al., De novo identification of differentially methylated regions in the human genome. Epigenetics Chromatin, 2015. 8: p. 6.
103. Geeleher, P., et al., Gene-set analysis is severely biased when applied to genome-wide methylation data. Bioinformatics (Oxford, England), 2013. 29(15): p. 1851-1857.
104. Rathod, R., et al., Methylation of Host Genes Associated with Coronavirus Infection from Birth to 26 Years. Genes, 2021. 12(8): p. 1198.
105. Reeder, K.M., et al., The common γ-chain cytokine IL-7 promotes immunopathogenesis during fungal asthma. Mucosal Immunol, 2018. 11(5): p. 1352-1362.
106. Kelly, E.A., et al., Potential contribution of IL-7 to allergen-induced eosinophilic airway inflammation in asthma. J Immunol, 2009. 182(3): p. 1404-10.
107. Hoang, T.T., et al., Epigenome-wide association study of DNA methylation and adult asthma in the Agricultural Lung Health Study. Eur Respir J, 2020. 56(3).
108. Himes, B.E., et al., Association of SERPINE2 with asthma. Chest, 2011. 140(3): p. 667674.
109. Hoang, T.T., et al., Epigenome-Wide Association Study of DNA Methylation and Adult Asthma in the Agricultural Lung Health Study. European Respiratory Journal, 2020: p. 2000217.
110. Nahm, D.H., et al., Identification of alpha-enolase as an autoantigen associated with severe asthma. J Allergy Clin Immunol, 2006. 118(2): p. 376-81.
111. Dharmage, S.C., J.L. Perret, and A. Custovic, Epidemiology of Asthma in Children and Adults. Front Pediatr, 2019. 7: p. 246.
112. Thomsen, S.F., Epidemiology and natural history of atopic diseases. Eur Clin Respir J, 2015. 2.
113. Justiz Vaillant, A.A., P. Modi, and A. Jan, Atopy, in StatPearls. 2021, StatPearls Publishing Copyright © 2021, StatPearls Publishing LLC.: Treasure Island (FL).
114. Simpson, A., et al., Beyond atopy: multiple patterns of sensitization in relation to asthma in a birth cohort study. Am J Respir Crit Care Med, 2010. 181(11): p. 1200-6.
115. Lowe, A.J., et al., Do boys do the atopic march while girls dawdle? J Allergy Clin Immunol, 2008. 121(5): p. 1190-5.
116. Schroeder, A., et al., Food allergy is associated with an increased risk of asthma. Clin Exp Allergy, 2009. 39(2): p. 261-70.
117. Carroll, W.D., et al., Asthma severity and atopy: how clear is the relationship? Arch Dis Child, 2006. 91(5): p. 405-9.
118. Arathimos, R., et al., Sex discordance in asthma and wheeze prevalence in two longitudinal cohorts. PLoS One, 2017. 12(4): p. e0176293.
119. Patel, R., et al., Sex-specific associations of asthma acquisition with changes in DNA methylation during adolescence. Clin Exp Allergy, 2021. 51(2): p. 318-328.
120. Vink, N.M., et al., Gender differences in asthma development and remission during transition through puberty: the TRacking Adolescents' Individual Lives Survey (TRAILS) study. J Allergy Clin Immunol, 2010. 126(3): p. 498-504.e1-6.
121. Hohmann, C., et al., Sex-specific incidence of asthma, rhinitis and respiratory multimorbidity before and after puberty onset: individual participant meta-analysis of five birth cohorts collaborating in MeDALL. BMJ Open Respir Res, 2019. 6(1): p. e000460.
122. Sengler, C., et al., Interactions between genes and environmental factors in asthma and atopy: new developments. Respiratory Research, 2001. 3(1): p. 7.
123. Begin, P. and K.C. Nadeau, Epigenetic regulation of asthma and allergic disease. Allergy Asthma Clin Immunol, 2014. 10(1): p. 27.
124. Durham, A.L., C. Wiegman, and I.M. Adcock, Epigenetics of asthma. Biochim Biophys Acta, 2011. 1810(11): p. 1103-9.
125. Yang, I.V. and D.A. Schwartz, Epigenetic mechanisms and the development of asthma. J Allergy Clin Immunol, 2012. 130(6): p. 1243-55.
126. Joubert, B.R., et al., 450K epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environ Health Perspect, 2012. 120(10): p. 1425-31.
127. Danielewicz, H., et al., Maternal atopy and offspring epigenome-wide methylation signature. Epigenetics, 2020: p. 1-13.
128. Everson, T.M., et al., DNA methylation loci associated with atopy and high serum IgE: a genome-wide application of recursive Random Forest feature selection. Genome Med, 2015. 7(1): p. 89.
129. Yang, I.V., DNA methylation signatures of atopy and asthma. Lancet Respir Med, 2019. 7(4): p. 289-290.
130. Forno, E., et al., DNA methylation in nasal epithelium, atopy, and atopic asthma in children: a genome-wide study. The Lancet Respiratory Medicine, 2019. 7(4): p. 336-346.
131. Horvath, S., DNA methylation age of human tissues and cell types. Genome Biol, 2013. 14(10): p. R115.
132. Kawai, K., et al., Parental age and gene expression profiles in individual human blastocysts. Sci Rep, 2018. 8(1): p. 2380.
133. Markunas, C.A., et al., Identification of DNA methylation changes in newborns related to maternal smoking during pregnancy. Environ Health Perspect, 2014. 122(10): p. 114753.
134. Sharp, G.C., et al., Maternal pre-pregnancy BMI and gestational weight gain, offspring DNA methylation and later offspring adiposity: findings from the Avon Longitudinal Study of Parents and Children. Int J Epidemiol, 2015. 44(4): p. 1288-304.
135. Joubert, B.R., et al., Maternal plasma folate impacts differential DNA methylation in an epigenome-wide meta-analysis of newborns. Nat Commun, 2016. 7: p. 10577.
136. Joubert, B.R., et al., DNA Methylation in Newborns and Maternal Smoking in Pregnancy: Genome-wide Consortium Meta-analysis. Am J Hum Genet, 2016. 98(4): p. 680-96.
137. Bignardi, D., et al., Allergen-specific IgE: comparison between skin prick test and serum assay in real life. Allergologie select, 2019. 3(1): p. 9-14.
138. Zhang, H., et al., DNA methylation and allergic sensitizations: A genome-scale longitudinal study during adolescence. Allergy, 2019. 74(6): p. 1166-1175.
139. Bibikova, M. and J.B. Fan, GoldenGate assay for DNA methylation profiling. Methods Mol Biol, 2009. 507: p. 149-63.
140. Johnson, W.E., C. Li, and A. Rabinovic, Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics, 2007. 8(1): p. 118-27.
141. Ray, M.A., et al., An Efficient Approach to Screening Epigenome-Wide Data. Biomed Res Int, 2016. 2016: p. 2615348.
142. Suderman, M., et al., dmrff: identifying differentially methylated regions efficiently with power and control. bioRxiv, 2018: p. 508556.
143. Rathod, R., et al., BMI trajectory in childhood is associated with asthma incidence at young adulthood mediated by DNA methylation. Allergy, asthma, and clinical immunology : official journal of the Canadian Society of Allergy and Clinical Immunology, 2021. 17(1): p. 77-77.
144. Hallquist, M.N. and J.F. Wiley, MplusAutomation: An R Package for Facilitating LargeScale Latent Variable Analyses in Mplus. Struct Equ Modeling, 2018. 25(4): p. 621-638.
145. Hu, L.t. and P.M. Bentler, Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 1999. 6(1): p. 1-55.
146. Geeleher, P., et al., Gene-set analysis is severely biased when applied to genome-wide methylation data. Bioinformatics, 2013. 29(15): p. 1851-7.
147. Team, R.C., R: A language and environment for statistical computing. 2013, Vienna, Austria.
148. Jiang, Y., et al., Epigenome wide comparison of DNA methylation profile between paired umbilical cord blood and neonatal blood on Guthrie cards. Epigenetics, 2020. 15(5): p. 454-461.
149. Wang, C., et al., Evidence of association between interferon regulatory factor 5 gene polymorphisms and asthma. Gene, 2012. 504(2): p. 220-225.
150. Farina, F., et al., [Study of hypophyseal and gonadal hormones and cases of postmenopausal occurrence of bronchial asthma]. Minerva Med, 1986. 77(7-8): p. 2437.
151. Balzano, G., et al., Asthma and sex hormones. Allergy, 2001. 56(1): p. 13-20.
152. Tallia, A.F. and D.A. Cardone, Asthma exacerbation associated with glucosaminechondroitin supplement. J Am Board Fam Pract, 2002. 15(6): p. 481-4.
153. Alaskhar Alhamwe, B., et al., Histone modifications and their role in epigenetics of atopy and allergic diseases. Allergy, Asthma \& Clinical Immunology, 2018. 14(1): p. 39.
154. Bhavsar, P., T. Ahmad, and I.M. Adcock, The role of histone deacetylases in asthma and allergic diseases. J Allergy Clin Immunol, 2008. 121(3): p. 580-4.
155. Stefanowicz, D., et al., Elevated H3K18 acetylation in airway epithelial cells of asthmatic subjects. Respiratory Research, 2015. 16(1): p. 95.
156. Morales, E. and D. Duffy, Genetics and Gene-Environment Interactions in Childhood and Adult Onset Asthma. Frontiers in pediatrics, 2019. 7: p. 499-499.
157. Shrine, N., et al., Moderate-to-severe asthma in individuals of European ancestry: a genome-wide association study. Lancet Respir Med, 2019. 7(1): p. 20-34.
158. Ziani, M., A.P. Henry, and I.P. Hall, Association study between asthma and single nucleotide polymorphisms of ORMDL3, GSDMB, and IL1RL1 genes in an Algerian population. Egyptian Journal of Medical Human Genetics, 2021. 22(1): p. 40.
159. Hinds, D.A., et al., A genome-wide association meta-analysis of self-reported allergy identifies shared and allergy-specific susceptibility loci. Nature genetics, 2013. 45(8): p. 907-911.
160. Takahashi, K., et al., Sputum proteomics and airway cell transcripts of current and exsmokers with severe asthma in U-BIOPRED: an exploratory analysis. Eur Respir J, 2018. 51(5).
161. Supinda Bunyavanich, G.P., Nasal Biomarkers of Asthma, I.B.o.W.I.P. Organization, Editor. 2017.
162. Dharmage, S.C., J.L. Perret, and A. Custovic, Epidemiology of Asthma in Children and Adults. Frontiers in pediatrics, 2019. 7: p. 246-246.
163. Fuhlbrigge, A.L., B. Jackson, and R.J. Wright, Gender and asthma. Immunology and Allergy Clinics of North America, 2002. 22(4): p. 753-789.
164. Bergeron, C. and Q. Hamid, Relationship between Asthma and Rhinitis: Epidemiologic, Pathophysiologic, and Therapeutic Aspects. Allergy, Asthma \& Clinical Immunology, 2005. 1(2): p. 81.
165. García-Almaraz, R., et al., Prevalence and risk factors associated with allergic rhinitis in Mexican school children: Global Asthma Network Phase I. World Allergy Organization Journal, 2021. 14(1): p. 100492.
166. Yawn, B.P., et al., Allergic rhinitis in Rochester, Minnesota residents with asthma: frequency and impact on health care charges. J Allergy Clin Immunol, 1999. 103(1 Pt 1): p. 54-9.
167. Togias, A.G., Systemic immunologic and inflammatory aspects of allergic rhinitis. J Allergy Clin Immunol, 2000. 106(5 Suppl): p. S247-50.
168. Vinuya, R.Z., Upper airway disorders and asthma: a syndrome of airway inflammation. Ann Allergy Asthma Immunol, 2002. 88(4 Suppl 1): p. 8-15.
169. Leynaert, B., et al., Epidemiologic evidence for asthma and rhinitis comorbidity. J Allergy Clin Immunol, 2000. 106(5 Suppl): p. S201-5.
170. Guerra, S., et al., Rhinitis as an independent risk factor for adult-onset asthma. J Allergy Clin Immunol, 2002. 109(3): p. 419-25.
171. Fröhlich, M., et al., Is there a sex-shift in prevalence of allergic rhinitis and comorbid asthma from childhood to adulthood? A meta-analysis. Clinical and translational allergy, 2017. 7: p. 44-44.
172. Ober, C. and T.-C. Yao, The genetics of asthma and allergic disease: a 21st century perspective. Immunological reviews, 2011. 242(1): p. 10-30.
173. Laulajainen-Hongisto, A., et al., Genomics of asthma, allergy and chronic rhinosinusitis: novel concepts and relevance in airway mucosa. Clinical and Translational Allergy, 2020. 10(1): p. 45.
174. Pinart, M., et al., Comorbidity of eczema, rhinitis, and asthma in IgE-sensitised and non-IgE-sensitised children in MeDALL: a population-based cohort study. Lancet Respir Med, 2014. 2(2): p. 131-40.
175. DeVries, A. and D. Vercelli, Epigenetics in allergic diseases. Current opinion in pediatrics, 2015. 27(6): p. 719-723.
176. Xu, C.-J., et al., Shared DNA methylation signatures in childhood allergy: The MeDALL study. Journal of Allergy and Clinical Immunology, 2021. 147(3): p. 1031-1040.
177. Potaczek, D.P., et al., Epigenetics and allergy: from basic mechanisms to clinical applications. Epigenomics, 2017. 9(4): p. 539-571.
178. Gao, X., et al., The impact of methylation quantitative trait loci (mQTLs) on active smoking-related DNA methylation changes. Clinical Epigenetics, 2017. 9(1): p. 87.
179. Bell, J.T., et al., DNA methylation patterns associate with genetic and gene expression variation in HapMap cell lines. Genome Biology, 2011. 12(1): p. R10.
180. Ziyab, A.H., et al., Association of filaggrin variants with asthma and rhinitis: is eczema or allergic sensitization status an effect modifier? International archives of allergy and immunology, 2014. 164(4): p. 308-318.
181. Stueve, T.R., et al., Epigenome-wide analysis of DNA methylation in lung tissue shows concordance with blood studies and identifies tobacco smoke-inducible enhancers. Hum Mol Genet, 2017. 26(15): p. 3014-3027.
182. Johansson, M.W. and D.F. Mosher, Integrin activation States and eosinophil recruitment in asthma. Frontiers in pharmacology, 2013. 4: p. 33-33.
183. Johansson, M.W., et al., Up-regulation and activation of eosinophil integrins in blood and airway after segmental lung antigen challenge. Journal of immunology (Baltimore, Md. : 1950), 2008. 180(11): p. 7622-7635.
184. Barthel, S.R., et al., Roles of integrin activation in eosinophil function and the eosinophilic inflammation of asthma. J Leukoc Biol, 2008. 83(1): p. 1-12.
185. Makihara, S., et al., Local expression of interleukin-17a is correlated with nasal eosinophilia and clinical severity in allergic rhinitis. Allergy Rhinol (Providence), 2014. 5(1): p. 22-7.
186. Gu, Z.W., Y.X. Wang, and Z.W. Cao, Neutralization of interleukin-17 suppresses allergic rhinitis symptoms by downregulating Th2 and Th17 responses and upregulating the Treg response. Oncotarget, 2017. 8(14): p. 22361-22369.
187. Nino, C.L., et al., Characterization of Sex-Based Dna Methylation Signatures in the Airways During Early Life. Scientific Reports, 2018. 8(1): p. 5526.

II		pue［ ${ }^{\text {S }}$ I	6¢ZANZ	$850{ }^{\circ}$	¢100	$90^{\circ} 0$	$90^{\circ} 0^{-}$	20626ILZがo
IZ	Kpog	H．$^{\circ} \mathrm{S}^{-} \mathrm{N}$	INDWH	$000 \cdot 0$	$000{ }^{\circ}$	L0 I^{-}	190	£ยZLIEszo̊o
て	00ZSSL	pue［sI	ILSS9SH	$8+0 \cdot 0$	LIOO	60°	90\％${ }^{-}$	¢L008I¢てかo
I	uoxgls	pue［sI	IONE	$8+0 \cdot 0$	0100	$\varepsilon 1^{\circ} 0$	E1．0－	6801691280
0I			LWOW	$8+0 \cdot 0$	E100	LS 0^{-}	tto	690L0L61 ${ }^{\text {¢ }}$
て	YLП，	2．04S ${ }^{-} \mathrm{S}$	tNODV	6E0．0	$900{ }^{\circ}$	81°	＋0．0－	626019LIธ
\mathcal{E}	yLO．	$2.04 S^{-} \mathrm{N}$	SttenN	8 ± 00	LIOO	61°	E0\％${ }^{-}$	9786IZLIo
t		pue［SI	IXSW	SIO\％	1000	990－	$6 \mathrm{Z}^{\circ} 0$	060¢Z6¢5
LI		pue［ ${ }^{\text {S }}$	てdV〇IdVY	0E0．0	＋0000	$\varepsilon L^{\circ} 0^{-}$	$t<\cdot 0$	LtLS68てI®o
τ		2．04S ${ }^{-} \mathrm{N}$	seyd	$8+0 \cdot 0$	－ 100	$190{ }^{-}$	85°	L69600Z150
τ	00¢ ISSL	pue［［S	ISyI	85000	2I00	＋0．0	¢00－	L080791150
\dagger	Kpog	puelsi	2zfloto	8000	0000	$990{ }^{-}$	LS．0	21098280®ึo
I	ฯนก．ย		I LH98－IId ${ }^{\text {d }}$	0z0．0	2000	$880{ }^{-}$	$6 \mathrm{Z}^{\circ} 0$	6909908085
ς	00 SISSL	puris ${ }^{\text {I }}$	gsolnty	610．0	2000	¢0． I^{-}	ts＇0	9tL6IS90 0
I	Kpog	pue［ ${ }^{\text {S }}$ I	taSaW	8500	6000	L0．0	¢0．0－	
91	Kpog		dNVG	$8+0 \cdot 0$	SIOO	＋90－	LL＇0	97st8810 ${ }^{\text {¢ }}$
ς	00ZSSL	pue［sI	IVIYNSO	$610 \cdot 0$	2000	Lİ0	LI．0－	90Z6LS108ิ0
әшоsошо．ч		spue｜s！ Dd	ขแว			ио！̣рвәәиІ $\mathrm{M}^{\mathrm{O}} \mathrm{I}$		S21！

CpG sites	Gene	ALSPAC Main Estimates (7-17 years)	ALSPAC Interaction Estimates	ALSPAC estimates (17-22 years)	$\begin{aligned} & \text { ALSPAC p } \\ & \text { value } \end{aligned}$
cg01579206	CSNK1A1	0.07	-0.11	-0.04	0.644
cg01884526	BANP	0.00	-0.24	-0.25	0.217
cg02637320	MFSD4	0.01	-0.13	-0.12	0.682
cg06519746	$\begin{aligned} & \text { FAM105B } \\ & \text { RP11- } \end{aligned}$	-0.02	0.43	0.42	0.071
cg08056069	86 H 7.1	0.07	-0.28	-0.21	0.079
cg08286012	C4orf22	0.04	0.46	0.50	0.167
cg11620807	IRSI	0.01	0.11	0.13	0.829
cg12009697	GPR35	0.00	-0.29	-0.29	0.065
cg12895747	RAP1GAP2	0.02	0.16	0.18	0.389
cg15925090	MSXI	0.06	0.26	0.33	0.213
cg17219326	ZNF445	0.03	0.02	0.05	0.887
cg17610929	ACCN4	0.09	-0.05	0.04	0.836
cg19707069	MGMT	0.02	-0.82	-0.80	0.043
cg21691089	ENOI	-0.01	0.27	0.27	0.521
cg25180075	HSGSTI	0.07	-0.25	-0.18	0.402
cg25317233	HMGN1	-0.02	-0.04	-0.06	0.808
cg27192902	ZNF259	0.00	0.30	0.30	0.311

9	00SISSL	2．04S ${ }^{\text {S }}$	tinつH	IIt000	$\varepsilon 0^{-\Xi z}$	$\varsigma \varepsilon^{\circ} 0^{-}$	$\pm \mathcal{E}^{\circ}$	2611EL9080
\dagger	yLค，	pue［IS	709хबの	$0000 \cdot 0$	80－ヨt	L $\varepsilon^{\circ} 0^{-}$	$0 \varepsilon^{\circ}$	20¢tS990 0
ZI			g¢dLV	ちで000	て0－ョz	¢でı	95． I^{-}	E6St9E90 ${ }^{\text {® }}$
91	00¢ SSSL	pue［IS	IgZHS	L81000	ย0－ョร	09°	てL＇0－	06L0019080
$\varepsilon{ }^{1}$			IHつVG	$98 \varepsilon 0^{\circ} 0$	20－ョi	0で0	910－	LEL09090 ${ }^{\text {\％}}$
†	Kpog	pue［sI	8GWWOJ	S900\％ 0	£0－gi	91＊${ }^{-}$	81＇1	66LSt0908ิ
9	00ZSSL	2．04S ${ }^{-}$S	WgzHILSIH	てt¢0．0	20－EI	Lて．0－	9 2\％0	てIEtttS08ิ๐
61	yınıs	pue［IS	SXIS	L $\angle 2000$	£0－36	カ100	て100－	cs9Stzs080
9I	00ZSSL	puel｜S	I0IวQว	8¢1000	¢0－ヨt	1と．0	\＆と＊ 0^{-}	LS9708t0 0
9I	yınıs	pur］IS	IdHZ	62000	ャ0－ョz	$0 \mathrm{CO}^{-}$	$9{ }^{\circ} 0$	
LI	Kpog		ESVOg	ILEO 0	20－gi	เャ゚ 0^{-}	$6 \varepsilon^{\circ} 0$	ISで8Lt0 ${ }^{\text {So }}$
ε	00ZSSL	pue［IS	VStWGWL	St000	เ0－ョ¢	＋90－	29.0	－¢96ILE080
6I	00ZSSL	pue［IS	VdVN	てS0000	เ0－ヨ9	ゅで0－	しで0	でZ909を0ธ๐
6I	00ZSSL	puelsi	IIZANZ	て¢0000	＋0－E9	I0 I^{-}	060	£ยLEzze์o̊o
61	00ZSSL	pur｜SI	zяgt	LE00\％ 0	t0－gt	¢10	［100－	c0861970 ${ }^{\text {So }}$
Z	00ZSSL	pue［sI	ITつWЮ	ちで000	20－ョz	60°	$60^{\circ}{ }^{-}$	LSz9ICzoso
LI	uoxgls	pue［IS	IdVy	8EE000	20－gi	カI＇${ }^{-}$	t0 ${ }^{\text {I }}$	t6LL9tzoso
6 I	00ZSSL	pue［IS	гуVd7	カIt000	z0－ョz	tio	E1 0^{-}	S8Ez9をzoso
zz	00ZSSL	2．04S ${ }^{-}$S	IqGLy	2810．0	ย0－ョs	ガロ 0^{-}	しが0	L68szzzosio
6I	00ZSSL	pue［IS	てISdyW	ILI000	$\varepsilon 0^{-\Xi z}$	£で0－	でっ0	89950L00 ${ }^{\text {So }}$
II	yLns	pue［IS	ENLY	＋82000	て0－ョI	$\varepsilon 1^{\circ}$	\＆10－	て8てttt00ธิ
L	00ZSSL	pue［IS	OWS	Iti00	ย0－ョz	LIO－	$9{ }^{\circ} 0$	Et8¢0t00 0
zz	00ZSSL	puelsi	zLSd L	＋0000	90－98	$0 \mathrm{ZO}^{-}$	Iで0	L6E6t10080
әш0somory	$\begin{gathered} \hline \text { ио!̣вго } \\ \text { әшәந } \end{gathered}$	$\begin{gathered} \text { spue\|s! } \\ \text { פdj } \end{gathered}$	ขШว					S21！

응

$\stackrel{\infty}{\sim}$

¢I		pup［ ${ }^{\text {S }}$ I	गGOdd	29000	E0－قI	¢ $7^{\circ} 0^{-}$	¢ Z＇0 0	Stoltelzio
8I	Kpog		ETTVS	tszo 0	£0－E8	LI．0	\＆1．0－	888911くてかo
6 I		pup［SI	S08HNZ	¢010．0	$\varepsilon 0-\Xi z$	Lで0－	87°	8L0tt 29 てoo
LI	pue［ ${ }^{\text {S }}$	00 SISSL	9ャวดวง	E000\％	90－g¢	8¢00－	$0 \dagger^{\circ} 0$	¢88¢9と9z80
$\varepsilon 1$	Kpog	ข．oчS ${ }^{-}$S	ZХНСМ	$9 ¢ 000$	ャ0－g8	2s\％${ }^{-}$	［ 5°	t1106z9zso
8	00ZSSL	pue［SI	8¢fuog	tLI000	$\varepsilon 0-\Xi \varepsilon$	$\varepsilon \varepsilon^{\circ} 0$	てz＇0－	2169619780
61	uoxaps	pue［SI	tzfio6ID	$9 \mathrm{St0} 0$	ว0－ョz	เで0－	てで0	8297z9¢zo̊o
6 I	00SISSL	әочS ${ }^{-}$S	VEGFY		20－ョz	LI＇0	Iで0－	98E8L¢czoso
61	Kpog	pue｜SI	dWOD	¢EE000	20－ヨI	$60^{\circ} 0$	$80^{\circ}{ }^{-}$	$62 ¢ \angle 6 t$ çoio
LI	Кpog		3VDLI	LIL000	ย0－ョz	£8\％ 0^{-}	¢80	くもて6815て80
0I	00ZSSL	pur［SI	¢dy ${ }^{\text {c }}$	$\angle E 00^{\circ} 0$	ャ0－ョย	IS\％	カtro－	Ett9SISzoso
0I	u0xays	pue［sI	ZWNNO	tlo 0	ย0－ヨย	960	t0 I^{-}	
ZI	00ZSSL	pue［ ${ }^{\text {S }}$	8GLAS	¢8E000	20－ヨz	$8 \varepsilon^{\circ}$	¢ $\varepsilon^{\circ} 0^{-}$	ISSELItてかo
ZI	00ZSSL	pup］SI	LEXHG	£6£000	20－ョz	210	$80^{\circ} 0^{-}$	SL6L9Itて8o
61	yL＠S	pue｜sI		＋820．0	£0－36	$\downarrow \square^{\circ}$	$\pm 0^{-}$	08¢Z68をzo̊o
LI	Kpog	pue［sI	IINAWL	St000	＋0－ョs	$1 \mathrm{I}_{0} 0$	$60^{\circ} 0^{-}$	でSIE8をてかっ
$0 Z$	00ZSSL	pue［ ${ }^{\text {S }}$ I	ISTYつ	£8E0\％ 0	て0－ョて	$80^{\circ} 0$	$0 \mathrm{I}^{\circ}{ }^{-}$	$9 \dagger \angle t 9 ¢ ¢ Z 80$

\bigcirc

¢6\％	$00 \cdot 0$	0I	yını		IZIWZ	t0－gI	¢0－ョz	S9．0	†L9tSE8080
68°	$20 \cdot 0$	ς		pup［SI	zTz＾İYS	ع0－ョI	¢0－gs	＋0．0－	
060	100	91	00ZSSL	2．0чS ${ }^{-} \mathrm{N}$	ESVH	¢0－ョI	L0－コE	$8 L^{\circ} 0$	6¢7t8990 ${ }^{\text {¢ }}$
Lで0	$90^{\circ}{ }^{-}$	zz	00SISSL	गขчS ${ }^{-}$	vzzaiวgL	ย0－ョz	ย0－ョI	$6 \mathrm{Cl}^{-}$	87EE8990 ${ }^{\text {\％}}$
でて	＋0．0－	II	Kpog	ข．0чS ${ }^{\text {S }}$	zXybg	ย0－8	ย0－EL	$81^{\circ} 0^{-}$	－6E98190 ${ }^{\text {¢ }}$
でく	E0\％	9		pue［SI	ELOПN	ย0－ョz	ย0－gi	ャで0－	6てEE8LS0ธิ๐
$8 \mathrm{Cl}^{\circ}$	$90 \cdot 0$	L	yınıs		t7VXH	ย0－ョz	ย0－gi	で｀0	Sllites0 ${ }^{\text {ono }}$
09°	E0＇0－	t	uoxgls		ISGO	\＆0－ョZ		ts ${ }^{\circ}$	S9tをL9t0 0
29．0	200	zz	ชนกย์		EVLLATMIW	¢0－g¢	90－99	${ }^{6} \mathrm{C}^{\circ}{ }^{-}$	
860	$00 \cdot 0$	I	00ZSSL	${ }^{\text {20，}}{ }^{-}{ }^{\text {S }}$ S	ITZdW	ع0－GL	¢0－ョ¢	E0\％ 0^{-}	Lt9100c0o̊o
$65^{\circ} 0$	E0\％	8	Кpog		98ıя标	ع0－ョI	t0－gs	L9．0－	て¢L60\＆z0ธ̊\％
$\mathrm{ts}^{\circ} \mathrm{O}$	E0\％ 0^{-}	¢I			IVtzJTS	20－gI	20－9I	セE．0	666t0L10 0
ZS．0	L0＇0	6 I	Кpog	pue［ ${ }^{\text {S }}$ I	Iววย日	¢0－ョย	90－日z	L0．0－	LZ98L010 0
${ }^{\text {¢ }}{ }^{\text {en }}$ d		－피	ио！̣егоІ	spur［s！¢d ${ }^{\text {d }}$	วШ๖		${ }^{\text {＋}}$ II	səıpu！̣！${ }^{\text {a }}$	
JVdSTV	OVdSTV		әшәワ			d yad	әпje八 d mey	M^{O}	

（b）Analysis of ALSPAC used similar available covariates：atopic status at age 7 years，secondhand smoke exposure at age 17 and 24 years．
Interaction effects consistent between the two cohorts are with bold fonts of CpG． smoking，and secondhand smoke exposure at age 18 and 26 years，transition period 10－18 and 18－26 years．

 Supplement Table S2（A）：Association of DNAm with asthma acquisition from pre－to post－adolescence，and post－adolescence to young adulthood justed for atopic status at ages 10 and 18 years，active

$\cdot \operatorname{s.ıeә} \kappa \downarrow 乙$ әлџ̣е＇ธıеәк	วร์้ ํ 0I	dx	риеч－риод 9て－8 I pue 	－ Od 万 s．reว \angle ว วิ์ I po！̣od uo әәм sұиәшә	sұuof ploq ч1 e smełs oidol ！！！sueq＇s．еәә人 inseәu рәұеәd	M are s ：səұеив 9Z рие I प！！		 pasn गV us pue I U！sis	щə иоџ̣ъ．ıəи pue su！yous ． $\mathrm{IO}_{\boldsymbol{H}}(\mathfrak{c})$ ： $2 \nless \mathrm{O}$
280	100^{-}	81		pue［sI	ZHaつ	50－ヨI	¢0－ヨย	¢0 0^{-}	t8\＆E6SLZoio
で「0	＋0\％ 0^{-}	9I	Kpog		żZyNSo	ย0－ョz	ย0－gi	Iで0	て¢88をででo
280	20\％${ }^{-}$	0I	บเก，	pue［si	loydd	£0－ョ¢	£0－gt	¢0．0－	ILLOEZLZ®̊
$80^{\circ} 0$	900^{-}	ZI	иох马ıSI	puelsi	6 SO	20－ョย	ว0－ョย	E0＊ 0^{-}	L891It9zoso
$0 \chi^{0}$	¢0\％	LI	00ZSSL	purisi	IdgygL	ย0－ョz	ย0－ョz	＋0．0－	0LIE19¢zo̊o
¢E＇0	t0\％－	ZI	00ZSSL		ISV－Intio	20－ョz	ว0－ョี	$6 \mathrm{Cr}^{0}$	28100tくでo
£で0	60°	9		20\％${ }^{-}{ }^{-}$	qZdVHL	¢0－ョ¢	90－日8	¢0．0－	9¢80\＆6をてర๐
290	20\％${ }^{-}$	¢I	บLワ，	2．0чS ${ }^{-}$S	SHHLW	ย0－ョs	ย0－ョย	LI＇0	
980	$10^{\circ} 0$	9	00 SISSL	puelsi	SLVG	ャ0－G¢	ャ0－ヨZ	900－	9¢゙89でて80
$69^{\circ} 0$	200	ς	00ZSSL	Нə्ЧS ${ }^{-}$S	IGOG	ก0－ヨย	¢0－96	£と＊ 0^{-}	と0L88してでo
260	00°	9		2．0чS ${ }^{-}$S	ITXdSL	ย0－ヨ6	ย0－ق8	II 0^{-}	9 ¢¢¢tcizoio
$\varsigma L^{\circ} 0$	20\％${ }^{-}$	ς	00ZSSL		9wayd	£0－ヨ8	£0－EL	\＆で0	¢z8IS60zoio
160	100	ε	Kpog	pue［sI	IWZdV	£0－96	ย0－96	20＊ 0^{-}	8186116Io̊0
$80^{\circ} 0$	L0．0	61	00ZSSL	puelsi	EYLWT	¢0－gs	90－96	¢0．0－	
L＇00	20\％${ }^{-}$	¢	Kpog	pue［ ${ }^{\text {S }}$ I		ย0－ョป	ย0－ษI	St＇0	99869と81®0
LE＊ 0	t0 0	$\dagger 1$	00ZSSL	pue［ ${ }^{\text {S }}$	tIHEJZ	¢0－ョ6	¢0－ョZ	¢0．0－	
0¢ 0	E0\％	tI	yL＠，	pue［IS	6YAN	ย0－ョz	ย0－ョป	$\left\llcorner 0^{\circ} 0^{-}\right.$	0¢8197LIo
88°	100	\mathcal{E}			EdVDYS	＋0－g8	เ0－ョย	が0	00t8LLSİO
¢80	200	ZI	Kpog	puelsi	zSJOS	ย0－ョz	ย0－ョะ	$90^{\circ} 0^{-}$	9てLELLSİ̊o
$9{ }^{\circ} 0$	E0\％	τ	yınıs	Jİ ${ }^{\text {S }}{ }^{-} \mathrm{N}$	6г7Нту	ャ0－ق8	ャ0－ヨย	Lع：0	9LSE68tIofo
290	10\％${ }^{-}$	61		pue［ ${ }^{\text {S }}$	$67 Z$ ANZ	¢0－ョ¢	90－gt	$90^{\circ} 0^{-}$	LSE9S0tIo
190	$90 \cdot{ }^{-}$	9	00ZSSL	puelsi	z7Dy	ย0－ョz	ย0－gi	$90^{\circ} 0^{-}$	10296601s
0 $\sim^{\circ} 0$	E0\％	ZI	00ZSSL	pue［IS		ย0－ョz	ャ0－ヨ8	$90^{\circ} 0^{-}$	27261601ธ๐
$L L^{\circ} 0$	10\％${ }^{-}$	¢I	！ Ppog		z－LaIW	＋0－gi	¢0－ョz	LS\％${ }^{-}$	L812S86080
$8 \varepsilon^{\circ} 0$	\＆ $0^{\circ} 0^{-}$	II	00ZSSL	pue［ ${ }^{\text {S }}$ I	カIZANZ	เ0－ョz	¢0－ヨ9	Lt 0	8 セELSL80 0

$8 L^{\circ} 0$	10．0－	9	yLO．s	pur［SI	SOLV	L£E0 0	¢¢1000	＋0．0－	L6L0S80150
660	00°	6I	00ZSSL	pur［SI	$6+$ SHNZ	† $\angle 000^{\circ}$	$6000{ }^{\circ}$	$90^{\circ}{ }^{-}$	97t6zL0150
ZL＇0	100^{-}	II	00ZSSL	pur［si	¢dVYつ	¢880 0	80200	¢00－	ャz87z860¢5
\＆0\％	$6 \mathrm{I}^{\circ} 0^{-}$	91	とLП，	2．04S ${ }^{-} \mathrm{N}$	t．tSH	0¢1000	It000	$8 \varepsilon^{\circ} 0$	¢8tL9¢60ธ̊o
$6 \varepsilon^{\circ} 0$	＋0．0－	9	Kpog		giaiy\％	9LE0＊0	661000	＋0．0－	ILLけI980 ${ }^{\text {S }}$
200	$60^{\circ} 0^{-}$	ε	00ZSSL	pur［SI	EכHd	$6900{ }^{\circ}$	L000 0	¢0\％ 0^{-}	6LSL8t80 ${ }^{\text {So }}$
0¢ 0	$90^{\circ} 0^{-}$	91	uoxzls	pur［ ${ }_{\text {IS }}$ I	\＆ZANZ	6100＇0	1000 0	¢0\％${ }^{-}$	S9676080 ${ }^{\text {\％}}$
Lで0	＋0．0－	乙			ІІНУग	28t0 0	$6870{ }^{\circ}$	$8 \mathrm{l}^{\circ} 0$	ISIIS6L0 0
91°	S0．0	8	Kpog	pur［SI	9Lfiog	＋800 0	$\dagger 100{ }^{\circ}$	¢0．0－	L919L9L0 0
$66^{\circ} 0$	90°	8	00ZSSL	pur［si	FLNH	て¢E0．0	69100	＋0：0－	เをで6てL0ริ๐
600	$81^{\circ} 0^{-}$	て，	00ZSSL	pur［ ${ }_{\text {I }} \mathrm{I}$	IWOL	$6 \mathrm{LO} 0^{\circ} 0$	$1100{ }^{\circ}$	$90^{\circ} 0^{-}$	LS8zoE90 ${ }^{\text {o }}$
tio	$90^{\circ} 0^{-}$	II	00 SISSL	pur［SI	TILAg	$6 \mathrm{t}+0^{\circ} 0$	＋970．0	E0\％${ }^{-}$	¢£E9zz90 ${ }^{\text {o }}$
$65^{\circ} 0$	$90^{\circ} 0^{-}$	L	yLO．s	purisi	ILİצУ	610000	1000 0	$90^{\circ} 0^{-}$	LLtSL090 ${ }^{\text {So }}$
060	10\％${ }^{-}$	ς I	Kpog	pur［SI	dEHSVM	$9 \mathrm{tE} 0^{\circ} 0$	¢LIO 0	＋0．0－	ELI868S0 ${ }^{\text {¢ }}$
てと\％	010 0^{-}	ε	yLns	pur［ ${ }_{\text {I }} \mathrm{I}$	zHOdWI	29100	2S00\％	＋0．0－	ILESESt0 ${ }^{\text {¢ }}$
＋0．0	$\mathrm{SI}^{\circ} 0^{-}$	乙	00SISSL	pur［ ${ }_{\text {IS }}$ I	IGVN	6100\％	$1000{ }^{\circ}$		8611L2t0 08
$8 \varepsilon^{\circ}$	E0．0－	0 O	Kpog	pue［ ${ }_{\text {［ }}^{\text {I }}$ I	s．LTVJtg	$6820{ }^{\circ}$	2ZI0＊	${ }_{01} 0^{-}$	ILLES9E0 ${ }^{\text {o }}$
89°	E0\％	t	00ZSSL	pue［ ${ }^{\text {S }}$ I	ETİN	¢91000	t¢00．0	¢0\％${ }^{-}$	
L0＇0	カI＇0－	\dagger I	00ZSSL		90日木	£6Z0＇0	IE100	¢000－	6E9L90zoso
$\varepsilon \varepsilon^{\circ} 0$	$80^{\circ}{ }^{-}$	t	00ZSSL	puelsi	vวeddd	0z00＊	$1000{ }^{\circ}$	$80^{\circ}{ }^{-}$	LS9Et6I0 ${ }^{\text {o }}$
tio	＋0．0	z2	Kpog	2．ous ${ }^{-} \mathrm{N}$	9НАЛवN	L0t0 0	szzo 0	$60^{\circ} 0^{-}$	LOZ6ZS10ธ̊\％
$89^{\circ} 0$	$20.0-$	6		2．0بS ${ }^{-} \mathrm{N}$	دtannga	tLZ0．0	011000	Et 0^{-}	ZLIt9et0 ${ }^{\text {So }}$
L60	$00 \cdot 0$	L	00ZSSL	puelsi	TdIXTW	でE0．0	£910\％	E0\％${ }^{-}$	Et8L0600 ${ }^{\text {¢ }}$
060	100	91	00ZSSL	pur［ ${ }_{\text {I }} \mathrm{I}$	8НLHつ	$9 \mathrm{ZI} 0^{\circ} 0$	0ع00\％	¢0 0^{-}	Z68S1900 ${ }^{\text {\％}}$
	səıew！！sg	－Іч，	uо！̣eos	spur［S！${ }^{\text {Dd }}$	ขนว		${ }^{\text {luI }}$	sәıeu！̣sa	
JVdSTV	JVdSTV		әшэ			d yGa	әп［рл d mey	M ${ }^{\text {O }}$	

 Supplement Table S2（B）：Association of DNAm with asthma acquisition from pre－to post－adolescence，and post－adolescence to young adulthood

てE゙0	＋0 0^{-}	9］	Kpog		9LZ8ZLDOT	19100	Lt00＊0	$87^{\circ} 0$	0 セtS6をLて®o
91．0	100^{-}	I	иох马，${ }^{\text {S }}$	puer ${ }_{\text {IS }}$	8JTVNG	92I00	$6 \mathrm{Z} 00^{\circ} 0$	＋0\％ 0^{-}	9て116L9てかo
£60	10．0－	τ	00ZSSL	pue［sI	zEJLL	6100\％	$0000 \cdot 0$	¢0．0－	6z¢E6997®๐
£ $\varepsilon^{\circ} 0$	¢00－	9	Kpog	НәЧS ${ }^{-}$S	EydLI	08200	SIL 100	£で0	¢¢67899て80
8L＇0	100^{-}	I	00 SISSL	pue［［SI	6dSVD	19100	$6+00^{\circ} 0$	＋0．0－	sz8E8ttzo̊o
¢で0	$0{ }^{\circ} 0^{-}$	s	иохяıSI	pue［［SI	sIJanxi	2ZI00	\＆Z000	¢0\％ 0^{-}	Itて080¢てかo
ガロ	200	t	00 SISSL	2．ous ${ }^{-} \mathrm{S}$	туолт	SIto 0	เ\＆z000	＋0．0－	てと00⿺¢วてภ๐
¢で0	［100－	81	00ZSSL	pue［ ${ }^{\text {S }}$ I	zabWS	E6z0 0	8 I 100	$90^{\circ} 0^{-}$	98\＆IC8Izo̊o
Et＊0	200^{-}	ZI	Kpog		$\widetilde{O} y d L d$	9 TLO 0	97000	$8 \mathrm{I}^{\circ} 0$	LS69tulてoิo
$85^{\circ} 0$	＋0．0－	t	иох马，${ }^{\text {S }}$	puer［SI	घdのठ	$86+0 \cdot 0$	S0¢0．0	¢0．0－	と0¢06902 ${ }^{\text {o }}$
6で0	$0 \mathrm{I}^{-}{ }^{-}$	τ	00ZSSL	pue［IS	гх7ด	ILE0．0	2610．0	$\angle 0^{\circ} 0^{-}$	0091980zso
100	$91^{\circ} 0$	$\dagger 1$	00ZSSL		8аНつ	IIZ00	LLOO 0	E0．0－	8628186180
でて	て10－	LI	00ZSSL	pue［IS	＜Egby	＋800 0	$\pm 100^{\circ} 0$	¢0．0－	966Stt6150
Iで0	$60^{\circ} 0^{-}$	02	yLns	pue［IS	Tİdg＊d	ttzo 0	¢6000	\＆で0－	19891／8150
$\varsigma L^{\circ} 0$	$20.0-$	LI	Kpog	puelsi	zวyผ	19100	$6+00 \cdot 0$	¢0\％ 0^{-}	087972LI $\frac{10}{}$
$61^{\circ} 0$	［100	II	00ZSSL	pue［SI	Хбу	$6 \mathrm{t}+0 \cdot 0$	19700°	＋0．0－	UISEI0LI号
St．0	$90^{\circ} 0^{-}$	02	yLn，s	pue［ ${ }^{\text {S }}$	$7 V d L L$	82100	£ $£ 00^{\circ} 0$	$\angle 0^{\circ} 0^{-}$	L008 L89150
9¢00	＋0．0－	9	yLns	pue［IS	IWId	0z000	200000	$90^{\circ}{ }^{-}$	S660LS9150
$6 L^{\circ} 0$	$20.0{ }^{-}$	L	yons	puerisi	zヶdSの	16000	9100°	ゅで0	0L8LIS9150
680	1000	τ	ylos	puelsi	zanidygs	Itzo 0	$1600{ }^{\circ}$	＋0．0－	カtセEsccsion
$85^{\circ} 0$	＋0．0－	$\varsigma 1$	ylos	puelsi	zVOO	IIzo 0	92000	S0．0－	9t98LZSI ${ }^{\text {80 }}$
［100	ti 0^{-}	LI	00ZSSL	pue［IS	ILDI	6100\％	$0000{ }^{\circ}$	$\angle 0^{\circ} 0^{-}$	IStStttIos
080	200	s	00ZSSL	pue［IS	IGOg	IIzo 0	ZLOO 0	＋0．0－	† ¢ ¢889¢180
$61^{\circ} 0$	＋0．0	9	00 SISSL	pue［［SI	VtHILSIH	82I00	£E000	［100	8モZLEโE！${ }^{\text {¢ }}$
200	$81^{\circ} 0^{-}$	61	иох马SI	pue［sI	てaLno	tL00 0	0100．0	L0．0－	98z01zzI边
0で0	$\mathrm{II}^{\circ}{ }^{-}$	6 I	00ZSSL	pue［ ${ }^{\text {S }}$	tybd	IZ00 0	2000＊0	$\angle 0^{\circ} 0^{-}$	8906Et以矿
LS＇0	¢0．0－	L	yınıs	pue［sI	LO४ว	ても¢0 0	99100	＋0．0－	9LLZSZLI80
Lで0	$60^{\circ}{ }^{-}$	ς	00ZSSL	pue［ ${ }^{\text {S }}$ I	solzto ${ }^{\text {a }}$	9 TLO 0	$6200{ }^{\circ}$	¢0．0－	Scl0880180

Supplement Table S3 (A): Top 10 most statistically significant GO terms and its biological processes from pathway enrichment analysis along

GO term	Biological processes	P -value	Genes
GO:0009056	catabolic process	0.003682	AP2M1, CSNK1A1, CSNK2A2, ENO1, IRS1, MTHFS, OS9, NUDT3, HYAL4, BANP, ZC3H14, MIRLET7A3
GO:0038111	interleukin-7-mediated signaling pathway	0.002124	$\begin{aligned} & \text { IRS1 } \\ & \text { SOCS2 } \end{aligned}$
GO:0042219	cellular modified amino acid catabolic process	0.002071	MTHFS
GO:0042365	water-soluble vitamin catabolic process	0.003378	MTHFS
GO:0046657	folic acid catabolic process	0.001542	MTHFS
GO:0071544	diphosphoinositol polyphosphate catabolic process	0.002544	NUDT3
GO:0098760	response to interleukin-7	0.003907	$\begin{aligned} & \text { IRS1 } \\ & \text { SOCS2 } \end{aligned}$
GO:0098761	cellular response to interleukin-7	0.003907	$\begin{aligned} & \text { IRS1 } \\ & \text { SOCS2 } \end{aligned}$
GO:1901575	organic substance catabolic process	0.000585	AP2M1, CSNK1A1, CSNK2A2, ENO1, IRS1, MTHFS, OS9, NUDT3, HYAL4, BANP, ZC3H14, MIRLET7A3

[^0]0.000804 LCORL, ZNF549, ZNF805

N

'6tSANZ 'TYODT 'IdHZ '0ZLANZ 'ISऽANZ ZNF337, SALL3, GRHL1, MLXIPL, ZNF581,
BCAS3, HEATR1, ARID1B, CHD8, PABPC1L,
 'It 'tXHY ' \angle ZWIXL 'tgWSd 'ZOYyd 'VOEddd

 ZNF337, SALL3, GRHL1, MLXIPL, ZNF581

 'sdyHS 'tX 'VOEddd 'INID ‘IXLO 'zVDO 'IGVN 'zaVWS

[^1]
daLO dIV 'tEIHNZ ‘ItMNZ 'EZENNZ 'OWS
 'ZOYYd 'VOEddd 'IWId 'IXLO 'IQEN 'ZaVWS 'VdLI 'zHOdWI 'tHSH 'dOGH 'IONG ' YTA S08ANZ '6ts ANZ 'TУODT SMARCA4, SMO, ZNF23, ZNF41, ZNF134, AIP,
CTDP1, HAND2, MED20, SAFB2, MED6,
CEBPZ, HAX1, ZNF211, CHEK2, SH2B1,
ZNF337, SALL3, GRHL1, MLXIPL, ZNF581,
BCAS3, CHTF8, HEATR1, ARID1B, CHD8,
PPCDC, PABPC1L, ZNF551, ZNF720, ZFP1, PRKCZ, PSMB4, QDPR, TRIM27, RFX4, SFRP5, ATP5F1B, CEBPG, CMKLR1, DACH1, DLX2,
ELK4, ENO1, HDGF, HSF4, IMPDH2, ITPA, 6ts.ant 'TעOつT 'IdHZ 'ozL.ANZ 'ISऽHNZ
 ZNF337, SALL3, GRHL1, MLXIPL, ZNF581, ZNF134, AIP, CTDP1, HAND2, MED20, SAFB2,
MED6, CEBPZ, HAX1, ZNF211, CHEK2,

 CEBPG, CMKLR1, DACH1, DLX2, ELK4, ENO1, ZNF805

Biological processes

a
ssəoo.ıd э!̣әчџuКso!̣ punoduos э!̣вшо.е
tLZI00.0
8
$\stackrel{8}{8}$
$\stackrel{N}{0}$

0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

$$
\begin{aligned}
& \text { L8tI00.0 } \\
& \begin{array}{l}
\circ \\
8 \\
\stackrel{8}{a} \\
\stackrel{1}{a}
\end{array}
\end{aligned}
$$

ZNF551, ZNF720, ZFP1, LCORL, ZNF549,
ZNF806
$\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & \mathbf{N}_{3} \\ 0 & 3 \\ 0 & A\end{array}$

$\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ B & 0 \\ & \pm \\ & \pm\end{array}$

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
regulation of RNA biosynthetic process
Biological processes
 0
$\stackrel{B}{8}$
$\stackrel{y}{1}$
1
8
$\stackrel{8}{8}$
N

¢IdWW	690L0L6180	Sカて9Z0＊0	8IZをが0－
EHSOV	LSE9¢0tIo	St9020＊0	LE8IIE0
gzOyOつ		LSZ81000	9Et65＊${ }^{-}$
9LLHNZ	690L0L6I®80	¢1991000	カ9てL＇0－
IUINA	690L0L6185	6\＆E100	68Lてが0－
ISdYL	6801691280	をZ6Z10＊0	ISELII0
ZSSOV	9L¢ $68 \pm$［oึ	L6LZ100	£8てL69＊0
NGH	LSE9 $0 \downarrow$［80	L6LZ1000	¢888ャで0
ャ7ИОТВ	L0Z9660【oิ๐	16IZI0＊0	86685＊0－
0ZDSI	L¢E9 $0 \downarrow$［o80	LLSL00＇0	LLSL6E＊0
てววดย	LSE9¢0t［80	$6900^{\circ} 0$	てZS99で0
8LOつV	6909¢08080	てLE000	£88EES＊0
LVGV	L69600てI®ิ	£SE0000	9tt99で0
Wdつ		ILLZ00＊0	て9tんIt゚ 0
乙dうV	6¢てヤ89908๐	96t100＊0	68EEL9 0
ยดวяV	L8IZS8600ึ	ع09000＊0	t98てS＊0
ZVVDV	6¢ても89900ึ	ع09000＊0	LSEtLS 0
WZV	9ZSt881080	0	I
səuəり	s口d	2nโe	\downarrow ¢

$\begin{array}{rr}0.134268 & 0.008446 \\ 0.064015 & 0.008466 \\ 0.200741 & 0.009018 \\ 0.17143 & 0.009109 \\ 0.120691 & 0.009175 \\ 0.138499 & 0.009215 \\ 0.19066 & 0.00943 \\ 0.118233 & 0.009512 \\ 0.127302 & 0.009838 \\ 0.35321 & 0.009941 \\ 0.261091 & 0.010027 \\ 0.165408 & 0.010228 \\ 0.432855 & 0.010269 \\ 0.562242 & 0.010276 \\ 0.068661 & 0.010437 \\ 0.348048 & 0.010508 \\ -0.2666 & 0.010599 \\ 0.132616 & 0.010677 \\ 0.261382 & 0.011236 \\ 0.081197 & 0.011259 \\ 0.771824 & 0.011868 \\ 0.167747 & 0.012137 \\ 0.172042 & 0.012161 \\ 0.230787 & 0.012285 \\ 0.255171 & 0.012446 \\ 0.105338 & 0.012743 \\ 0.414708 & 0.012748 \\ 0.108698 & 0.012813 \\ 0.146354 & 0.012913 \\ 0.201808 & 0.012988 \\ 1.415696 & 0.013211\end{array}$

合

$\stackrel{\rightharpoonup}{6}$
0.07395
0.000606
0.319929
0.099319
-0.87798
0.311103
0.211358
-0.17288
0.165381
0.080166
0.082313
0.071777
0.064434
0.404341
0.365921
-0.06281
0.265815
0.377603
0.250816
0.139707
0.075356
0.264642
-0.1367
0.062848
0.082893
0.106878
-0.17001
0.105043
0.082317
0.154478
0.518484

항

$\stackrel{\stackrel{\rightharpoonup}{\omega}}{ }$

$\stackrel{\stackrel{\rightharpoonup}{\oplus}}{\stackrel{\rightharpoonup}{\oplus}}$

91τ

«it

peptidyl-lysine trimethylation

 negative regulation of protein tetramerization regulation of protein tetramerization 5-methylcytosine metabolic process 5-methylcytosine catabolic process CD4-positive, alpha-beta T cell costimulation
glycolipid transport DNA-templated transcription, initiation regulation of synaptic transmission, glutamatergic
homocysteine catabolic process protein import into peroxisome matrix, translocation
glutamate homeostasis regulation of adaptive immune memory response
cellular response to lipoprotein particle stimulus adaptive immune memory response mitochondrial electron transport, NADH to ubiquinone ER to Golgi ceramide transport mature conventional dendritic cell differentiation regulation of AMPA receptor activity dUDP metabolic process
response to lipoprotein p dTDP metabolic process pyrimidine deoxyribonucleoside diphosphate biosynthe pyrimidine deoxyribonucleoside diphosphate metabolic pyrimidine nucleoside diphosphate biosynthetic proce
$\stackrel{\stackrel{\rightharpoonup}{\infty}}{\stackrel{\rightharpoonup}{*}}$

 transcription initiation from RNA polymerase II prom mesenchyme migration
 protein transmembrane transport
sulfur compound catabolic proces polyol transport lateral mesodermal cell differentiation epithelial cell proliferation involved in mammary gl lysosomal transport myoblast fusion involved in skeletal muscle regenera protein targeting to vacuole involved in autophagy negative regulation of antigen processing and presen
regulation of antigen processing and presentation of pyrimidine deoxyribonucleoside metabolic process thymidine metabolic process intracellular lipid transport localization within membrane positive regulation of sodium:proton antiporter acti macrophage fusion 0
0
0
0
0
0
0
0
0
0
0
0
0
0
$\stackrel{\bullet}{\circ}$

IZT

$$
\begin{array}{ll}
\text { GO:0032415 } & \text { regulation of sodium:proton antiporter activity } \\
\text { GO:0002583 } & \text { regulation of antigen processing and presentation of } \\
\text { GO:0046462 } & \text { monoacylglycerol metabolic process } \\
\text { GO:0052651 } & \text { monoacylglycerol catabolic process } \\
\text { GO:2001188 } & \text { regulation of T cell activation via T cell receptor } \\
\text { GO:0033139 } & \text { regulation of peptidyl-serine phosphorylation of STA } \\
\text { GO:0034773 } & \text { histone H4-K20 trimethylation } \\
\text { GO:0033007 } & \text { negative regulation of mast cell activation involved } \\
\text { GO:0070973 } & \text { protein localization to endoplasmic reticulum exit s } \\
\text { GO:0060523 } & \text { prostate epithelial cord elongation } \\
\text { GO:0035249 } & \text { synaptic transmission, glutamatergic } \\
\text { GO:0048369 } & \text { lateral mesoderm morphogenesis } \\
\text { GO:0048370 } & \text { lateral mesoderm formation } \\
\text { GO:0016191 } & \text { synaptic vesicle uncoating } \\
\text { GO:0030579 } & \text { ubiquitin-dependent SMAD protein catabolic process } \\
\text { GO:0060751 } & \text { branch elongation involved in mammary gland duct bra } \\
\text { GO:0072666 } & \text { establishment of protein localization to vacuole } \\
\text { GO:0060426 } & \text { lung vasculature development } \\
\text { GO:0002580 } & \text { regulation of antigen processing and presentation of } \\
\text { GO:0009120 } & \text { deoxyribonucleoside metabolic process } \\
\text { GO:0009202 } & \text { deoxyribonucleoside triphosphate biosynthetic proces } \\
\text { GO:0060075 } & \text { regulation of resting membrane potential } \\
\text { GO:0009186 } & \text { deoxyribonucleoside diphosphate metabolic process } \\
\text { GO:0032526 } & \text { response to retinoic acid } \\
\text { GO:0061734 } & \text { parkin-mediated stimulation of mitophagy in response } \\
\text { GO:0009221 } & \text { pyrimidine deoxyribonucleotide biosynthetic process } \\
\text { GO:0098943 } & \text { neurotransmitter receptor transport, postsynaptic en } \\
\text { GO:0048806 } & \text { genitalia development } \\
\text { GO:0072318 } & \text { clathrin coat disassembly }
\end{array}
$$

てZし

 heart field specification pentose-phosphate shunt, oxidative branch
myo-inositol transport protein localization involved in establishment of pl regulation of histone acetylation matrix metallopeptidase secretion
 regulation of matrix metallopeptidase secretion steroid hormone mediated signaling pathway positive regulation of myoblast fusion negative regulation of osteoclast proliferation central nervous system neuron differentiation spinal cord association neuron differentiation
regulation of neurotransmitter uptake negative regulation of CD40 signaling pathway negative regulation of mitotic centrosome separation cysteine biosynthetic process from serine muscle structure development positive regulation of stress granule assembly regulation of nucleotide-binding oligomerization dom
 regulation of glial cell-derived neurotrophic factor glial cell-derived neurotrophic factor secretion regulation of protein sumoylation

N senescence-associated heterochromatin focus assembly
embryonic heart tube anterior/posterior pattern spec
positive regulation of granulocyte colony-stimulatin
positive regulation of macrophage colony-stimulating
regulation of regulatory T cell differentiation
mesenchymal stem cell migration regulation of high-density lipoprotein particle clea
meiotic DNA double-strand break processing endoplasmic reticulum tubular network membrane organ cardiac cell fate determination
 negative regulation of chronic inflammatory response \square
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 homocysteine catabolic process secondary metabolite biosynthetic process
regulation of protein secretion chondroitin sulfate proteoglycan biosynthetic proces
secondary metabolite biosynthetic process
 negative regulation of nuclear-transcribed mRNA poly endoplasmic reticulum tubular network formation positive regulation of glucose mediated signaling pa
NADP metabolic process
 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

$$
\text { a } \omega \omega \omega \omega \omega \omega \omega \omega \omega \omega \omega+\omega+\omega+\mathbb{N} \omega \text { 丞 } \omega N \omega \omega+\omega
$$

$\stackrel{\sim}{\infty}$

$8660{ }^{\circ}$	27		9ISIZ00：OD
S6t00	t		0910900：00
L8t00 0	ς		¢I80L00：OD
L85000	ς		Z6£0900：OD
$98+0.0$	$\dagger \tau$		¢68IZ00：OD
£85000	92		9020ع00：OD
18t000	ς		I 191L00：OD
08500	9		て¢¢9000：OD
$6 \angle t 00$	L		เE9Et00：00
S $\angle 100^{\circ} 0$	\mathcal{E}		ES¢6600：OD
S S $+00^{\circ}$	ε		て¢¢6600：OD
t \angle ¢0 0	9ε		IZ69000：0Đ
てLt0 0	¢II		LZ60100：OD
LLt000	ς		¢z\＆0600：00
$99+0 \cdot 0$	ε		0L8S06I：OD
$99+00^{\circ}$	ε		898S061：OD
＋9t00	ς		Lt6IL00：OD
19t00	ς		820z900：OD
$8 \mathrm{St0} 0$	9		8\＆Iてヤ00：OD
ssto 0	乙	ио！̣｜	0z9000z：OD
ISt00	乙		06t0900：OD
ISt00	τ		68t0900：OD
ISt00	τ		88t0900：OD
ISt00	†		98E8t00：00

Supplement Table S6 (A): Indirect association of DNAm at birth at 68 CpG sites in males, with asthma acquisition from pre- to post-adolescence

て¢亡								
2．очS ${ }^{-} \mathrm{S}$		I－8İ608－tdy	ZI	$\varepsilon L^{\circ} 0$	00°	t0 0	50 0^{-}	LE0888t0 ${ }^{\text {ofo }}$
pue［SI		НZdMMd	ς	0¢ 0	1000－	t0 0	＋0．0	0¢EE08tIo
	Kpog	E6fiob	6	$9 \mathrm{Cr}^{\circ}$	100	＋0．0	＋0．0－	LてL6け8を！io
pue［sI pue｜SI		8 dIV HNL	\bigcirc	0¢ 0	100	t0 0	t0 0	Sc90ZLt0®0
	Kpog	INIOV	$\dagger 1$	£で0	10．0－	＋0．0	＋0．0－	ttItt88iso
	Kpog	IGIN	I	เย์0	10\％${ }^{-}$	t0 0	＋0．0－	¢ 2 ItE6S0 ${ }^{\text {cos }}$
20ヶS ${ }^{-}$S	Kpog	$\angle I A N Z$	6 I	เセ 0	$10 \cdot{ }^{-}$	＋0．0	＋0．0－	¢z99E990®
		LLIZODNIT	91	てと＊0	$10.0{ }^{-}$	＋0．0	＋0：0	¢09L66208ึ
		sIDrVNG	$\varepsilon 1$	60°	$20 \cdot 0$	＋0：0	＋0．0－	£Z980¢90 ${ }^{\text {® }}$
purisi ${ }^{\text {d }}$ d	ио！̣еэо әШәワ	วแว	पHD		วมеш！̣！${ }^{\text {a }}$	әпjend	әүеu！̣s	s口d丁
				VdSTV	OvdStV	JgMoi	Ј¢MOI	
2．04S ${ }^{-}$S	Kpog	GINNDS	I			200	$90^{\circ} 0$	てヤ6159Lでoァ
	00 SISSL	ZZ．ANZ	0I			E0\％	S0．0－	L8L6ZL9Z80
	Kpog	ZNLSV	ε			＋0．0	S00 0^{-}	6£を¢ะて9てかっ
			6			s0．0	S0．0－	1986809て80
			ZI			20.0	s0．0	98てI9¢¢zo̊o
	Kpog	8ZSdyW	8			E0\％	S0．0－	9¢6ヶ0¢0zoิo
			τ			200	S0．0－	
pue $_{\text {I }}{ }^{\text {I }}$	Kpog	$I \cap V d S$	8			¢0．0	¢0．0	896¢£9818̊0
	Kpog	INLT	12			＋0．0	S0．0	6¢L86t8180
	Kpog	tETI	9I			E0\％	S000－	8\＆てカ99910̊\％
	रpog	ILTH	$\varepsilon 1$			t0．0	S0．0－	て9t86LSI®O
	Kpog	sTTLL	†I			20.0	$90^{\circ} 0^{-}$	ちて6し19を！o̊o
	Kpog	VEIHİY	9			¢0．0	＋0．0－	
			L			＋0．0	¢0．0	80196ちて！

\dot{i} 앙 응 엉 ∞
$\stackrel{\stackrel{\rightharpoonup}{\omega}}{\omega}$

n
n
$\stackrel{n}{n}$
$\stackrel{n}{n}$

00000000000000000000000000000

00000000000000000000000000000

○

J $^{2} \mathrm{SSS}^{-} \mathrm{S}$	yınıs	IGS	91
	Kpog	SIUNOVJ	I
	yınıs	8ІУのつ	I
2．04S ${ }^{-} \mathrm{N}$			¢I
			6
	YLOS	aTVON	8
	00ZSSL	zSV－qVEdSL	Iz
	Kpog	byoy	¢I
pue［ ${ }^{\text {S }}$	とLก，s¢uoxals	t．thV	ς
2．0чS ${ }^{-} \mathrm{N}$	Kpog	\checkmark ¢VHLL	91
2．0чS ${ }^{-}$S	00 SISSL	8tIANZ	ε
20， S $^{-} \mathrm{N}$	00ZSSL	NHd \bigcirc	\dagger
2．0YS ${ }^{-} \mathrm{N}$	00 SISSL	IDOEdS	LI
	00ZSSL	tHOL	81
	ชLก¢	93Sdつ	21
	रpog	IZLANZ＇dIIVJgh	t
	yLO．s	IVITI	τ
	yLO．s	IdVy	LI
			81
	00 SISSL	ZDLOV	乙
		sTWG	$\dagger 1$
			ς
			I
$\operatorname{~2.OYS~}^{-} \mathrm{N}$ pur｜SI			II
	00ZSSL	zIHIY	6
			ε
			τ

$$
\begin{aligned}
& \begin{array}{l}
Z \\
2 \\
\vdots \\
\stackrel{0}{6}
\end{array}
\end{aligned}
$$

$$
\begin{array}{rr}
-1.24097 & 0.005144 \\
0.345648 & 0.005293 \\
0.380788 & 0.005533 \\
-0.1295 & 0.005664 \\
-0.4264 & 0.005721 \\
0.428863 & 0.005754 \\
-0.33256 & 0.006106 \\
-0.44478 & 0.006165 \\
0.53543 & 0.006591 \\
0.357756 & 0.007255 \\
0.209231 & 0.007265 \\
-0.33711 & 0.00731 \\
-0.42895 & 0.007343 \\
-0.47048 & 0.007352 \\
0.347298 & 0.007894 \\
-0.19127 & 0.008537 \\
-0.63711 & 0.008584 \\
-0.60162 & 0.008749 \\
-0.67467 & 0.009725 \\
0.514161 & 0.009915 \\
-0.20839 & 0.00997 \\
-0.31282 & 0.010098 \\
0.57813 & 0.010116 \\
0.572835 & 0.010313 \\
-0.64087 & 0.010511 \\
0.25589 & 0.010696 \\
0.047156 & 0.011362 \\
0.254495 & 0.011385 \\
0.385937 & 0.011681 \\
0.552847 & 0.012115 \\
0.477949 & 0.012362
\end{array}
$$

てた0とて000 99てIど0－

 O 0.012491
0.012613

$\stackrel{\rightharpoonup}{\bullet}$

$\stackrel{H}{\circ}$

$\underset{\sim}{\underset{\sim}{4}}$

$\stackrel{\rightharpoonup}{\oplus}$

$\stackrel{\rightharpoonup}{\bullet}$

$\stackrel{\rightharpoonup}{8}$
0.64903
-0.64208
0.257782
-0.32239
0.248115
-0.63924
0.310499
-0.41863
0.272192
0.182417
0.179698
0.204681
-0.43731
-0.57993
-0.15316
-0.3919
-0.09677
0.330104
-0.31301
-0.22763
-0.27749
0.397485
-0.38125
0.163569
-0.18756
-0.31338
0.257323
-0.04838
0.22413
-0.22538
0.66399

-0.28947	0.041685
-0.26993	0.042036
0.169541	0.04225
0.258433	0.042287
0.22371	0.042408
0.155575	0.042809
0.215838	0.043236
-0.3948	0.043269
-0.16838	0.043416
-0.2305	0.043676
-0.12924	0.043964
-0.37991	0.044097
-0.17697	0.044195
-0.43414	0.044216
0.319814	0.044277
-0.21387	0.044428
-0.24885	0.044611
-0.25582	0.04472
0.248456	0.044733
0.130623	0.044908
-0.39309	0.04535
0.333617	0.046207
-0.29081	0.046928
-0.21767	0.046981
-0.52642	0.047215
0.116341	0.047747
-0.39334	0.047986
0.222503	0.048405
1.356835	0.048449
-0.15664	0.048789
-0.16528	0.048829

163

21000	\mathcal{E}		tLtEt00：OD
21000	ε		ちてEとャ00：Oワ
21000	ε		Ittてt00：Oワ
21000	ε		9ZL9000：0ワ
21000	ε		10Z100z：O〕
11000	ε	ио！̣еzı！．r｜	0£9z06I：OD
110．0	乙	ио！ириочэоп！	£606600：Oワ
6000	268		L889000：OD
$600 \cdot 0$	ε		96てIE00：OD
$800 \cdot 0$	τ		z0zI00z：OD
$800{ }^{\circ}$	It		L00L000：OD
$800 \cdot 0$	I	Ноdsuent әu！soik	8Z8SI00：OD
L00＇0	I		İ9z061：OD
L00＇0	\mathcal{E}		9£9z000：Oワ
$900 \cdot 0$	I		Lعてち06I：OD
$900 \cdot 0$	I		¢Ezt061：OD
$900 \cdot 0$	τ	ио！ф¢！	E6を9000：OD
S00．0	I¢		LOtてt00：O9
＋00．0	I		6t08000：OD
＋00．0	Z		8L0¢06I：OD
＋00．0	6 I		9¢6St00：Oŋ
＋00．0	12		てz9をะ00：Oŋ
200 0	91		91ISt00：OD
วn［PS d MPY	\＃N	sassoould［ex！obolotg	шนว้ OD
		GOXd 8SEtS0Z080 SE86t IDSNVW 0LLO66II8） $96 L 6 t$	$\begin{array}{ll} \hline 0 & \text { I9Z0Z } \varepsilon^{\circ} \\ 0 & 8 \varepsilon 660^{-} \end{array}$

164

$$
\angle Z S 0900: O D
$$

 motor neuron apoptotic process ұ． sensory perception of sound catecholamine secretion
sensory perception of so positive regulation of long－term synaptic depression
positive regulation of secretion

 cleavage furrow formation regulation of pancreatic juice secretion
cleavage furrow formation regulation of catecholamine secretion negative regulation of epithelial cell differentiation involved in kidney development
regulation of catecholamine secretion positive regulation of regulated secretory pathway
ganglioside catabolic process
negative regulation of pancreatic juice secretion positive regulation of regulated secretory pathway
ganglioside catabolic process
negative regulation of pancreatic juice secretion calcium－independent cell－matrix adhesion цоџฺшш．．ој ш．ьрориә astrocyte cell migration regulation of motor neuron apoptotic process regulation of sodium ion transmembrane transporter activity
positive regulation of secretion by cell chemokine（C－X－C motif）ligand 12 signaling pathway
 $\begin{array}{ll}0 & 0 \\ \odot & 0 \\ \circ & 0 \\ + \\ \infty \\ \infty \\ \infty & \infty\end{array}$ 6809ع00：OĐ
9810600：Oŋ \＆\＆t0¢00：OD L69000Z：OD
8810600：OD $\begin{array}{ll}0 & Q \\ 0 & 0 \\ \dot{\circ} & \dot{0} \\ 8 & 0 \\ \circ & 0 \\ 0 & 0 \\ 0 & 0\end{array}$ 19IL000：OD 90LI000：OĐ
SI9Eち00：OĐ IL9000て：OD てEsE06I：OD $6 ヵ 9000 z: O D$
$9 ヵ$ I8E00：OD

0
0
0
0
0

$$
\begin{aligned}
& \text { s!səuәถ̊очd.ıou snu!̣e ле! } \\
& \text { prostate epithelial cord arborization involved in prostate glandular acinus morphogenesis }
\end{aligned}
$$ GO：0050707

GO：0008360
GO：0048069
GO：0060155
GO：0060526 $\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & \ddots \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}$ ¢09L000：OD てEャ0¢00：OD 0
0
$\dot{\circ}$
\vdots
0
\vdots
\vdots

regulation of cell shape

$$
\begin{aligned}
& \text { eye pigmentation } \\
& \text { platelet dense grar }
\end{aligned}
$$ uо！sәчре х！џеш－п d

$$
\begin{aligned}
& \text { platelet dense granule organization } \\
& \text { prostate glandular acinus morphoge }
\end{aligned}
$$ ye pigmentation motor neuron apoptotic process

のの ∞ 氐

0¢0 0	602		IE¢E061：OD
0¢0．0	ZI		LSI0E00：OD
$6+0 \cdot 0$	6		LZS6600：0〕
$6+0 \cdot 0$	£¢¢I		て¢E0tI0：OD
8500	LI		OS L0E00：OD
$870{ }^{\circ}$	\dagger I		6Lt9＋00：0〕
$9+0 \cdot 0$	ZI	әsuodsə．ı Kı！	8\＆şt00：00
$9+0 \cdot 0$	0I		9208100：00
$9+0{ }^{\circ}$	0I		108S100：OD
Sto 0	8		0LZL000：OD
Sto 0	II	әр！̣！̣̂uny of วsuodsə．	Z660900：OD
Sto 0	01		6＋09010：00
tto 0	291		t¢60¢00：00
to $0^{\circ} 0$	$\varepsilon 1$	Кемчред и！̣әә＇иопреп̣гя диәшәдиоо	L981000：0才
tto 0	LL		LE6IS00：OD
Eャ0 0	$0 \varepsilon \varepsilon$		6＋8S100：00
Et0 0	II		0991061：OD
Et0 0	II		6¢10900：OD
2to 0	8		9LtIL00：OD
1＋0．0	¢9		9¢ILI00：OD
Ito 0	ZI		0ヶ£ ¢ 00000
Ito 0	60¢I		0ャ6てを00：OD
$0+0{ }^{\circ}$	6		†¢9z000：Oワ
6\＆0\％	92		とItてを00：0ワ
$880 \cdot 0$	88		てtS0661：OD
8 8000	L		LS6IZ00：OD
LEO 0	8S I		¢0EE06I：OD
LEO 0	9		991506I：OD
980\％	8		6LI0900：OD

Supplement Table S9 (B): Statistically significant GO terms and its biological processes from pathway enrichment analysis in each pathway for

169

GO:0002542	Factor XII activation
GO:0008643	carbohydrate transport
GO:0030728	ovulation
GO:0033140	negative regulation of peptidyl-serine phosphorylation of STAT protein
GO:0060766	negative regulation of androgen receptor signaling pathway
GO:0001505	regulation of neurotransmitter levels
GO:0042593	glucose homeostasis
GO:0034063	stress granule assembly
GO:0033500	carbohydrate homeostasis
GO:0030316	osteoclast differentiation
GO:0071333	cellular response to glucose stimulus
GO:0034755	iron ion transmembrane transport
GO:0045167	asymmetric protein localization involved in cell fate determination
GO:0002038	positive regulation of L-glutamate import across plasma membrane
GO:1903428	positive regulation of reactive oxygen species biosynthetic process
GO:0071331	cellular response to hexose stimulus
GO:0006293	nucleotide-excision repair, preincision complex stabilization
GO:0006295	nucleotide-excision repair, DNA incision, 3'-to lesion
GO:0071326	cellular response to monosaccharide stimulus
GO:0006525	arginine metabolic process
GO:1902631	negative regulation of membrane hyperpolarization
GO:1903020	positive regulation of glycoprotein metabolic process
GO:0001834	trophectodermal cell proliferation
GO:0039502	suppression by virus of host type I interferon-mediated signaling pathway
GO:0039503	suppression by virus of host innate immune response
GO:0039514	suppression by virus of host JAK-STAT cascade
GO:0039562	suppression by virus of host STAT activity
GO:0039563	suppression by virus of host STAT1 activity
GO:0039564	suppression by virus of host STAT2 activity

- - - - - - N

$0<\tau$

 neurotransmitter receptor transport postsynaptic membrane to endosome
 L-glutamate transmembrane transport calcium ion-regulated exocytosis of neurotransmitter glycolate metabolic process monosaccharide transmembrane transport activation of plasma proteins involved in acute inflammatory response detection of chemical stimulus involved in sensory perception of sweet taste neural crest cell fate specification plasma kallikrein-kinin cascade
negative regulation of oocyte development
negative regulation of oogenesis
positive regulation of glycolytic process
hexose transmembrane transport
negative regulation of osteoclast differentia

 positive regulation of fibrinolysis

 cellular response to carbohydrate stimulus
stress response to acid chemical cellular response to pH $\overrightarrow{6}$
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0.

0

ZLI

GO:0034219	carbohydrate transmembrane transport
GO:0001544	initiation of primordial ovarian follicle growth
GO:0046903	secretion
GO:0006757	ATP generation from ADP
GO:1990145	maintenance of translational fidelity
GO:0061819	telomeric DNA-containing double minutes formation
GO:1905764	regulation of protection from non-homologous end joining at telomere
GO:1905765	negative regulation of protection from non-homologous end joining at telomere
GO:0000710	meiotic mismatch repair
GO:0043153	entrainment of circadian clock by photoperiod
GO:0009605	response to external stimulus
GO:0061470	T follicular helper cell differentiation
GO:0006914	autophagy
GO:0061919	process utilizing autophagic mechanism
GO:1904431	positive regulation of t-circle formation
GO:1902630	regulation of membrane hyperpolarization
GO:0002761	regulation of myeloid leukocyte differentiation
GO:1903409	reactive oxygen species biosynthetic process
GO:0008594	photoreceptor cell morphogenesis
GO:0071386	cellular response to corticosterone stimulus
GO:0044501	modulation of signal transduction in other organism
GO:0052027	modulation by symbiont of host signal transduction pathway
GO:1904891	positive regulation of excitatory synapse assembly
GO:0046898	response to cycloheximide
GO:0042698	ovulation cycle
GO:1905384	regulation of protein localization to presynapse
GO:1905386	positive regulation of protein localization to presynapse
GO:0050729	positive regulation of inflammatory response
GO:0046834	lipid phosphorylation

 GO:0046031 GO:0031347 L08¢I00:OD
06tてよ00:OD GO:0070253
 0.
0.
0.
0.
0.
0
0
 ọ ¢S0ZS00:OD
LOS6E00:OD

 secretion by cell negative regulation of vascular associated smooth muscle cell apoptotic process positive regulation of autophagy
photoperiodism post-embryonic hemopoiesis pyrimidine dimer repair by nucleotide-excision repair positive regulation of cellular pH reduction
carbohydrate metabolic process ADP metabolic process regulation of inflammatory response
mechanoreceptor differentiation
L-amino acid transport
regulation of defense response
 iron ion transport response to chlorate response to odorant negative regulation by symbiont of host molecular function
 suppression by virus of host molecular function modulation by virus of host molecular function

 ssəəо.d э!!oqеұәu әұеч purine nucleoside diphosphate metabolic process nucleotide-excision repair, DNA incision, 5^{\prime}-to lesion
embryonic digit morphogenesis
$\stackrel{\rightharpoonup}{v}$

 regulation of MHC class I biosynthetic process positive regulation of nervous system process
MHC class I biosynthetic process oogenesis
positive re D-aspartate import across plasma membrane D-aspartate transport nuclear matrix anchoring at nuclear membrane
spermidine biosynthetic process nuclear matrix organization establishment of endothelial blood-brain barrier
central nervous system vasculogenesis nucleokinesis involved in cell motility in cerebral cortex radial glia guided migration
stem cell fate specification
 cochlear nucleus development
 positive regulation of natural killer cell mediated cytotoxicity directed against tumor cell target 010
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0S0．0	0t		6¢S0100：OD
0¢0．0	9		LLSL600：OD
0S0\％	9		8S8000z：OĐ
0¢0．0	9		¢¢8000z：Oŋ
0¢0．0	9		て£6¢£00：Oŋ
0¢0\％	9		โE6¢E00：Oŋ
0¢0．0	LZ	ио！̣еэџ！	¢ $\angle 09800: O \bigcirc$
OS0．0	Lて	ио！реџ！	8¢61000：O9
$6+0 \cdot 0$	£0Z		Et99000：Oŋ
$6+0 \cdot 0$	9		¢Z¢6600：O9
$6+0{ }^{\circ}$	9		［106600：OĐ
$6+0 \cdot 0$	¢¢		¢8I6000：O9
$6+0 \cdot 0$	I6t	ц．	IILSI00：O9
$6+0 \cdot 0$	ς		291106I：O9
$6+0 \cdot 0$	8		858Z000：Oŋ
$6+0 \cdot 0$	8		0ztて000：Oŋ
$6+0 \cdot 0$	9	әр！иечээвs！p of әsuodsəı	¢8てte00：Oŋ
$6+0 \cdot 0$	9	əsorons of asuodsor	ttL6000：OĐ
8 ± 00	9ε		ZLSEE00：OĐ
$8+0^{\circ} 0$	9ε		91IZ06I：OĐ
Lt0 0	t		tsost00：O9
$\angle \mathrm{t} 0^{\circ} 0$	t		¢\＆LtI00：OD

u u b
-
\qquad

$\stackrel{\sim}{\sim}$

京

$\stackrel{\leftrightarrow}{\infty}$

$\cdots \underset{\omega}{\omega} \dot{\sim} \dot{\sim}$

$\stackrel{\leftrightarrow}{\sim}$

		$\begin{aligned} & \text { © } \\ & \text { on } \end{aligned}$			$\begin{aligned} & \mathbb{O} \\ & \stackrel{\circ}{<} \end{aligned}$	

Z
1
0
0
0
0

Z

∞	
0	
0	0
0	0
0	0

\sim
0
0
0
0
$2.04 S^{-} \mathrm{N}$

purisi

刃

IdVONVY

$\operatorname{cg} 16404609$
$\operatorname{cg} 16423486$
$\operatorname{cg} 16809249$
$\operatorname{cg} 16947819$
$\operatorname{cg} 17364708$
$\operatorname{cg} 17698505$
$\operatorname{cg} 17775336$
$\operatorname{cg} 17853121$
$\operatorname{cg} 17939602$
$\operatorname{cg} 18019618$
$\operatorname{cg} 18104668$
$\operatorname{cg} 18622049$
$\operatorname{cg} 19382123$
$\operatorname{cg} 19427589$
$\operatorname{cg} 19545865$
$\operatorname{cg} 19635805$
$\operatorname{cg} 19637744$
$\operatorname{cg} 19825503$
$\operatorname{cg} 19958721$
$\operatorname{cg} 19994575$
$\operatorname{cg} 20040976$
$\operatorname{cg} 20397901$
$\operatorname{cg} 20728881$
$\operatorname{cg} 20756051$
$\operatorname{cg} 20866256$
$\operatorname{cg} 20951352$
而

Z
$\stackrel{2}{2}$
$\stackrel{0}{0}$
$\underset{0}{2}$

	Kpog	26I0IDO7	9	8 ± 2000	乙0－ョz	てS＇${ }^{-}$	6ILLt94でoio
	Kpog	ャめけT	II	$6000{ }^{\circ}$	¢0－ヨ9	$9 \downarrow^{\prime} \varepsilon^{-}$	00 ISLSLZo̊o
			0I	$9 \mathrm{~S} 00^{\circ} 0$	¢0－ョz	ガI	9LてLZILてo̊o
	Kpog	g9zaiy	I	てS0000	£0－ョz	6L＇I	¢¢199t9て8o
			0I	16100	20－gi	28 ${ }^{\text {－}}$	¢81586¢て80
${ }_{20} \mathrm{orS}^{-} \mathrm{N}$	00ZSSL	WVSTV	ε	LZ00＊	＋0－ヨL	LL＇${ }^{-}$	と09¢99¢zo̊o
			6I	£1000	ャ0－ョz	ガて	LStL8Sczoio
${ }_{20} \mathrm{orS}^{-} \mathrm{N}$	uoxals	хяg	ε	$9000{ }^{\circ}$	90－ヨ゙	¢6 ${ }^{-}$	$86 £$ ¢0¢¢zo̊o
pue｜SI	00SISSL	6HNLO$I D$	$\varepsilon 1$	$18+00^{\circ}$	20－ヨ゙	$08^{\text {＋}}{ }^{-}$	とultetszoo
	YLO．s	£GdWS	91	6 60000	£0－ョz	$8 \varsigma^{\circ}$ \％	IL9tuliczoo
गข ${ }^{\text {S }}{ }^{-}$S	Kpog	HHGN	てz	It 0000	£0－ョi	てL＇Z	0 てtS60¢て80
	Kpog	دZIHEうZ	II	$6 \angle 00^{\circ} 0$	£0－ヨt	$66^{\text {＋}}{ }^{-}$	9とtてtosてoo
			乙	8LI0 0	20－gi	Lて＇I	£LES8Ltて®o
pue［sI	00ZSSL	v8gGd	¢	$0 \mathrm{Et} 0^{\circ} 0$	20－ョย	£8．0	七\＆89をLtてo̊o
2．0чS ${ }^{-}$S	00 SISSL	6dSvo	I	9 ZO 00	ャ0－39	\＆ $8^{\text {［ }}{ }^{-}$	£L0I90tて®o
	Kpog	İzyn	ZI	LE00\％ 0	¢0－GI	¢ $¢^{\prime}$ I	ャレ¢¢ร9¢zo̊o
	Kpog	ноууd	カI	LIO00	ャ0－ョย	$68^{\prime} 7^{-}$	†106を£とでo
	Kpog	gIthoto	I	Lt00．0	ย0－ョz	L0 ${ }^{\text {\％}}$	866£6を¢てภo
2．OYS $^{-} \mathrm{N}$	Kpog	EHVENG	6I	$95_{00} 0$	ย0－ョz	£9 I	6L9๕9を¢をภo
			Z	£900\％ 0	$\varepsilon 0-$－ย	H＇Z	ャ8ャ8でとでo
			6 I	LI 1000	£0－ヨ9	¢9 I	£L96S0¢て®o
			ZI	6S00\％ 0	ย0－ョz	$68^{\text {I }}$	
			02	\mathcal{E} ¢ $0 \cdot 0$	20－ョย	LS I^{-}	＋99tL8てzo̊o
	צLO．s	0Z9SI	¢I	99700	て0－ヨz	9L＇ I^{-}	9LEILtてzoso
	Kpog	2J607S	I	$8{ }^{\text {¢ }} 0000$	£0－ョz	08． I^{-}	£6I89¢Izo̊o
	Kpog	¢のdGソ	II	$0200{ }^{\circ}$	t0－ヨカ	ゅでで	
	Kpog	zainดวa	$\varepsilon 1$	¢E00\％	ع0－gi	$6 \varepsilon^{*} \varepsilon^{-}$	てL96StIzoso
2．04S ${ }^{-}$S	$00 ¢ \operatorname{LSSL}$	IWLIHI	II	08100	20－gI	カI＇ $\mathcal{E}-$	0LIE\＆tIてo̊o

โ6โ

Jә ${ }^{\text {S }}{ }^{-} \mathrm{N}$	Кpog	\＆\angle ¢GM	¢I	LSE8：0	L0．0－	8LI0\％	＋600\％ 0	¢6．0	90¢ร0100 0
วоочS ${ }^{-} \mathrm{N}$	Кpog	tH8tsyIW	¢	†01L＇0	01 0^{-}	8LIO 0	¢600 0	t9 0	$6+0 \angle \varsigma \& L Z 80$
$\operatorname{roms~}^{-} \mathrm{N}$	Кроg	tH8tsyIW	¢I	tollo	010 0^{-}	8LIOO	¢600 0	5900	6ヶ0LS\＆Lzo̊o
20．0 $\mathrm{S}^{-} \mathrm{N}$	Кpog	9zауулн	0I	965s．0	6z\％	8LIOO	$2600 \cdot 0$	95．0	861286z0¢0
puelsi			6	¢¢てE＊0	zて．0	8LIOO	$1800^{\circ} 0$	18.0	6IESL9EL®0
20¢S ${ }^{-} \mathrm{N}$			8	$0 t \angle 60$	1000－	L9100	tL00＇0	$\mathrm{IS}^{\circ} 0^{-}$	06L66EtISo
	Кpog	zyODn	ZI	IS6t＊ 0	$61^{\circ} 0$	＋910．0	I $\angle 00^{\circ} 0$	$18^{\circ} 0$	tSc9L680 0
2．0чS ${ }^{-} \mathrm{N}$			9	0 0£z゙0	IE＇0	Stio 0	19000	2S＊0	£1L90897s̊
2．0us ${ }^{-} \mathrm{N}$	00SISSL	zLY7	－I	t90200	0t＊ 0	$9 \varepsilon 1000$	$9500^{\circ} 0$	ZL＇0－	269St88180
2．04S ${ }^{-} \mathrm{N}$	Кpog	9\％WgWL	0I	£165\％0	\＆z\％	เย1000	$8+000$	$68^{\circ}{ }^{-}$	てSIZ90tIoo
	Кроg	INLAT	t	¢90¢．0	¢100－	เย1000	$9+00^{\circ} 0$	ts． 0	ILttLSLIoso
	Кроg	Vt8JN发	L	¢SEt 0	£で0－	เع1000	It00＇0	$85^{\circ} 0$	9100680⿺辶\％
2．04S ${ }^{-} \mathrm{S}$	кpog	гтปdуけ	\bigcirc	＋978．0	$0{ }^{\circ} 0^{-}$	9 ZLO 0	$9800 \cdot 0$	$9 \mathrm{C}^{\circ}{ }^{-}$	8ttLL60zo̊o
pue［sI	yınıs	I $\ddagger d d 7$	6	185900	81°	9 ZIO 0	てE000	LS＇0	16tLz9¢⿺⿷匚os
${ }^{2} .04{ }^{-}{ }^{-}$	Кpog ${ }^{\text {Spog }}$	£dЯวd	IZ	¢EL900	E1＇0－	£900＊0	EL00＇0	180	L9100ULてかo
2．04S ${ }^{-} \mathrm{N}$	Кpog	SGכTVy	6	¢SLZ゙0	てz\％	$\varepsilon 900^{\circ} 0$	t1000	$89^{\circ}{ }^{-}$	28LE6LEเธั
pue［sI		IHİO	91	0LZ80	$90 \cdot 0$	¢ $500^{\circ} 0$	$0100^{\circ} 0$	26.0	0169t6t08̊\％
puelsi			IZ	£L08．0	$90^{\circ} 0$	¢ $500^{\circ} 0$	$0100^{\circ} 0$	¢ $¢^{\circ} 0^{-}$	カIZSI80080
2．0чS ${ }^{-} \mathrm{N}$			ς	ナLLL＇0	01．0	¢ $¢ 000^{\circ}$	$0100^{\circ} 0$	$9 L^{\circ} 0^{-}$	07899L6180
		yzJdN	t	£ E\＆¢ 0	てE0	¢ 5000°	$6000{ }^{\circ}$	\＆て＇I－	012666を180
pue［SI	Kpog	EdVALS	乙	カ0¢t「0	$81^{\circ} 0^{-}$	¢S00．0	$0100^{\circ} 0$	$6 Z^{\prime} 1$	29\＆6810180
		ャ79トワフО	¢	ち0¢60	200^{-}	£ $¢ 00^{\circ} 0$	$9000{ }^{\circ}$	LİI	26St981500
pue［ ${ }^{\text {S }}$	00SISSL	ZL9ANZ	1	008 $\iota^{\circ} 0$	$9 \mathrm{I}^{\circ}{ }^{-}$	0 0 00．0	2000\％ 0	$19.0{ }^{-}$	SLEL6E608̊
${ }^{\text {2．04S }}{ }^{-} \mathrm{S}$	00 SISSL	I8frolz	Iz	IZ0s＊0	tio	ع000\％ 0	$0000 \cdot 0$	88°	z9E919915\％
$\begin{gathered} \hline \text { puel }_{\text {ISI }} \\ \text { Dd } \end{gathered}$	$\begin{aligned} & \hline \text { иоب̣вгот } \\ & \text { әயәэ } \end{aligned}$	ว๖ว	पHJ	$\begin{array}{r} \text { әn[b^d } \\ \rho \forall d S I V \end{array}$	$\begin{gathered} \hline \text { әłeu!ilig } \\ \text { oedsIV } \end{gathered}$			รวยеш！！！ गgMOI	sDd

[^2]\[

$$
\begin{aligned}
& \text { 畐 }
\end{aligned}
$$
\]

$$
\begin{aligned}
& \stackrel{\stackrel{\rightharpoonup}{\sim}}{\sim}
\end{aligned}
$$

$\stackrel{\rightharpoonup}{\circ}$

$\stackrel{\rightharpoonup}{6}$

$\stackrel{\stackrel{\rightharpoonup}{0}}{ }$
0.282792
-1.30887
-0.81153
0.918757
-0.22332
-0.56661
-0.51295
0.707645
0.748489
1.082027
0.443105
1.194002
-0.60216
0.903861
-0.61102
-0.39125
0.45426
-1.24426
0.691221
-1.0212
-0.63454
0.414925
0.570204
0.553652
-0.2827
-1.347
-0.2511
-0.4807
1.697077
0.851012
-0.52387

응
 1
4
0
0
0
0
 0.720181 in
合
∞
 0.000262
0.305861 0.438001 0.304
-0.56826 $-0.40175 \quad 0.014834$

\circ
-
\mathbf{N}_{0}

0_{0}
+
\pm
0
0
0
0
0
0 $-0.450430 .013777$ $-0.27694 \quad 0.013736$ $0.538644 \quad 0.013696$ 0.7259440 .013616 -0.23101
0.759456

 $\stackrel{8}{\stackrel{O}{4}}$

 $\stackrel{\stackrel{C}{0}}{\stackrel{1}{+}}$ cg00315816

cg00707741 | 吅 |
| :---: |
| N |
| N |
| 莫 |
| |

品

IL99Z0．0 Stzzss．0

苞 $6+S z 0^{\circ} \mathrm{H}$ L6LE9 0蓇苞首 을

 $\dot{0}$
N
N
\pm 운 -0.46978
-0.67381 -0.59747
-0.36329
-0.49297
-0.81681
-0.31872
-0.46978 앙 ： $\begin{array}{ll}0.247024 & 0.022664 \\ 0.275855 & 0.023214\end{array}$ 0.4206390 .022412 0.022183 Iz8tIS＂ 0 0.448635
-0.60569

~
$\begin{array}{r}1.25322 \\ 0.232124 \\ -0.28642 \\ 0.751503 \\ -1.04051 \\ 0.747709 \\ 0.823609 \\ 0.229152 \\ 0.38846 \\ -2.3819 \\ -0.37801 \\ -0.42173 \\ 1.078219 \\ 0.618513 \\ -0.18966 \\ -0.95831 \\ 0.559089 \\ -0.59327 \\ -0.60405 \\ -0.65339 \\ 0.662712 \\ -0.29208 \\ -0.36264 \\ 1.399547 \\ -0.07612 \\ 0.538616 \\ -0.57579 \\ 0.46021 \\ 0.799391 \\ 0.577944 \\ -0.16926 \\ \hline\end{array}$

N

N

N

$\stackrel{N}{\sim}$

$\stackrel{\sim}{\omega}$

-0.23971	0.00756	cg05098096	TTLL10
-0.4617	0.007613	cg24496614	GLI4
1.065227	0.007649	cg09543792	EMBP1
0.893084	0.007653	cg21103269	PM20D2
0.219824	0.007681	cg24151841	AKAP8L
-0.69449	0.007768	cg20477591	BMP2
0.489759	0.007872	cg11661809	MORN1
-0.92752	0.008171	cg02691091	DLX4
0.42244	0.008232	cg17821664	SOS2
-0.28981	0.00834	cg13539395	ACER1
0.607249	0.008376	cg23683674	RANBP9
-0.60214	0.008771	cg20477591	NOL9
0.40756	0.008831	cg11021321	ARPC5L
-0.47463	0.008914	cg02266878	CARD11
-0.69467	0.00897	cg20477591	DCHS1
573.7044	0.009081	cg22081558	AAGAB
0.788674	0.009082	cg19374731	SIGLEC1
0.727753	0.009164	cg14273401	CASC3
0.706663	0.009214	cg01426818	FOXP1
0.000232	0.009302	cg00003722	RMII
-0.81093	0.009308	cg06216103	GPR68
0.383242	0.009358	cg01395217	PRKCH
-0.42531	0.009447	cg02266878	FAM193A
1.211913	0.009514	cg01538301	SLC24A1
-0.59238	0.009523	cg15584606	SLC12A7
0.460126	0.009532	cg19862616	CD2
-0.48717	0.009544	cg02266878	EBF4
0.782505	0.009582	cg11661809	LSM7
0.642343	0.009608	cg12967050	HSPA13
1.065503	0.009609	cg05440435	GNAO1
0.977256	0.009628	cg05440435	IKZF4

$N H S$		z8EzI00	¢66てっで0
IGHNG	I6SLLt0て欠̊o	6 ¢をZI00	9Ettio－
ャУZdமW	E006EL¢て80	6 ¢EZI00	¢1864．0
z．jdOつ	†9とIL8t0 0	68てZI00	6909 Lt 0
LTяУ	と688tて61号	6てzzI00	¢ZL06S 0
s．aWSd	セ0ヶ8\＆L61ธิ๐	8LIZI00	6t976と0
tdgV，	9と688¢でธัง	L60ZI00	8てZto ${ }^{\text {I－}}$
IWYLId	8L899720ธ̊	Stozióo	¢ILtté0
VNYH	91979861号	IZ0ZI00	ELS89100
я8วучт	69てを0以Iて80	Lt6l100	$9 t L 0 t S^{\circ} 0$
IWOY	86IZ8620ธ̊0	68LIL00	£06E¢ 0^{-}
g $\angle X O \bigcirc$	88ILIt9で	¢ $\angle 150$	896t9t＊ 0
dIGtヨGd	Et8610ヶ0 0	EILILOO	90\＆Lで0－
6yEdVN	16tLZ9E180	68SLIOO	6Itosで0
て．TวดS	9と688くでoิo	6てELIOO	$t \mathcal{L} \angle L S^{\circ} 0^{-}$
$I I d \widehat{O} V$		ELZII000	てかしだ0－
я¢つNด	E688tて6180	8811000	£69てE＊0－
DLZINFH	69829910 0	t8151000	89818900
IG69	09\＆6¢9を⿺®ึo	L00LI0．0	8S8IL60
EวWy\％	เ9\＆8ES $0^{\text {ofo }}$	8E60100	8E19t＇0
6IdWW	¢Et0ttS0 0	－¢80100	8£IE9L0
19ぬว〇ロ	と0z9LtIてoso	¢ILOIOO	97882S．0
IdVCV	2I06LS0150	6 t 01000	£000zع＊0
${ }_{\text {tIf }}$ foeg	十0t8EL6180	8LZOIO＊	£ร¢¢6to
ЕТХЯн	881LIt920 \％	£Iz0I0＊0	¢0L8Zど0
วบนว	0¢0L96てIo̊o	$976600^{\circ} 0$	80IZ60
ว८7วя	689128E0ธ̊๐	9 286000°	ILS6900－
gİSdId	8189ても1080	t¢86000	て689てが0
こGWIT	LIZS6E1080	LE86000	68609E 1
てzzWgWL	976عL8L0ธ̊๐	¢0L6000	てI8\＆Iで0
tody日		9L96000	乙ऽ97600－

NO	t991284İ̊0	88172000	E0Iz8t＇0
zNİ	09¢659¢I®ิ	82	¢86t＇0－
єяяม丬	¢ $¢ t 0 t t 50$ oso	ャ¢8ız00	LtLOIS＇0
гэมэ¢	ZtIS8800s	i9lizoo	
sdgw	I8Iで161	t09120	
9eylddd	t9EIS6S08̊	66	
z7яН	t9¢15650	16	S0Z6E0
	98688 cza	$68 \mathrm{SIz0}$	
INdHy	t1996ttz	zot	9L00c＇0－
תS	09¢6s9¢Io̊0	z8zızo	tşIto
9axit	$06 £ 88$ ¢0zo̊0	6LzIz	LE8850 ${ }^{-}$
ร8ดว	† 29889 czoo	16112	
IsTddW	¢6¢6¢ร¢1	llitzoo	
¢NLOG	t9	6SIIzO	
IOGTVL	918¢IE0	£860z00	
6IaLว	9¢688¢zzoo	$8 L 60 z 00^{\circ}$	
dด	サItてL¢zİo	IL60zo	
эуут	69zع01して®o	حE60	816
$\angle \mathrm{CXOH}$	¢¢¢8Lt8ioio	เ680z00	
Ed	8S6¢L09İ̊	† 88200°	E1690＇I－
zavn	0986	てtlozo＇o	$6026 \varepsilon^{\circ}$
IGgnL	s8z9LIozo̊o	8Elozoo	90888t
87	$9 ¢ 688 ¢ \tau$ ºo	66902	
lyas	IELLLE6I®o	6090200	sebt9ro
OIdIdL	I6sLltoz	ssozo＇0	LzE6
shSits	181で161	Eosoza＇o	99S¢LL＇0
IXGa	0S0L96zİo	19t0z0．0	LISEE9 0
ozdiswg	81L9LL60 0	Lliozoo	6ILO9＇0－
2wLat		¢600z00	69005°
t tNy	6081991I®o	¢s00zo	tLt
¢0xg．	I6SLLtoz	ャ066100	¢s¢6L0

N

0.315969	0.028396
0.291912	0.028503
-0.64842	0.028771
1.328639	0.028938
0.520188	0.028957
0.286946	0.029343
0.273242	0.029367
0.336178	0.029702
0.517487	0.029834
0.888891	0.029902
0.704681	0.029921
-0.40845	0.03
0.646493	0.030046
-0.98823	0.030157
-0.3604	0.030172
0.338452	0.030271
0.392028	0.030294
0.345043	0.030404
0.254928	0.030549
0.343327	0.030709
-0.31426	0.031277
-0.52448	0.031506
0.328683	0.031534
0.582561	0.031649
-0.34373	0.031658
0.405924	0.031798
0.000262	0.031876
0.547244	0.031894
-0.28639	0.032071
0.449303	0.032302
0.56804	0.032426

$$
\begin{array}{r}
0.91686 \\
0.294849 \\
0.15455 \\
0.527778 \\
0.442094 \\
0.345971 \\
-0.44356 \\
-0.27238 \\
-0.7295 \\
0.630351 \\
0.235695 \\
-0.19563 \\
-0.3076 \\
-0.21895 \\
0.510386 \\
-0.23876 \\
-0.50789 \\
0.276039 \\
0.931817 \\
-0.41006 \\
0.511165 \\
-0.47515 \\
-0.24143 \\
0.31303 \\
0.454424 \\
0.192036 \\
-0.45705 \\
0.275523 \\
0.573055 \\
0.177389 \\
0.312139
\end{array}
$$

N

してZ

 SSLEtEtZōo
S99I6L6080 LLLO9E9！io 18IてもI6I号 181ても16I号
t09Lt8siono It LLOLO0
 18Iても16！8゚つ 18Iても16180
 8 ナナ LL60Z®ิ） 8ttLL60Z®80回 cg04871364 ¢¢ LEtEtでoio ŞLEtEtてBo 16tLZ9と ${ }^{\circ} \mathrm{Bo}$ cg05951364
cg05951364
 cg 18786125
cg 18478353 t09 4 t8s 10ヶモLてかった。

 Z L0E69Ets．I
 I ε LSt て 09t018\＆s． I 09t0I8Es．I I LEIZ8LEs．乙 E8SILLES．I て 9¢009LEs．I芯
0
0
0
u．
ú
N苞 z LtEZSEs．I

 てESI8IIEs．

 てかんIZL6てs．

 て0と8とてLてs．
 $\stackrel{\stackrel{\rightharpoonup}{0}}{\stackrel{\rightharpoonup}{+}}$ T
N
A
N
N

 8てZ

0.046037
0.042202
$5.1 \mathrm{E}-08$
0.007652
0.019954
0.049044
0.027738
0.003187
0.031323
0.039938
0.013503
0.042712
$5.4 \mathrm{E}-08$
0.006598
0.041837
$<.000000001$
$4.31 \mathrm{E}-07$
$<.000000001$
$1.32 \mathrm{E}-07$
$<.000000001$
$<.000000001$
0.033154
0.00653
0.012404
0.019059
$<.000000001$
$<.000000001$
0.03578
0.048446
0.02035
0.00099

 $\underset{\sim}{\sim}$

N

Figures

Supplement Figure S3(A): Consort diagram of Asthma acquisition subjects included in Aim 3 for 10-18 period (IOWBC).

Supplement Figure S3(B): Consort diagram of Asthma acquisition subjects included in Aim 3 for 18-26 period (IOWBC).

Supplement Figure S4: Consort diagram of Asthma acquisition subjects included in Aim 4 for 10-18 period (IOWBC).

Supplement Figure S5: Consort diagram of Asthma and Rhinitis subjects included in Aim 5 at age 10 years (IOWBC).

Supplement Figure S6: Venn diagram representing not all subjects who had asthma or rhinitis also have atopy at age 10 years (IOWBC).

IRB Approvals

Subject:	PRO-FY2021-442 - Admin Withdrawal: Not Human Subject Research
Date:	Wednesday, June 30, 2021 at 9:06:51 AM Central Daylight Time
From:	do-not-reply@cayuse.com
To:	Aniruddha Bhadresh Rathod (abrathod), Hongmei Zhang (hzhang6)
Attachments: ATT00001.png	

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and trust the content is safe.

Institutional Review Board
Division of Research and Innovation
Office of Research Compliance
University of Memphis
315 Admin Bldg
Memphis, TN 38152-3370

June 30, 2021
PI Name: Aniruddha Rathod
Co-Investigators:
Advisor and/or Co-PI: Hongmei Zhang
Submission Type: Admin Withdrawal
Title: DNA Methylation and Asthma acquisition during and post-adolescence, an epigenome-wide longitudinal study IRB ID: PRO-FY2021-442

From the information provided on your determination review request for "DNA Methylation and Asthma acquisition during and post-adolescence, an epigenome-wide longitudinal study", the IRB has determined that your activity does not meet the Office of Human Subjects Research Protections definition of human subjects research and 45 CFR part 46 does not apply.

This study does not require IRB approval nor review. Your determination will be administratively withdrawn from Cayuse IRB and you will receive an email similar to this correspondence from irb@memphis.edu. This submission will be archived in Cayuse IRB.

Thanks,

IRB Administrator

Division of Research and Innovation
Office of Research Compliance
315 Administration Building
Memphis, TN 38152-3370
P: 901.678.2705

Subject:	PRO-FY2021-443 - Admin Withdrawal: Not Human Subject Research
Date:	Wednesday, June 30, 2021 at 9:05:30 AM Central Daylight Time
From:	do-not-reply@cayuse.com
To:	Aniruddha Bhadresh Rathod (abrathod), Hongmei Zhang (hzhang6)
Attachments: ATT00001.png	

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and trust the content is safe.

M
 THE UNIVERSITY OF
 MEMPHIS

Institutional Review Board
Division of Research and Innovation
Office of Research Compliance
University of Memphis
315 Admin Bldg
Memphis, TN 38152-3370

June 30, 2021
PI Name: Aniruddha Rathod
Co-Investigators:
Advisor and/or Co-PI: Hongmei Zhang
Submission Type: Admin Withdrawal
Title: DNA Methylation at Birth is Associated with Asthma Acquisition from Pre- to Post-Adolescence Mediated by
Atopy
IRB ID: PRO-FY2021-443

From the information provided on your determination review request for "DNA Methylation at Birth is Associated with Asthma Acquisition from Pre- to Post-Adolescence Mediated by Atopy", the IRB has determined that your activity does not meet the Office of Human Subjects Research Protections definition of human subjects research and 45 CFR part 46 does not apply.

This study does not require IRB approval nor review. Your determination will be administratively withdrawn from Cayuse IRB and you will receive an email similar to this correspondence from irb@memphis.edu. This submission will be archived in Cayuse IRB.

Thanks,
IRB Administrator
Division of Research and Innovation
Office of Research Compliance
315 Administration Building
Memphis, TN 38152-3370

Subject:	PRO-FY2021-480 - Admin Withdrawal: Not Human Subject Research
Date:	Wednesday, June 30, 2021 at 9:04:05 AM Central Daylight Time
From:	do-not-reply@cayuse.com
To:	Aniruddha Bhadresh Rathod (abrathod), Hongmei Zhang (hzhang6)
Attachments: ATT00001.png	

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and trust the content is safe.

Institutional Review Board
Division of Research and Innovation
Office of Research Compliance
University of Memphis
315 Admin Bldg
Memphis, TN 38152-3370

June 30, 2021
PI Name: Aniruddha Rathod
Co-Investigators:
Advisor and/or Co-PI: Hongmei Zhang
Submission Type: Admin Withdrawal
Title: Sex-specific associations of Preadolescence Asthma and Rhinitis with DNA methylation at birth IRB ID: PRO-FY2021-480

From the information provided on your determination review request for "Sex-specific associations of Preadolescence Asthma and Rhinitis with DNA methylation at birth", the IRB has determined that your activity does not meet the Office of Human Subjects Research Protections definition of human subjects research and 45 CFR part 46 does not apply.

This study does not require IRB approval nor review. Your determination will be administratively withdrawn from Cayuse IRB and you will receive an email similar to this correspondence from irb@memphis.edu. This submission will be archived in Cayuse IRB.

Thanks,

IRB Administrator

Division of Research and Innovation
Office of Research Compliance
315 Administration Building
Memphis, TN 38152-3370
P: 901.678.2705

[^0]: Interaction effects consistent between the two cohorts are with bold fonts of CpG . (b) Analysis of ALSPAC used similar available covariates: atopic status at age 7 years, second hand smoke exposure at age 17 and 24 years. Note: (a) For the analysis in IoW, logistic regression with repeated measurements were adjusted for atopic status at ages 10 and 18 years, active
 smoking and second hand smoke exposure at age 18 and 26 years, transition period 10-18 and 18-26 years.

[^1]: GO term Biological processes

 Supplement STable 3 (B): Top 10 most statistically significant GO terms and its biological processes from pathway enrichment analysis along
 with their genes names in each pathway for females, for the identified CpGs.

[^2]: Supplement Table S10（B）：Association of DNAm in newborn with pre－adolescent Ast＿Rh at 70 CpGs that are sex nonspecific．Males are the

