
University of Memphis University of Memphis

University of Memphis Digital Commons University of Memphis Digital Commons

Electronic Theses and Dissertations

2021

ARTIFICIAL INTELLIGENCE-ENABLED EDGE-CENTRIC SOLUTION ARTIFICIAL INTELLIGENCE-ENABLED EDGE-CENTRIC SOLUTION

FOR AUTOMATED ASSESSMENT OF SLEEP USING WEARABLES FOR AUTOMATED ASSESSMENT OF SLEEP USING WEARABLES

IN SMART HEALTH IN SMART HEALTH

Md Juber Rahman

Follow this and additional works at: https://digitalcommons.memphis.edu/etd

Recommended Citation Recommended Citation
Rahman, Md Juber, "ARTIFICIAL INTELLIGENCE-ENABLED EDGE-CENTRIC SOLUTION FOR AUTOMATED
ASSESSMENT OF SLEEP USING WEARABLES IN SMART HEALTH" (2021). Electronic Theses and
Dissertations. 2725.
https://digitalcommons.memphis.edu/etd/2725

This Dissertation is brought to you for free and open access by University of Memphis Digital Commons. It has
been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of University of
Memphis Digital Commons. For more information, please contact khggerty@memphis.edu.

https://digitalcommons.memphis.edu/
https://digitalcommons.memphis.edu/etd
https://digitalcommons.memphis.edu/etd?utm_source=digitalcommons.memphis.edu%2Fetd%2F2725&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.memphis.edu/etd/2725?utm_source=digitalcommons.memphis.edu%2Fetd%2F2725&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:khggerty@memphis.edu

ARTIFICIAL INTELLIGENCE-ENABLED EDGE-CENTRIC SOLUTION FOR

AUTOMATED ASSESSMENT OF SLEEP USING WEARABLES IN SMART

HEALTH

by

Md Juber Rahman

A Dissertation

Submitted in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major: Electrical and Computer Engineering

The University of Memphis

August 2021

DEDICATION

This dissertation is dedicated to my parents, who motivated me to work hard and dream big.

ii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my Ph.D. supervisors Dr. Bashir I. Morshed and

Dr. Chrysanthe Preza. Dr. Morshed recruited me for a National Science Foundation (NSF)

project, funded my Ph.D. study, and mentored and guided me throughout my entire journey.

Having the privilege of working with him has been a great learning experience for me as I have

learned to approach a problem as an opportunity and take systematic and logical steps in

developing a solution. Words really cannot describe how much grateful I am to him for his

patience in reviewing many of my inferior drafts, encouragement for working hard, and

invaluable suggestions and guidance. Thank you Dr. Morshed for your wholehearted supervision

throughout the progress of this work.

I would like to thank Dr. Preza who is co-supervising me since Dr. Morshed left the

University of Memphis. That transition period was really scary for me, and I am deeply indebted

to Dr. Preza for extending her unwavering support. Special thanks to the members of my

committee: Dr. Mohd Hasan Ali, Dr. Madhusudhanan Balasubramanian, and Dr. Frank Andrasik

for their invaluable advice and feedback on this research. I would also like to thank Dr. Ruhi

Mahajan and Dr. Brook E. Harmon who were always willing to guide me in this multi-

disciplinary research and have vastly enriched my knowledge in this domain. I acknowledge the

funding provided by NSF, Institute of Intelligent Systems, and Department of Electrical and

Computer Engineering at the University of Memphis. Also, my internship with Samsung

Research America was very helpful. Thanks to Dr. Jilong Kuang.

I also want to express my heartfelt gratitude to my lab-mates Dr. Ankita Mohapatra, Dr.

Saleha Khatun, Dr. Babak Noroozi, Dr. Sabbir Bin Zaman, Sharmin Afroz, Haritha Gollakota,

Tasnuba Siddiqui, Moriom R. Momota, and Mahfuzur Rahman, who were always happy to help

and made the workplace a delight to work in. A special thanks to my beloved wife for her great

support, my siblings, family, friends, and well-wishers whose encouragement and support helped

me in sustaining this far. Thanks to my children, for their patience. I received great support from

my teachers during all phases of my education. Especially, I would like to thank my favorite

teachers at Bangladesh University of Engineering & Technology (BUET) Dr. Mohammad Ali

Chowdhury (may the Almighty grant him the highest abode in paradise), Dr. M M Shahidul

iii

Hassan, and Dr. Abdul Hakim. They helped me with numerous recommendations. Also, I would

like to thank my past colleagues at Power Grid Co. of Bangladesh Md Afsarul Haque Nazmee,

B.M. Mizanul Hassan, and Dr. Farid Ahmed P.Eng. for their support, and recommendations.

Special gratitude to my high school teacher Sujit Bhattacharjee and my uncle in law Dr. Rafique

Uddin.

iv

ABSTRACT

Rahman, Md Juber, Ph.D. The University of Memphis. August 2021. Artificial Intelligence

Enabled Edge-Centric Solution for Automated Assesment of Sleep Using Wearables in Smart

Health. Major Professor: Dr. Bashir I. Morshed and Dr. Chrysanthe Preza.

Artificial intelligence-enabled applications on edge devices have the potential to

revolutionize disease detection and monitoring. Smartphones, with increased processing speed,

storage capacity, and integrated sensors, hold tremendous promise in physiological sensing,

monitoring, and development of Smart and Connected Communities (SCC). The major

challenges are development of user-friendly low-cost sensing of physiological data, seamless

data transfer while maintaining privacy, and data processing and inference at the edge while

keeping the system performance at an expected level. Sleep Health evaluation is a prominent

area where the advantages of edge-centric sHealth solutions can be leveraged. Rapid changes in

socio-economic structure are impacting sleep health globally. Sleep apnea, insomnia, sleep

deprivation, etc. are growing problems and impacting the health-related quality of life. To

minimize the adverse health consequences, early detection and continuous monitoring of sleep

disorders are beneficial. We investigated a minimalistic approach for the severity classification,

severity estimation, and progression monitoring of obstructive sleep apnea (OSA) in the home

environment using wearables. The recursive feature elimination technique was used to select the

best feature set of 70 features from a total of 200 features extracted from polysomnograms. Then

we used a multi-layer perceptron model to investigate the performance of OSA severity

classification using a subset of features available from either Electroencephalography or Heart

Rate Variability (HRV) and time duration of Oxygen saturation (SpO2 level). By using only

computationally inexpensive features from HRV and SpO2, we were able to achieve an area

under the curve of 0.91 and an accuracy of 83.97% for the severity classification of OSA. For

estimation of the apnea-hypopnea index, an accuracy of RMSE=4.6 and R-squared value=0.71

were achieved in the test set using only ranked HRV and SpO2 features. The Wilcoxon-signed-

rank test indicated a significant change (p<0.05) in the selected feature values for a progression

in the disease. This approach paved the way for reliable OSA monitoring using edge devices. For

sleep deficiency severity estimation, we investigated the development of a mathematical model

v

for interpretable and user-friendly objective assessment from polysomnogram data. Then we

developed a regression model for the estimation of sleep deficiency severity from a fusion of

wearable sensor data without requiring a polysomnogram. Monte-Carlo Feature Selection and

Inter-dependency Discovery were used to select features of interest. This facilitated to reduce the

impact of multi-collinearity in the features. A deep Artificial Neural Network achieved the best

performance of RMSE = 5.47, with an R-squared value of 0.67 for sleep deprivation severity

estimation. The developed method outperformed conventional methods; e.g., the Functional

Outcome of Sleep Questionnaire and the Epworth Sleepiness Scale, for assessing the impact of

sleep apnea on sleep deprivation. In addition, the method is highly suitable for integration with

wearables. Finally, we developed a sensor-edge-cloud sHealth framework for implementation of

the developed algorithms and conducted a year-long pilot study for evaluating the models and

technology feasibility in living lab environments. Smartphones were used as the edge computing

device, with pre-trained machine learning algorithms implemented in the smartphone app for

computing disease-related Events of Interest (EoI) on the smartphone alone (i.e., without sharing

raw data with the cloud or any other computing facility). Emphasis was given to system

performance maximization using computationally inexpensive signal processing algorithms and

pattern recognition techniques to avoid adversely affecting the users’ smartphone performance.

Spatiotemporal trends of the EoI were shared and visualized in a cloud server to facilitate

personalized as well as community-wide health monitoring. Additionally, we analyzed the

prospect of everyday wearables and Inkjet-Printed (IJP) Wireless Resistive Analog Passive

(WRAP) sensors for physiological sensing, as they are environment-friendly and disposable.

Challenges in the characterization and integration of IJP body-worn analog sensors with Internet-

of-Things arise due to the effect of noises and artifacts, sensor to sensor variability, and sensor

misalignment effect. A random forest based regression model was developed for estimating and

longtime monitoring of core body temperature using a flexible body-worn disposable IJP WRAP

temperature sensor. With 5-fold cross-validation the model achieved an RMSE=0.98, R-squared

value=0.99, and mean absolute error, MAE=0.59 for core-body temperature estimation. The

sHealth model thus appears to be applicable for various other physiological sensing (e.g.,

breathing, heart rate), which may facilitate the preliminary severity estimation, monitoring, and

management of diseases and reduce subsequent associated healthcare costs.

vi

PREFACE

During the Ph.D. study which also includes my internships, I have authored/co-authored 5

journal articles (4 first authored and 1 co-authored) and 9 conference proceedings’. Two journal

articles have been published, and 3 are under review. The format of this dissertation is presented

as three journal articles, where I am serving as the first author for each, as listed below.

Article 1, entitled “Development of a Minimalist Method for Early Severity Assessment and

Progression Monitoring of Obstructive Sleep Apnea on the Edge,” listed as Chapter 2, is in the

minor revision evaluation stage in the ACM Transaction on Computing for Healthcare.

Article 2, entitled “Development A Smart Health (sHealth) Centric Method Toward Estimation

of Sleep Deficiency Severity from Wearable Sensor Data Fusion,” listed as Chapter 3, is under

review in the BioMed Informatics Journal.

Article 3, entitled “A pilot study towards a smart-health framework to collect and analyze

biomarkers with low-cost and flexible wearables at a smart and connected community,” included

in Chapter 4, is in the major revision evaluation stage in the Smart Health Journal.

vii

TABLE OF CONTENTS

Chapter Page

1. Introduction

 1.1 Problem statement 1

1.2 Related works 2

 1.2(a) Obstructive Sleep Apnea 2

 1.2(b) Sleep Deficiency Estimation 3

 1.2(c) Smart Health 4

 1.3 Statement of research objectives 6

 1.4 Technical challenges 7

 1.5 Contributions 7

1.6 Publications 8

References 10

2. Development of a Minimalist Method for Early Severity Assessment and

Progression Monitoring of Obstructive Sleep Apnea on the Edge

 2.1 Introduction 14

2.2 Materials and methods 18

2.2.1 Data Set and Study Description 18

2.2.2 Autonomic Nervous System and Obstructive Sleep Apnea 19

2.2.3 Pre-Processing and Feature Extraction 20

2.2.4 Statistical Analysis, Feature Selection, and Classification 24

2.2.5 Regression for Severity Estimation 26

2.2.6 Progression Monitoring of OSA 26

 2.3 Results 26

 2.4 Discussion, limitations, and future work 33

2.5 Conclusion 34

References 34

3. Development of A Smart Health (sHealth) Centric Method Toward Estimation

of Sleep Deprivation Severity from Wearable Sensor Data Fusion

3.1 Introduction 40

viii

3.2 Materials and methods 41

 3.2.1 Smart Health (sHealth) Framework 41

3.2.2 Sleep Health Assessment Overview 43

3.2.3 Dataset 45

3.2.4 Mathematical Model for Baseline SDS Score 46

3.2.5 Machine learning driven method for SDS estimation from 47

 wearable sensors

 3.3 Results 50

 3.4 Discussion 57

 3.5 Conclusion 57

References 58

4. A pilot study towards a smart-health framework to collect and analyze biomarkers with

low-cost and flexible wearables at a smart and connected community

 4.1 Introduction 63

 4.2 System Design 66

4.2.1 SCC Health Framework 66

 4.2.2 Inkjet-Printed Sensors 67

4.2.3 Smartphone Application 68

4.2.4 Web Server 71

 4.3 Methodology 71

 4.3.1 Data Collection 71

 4.3.2 Extraction and analysis of biomarkers 73

 4.3.3 Analysis of system performance for inference at the edge 77

 4.3.4 Spatiotemporal visualization and human-technology 78

interaction (HCI) analysis

 4.4 Results and Discussion 79

4.5 Limitation and Future work 86

4.6 Conclusion 87

References 88

5. Conclusion & Future Directions

5.1 Key Results 92

5.2 Future Research Directions 93

ix

LIST OF TABLES

Table Title Page

2.1 A Comparison of Minimalist Method for OSA severity estimation with 17

previous studies.

2.2 Time-domain measures of HRV 21

2.3 Frequency domain measures of HRV 21

2.4 Spectral band measures of EEG 23

2.5 Results of the Mann Whitney u test between mild and moderate-to-severe OSA 27

2.6 Five-fold cross-validation results using different classifiers with all the ranked 28

Features

2.7 Comparison of minimalist method with polysomnogram 29

2.8 Comparison of Time and Frequency domain HRV Measures (from Long-term 32

recordings) at baseline and exacerbation stage

3.1 Spectral Features Extracted from EEG 47

3.2 Partial Correlation of SDS with HRV and EEG features 52

4.1 Summary of SCC-Health Study Dataset 73

4.2 Time domain and frequency domain features of HRV from Smart band data 75

4.3 Comparison of computed time domain and frequency domain HRV features 81

with normative values

x

4.4 Comparison of female and male HRV 83

4.5 Results of system performance evaluation 85

xi

LIST OF FIGURES

Figure Title Page

2.1 Signal processing for HRV feature extraction 20

2.2 Block diagram for feature extraction 23

2.3 High-level diagram for OSA severity classification from polysomnogram data 25

2.4 Bar diagram comparison between OSA severity categories based on Mann-Whitney 27

U test for HRV, SpO2, and EEG features

2.5a Results of feature ranking 28

2.5b Top-ranked 20 features 28

2.6a Learning Curve for the ANN model 29

2.6b Area Under the ROC curve 29

2.7 Case order plot for Cook’s distance 30

2.8 Plot of fit for the regression model 31

2.9 Performance curve for training, validation, and test set 31

2.10 Error histogram for the regression model 31

2.11 Subject distribution of the exacerbating group during baseline and follow-up visit 32

2.12a Interval plots for physiological measures 33

2.12b Interval plots for a) for HRV features 33

xii

2.12c Interval plots for EEG features at baseline and exacerbation 33

2.13 Scheme for the estimation of HRV from PPG signal 33

3.1 Workflow for Events of interest capture and spatiotemporal visualization in sHealth 42

3.2 Overview of Subjective and objective methods for sleep health assessments 44

3.3 Method for feature extraction, feature selection and regression for sleep 48

deprivation severity

3.4 Histogram showing SDS distribution 51

3.5 Comparison of SDS between males and females 51

3.6 Correlation of SDS with Age 51

3.7 SDS for BMI Categories 51

3.8 Relative importance of features by Monte-Carlo Feature Selection 52

3.9 Convergence of Monte-Carlo feature selection process 53

3.10 Top 20 features by Monte-Carlo Feature Selection 53

3.11 (a) posterior predictive check on MCMC sampler (b) density plot of Bayesian 54

model estimated SDS including the point estimate

3.12 Plot–of–fit for the Bayesian regression model 55

3.13 PSIS diagnostic plot and regression plot for Bayesian method 55

3.14 Performance of Regression model in the train, validation, and test set 56

3.15 Correlation of (a) ESS with AHI (b) FOSQ with AHI (c) SDS with AHI 56

4.1 System architecture for the proposed SCC-Health framework 66

xiii

4.2a IJP WRAP Sensor design 68

4.2b microscopic view of printed sensor 68

4.2c IJP sensor placed on the arm 68

4.2d flexibility of the sensor 68

4.3 Component diagram of SCC Health application 69

4.4 SCC Health application UX flow diagram 69

4.5 Method for HRV feature extraction from smart band data 75

4.6 Method of signal processing and feature extraction for IJP sensor characterization 76

4.7 Framework for pre-trained model development and integration in the app for 78

making online inference at the edge

4.8 EoI Flow-diagram in SCC-Health framework 79

4.9 Snapshots from the functional android app 80

4.10a Sleep HRV trend line 81

4.10b Poincare plot for healthy subjects during sleep 81

4.11 Power Spectral density at different episodes of sleep hours 82

4.12a ECDF of resting heart rate for age categories 82

4.12b clustering pattern of HRV scores for age categories 82

4.13 Radar chart comparison of prominent HRV measures of the female with male 83

4.14 Comparison of sleep HR during weekdays and weekends 84

4.15 Ranking of flu symptoms in terms of feature importance 84

xiv

4.16a Snapshots showing Spatial distribution of symptoms severity 85

4.16b Temporal trends of symptoms severity over time from data collected 85

from real-life “livings labs” of participants in this study.

4.17a plot for the order of data reduction 86

4.17b statistics of human technology interaction 86

1

Chapter 1

INTRODUCTION

1.1 PROBLEM STATEMENT

Delayed diagnosis of disease often necessitates complicated treatment and leads to decreased

quality of life for the patient, thereby increasing the healthcare burden as well as the cost of care.

One way to improve healthcare delivery is by detecting and diagnosing diseases at an early stage

when they are far more treatable. Although modern technology has contributed substantially to

advancing healthcare in a clinical setting with the introduction of precision diagnostic tools,

minimally invasive surgical procedures, remote consultation, technology-based therapeutic tools,

point of care delivery, etc., early detection of disease in a pre-clinical setting at a living lab

environment has yet to be achieved. Preliminary estimation of disease severity provides more

valuable insights into the stage of the disease and has the potential to motivate the patient to seek

medical attention in a timelier manner.

For many diseases, the introduction of pathological conditions is reflected in the vital

signs; i.e., heart rate, respiration rate, oxygen saturation level, temperature, and blood pressure.

In addition, bio-signals, such as the Electrocardiogram (ECG), Electroencephalography (EEG),

and pulse oximetry (SpO2), reveal a significant amount of information that helps in early

diagnosis. Advances in the field of wearable body sensor networks (BSN), which is usually

composed of a collection of multiple tiny wireless sensors, has made the monitoring of vital

signs and capturing of biopotentials activity more reliable and user-friendly. As of now, the data

collected using wearable devices are usually transmitted to a cloud computing facility for making

inference with the help of artificial intelligence-enabled methods. This not only introduces a high

likelihood of privacy compromise, but also increases both signal noise and the risk of false data

injection in a Smart Health (sHealth) framework. Moreover, the addition of millions of Internet

of Things (IoT) devices as part of smart city infrastructures will introduce a huge burden on

network bandwidth and cloud computing capacity, as well as storage capacity in the near future.

Edge computing offers an alternative to as well as an extension of cloud computing, where data

processing and inference is conducted at the edge device near to the users. On-device data

processing and machine learning help to eliminate privacy issues and reduce the IoT related

bandwidth requirements. Application of edge computing for healthcare applications holds great

promise, but it is still evolving. Using edge computing with widely available, user-friendly

2

devices, such as smartwatches, smart bands, and smartphones, may help in the early detection

and severity estimation of diseases; however, many challenges remain as these devices are

resource-constrained due to less computing power, smaller battery capacity, and less-precise

sensors.

1.2 RELATED WORKS

1.2(a) Obstructive Sleep Apnea

On average, 22% of men and 17% of women in the world-wide population experience

obstructive sleep apnea (OSA) [1]. Insufficient sleep, drowsiness, and daytime sleepiness are

some of the direct consequences of OSA. Untreated OSA is either responsible for or strongly

correlated with many diseases, such as myocardial infarction, hypertension, high blood pressure,

and depression [2]. OSA is not persistent for the entire duration of sleep; rather it appears in a

repetitive manner as events that are associated with physiological changes, such as heart rate,

oxygen saturation level, and respiration. The American Academy of Sleep Medicine (AASM)

Taskforce defined an apnea/hypopnea event as a complete cessation or transitory reduction of

breathing when the airflow decreases by more than 50% from the amplitude of baseline and the

oxygen saturation level decreases by at least 4%, with the event persisting for a minimum of 10

seconds [3]. OSA diagnosis and severity assessment is currently measured using a

polysomnogram (PSG), a comprehensive test that collects different types of physiological signals

including, ECG, EEG, SpO2, leg movement, body movement, and respiration. These tests are

usually conducted in sleep laboratory settings and analyzed by certified sleep clinicians. Patients

diagnosed with OSA are generally treated with continuous positive airway pressure (CPAP)

devices. Oral appliance (OA) and surgical operations are possible alternatives to CPAP in the

management of OSA [4]. Some researchers have evaluated the effectiveness of weight reduction

in the early stages of OSA [5]. Although CPAP is generally equipped with a system for

monitoring Apnea/Hypopnea Index (AHI), other approaches require PSG or separate

arrangements for monitoring OSA progression/reduction.

Many studies have been conducted to diagnose and estimate the severity of OSA using

features of the ECG and EEG [6]. For example, Liu et al. proposed using a neural network

method for the detection of obstructive sleep apnea from the EEG [7], while Almuhammadi et al.

proposed an efficient method for sleep apnea classification based on EEG signals [8]. Khandoker

3

et al. similarly used feedforward neural networks with wavelet-based features of ECG for

automated scoring of OSA [9]. De Chazal et al. utilized time and frequency domain measures of

heart rate variability (HRV) along with ECG derived respiratory signal features to obtain a

92.5% accuracy with a Quadratic discriminant classifier [10]. Another example is that of Song

et al., who approached sleep apnea detection from ECG signals using hidden Markov models

[11]. A final example concerns the use of a Poincaré plot of HRV to observe sleep apnea patients

before and after Continuous Positive Airway Pressure (CPAP) treatment [12]. However, these

investigations are limited to classification of apneic subjects from healthy subjects and do not

address the important issue of continuous monitoring of an OSA patient for the evaluation of

treatment effectiveness.

When OSA is severe it can lead to serious health issues, including stroke, heart failure,

and even death. Hence, severe OSA requires immediate detection and medical attention.

Although the use of non-polysomnographic features in OSA screening (apneic or normal) has

been investigated previously, classification of severe and non-severe OSA from ECG alone is

challenging. Eiseman et al. attempted to classify sleep apnea severity from ECG derived sleep

spectrograms [13], while Park et al. investigated the correlation between sleep apnea severity

and heart rate variability indices [14]. Investigation by Raymond et al. using a combination of

pulse oximetry and heart rate variability via a “cardiac-oximetry disturbance index” is an

example of an alternative to polysomnogram-based AHI [15]. While these studies illustrate the

range of possible approaches to detecting the severity of OSA from an ECG, development of a

simple yet reliable method to categorize severe OSA is sorely needed.

1.2(b) Sleep Deficiency Severity Estimation

 With the increased rise of obesity, excessive usage of personal gadgets, urbanization and

other socio-economic changes, sleep/wake homeostasis is becoming adversely impacted and

disrupting the normal circadian rhythm. Neither body nor the brain can function properly without

adequate sleep. Moreover, sleep deficiency can lead to physical and mental health problems,

injuries, loss of productivity, and even a greater risk of death. Previous research suggests that

complete sleep deprivation impairs attention and working memory. Moreover, it also affects

related functions, such as long-term memory and decision-making. Even partial sleep deprivation

can negatively impact attention and vigilance in the long run [16], as well as central auditory

4

processing [17]. Rault et al. suggest further that sleep deprivation reduces respiratory motor

output by altering its cortical component with subsequent reductions in inspiratory endurance

[18].

Sleep deprivation is commonly estimated by using standard questionnaires along with a

sleep test where a polysomnogram is captured. Questionnaire-based approaches have many

limitations, including high bias, the need for a long evaluation period, etc. On the other hand,

polysomnography is expensive, has limited availability, and is less user-friendly. As an

alternative, a few other methods have been developed for objective assessment of sleep health. In

recent years, efforts to develop and use multi-modal sensors and technologies to monitor sleep,

which includes sleep patterns monitoring, wellness applications, sleep coaching of individuals

with chronic conditions, etc., have greatly expanded [19]. However, most of the approaches have

focused on sleep quality assessment or sleep score estimation [20-23]. Sleep deficiency provides

a more comprehensive evaluation of sleep health than a single sleep score or sleep quality

assessment. Sleep deficiency measures seek to capture the lack of enough sleep (sleep

deprivation), not receiving all types of sleep that a human body needs, and sleep disorders that

contribute to poor quality of sleep [24]. Early detection of sleep deficiency is beneficial to avoid

many linked chronic health problems, including heart disease, kidney disease, high blood

pressure, diabetes, stroke, obesity, and depression. A method for objective assessment of sleep

deficiency from wearable sensor data only is not well-established and, thus, requires further

investigation.

1.2(c) Smart Health

Our proposed Smart Health (sHealth) framework aims to deliver improved healthcare

using IoT centric solutions. It is an emerging paradigm for efficient processing, sharing and

visualization of healthcare data, which is emanating from different IoT devices. The Global

Observatory for Electronic Health (eHealth) of the World Health Organization (WHO) has

defined Mobile Health (mHealth) as a medical and public health practice supported by mobile

devices, such as mobile phones, personal digital assistants, and other wireless devices [25].

mHealth has already brought about revolutionary improvements and benefits for ubiquitous and

pervasive healthcare delivery. sHealth can be perceived as an upgraded and extended version

of mHealth which aims to incorporate smart home and smart city infrastructure and related IoT

devices including smartphones, smart bands, smartwatches and other wearables for disease

5

diagnosis, monitoring and healthcare delivery. mHealth has mainly focused on personalized

monitoring, whereas sHealth acknowledges the role of home, family, and community as

important contributors to individual health and wellbeing. It thus aims to connect data, people

and systems to enable long-term care rather than providing sporadic treatment to acute

conditions.

S. Rani et al. investigated the use of smart health elements for controlling the

chikungunya virus, a mosquito instinctive disease that spreads hurriedly in various parts of the

country [26]. They presented an IoT-enabled model which addressed data collection from the

sensors, objects, and people and gathered all of the data at the cloud to enable healthcare

professionals to take preventive and controlling measures. R. K. Pathinarupothi et al. reported

an IoT-based smart edge system for remote health monitoring, in which wearable vital sensors

transmitted data into the IoT smart edge [27]. The IoT smart edge then employs a risk-stratified

protocol to trigger rapid push of alerts and personal health motifs to the physicians, and also

facilitate pull of detailed data-on-demand through the cloud. W. N. Ismail et al. proposed a

convolutional neural network-based health model for regular health factors analysis in the

Internet-of-Medical Things environment [28]. This proposed method uses the health conditions

and lifestyle patterns related to chronic diseases collected through IoT-devices.

While cloud computing has its own benefits, such as increased computational capacity,

storage facility, and high reliability making it suitable for unstructured big data landscape, it also

has certain limitations due to the huge burden imposed by the data transmission on the network

bandwidth. The expected addition of millions of IoT devices in the near future may well

overload the computational capacity of cloud infrastructures. This is a particularly salient

concern for medical applications where sharing of raw data is associated with an increased

likelihood of privacy compromise, which in turn may be used by government and law

enforcement bodies for surveillance purposes, thus limiting personal freedom. If widely used the

chance of false data injection is also very high, which may lead to incorrect diagnosis and

treatment suggestions. A. Singh, and K. Chatterjee highlighted the security issues, threats and

challenges of cloud computing [29].

Fog computing offers an alternative to cloud computing where computation tasks are

performed close to the user and terminal IoT devices. P. Verma and S. K. Sood investigated a

Fog assisted-IoT enabled patient health monitoring scheme [30], which adopted an event

triggering-based data transmission methodology to process the patient's real-time data at fog

6

layer. This temporal mining concept has been used to analyze the events of adversity by

calculating the temporal health index of the patient. J. Hu et al. proposed an IPv6-based

framework for fog-assisted healthcare monitoring [31]. In their proposed framework the body-

sensing layer generates physiological data, and the fog computing nodes in the fog layer collect

and analyze time-sensitive data. While Fog-computing enables a faster response by reducing the

network bandwidth requirement and computational burden of the cloud, it is subject to privacy

and security breaches as the raw data is released from the individual’s personal devices.

Edge-computing with on-device data processing and machine learning offers a promising

solution to reduce privacy and security related issues, enable real-time disease monitoring and

detection and eliminate network dependency by a sizeable amount [32-34]. However, edge

computing is challenging due to the fact that edge devices are resource constrained as they are

equipped with low processing capacity and have limited battery power and storage [35].

Artificial intelligence based models integrated in an edge application for automated disease

detection need to be quantized, which often leads to poor performance. Minimizing the trade-off

between runtime and accuracy is challenging. Hence, a hybrid edge-cloud model may offer a

more advantageous solution combining both the advantages of edge computing and cloud

computing [36]. Further investigation is required for edge computing based sHealth model

development and deployment.

1.3 STATEMENT OF RESEARCH OBJECTIVES

1) Development of an algorithm for early severity estimation of obstructive sleep apnea

on the edge and implementation of the algorithm in a smartphone application.

2) Development of an algorithm for sleep deficiency severity estimation using wearable

devices in Smart Health.

3) Development of a Smart Health framework for capturing events of interest from the

living lab, implementing the developed algorithms on edge devices, incorporating data

processing for communitywide spatiotemporal monitoring; identifying the prospect and

challenges related to on-device data processing and machine learning; and outlining prospective

solutions.

7

1.4 TECHNICAL CHALLENGES

1) A sizeable number of technical challenges are associated with developing and

implementing a smart health framework that includes but is not limited to the low-cost sensing of

physiological signals, extraction of reliable biomarker, development, and implementation of

artificial intelligence-based inference methods on resource-constrained devices in a way that

does not hamper their performance, while permitting the sharing of information to facilitate the

community while maintaining anonymity, privacy, security, etc.

2) Development of an algorithm for early severity estimation of obstructive sleep apnea

obtained from non-polysomnographic measures while using wearables is challenging because of

the trade-off between user comfort and quality capturing of the events of interest. If multiple

sensors (i.e., ECG, EEG, acceleration, etc.) are used, user comfort is reduced; whereas use of a

single sensor makes the extraction of reliable biomarkers quite difficult. Development of an

optimal method that provides high accuracy while maintaining user comfort and meeting edge

device constraints is challenging.

3) Development and validation of an algorithm for objective assessment of sleep

deficiency using user-friendly wearable sensor data only is quite challenging. The method that is

pursued needs to be suitable for longitudinal monitoring and should capture the impacts of sleep

related disorders.

1.5 CONTRIBUTIONS

1) An algorithm for early severity estimation and continuous monitoring of obstructive

sleep apnea using edge devices.

2) An algorithm for estimation of sleep deprivation deficiency from multi-modal

wearable sensor data fusion using Monte-Carlo feature selection and inter-dependency

discovery.

3) A framework of smart health which includes IJP sensor characterization and

integration, a smartphone application with artificial intelligence-enabled algorithms, a web server

for spatiotemporal visualization, and a data pipeline for seamless information flow in the

framework.

8

1.6 PUBLICATIONS

Journal Articles

1. B.I. Morshed, M.J. Rahman, et al, “Inkjet-printed fully-passive body-worn wireless

sensors for the smart and connected community (SCC)”, J. of Low Power Electronics and

Applications, 7(4), 26, 2017.

2. M.J. Rahman, B.I. Morshed, “A Minimalist Method Toward Smart Health for Early

Severity Assessment and Progression Monitoring of Obstructive Sleep Apnea”, ACM

Transaction on Computing for Healthcare, Mar 2020, (minor revision response

submitted).

3. M.J. Rahman, B.I. Morshed, “A pilot study towards a smart-health framework to collect

and analyze biomarkers with low-cost and flexible wearables at a smart and connected

community”, Smart Health Journal, 2021 (major revision response submitted).

4. M.J. Rahman, B.I. Morshed, C. Preza “A Smart Health (sHealth) Centric Method Toward

Estimation of Sleep Deprivation Severity from Wearable Sensor Data Fusion”

BioMedInformatics Journal (submitted).

Conference Proceedings

1. M.J. Rahman, B.I. Morshed “ A Novel Method for Estimation of Sleep Score Using a

Deep Sequential Neural Network”, IEEE International Conference on Electro

Information Technology, 2019, MI, USA.

2. M.J. Rahman, B.I. Morshed et al., “A Field Study to Capture Events of Interest from

Living Labs Using Everyday Wearables for Spatiotemporal Monitoring Towards Smart

Health” 42nd Annual International Conference of the IEEE Engineering in Medicine and

Biology Society (EMBC), Jan 2020, Montreal, Canada.

3. M.J Rahman, B.I. Morshed, “SCC Health: A Framework for Online Estimation of

Disease Severity for the Smart and Connected Community”, IEEE International

Conference on Electro Information Technology, 2019, Brooks, SD, USA.

4. M.J Rahman, R. Mahajan, B.I. Morshed, “Exacerbation in Obstructive Sleep Apnea:

Early Detection and Monitoring Using a Single Channel EEG With Quadratic

Discriminant Analysis” 9th International IEEE/EMBS Conference on Neural

Engineering, 2019, San Francisco, CA, USA.

9

5. M.J Rahman, B.I. Morshed, “Improving Accuracy of Inkjet-Printed Core Body WRAP

Temperature Sensor Using Random Forest Regression Implemented with an Android

App”, 2019 United States National Committee of URSI National Radio Science Meeting,

Boulder, CO, USA.

6. M.J Rahman, R. Mahajan, B.I. Morshed, “Severity classification of obstructive sleep

apnea using only heart rate variability measures with an ensemble classifier”, 2019 IEEE

EMBS International Conference on Biomedical & Health Informatics, Las Vegas, NV,

USA.

Other works published during this period (not part of this dissertation):

1. M.J. Rahman, E. Nemati et al., “Automated Assessment of Pulmonary Patients using

Heart Rate Variability from Everyday Wearables”, Smart Health Journal, vol. 15, March

2020.

2. M.J. Rahman, E. Nemati et al., “Toward Early Severity Assessment of Obstructive Lung

Disease Using Multi-Modal Wearable Sensor Data Fusion During Walking” 42nd Annual

International Conference of the IEEE Engineering in Medicine and Biology Society

(EMBC), June, 2020.

3. E. Nemati, M.J. Rahman et al., “Estimation of the Lung Function Using Acoustic

Features of the Voluntary Cough” 42nd Annual International Conference of the IEEE

Engineering in Medicine and Biology Society (EMBC), June, 2020.

4. M.J. Rahman, E. Nemati et al., “Efficient Online Cough Detection with a Minimal

Feature Set Using Smartphones for Automated Assessment of Pulmonary Patients”,

AMBIENT 2019, 1-7, Porto, Portugal.

5. Rahman, Md Mahbubur, Ebrahim Nematihosseinabadi, Viswam Nathan, Korosh

Vatanparvar, Md Juber Rahman, Soujanya Chatterjee, Nazir Saleheen, Jilong Kuang, and

Jun Gao. "Methods and systems for pulmonary condition assessment." U.S. Patent

Application 16/792,057, filed February 18, 2021.

10

Posters and Presentations

1. M. J. Rahman and B. I. Morshed, "Investigating a Minimalistic Approach for Severity

Estimation and Progression Monitoring of Obstructive Sleep Apnea at Home Using

Wearables”, Research Fair, Institute of Intelligent Systems, Fall, 2019.

2. M. J. Rahman and B. I. Morshed, "Battery-less Smart Sensing for IoT: Improving the

accuracy of IJP WRAP Temperature Sensor with Random Forest Regression", Research

Fair, Institute of Intelligent Systems, Fall, 2018

3. M. J. Rahman and B. I. Morshed, "Severe Obstructive Sleep Apnea Classification from

Single Lead ECG", Research Fair, Institute of Intelligent Systems, Fall, 2017

4. M. J. Rahman and B. I. Morshed, "Smartphone App Framework Development for

Severity Ranking of Diseases", Annual Poster Competition, EECE, The University of

Memphis, 2017.

REFERENCES

1. Franklin et al. “Obstructive Sleep Apnea Is a Common Disorder in the Population—a

Review on the Epidemiology of Sleep Apnea.” J. of Thoracic Disease, 7.8 pp.1311–

1322.PMC. Web. Oct. 2018.

2. Knauert, Melissa et al. “Clinical consequences and economic costs of untreated

obstructive sleep apnea syndrome.” World journal of otorhinolaryngology - head and

neck surgery, vol. 1,1 17-27. 8 Sep. 2015, doi: 10.1016/j.wjorl.2015.08.001

3. Epstein, Lawrence J., et al. "Clinical guideline for the evaluation, management and

long-term care of obstructive sleep apnea in adults. ", J. of clinical sleep medicine,

5 no.03 pp.263-276, Jun 2009.

4. Spicuzza, et al., "Obstructive sleep apnoea syndrome and its management. ",

Therapeutic advances in chronic disease, 6, no. 5, pp.273-285, 2015.

5. Tuomilehto, et al. "Lifestyle intervention with weight reduction: first-line treatment in

mild obstructive sleep apnea." American journal of respiratory and critical care

medicine 179, no. 4 pp.320-327, 2009.

6. F. Mendonca, et al. "A Review of Obstructive Sleep Apnea Detection Approaches," in

IEEE J. of Biomedical and Health Informatics, 2018.

11

7. D. Liu, Z. Pang and S. R. Lloyd, "A Neural Network Method for Detection of

Obstructive Sleep Apnea and Narcolepsy Based on Pupil Size and EEG," in IEEE

Transactions on Neural Networks, vol. 19, no. 2, pp. 308-318, Feb. 2008.

8. W. S. Almuhammadi, et al. "Efficient obstructive sleep apnea classification

based on EEG signals," 2015 Long Island Systems, Applications and Technology,

Farmingdale, NY, pp. 1-6, 2015.

9. A. H. Khandoker,J. Gubbi and M. Palaniswami, "Automated scoring of obstructive

sleep apnea and hypopnea events using short-term electrocardiogram recordings,",

IEEE Transactions on Information Technology in Biomedicine, vol. 13,(6),pp. 1057-

1067, 2009.

10. P. De Chazal, et al., "Automated processing of the single-lead electrocardiogram

for the detection of obstructive sleep apnoea,", IEEE Transactions on Biomedical

Engineering, vol. 50, (6), pp. 686-696, 2003.

11. C. Song, et al., "An obstructive sleep apnea detection approach using a discriminative

hidden Markov model from ECG signals," IEEE Transactions on Biomedical

Engineering, vol. 63, (7), pp.1532-1542, 2016.

12. C. Mermigkis, et al., "Poincaréplot in obstructive sleep apnoea patients before and after

CPAP treatment," European Respiratory Journal, vol. 34, (5), pp. 1197-1198, 2009.

13. N. A. Eiseman, et al., "Classification algorithms for predicting sleepiness and

sleep apnea severity,", J. Sleep Res., vol. 21, (1), pp. 101-112, 2012.

14. D. Park, et al., "Correlation between the severity of obstructive sleep apnea and heart

rate variability indices,", J. Korean Med. Sci., vol. 23, (2),pp. 226-231, 2008.

15. B. Raymond, R. M. Cayton and M. J. Chappell, "Combined index of heart rate

variability and oximetry in screening for the sleep apnoea/hypopnoea

syndrome," J. Sleep Res., vol. 12, (1),pp. 53-61, 2003.

16. Alhola, Paula, and Päivi Polo-Kantola. "Sleep deprivation: Impact on cognitive

performance." Neuropsychiatric disease and treatment, 2007.

17. Liberalesso, Paulo Breno Noronha, Karlin Fabianne Klagenberg D’Andrea, Mara L.

Cordeiro, Bianca Simone Zeigelboim, Jair Mendes Marques, and Ari Leon Jurkiewicz.

"Effects of sleep deprivation on central auditory processing." BMC neuroscience 13, no.

1 (2012): 1-7.

12

18. Rault, Christophe, Aude Sangaré, Véronique Diaz, Stéphanie Ragot, Jean-Pierre Frat,

Mathieu Raux, Thomas Similowski, René Robert, Arnaud W. Thille, and Xavier Drouot.

"Impact of Sleep Deprivation on Respiratory Motor Output and Endurance. A

Physiological Study." American journal of respiratory and critical care medicine 201,

no. 8 (2020): 976-983.

19. Perez-Pozuelo, Ignacio, Bing Zhai, Joao Palotti, Raghvendra Mall, Michaël Aupetit, Juan

M. Garcia-Gomez, Shahrad Taheri, Yu Guan, and Luis Fernandez-Luque. "The future of

sleep health: a data-driven revolution in sleep science and medicine." NPJ digital

medicine 3, no. 1 (2020): 1-15.

20. E. Dafna, A. Tarasiuk and Y. Zigel, "Sleep-quality assessment from full night audio

recordings of sleep apnea patients," 2012 Annual International Conference of the IEEE

Engineering in Medicine and Biology Society, 2012, pp. 3660-3663, doi:

10.1109/EMBC.2012.6346760.

21. S. Cheng and H. Mei, "A Personalized Sleep Quality Assessment Mechanism Based on

Sleep Pattern Analysis," 2012 Third International Conference on Innovations in Bio-

Inspired Computing and Applications, 2012, pp. 133-138, doi: 10.1109/IBICA.2012.55.

22. Sadek, Ibrahim, Antoine Demarasse, and Mounir Mokhtari. "Internet of things for sleep

tracking: wearables vs. nonwearables." Health and technology 10, no. 1 (2020): 333-340.

23. H. M. Sajjad Hossain, Sreenivasan R. Ramamurthy, Md Abdullah Al Hafiz Khan, and

Nirmalya Roy. 2018. An Active Sleep Monitoring Framework Using Wearables. ACM

Trans. Interact. Intell. Syst. 8, 3, Article 22 (August 2018), 30 pages.

DOI:https://doi.org/10.1145/3185516

24. Sleep Deprivation and Deficiency, National Heart Lung and Blood Institute,

https://www.nhlbi.nih.gov/health-topics/sleep-deprivation-and-deficiency, Retrieved on

June 25, 2021.

25. World Health Organization. “mHealth: new horizons for health through mobile

technologies.”, Geneva, Switzerland: World Health Organization; 2011.

26. S. Rani, S. H. Ahmed and S. C. Shah, "Smart Health: A Novel Paradigm to Control the

Chickungunya Virus," in IEEE Internet of Things Journal, vol. 6, no. 2, pp. 1306-1311,

April 2019, doi: 10.1109/JIOT.2018.2802898.

https://www.nhlbi.nih.gov/health-topics/sleep-deprivation-and-deficiency

13

27. R. K. Pathinarupothi, P. Durga and E. S. Rangan, "IoT-Based Smart Edge for Global

Health: Remote Monitoring with Severity Detection and Alerts Transmission," in IEEE

Internet of Things Journal, vol. 6, no. 2, pp. 2449-2462, April 2019, doi:

10.1109/JIOT.2018.2870068.

28. W. N. Ismail, M. M. Hassan, H. A. Alsalamah and G. Fortino, "CNN-Based Health

Model for Regular Health Factors Analysis in Internet-of-Medical Things Environment,"

in IEEE Access, vol. 8, pp. 52541-52549, 2020, doi: 10.1109/ACCESS.2020.2980938.

29. Ashish Singh and Kakali Chatterjee, “Cloud security issues and challenges.”, J. Netw.

Comput. Appl. 79, C, 88–115. 2017, doi:https://doi.org/10.1016/j.jnca.2016.11.027

30. P. Verma and S. K. Sood, "Fog Assisted-IoT Enabled Patient Health Monitoring in Smart

Homes," in IEEE Internet of Things Journal, vol. 5, no. 3, pp. 1789-1796, June 2018, doi:

10.1109/JIOT.2018.2803201.

31. Hu, J., Wu, K., & Liang, W., “An IPv6-based framework for fog-assisted healthcare

monitoring.”, Advances in Mechanical Engineering. https://doi.org/10.1177/

1687814018819515.

32. “Mobile-Edge Computing Introductory Technical White Paper,” ETSI. [Online].

Available: https://portal.etsi.org/Portals/0/TBpages/MEC/ Docs/Mobile-edge Computing

- Introductory Technical White Paper V1%2018-09-14.pdf

33. Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo and J. Zhang, "Edge Intelligence: Paving the

Last Mile of Artificial Intelligence with Edge Computing," in Proceedings of the IEEE,

vol. 107, no. 8, pp. 1738-1762, Aug. 2019.

34. J. Chen and X. Ran, "Deep Learning with Edge Computing: A Review," in Proceedings

of the IEEE, vol. 107, no. 8, pp. 1655-1674, Aug. 2019.

35. W. Shi, J. Cao et al., “Edge Computing: Vision and Challenges,” IEEE Internet Things

Journal, vol. 3, no. 5, pp. 637–646, Oct. 2016.

36. B. A. Mudassar, J. H. Ko, and S. Mukhopadhyay, “Edge-cloud collaborative processing

for intelligent internet of things,” in Proc. the 55th Annual Design Automation

Conference (DAC 2018), pp. 1–6, 2018.

14

Chapter 2

DEVELOPING A MINIMALIST METHOD FOR SEVERITY ASSESSMENT AND

PROGRESSION MONITORING OF OBSTRUCTIVE SLEEP APNEA ON THE EDGE

2.1 INTRODUCTION

SMART health (sHealth) aims to deliver better healthcare for the citizens of smart cities

by providing Artificial Intelligence (AI) enabled Internet-of-Things (IoT) centric solutions.

Cloud computing with enhanced capabilities for processing power and storage offers great

advantages and benefits regarding in-depth data analysis in terms of speed, cost, data backup,

and flexibility. However, it also has a number of limitations, including network outage, latency,

security, privacy, and vulnerability to attacks. Specifically, sharing sensitive raw medical data on

the cloud is always risky and requires obfuscation in many cases to protect a user’s privacy that

may inherently lead to the deterioration of data quality [1-2]. In previous studies end-users have

expressed concerns regarding data sharing with the cloud [3]. Moreover, the addition of a huge

number of IoT devices in the coming years is posing a serious challenge to the network capacity

and processing power of the cloud infrastructures. Edge computing is an attractive alternative to

cloud computing, one that aims to host computation tasks near to the data sources and end-users

[4-5]. Examples of edge computing frameworks currently being developed include Intel Open

VINO, Microsoft Azure IOT Edge, NVDIA EGX, etc. [6]. Many researchers are investigating

the prospect of using the IoT Edge-Cloud where data processing and inference are conducted in

the edge and the result is shared with the cloud [7]. Because edge computing holds tremendous

promise for smart healthcare applications, development of methods suitable for edge devices is a

priority [8].

Obstructive Sleep Apnea (OSA) is a very common sleep disorder among the elderly

population throughout the world [9-10]. OSA arises due to a blockage or partial obstruction in

the upper airway which causes repeated episodes of paused or shallow breathing during sleep,

which is termed apneas. OSA is chronic and if not treated properly, may lead to serious health

issues including hypertension, coronary artery disease, excessive daytime sleepiness, headache,

stroke, etc. [11]. It is estimated that 26 % of US adults between the ages of 30 and 70 years have

sleep apnea. Unfortunately, 80 % of the patients remain undiagnosed [12]. Usually, sleep apnea

15

symptoms are first observed and reported by a partner of the patient when the symptom is

obvious; i.e., gasping or choking and the patient is already in a moderate to severe stage of sleep

apnea. The standard medical practice for the diagnosis of OSA is based on a polysomnogram

captured during a sleep test. Polysomnography is expensive, complex, and involves simultaneous

monitoring of multiple physiological parameters, such as heart rate, body position, respiratory

variables, brain wave activity, eye movements, leg movements, and oxygen saturation. To

accommodate a sleep-test a standard facility with sophisticated equipment, sleep technologists,

and physicians trained in sleep medicine is recommended; hence its availability is limited.

Moreover, polysomnography is not suitable for daily use as it is performed in clinical

settings. At an early stage, many patients with sleep apnea may not be aware of their condition

and consequently are not willing to undergo a costly sleep test. These and related issues result in

a large portion of patients with OSA going undiagnosed. Young et al. long ago reported the

prevalence of undiagnosed sleep-disordered breathing to be fairly high among adult males and

higher than expected among females, constituting a sizeable public health burden [13]. Edge

deployment has high potential to aid in the passive pre-screening of sleep apnea. Additionally, as

edge computing enables on-device processing and machine learning which reduces privacy

concerns, more patients are likely to use this pre-screening method thereby increasing the

likelihood of detecting sleep apnea which heretofore may have gone undiagnosed.

Classification of OSA from healthy subjects using non-polysomnographic measures has

been investigated by many researchers, with a nocturnal Electrocardiogram (ECG) signal likely

being the most well investigated for detecting apnea [14-19]. Electroencephalography (EEG) and

respiration signals are also commonly used for detecting OSA [20-21]. Studies utilizing these

approaches, which are summarized in Table 2.1 below, however, have provided limited usability

16

information as they typically have not addressed estimation of OSA severity, a matter of great

interest to users. The gold standard for OSA severity staging is based on the Apnea-hypopnea

Index (AHI), which is defined as the number of apnea-hypopnea events per hour. OSA severity

is defined as Normal for AHI values < 5; Mild for AHI ≥ 5 and < 15; Moderate for AHI ≥ 15 and

≤ 30, and Severe for AHI > 30/hour [22]. While the estimation of AHI is preferred when using

polysomnographic measures, development and use of alternative measures to polysomnogram-

based AHI estimation for different applications is a growing trend [23-27]. For example, Papini

et al. investigated the use of optimized cardio-vascular features for the estimation of AHI in a

heterogeneous population [28], while Grenèche et al. examined the relationship between OSA

severity and the subsequent waking EEG spectral power [29].

Although some of the previous studies hold prospects for in-home severity assessment of OSA,

they did not report comparative data obtained when using standard sensor-based features. This

state of affairs creates a dilemma for consumers in deciding which is the optimal simplistic

method for monitoring OSA. Moreover, the current ECG-based methods are mainly based on

ECG derived from respiration that requires capturing ECG signal but is not possible during sleep

[25][28]. Smartwatches and smart bands available in the market can report instantaneous heart

rate continuously, but active data collection is required for ECG [30]. Another limitation of

previous studies is the absence of verifying the integrity of features used to monitor the

progression of OSA, as well as what trends to expect before an exacerbation. Moreover, most of

the previous research focused on i) offline analysis, where data are collected using wearables and

then exported to a PC for analysis and/or ii) cloud-based solutions where collected data is

exported to the cloud for analysis [31-33]. While these types of approaches maximize accuracy,

they require use of complex algorithms or features that are computationally expensive. Our focus

is on the development of a minimalistic method that is simple and computationally efficient, but

one that is also reasonably accurate. This approach has increased potential for being integrated

with an edge application for subsequent deployment on smartphones/wearables, wherein data can

be collected using various everyday consumer wearables for making more informed inferences.

Edge computing provides more privacy-preserving pre-screening of OSA, can be deployed at a

wider scale, and has the added benefit of being popular with consumers [34]. For these reasons

and more, we investigated the severity classification and AHI estimation of OSA using only

17

TABLE 2.1: Comparison of minimalist method with previous studies for OSA severity
R

ef
.

D
at

as
et

S
en

so
r/

F
ea

tu
re

s

S
ev

er
it

y

C
la

ss
if

ic
at

io
n

A
H

I

E
st

im
at

io
n

C
o
m

p
ar

at
iv

e

ev
al

u
at

io
n

P
ro

g
re

ss
io

n

m
o
n
it

o
ri

n
g

M
.
W

u
 e

t
al

.

[2
4
]

150

subjects

Age, BMI, Blood

pressure, Epworth

sleepiness scale, etc.

Accuracy=75.6% RMSE=16.61 NA NA

Ju
n
g
 e

t
al

.

[2
5
]

226

records

ECG derived

respiration cycles

during sleep onset

Correct

classification

ratio=85.7%

MAE=3.56 NA NA

S
ah

a
et

 a
l.

[2
6
]

50

subjects

Accelerometer,

Breathing sounds,

pulse oximeter

Sensitivity=92.3%

Specificity=91.8%

R2 = 0.93 NA NA

J.
 J

in
 e

t
al

.

[2
7
]

5

subjects

MEMS sensor/nasal

airflow

Sensitivity=100%

Specificity=85.9%

OSR=10-

20%

NA NA

P
ap

in
i

et
 a

l.

[2
8
]

262

subjects

ECG/ respiratory

event epochs

Accuracy=82% MAE=14.74 NA NA

J.
 G

re
n
èc

h
e

et
 a

l.
 [

2
9
]

12

subjects

Waking EEG

spectral power

- r = 0.66 NA NA

T
h
is

w
o
rk

500

subjects

HRV and SpO2 AUC=0.91

F-1 score= 93.24%

RMSE=4.6,

R2=0.74

Yes Yes

18

heart rate variability and time duration measures of SpO2 level, which are more easily and

reliably captured. Table 2.1 summarizes select studies discussed above.

The accomplishments for this study are summarized as follows:

i) Identified and ranked the physiological measures and sleep characteristics that showed

significant differences between OSA severity categories.

ii) Compared classification performance using features from different sensors to select the

sensors suited for a minimalistic method.

iii) Investigated the severity estimation of OSA using only HRV features that can be

extracted from a continuous heart rate signal, independent of other features that require ECG

recordings.

The results provide support that a comparable performance can be achieved with a minimalistic

method for early severity estimation and progression monitoring of OSA using only wristband

data and a smartphone app.

2.2 MATERIALS AND METHODS

2.2.1 Data Set and Study Description

The Sleep Health Heart Study (SHHS) was implemented as a multi-center cohort study in

two phases by the US National Heart Lung & Blood Institute and the resultant dataset is

available from the National Sleep Research Resource [35]. The data were collected over 5 years,

in two phases, from 9 different research centers across the entire United States and includes

males and females, and patients from all major races; i.e., African-American, Asian, Caucasian,

Hispanic, and Native Americans. This dataset is well planned and incorporates a number of

variabilities that may be encountered in a real-world setting. Unattended home polysomnograms

were obtained for both phases of SHHS by certified and trained technicians. The

polysomnogram data was saved in the European Data Format (EDF), with the data processing

and initial scoring completed by Compumedics software (Compumedics Ltd., Australia).

Detailed manual scorings were included to annotate the database with AHI, respiratory

disturbance index, sleep stages, event start and end time identification, etc. We opted to use a

dataset of 500 subjects (1000 records) containing high quality data for both phases of SHHS that

is available from the dataset provider as a sub-set and is recommended for use in research studies

[36]. We included subjects who were healthy or diagnosed as OSA, but excluded those with

19

central apnea for developing our classification and regression models. The distribution of subject

records in the dataset is as follows: normal- 507, mild and borderline-303, and moderate to

severe -190. For OSA progression monitoring, we identified 298 subjects from SHHS who

showed an exacerbation; i.e., progression to higher severity stages or an increase in AHI by 10 or

more during the study period. These 298 subjects constituted the exacerbating group, while

another 200 subjects not showing a progression in OSA (i.e., an increase in AHI < 3) served as

our control or stable group.

2.2.2 Autonomic Nervous System and Obstructive Sleep Apnea

The autonomic nervous system (ANS) is a part of the peripheral nervous system and

plays an important role in balancing the internal environment of the body, which includes heart

rate, blood pressure, body temperature, coughing and sneezing, sexual arousal, oxygen and Co2

level in the blood, etc. The regulations enforced by ANS take place involuntarily and without

conscious effort. The autonomic nervous system has two main divisions- sympathetic and

parasympathetic. Many organs are primarily controlled by either the sympathetic or

parasympathetic division. The sympathetic division prepares the body for dealing with stressful

or emergency situations, whereas the parasympathetic division prepares the body for rest and

digestion. Changes in ANS activity are observed during normal sleep [37]. During REM sleep, a

higher level of sympathetic activity is observed. On the other hand, parasympathetic activity

increases during non-REM sleep, which in turn causes the heart rate and systolic blood pressure

to decrease. This is especially evident in stage IV of non-REM sleep [38]. However, arousals

from non-REM sleep are associated with transient rises in heart rate and blood pressure ,which

are markers of the rise in sympathetic activity and withdrawal of parasympathetic tone. Arousals

also induce the production of “K” complexes in the EEG. A person with sleep apnea does not

receive enough air into the lungs during an apnea event. The American Academy of Sleep

Medicine (AASM) defines an apnea/hypopnea event as a complete cessation or transitory

reduction of breathing when the airflow decreases by more than fifty percent (>50%) from the

amplitude of baseline and the oxygen saturation level decreases by at least four percent (≥ 4%),

with the event persisting for a minimum of ten seconds (≥ 10 sec) [23]. This causes an acute

deficiency in the blood oxygen level, along with a concomitant increase in carbon dioxide. To

prevent death, the brain “wakes up” and resumes breathing. Because an apnea event usually

20

happens repetitively, a patient with OSA is exposed to recurrent episodes of hypoxemia, arousals

from sleep, and an increased hemodynamic stress level. The initial part of the apneic period is

characterized by bradycardia (heart rate slows down) and a rise in blood pressure from baseline.

The point of arousal, on the other hand, is associated with a transient surge in heart rate and

blood pressure, which are markers of increased sympathetic activity and reduced

parasympathetic tone. The termination of apnea is associated with a fall in cardiac output [39].

Overall, a person experiencing sleep apnea has a higher level of sympathetic activity during

sleep than during wakefulness, which is opposite to a healthy person who has a lower level of

sympathetic activity during sleep.

2.2.3 Pre-Processing and Feature Extraction

The recording montage for a polysomnogram consists of data from 14 channels, which

include ECG, EEG, electrooculogram (EOG), electromyogram (EMG), nasal airflow, thoracic

and abdominal movement signal, SpO2, sleep hypnogram, etc. Hardware filters are used for

preliminary noise reduction. The cutoff frequency for hardware filters are as follows: ECG-0.15

Hz, EOG-0.15 Hz, EMG-0.15 Hz, EEG-0.15 Hz, thoracic respiration signal-0.05 Hz, and

abdominal respiration signal-0.05 Hz. The sampling rate is 125 Hz for EEG, ECG, and EMG

signals, and 50 Hz for EOG. In investigating the minimalistic approach, we considered the use of

features from the ECG, EEG, SpO2 signals as the sensors for these signals are more user-friendly

and widely used. The ECG signal is processed for R-peak detection by the Pan-Tompkins

algorithm [40], which uses signal preprocessing with a low pass and high pass filter to remove

baseline wander and muscle artifact, a moving average for minimizing noise, and an adaptive

threshold for detecting the R-peaks. For R-R interval correction we used maliks rule followed by

a cubic interpolation for the determination of Normal-to-Normal (NN) intervals [41]. The signal

processing steps for ECG to derive the NN interval is shown in Figure 2.1 below.

Figure 2.1: Signal processing for HRV feature extraction.

21

From the NN interval series we extracted time domain and frequency domain features using the

HRV Toolkit available from Physionet [42]. The time-domain and frequency-domain features of

the HRV are defined in Tables 2.2 and 2.3 respectively.

TABLE 2.2: Time domain measures of HRV.

Feature Description

AVNN Mean of the NN-interval.

SDNN Standard deviation of all NN intervals.

SDANN
Standard deviation of the averages of NN intervals in all 5 min

segments of the entire recording.

RMSSD
Defined as the square root of the mean of the squares of differences

between adjacent NN intervals.

SDNN

index

Mean of the standard deviation of all NN intervals for all 5 min

segments of the entire recording.

SDSD
Defined as the standard deviation of the differences between adjacent

R-R intervals.

pNNx
NNx count divided by the total no. of all NN intervals where NNx is

the number of pairs of adjacent NN intervals differing by more than x ms.

TABLE 2.3: Frequency domain measures of HRV.

Feature Units Description
Frequency

Range (Hz)

VLF s2 Power in very low frequency range ≤ 0.04

LF s2 Power in low frequency range 0.04 – 0.15

HF s2 Power in low frequency range 0.15 – 0.4

Total Power s2 Variance of all NN intervals ≤ 0.4

LFnu n.u. LF power in normalized units -

HFnu n.u. HF power in normalized units -

LF/HF - Ratio of LF/HF -

LFV - Ratio of LF to (LF+HF) -

HFV - Ratio of HF to (LF+HF) -

22

For the power spectrum estimation, we used Lomb’s periodogram method. The entire

ECG record was divided into 5-minute epochs to estimate short-term components of HRV. In

addition to the estimates of long-term and short-term HRV components, we considered another

variant of HRV, which we termed as the dispersion measure of short-term HRV computed using

the standard deviations of short-term HRV over the entire record. Thus, for each HRV measure,

3 variants were computed and each variant was considered a different feature for the

classification and regression purpose. In total 54 HRV features were extracted. From SpO2 we

considered only the time duration related features based on the level of SpO2 as described below

[43-44]:

pctlt90- percentage of sleep time with SpO2 level below 90%

pctlt85- percentage of sleep time with SpO2 level below 85%

pctlt80- percentage of sleep time with SpO2 level below 80%

pctlt75- percentage of sleep time with SpO2 level below 75%

The EEG signal was collected using two channels from the central region of the brain--

C4-A1 and C3-A2. As the power spectral densities for these two channels are very similar, we

elected to use only the signal from the C4 channel. Of note, this channel was designated as the

primary EEG channel in SHHS. EEG spectral analysis was performed using the SpectralTrainFig

App in MATLAB [45]. We extracted 24 spectral band features from the decontaminated EEG

signal, as shown in Table 2.4, which includes rapid eye movement (REM) power, non-rapid eye

movement (NREM) power, and total power at each frequency band. Also, 102 EEG spectral

features (REM, N-REM power at single frequencies) were computed for 51 frequencies from 0

to 25 Hz, with a 0.5 Hz gap; i.e., 0 Hz, 0.5 Hz, 1 Hz, 1.5 Hz, …., 24.5 Hz, 25 Hz.

23

TABLE 2.4: Spectral band measures of EEG.

 Frequency Band Hz Features

Slow Oscillations 0.5-1 Total Power, REM and NREM Sleep Power

Delta 1-4 Total Power, REM and NREM Sleep Power

Theta 4-8 Total Power, REM and NREM Sleep Power

Alpha 8-12 Total Power, REM and NREM Sleep Power

Sigma 12-15 Total Power, REM and NREM Sleep Power

Slow Sigma 12-13.5 Total Power, REM and NREM Sleep Power

Fast Sigma 13.5-15 Total Power, REM and NREM Sleep Power

Beta 13-30 Total Power, REM and NREM Sleep Power

In total, 200 features were extracted from the polysomnogram as follows: Sleep

characteristics-14, HRV-54, SpO2-4, EEG-126, and blood pressure (BP)-2. Sleep characteristics

included sleep efficiency, sleep latency, sleep time, wake after sleep onset (WASO), time in

sleep stage 1 (timest1), sleep stage 2(timest2), sleep stage 3-4(timest34); the percentage of time

in sleep stage 1 (timest1p), sleep stage 2 (timest2p) and sleep stage 3-4 (timest34p); and total

time in REM sleep, total time in N-REM sleep, total time in bed, and sleep disturbance index.

Sleep characteristics were extracted based on the polysomnograms using Compumedics Software

(Compumedics Ltd, Australia), as done when the SHHS data set was prepared. The block

diagram for feature extraction is shown in Figure 2.2 below.

Figure 2.2: Block diagram for feature extraction.

24

2.2.4 Statistical Analysis, Feature Selection, and Classification

All of the OSA records from the dataset were previously divided into two groups. The

first group included subjects having moderate to severe (MODS) sleep apnea; i.e., AHI>=15,

while the second group consisted of those individuals with borderline (AHI ~ 5) and mild OSA

(AHI <15). The MODS group had a median age of 70 and a median BMI of 29.6, whereas the

mild group had a median age of 67 and a median BMI of 28.6. The variables in the dataset were

examined for normality using the Shapiro-Wilk test. Because most of the variables failed to pass

this normality test, the Mann-Whitney U test was used to determine if significant differences

existed between the anthropometric parameters and sleep characteristics of the MODS OSA

patients when compared to the other subjects. HRV and EEG features were compared between

the two groups using the Mann-Whitney U test, as well. Boxplots were used to visualize the

mean ranks of the HRV and EEG features of the two groups. Min-Max normalization was used

for all of the features to facilitate the boxplot comparison. The entire dataset was further divided

into training (comprising 80% of the data) and test (the remaining 20% of the data) sets for

feature selection and classification. The data were reshuffled before making the random split into

the training and test sets. For feature selection, the Recursive Feature Elimination (RFE)

technique was employed [46], as it eliminates collinearity and dependencies by removing a small

number of features per iteration recursively. To find the optimal number of features, repeated k-

fold cross-validation was used with the number of folds=10 and the number of repeats=5. The

outer resampling method was used to minimize selection bias [47]. Accuracy was used as the

performance metric, with the Random Forest being used as the external estimator (wrapper) in

the feature selection process. The Caret package from R was used to implement the feature

selection process [48].

We investigated different classifiers viz. Logistic Regression, Random Forest, Ada-

Boost, Support Vector Machine (SVM), and Multi-layer Perceptron (MLP) for the classification

of MODS OSA category patients from the mild OSA. The grid search method was used for

tuning the hyper parameters when applicable. Scikit-learn and Keras were implemented as the

model development environment [49-50]. All feature values were standardized using centering

and scaling; i.e., z-score normalization before feeding into the classifier. As described in section

2, the study dataset contained 303 records in the mild and borderline category compared to 190

records in the moderate to severe category. The latter grouping was up sampled to make the

25

number of instances equal to the majority class as classification using class-imbalanced data is

biased in favor of the majority class [51]. However, the SMOTE method was applied to the

training set only, as the test set was not up sampled so that real-world performance could be

replicated during the test. To make the dataset balanced, synthetic minority oversampling

(SMOTE) was used [52]. Initially, classification was performed using all of the ranked features.

The classification performance of the minimalistic approach was then investigated by using

ranked features from only i) HRV and SpO2 and ii) EEG. MLP superseded the performance of

other classifiers. The configuration of the MLP was as follows: number of hidden layers=1,

number of units in hidden layers=30, number of epochs=100, learning rate=0.1, and batch

size=20. Binary cross entropy was used as the loss function and relu was applied as the

activation function for the hidden layer, with sigmoid used in the output layer. A Stochastic

Gradient Descent (SGD) algorithm was used as the optimizer and to avoid overfitting L2 weight

regularization was used with alpha=0.0001 [53]. In addition, the Early stopping criterion was

used to avoid overtraining. A high-level block diagram for feature extraction, feature selection,

and classification is shown in Figure 2.3 below.

Figure 2.3: High-level diagram for OSA severity classification from polysomnogram data.

2.2.5 Regression for Severity Estimation

In order to examine the validity of estimating OSA severity from non-polysomnographic

features using a minimalistic approach, we calculated the value of AHI using the ranked features

from HRV and SpO2 only. In the pre-processing stage, Cook’s distance, defined in equation 2.1

below, was used for identifying HRV outliers in the dataset [54].

𝐷𝑗 =
∑ (𝑦�̂�−�̂�𝑘(𝑗))

2𝑛
𝑘=1

𝑝𝑀𝑆𝐸

Equation 2.1.

26

In this equation, yk is the kth fitted response value, yk(j) is the kth fitted response value excluding

observation j from the fit, MSE is the mean squared error, and p is the number of coefficients in

the regression model. Observations with Cook’s distance larger than three times the mean

Cook’s distance were likely an outlier and, hence, were discarded. The remaining dataset was

reshuffled and divided into training (70%), validation (15%), and test (15%) sets for validating

and testing the regression models. For developing the regression model, MLP neural networks

with backpropagation were investigated. The finalized MLP model had a single hidden layer

with 30 units and used the scaled conjugate gradient algorithm for training [55]. For the

performance evaluation, root mean squared error (RMSE) and the coefficient of determination

(R2) were used in addition to residual analysis. Feature values were standardized before fitting

into the regression models.

2.2.6 Progression Monitoring of OSA

The distribution of patients in different severity categories before and after exacerbation

were visualized using pie charts. The Wilcoxon-signed rank test was applied to determine if the

values of the ranked features changed significantly before and after the exacerbation. The same

features were tested for the control group and exacerbation group and the features showing

significant changes only for the exacerbation group were identified. Changes for the

exacerbating group were visualized using interval plots.

2.3 RESULTS

The results of the Mann-Whitney U test for the physiological and sleep parameters of the

mild and MODS OSA groups are shown in Table 2.5, where measures showing a significant

difference (p ≤ 0.05) between the two groups are marked with an asterisk. The MODS group had

a significantly higher OAHI, median Systolic blood pressure, Neck20, total time in sleep,

number of arousals, and wake times after sleep onset than the mild group. The findings for sleep

efficiency and % time in sleep revealed a different pattern, with the Mild group showing

significantly higher values when compared to the MODS group.

27

TABLE 2.5: Results of the Mann Whitney U test between the median values for the mild and

moderate-to-severe OSA groups.

Parameter Mild group MODS group

(Median)

p-value

N = 303 N = 190

OAHI 7.95 25.89 0.001*

Syst BP 123.00 128.00 0.017*

Dias BP 72.00 72.00 0.702

Neck20 39.00 39.90 0.037*

Sleep time 364.25 364.00 0.755

Sleep latency 16.50 16.00 0.716

Sleep efficiency 83.56 80.00 0.001*

% time in sleep

stage 2

16.81 12.46 0.002*
Time in sleep

stage 3

57.86 62.00 0.002*

Arousal 17.36 25.18 0.001*

Wake after sleep

onset

52.00 73.00 0.001*

The Mann Whitney U test for the HRV and SpO2 features also revealed significant

differences between the two groups. The bar diagram comparison for the HRV and SpO2 feature

ranks between the groups based on the Mann U test is shown in Figure 2.4. Only the features

showing significant differences (p ≤ 0.05) are included in the plot.

Figure 2.4: Bar diagram comparison between OSA severity categories based on Mann-

Whitney U test for HRV, SpO2, and EEG features.

Feature ranking using the recursive feature elimination technique provides the optimal

number of features as 70 to achieve the best accuracy. Figure 2.5(a) shows the results of the

recursive feature elimination method. Adding more features did not improve the cross-validation

accuracy. The top 20 features with their relative importance are listed in Figure 2.5 (b). The top

28

features are from different signal sources and include EEG, HRV, SpO2, and sleep hypnogram (for

sleep stages).

Figure 2.5: (a) Results of feature ranking and (b) Top-ranked 20 features.

The performance of different classifiers using the 70 features selected by the RFE method

are shown in Table 2.6. The MLP model performed the best with an accuracy of 93.24%,

precision of 93.24%, recall of 93.24%, and F-1 score of 93.24%. Based on the performance,

MLP was selected as the classification model for investigating the performance of the

minimalistic approach.

TABLE 2.6: Five-fold cross-validation results for different classifiers

Classifier
Apnea Severity Classification

Precision Recall F-1 score

Logistic Regression 83.9% 83.79% 83.77%

Random Forest 91.31% 90.54% 90.34%

AdaBoost 93.39% 93.41% 92.04%

SVM 86.27% 85.98% 85.95%

Multi-layer Perceptron 93.24% 93.24% 93.24%

29

Fig. 2.6 shows the learning curve and the area under the receiver operating characteristics

(roc) curve. With increase of training data size performances in both training and test sets are

increased. Table 2.7 shows the classification performance of the minimalistic approach with that

of the ranked polysomnographic measures. There is a reduction in The classification

performance accuracy of the minimalistic approach was slightly reduced when compared with

the complete data set. Nonetheless, these findings indicate that a reasonable degree of accuracy

can be achieved with the minimalistic approach at the gain of comfort, reduced cost, and user-

friendliness.

Table 2.7: Comparison of minimalist method with polysomnogram

Classifier
Apnea Severity Classification

Training Set Test Set

All Ranked Features (70) 96.45% 93.24%

Ranked HRV and SpO2 Features (24) 88.92% 83.97%

Ranked EEG features (42) 82.60% 77.02%

Figure 2.6: a) Learning curve and b) area under the roc curve.

30

Figure 2.7: Case order plot for Cook’s distance.

Identification of influential observations in the data set through the Cook’s distance

method indicates the presence of outliers in the data, as displayed in Figure 2.7, which shows the

case order plot of Cook’s distance. The observations outside the recommended threshold

(indicated by the blue line in the figure) are influential. The performance of the MLP regression

model using the ranked HRV and SpO2 features for the estimation of OSA severity (i.e., AHI) is

shown in Figure 2.8. The line-of-fit shows a good fit with most of the points around the ideal

line. The achieved r-squared values in the training, validation, and test sets were 0.83, 0.74, and

0.71, respectively. The root mean squared error of the regression model in the test set is 4.6. As

shown in Figure 2.9, the best validation performance was achieved at epoch 7. The error

histogram for the regression model, displayed in Figure 2.10, reveals that the majority (~300) of

the observations fell within the error bin of -2.07 and the zero-error bin.

31

Fig. 2.8: Plot of fit for the regression model

Figure 2.9: Performance curve for

training, validation, and test sets.

Figure 2.10: Error histogram for the regression

model.

32

Fig. 2.11: Subject distribution of the exacerbating group during baseline and follow-up visit

Figure 2.11 shows the pie chart for the distribution of subjects in different severity

categories before and after an exacerbation. The proportion of the subjects in the severe category

increased to 39.3% from 7.8%, in the moderate category from 23.6% to 56.3%, whereas the

proportion of subjects in the mild and borderline category was markedly reduced.

TABLE 2.8: Comparison of time and frequency domain HRV measures at baseline and

exacerbation stage

 Baseline Median

(IQR)

Exacerbation Median

(IQR)

Wilcoxon

SRT

Normality

Mean RR 917.00(171.92) 900.52(150.25) 0.043 P<.001

pcNN30 30.89(32.36) 28.26(30.78) 0.002 P<.001

pcNN50 14.72(25.00) 12.34(20.88) 0.001 P<.001

RMSSD 40.06(33.45) 37.45(29.75) 0.006 P<.001

SDANN 63.56(31.68) 67.37(30.93) 0.049 P<.001

ULF 1683(1991) 1937(2054) 0.023 P<.001

VLF 1467(1669) 1680(1766) 0.009 P<.001

HF 276.1(557.0) 225.0(448.0) 0.004 P<.001

HFV 0.063(0.913) 0.048(0.06) .001 P<.001

 A co-variate analysis controlling for age and BMI showed significant (p<0.05) partial

correlations of HRV and SpO2 features with AHI. The average increase in AHI due to the

progression in disease was 20 AHI. The Wilcoxon-signed-rank test was used to determine if the

changes observed for both the exacerbating and control group (stable subjects) were significant.

While the HRV features showed significant changes (p<0.05) for both groups, only those for the

33

exacerbating group are shown in Table 2.8. The change in individual feature mean values along

with 95% confidence intervals for the selected physiological, HRV, SpO2, and EEG features are

visualized in Figure 12(a), 12(b), and 12(c).

Figure 2.12: Interval plots for a) for physiological measures and b) HRV features c) EEG

features at Baseline and Exacerbation.

2.4 DISCUSSION, LIMITATIONS, AND FUTURE WORK

Preliminary estimation of apnea severity and progression monitoring at home using the

minimalistic approach was not intended to serve as a replacement for the polysomnogram.

Rather it is intended for identifying individuals who have not been diagnosed for OSA and have

never undertaken a polysomnogram in the sleep laboratory or even pursued a home sleep test.

We mention this as we are well aware of the potential risk of underestimation of OSA severity

when home assessments are used [56]. In future work one goal will be to estimate the HRV

features from the PPG signal captured by a smartwatch or smart band as shown in Figure 2.13

[57]. This type of minimalistic approach has the potential to offer an edge computing-based

solution to OSA detection and monitoring and may be more suitable for implementation on

everyday consumer-grade wearables, such as smart watches and smart bands.

Figure 2.13: Scheme for the estimation of HRV from PPG signal.

34

It is important to point out that when data are noisy, a single source (i.e., HRV or EEG)

may not provide information adequate enough for a reliable assessment. For progression

monitoring, we have considered data and the disease condition at two time points only having an

approximate two years’ gap. In our opinion, longitudinal monitoring over an extended period

(i.e., collecting data from a patient every night for several months) will reveal better information

about disease progression and help to develop a more robust monitoring method. For future

work, we have been considering optimizing and exporting the model for an android application

on a smartphone for real-world deployment with human subjects and collect data every night for

longitudinal monitoring over a period of a few months.

2.5 CONCLUSION

In this study, we investigated a minimalistic approach using only HRV features and time

duration (%) of the SpO2 level for the early severity estimation and continuous monitoring of

OSA severity. Using only 24 ranked features from the HRV and SpO2, an AUC of 0.91 was able

to be achieved for OSA severity classification and an RMSE of 4.6 for AHI estimation. The

proposed minimalistic approach can be easily integrated into edge applications and has the

potential to improve healthcare monitoring significantly. Besides, it provides support for the

utility of HRV or EEG features for the longitudinal monitoring of OSA patients.

REFERENCES

[1] Casola, Valentina, Aniello Castiglione, Kim-Kwang Raymond Choo, and Christian Esposito.

"Healthcare-related data in the cloud: challenges and opportunities." IEEE Cloud Computing,

no. 6, pp.10-14, 2014.

[2] Korosh Vatanparvar eta al., “A Generative Model for Speech Segmentation and Obfuscation

for Remote Health Monitoring”, The 2019 IEEE International Conference on Wearable and

Implantable Body Sensor Networks, Chicago, IL, May 2019.

[3] Ion, Iulia, Niharika Sachdeva, Ponnurangam Kumaraguru, and Srdjan Čapkun. "Home is

safer than the cloud! Privacy concerns for consumer cloud storage." In Proceedings of the

Seventh Symposium on Usable Privacy and Security, pp. 1-20. 2011.

[4] “Mobile-Edge Computing Introductory Technical White Paper,” ETSI. [Online]. Available:

https://portal.etsi.org/Portals/0/TBpages/MEC/ Docs/Mobile-edge Computing - Introductory

35

Technical White Paper V1%2018-09-14.pdf

[5] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, "Edge Intelligence: Paving the Last

Mile of Artificial Intelligence with Edge Computing," in Proceedings of the IEEE, vol. 107,

no. 8, pp. 1738-1762, Aug. 2019.

[6] J. Chen and X. Ran, "Deep Learning with Edge Computing: A Review," in Proceedings of

the IEEE, vol. 107, no. 8, pp. 1655-1674, Aug. 2019.

[7] B. A. Mudassar, J. H. Ko, and S. Mukhopadhyay, “Edge-cloud collaborative processing for

intelligent internet of things,” in Proc. the 55th Annual Design Automation Conference

(DAC 2018), pp. 1–6, 2018.

[8] W. Shi, J. Cao et al., “Edge Computing: Vision and Challenges,” IEEE Internet Things

Journal, vol. 3, no. 5, pp. 637–646, Oct. 2016

[9] Franklin, K.A. and Lindberg, E., “Obstructive sleep apnea is a common disorder in the

population—a review on the epidemiology of sleep apnea”. Journal of thoracic disease, 7(8),

pp.1311, 2015.

[10] Punjabi, N.M., “The epidemiology of adult obstructive sleep apnea.” Proceedings of the

American Thoracic Society, 5(2), pp.136-143, 2008.

[11] Kapur V, Strohl KP, Redline S, Iber C, O’Connor G, Nieto J. Underdiagnoses of sleep

apnea syndrome in U.S. communities. Sleep Breath. Vol. 6, pp.49–54, 2002.

[12] Al Lawati, Nabil M., Sanjay R. Patel, and Najib T. Ayas. "Epidemiology, risk factors,

and consequences of obstructive sleep apnea and short sleep duration." Progress in

cardiovascular diseases, vol.51, no. 4, pp.285-293,2009.

[13] Young, T., Palta, M., Dempsey, J., Skatrud, J., Weber, S. and Badr, S., 1993. “The

occurrence of sleep-disordered breathing among middle-aged adults.” New England Journal

of Medicine, 328(17), pp.1230-1235.

[14] A. Khandoker, C. K. Karmakar, M. Palaniswami, “Automated recognition of patients

with obstructive sleep apnoea using wavelet-based features of electrocardiogram recordings”,

Computers in Biology and Medicine, 39 (1) pp.88–96, 2009.

[15] C. Varon, A. Caicedo, D. Testelmans, B. Buyse, S. Van Huffel, “A novel algorithm for

the automatic detection of sleep apnea from single-lead ecg,” IEEE Tran. on Biomedical

Engineering, vol. 62, no. 9, pp. 2269-2278, Sept. 2015.

36

[16] D. Liu, X. Yang, G. Wang, J. Ma, Y. Liu, C. K. Peng, J. Zhang, J. Fang, “Hht based

cardiopulmonary coupling analysis for sleep apnea detection”, Sleep Medicine, 13 (5),

pp.503–509, 2012.

[17] H. Dickhaus, C. Maier, “Detection of sleep apnea episodes from multi-lead ecgs

considering different physiological influences”, Methods of Information in Medicine, 46 (2),

pp.216–221, 2007.

[18] M. Bsoul, H. Minn, L. Tamil, Apnea medassist: Real-time sleep apnea monitor using

single-lead ecg, IEEE Transactions on Information Technology in Biomedicine vol. 15 no. 3,

pp. 416–427, 2011.

[19] A. Zarei and B. M. Asl, "Automatic Detection of Obstructive Sleep Apnea Using

Wavelet Transform and Entropy-Based Features From Single-Lead ECG Signal," in IEEE

Journal of Biomedical and Health Informatics, vol. 23, no. 3, pp. 1011-1021, May 2019.

[20] Kaimakamis E, Tsara V, Bratsas C, Sichletidis L, Karvounis C, Maglaveras N (2016)

“Evaluation of a Decision Support System for Obstructive Sleep Apnea with Nonlinear

Analysis of Respiratory Signals”. PLoS ONE 11(3): e0150163

[21] M. J. Rahman, R. Mahajan and B. I. Morshed, "Exacerbation in Obstructive Sleep

Apnea: Early Detection and Monitoring Using a Single Channel EEG with Quadratic

Discriminant Analysis," 2019 9th International IEEE/EMBS Conference on Neural

Engineering (NER), San Francisco, CA, USA, 2019, pp. 85-88.

[22] Kapur, V.K., Auckley, D.H., Chowdhuri, S., Kuhlmann, D.C., Mehra, R., Ramar, K. and

Harrod, C.G., “Clinical practice guideline for diagnostic testing for adult obstructive sleep

apnea: an American Academy of Sleep Medicine clinical practice guideline.” Journal of

Clinical Sleep Medicine, 13(03), pp.479-504,2017.

[23] Epstein, Lawrence J., et al. "Clinical guideline for the evaluation, management and long-

term care of obstructive sleep apnea in adults." J. of clinical sleep medicine, vol.5, no.03,

pp.263-276, Jun 2009.

[24] M. Wu et al., "A New Method for Self-Estimation of the Severity of Obstructive Sleep

Apnea Using Easily Available Measurements and Neural Fuzzy Evaluation System," in IEEE

Journal of Biomedical and Health Informatics, vol. 21, no. 6, pp. 1524-1532, Nov. 2017.

[25] D. W. Jung, S. H. Hwang, Y. J. Lee, D. Jeong and K. S. Park, "Apnea–Hypopnea Index

37

Prediction Using Electrocardiogram Acquired During the Sleep-Onset Period," in IEEE

Transactions on Biomedical Engineering, vol. 64, no. 2, pp. 295-301, Feb. 2017.

[26] Saha, Shumit, et al. "Apnea-hypopnea index (AHI) estimation using breathing Sounds,

accelerometer and pulse oximeter." European Respiratory J. Open Research, vol.5,

pp.63,2019.

[27] J. Jin and E. Sánchez-Sinencio, "A Home Sleep Apnea Screening Device With Time-

Domain Signal Processing and Autonomous Scoring Capability," in IEEE Transactions on

Biomedical Circuits and Systems, vol. 9, no. 1, pp. 96-104, Feb. 2015.

[28] Papini, G.B., Fonseca, P., van Gilst, M.M. et al. “Estimation of the apnea-hypopnea index

in a heterogeneous sleep-disordered population using optimised cardiovascular features.”

Scientific Reports, vol. 9, no.17448, 2019.

[29] Grenèche, J., Sarémi, M., Erhardt, C., Hoeft, A., Eschenlauer, A., Muzet, A. and Tassi,

P., “Severity of obstructive sleep apnoea/hypopnoea syndrome and subsequent waking EEG

spectral power.” European Respiratory Journal, 32(3), pp.705-709, 2008.

[30] “Taking an ECG with the ECG app on Apple Watch Series 4 or later” available online at

https://support.apple.com/en-us/HT208955, accessed on 23 Jan, 2020.

[31] A. Benharref and M. A. Serhani, "Novel Cloud and SOA-Based Framework for E-Health

Monitoring Using Wireless Biosensors," in IEEE Journal of Biomedical and Health

Informatics, vol. 18, no. 1, pp. 46-55, Jan. 2014.

[32] U. Satija, et al., "Real-Time Signal Quality-Aware ECG Telemetry System for IoT-Based

Health Care Monitoring," in IEEE Internet of Things Journal, vol. 4, no. 3, pp. 815-823, June

2017.

[33] G. Muhammad et al. "Smart Health Solution Integrating IoT and Cloud: A Case Study of

Voice Pathology Monitoring," in IEEE Communications Magazine, vol. 55, no. 1, pp. 69-73,

January 2017.

[34] Perez-Pozuelo, Ignacio, et al. "The future of sleep health: a data-driven revolution in

sleep science and medicine." NPJ digital medicine 3.1 pp. 1-15, 2020.

[35] Dennis A. Dean et al., “Scaling Up Scientific Discovery in Sleep Medicine: The National

Sleep Research Resource”, Sleep, vol. 39, issue 5, pp. 1151–1164, May 2016.

[36] Redline S, Sanders MH, Lind BK, et al. “Methods for obtaining and analyzing

38

unattended polysomnography data for a multicenter study. Sleep Heart Health Research

Group.” Sleep, vol. 21, issue.7, pp:759–767, Nov 1998.

[37] C. Lombardi, M.F. Pengo, G. Parati, Obstructive sleep apnea syndrome and autonomic

dysfunction, Autonomic Neuroscience,Volume 221, 2019, 102563, ISSN 1566-0702.

[38] Robin P. Smith, Dan Veale, Jean-Louis Pépin, Patrick A. Lévy, “Obstructive sleep

apnoea and the autonomic nervous system”, Sleep Medicine Reviews, vol. 2, Issue 2, pp. 69-

92, 1998.

[39] Zwillich C, Devlin T, White D et al. “Bradycardia during sleep apnea. Characteristics and

mechanisms.” J Clin Invest, vol. 69: pp.1286-1292, 1982.

[40] J. Pan, W.J. Tompkins, "A real-time QRS detection algorithm", IEEE Trans. Biomed.

Eng., vol. 32, no. 3, pp. 230-236, 1985.

[41] Malik, M., Farrell, T., Cripps, T. and Camm, A.J.,"Heart rate variability in relation to

prognosis after myocardial infarction: selection of optimal processing techniques.” European

heart journal, vol. 10, no.12, pp.1060-1074, 1989.

[42] Goldberger AL, Amaral LAN, et al. “PhysioBank, PhysioToolkit, and PhysioNet:

Components of a New Research Resource for Complex Physiologic Signals”, Circulation

101(23): e215-e220, June 2000.

[43] Suen, Colin, Clodagh M. Ryan, Talha Mubashir, Najib T. Ayas, Lusine Abrahamyan,

Jean Wong, Babak Mokhlesi, and Frances Chung. "Sleep study and oximetry parameters for

predicting postoperative complications in patients with OSA." Chest, vol. 155, no. 4, pp:

855-867, 2019.

[44] Wali, Siraj Omar et al. “The correlation between oxygen saturation indices and the

standard obstructive sleep apnea severity.” Annals of thoracic medicine vol. 15,2, pp. 70-75,

2020. doi:10.4103/ atm.ATM_215_19

[45] Dennis A. Dean, II, SpectralTrainFig , MATLAB Central File Exchange. Retrieved

February 14, 2020.

[46] Guyon, I., Weston, J., Barnhill, S. and Vapnik, V., “Gene selection for cancer

classification using support vector machines.” Machine learning, vol. 46, no. 1-3, pp.389-

422, 2002.

[47] Ambroise, Christophe, and Geoffrey J. McLachlan. "Selection bias in gene extraction on

39

the basis of microarray gene-expression data." Proceedings of the national academy of

sciences 99.10, pp. 6562-6566, 2002.

[48] Kuhn, M., “Building predictive models in R using the caret package.” Journal of

statistical software, 28(5), pp.1-26, 2008.

[49] Pedregosa, Fabian, et al. "Scikit-learn: Machine learning in Python." Journal of machine

learning research 12. Oct (2011): 2825-2830.

[50] Chollet, François. "Keras: Deep learning library for theano and tensorflow.”, URL:

https://keras. io/k., 2015.

[51] Blagus, R., Lusa, L. SMOTE for high-dimensional class-imbalanced data. BMC

Bioinformatics 14, 106, 2013. https://doi.org/10.1186/1471-2105-14-106

[52] N. V. Chawla, K. W. Bowyer, L. O.Hall, W. P. Kegelmeyer, “SMOTE: synthetic

minority over-sampling technique,” Journal of artificial intelligence research, 321-357, 2002.

[53] Bottou, Léon. "Large-scale machine learning with stochastic gradient descent."

Proceedings of COMPSTAT'2010. Physica-Verlag HD, 2010. 177-186.

[54] Neter, J., M. H. Kutner, C. J. Nachtsheim, and W. Wasserman. Applied Linear Statistical

Models. 4th ed. Chicago: Irwin, 1996.

[55] Martin Fodslette Møller, “A scaled conjugate gradient algorithm for fast supervised

learning”, Neural Networks, vol. 6, Issue 4, pp. 525-533, 1993.

[56] Bianchi, M.T. and Goparaju, B., “Potential underestimation of sleep apnea severity by at-

home kits: rescoring in-laboratory polysomnography without sleep staging.” Journal of

clinical sleep medicine, 13(4), p.551, 2017.

[57] M. J. Rahman and B. I. Morshed, "SCC Health: A Framework for Online Estimation of

Disease Severity for the Smart and Connected Community," 2019 IEEE International

Conference on Electro Information Technology (EIT), 2019, pp. 373-378, doi:

10.1109/EIT.2019.8834189.

40

Chapter 3

DEVELOPMENT OF A SMART HEALTH (SHEALTH) CENTRIC METHOD

TOWARD ESTIMATION OF SLEEP DEFICIENCY SEVERITY FROM

WEARABLE SENSOR DATA FUSION

3.1 INTRODUCTION

Sleep is an important biological process and plays a key role in restoring energy, solidifying and

consolidating memories, and repairing body cells. It is controlled by the circadian biological

clock and sleep/wake homeostasis and also helps regulate metabolism and cardiovascular

function [1]. With the rise of obesity, excessive usage of personal gadgets, rapid urbanization,

and other socio-economic changes, sleep/wake homeostasis is increasingly impacted, disrupting

the normal circadian rhythm and healthy sleep. Good quality sleep is essential for optimal health

and improved quality of life. Neither body nor the brain can function properly without sufficient

sleep. Research suggests that complete sleep deprivation significantly impairs attention and

working memory [2]. Moreover, it also affects other important functions, such as long-term

memory and decision-making. Even partial sleep deprivation can negatively impact attention,

and vigilance in the long run [3]. Moreover, sleep deficiency can lead to physical and mental

health problems, injuries, loss of productivity, and even greater risk of life-threatening diseases

[4-5].

Sleep health is most commonly evaluated by administering standard questionnaires,

along with a sleep test where a polysomnogram is captured. The questionnaire-based approach

has many limitations including high bias, long evaluation period, etc. Polysomnography is

expensive, has limited availability, and is much less user-friendly. In recent years, development

and use of multi-modal sensors and technologies has greatly expanded in order to monitor key

aspects of sleep, such as sleep patterns, wellness applications, sleep coaching of individuals with

chronic conditions, etc. [6]. For example, Kuo et al. developed an actigraphy-based wearable

device for sleep quality assessment [7], and Mendonca et al. have proposed a method for sleep

quality estimation using an electrocardiogram by cardiopulmonary coupling analysis [8]. Azimi

et al. have described an objective, longitudinal IoT-based approach for sleep quality assessment

41

[9] where they were able to estimated average sleep quality average to classify sleep into good or

poor quality. Additionally, Bsoul et al. have developed a Sleep Efficiency Index based on ECG

features using Support Vector Machines [10]. Finally, some commercial devices (e.g., the Fitbit

Charge smart band by Fitbit Inc., USA; the Apple Watch developed by Apple Inc., USA; and the

Oura sleep ring produced by Oura Health Ltd., Finland) have appeared that attempt to estimate

sleep scores from non-polysomnographic measures. However, most of the previous approaches

have been focused on sleep quality assessment or sleep score estimation. Sleep deficiency pro-

vides a more specific evaluation of a possible sleep disorder than do sleep scores or sleep quality,

as sleep deficiency includes lack of enough sleep (sleep deprivation), not obtaining all types of

sleep that the human body needs, and poor quality of sleep [11]. Early detection of sleep

deficiency is beneficial to avoid many linked chronic health problems, including heart disease,

kidney disease, high blood pressure, diabetes, stroke, obesity, and depression. A method for

objective assessment of sleep deficiency from wearable sensor data alone is not well-established

and needs further investigation.

The main objective of the work reported here was to develop a physiological sensor data-

based objective sleep deficiency assessment method that can be easily integrated with user-

friendly wearables; e.g., smartwatch, smart band, etc. We proposed a mathematical model to

facilitate a quantitative evaluation of sleep deficiency based on polysomnogram features. Then

we addressed the same problem of estimating sleep deficiency severity when polysomnogram

data are not available, with a machine learning-driven model using ECG/EEG based features that

can be captured by wearables. The estimated sleep deficiency severity using the machine

learning-based method has been validated against the ground truth established from

polysomnography measurements. We hope that the results from this effort will help pave the

way for automated sleep deficiency severity assessment using single-channel EEG.

3.2 MATERIALS AND METHODS

3.2.1 Smart Health (sHealth) Framework

 We define “Smart Health (sHealth)” as a system that uses embedded artificial intelligence,

such as edge computing, machine learning, etc., which is capable of improving healthcare via

users’ smart devices, wearables, and the Internet of Things (IoT) centric solutions. This type of

system would not only benefit and monitor an individual user’s health status, but it would also

permit collection of spatiotemporal community-wide data for collective and social well-being

42

and inform policy makings. It is an emerging paradigm for efficient processing, sharing, and

visualization of healthcare data, which is coming from different IoT devices and wearable

sensors. sHealth, thus, can be perceived as an upgraded and extended version of Mobile Health

(mHealth). We previously reported a framework for sHealth and conducted a pilot study to

evaluate the technical feasibility of the framework [12]. The system’s architecture for the sHealth

framework is shown in Fig. 3.1. The main components in the framework are various sensors,

such as battery-less, body-worn passive sensors with a scanner (i.e., reader for the passive

sensors), commercial wearables, a custom smartphone app (SCC-Health app), and a custom web

server (SCC-Health server). Details of the design and functionality of the sensors and scanner

can be found elsewhere [13]. For physiological data collection, we utilized novel inkjet-printed

(IJP) sensors in addition to commercial wearables, such as a smart wristband (Mi Band 2,

Xiaomi) and a fingertip pulse oximeter (CMS50E, Crucial Medical Systems) [14]. The IJP

sensors were zero-power, analog, wireless, and fully passive. Data collected in the IJP sensors

were pre-processed and digitized by a custom-made scanner. Data from the scanner is

Figure 3.1: Workflow for Events of interest capture and spatiotemporal visualization in sHealth

transmitted to the smartphone via Bluetooth. Data reliability checks, feature extractions, and

classification or regression analyses using pre-trained machine learning models are performed in

the smartphone for disease detection and severity assessment. The computed severity of the

disease is then visualized in the smartphone as well as shared with the webserver using Wi-Fi (or

a cellular network) for observing the temporal and spatial distribution of the diseases. The

43

webserver is accessible at http://sccmobilehealth.com. The app was developed using an Android

studio 3.1 with build tool version 25.0.2 and the minimum SDK level of 19. The pre-trained

machine learning models integrated with the app for Events of Interest (EoI) computation were

developed and evaluated in WEKA. Additionally, electronic and paper-based surveys were

conducted to collect user-reported symptoms and user feedback [14].

The process of spatiotemporal visualization is fully automated and near real-time.

JavaScript object notation (JSON) has been used to share data from the android smartphone to

the database in the webserver [15]. The shared data contains participants’ anonymized user ID,

area code (hashed), computed EoI, the algorithm name used for EoI computation, and timestamp

of data collection. For personalized monitoring of diseases, temporal trends of disease severity

for a participant can be visualized using a time plot graph [16]. A flow graph has been used for

community health trend monitoring over time. In addition to that, a spatial plot was used to

visualize the severity of the disease in different areas at periodic intervals (averaged) [16]. Color

coding has been used to indicate severity where red indicates the highest severity and green

indicates the lowest severity.

3.2.2 Sleep Health Assessment Overview

As shown in Figure 3.2, conventional methods of sleep health assessment fall under two broad

categories- subjective and objective assessment of sleep. Subjective assessment of sleep

deficiency using standard questionnaires is well investigated and is widely used in clinical

practice. Some of the more well-accepted and popular methods for subjective sleep quality

assessment are the Pittsburgh Sleep Quality Index (PSQI), the Epworth Sleepiness Scale (ESS),

and the Functional Outcome of Sleep Questionnaire (FOSQ). The PSQI is a multi-component

questionnaire that asks individuals to respond to an array of questions pertaining to their sleep

over the prior month [17]. The following 7 components are scored from 0 (indicating no

difficulty) to 3 (indicating severe difficulty): subjective sleep quality, sleep latency, sleep

duration, habitual sleep efficiency, sleep disturbances, use of sleeping medication, and daytime

dysfunction. Score values range from a low of 0 to a high of 21 (indicating severe difficulties in

all assessed areas), with values > 5 indicating poor sleep quality in general. FOSQ has 30

questions related to activity levels, vigilance, intimacy and relationships, general productivity,

and social outcomes [18]. The potential range of scores for each subscale is 1 – 4 with higher

44

scores indicating greater insomnia severity. Similarly, in ESS the subject assigns a score of 0-3

for 8 questions aimed

Fig. 3.2: Overview of subjective and objective methods for sleep health assessments

at assessing daytime sleepiness. A total score of 16-24 indicates excessive daytime sleepiness,

suggesting the need for medical attention [19]. The Karolinska Sleep Diary (KSD) is another

questionnaire that was developed to assess subjective sleep quality [20]. This diary contains

twelve items, of which most have a scale graded from five to one.

Subjective reports of sleep quality are important in the clinical setting and can help

determine whether further screening and/or treatment for a sleep complaint might be warranted

[21]. However, subjective methods are prone to high bias, require active user participation, and

need a longer period (2 weeks - 1 month) for fully evaluating sleep deficiency. Objective sleep

quality consists not only of the total duration of sleep, but also the architecture of sleep (amount

of the different sleep stages across the sleep episode), the amount of wake time during the sleep

episode, and the frequency and duration of awakenings across the night [22]. Prominent

quantitative metrics that are used for objective sleep assessment are the Sleep Quality/Efficiency

Index and the Sleep Score. Definitions and descriptions of the currently used and proposed

metric for quantitative sleep assessment is provided below:

45

The Sleep Quality/Efficiency Index (SQI) –Several quantitative metrics have been

developed to measure the quality of sleep from physiological sensor data. However, a standard

and well-established definition for the term ‘Sleep Quality’ has yet to be developed. Rather, this

term is typically used to refer to a score computed from a collection of quantitative sleep

measures; i.e., sleep duration, sleep onset time, degree of fragmentation, etc. [23].

The concept of a “Sleep Score” has been introduced mainly by commercial entities; i.e.,

Fitbit, Polar, Oura, Apple, etc. A sleep score is typically tracked by smartphone apps and is

based on data collected using a smart band or a smartwatch during sleep. Fitbit computes an

overall sleep score as a sum of individual scores, including sleep duration, sleep quality, and

restoration, to arrive at a total score of up to a value of 100. Sleep score ranges are: Excellent:

90-100, Good: 80-89, Fair: 60-79, Poor: Less than 60, with the majority of individuals having a

score between 72 and 83 [24]. A previous validation study showed that the performance of Fitbit

smart bands is promising in detecting sleep-wake states and sleep stage composition relative to

the gold standard polysomnogram [25]. The Oura sleep ring measures sleep using sensors that

capture the body signals including resting heart rate (RHR), heart rate variability (HRV), body

temperature, respiratory rate, and movement, to determine sleep patterns and compute the sleep

score [26]. Sleep score-based monitoring has been criticized due to a lack of consistency in

measurement and the impact of a sleep-related disease on sleep score is not well-investigated

[27-28]. An ongoing scientific study is currently employing a rigorous, multi-site, multi-modality

assessment of home sleep tracking technologies for diagnosing sleep disorders. [29].

Given the absence of strong supporting data, the authors have proposed a new metric—

the Sleep Deficiency Severity (SDS)—for improving pre-clinical early evaluation of sleep

deficiency that is based on a fusion of features from ECG, EEG, SpO2, and other wearable

sensors. Details of the metric are described in the following sections.

3.2.3 Dataset

The Sleep Health Heart Study (SHHS) is a dataset available from the National Sleep

Research Resource [30]. SHHS was implemented as a multi-center cohort study in two phases by

the US National Heart Lung & Blood Institute. Unattended home polysomnograms were

obtained for both the phases of SHHS by certified and trained technicians. The polysomnogram

data was saved in the European Data Format (EDF). Data processing and initial scoring were

46

accomplished using Compumedics software (Compumedics Ltd., Australia) as part of SHHS.

Two manual scorings were included to annotate the database with sleep duration, sleep

efficiency, arousal index, sleep stages, oxygen saturation level, etc. A dataset of 500 subjects

containing good quality data for both ECG and EEG is available from the dataset provider and is

recommended for use in a research study. In our study, for developing the regression models we

used this dataset of 500 subjects. The gender distribution of records in the dataset is as follows:

male- 231, female- 269. The age of the subjects ranges from 44 to 89 years old with a mean of 65

years old and a standard deviation of 10.41 years. The body mass index (BMI) of the subjects

ranges from 18 – 46 with a mean of 27.51 kilograms per square meter and a standard deviation

of 4.11 kilograms per square meter.

3.2.4 Mathematical Model for Baseline SDS Score

Guidelines for computing a composite sleep health score from polysomnographic

measures have been developed and reported in previous research studies [31-32]. In this study,

we developd a generalized mathematical model for computing the baseline SDS score. The

model is described in equation 3.1 below, where Zneg is the sleep attribute (normalized) that

increases sleep

⌊𝑆𝑙𝑒𝑒𝑝 𝐷𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦⌋ = {
1

𝑚
 ∑ 𝑍𝑛𝑒𝑔(𝑖) −

1

𝑛
∑ 𝑍𝑝𝑜𝑠(𝑗)

𝑛
𝑗=1

𝑚
𝑖=1 } 𝑥 100 (3.1)

Where 𝑍 =
𝑋 −𝑚𝑖𝑛(𝑋)

𝑚𝑎𝑥(𝑋)−𝑚𝑖𝑛 (𝑋)

deficiency (i.e., higher is responsible for more sleep deficiency), Zpos is the sleep attribute

(normalized) that reduces sleep deficiency (i.e., higher is better), m is the total number of

negative attributes, and n is the total number of positive attributes. The positive attributes

available from the SHHS dataset are as follows:

Sleep time- Duration of entire sleep.

Sleep efficiency - Percentage of time in bed that was spent sleeping, or the ratio of total

sleep time to total time in bed, expressed as a percentage.

Time deep sleep (%) - Percent time in sleep stages 3 and 4.

Time REM sleep (%) - Percent Time in rapid eye movement sleep (REM).

SpO2 (%) - Average oxygen saturation (SpO2) level in sleep.

47

The negative attribute available from SHHS are provided by 1 measure—

the Sleep Fragmentation Index (SFI), which is presented as the total number of arousals per hour

of sleep; i.e., ratio of the count of arousals to total sleep time in hours. and the Sleep Deficiency

Severity (SDS), wherein all of the attributes have been normalized on a scale of 0-1. The value

of each negative attribute is subtracted from 1 in order to achieve a consistent “higher is better”

rule. Then, the attribute values are summed up to develop a composite score. The composite

score is multiplied by 100 and divided by the total number of positive and negative attributes to

obtain the SDS in the range of 0-100. Statistical analyses were conducted to investigate the

relationship of baseline SDS values with age, gender, and BMI. The partial correlation of for

SDS (controlling for age and BMI) with HRV and EEG features was investigated, as well.

3.2.5 Machine-learning driven method for SDS estimation

We extracted features from the wearable sensor data, used Monte Carlo Feature Selection

for selecting the best features, and explored machine learning and deep learning methods to

develop a machine learning-based regression model, as described below:

Feature Extraction – HRV features were extracted from single channel ECG where R peaks

detection was carried out using Pan-Tompkins’s algorithm and RR intervals were processed

followings malik’s recommendation to rule out ectopic beats and outliers [33-34]. Similarly,

spectral features of EEG were extracted from single channel EEG. Please refer to pp.22-23 for

details of the feature extractions. Spectral features of EEG have been shown in Table 3.1

Table 3.1: Spectral Features Extracted from the EEG.

EEG Band Frequency (Hz) Features

Slow OSC 0.5 -1 Power- REM , NREM, Total

Delta 0.5 – 4 Power- REM , NREM, Total

Theta 4 – 8 Power- REM , NREM, Total

Alpha 8 - 13 Power- REM , NREM, Total

Sigma 12 – 14 Power- REM , NREM, Total

Beta 13 – 30 Power- REM , NREM, Total

Gamma 36 – 90 Power- REM , NREM, Total

48

Fig. 3.3 Method for feature extraction, feature selection, and regression for sleep deficiency

severity.

Monte Carlo Feature Selection and Inter-dependency Discovery- Feature selection was

performed primarily to compare the relative importance of the ECG and EEG-based features for

SDS estimation. Monte-Carlo Feature Selection (MCFS) and inter-dependency discovery was

used for ranking feature importance. In MCFS the relative importance of features is estimated by

building hundreds of trees for a randomly selected subset of features [35]. In a mathematic

notion, i subsets of m randomly selected features are constructed where m << n, with n being the

total number of features and for each subset, k trees are constructed and their performance is

assessed for classification/ regression. Finally, i x m trees are constructed and evaluated. The

procedure is illustrated in Figure 3.3. Weighted accuracy of a tree as defined by equation 3.2,

which is used as a metric to assess the classification or regression ability of the tree.

𝑊𝑎𝑐 =
1

𝑐
 ∑

𝑛𝑖𝑗

𝑛𝑖1+𝑛𝑖2+⋯..+𝑛𝑖𝑐

𝑐
𝑖=1

Where c = number of classes, i, j = 1,2, …, c; nij is the number of samples from class i classified

as class j , and ∑nij = n is the number of all samples.

Equation 3.2

The Relative Importance (RI) of feature gd denoted by RIgd is defined by equation 3.3.

𝑅𝐼𝑔𝑑 = ∑ 𝑊𝑎𝑐 𝑥
 𝑢𝑚.𝑘

𝑥=1 ∑ 𝐼𝐺 (𝑟𝑔𝑑(𝑥))𝑟𝑔𝑑(𝑥)
(

𝑛𝑜. 𝑖𝑛 𝑟𝑔𝑑(𝑥)

𝑛𝑜. 𝑖𝑛 𝑥
)

𝑣

Where Wac stands for the weighted accuracy for xth tree; 𝐼𝐺 (𝑟𝑔𝑑(𝑥)) stands for the Information

Gain for node 𝑟𝑔𝑑(𝑥); (no. in 𝑟𝑔𝑑(𝑥)) denotes the number of samples in the node 𝑟𝑔𝑑(𝑥); (no. in

49

x) denotes the number of samples in the root of the xth tree; and u and v are fixed positive reals.

Information Gain (IG) is measured by the Gini Index or Gain Ratio [36].

Equation 3.3

The ECG and EEG both have correlated features that introduce the problem of multi-

collinearity. To deal with this, the inter-dependency discovery was used to remove features with

strong pairwise interactions. The rmcfs package from R was implemented for feature ranking

using the Monte-Carlo Feature Selection and Interdependency Discovery (MCFS-ID) methods

[36]. The steps of preprocessing, feature extraction, feature selection, and regression were those

as previously shown in Figure 3.3.

Regression Model- For developing the regression model, we investigated the Bayesian

Regression method as well as Artificial Neural Network (ANN) approach. Bayesian inference

facilitates overcoming insufficient data or poorly distributed data as it allows one to input prior

values for the coefficients and the noise so that in the absence of data, the priors can take over. In

a Bayesian framework, the regression model is stated in a probabilistic manner where the

Bayesian sampling algorithm returns a probability distribution (known as the posterior of the

effect) that is compatible with the observed data instead of a point estimate. The posterior

distribution is obtained by the product of the prior distribution and the likelihood function. The

model for Bayesian Linear Regression is represented in equation 3.4.

𝑦 ~ 𝑁(𝑊𝑇𝑋, 𝜎2𝐼)

Where response data points y is sampled from a multivariate Gaussian distribution that has a

mean equal to the product of W coefficients and the predictors X and variance of σ2. I is the N X

N Identity matrix [37].

Equation 3.4.

In this work, we used the Markov Chain Monte Carlo Method (MCMC) sampling and weakly

informative prior for Bayesian regression. To verify convergence, the potential scale reduction

statistic R-hat was used [38].

 An Artificial Neural Network (ANN) is capable of approximating any linear or non-linear

relationship, including multi-dimensional regression mapping problems, quite well. However,

the ANN must have enough neurons in the hidden layers and the data distribution should be

consistent. During the training process, an ANN fits a function on a set of inputs to produce a set

of associated outputs. Once training is finished the network forms a generalization of the input-

50

output relationship and can be utilized to generate outputs for unseen inputs. The structure of

ANN has multiple layers with interconnected artificial neurons as the building blocks for each

layer. Each neuron has weights that are adjusted during the training process. Training stops when

any of these conditions occur: the maximum number of epochs (repetitions) is reached, the

maximum amount of time is exceeded, performance is minimized to the goal, or the performance

gradient falls below a minimum gradient. The ANN used in this study was a feed-forward type

that had 3 layers- input, output, and hidden layer. The number of neurons in each layer is input-

117, hidden- 10, output-1. The used activation functions are- relu for the hidden layer and

softmax for the output layer. Levenberg-Marquardt optimization with backpropagation was used

as the training algorithm [39]. The hyperparameters used for the ANN are as follows: max

epochs = 1000, min gradient = 1e-7, momentum (Mu) = 0.001, Mu decrease ratio = 0.1, Mu

increase ratio = 0.1. To facilitate proper training and evaluation the input data was randomly

divided into training (80%) and test (20%) sets. Root Mean Squared Error (RMSE) and R-

squared (R2) values were used for performance evaluation of both the Bayesian model and

ANN. Additionally, a Pareto smoothed importance sampling (PSIS) diagnostic plot was used for

the Bayesian model. Good Pareto k estimates (k < 0.5) in the PSIS diagnostic plot show that the

model fits the data. The version of PSIS used in this work corresponds to the algorithm presented

in Vehtari, Simpson, Gelman, Yao, and Gabry [40].

Assessment of Obstructive Sleep Apnea Impact- It is well established that Obstructive

Sleep Apnea (OSA) has a negative consequence on sleep and is a reason for sleep deficiency.

OSA induces behavioral sleep problems and bedtime resistance, which result in a significantly

shortened sleep duration [41]. Apnea-hypopnea Index (AHI) is used to quantify the degree of

OSA. We investigated the correlation of ESS, FOSQ, and SDS with AHI to examine which

measure better captures the impact of OSA on sleep deficiency.

3.3 RESULTS

The probability density plot of SDS was computed using equation 1, which has been shown

previously in Figure 3.4. The histogram of SDS follows a Gaussian distribution with a mean of

60 (N=500) and a standard deviation of 22. A boxplot comparison between the sleep deficiency

severities of males and females is shown in Figure 3.5. No significant (p-value>0.05) difference

was observed between the average SDS of males with that of females. SDS showed a moderate

51

(r=-0.35, p=0.01) correlation with age; i.e., higher the age, the higher the sleep deficiency. The

scatterplot of age and SDS with a trend line is visualized in Figure 3.6. Additionally, SDS

showed a weak (r=-0.21, p=0.01) positive correlation with Body Mass Index (BMI). Boxplots of

SDS for normal and overweight categories are shown in Figure 3.7. The overweight category had

Fig. 3.4 Probability density plot for SDS

distribution

Fig. 3.5 Comparison of SDS between males

and females

Fig. 3.6 Correlation of SDS with Age Fig. 3.7 SDS for BMI Categories

a higher SDS. The partial correlation (controlling for age and BMI) of HRV and EEG features

with baseline SDS, computed using equation 1 indicated a significant correlation for several

features. A co-variate analysis was performed to investigate the relationship of SDS with these

features when controlled for age and BMI. The best 5 features from each sensor showing a

significant correlation with SDS are listed in Table 3.2.

52

Table 3.2: Partial Correlation of SDS with HRV and EEG features.

HRV Features EEG Features

Feature r p-value Feature r p-value

AVNN 0.09 0.04 slowosc_nrem 0.39 0.01

pNN10 0.08 0.04 delta_nrem 0.39 0.01

HR -0.11 0.02 slowosc_sleep 0.33 0.01

VLF -0.11 0.02 delta_sleep 0.29 0.01

LF/HF -0.13 0.01 theta_rem 0.25 0.01

* Variables in the table are described in Table 2.2-2.4

Although both the HRV and EEG features revealed significant partial correlations with

SDS, the correlation for the EEG features was much stronger than that for the HRV features,

indicating that the EEG features had relatively higher importance than the HRV features in

estimating SDS. Hence, in developing the regression method, only the EEG and anthropometric

measures were used.

Figure 3.8: Relative importance of features.

The MCFS results indicate that out of 150 features 117 were important based on the cut-off value

of feature relative importance (RI) as shown in Figure 3.8. The line with the red/gray dots

provides the RI values, the vertical bar plot displays the difference δ between consecutive RI

values. Informative features are separated from non-informative ones by the cutoff value and are

presented in the plot as red and gray dots, respectively. The convergence of the MCFS-ID

53

algorithm is shown in Figure 3.9. The distance function (red line) shows the difference between

two consecutive rankings, where zero means no changes between two rankings (see the left y-

axis). The common part (colored in blue) indicates the fraction of features that overlap for two

different rankings (see the right y-axis). The ranking stabilizes after some iterations: the distance

tends toward zero and the common part tends toward 1. Beta1 shows the slope of the tangent of a

smoothed distance function. If beta1 tends to 0 (the right y-axis) then the distance is displayed as

a flat line. The top-ranked 20 features based on the normalized relative importance by MCFS-ID

are shown in Figure 3.10.

Figure 3.9: Convergence of Monte-Carlo feature selection.

Figure 3.10: Top 20 features by MCFS-ID algorithm.

54

Figure 3.11: (a) posterior predictive check on MCMC sampler; (b) density plot of

Bayesian model estimated SDS including the point estimate.

The distribution of posterior R2 for estimating SDS using Bayesian regression indicates

an approximately normally distributed pattern. In MCMC diagnostics R-hat values for all

parameters were less than 1.1. A posterior predictive check on the MCMC sampler is shown in

Figure 3.11(a). The dark blue line shows the observed data, while the light blue lines are

simulations from the posterior predictive distribution. The patterns for both distributions agree,

with some deviations for the peak. Figure 3.11(b) shows the probability density plot for the

estimated SDS using Bayesian regression, where the solid line indicates the point estimate from

the Ordinary least squares method. The plot–of–fit for the Bayesian regression model is shown in

Figure 3.12, where the R-squared value = 0.60 and RMSE = 5.63. The PSIS diagnostics plot for

the Bayesian model is shown in Figure 3.13, which reveals that only a few points are outside of

the acceptable threshold. The estimated shape parameter k for each observation is used as a

measure of the observation's influence on the posterior distribution of the model.

(a) (b)

55

 Figure 3.12: Plot–of–fit for the Bayesian regression model.

 Figure 3.13: PSIS diagnostic plot and regression plot for Bayesian method.

For SDS estimation, ANN achieved a performance of RMSE of 4.65 and R-squared value

of 0.86 in the training set, and an RMSE of 5.47 and R-squared value of 0.67 in the test set. The

fit of the regression plot for the ANN model is shown in Figure 3.14. The dashed line indicates

the ideal trend line and the solid line indicates the fitted trend line for the actual versus predicted

values. The histogram of prediction error showed symmetrically skewed and almost normally

distributed patterns with a higher frequency in the error bin ± 2. The residual plot for the

regression analysis shows a random scattering around the zero lines.

56

Figure 3.14: Performance of the Regression model for the train, validation, and test sets.

+

Figure 3.15: Correlations of (a) ESS with AHI, (b) FOSQ with AHI, and (c) SDS with AHI.

Figure 3.15(a) shows the impact of OSA as captured by the Epworth Sleepiness Scale (ESS). As

shown, the ESS did not reveal an informative trend and failed (r < 0.1) to capture the impact of

severe OSA on the sleep deficiency measure of OSA patients. Similarly, Figure 3.15(b) shows

the correlation of the Functional Outcome of Sleep Questionnaire (FOSQ) with the apnea-

hypopnea index. The trend in this case also failed (r < 0.19) to capture the impact of OSA

severity on sleep deficiency. Figure 3.15(c) shows that SDS, as computed using the proposed

method, shows a modest positive correlation (r= 0.31) with AHI. As OSA severity increased,

SDS also proportionately increased.

(a

)

(b

)

(c)

57

3.4. DISCUSSION

While quantification and longitudinal monitoring of sleep deficiency are beneficial for early

diagnosis and continuous monitoring of the presence of a sleep disorder may facilitate corrective

habitual actions and practices that adversely affect good sleep, it is noteworthy that sleep

deficiency was linked not only with the physiological disorder but also with emotional stress and

other factors. In order to reduce the variability in everyday measurement, a moving average over

a week or longer period, as well as sleep pattern visualization, may provide better insights when

added to the SDS score. Signal quality and data reliability also impact the measurements and,

hence, a data reliability metric may be helpful for enhancing the usability of the method.

Moreover, it is noteworthy that we could not directly compare the utility of SDS with that of the

sleep score as the sleep score formulae used by commercial entities are not publicly available to

the best of our knowledge.

5. CONCLUSIONS

In this study, we analyzed SDS and its relationship with HRV and EEG-based features. Feature

ranking, using MCFS-ID, was implemented for identifying the most informative features for

SDS estimation. Finally, we developed a regression method using ANN for SDS score

estimation from spectral features of a single-channel EEG. The findings from this study

increased the interpretability of SDS and helps to pave the way for using SDS as a potential

indicator for automated sleep disorder checks using wearables. In future studies, we are aiming a

large scale deployment of the model for longitudinal monitoring of SDS with wearables.

58

REFERENCES

1. Mukherjee, Sutapa, Sanjay R. Patel, Stefanos N. Kales, Najib T. Ayas, Kingman P.

Strohl, David Gozal, and Atul Malhotra. "An official American Thoracic Society

statement: the importance of healthy sleep. Recommendations and future priorities.",

American journal of respiratory and critical care medicine, vol.191, no. 12, pp: 1450-

1458, 2015.

2. Dai, Cimin, Ying Zhang, Xiaoping Cai, Ziyi Peng, Liwei Zhang, Yongcong Shao, and

Cuifeng Wang. "Effects of sleep deprivation on working memory: change in functional

connectivity between the dorsal attention, default mode, and fronto-parietal networks."

Frontiers in Human Neuroscience 14 (2020).

3. Alhola, Paula, and Päivi Polo-Kantola. “Sleep deprivation: Impact on cognitive

performance.” Neuropsychiatric disease and treatment vol. 3,5 (2007): 553-67.

4. Spiegel, Karine, Esra Tasali, Rachel Leproult, and Eve Van Cauter. "Effects of poor and

short sleep on glucose metabolism and obesity risk.", Nature Reviews Endocrinology,

vol. 5, no. 5, pp: 253, 2009.

5. Sharma, Monika, J. P. S. Sawhney, and Samhita Panda. "Sleep quality and duration–

Potentially modifiable risk factors for Coronary Artery Disease?.", indian heart journal,

vol. 66, no. 6, pp.: 565-568, 2014.

6. Perez-Pozuelo, I., Zhai, B., Palotti, J. et al. The future of sleep health: a data-driven

revolution in sleep science and medicine. npj Digit. Med. 3, 42 (2020).

https://doi.org/10.1038/s41746-020-0244-4.

7. C. Kuo, Y. Liu, D. Chang, C. Young, F. Shaw and S. Liang, "Development and

Evaluation of a Wearable Device for Sleep Quality Assessment," in IEEE Transactions

on Biomedical Engineering, vol. 64, no. 7, pp. 1547-1557, July 2017.

8. F. Mendonça, S. S. Mostafa, F. Morgado-Dias and A. G. Ravelo-García, "Sleep Quality

Estimation by Cardiopulmonary Coupling Analysis," in IEEE Transactions on Neural

Systems and Rehabilitation Engineering, vol. 26, no. 12, pp. 2233-2239, Dec. 2018, doi:

10.1109/TNSRE.2018.2881361.

9. I. Azimi et al., "Personalized Maternal Sleep Quality Assessment: An Objective IoT-

based Longitudinal Study," in IEEE Access, vol. 7, pp. 93433-93447, 2019, doi:

10.1109/ACCESS.2019.2927781.

59

10. Bsoul, Majdi, Hlaing Minn, Mehrdad Nourani, Gopal Gupta, and Lakshman Tamil.

"Real-time sleep quality assessment using single-lead ECG and multi-stage SVM

classifier." In 2010 Annual International Conference of the IEEE Engineering in

Medicine and Biology, pp. 1178-1181. IEEE, 2010.

11. Sleep Deprivation and Deficiency, https://www.nhlbi.nih.gov/health-topics/sleep-

deprivation-and-deficiency, National Institute of Health, US Dept. of Health and Human

Services, retrieved on July 4, 2021.

12. M. J. Rahman and B. I. Morshed, "SCC Health: A Framework for Online Estimation of

Disease Severity for the Smart and Connected Community," 2019 IEEE International

Conference on Electro Information Technology (EIT), 2019, pp. 373-378, doi:

10.1109/EIT.2019.8834189.

13. Zaman, Md Sabbir, and Bashir I. Morshed. "A low-power portable scanner for body-

worn Wireless Resistive Analog Passive (WRAP) sensors for mHealth

applications." Measurement 177 (2021): 109214.

14. M. J. Rahman, B. I. Morshed and B. Harmon, "A Field Study to Capture Events of

Interest (EoI) from Living Labs Using Wearables for Spatiotemporal Monitoring

Towards a Framework of Smart Health (sHealth)," 2020 42nd Annual International

Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 2020, pp.

5943-5947, doi: 10.1109/EMBC44109.2020.9175771.

15. Morshed, Bashir I., Brook Harmon, Md Sabbir Zaman, Md Juber Rahman, Sharmin

Afroz, and Mamunur Rahman. "Inkjet printed fully-passive body-worn wireless sensors

for smart and connected community (SCC)." Journal of Low Power Electronics and

Applications 7, no. 4 (2017): 26.

16. Afroz, Sharmin, and Bashir I. Morshed. "Web Visualization of Temporal and Spatial

Health Data from Smartphone App in Smart and Connected Community (SCC)."

In 2018 IEEE International Smart Cities Conference (ISC2), pp. 1-6. IEEE, 2018.

17. Buysse, Daniel J., Charles F. Reynolds III, Timothy H. Monk, Susan R. Berman, and

David J. Kupfer. "The Pittsburgh Sleep Quality Index: a new instrument for psychiatric

practice and research." Psychiatry research, vol. 28, no. 2, pp: 193-213, 1989.

https://www.nhlbi.nih.gov/health-topics/sleep-deprivation-and-deficiency
https://www.nhlbi.nih.gov/health-topics/sleep-deprivation-and-deficiency

60

18. Weaver, Terri E., Andréa M. Laizner, Lois K. Evans, Greg Maislin, Deepak K. Chugh,

Kerry Lyon, Philip L. Smith et al."An instrument to measure functional status outcomes

for disorders of excessive sleepiness." Sleep, vol. 20, no. 10, pp: 835-843, 1997.

19. Johns, Murray W. "A new method for measuring daytime sleepiness: the Epworth

sleepiness scale." Sleep, vol. 14, no. 6, pp: 540-545, 1991.

20. Åkerstedt, Torbjörn, K. E. N. Hume, David Minors, and J. I. M. Waterhouse. "The

subjective meaning of good sleep, an intraindividual approach using the Karolinska

Sleep Diary." Perceptual and motor skills 79, no. 1 (1994): 287-296.

21. O'donnell, Deirdre, Edward J. Silva, Mirjam Münch, Joseph M. Ronda, Wei Wang, and

Jeanne F. Duffy. "Comparison of subjective and objective assessments of sleep in

healthy older subjects without sleep complaints." Journal of sleep research 18, no. 2

(2009): 254-263.

22. Zhang, Lin, and Zhong-Xin Zhao. "Objective and subjective measures for sleep

disorders." Neuroscience Bulletin 23, no. 4 (2007): 236-240. A. D. Krystal and J. D.

Edinger, "Measuring sleep quality", Sleep Med., vol. 9, pp. S10-S17, Sep. 2008.

23. Sun, Shuyu, Xianchao Zhao, Jiafeng Ren, Jinxiang Cheng, Junying Zhou, and Changjun

Su. "Characteristics of objective sleep and its related risk factors among Parkinson's

disease patients with and without restless legs syndrome." Frontiers in Neurology 12

(2021).

24. What's sleep score in the Fitbit app?

https://help.fitbit.com/articles/en_US/Help_article/2439.htm. Retrieved on June 25,

2021.

25. de Zambotti, Massimiliano, et al. "A validation study of Fitbit Charge 2™ compared

with polysomnography in adults." Chronobiology international 35.4 (2018): 465-476.

26. How Oura Measures Your Sleep, Retrieved on June 25, 2021 from

https://ouraring.com/blog/sleep-score/

27. That Sleep Tracker Could Make Your Insomnia Worse, New York Times. Retrieved on

June 25, 2021 from https://www.nytimes.com/2019/06/13/health/sleep-tracker-insomnia-

orthosomnia.html. A version of this article appears in print on June 17, 2019, Section B,

Page 3 of the New York edition of with the headline: Sleep Trackers Could Make Your

Insomnia Worse

https://help.fitbit.com/articles/en_US/Help_article/2439.htm
https://www.nytimes.com/2019/06/13/health/sleep-tracker-insomnia-orthosomnia.html
https://www.nytimes.com/2019/06/13/health/sleep-tracker-insomnia-orthosomnia.html

61

28. Liang, Zilu, and Mario Alberto Chapa Martell. "Validity of consumer activity wristbands

and wearable EEG for measuring overall sleep parameters and sleep structure in free-

living conditions." Journal of Healthcare Informatics Research 2.1 (2018): 152-178.

29. Toedebusch, Cristina D et al. “Multi-Modal Home Sleep Monitoring in Older Adults.”

Journal of visualized experiments : JoVE ,143 10.3791/58823. 26 Jan. 2019,

doi:10.3791/58823

30. Quan, Stuart F., Barbara V. Howard, Conrad Iber, James P. Kiley, F. Javier Nieto,

George T. O'Connor, David M. Rapoport et al."The sleep heart health study: design,

rationale, and methods." Sleep 20, no. 12 (1997): 1077-1085.

31. Rosipal, Roman, Achim Lewandowski, and Georg Dorffner. "In search of objective

components for sleep quality indexing in normal sleep." Biological psychology 94, no. 1

(2013): 210-220.

32. Landry, Glenn J et al. “Measuring sleep quality in older adults: a comparison using

subjective and objective methods.” Frontiers in aging neuroscience vol. 7 166. 7 Sep.

2015, doi:10.3389/fnagi.2015.00166

33. Malik, M., Farrell, T., Cripps, T. and Camm, A.J.,"Heart rate variability in relation to

prognosis after myocardial infarction: selection of optimal processing techniques.”

European heart journal, vol. 10 , no.12, pp.1060-1074, 1989.

34. Goldberger, Ary L., Luis AN Amaral, Leon Glass, Jeffrey M. Hausdorff, Plamen Ch

Ivanov, Roger G. Mark, Joseph E. Mietus, George B. Moody, Chung-Kang Peng, and H.

Eugene Stanley. "PhysioBank, PhysioToolkit, and PhysioNet: components of a new

research resource for complex physiologic signals." circulation 101, no. 23 (2000): e215-

e220.

35. Dramiński, Michał, Alvaro Rada-Iglesias, Stefan Enroth, Claes Wadelius, Jacek

Koronacki, and Jan Komorowski. "Monte Carlo feature selection for supervised

classification." Bioinformatics 24, no. 1, pp.: 110-117, 2008.

36. Dramiński, Michał, and Jacek Koronacki. "rmcfs: an R package for Monte Carlo feature

selection and interdependency discovery." Journal of Statistical Software 85, no. 1, pp.:

1-28, 2008.

62

37. Bishop, Christopher M., and Michael E. Tipping. "Bayesian regression and

classification." Nato Science Series sub Series III Computer And Systems Sciences 190

(2003): 267-288.

38. Goodrich B, Gabry J, Ali I, Brilleman S (2020). “rstanarm: Bayesian applied regression

modeling via Stan.” R package version 2.21.1, https://mc-stan.org/rstanarm.

39. Marquardt, Donald W. "An algorithm for least-squares estimation of nonlinear

parameters." Journal of the society for Industrial and Applied Mathematics 11, no. 2, pp.:

431-441, 1963.

40. Vehtari, Aki, Daniel Simpson, Andrew Gelman, Yuling Yao, and Jonah Gabry. "Pareto

smoothed importance sampling." arXiv preprint arXiv:1507.02646, 2015.

41. Owens J, Opipari L, Nobile C, Spirito A. Sleep and daytime behavior in children with

obstructive sleep apnea and behavioral sleep disorders. Pediatrics. 1998

Nov;102(5):1178-84. doi: 10.1542/peds.102.5.1178. PMID: 9794951.

https://mc-stan.org/rstanarm

63

Chapter 4

A PILOT STUDY TOWARDS A SMART-HEALTH FRAMEWORK TO COLLECT

AND ANALYZE BIOMARKERS WITH LOW-COST AND FLEXIBLE

WEARABLES AT A SMART AND CONNECTED COMMUNITY

4.1 INTRODUCTION

Delayed diagnosis of disease often necessitates complicated treatment and leads to a

lessened quality of life for the patient, thereby greatly increasing the healthcare burden as well as

associated costs. One of the prominent ways to improve healthcare delivery and treatment

outcomes is to detect a disease at the earliest stage possible. Modern technology has contributed

substantially to the advancement of healthcare in a clinical setting with the introduction of

precision diagnostic tools, minimally invasive surgical procedures, remote consultation,

technology-based therapeutic tools, point of care delivery, etc. However, early detection of

disease in a pre-clinical setting at a living lab environment is yet to be realized. Preliminary

estimation of disease severity provides a much valuable insight regarding the stage of the disease

and can serve to motivate a patient to seek medical attention immediately. For many diseases, the

introduction of pathological conditions is reflected in the vital signs; i.e., heart rate, respiration

rate, oxygen saturation level, temperature, and blood pressure [1]. In addition, biosignals, such as

the Electrocardiogram (ECG) Electroencephalography (EEG), reveal a great amount of

information that helps in early diagnosis. Although some of these sensing modalities might be

present in smartphones, they are not usable for continuous passive monitoring. Progress in the

field of wearable body sensor networks (BSN), which typically involves collection of multiple

tiny wireless sensors, has made the monitoring of vital signs and capturing of biopotentials

activity more reliable and user friendly.

We define “Smart Health (sHealth)” as an approach that aims to deliver improved

healthcare via users’ smart devices, wearables, and Internet of Things (IoT) centric solutions that

incorporates embedded artificial intelligence, such as edge computing machine learning models,

that not only benefit and inform individual users, but also collects spatiotemporal community-

wide data for collective and social well-being and informed policy making [2]. It is an emerging

paradigm for efficient processing, sharing, and visualization of healthcare data, which is coming

from different IoT devices. sHealth can be perceived as an upgraded and extended version of

64

mHealth. mHealth has been defined as “medical and public health practice supported by mobile

devices, such as mobile phones, patient monitoring devices, personal digital assistants, and other

wireless devices” [3]. sHealth aims to incorporate the smart home and smart city infrastructure,

related IoT devices, and other wearables for disease diagnosis, monitoring and healthcare

delivery [4]. Although mHealth has already brought about revolutionary improvements and

benefits for ubiquitous and pervasive healthcare delivery, it has focused mainly on personal

health monitoring, whereas sHealth acknowledges the role of home, family, and community as

important contributors to individual health and wellbeing, and aims to connect data, people and

systems to enable long-term care rather than provide sporadic treatment to acute conditions [5].

S. Rani et al. investigated the use of Smart Health for controlling the chikungunya virus, a

mosquito instinctive disease that spreads hurriedly in various parts of the country [6]. They

presented an IoT-enabled model that addressed data collection from the sensors, objects, and

people and gathered all of the data at the cloud to enable healthcare professionals to take

preventive and control measures. R. K. Pathinarupothi, et al. reported an IoT-based smart edge

system for remote health monitoring, in which wearable vital sensors transmitted data into the

IoT smart edge [7]. The IoT smart edge then employed a risk-stratified protocol to trigger rapid

push of alerts and personal health motifs to the physicians, and also facilitated the pull of

detailed data-on-demand through the cloud. W. N. Ismail et al. proposed a convolutional neural

network-based health model for regular health factors analysis in the Internet-of-Medical Things

environment [8]. Their method uses the health conditions and lifestyle patterns related to chronic

diseases collected through IoT-devices.

While cloud computing has its benefits with increased computational capacity, storage

facility, and high reliability, thus making it suitable for unstructured big data landscape, it also

has drawbacks and limitations as data transmission to the cloud imposes a huge burden on

network bandwidth and the addition of millions of IoT devices in the near future may overload

the computational capacity of cloud infrastructures [9]. Fog computing, where computation tasks

are performed close to the user and terminal IoT devices, offers an alternative to cloud

computing [10-11]. While Fog-computing helps to reduce the network bandwidth requirement

and computational burden of the cloud, thus enabling a faster response, it does have

maintenance, privacy, and security issues, as raw data goes out of the personal devices. Edge-

computing with on-device data processing and machine learning offers a promising solution to

65

reduce privacy and security related issues, enable real-time disease monitoring and detection, and

greatly reduce network dependency [12-13]. Hence, edge computing holds tremendous potential

for the Smart and Connected Health. However, edge computing is challenging because edge

devices are resource constrained, as they are equipped with low processing capacity, small

battery power, and limited storage [14]. Artificial Intelligence (AI) based models integrated into

an edge application for automated disease detection needs to be quantized which often leads to

poor performance. Minimizing the tradeoff between runtime and accuracy is challenging. A

hybrid edge-cloud model may offer a better solution combining both the advantages of edge

computing and cloud computing [15]. Smartphones with increased processing speed, storage

capacity, and integrated sensors offer tremendous promise as an edge device in physiological

sensing, monitoring, and the development of a Smart and Connected Community (SCC).

However, the current sensor modalities of smartphones are very limited when attempting to

record clinically relevant physiological information. Smart bands, smartwatches, and Inkjet-

Printed (IJP) sensors are becoming increasingly popular day by day for physiological sensing.

Although the utility of smartwatches or smart bands is well investigated for physical activity and

heart rate monitoring, reliable extraction and monitoring of more informative biomarkers (e.g.,

heart rate variability (HRV and core-body temperature) is yet to be realized [16-19].

 Production of lightweight, unobtrusive, low-cost, low-power, versatile and stretchable

user-friendly sensors and documentation of their feasibility for pervasive sensing is a priority.

Inkjet printing, which combines chemistry and technology for advanced manufacturing, is rising

at the forefront of biosensor fabrication technologies [20]. However, when moving from

theoretical understanding to realistic implementation, many technical aspects have to be

considered. In this yearlong field study, we collected the nocturnal Instantaneous Heart Rate

(IHR) signal from participants using wrist-worn commercial smart bands and extracted HRV

features. In addition, we measured core body temperature using our custom-designed flexible IJP

temperature sensor and SpO2 with a finger pulse oximeter. Core body temperature, along with

user-reported symptoms, have been used successfully for automated spatiotemporal monitoring

of flu symptoms severity. The entire study was conducted in a living lab environment where

participants were busy with daily life activities, which gives this study an edge over those

conducted in more controlled and artificial settings.

66

The main focus of this study was to evaluate the feasibility of using IJP sensors for

various biomedical applications, including development of design protocols, wireless data

transfer, on-device data processing, assessment of user interaction, etc. for smart and connected

communities. Additional potential contributions of this study are summarized below:

i) Analysis of the reliability of the time-domain and frequency-domain HRV features

extracted from the IHR signal.

ii) In-depth analysis of sleep HRV trends in healthy subjects providing novel insights.

iii) Preparation of a multi-modal scheme for on-device data processing and inference and

analysis of its impact on system performance.

iv) Rank flu symptoms and elaborate on the concept of connected health using spatiotemporal

visualization of EoI.

v) Prepare the resulting dataset, which contains novel aspects, in a way that it can be publicly

available to interested parties to further research initiatives and advances.

vi) Overall, our intent is to better understand the prospects and challenges related to real-

world implementation of sHealth and outline prospective solutions.

4.2 SYSTEM DESIGN

4.2.1 SCC Health Framework

We aimed to develop an end to end solution for sHealth. The system architecture of our

developed SCC Health framework is shown in Figure 4.1 below. The main components in the

framework are body-worn flexible IJP sensors (passive and battery-less), a scanner (reader

Figure 4.1: System architecture for the proposed SCC-Health framework.

67

for the passive sensors) on a printed circuit board, commercial wearables, a custom smartphone

app (SCC-Health app), and a custom web server (SSC-Health server). For physiological data

collection, we utilized both IJP sensors and commercial wearables, such as a smart wristband

(Mi Band 2, Xiaomi) and a fingertip pulse oximeter (CMS50E, Crucial Medical Systems), as

applicable. The IJP sensors are zero-power, analog, wireless, and fully passive. Data collected in

the IJP sensors are pre-processed and digitized by the custom-made scanner [21]. Data from the

scanner is transmitted to the smartphone via Bluetooth. Data reliability checks, feature

extraction, and classification/regression using a pre-trained machine learning model are

performed in the smartphone for disease detection and severity assessment. Computed severity

of the disease is then visualized in the smartphone as well as shared with the webserver using a

Wi-Fi/ cellular network for observing temporal and spatial distribution of the diseases.

4.2.2 Inkjet-Printed Sensors

The WRAP temperature sensor layout, shown in Figure 4.2(a), has been generated in

Scalable Vector Graphics (SVG) file format using Inkscape, a free and open-source vector

graphics editor. The layouts were exported to a PNG format with a resolution of 1693 dpi. The

length of the designed sensors is 13 cm; although the length can be customized per need by

pushing or drawing the NTC transducer away or closer. The IJP silver traces have a thickness in

the range of 1-2 µm. It is possible to manipulate the trace thickness by changing the drop length

and drop spacing of the inkjet printing. Reduced drop size results in thinner strains and vice

versa. The entire circuit requires 1 discrete component of 3-pins, 7 discrete components of 2-

pins, and 1 leaping wire. The components are a Qs-NPN Transistor (MMBTH10), D1, D2–

Diodes (CDBF0130L), NTC–Negative Temperature Coefficient Transducer

(NCP21XV103J03RA,10 kΩ), C1-, C2-Capacitors (0.47 µF), a CB-Capacitor (0.1 µF), and a Cs-

Capacitor (0.22 µF). The capacitor-diode pairs develop a 2-stage voltage doubler. When voltage

is applied across the RC circuit formed by NTC and CB, the NPN transistor Qs is turned on after

a time delay and loads the inductive coil Ls with load impedance Cs and the emitter-collector

resistance Qs. This loading effect can be detected at the scanner as a signal transition and the

corresponding temperature can be calibrated based on the signal characteristics [2].

68

Figure 4.2: IJP WRAP Sensor (a) design, (b) microscopic view of printed sensor, (c) IJP sensor

placed on the arm, and (d) flexibility of the sensor.

A Dimatix Material Deposition Printer (DMP-2831, Fujifilm, Dimatix Inc., NH) was

used for manufacturing the designed sensor. MEMS-based nozzles enable the printer to achieve a

high-resolution track fabrication (up to 20 µm) and precise control over deposition height. The

printer ink was prepared using a combination of 25% Silver Ink (Ag-B25) (Metalon JS-B25HV,

Novacentrix, Austin, TX), and Polypyrrole (PPy) (Sigma Aldrich, St Louis, MO) in a ratio of 1:1

and mixed well with a vortex mixer. The first step of the manufacturing technique was to print

the silver traces on the polyimide (PI) tape (1 mil, Master Tape) substrate. This printing was

performed with 10pL cartridges from Dimatix using all 16 nozzles., with resulting Ag/PPy traces

on PI substrate being thermally cured at 250º C [22]. Discrete surface mount devices were then

electronically attached to the printed traces using low-temperature curable silver epoxy (8331S,

MG Chemicals, Surrey, BC, Canada) with 1:1 of Part A and Part B. A microscopic view of the

manufactured sensor is shown in Figure 4.2 (b). Figures 4.2(c) and 4.2(d) show the high

flexibility of the sensor.

4.2.3 Smartphone Application

The smartphone application SCC Health was developed using an android studio

integrated development environment (IDE). The build tool version of android was 25.0.2 and

minSdkVersion was 19. As shown in Figure 4.3, the main modules of the app are the signal

(a)

(b) (c) (d)

69

processing module, questionnaire module, AI module, visualization module, a storage module,

and networking module. The networking module enables the user to pair and connect with

Bluetooth/ Bluetooth Low Energy(BLE) devices. It also has a Wi-Fi module to transfer data to

the Web Server by means HyperText Transfer Protocol (HTTP) POST method. The signal

processing module performs byte catenation, implements a moving average filter, extracts

features, and performs data quality checks. The AI module loads the pre-trained predictive

models from the asset directory and generates a prediction result based on the extracted features.

It also has a mathematical model to map the EoI to a scale of 0-1. The visualization module uses

GraphView (free library for android) to visualize the raw signal, temporal trends in EoI, etc. It

also visualizes the computed EoI on a gradient scale. The electronic questionnaire module is

used to collect user reported disease-related symptoms.

Figure 4.3: Component diagram of SCC Health application.

Figure 4.4: SCC Health application UX flow diagram.

70

The flow diagram for the SCC Health application is shown in Figure 4.4. The admin has

a default username and password to login, but the user needs to acquire a personalized username

and password provided by the admin. Before assigning a username and password, the admin

records user information, including an ID and address by creating a profile for the user. The

same app can be used to create profiles for multiple users and all user profiles are saved in an

SQLite database. This is particularly helpful if all the members in a household do not own a

personal device but would like to use the app. When user logs in with the correct username and

password, the app greets him/her, and allows the user to proceed to the main menu where any of

the three buttons may be chosen: About, Web Server, or Diagnostic. The About activity

describes the details of the project. Selecting the Web Server activity allows the user to visit the

SCC Health website. The Diagnostics activity enables access to the disease severity detection

process, where the user may choose any one of the four diseases or select the "one-stop service"

to test all of the diseases at once. Before selecting the aforementioned options, the user first

needs to connect to the scanner via Bluetooth. For that, the user needs to click "Connect canner",

which then provides a list of available Bluetooth devices. The user selects the scanner from this

list. A status bar, located above the connect scanner button, indicates whether the app is

connected to a scanner or not. After the connection is established, a list of five sensors appears,

from which the user selects the one desired for collecting data. Upon clicking the "Collect data''

button, the system starts collecting data from the sensor via the connected scanner. Prior to data

collection, a handshaking protocol between the app and the scanner is executed where

information about the type of disease, type of sensor, and duration of the scan is confirmed. Once

the handshaking is successfully completed, the scanner powers up the WRAP sensor and starts

collecting sensor data. The app displays a progress bar during data collection, and when data

collection is completed for the sensor chosen, the app prompts the user to select the next sensor

and collect data again. When the data have been collected from all of the sensors, the app

prompts the user to select a severity-ranking algorithm, by clicking on "Compute severity". A

data quality check is performed at this stage, mainly by confirming that the statistical features

have values in the specified range. After performing the severity calculation, the app will show

the sensor data values and the degree of severity. At this stage, the user has the option to save the

test results and also to share the result with the SCC Health webserver. The app functionality has

71

been tested thus far on various smartphones, including the Samsung Avant, Samsung Galaxy S6,

and Samsung-SM-G90.

4.2.4 Web Server

Smartphone computed EoI’s are dispatched to a cloud-hosted Web Server into JavaScript

Object Notation (JSON) format. The front-end of the website was developed using HTML, CSS,

and JavaScript. PHP was used for developing the backend. The HTTP POST request received at

the server includes the participant’s hash Id, region code, EoI, sickness type, date time, and

algorithm type. The region codes are used instead of proper addresses of the users to ensure

privacy. The smartphone app has the mechanism to convert the participant’s domestic address

into a region code during the time of entry. The region codes are mapped with reasonably large

geographical locations. MySQL has been used for developing the database for the SCC Health

server. This database has two tables: participants’ facts and EoI statistics for four diseases—

Arrhythmia, Chronic Obstructive Pulmonary Disease, Flu, and Sleep Apnea. In the backend,

JSON data is encoded with PHP and inserted into the participants’ table of the database. If two

participants’ ship statistics at the identical time, the server obeys the rule of FIFO (First-In-First-

Out) and inserts the data that has arrived first, while retaining the remaining data in a queue. To

enforce access control to SCC Health records three types of login credentials are utilized: 1)

Admin: Admin login has full access to all data and different types of facts management. Admin

has the additional capability to create login credentials for the participants. Admin can also add a

downloadable Dalvik Executable (dex) file to be used for disorder severity estimation. 2) User:

User login has the privilege to visualize the participants’ statistics utilizing one spatial plot and

two temporal plots. Login credentials are created by the admin for the recruited subjects only. 3)

Guests: Guests have privileges equal to that of a user, with one exception. Guests can only

observe the spatial and temporal plots with mock data. These mock facts are arbitrarily entered to

test the functionality of the web visualization and are not collected from participants. No login

credentials are required for guest login, so that anyone can experience the spatiotemporal

visualization through this login [23].

4.3 METHODOLOGY

4.3.1 Data Collection

The Institutional Review Board (IRB) at the University of Memphis granted IRB

approval for this study (IRB# PRO-FY2017-474). In collaboration with community partners,

72

including a district of the United Methodist Church in Memphis, TN, USA, 9 participants were

recruited for the study. Recruited participants were of different age and gender groups, with

everyone being over 18 years old. Participants were encouraged to attend 2 sessions of data

collection, where each session was 1-month long. The participants used a supplied senor suite for

data collection during the 1-month session. The sensor suite details are as below:

i) android smartphone - 1

ii) IJP temperature sensor - 1

iii) Smart wristband - 1

iv) Finger pulse oximeter - 1

v) Scanner for IJP sensor - 1

Each participant attended a mandatory training session at the beginning of the session where the

usage policy of the sensor suite was described and the entire testing procedure was demonstrated.

Consultation was provided by a public health professional associated with the project when

necessary. The protocol for data collection was vetted with physicians and clinical experts, with

the measures collected listed below:

Step 1: Core body temperature (from armpit) using the IJP temperature sensor.

Step 2: SpO2 using a finger pulse oximetry device immediately before sleep.

Step 3: Instantaneous heart rate using the wristband and the custom smartphone app.

Step 4: Continued HR data collection during the entire sleep period.

Step 5: SpO2 assessed again using the finger pulse oximeter after waking up.

Step 6: Disease severity algorithms computed.

Step 7: Share the computed EoI results with the webserver for community-wide spatiotemporal

visualization.

At the end of each session, a survey was administered and the raw sensor data collected

in the smartphone was exported to a PC with consent from the participant for offline analysis.

This was repeated for a total of 16 sessions. The study spanned from 06/11/2018 to 12/16/2019.

A summary of the collected dataset is summarized in Table 4.1.

73

Table 4.1.: Summary of SCC-Health dataset.

Count

(N)

Standard

Duration
Description

Participants 9 -
Age: 20 – 70, Gender: Male and Female,

Race: Caucasian, Asian

Sessions 16 1 month Home environment

IHR records 286 8 hours Data were collected during sleep hours

Temperature

records
375 20 ms Data was collected before sleep

User Interaction

Logs
16 1 month User interaction with the app activities

EoI values 1008 -
Computed using pre-trained machine

learning models

In total, 286 IHR records, 375 temperature (TP) data, and 1008 EoI scores recorded on a

continuous scale of 0 to 1 rounded off to 2 decimal places (where 0 = low severity and 1 = high

severity) for each disease of interest. Also, 16 event log files provided important insights

regarding user interactions with the system. All data records were de-identified providing an

uncorrelated and randomized participant ID. The geographical location of each participant was

hash mapped with no option for back-tracing. The collected anonymized dataset will be made

publicly available upon IRB approval.

4.3.2 Extraction and analysis of biomarkers

The introduction of pathological conditions in the human body is often reflected by a

change in the vital signs [24-25]. Among the vital signs, heart rate, respiration rate, blood

pressure, oxygen saturation level, body temperature, etc. have been used as important biomarkers

for diseases like asthma, chronic obstructive pulmonary disease, obstructive sleep apnea, flu, etc.

[26]. Change in vital signs can be attributed to an underlying change in the functionality of the

autonomic nervous system. The autonomic nervous system (ANS) is part of the peripheral

nervous system and plays an important role in balancing the internal environment of the body

which includes heart rate, blood pressure, body temperature, coughing and sneezing, sexual

74

arousal, oxygen, and Co2 level in the blood, etc. [27]. The regulations enforced by ANS take

place involuntarily and without conscious effort. The autonomic nervous system has two main

divisions- sympathetic and parasympathetic. Many organs are primarily controlled by either the

sympathetic or parasympathetic division. The sympathetic division prepares the body for

stressful or emergency, whereas the parasympathetic division prepares the body for rest and

digest [28]. These two opposing divisions work together to establish a balance known as the

autonomic balance. Autonomic balance plays a key role in sound health and wellness [29].

Heart rate variability (HRV) is an accurate non-invasive measure of the ANS function

[30]. It is defined by a set of measures that describe the beat to beat variability of heartbeats.

Traditionally, HRV is extracted from an ECG signal after due pre-processing. As of now,

capturing of ECG using everyday wearables i.e. smart watch or smart band require manual

intervention and are not autonomous [31]. Blood volume pulse (BVP) is widely used as a method

of measuring the heart rate. The BVP measures heart rate based on the volume of blood that

passes through the tissues in a localized area with each beat (pulse) of the heart. BVP

measurement is obtained by the use of a photoplethysmography (PPG) sensor. This component

measures changes in blood volume in the arteries and capillaries that correspond to changes in

the heart rate and blood flow. The PPG sensor detects changes by shining an infrared light,

typically via a light-emitting diode (LED), onto the surface of the body. This light is transmitted

through the tissues, then backscattered and reflected by the tissue before reaching the

photodetector of the PPG sensor. Red light is selectively absorbed by the hemoglobin of the red

blood cells and reflected by other tissues. The amount of light that returns to the PPG

photodetector is proportional to the relative volume of blood present in the tissue. The BVP

amplitude is derived from the raw BVP signal and indicates relative blood flow. The heart rate

(HR) is derived from the raw BVP signal by measuring the inter-beat interval i.e. distance

between the peaks of the waveform. The estimation of HR from BVP is well investigated [32].

HR is not as informative as HRV and often fails to provide discriminatory information for

disease classification or severity estimation when used alone [33]. The extraction of reliable

HRV measures from PPG is challenging due to the high susceptibility of PPG to noise and

motion artifacts. In this study, we extracted the time domain and frequency domain features of

HRV from instantaneous heart rate (IHR) data collected via PPG during sleep. The method of

HRV feature extraction has been shown in Figure 4.5.

75

Figure 4.5: Method for HRV feature extraction from smart band data.

For HRV feature extraction we followed the standard HRV guideline [34]. The filtering

of the raw PPG signal, detection of peaks, and computation of IHR are done by the algorithm

embedded in the smart band by the manufacturer. Peak to peak interval has been computed from

the IHR signal. Then Malik’s rule has been used for removing the ectopic beats and followed by

a cubic interpolation to interpolate the missing beats. The normal to normal (NN) interval

obtained after the pre-processing has been used for extracting the time domain and frequency

domain features of HRV. The estimation of HRV has been conducted in the smart phone. The

extracted features have been defined in Table 4.2. For assessing the reliability of the extracted

Table 4.2. Time domain and frequency domain features of HRV from Smart band data

HRV

Feature
Unit Description

AVNN ms Mean of NN-interval

SDNN ms Standard deviation of all NN intervals.

SDANN -
Standard deviation of the averages of NN intervals in all 5 min

segments of the entire recording.

RMSSD -
Defined as the square root of the mean of the squares of differences

between adjacent NN intervals.

SDNN

index
-

Mean of the standard deviation of all NN intervals for all 5 min

segments of the entire recording.

VLF s2 Power in very low frequency range

LF s2 Power in low frequency range

HF s2 Power in low frequency range

Total Power s2 Variance of all NN intervals

76

Fig. 4.6 Method of signal processing and feature extraction for IJP sensor characterization

measures we compared them with the normative range of HRV values when extracted from

regular ECG as reported by other studies.

Core-body temperature is an important biomarker for the flu and some other diseases. To

facilitate in-vitro temperature estimation, a controlled heat pad was used to generate

temperatures in the range 69ºF - 107ºF. Initial labels for temperatures were obtained using a fiber

optic thermometer and the IJP sensor response corresponding to each temperature was obtained.

Five features are extracted from the signal, which is 1) amplitude average 2) skewness, 3)

kurtosis, 3) range and 4) time delay of high to low transition. Then a Random Forest regression

method has been trained and validated for temperature estimation using these features [35]. A

similar process has been followed for in-vivo temperature estimation during the field study. The

block diagram for body temperature monitoring using the app has been shown in Fig. 4.6. The

raw signal received at the app from the temperature sensor contains high-frequency noise and

oscillations. A moving average filter has been used to filter the signal, after that, a data check is

performed. The metrics used for data checks are the mean and standard deviation of the range

defined by the difference of maximum and minimum amplitude. Since we expect a transition

from high to low as per sensor characteristics, if the data is valid, we get a good dip in the time

series. For invalid data, either there is no transition or a low dip. Body temperature in addition to

a set of user-reported symptoms have been used for ranking flu symptoms and estimating the

symptoms severity of flu. The set of symptoms has been selected using a flu data set (UTMC,

386 records) available from the Influenza Research Database [36]. SelectKBest method from

scikit-learn has been used for ranking the features and 5 top-ranked features have been used for

the classification of flu [37].

77

4.3.3 Analysis of system performance for inference at the edge

We developed algorithms for the estimation of disease severity using HRV features, body

temperature, and SpO2 [38-39]. For algorithm development we considered separate datasets for

chronic diseases (e.g. asthma, COPD, OSA) and acute conditions (Flu). WEKA has been used as

the machine learning development environment. Trained and validated models have been

exported from WEKA for integration in the android application. Details of the offline analysis

for algorithm development and online inference scheme have been shown in Fig. 4.6. The pre-

trained models embedded in the android application has been used for OSA and COPD severity

estimation using the sleep HRV features and measured SpO2. Data pre-processing, feature

extraction, and conversion of features into attribute related file format (ARFF) have been done

before making inference using the pre-trained models. Similarly, an electronic questionnaire has

been used in the app for getting the flu symptoms as a user reported outcome. The algorithm

estimated the severity of flu on a scale of 0-1 based on the body temperature, where a higher

body temperature corresponds to a higher severity. High precision (±1ºF) thermometer (Optocon

FOTEMP with TS2 optical fiber probe, Weidmann Technologies, Germany)) for validating

the temperature measurements before deploying the sensors. Similarly, for HRV we used

Miband-2 smart band and compared with medical grade Omron 3 series (Model BP7100)

measurements.

78

Fig. 4.7 Framework for pre-trained model development and integration in the app for making online

inference at the edge

While the developed algorithms have been validated in the offline analysis, during the

field study the aim was to evaluate the system performance for on-device data processing and

machine learning. The main parameters that have been considered for evaluating the system

performance are- power consumption, memory usage, storage capacity, and latency/ runtime. In

addition to android reported values, we also used AcuBattery (Digibites, Netherlands) app for

monitoring the performance parameters. We also investigated how on-device processing may

help to reduce the overall cloud storage requirement by comparing the size of raw data to that of

processed EoI values shared and stored in the Web Server.

4.3.4 Spatiotemporal visualization and human-technology interaction (HCI) analysis

The sharing of EoI for spatiotemporal visualization is fully voluntary and at the discretion

of the user. For this study, the project area- Memphis statistical metropolitan area, has been

divided into 19 grids with unique area code. Participants have been recruited from multiple grids.

JavaScript object notation (JSON) has been used to share data from the android smartphone to

the database in the webserver. The shared data contains participants’ anonymized user ID, area

code (hashed), computed EoI, the algorithm used for EoI computation, and date and time of data

79

collection. For personalized monitoring of diseases, temporal trends of disease severity for a

participant has been visualized using a time plot graph. Flow graph has been used for community

health trend monitoring overtime where the Y-axis shows the no. of people affected with a

disease and the X-axis shows the time intervals. In addition to that, a spatial plot has been used to

visualize the severity of a disease in different areas at a period. Color coding has been used to

indicate severity where red indicates the highest severity and green indicates the lowest severity.

The EoI propagation-diagram in SCC-Health including spatiotemporal visualization pattern has

been shown in Fig. 4.8. The equation used for the computation of the area severity is as below:

Fig. 4.8 EoI propagation in SCC-Health framework

Where k is the grid number, u is the participant’s number, N is the maximum number of

participants in that kth grid who submit EoI for that particular disease and that particular time,

and j is a participant who submits multiple measurements within that timeframe with the last

submission as M. To investigate human-computer interaction some activities i.e. app login,

sensor connection, data collection, and EoI sharing has been logged in the app as a CSV file with

user consent. The logged information has been used to compute the drop-out ratio for subsequent

action. Also, user interaction with the website has been logged in the webserver.

4.4 RESULTS AND DISCUSSION

Snapshots from the functional app have been shown in Fig. 4.9. The first screen from left shows

the options the user may select on entering the app, the 2nd screen shows the test guidelines and

brief instruction and information regarding the diseases of interest, the 3rd screen shows the

option for selection of sensor that will be used for the physiological data collection, the 4th

80

screen shows Progress Bar for monitoring runtime latency, the 5th screen shows the electronic

questionnaire for collection user reported symptoms, and the 6th screen shows the visualization

of the computed severity in a gradient scale.

Fig. 4.9 Snapshots from the functional android app

Table 4.3 shows the time domain and frequency domain HRV feature values computed

using the smartwatch data. It also shows a comparison of extracted HRV values with the

normative values (clinically accepted) for healthy subjects [40-41]. The computed feature values

are within or very close to the normal range which indicates the usability of the extracted HRV

features as a reliable biomarker for the diseases of interest and general autonomic assessment.

The trend line of the resting heart rate during sleep showed a hammock pattern for the healthy

subjects as shown in Fig. 4.10. The HR gradually decreases as the sleep time increases and the

sleep stage deepens. Before waking up the trend reverses and an upward trend becomes visible.

The Poincare plot of NN intervals for the healthy subjects shows a comet pattern as shown in

Fig. 4.10. An irregular pattern such as torpedo shape; fan shape or complex pattern is indicative

of disease [42].

81

Table 4.3. Comparison of computed time domain and frequency domain HRV features with

normative values

HRV

Feature

HR

(bpm)

AVNN

(ms)

SDNN

(ms)

pNN50

(%)

RMSSD

(ms)
LFnu HFnu LF/HF

SCC Health

Study

71.46

± 8.72

866.77

 ± 108.77

101.53

± 39.63

24.25

 ± 13.83

49.96

 ± 17.9

71.73

± 12.76

28.26

± 12.76

5.80

± 2.21

Normative

Range

54 -

102

785 -

1160
79 - 219 1 - 48 15 - 63

30-65 16-60 1.1 – 11.6

Fig. 4.10 Sleep HRV (a) trend line and (b) Poincare plot for healthy subjects

(a) (b)

82

Fig. 4.11 Power Spectral density at different episodes of sleep hours

The power spectral density at the beginning, middle, and at the end of the entire sleep duration

has been visualized in Fig. 4.11. A similar pattern is observed in all the three intervals i.e. there

is a high power density at very low frequency (VLF) and low power density at the high-

frequency band. However, power spectral density at low frequency (LF) band becomes more

prominent during the middle of the sleep. The empirical cumulative distribution function

(ECDF) shows a higher variability in the resting HR of young people compared to the old one

(Fig. 4.12(a)). The t-SNE visualization of the HRV score shows a clustering pattern for age as

shown in Fig. 4.12(b).

Fig. 4.12 a) ECDF of resting heart rate for age categories b) clustering pattern of HRV scores for

age categories

(a)
(b)

83

Table 4.4. Comparison of female and male HRV

HRV Measure Female (Median) Male (Median)

Mean HR (bpm) 75.33 67.99

SDNN (ms) 78.63 101.87

RMSSD (ms) 43.60 60.17

pNN50 (%) 19.03 33.19

pNN20 (%) 48.81 61.27

LF/HF 3.16 2.55

SD1 30.84 42.57

SD2 106.102 138.33

SD1/SD2 3.86 3.57

Triangular Index 7.60 8.90

Sample Entropy 0.75 0.93

Fig. 4.13 (a) (b) Radar chart comparison of prominent HRV measures of the female with male

The median sleep HR of women has a higher value than the median sleep HR of men.

Table. 4.4 shows the median value of time-domain, frequency domain, and geometric HRV

measures for the male and female categories. A radar chart comparison has been made to

visualize the difference between the prominent sleep HRV measures of females with that of

males. As shown in Fig. 4.13 (a), sdnn, sdsd, rmssd, pnn20, and pnn50 have a higher value for

the male group than the female group. As shown in Fig. 4.13(b), triangular index of HRV have a

84

higher value in male but the ratio of LF power to HF power has higher values for the females

than males. The Empirical Cumulative Distribution Function (ECDF) for median HR during the

weekdays and weekend has been shown in Fig. 4.14. While resting median HR during sleep for

the weekend is slower than weekdays, the difference is not significant (p-value>.05) in t-test.

Fig. 4.14 Comparison of sleep HR during

weekdays and weekends

Fig. 4.15 Ranking of flu symptoms in terms of

feature importance

The feature importance of flu symptoms has been shown in Fig. 4.15. The most 5 important

features are - fever, myalgia, chills, nausea, vomiting, and sore throat. The spatial and temporal

plots of symptom severity have been shown in Fig. 4.16. The gradient scale indicates the severity

from a scale of 0-1. Green corresponds to a low severity value whereas red corresponds to a high

severity value. The spatial plot is an aggregate of the severity of all the subjects within that

spatial grid on a specific date, and the temporal plot is indicative of the severity of the disease-

related symptoms of a person over time. The plots can be animated to track the progression of

the disease over time in a specific region of interest.

(a)
(b)

85

Fig. 4.16 Snapshots showing (a) Spatial distribution of symptoms severity (b) Temporal trends

of symptoms severity over time from data collected from real-life “livings labs” of participants in

this study.

The results for evaluating system performance have been shown in Table 4.5. Samsung

Galaxy J3 Orbit (Samsung Corp.) has been used as the test environment. While the power

consumption of a smartphone is highly impacted by other factors including screen, in our study

data has been collected for the entire night (for IHR signal) without running the smartphone out

of charge. If the power consumption of only this app is considered, it is estimated that the battery

will support sound for 50 hours of continuous operation. The memory requirement has been

reported for active data processing and computation including prediction using the pre-trained

models. The memory requirement is only 9.4 MB which is approximately 2.5% of that of the

device under test. The storage size is the sum of all the CSV files (TP sensor data-30, IHR

signal-30) stored in the smartphone for an entire session of 30-days of data collection. The

latency is small enough to support real-time processing and inference at the edge.

Table 4.5. Results of system performance evaluation

Key Performance

Indicator

Designed

Capacity

SCC Health

App

1 Battery 2600 mAH 51.9 mAH

2 Memory 2 GB 9.4 MB

3 Storage 16 GB
2.2

MB/session

4 Latency - 500 ms

On-device data processing and inference lead to a reduction of the storage requirement in the

cloud. The order of reduction achieved in our case is ~ 1000 as shown in Fig. 4.16(a). The data

size in the edge device is the sum of all the raw data collected during all the sessions and for all

the subjects, whereas the data size in the cloud is the size of the file containing EoI records

obtained as a result of inference at the edge. This data reduction is critical in population-level

data collection, where there will be a massive amount of data flow to the cloud thereby inducing

a substantial amount of burden on the bandwidth requirement. A drop out in the user activities

86

has been observed by analyzing the log data. As shown in Fig. 4.16(b) the dropout rate for the

complete cycle completion is around 40%. User interaction with the website indicates a higher

interaction during the time of active sessions compared to the rest of the study period.

Fig. 4.16 a) plot for the order of data reduction b) statistics of human technology interaction

4. 5 LIMITATION AND FUTURE WORK

The challenging part of this study was the recruitment of subjects from the general population

excluding the university community. One of the reasons is the commitment to use the device and

collect data on a daily basis for a month-long session which is difficult for many people. The low

number of subjects may also be an indication that human-technology interaction is still a taboo

among the common people. We also observed that developing an iPhone app to recruit iPhone

users as volunteers may help to increase the number of participants. While the study and the

analysis revealed some novel insights and trends regarding the vital signs of the subjects it was

not possible to identify or pinpoint the number of exacerbation events for asthma or COPD. A

more meaningful and convincing result may be achieved from a similar study with a large

number of subjects and doing a parallel medical check-up for the subjects on a regular basis and

then correlating the observed trends with the observation of the medical practitioners. From a

technology point of view, while polyamide based IJP sensor were and comfortable to the users,

the range of low energy Bluetooth imposed some interruptions on continuous data transfer from

the sensors to the smartphones. Specially, when the smartphone was left on the bedside and the

87

participant went downstair or far-away corner of his house. Existence of low-quality data

captured by the sensors reveal the importance of developing an online data reliability assessment

algorithm to avoid misleading conclusions regarding the symptom’s severity.

4.6 CONCLUSION

In this yearlong study, we investigated the real-world implementation challenges of a smart

health solution using flexible, user-friendly wearables. We addressed the extraction of reliable

biomarkers, on-device processing, and inference at the edge. We identified the challenges,

human-technology interaction, and outlined prospective solutions. This paper outlines key

technological outcomes from this pilot study. The results indicate the possibility of using

everyday wearables and other sensors (e.g., IJP) for capturing events of interest (EoI), such as

biomarkers for diseases as well as the prospect of on-device processing and machine learning at

edge devices without impacting device performance adversely. We believe that SCC Health will

help in the early identification of diseases and may also be useful in the spatiotemporal

monitoring of pandemics, such as COVID-19.

88

REFERENCES

[1] Kumar, N., Akangire, G., Sullivan, B., Fairchild, K., & Sampath, V. (2019). Continuous vital

sign analysis for predicting and preventing neonatal diseases in the twenty-first century: big data

to the forefront. Pediatric research, 1-11, Springer Nature.

[2] Park Y. T. (2016). Emerging New Era of Mobile Health Technologies. Healthcare

informatics research, 22(4), 253–254. https://doi.org/10.4258/hir.2016.22.4.253.

[3] Solanas, A., Patsakis, C., Conti, M., Vlachos, I. S., Ramos, V., Falcone, F., ... & Martinez-

Balleste, A. (2014). Smart health: a context-aware health paradigm within smart cities. IEEE

Communications Magazine, 52(8), 74-81.

[4] Leroy, G., Chen, H., & Rindflesch, T. C. (2014). Smart and Connected Health [Guest editors'

introduction]. IEEE Intelligent Systems, 29(3), 2-5.

[5] Rani, S., Ahmed, S. H., & Shah, S. C. (2018). Smart health: a novel paradigm to control the

chickungunya virus. IEEE Internet of Things Journal, 6(2), 1306-1311.

[6] Pathinarupothi, R. K., Durga, P., & Rangan, E. S. (2018). Iot-based smart edge for global

health: Remote monitoring with severity detection and alerts transmission. IEEE Internet of

Things Journal, 6(2), 2449-2462.

[7] Ismail, W. N., Hassan, M. M., Alsalamah, H. A., & Fortino, G. (2020). CNN-Based Health

Model for Regular Health Factors Analysis in Internet-of-Medical Things Environment. IEEE

Access, 8, 52541-52549.

[8] Singh, A., & Chatterjee, K. (2017). Cloud security issues and challenges: A survey. Journal

of Network and Computer Applications, 79, 88-115.

[9] Verma, P., & Sood, S. K. (2018). Fog assisted-IoT enabled patient health monitoring in smart

homes. IEEE Internet of Things Journal, 5(3), 1789-1796.

[10] Hu, J., Wu, K., & Liang, W. (2019). An IPv6-based framework for fog-assisted healthcare

monitoring. Advances in Mechanical Engineering, 11(1), 1687814018819515.

[11] Zhou, Z., Chen, X., Li, E., Zeng, L., Luo, K., & Zhang, J. (2019). Edge intelligence: Paving

the last mile of artificial intelligence with edge computing. Proceedings of the IEEE, 107(8),

1738-1762

[12] Chen, J., & Ran, X. (2019). Deep learning with edge computing: A review. Proceedings of

the IEEE, 107(8), 1655-1674.

89

[13] Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge computing: Vision and

challenges. IEEE internet of things journal, 3(5), 637-646.

[14] Mudassar, B. A., Ko, J. H., & Mukhopadhyay, S. (2018). Edge-cloud collaborative

processing for intelligent internet of things: A case study on smart surveillance. In 2018 55th

[15] Temko, A. (2017). Accurate heart rate monitoring during physical exercises using PPG.

IEEE Transactions on Biomedical Engineering, 64(9), 2016-2024.

[16] Chiauzzi, E., Rodarte, C., & DasMahapatra, P. (2015). Patient-centered activity monitoring

in the self-management of chronic health conditions. BMC medicine, 13(1), 1-6.

[17] El-Amrawy, F., & Nounou, M. I. (2015). Are currently available wearable devices for

activity tracking and heart rate monitoring accurate, precise, and medically beneficial?

Healthcare informatics research, 21(4), 315-320.

[18] Ernst, G. (2017). Heart-rate variability—More than heart beats?. Frontiers in public health,

5, 240.

[19] Li, J., Rossignol, F., & Macdonald, J. (2015). Inkjet printing for biosensor fabrication:

combining chemistry and technology for advanced manufacturing. Lab on a Chip, 15(12), 2538-

2558.

[20] Zaman, M. S., & Morshed, B. I. (2018). Design and Verification of a Portable Scanner for

Body-Worn Wireless Resistive Analog Passive (WRAP) Sensors. In 2018 IEEE International

Conference on Electro/Information Technology (EIT) (pp. 0548-0553). IEEE.

[21] Morshed, B. I., Harmon, B., Zaman, M. S., Rahman, M. J., Afroz, S., & Rahman, M.

(2017). Inkjet printed fully-passive body-worn wireless sensors for smart and connected

community (SCC). Journal of Low Power Electronics and Applications, 7(4), 26.

[22] Mohapatra, A., Morshed, B. I., Shamsir, S., & Islam, S. K. (2018, March). Inkjet printed

thin film electronic traces on paper for low-cost body-worn electronic patch sensors. In 2018

IEEE 15th International Conference on Wearable and Implantable Body Sensor Networks (BSN)

(pp. 169-172). IEEE.

[23] Afroz, S., & Morshed, B. I. (2018). Web Visualization of Temporal and Spatial Health Data

from Smartphone App in Smart and Connected Community (SCC). In 2018 IEEE International

Smart Cities Conference (ISC2) (pp. 1-6). IEEE.

90

[24] Brekke, I. J., Puntervoll, L. H., Pedersen, P. B., Kellett, J., & Brabrand, M. (2019). The

value of vital sign trends in predicting and monitoring clinical deterioration: A systematic

review. PloS one, 14(1), e0210875.

[25] University of Bristol. (2011). Using vital signs to predict severity of illness in children.

ScienceDaily. Retrieved July 2, 2020 from

www.sciencedaily.com/releases/2011/07/110706195858.htm

[26] Roche, F., Gaspoz, J. M., Court-Fortune, I., Minini, P., Pichot, V., Duverney, D., ... &

Barthélémy, J. C. (1999). Screening of obstructive sleep apnea syndrome by heart rate variability

analysis. Circulation, 100(13), 1411-1415.

[27] Donkelaar H.J. (2011) The Autonomic Nervous System. In: Clinical Neuroanatomy.

Springer, Berlin, Heidelberg

[28] Appenzeller O (ed) (1999) The autonomic nervous system. Part I. Normal functions, vol 74,

Handbook of clinical neurology. Elsevier Science, Amsterdam

[29] Appenzeller O, ed (2000) The autonomic nervous system. Part II. Dysfunctions. Handbook

of clinical neurology, Vol 75. Elsevier Science, Amsterdam

[30] Sztajzel J. (2004). Heart rate variability: a noninvasive electrocardiographic method to

measure the autonomic nervous system. Swiss medical weekly, 134(35-36), 514–522.

[31] Dyer, O. (2018). Sixty seconds on... Apple ECG.

[32] Jo, E., Lewis, K., Directo, D., Kim, M. J., & Dolezal, B. A. (2016). Validation of

biofeedback wearables for photoplethysmographic heart rate tracking. Journal of sports science

& medicine, 15(3), 540.

[33] Malik, M., Bigger, J. T., Camm, A. J., Kleiger, R. E., Malliani, A., Moss, A. J., & Schwartz,

P. J. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and

clinical use. European heart journal, 17(3), 354-381.

[34] Rahman, M. J., & Morshed, B. I. (2019). Improving Accuracy of Inkjet Printed Core Body

WRAP Temperature Sensor Using Random Forest Regression Implemented with an Android

App. In 2019 United States National Committee of URSI National Radio Science Meeting

(USNC-URSI NRSM) (pp. 1-2). IEEE.

[35] Squires, R. B., Noronha, J., Hunt, V., García‐Sastre, A., Macken, C., Baumgarth, N., ... &

Ramsey, A. (2012). Influenza research database: an integrated bioinformatics resource for

influenza research and surveillance. Influenza and other respiratory viruses, 6(6), 404-416.

http://www.sciencedaily.com/releases/2011/07/110706195858.htm

91

[36] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... &

Vanderplas, J. (2011). Scikit-learn: Machine learning in Python. the Journal of machine Learning

research, 12, 2825-2830.

[37] Rahman, M. J., Mahajan, R., & Morshed, B. I. (2018, March). Severity classification of

obstructive sleep apnea using only heart rate variability measures with an ensemble classifier. In

2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI) (pp. 33-

36). IEEE.

[38] Siddiqui, T., & Morshed, B. I. (2018). Severity Classification of Chronic Obstructive

Pulmonary Disease and Asthma with Heart Rate and SpO2 Sensors. In 2018 40th Annual

International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)

(pp. 2929-2932). IEEE.

[39] Frank, E., Hall, M., Holmes, G., Kirkby, R., Pfahringer, B., Witten, I. H., & Trigg, L.

(2009). Weka-a machine learning workbench for data mining. In Data mining and knowledge

discovery handbook (pp. 1269-1277). Springer, Boston, MA.

[40] Umetani, K., Singer, D. H., McCraty, R., & Atkinson, M. (1998). Twenty-four-hour time

domain heart rate variability and heart rate: relations to age and gender over nine decades.

Journal of the American College of Cardiology, 31(3), 593-601.

[41] Shaffer, F., & Ginsberg, J. P. (2017). An overview of heart rate variability metrics and

norms. Frontiers in public health, 5, 258.

[42] Khandoker, A. H., Karmakar, C., Brennan, M., Palaniswami, M., & Voss, A. (2013).

Poincaré plot methods for heart rate variability analysis. Boston, MA, USA: Springer US.

ACM/ESDA/IEEE Design Automation Conference (DAC) (pp. 1-6). IEEE.

92

Chapter 5

CONCLUSIONS AND FUTURE DIRECTIONS

5.1 KEY RESULTS:

The outcome of this research can be summarized as below:

1. We were able to develop a minimalist method using a deep artificial neural network for early

estimation of obstructive sleep apnea severity as well as continuous monitoring in home

environments. The off-line study results indicate that by using computationally inexpensive

features from HRV and SpO2, an area under the curve of 0.91 and an accuracy of 83.97% can be

achieved for the severity classification of OSA. For estimation of the apnea-hypopnea index, an

accuracy of RMSE=4.6 and R-squared value=0.71 was achieved in the test set using only ranked

HRV and SpO2 features. The method was integrated in a smartphone application and deployed

with real-world subjects during a pilot study.

2. We addressed the need for developing a wearable sensor-based objective assessment method

for estimation of sleep deficiency severity and developed a regression model for quantifying

sleep deficiency severity using user-friendly wearables. The developed method achieved a

performance of RMSE = 5.47 and R-squared value of 0.67 for sleep deficiency severity

estimation and outperformed conventional methods; e.g., Functional Outcome of Sleep

Questionnaire and Epworth Sleepiness Scale for assessing the impact of sleep apnea on sleep

deficiency. Moreover, the results help pave the way for reliable and interpretable sleep

deprivation severity estimation using a wearable device.

3. We developed an sHealth framework which included AI-enabled light-weight, low-resource

algorithms for early detection of disease. The framework incorporated sensor-edge-cloud data

flow, data privacy, and spatiotemporal visualization of events of interest in the cloud for

community wide health monitoring. We also analyzed the human technology interaction in

sHealth, identified the challenges for the real world implementation of sHealth solution, and

outlined possible solutions. The framework has been tested with real-world subjects during a

yearlong pilot study. When analyzed, the collected biomarkers supported our hypothesis that

low-cost IJP sensors have potential for providing reliable data.

93

5.2 FUTURE RESEARCH DIRECTIONS

The proposed sHealth framework aims to deliver improved and ubiquitous healthcare for

early detection of disease, pre-screening, and continuous monitoring of symptoms. One of the

key focus areas of sHealth is community health, where users and stakeholders will have an

opportunity to collaborate, formulate policy, and harness benefits from voluntarily shared

information. The key challenges are extraction of reliable biomarkers from the data collected

using IoT devices, seamless data transfer to a computing facility, making inference using

artificial intelligence enabled methods, while maintaining user data privacy and system security.

Incorporation of IoT-based low cost and user friendly wearable sensing technologies can help

meet these challenges.

Although we developed an sHealth solution comprising of algorithms and framework and

tested it in a pilot project, the framework nees to be deployed at a large scale in a greater

geographical entity with more subjects. Also, parallel health evaluation of the participants during

the study period by medical practitioners will help to evaluate the clinical value of the sHealth

solution.

94

APPENDIX

A1. the source code for the smartphone app is available at

https://github.com/esarplab/SCCHealth_v2.0. In addition, the IJP sensor design, disease severity

estimation algorithms are also available as open source at

https://github.com/esarplab/SCCHealth-MEMPHIS

Flowchart and sequence diagram for the SCC-Health app has been shown below-

Fig. Flowchart for SCC Health android application

https://github.com/esarplab/SCCHealth_v2.0
https://github.com/esarplab/SCCHealth-MEMPHIS

95

Fig. Sequence diagram for the SCC-Health app

Few Code snippets from the SCC-Health app has been given below:

96

A2. Random Forest based temperature sensor characterization

Fig. Experimental setup for temperature sensor characterization

Controller

Calibration

Thermometer

Sensor

Scanner

Heat pad

97

Fig. Block diagram for signal processing steps in the smartphone app

A3. The website showing spatiotemporal visualization of symptoms severity from the SCC-

Health field study is available at www.sccmobilehealth.com. Snapshots from the webserver has

been given below:

http://www.sccmobilehealth.com/

98

99

A4. Codes from the SCC- Health Application

package

nsf.esarplab.scchealth;

 import android.content.Context;

 import android.content.Intent;

 import android.content.SharedPreferences;

 import android.os.Bundle;

 import android.support.v4.app.FragmentActivity;

 import android.support.v4.app.FragmentManager;

 import android.support.v4.app.FragmentTransaction;

 import android.view.View;

 import android.view.inputmethod.InputMethodManager;

 import android.widget.Button;

 import android.widget.EditText;

 import android.widget.Toast;

 public class LoginActivity extends FragmentActivity {

 Button btnSignIn, btnFragment;

 LoginDataBaseAdapter loginDataBaseAdapter;

 EditText ed1, ed2;

 private Context context;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_login);

100

 Button b2=(Button)findViewById(R.id.button2);

 ed1=(EditText) findViewById(R.id.editText);

 // create a instance of SQLite Database

 loginDataBaseAdapter=new LoginDataBaseAdapter(this);

 loginDataBaseAdapter=loginDataBaseAdapter.open();

 // Get The Refference Of Buttons

 btnSignIn=(Button)findViewById(R.id.buttonSignIN);

 btnFragment=(Button)findViewById(R.id.help);

 //Set OnClick Listener on SignUp button

 btnFragment.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 FragmentManager fragmentManager = getSupportFragmentManager();

 FragmentTransaction fragmentTransaction =

fragmentManager.beginTransaction();

 HelpdeskFragment f1 = new HelpdeskFragment();

 fragmentTransaction.add(R.id.frag1, f1);

 fragmentTransaction.addToBackStack(null);

 fragmentTransaction.commit();

 // hide virtual keyboard

 InputMethodManager imm = (InputMethodManager)

getSystemService(Context.INPUT_METHOD_SERVICE);

 imm.hideSoftInputFromWindow(ed1.getWindowToken(),

InputMethodManager.RESULT_UNCHANGED_SHOWN);

 }

 });

 }

 // Methos to handleClick Event of Sign In Button

 public void signIn(View V)

 {

 // get the References of views

 final EditText editTextUserName=(EditText)findViewById(R.id.editText);

 final EditText editTextPassword=(EditText)findViewById(R.id.editText2);

101

 // get The User name and Password

 String userName=editTextUserName.getText().toString();

 String password=editTextPassword.getText().toString();

 // fetch the Password form database for respective user name

 String storedPassword=loginDataBaseAdapter.getSinlgeEntry(userName);

 // check if the Stored password matches with Password entered by user

 if ((userName.equals("admin") &&

password.equals("hce"))||(password.equals(storedPassword))) {

 // pass login details to shared preferences

 SharedPreferences prefs =

getSharedPreferences("logindetails",MODE_PRIVATE);

 SharedPreferences.Editor editor = prefs.edit();

 editor.putString("loginname",ed1.getText().toString()).commit();

 Intent welcomeIntent=new Intent(LoginActivity.this,WelcomeActivity.class);

 startActivity(welcomeIntent);

 Toast.makeText(LoginActivity.this, "Login Successful",

Toast.LENGTH_SHORT).show();

 } else {

 Toast.makeText(LoginActivity.this, "User Name or Password does not match",

Toast.LENGTH_LONG).show();

 }

 }

 @Override

 protected void onDestroy() {

 super.onDestroy();

 // Close The Database

 loginDataBaseAdapter.close();

 }

 public void onClick(View v) {

 finish();

 }

102

 }

package

nsf.esarplab.scchealth;

 import android.os.Bundle;

 import android.support.v7.app.ActionBar;

 import android.support.v7.app.AppCompatActivity;

 import android.widget.TextView;

 public class About extends AppCompatActivity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_about);

 TextView project=(TextView) findViewById(R.id.about);

 //show actionbar

 ActionBar myActionBar = getSupportActionBar();

 myActionBar.show();

 String projectdescription="";

 projectdescription+="Project Title: EAGER: Events-of-interest Capture Using

Novel Body-worn " +

 "Fully-passive Wireless sensors for S&CC\n"+"\n";;

 projectdescription+="Funding Source: NSF CISE CNS\n " +"\n";

 projectdescription+="Project Duration: 2016 - 2018\n " +"\n";

 projectdescription+="Project Synopsis:" +

 "\n" +

 "Patients with chronic illness require frequent and avoidable hospital visits.

" +

 "This project aims to develop a new class of battery-less, low-cost,

disposable, " +

 "wireless electronic patch sensors to monitor a variety of physiological

signals and " +

 "a custom smartphone app to monitor their health status and to elect to share

their" +

 " anonymized events-of-interest with their community towards a smart and

connected " +

 "community (S&CC). This will empower users, permit the community

stakeholders to assess" +

 " population health status, reduce the need for frequent hospital visits, and

help " +

 "identify potential individual and community actions to achieve

improvement in health" +

 " status. The project also involves the training of undergraduate and

graduate students" +

103

 " in interdisciplinary research activities on emerging technologies, and is

expected to" +

 " impact public and private sector efforts to improve healthcare.\n" +

 "\n" +

 "PI: Dr. Bashir Morshed, Associate Professor, Department of Electrical and

Computer " +

 "Engineering, The University of Memphis\n" +

 "\n" +

 "Co-PI: Dr. Brook Harmon, Assistant Professor, School of Public Health,

The University of Memphis"+"\n\n"

 +"Consultant: Dr. M. Rahman, Baptist Minor Medical Center, Memphis,

TN"+"\n\n"

 +"Collaborator: Memphis District of The United Methodist Church

(UMC)";

 project.setText(projectdescription);

 }

 }

package

nsf.esarplab.

scchealth;

 import android.bluetooth.BluetoothAdapter;

 import android.content.Intent;

 import android.content.SharedPreferences;

 import android.graphics.Color;

 import android.net.Uri;

 import android.net.wifi.WifiManager;

 import android.os.Bundle;

 import android.support.v7.app.ActionBar;

 import android.support.v7.app.AppCompatActivity;

 import android.text.SpannableString;

 import android.text.style.RelativeSizeSpan;

 import android.util.Log;

 import android.view.View;

 import android.widget.CompoundButton;

 import android.widget.Switch;

 import android.widget.TextView;

 import static nsf.esarplab.bluetoothlibrary.BluetoothState.REQUEST_ENABLE_BT;

 public class HomeActivity extends AppCompatActivity {

 final BluetoothAdapter bluetooth = BluetoothAdapter.getDefaultAdapter();

 private Switch btSwitch;

 private WifiManager wifiManager;

104

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 //getActionBar().setIcon(new

ColorDrawable(getResources().getColor(android.R.color.transparent)));

 // Set the content of the activity to use the activity_main.xml layout file

 setContentView(R.layout.activity_home);

 ActionBar myActionBar = getSupportActionBar();

 myActionBar.show();

 TextView intro = (TextView) findViewById(R.id.espeech);

 intro.setVisibility(View.INVISIBLE);

 Log.i("Home", "Called");

 // Find the switch that turn on/off bluetooth

 btSwitch = (Switch) findViewById(R.id.mySwitch);

 //Get Login details

 SharedPreferences prefs = getSharedPreferences("logindetails",MODE_PRIVATE);

 String Uname = prefs.getString("loginname","Default");

 // Find the switch that turn on/off wifi

 //wifiSwitch = (Switch) findViewById(R.id.wifiSwitch);

 // Find the View that shows the project information

 TextView about = (TextView) findViewById(R.id.about);

 String aboutString = "About \n\t- Know the project";

 SpannableString ss1 = new SpannableString(aboutString);

 ss1.setSpan(new RelativeSizeSpan(2.0f), 0, 5, 0); // set size

 about.setText(ss1);

 // Set a click listener on that View

 about.setOnClickListener(new View.OnClickListener() {

 // The code in this method will be executed when the lab category is clicked on.

 @Override

 public void onClick(View view) {

 // Create a new intent to open the {@link LabActivity}

 Intent aboutIntent = new Intent(HomeActivity.this, About.class);

 // Start the new activity

 startActivity(aboutIntent);

105

 }

 });

 // Find the View that shows the lab category

 TextView lab = (TextView) findViewById(R.id.lab);

 String diagnosticString = "Diagnostic \n\t- Diagnose flu, arrythmia, sleep apnea & COPD";

 SpannableString ss3 = new SpannableString(diagnosticString);

 ss3.setSpan(new RelativeSizeSpan(2.0f), 0, 10, 0); // set size

 lab.setText(ss3);

 // Set a click listener on that View

 lab.setOnClickListener(new View.OnClickListener() {

 // The code in this method will be executed when the lab category is clicked on.

 @Override

 public void onClick(View view) {

 // Create a new intent to open the {@link LabActivity}

 Intent labIntent = new Intent(HomeActivity.this, LabActivity.class);

 // Start the new activity

 startActivity(labIntent);

 }

 });

 // Find the View that shows the setting category

 TextView setting = (TextView) findViewById(R.id.setting);

 String settingString = "Settings \n\t- Create user, manage profiles & setup network";

 SpannableString ss2 = new SpannableString(settingString);

 ss2.setSpan(new RelativeSizeSpan(2.0f), 0, 8, 0); // set size

 setting.setText(ss2);

 // Set a click listener on that View

 setting.setOnClickListener(new View.OnClickListener() {

 // The code in this method will be executed when the profile category is clicked on.

 @Override

 public void onClick(View view) {

 // Create a new intent to open the {@link ProfileActivity}

 Intent settingIntent = new Intent(HomeActivity.this, DB_login.class);

 // Start the new activity

 startActivity(settingIntent);

 }

 });

 // Find the View that shows the website category

106

 TextView web = (TextView) findViewById(R.id.web);

 String webString = "Website \n\t- Visit SCC Health Website";

 SpannableString ss4 = new SpannableString(webString);

 ss4.setSpan(new RelativeSizeSpan(2.0f), 0, 8, 0); // set size

 web.setText(ss4);

 // Set a click listener on that View

 web.setOnClickListener(new View.OnClickListener() {

 // The code in this method will be executed when the profile category is clicked on.

 @Override

 public void onClick(View view) {

 Uri uri = Uri.parse("http://sscmemphis.com"); // missing 'http://' will cause crashed

 Intent intent = new Intent(Intent.ACTION_VIEW, uri);

 startActivity(intent);

 }

 });

 // manage switch position based on connection status

 if (bluetooth.isEnabled()){

 btSwitch.setChecked(true);

 }else {

 btSwitch.setChecked(false);

 }

 //attach a listener to check for changes in state

 btSwitch.setOnCheckedChangeListener(new

CompoundButton.OnCheckedChangeListener() {

 @Override

 public void onCheckedChanged(CompoundButton buttonView,

 boolean isChecked) {

 if (isChecked) {

 if (!bluetooth.isEnabled()) {

 // prompt the user to turn BlueTooth on

 Intent enableBtIntent = new

Intent(BluetoothAdapter.ACTION_REQUEST_ENABLE);

 startActivityForResult(enableBtIntent, REQUEST_ENABLE_BT);

 }

 } else {

 bluetooth.disable();

 }

 }

 });

107

 // put setting not clickable

 if (!(Uname.matches("admin"))){

 setting.setClickable(false);

 setting.setBackgroundColor(Color.GRAY);

 }

 // manage switch to turn wifi on/off

 /* wifiManager = (WifiManager)

this.getApplicationContext().getSystemService(Context.WIFI_SERVICE);

 if(wifiManager.isWifiEnabled()){

 wifiSwitch.setChecked(true);

 }else{

 wifiSwitch.setChecked(false);

 }

 //attach a listener to check for changes in wifi state

 wifiSwitch.setOnCheckedChangeListener(new

CompoundButton.OnCheckedChangeListener() {

 @Override

 public void onCheckedChanged(CompoundButton buttonView,

 boolean isChecked) {

 if (isChecked) {

 wifiManager.setWifiEnabled(true);

 } else {

 wifiManager.setWifiEnabled(false);

 }

 }

 });*/

 }

 public void logOut(View v) {

 // close the app

 try {

 Intent intentBack = new Intent(this,LoginActivity.class);

 startActivity(intentBack);

 Intent intentExit = new Intent(Intent.ACTION_MAIN);

 intentExit.addCategory(Intent.CATEGORY_HOME);

108

 intentExit.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK);

 startActivity(intentExit);

 finish();

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 }

package nsf.esarplab.scchealth;

import android.app.Activity;

import android.bluetooth.BluetoothAdapter;

import android.content.Intent;

import android.content.SharedPreferences;

import android.os.Bundle;

import android.os.Environment;

import android.support.v7.app.ActionBar;

import android.support.v7.app.AppCompatActivity;

import android.text.method.ScrollingMovementMethod;

import android.view.LayoutInflater;

import android.view.Menu;

import android.view.MenuItem;

import android.view.View;

import android.view.ViewGroup;

import android.widget.Button;

import android.widget.EditText;

import android.widget.PopupWindow;

import android.widget.TextView;

import android.widget.Toast;

import com.google.android.gms.common.api.GoogleApiClient;

import java.io.File;

import java.io.FileWriter;

import java.io.IOException;

import java.util.Calendar;

import nsf.esarplab.bluetoothlibrary.BluetoothSPP;

import nsf.esarplab.bluetoothlibrary.BluetoothSPP.BluetoothConnectionListener;

import nsf.esarplab.bluetoothlibrary.BluetoothState;

import nsf.esarplab.bluetoothlibrary.DeviceList;

public class SleepApnea extends AppCompatActivity {

 BluetoothSPP bt;

 Button test, csvReader;

 TextView textReceived, connectionRead;

 EditText etMessage;

109

 private GoogleApiClient client;

 private boolean saReceived = false;

 private boolean hrReceived = false;

 private boolean tenReceived = false;

 private boolean btdata = true;

 Menu menu;

 String s = "";

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_sleep_apnea);

 bt = new BluetoothSPP(this);

 // show actionbar

 ActionBar myActionBar = getSupportActionBar();

 myActionBar.show();

 // Set active profile

 TextView mNameText = (TextView) findViewById(R.id.display_name);

 //Show active profile

 SharedPreferences prefs = getSharedPreferences("logindetails",MODE_PRIVATE);

 String Uname = prefs.getString("loginname","Default");

 mNameText.setText("\t\t"+Uname);

 s = mNameText.getText().toString().trim();

 /*//reading profile from file

 try {

 FileInputStream fileIn = openFileInput("mytextfile.txt");

 InputStreamReader InputRead = new InputStreamReader(fileIn);

 char[] inputBuffer = new char[READ_BLOCK_SIZE];

 *//*String s="";*//*

 int charRead;

 while ((charRead = InputRead.read(inputBuffer)) > 0) {

 // char to string conversion

 String readstring = String.copyValueOf(inputBuffer, 0, charRead);

 s += readstring;

 }

 InputRead.close();

 *//*mNameText.setText(s);*//*

 *//*Toast.makeText(getBaseContext(), s,Toast.LENGTH_SHORT).show();*//*

 } catch (Exception e) {

 e.printStackTrace();

 }

 mNameText.setText(s);*/

 // set views

 test=(Button) findViewById(R.id.test);

 csvReader=(Button) findViewById(R.id.readCSV);

 textReceived = (TextView) findViewById(R.id.display_name);

 connectionRead = (TextView) findViewById(R.id.textStatus);

 textReceived.setMovementMethod(new ScrollingMovementMethod());

110

 bt.setOnDataReceivedListener(new BluetoothSPP.OnDataReceivedListener() {

 public void onDataReceived(byte[] data, String message) {

 textReceived.append(message + "\n");

 if (btdata) {

 try {

 writeToCsv(message);

 } catch (IOException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 }

 if (tenReceived == true) {

 //receive data

 textReceived.append(message + "\n");

 /*try {

 writeToCsv(message);

 } catch (IOException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }*/

 } else {

 if (message.equals("SA")) {

 bt.send("HR", true);

 saReceived = true;

 } else {

 if (message.equals("HR") && saReceived) {

 bt.send("10", true);

 hrReceived = true;

 } else {

 if (message.equals("10") && saReceived && hrReceived) {

 bt.send("OK", true);

 tenReceived = true;

 } else {

 textReceived.append("Failed Handshake");

 }

 }

 }

 }

 }

 });

 bt.setBluetoothConnectionListener(new BluetoothConnectionListener() {

 public void onDeviceDisconnected() {

 connectionRead.setText("Status : Not connect");

 menu.clear();

 getMenuInflater().inflate(R.menu.menu_connection, menu);

 }

 public void onDeviceConnectionFailed() {

111

 connectionRead.setText("Status : Connection failed");

 }

 public void onDeviceConnected(String name, String address) {

 connectionRead.setText("Status : Connected to " + name);

 menu.clear();

 getMenuInflater().inflate(R.menu.menu_disconnection, menu);

 }

 });

 /*IntentFilter filter = new IntentFilter();

 filter.addAction("SOME_ACTION");

 filter.addAction("SOME_OTHER_ACTION");

 BroadcastReceiver receiver = new BroadcastReceiver() {

 @Override

 public void onReceive(Context context, Intent intent) {

 String action = intent.getAction();

 TextView display = (TextView) findViewById(R.id.display_name);

 display.append(action);

 *//*Log.i("Receiver", "Broadcast received: " + action);

 if (action.equals("my.action.string")) {

 String state = intent.getExtras().getString("extra");

 display.append(state);

 }*//*

 }

 };

 registerReceiver(receiver, filter);*/

 final TextView btnOpenPopup = (TextView) findViewById(R.id.info);

 btnOpenPopup.setOnClickListener(new Button.OnClickListener() {

 @Override

 public void onClick(View arg0) {

 LayoutInflater layoutInflater

 = (LayoutInflater) getBaseContext()

 .getSystemService(LAYOUT_INFLATER_SERVICE);

 View popupView = layoutInflater.inflate(R.layout.info_sleepapnea, null);

 final PopupWindow popupWindow = new PopupWindow(

 popupView,

 ViewGroup.LayoutParams.WRAP_CONTENT,

 ViewGroup.LayoutParams.WRAP_CONTENT);

 Button btnDismiss = (Button) popupView.findViewById(R.id.dismiss);

 btnDismiss.setOnClickListener(new Button.OnClickListener() {

 @Override

 public void onClick(View v) {

 // TODO Auto-generated method stub

 popupWindow.dismiss();

 }

 });

 popupWindow.showAsDropDown(btnOpenPopup, 50, -30);

 }

112

 });

 final TextView btnOpenInstruction = (TextView) findViewById(R.id.inst);

 btnOpenInstruction.setOnClickListener(new Button.OnClickListener() {

 @Override

 public void onClick(View arg0) {

 LayoutInflater layoutInflater

 = (LayoutInflater) getBaseContext()

 .getSystemService(LAYOUT_INFLATER_SERVICE);

 View popupView = layoutInflater.inflate(R.layout.inst_sleepapnea, null);

 final PopupWindow popupWindow = new PopupWindow(

 popupView,

 ViewGroup.LayoutParams.WRAP_CONTENT,

 ViewGroup.LayoutParams.WRAP_CONTENT);

 Button btnDismiss = (Button) popupView.findViewById(R.id.dismiss);

 btnDismiss.setOnClickListener(new Button.OnClickListener() {

 @Override

 public void onClick(View v) {

 // TODO Auto-generated method stub

 popupWindow.dismiss();

 }

 });

 popupWindow.showAsDropDown(btnOpenPopup, 50, -30);

 }

 });

 }

 public void onDestroy() {

 super.onDestroy();

 bt.stopService();

 }

 public boolean onCreateOptionsMenu(Menu menu) {

 this.menu = menu;

 getMenuInflater().inflate(R.menu.menu_connection, menu);

 return true;

 }

 public boolean onOptionsItemSelected(MenuItem item) {

 int id = item.getItemId();

 if (id == R.id.menu_android_connect) {

 bt.setDeviceTarget(BluetoothState.DEVICE_ANDROID);

 /*

 if(bt.getServiceState() == BluetoothState.STATE_CONNECTED)

 bt.disconnect();*/

 Intent intent = new Intent(getApplicationContext(), DeviceList.class);

 startActivityForResult(intent, BluetoothState.REQUEST_CONNECT_DEVICE);

113

 } else if (id == R.id.menu_device_connect) {

 bt.setDeviceTarget(BluetoothState.DEVICE_OTHER);

 /*

 if(bt.getServiceState() == BluetoothState.STATE_CONNECTED)

 bt.disconnect();*/

 Intent intent = new Intent(getApplicationContext(), DeviceList.class);

 startActivityForResult(intent, BluetoothState.REQUEST_CONNECT_DEVICE);

 } else if (id == R.id.menu_disconnect) {

 if (bt.getServiceState() == BluetoothState.STATE_CONNECTED)

 bt.disconnect();

 }

 else if (id == R.id.menu_reinitialize) {

 textReceived.setText("");

 }

 return super.onOptionsItemSelected(item);

 }

 public void onStart() {

 super.onStart();

 if (!bt.isBluetoothEnabled()) {

 Intent intent = new Intent(BluetoothAdapter.ACTION_REQUEST_ENABLE);

 startActivityForResult(intent, BluetoothState.REQUEST_ENABLE_BT);

 } else {

 if (!bt.isServiceAvailable()) {

 bt.setupService();

 bt.startService(BluetoothState.DEVICE_ANDROID);

 setup();

 connectScanner();

 }

 }

 }

 public void onActivityResult(int requestCode, int resultCode, Intent data) {

 if (requestCode == BluetoothState.REQUEST_CONNECT_DEVICE) {

 if (resultCode == Activity.RESULT_OK)

 bt.connect(data);

 } else if (requestCode == BluetoothState.REQUEST_ENABLE_BT) {

 if (resultCode == Activity.RESULT_OK) {

 bt.setupService();

 bt.startService(BluetoothState.DEVICE_ANDROID);

 setup();

 } else {

 Toast.makeText(getApplicationContext()

 , "BluetoothActivity was not enabled."

 , Toast.LENGTH_SHORT).show();

 finish();

 }

 }

 }

 public void setup() {

 test.setOnClickListener(new View.OnClickListener() {

 public void onClick(View v) {

 {

114

 bt.send("SA", true);

 }

 }

 });

 }

 public void connectScanner() {

 csvReader.setOnClickListener(new View.OnClickListener() {

 public void onClick(View v) {

 }

 });

 }

 //write to csv file

 public void writeToCsv(String x) throws IOException{

 Calendar c = Calendar.getInstance();

 File folder = new File(Environment.getExternalStorageDirectory() + "/project");

 boolean success = true;

 if (!folder.exists()) {

 success = folder.mkdir();

 }

 if (success) {

 // Do something on success

 String csv = "/storage/sdcard0/project/btvalue.csv";

 FileWriter file_writer = new FileWriter(csv,true);;

 String s=

c.get(Calendar.YEAR)+","+(c.get(Calendar.MONTH)+1)+","+c.get(Calendar.DATE)+","+c.ge

t(Calendar.HOUR)+","+c.get(Calendar.MINUTE)+","+c.get(Calendar.SECOND)+","+

c.get(Calendar.MILLISECOND)+","+x + "\n";

 file_writer.append(s);

 file_writer.close();

 }

 }

 @Override

 public void onStop() {

 super.onStop();

 }

}

package

nsf.esarp

115

lab.scche

alth;

 import android.app.Activity;

 import android.bluetooth.BluetoothAdapter;

 import android.content.Intent;

 import android.content.SharedPreferences;

 import android.os.Bundle;

 import android.os.Environment;

 import android.support.v7.app.ActionBar;

 import android.support.v7.app.AppCompatActivity;

 import android.text.method.ScrollingMovementMethod;

 import android.view.LayoutInflater;

 import android.view.Menu;

 import android.view.MenuItem;

 import android.view.View;

 import android.view.ViewGroup;

 import android.widget.Button;

 import android.widget.EditText;

 import android.widget.PopupWindow;

 import android.widget.TextView;

 import android.widget.Toast;

 import java.io.File;

 import java.io.FileWriter;

 import java.io.IOException;

 import java.util.Calendar;

 import nsf.esarplab.bluetoothlibrary.BluetoothSPP;

 import nsf.esarplab.bluetoothlibrary.BluetoothState;

 import nsf.esarplab.bluetoothlibrary.DeviceList;

 //import com.google.android.gms.common.api.GoogleApiClient;

 public class ArrhythmiaActivity extends AppCompatActivity {

 BluetoothSPP bt;

 Button test, csvReader;

 TextView textReceived, connectionRead;

 EditText etMessage;

 //private GoogleApiClient client;

 private boolean saReceived = false;

 private boolean hrReceived = false;

 private boolean tenReceived = false;

 private boolean btdata = true;

 Menu menu;

 String s = "";

 @Override

 protected void onCreate(Bundle savedInstanceState) {

116

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_arrythmia);

 bt = new BluetoothSPP(this);

 // show actionbar

 ActionBar myActionBar = getSupportActionBar();

 myActionBar.show();

 TextView mNameText = (TextView) findViewById(R.id.display_name);

 //Show active profile

 SharedPreferences prefs = getSharedPreferences("logindetails",MODE_PRIVATE);

 String Uname = prefs.getString("loginname","Default");

 mNameText.setText("\t\t"+Uname);

 s = mNameText.getText().toString().trim();

 /*//reading profile from file

 try {

 FileInputStream fileIn = openFileInput("mytextfile.txt");

 InputStreamReader InputRead = new InputStreamReader(fileIn);

 char[] inputBuffer = new char[READ_BLOCK_SIZE];

 *//*String s="";*//*

 int charRead;

 while ((charRead = InputRead.read(inputBuffer)) > 0) {

 // char to string conversion

 String readstring = String.copyValueOf(inputBuffer, 0, charRead);

 s += readstring;

 }

 InputRead.close();

 *//*mNameText.setText(s);*//*

 *//*Toast.makeText(getBaseContext(), s,Toast.LENGTH_SHORT).show();*//*

 } catch (Exception e) {

 e.printStackTrace();

 }

 mNameText.setText(s);*/

 // receive intent

 test=(Button) findViewById(R.id.test);

 csvReader=(Button) findViewById(R.id.readCSV);

 textReceived = (TextView) findViewById(R.id.display_name);

 connectionRead = (TextView) findViewById(R.id.textStatus);

 textReceived.setMovementMethod(new ScrollingMovementMethod());

117

 bt.setOnDataReceivedListener(new BluetoothSPP.OnDataReceivedListener() {

 public void onDataReceived(byte[] data, String message) {

 textReceived.append(message + "\n");

 if (btdata) {

 try {

 writeToCsv(message);

 } catch (IOException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 }

 if (tenReceived == true) {

 //receive data

 textReceived.append(message + "\n");

 /*try {

 writeToCsv(message);

 } catch (IOException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }*/

 } else {

 if (message.equals("SA")) {

 bt.send("HR", true);

 saReceived = true;

 } else {

 if (message.equals("HR") && saReceived) {

 bt.send("10", true);

 hrReceived = true;

 } else {

 if (message.equals("10") && saReceived && hrReceived) {

 bt.send("OK", true);

 tenReceived = true;

 } else {

 textReceived.append("Failed Handshake");

 }

 }

 }

 }

 }

 });

 bt.setBluetoothConnectionListener(new BluetoothSPP.BluetoothConnectionListener() {

 public void onDeviceDisconnected() {

 connectionRead.setText("Status : Not connect");

 menu.clear();

118

 getMenuInflater().inflate(R.menu.menu_connection, menu);

 }

 public void onDeviceConnectionFailed() {

 connectionRead.setText("Status : Connection failed");

 }

 public void onDeviceConnected(String name, String address) {

 connectionRead.setText("Status : Connected to " + name);

 menu.clear();

 getMenuInflater().inflate(R.menu.menu_disconnection, menu);

 }

 });

 /*IntentFilter filter = new IntentFilter();

 filter.addAction("SOME_ACTION");

 filter.addAction("SOME_OTHER_ACTION");

 BroadcastReceiver receiver = new BroadcastReceiver() {

 @Override

 public void onReceive(Context context, Intent intent) {

 String action = intent.getAction();

 TextView display = (TextView) findViewById(R.id.display_name);

 display.append(action);

 *//*Log.i("Receiver", "Broadcast received: " + action);

 if (action.equals("my.action.string")) {

 String state = intent.getExtras().getString("extra");

 display.append(state);

 }*//*

 }

 };

 registerReceiver(receiver, filter);*/

 final TextView btnOpenPopup = (TextView) findViewById(R.id.info);

 btnOpenPopup.setOnClickListener(new Button.OnClickListener() {

 @Override

 public void onClick(View arg0) {

 LayoutInflater layoutInflater

 = (LayoutInflater) getBaseContext()

 .getSystemService(LAYOUT_INFLATER_SERVICE);

 View popupView = layoutInflater.inflate(R.layout.info_arrhythmia, null);

 final PopupWindow popupWindow = new PopupWindow(

 popupView,

 ViewGroup.LayoutParams.WRAP_CONTENT,

 ViewGroup.LayoutParams.WRAP_CONTENT);

119

 Button btnDismiss = (Button) popupView.findViewById(R.id.dismiss);

 btnDismiss.setOnClickListener(new Button.OnClickListener() {

 @Override

 public void onClick(View v) {

 // TODO Auto-generated method stub

 popupWindow.dismiss();

 }

 });

 popupWindow.showAsDropDown(btnOpenPopup, 50, -30);

 }

 });

 final TextView btnOpenInstruction = (TextView) findViewById(R.id.inst);

 btnOpenInstruction.setOnClickListener(new Button.OnClickListener() {

 @Override

 public void onClick(View arg0) {

 LayoutInflater layoutInflater

 = (LayoutInflater) getBaseContext()

 .getSystemService(LAYOUT_INFLATER_SERVICE);

 View popupView = layoutInflater.inflate(R.layout.inst_arrhythmia, null);

 final PopupWindow popupWindow = new PopupWindow(

 popupView,

 ViewGroup.LayoutParams.WRAP_CONTENT,

 ViewGroup.LayoutParams.WRAP_CONTENT);

 Button btnDismiss = (Button) popupView.findViewById(R.id.dismiss);

 btnDismiss.setOnClickListener(new Button.OnClickListener() {

 @Override

 public void onClick(View v) {

 // TODO Auto-generated method stub

 popupWindow.dismiss();

 }

 });

 popupWindow.showAsDropDown(btnOpenPopup, 50, -30);

 }

 });

120

 }

 public void onDestroy() {

 super.onDestroy();

 bt.stopService();

 }

 public boolean onCreateOptionsMenu(Menu menu) {

 this.menu = menu;

 getMenuInflater().inflate(R.menu.menu_connection, menu);

 return true;

 }

 public boolean onOptionsItemSelected(MenuItem item) {

 int id = item.getItemId();

 if (id == R.id.menu_android_connect) {

 bt.setDeviceTarget(BluetoothState.DEVICE_ANDROID);

 /*

 if(bt.getServiceState() == BluetoothState.STATE_CONNECTED)

 bt.disconnect();*/

 Intent intent = new Intent(getApplicationContext(), DeviceList.class);

 startActivityForResult(intent, BluetoothState.REQUEST_CONNECT_DEVICE);

 } else if (id == R.id.menu_device_connect) {

 bt.setDeviceTarget(BluetoothState.DEVICE_OTHER);

 /*

 if(bt.getServiceState() == BluetoothState.STATE_CONNECTED)

 bt.disconnect();*/

 Intent intent = new Intent(getApplicationContext(), DeviceList.class);

 startActivityForResult(intent, BluetoothState.REQUEST_CONNECT_DEVICE);

 } else if (id == R.id.menu_disconnect) {

 if (bt.getServiceState() == BluetoothState.STATE_CONNECTED)

 bt.disconnect();

 }

 else if (id == R.id.menu_reinitialize) {

 textReceived.setText("");

 }

 return super.onOptionsItemSelected(item);

 }

 public void onStart() {

 super.onStart();

 if (!bt.isBluetoothEnabled()) {

 Intent intent = new Intent(BluetoothAdapter.ACTION_REQUEST_ENABLE);

 startActivityForResult(intent, BluetoothState.REQUEST_ENABLE_BT);

 } else {

 if (!bt.isServiceAvailable()) {

 bt.setupService();

121

 bt.startService(BluetoothState.DEVICE_ANDROID);

 setup();

 connectScanner();

 }

 }

 }

 public void onActivityResult(int requestCode, int resultCode, Intent data) {

 if (requestCode == BluetoothState.REQUEST_CONNECT_DEVICE) {

 if (resultCode == Activity.RESULT_OK)

 bt.connect(data);

 } else if (requestCode == BluetoothState.REQUEST_ENABLE_BT) {

 if (resultCode == Activity.RESULT_OK) {

 bt.setupService();

 bt.startService(BluetoothState.DEVICE_ANDROID);

 setup();

 } else {

 Toast.makeText(getApplicationContext()

 , "BluetoothActivity was not enabled."

 , Toast.LENGTH_SHORT).show();

 finish();

 }

 }

 }

 public void setup() {

 test.setOnClickListener(new View.OnClickListener() {

 public void onClick(View v) {

 {

 bt.send("SA", true);

 }

 }

 });

 }

 public void connectScanner() {

 csvReader.setOnClickListener(new View.OnClickListener() {

 public void onClick(View v) {

 }

122

 });

 }

 //write to csv file

 public void writeToCsv(String x) throws IOException {

 Calendar c = Calendar.getInstance();

 File folder = new File(Environment.getExternalStorageDirectory() + "/project");

 boolean success = true;

 if (!folder.exists()) {

 success = folder.mkdir();

 }

 if (success) {

 // Do something on success

 String csv = "/storage/sdcard0/project/btvalue.csv";

 FileWriter file_writer = new FileWriter(csv,true);;

 String s=

c.get(Calendar.YEAR)+","+(c.get(Calendar.MONTH)+1)+","+c.get(Calendar.DATE)+","+c.get(C

alendar.HOUR)+","+c.get(Calendar.MINUTE)+","+c.get(Calendar.SECOND)+","+

c.get(Calendar.MILLISECOND)+","+x + "\n";

 file_writer.append(s);

 file_writer.close();

 }

 }

 @Override

 public void onStop() {

 super.onStop();

 }

 }

package

nsf.esarplab.scc

health;

 import android.app.Activity;

 import android.bluetooth.BluetoothAdapter;

123

 import android.content.Intent;

 import android.content.SharedPreferences;

 import android.os.Bundle;

 import android.support.v7.app.ActionBar;

 import android.support.v7.app.AppCompatActivity;

 import android.view.LayoutInflater;

 import android.view.Menu;

 import android.view.MenuItem;

 import android.view.View;

 import android.view.ViewGroup;

 import android.widget.Button;

 import android.widget.EditText;

 import android.widget.LinearLayout;

 import android.widget.PopupWindow;

 import android.widget.RadioButton;

 import android.widget.RadioGroup;

 import android.widget.TextView;

 import android.widget.Toast;

 //import com.google.android.gms.common.api.GoogleApiClient;

 import nsf.esarplab.bluetoothlibrary.BluetoothSPP;

 import nsf.esarplab.bluetoothlibrary.BluetoothState;

 import nsf.esarplab.bluetoothlibrary.DeviceList;

 public class AsthmaActivity extends AppCompatActivity {

 BluetoothSPP bt;

 Button test;

 TextView hrData, oximetryData, connectionRead;

 EditText etMessage;

 //private GoogleApiClient client;

 private boolean pdReceived = false;

 private boolean hrReceived = false;

 private boolean tenReceived = false;

 private boolean poReceived=false;

 private int sensor=1;

 Menu menu;

 String s = "";

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_asthma);

 // show action bar

 ActionBar myActionBar = getSupportActionBar();

 myActionBar.show();

 TextView mNameText = (TextView) findViewById(R.id.display_name);

 bt = new BluetoothSPP(this);

 // receive intent

 test=(Button) findViewById(R.id.test);

124

 hrData = (TextView) findViewById(R.id.display_bdt);

 oximetryData=(TextView) findViewById(R.id.display_spo2);

 connectionRead = (TextView) findViewById(R.id.textStatus);

 //Show active profile

 SharedPreferences prefs = getSharedPreferences("logindetails",MODE_PRIVATE);

 String Uname = prefs.getString("loginname","Default");

 mNameText.setText("\t\t"+Uname);

 s = mNameText.getText().toString().trim();

 // Set active profile

 /*//reading profile from file

 try {

 FileInputStream fileIn = openFileInput("mytextfile.txt");

 InputStreamReader InputRead = new InputStreamReader(fileIn);

 char[] inputBuffer = new char[READ_BLOCK_SIZE];

 *//*String s="";*//*

 int charRead;

 while ((charRead = InputRead.read(inputBuffer)) > 0) {

 // char to string conversion

 String readstring = String.copyValueOf(inputBuffer, 0, charRead);

 s += readstring;

 }

 InputRead.close();

 *//*mNameText.setText(s);*//*

 *//*Toast.makeText(getBaseContext(), s,Toast.LENGTH_SHORT).show();*//*

 } catch (Exception e) {

 e.printStackTrace();

 }

 mNameText.setText(s);*/

 // set the bluetooth connection

 bt.setOnDataReceivedListener(new BluetoothSPP.OnDataReceivedListener() {

 public void onDataReceived(byte[] data, String message) {

 //textReceived.append(message + "\n");

 if (tenReceived == true) {

 //receive data

 switch (sensor) {

 case 1: {

 hrData.append(message + "\n");

 break;

125

 }

 case 2: {

 oximetryData.append(message + "\n");

 break;

 }

 }

 } else {

 if (message.equals("PD")) {

 switch (sensor) {

 case 1: {

 bt.send("HR", true);

 pdReceived = true;

 break;

 }

 case 2: {

 bt.send("PO", true);

 pdReceived = true;

 break;

 }

 }

 } else {

 if (message.equals("HR") && pdReceived) {

 bt.send("10", true);

 hrReceived = true;

 } else if (message.equals("PO") && pdReceived) {

 bt.send("5", true);

 poReceived = true;

 } else {

 if (message.equals("10") && pdReceived && hrReceived) {

 bt.send("OK", true);

 tenReceived = true;

 }

 else if (message.equals("5") && pdReceived && poReceived) {

 bt.send("OK", true);

 tenReceived = true;

 } else {

 hrData.append("Failed Handshake");

 }

 }

 }

 }

 }

 });

126

 bt.setBluetoothConnectionListener(new BluetoothSPP.BluetoothConnectionListener()

{

 public void onDeviceDisconnected() {

 connectionRead.setText("Status : Not connect");

 menu.clear();

 getMenuInflater().inflate(R.menu.menu_connection, menu);

 }

 public void onDeviceConnectionFailed() {

 connectionRead.setText("Status : Connection failed");

 }

 public void onDeviceConnected(String name, String address) {

 connectionRead.setText("Status : Connected to " + name);

 menu.clear();

 getMenuInflater().inflate(R.menu.menu_disconnection, menu);

 }

 });

 // set corresponding display for selected sensor

 final LinearLayout hrlayout = (LinearLayout) findViewById(R.id.hr_result);

 final LinearLayout spo2layout = (LinearLayout) findViewById(R.id.spo2_result);

 RadioButton rbOxygen = (RadioButton) findViewById(R.id.rb_o2);

 RadioButton rbheartRate = (RadioButton) findViewById(R.id.rb_hr);

 hrlayout.setVisibility(View.VISIBLE);

 spo2layout.setVisibility(View.GONE);

 RadioGroup radioGroup = (RadioGroup) findViewById(R.id.rg1);

 radioGroup.setOnCheckedChangeListener(new

RadioGroup.OnCheckedChangeListener() {

 @Override

 public void onCheckedChanged(RadioGroup group, int checkedId) {

 if (checkedId == R.id.rb_o2) {

 sensor=2;

 hrlayout.setVisibility(View.GONE);

 spo2layout.setVisibility(View.VISIBLE);

 } else {

 hrlayout.setVisibility(View.VISIBLE);

 spo2layout.setVisibility(View.GONE);

 }

 }

 });

 // inflate the screen for info and instruction

 final TextView btnOpenPopup = (TextView) findViewById(R.id.info);

 btnOpenPopup.setOnClickListener(new Button.OnClickListener() {

127

 @Override

 public void onClick(View arg0) {

 LayoutInflater layoutInflater

 = (LayoutInflater) getBaseContext()

 .getSystemService(LAYOUT_INFLATER_SERVICE);

 View popupView = layoutInflater.inflate(R.layout.info_copd, null);

 final PopupWindow popupWindow = new PopupWindow(

 popupView,

 ViewGroup.LayoutParams.WRAP_CONTENT,

 ViewGroup.LayoutParams.WRAP_CONTENT);

 Button btnDismiss = (Button) popupView.findViewById(R.id.dismiss);

 btnDismiss.setOnClickListener(new Button.OnClickListener() {

 @Override

 public void onClick(View v) {

 // TODO Auto-generated method stub

 popupWindow.dismiss();

 }

 });

 popupWindow.showAsDropDown(btnOpenPopup, 50, -30);

 }

 });

 final TextView btnOpenInstruction = (TextView) findViewById(R.id.inst);

 btnOpenInstruction.setOnClickListener(new Button.OnClickListener() {

 @Override

 public void onClick(View arg0) {

 LayoutInflater layoutInflater

 = (LayoutInflater) getBaseContext()

 .getSystemService(LAYOUT_INFLATER_SERVICE);

 View popupView = layoutInflater.inflate(R.layout.inst_copd, null);

 final PopupWindow popupWindow = new PopupWindow(

 popupView,

 ViewGroup.LayoutParams.WRAP_CONTENT,

 ViewGroup.LayoutParams.WRAP_CONTENT);

 Button btnDismiss = (Button) popupView.findViewById(R.id.dismiss);

 btnDismiss.setOnClickListener(new Button.OnClickListener() {

 @Override

 public void onClick(View v) {

 // TODO Auto-generated method stub

 popupWindow.dismiss();

128

 }

 });

 popupWindow.showAsDropDown(btnOpenPopup, 50, -30);

 }

 });

 }

 // @Override

 /* public void onStart() {

 super.onStart();

 if (!mBoundService.isBluetoothEnabled()) {

 Intent intent = new Intent(BluetoothAdapter.ACTION_REQUEST_ENABLE);

 startActivityForResult(intent, BluetoothState.REQUEST_ENABLE_BT);

 } else {

 if (!mBoundService.isServiceAvailable()) {

 mBoundService.setupService();

 mBoundService.startService(BluetoothState.DEVICE_ANDROID);

 setup();

 }

 }

 }*/

 public void onDestroy() {

 super.onDestroy();

 bt.stopService();

 }

 public boolean onCreateOptionsMenu(Menu menu) {

 this.menu = menu;

 getMenuInflater().inflate(R.menu.menu_connection, menu);

 return true;

 }

 public boolean onOptionsItemSelected(MenuItem item) {

 int id = item.getItemId();

 if (id == R.id.menu_android_connect) {

 bt.setDeviceTarget(BluetoothState.DEVICE_ANDROID);

 /*

 if(bt.getServiceState() ==

BluetoothState.STATE_CONNECTED)

 bt.disconnect();*/

 Intent intent = new Intent(getApplicationContext(), DeviceList.class);

 startActivityForResult(intent, BluetoothState.REQUEST_CONNECT_DEVICE);

129

 } else if (id == R.id.menu_device_connect) {

 bt.setDeviceTarget(BluetoothState.DEVICE_OTHER);

 /*

 if(bt.getServiceState() ==

BluetoothState.STATE_CONNECTED)

 bt.disconnect();*/

 Intent intent = new Intent(getApplicationContext(), DeviceList.class);

 startActivityForResult(intent, BluetoothState.REQUEST_CONNECT_DEVICE);

 } else if (id == R.id.menu_disconnect) {

 if (bt.getServiceState() == BluetoothState.STATE_CONNECTED)

 bt.disconnect();

 }

 else if (id == R.id.menu_reinitialize) {

 hrData.setText("");

 oximetryData.setText("");

 }

 return super.onOptionsItemSelected(item);

 }

 public void onStart() {

 super.onStart();

 if (!bt.isBluetoothEnabled()) {

 Intent intent = new Intent(BluetoothAdapter.ACTION_REQUEST_ENABLE);

 startActivityForResult(intent, BluetoothState.REQUEST_ENABLE_BT);

 } else {

 if (!bt.isServiceAvailable()) {

 bt.setupService();

 bt.startService(BluetoothState.DEVICE_ANDROID);

 setup();

 }

 }

 }

 public void onActivityResult(int requestCode, int resultCode, Intent data) {

 if (requestCode == BluetoothState.REQUEST_CONNECT_DEVICE) {

 if (resultCode == Activity.RESULT_OK)

 bt.connect(data);

 } else if (requestCode == BluetoothState.REQUEST_ENABLE_BT) {

 if (resultCode == Activity.RESULT_OK) {

 bt.setupService();

 bt.startService(BluetoothState.DEVICE_ANDROID);

 setup();

 } else {

 Toast.makeText(getApplicationContext()

 , "BluetoothActivity was not enabled."

 , Toast.LENGTH_SHORT).show();

 finish();

 }

 }

 }

130

 public void setup() {

 test.setOnClickListener(new View.OnClickListener() {

 public void onClick(View v) {

 {

 bt.send("PD", true);

 }

 }

 });

 }

 @Override

 public void onStop() {

 super.onStop();

 }

 }

package

nsf.esarplab.scc

health;

 import android.app.Activity;

 import android.app.ProgressDialog;

 import android.bluetooth.BluetoothAdapter;

 import android.content.ContentValues;

 import android.content.Context;

 import android.content.DialogInterface;

 import android.content.Intent;

 import android.content.SharedPreferences;

 import android.database.sqlite.SQLiteDatabase;

 import android.graphics.Color;

 import android.graphics.drawable.GradientDrawable;

 import android.os.Bundle;

 import android.os.CountDownTimer;

 import android.os.Environment;

 import android.os.Handler;

 import android.support.v7.app.ActionBar;

 import android.support.v7.app.AlertDialog;

 import android.support.v7.app.AppCompatActivity;

 import android.telephony.SmsManager;

 import android.util.Log;

 import android.view.Gravity;

 import android.view.LayoutInflater;

 import android.view.Menu;

 import android.view.MenuItem;

 import android.view.View;

131

 import android.view.ViewGroup;

 import android.widget.Button;

 import android.widget.ImageView;

 import android.widget.LinearLayout;

 import android.widget.PopupWindow;

 import android.widget.TextView;

 import android.widget.Toast;

 import com.jjoe64.graphview.GraphView;

 import com.jjoe64.graphview.GraphView.GraphViewData;

 import com.jjoe64.graphview.GraphViewSeries;

 import com.jjoe64.graphview.LineGraphView;

 import java.io.File;

 import java.io.FileWriter;

 import java.io.IOException;

 import java.lang.reflect.Method;

 import java.text.DateFormat;

 import java.text.DecimalFormat;

 import java.util.ArrayList;

 import java.util.Calendar;

 import java.util.Date;

 import java.util.List;

 import dalvik.system.DexClassLoader;

 import nsf.esarplab.bluetoothlibrary.BluetoothSPP;

 import nsf.esarplab.bluetoothlibrary.BluetoothState;

 import nsf.esarplab.bluetoothlibrary.DeviceList;

 import static nsf.esarplab.scchealth.R.id.graph1;

 public class FluActivity extends AppCompatActivity {

 BluetoothSPP bt;

 double ratingOfEOI = 0.0;

 Float severityRating;

 String s="";

 Intent mIntent;

 private final Handler mHandler = new Handler();

 private Runnable mTimer1;

 private int fileSeq=1;

 private TextView connectionRead;

 private TextView mNameText;

 private TextView mDateTime;

 private TextView mTemperature;

 private TextView mEoi;

 private Button connectScanner, test, dispResult;

 //private WifiManager wifiManager;

 private boolean diseaseKey = false;

 private boolean sensorKey = false;

 private boolean timeKey = false;

 private boolean connected=false;

132

 private int sensor = 1;

 private String tempReceived, eoiValue, sSeverity;

 private String currentDateTime = "";

 private TextView Vdatetime, gradient, Textv, Veoi, Vprompt;

 //String mealId = " ";

 private String eoiRating = "0";

 private String prompt = " ";

 private String sEOI="";

 private String sTemperature="";

 private Menu menu;

 private ImageView arrow1, arrow2, arrow3, arrow4, arrow5,

arrow6, arrow7, arrow8, arrow9, arrow10, arrow11;

 private LinearLayout mDisplay, graph;

 private ArrayList<String> arr_hex = new ArrayList<String>();

 private ArrayList<Short> arr_received = new ArrayList<Short>();

 private ProgressDialog progressDialog;

 private CountDownTimer Count;

 private PopupWindow pw;

 private GraphView graphView1;

 private GraphViewSeries exampleSeries1;

 private double sensorX = 0;

 private List<GraphViewData> seriesX;

 int dataCount = 1;

 //temp db finish

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 bt = new BluetoothSPP(this);

 //

((cBaseApplication)this.getApplicationContext()).myBlueComms.Bl

uetoothConnectionListener();

 /* if(bt.isBluetoothEnabled())

 Toast.makeText(this,"b

on",Toast.LENGTH_SHORT).show();

 else

 Toast.makeText(this,"b

off",Toast.LENGTH_SHORT).show();

 */

 setContentView(R.layout.activity_body_temp);

 // show action bar

 ActionBar myActionBar = getSupportActionBar();

 myActionBar.show();

133

 /*startService(new Intent(this, BluetoothSPP.class));

 bindService(mIntent, mConnection,

BIND_AUTO_CREATE);*/

 // Find all relevant views that we will need to read user input

from

 mNameText = (TextView) findViewById(R.id.display_name);

 mDateTime = (TextView) findViewById(R.id.datetime);

 mTemperature = (TextView) findViewById(R.id.display_bdt);

 mEoi = (TextView) findViewById(R.id.display_eoi);

 test = (Button) findViewById(R.id.test);

 dispResult = (Button) findViewById(R.id.displayResult);

 connectScanner = (Button) findViewById(R.id.cScanner);

 Vdatetime = (TextView) findViewById(R.id.datetime);

 Textv = (TextView) findViewById(R.id.display_bdt);

 Veoi = (TextView) findViewById(R.id.display_eoi);

 Vprompt = (TextView) findViewById(R.id.display_prompt);

 connectionRead = (TextView) findViewById(R.id.textStatus);

 mDisplay = (LinearLayout) findViewById(R.id.maindisplay);

 graph=(LinearLayout) findViewById(R.id.graph1);

 arrow1 = (ImageView) findViewById(R.id.arrow1);

 arrow2 = (ImageView) findViewById(R.id.arrow2);

 arrow3 = (ImageView) findViewById(R.id.arrow3);

 arrow4 = (ImageView) findViewById(R.id.arrow4);

 arrow5 = (ImageView) findViewById(R.id.arrow5);

 arrow6 = (ImageView) findViewById(R.id.arrow6);

 arrow7 = (ImageView) findViewById(R.id.arrow7);

 arrow8 = (ImageView) findViewById(R.id.arrow8);

 arrow9 = (ImageView) findViewById(R.id.arrow9);

 arrow10 = (ImageView) findViewById(R.id.arrow10);

 arrow11 = (ImageView) findViewById(R.id.arrow11);

 // Set active profile

 //Show active profile

 SharedPreferences prefs =

getSharedPreferences("logindetails",MODE_PRIVATE);

 String Uname = prefs.getString("loginname","Default");

 mNameText.setText("\t\t"+Uname);

 s = mNameText.getText().toString().trim();

 //show graph

 seriesX = new ArrayList<GraphViewData>();

 // init example series data

134

 exampleSeries1 = new GraphViewSeries(new

GraphViewData[] {});

 graphView1 = new LineGraphView(

 this // context

 , "Real time plot" // heading

);

 graphView1.addSeries(exampleSeries1); // data

 LinearLayout layout = (LinearLayout) findViewById(graph1);

 layout.addView(graphView1);

 /*

 //reading text from file

 try {

 FileInputStream fileIn = openFileInput("mytextfile.txt");

 InputStreamReader InputRead = new

InputStreamReader(fileIn);

 char[] inputBuffer = new char[READ_BLOCK_SIZE];

 *//*String s="";*//*

 int charRead;

 while ((charRead = InputRead.read(inputBuffer)) > 0) {

 // char to string conversion

 String readstring = String.copyValueOf(inputBuffer, 0,

charRead);

 s += readstring;

 }

 InputRead.close();

 *//*mNameText.setText(s);*//*

 *//*Toast.makeText(getBaseContext(),

s,Toast.LENGTH_SHORT).show();*//*

 } catch (Exception e) {

 e.printStackTrace();

 }

 mNameText.setText(s);*/

 // hide main display

 mDisplay.setVisibility(View.INVISIBLE);

 graph.setVisibility(View.INVISIBLE);

 arrow1.setVisibility(View.INVISIBLE);

 arrow2.setVisibility(View.INVISIBLE);

 arrow3.setVisibility(View.INVISIBLE);

 arrow4.setVisibility(View.INVISIBLE);

 arrow5.setVisibility(View.INVISIBLE);

 arrow6.setVisibility(View.INVISIBLE);

 arrow7.setVisibility(View.INVISIBLE);

135

 arrow8.setVisibility(View.INVISIBLE);

 arrow9.setVisibility(View.INVISIBLE);

 arrow10.setVisibility(View.INVISIBLE);

 arrow11.setVisibility(View.INVISIBLE);

 // Find the View that shows the save button

 /*Button save = (Button) findViewById(R.id.save);

 // Set a click listener on that View

 save.setOnClickListener(new View.OnClickListener() {

 // The code in this method will be executed when the

numbers category is clicked on.

 @Override

 public void onClick(View view) {

 // Save record to database

 insertTemp();

 // Exit activity

 finish();

 }

 });*/

 // color line gradient

 gradient = (TextView) findViewById(R.id.active_gradient);

 int[] colors = {Color.parseColor("#008000"),

Color.parseColor("#FFFF00"), Color.parseColor("#FFA500"),

Color.parseColor("#ff0000"), Color.parseColor("#800000")};

 GradientDrawable gd = new GradientDrawable(

 GradientDrawable.Orientation.LEFT_RIGHT, colors);

 gradient.setBackground(gd);

 // pop up window for info and instruction

 final TextView btnOpenPopup = (TextView)

findViewById(R.id.info);

 btnOpenPopup.setOnClickListener(new

Button.OnClickListener() {

 @Override

136

 public void onClick(View arg0) {

 LayoutInflater layoutInflater

 = (LayoutInflater) getBaseContext()

.getSystemService(LAYOUT_INFLATER_SERVICE);

 View popupView =

layoutInflater.inflate(R.layout.info_bodytemp, null);

 final PopupWindow popupWindow = new PopupWindow(

 popupView,

 ViewGroup.LayoutParams.WRAP_CONTENT,

 ViewGroup.LayoutParams.WRAP_CONTENT);

 Button btnDismiss = (Button)

popupView.findViewById(R.id.dismiss);

 btnDismiss.setOnClickListener(new

Button.OnClickListener() {

 @Override

 public void onClick(View v) {

 // TODO Auto-generated method stub

 popupWindow.dismiss();

 }

 });

 popupWindow.showAsDropDown(btnOpenPopup, 50, -

30);

 }

 });

 final TextView btnOpenInstruction = (TextView)

findViewById(R.id.inst);

 btnOpenInstruction.setOnClickListener(new

Button.OnClickListener() {

 @Override

 public void onClick(View arg0) {

 LayoutInflater layoutInflater

 = (LayoutInflater) getBaseContext()

.getSystemService(LAYOUT_INFLATER_SERVICE);

 View popupView =

layoutInflater.inflate(R.layout.inst_bodytemp, null);

 final PopupWindow popupWindow = new PopupWindow(

 popupView,

 ViewGroup.LayoutParams.WRAP_CONTENT,

 ViewGroup.LayoutParams.WRAP_CONTENT);

137

 Button btnDismiss = (Button)

popupView.findViewById(R.id.dismiss);

 btnDismiss.setOnClickListener(new

Button.OnClickListener() {

 @Override

 public void onClick(View v) {

 // TODO Auto-generated method stub

 popupWindow.dismiss();

 }

 });

 popupWindow.showAsDropDown(btnOpenPopup, 50, -

30);

 }

 });

 // connect scanner by bluetooth

 connectScanner.setOnClickListener(new

View.OnClickListener() {

 @Override

 public void onClick(View view) {

 bt.setDeviceTarget(BluetoothState.DEVICE_OTHER);

 /*

 if(bt.getServiceState() ==

BluetoothState.STATE_CONNECTED)

 bt.disconnect();*/

 Intent intent = new Intent(getApplicationContext(),

DeviceList.class);

 startActivityForResult(intent,

BluetoothState.REQUEST_CONNECT_DEVICE);

 }

 });

 dispResult.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 tempAlgorithm(v);

 }

 });

 //EOI color ranking

138

 //LinearLayout mainDisplay=(LinearLayout)

findViewById(R.id.maindisplay);

 //mainDisplay.setVisibility(View.INVISIBLE);

 // set the bluetooth connection

 bt.setOnDataReceivedListener(new

BluetoothSPP.OnDataReceivedListener() {

 public void onDataReceived(byte[] data, String message) {

 short val = 0;

 String readAscii = new String(data);

 //Log.i("Str@activity", readAscii);

 //textReceived.append(message + "\n");

 if (timeKey) {

 //receive data

 arr_hex.add(message);

 Log.i("size_arr_hex",""+arr_hex.size());

 if (arr_hex.size() == 2) {

 String catHex = arr_hex.get(0) + arr_hex.get(1);

 /*int b0 = (arr_hex.get(0) & 255); // converts to

unsigned

 int b1 = (arr_hex.get(1) & 255); // converts to

unsigned

 int val = b0 << 8 | b1;*/

 Log.i("val1@final", catHex);

 val = (short) (Integer.parseInt(catHex, 16));

 Log.i("val2@final", String.valueOf(val));

 arr_received.add(val);

 //Textv.append(Integer.toString(val) + "\n");

 seriesX.add(new GraphViewData(dataCount, val));

 dataCount++;

 if (arr_received.size() > 600) {

 seriesX.remove(0);

 graphView1.setViewPort(dataCount - 600, 600);

 }

 try {

 writeToCsv(Integer.toString(val));

 } catch (IOException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

139

 }

 arr_hex.clear();

 Log.i("sizearr_received", "" + arr_received.size());

 }

 } else {

 if (readAscii.equals("OS")) {

 bt.send("TP", true);

 diseaseKey = true;

 } else {

 if (readAscii.equals("TP") && diseaseKey) {

 bt.send("00020", true);

 sensorKey = true;

 } else {

 if (readAscii.equals("00020") && diseaseKey &&

sensorKey) {

 bt.send("OK", true);

 timeKey = true;

 } else {

 mDisplay.setVisibility(View.VISIBLE);

 arrow1.setVisibility(View.INVISIBLE);

 arrow2.setVisibility(View.INVISIBLE);

 arrow3.setVisibility(View.INVISIBLE);

 arrow4.setVisibility(View.INVISIBLE);

 arrow5.setVisibility(View.INVISIBLE);

 arrow6.setVisibility(View.INVISIBLE);

 arrow7.setVisibility(View.INVISIBLE);

 arrow8.setVisibility(View.INVISIBLE);

 arrow9.setVisibility(View.INVISIBLE);

 arrow10.setVisibility(View.INVISIBLE);

 arrow11.setVisibility(View.INVISIBLE);

 Toast.makeText(getApplicationContext(),

"Failed Handshake", Toast.LENGTH_LONG).show();

 Count.cancel();

 progressDialog.dismiss();

 }

 }

 }

 }

 }

 });

140

 bt.setBluetoothConnectionListener(new

BluetoothSPP.BluetoothConnectionListener() {

 public void onDeviceDisconnected() {

 connectionRead.setText("Status : Not connect");

 connected=false;

 menu.clear();

 getMenuInflater().inflate(R.menu.menu_connection,

menu);

 }

 public void onDeviceConnectionFailed() {

 connectionRead.setText("Status : Connection failed");

 AlertDialog.Builder builder = new

AlertDialog.Builder(FluActivity.this);

 builder.setTitle("Connection Error");

 builder.setMessage("Retry to connect");

 // add the buttons

 builder.setPositiveButton("Retry", new

DialogInterface.OnClickListener() {

 @Override

 public void onClick(DialogInterface dialog, int which) {

 // do something ...

bt.setDeviceTarget(BluetoothState.DEVICE_OTHER);

 Intent intent = new Intent(getApplicationContext(),

DeviceList.class);

 startActivityForResult(intent,

BluetoothState.REQUEST_CONNECT_DEVICE);

 dialog.dismiss();

 }

 });

 builder.setNegativeButton("Cancel", null);

 // create and show the alert dialog

 AlertDialog dialog = builder.create();

 dialog.show();

 }

 public void onDeviceConnected(String name, String address)

{

 connectionRead.setText("Status : Connected to " + name);

 connected=true;

 menu.clear();

 getMenuInflater().inflate(R.menu.menu_disconnection,

menu);

 }

 });

141

 }

 /**

 * save new entry into database.

 */

 private void insertTemp() {

 // Read from input fields

 // Use trim to eliminate leading or trailing white space

 String nameString = mNameText.getText().toString().trim();

 String dateString = mDateTime.getText().toString().trim();

 String valueString = mTemperature.getText().toString().trim();

 String eoiString = eoiValue;

 // Create database helper

 TempDbHelper mDbHelper = new TempDbHelper(this);

 // Gets the database in write mode

 SQLiteDatabase db = mDbHelper.getWritableDatabase();

 // Create a ContentValues object where column names are the

keys,

 // and attributes from the editor are the values.

 ContentValues values = new ContentValues();

values.put(TempContract.TempEntry.COLUMN_PATIENT_NAME

, nameString);

values.put(TempContract.TempEntry.COLUMN_DATE_TIME,

dateString);

values.put(TempContract.TempEntry.COLUMN_TEMP_VALUE,

sTemperature);

values.put(TempContract.TempEntry.COLUMN_EOI_RATING,

sEOI);

 // Insert a new row in the database, returning the ID of that new

row.

 long newRowId =

db.insert(TempContract.TempEntry.TABLE_NAME, null, values);

 // Show a toast message depending on whether or not the

insertion was successful

 if (newRowId == -1) {

 // If the row ID is -1, then there was an error with insertion.

 Toast.makeText(this, "Error with saving",

Toast.LENGTH_SHORT).show();

 } else {

142

 // Otherwise, the insertion was successful and we can display

a toast with the row ID.

 Toast.makeText(this, "saved with row id: " + newRowId,

Toast.LENGTH_SHORT).show();

 }

 }

 public void onDestroy() {

 super.onDestroy();

 bt.stopService();

 }

 // menu options

 public boolean onCreateOptionsMenu(Menu menu) {

 this.menu = menu;

 getMenuInflater().inflate(R.menu.menu_connection, menu);

 return true;

 }

 public boolean onOptionsItemSelected(MenuItem item) {

 switch (item.getItemId()) {

 case R.id.menu_android_connect:

 bt.setDeviceTarget(BluetoothState.DEVICE_ANDROID);

 /*

 if(bt.getServiceState() ==

BluetoothState.STATE_CONNECTED)

 bt.disconnect();*/

 Intent intent = new Intent(getApplicationContext(),

DeviceList.class);

 startActivityForResult(intent,

BluetoothState.REQUEST_CONNECT_DEVICE);

 return true;

 case R.id.menu_device_connect:

 bt.setDeviceTarget(BluetoothState.DEVICE_OTHER);

 /*

 if(bt.getServiceState() ==

BluetoothState.STATE_CONNECTED)

 bt.disconnect();*/

 Intent intent2 = new Intent(getApplicationContext(),

DeviceList.class);

143

 startActivityForResult(intent2,

BluetoothState.REQUEST_CONNECT_DEVICE);

 return true;

 case R.id.menu_disconnect:

 if (bt.getServiceState() ==

BluetoothState.STATE_CONNECTED)

 bt.disconnect();

 return true;

 case R.id.menu_reinitialize:

 Textv.setText("");

 Vdatetime.setText("");

 Vprompt.setText("");

 Veoi.setText("");

 graph.setVisibility(View.INVISIBLE);

 arr_received.clear();

 seriesX.clear();

 dataCount = 1;

 mDisplay.setVisibility(View.INVISIBLE);

 diseaseKey = false;

 sensorKey = false;

 timeKey = false;

 return true;

 case R.id.action_save:

 // Save record to database

 insertTemp();

 // Exit activity

 //finish();

 return true;

 // Respond to a click on the "Share to SCC" menu option

 case R.id.action_share:

 if(s.matches("")) {

 Toast.makeText(getApplicationContext(), "Create

Profile First ", Toast.LENGTH_LONG).show();

 }else{

 // Go to cloud activity

144

 Intent shareIntent = new Intent(FluActivity.this,

CloudActivity.class);

 //Bundle extras = new Bundle();

 shareIntent.putExtra("DT", "BT");

 shareIntent.putExtra("profile", s);

 shareIntent.putExtra("EOI", eoiValue);

 shareIntent.putExtra("Time", currentDateTime);

 shareIntent.putExtra("Algorithm", "BT1");

 startActivity(shareIntent);

 return true;

 }

 case R.id.action_sms:

 String messageToSend = "EOI:" + eoiValue;

 String number = "9015157371";

 SmsManager.getDefault().sendTextMessage(number, null,

messageToSend, null, null);

 //finish();

 return true;

 case R.id.action_history:

 // Create a new intent to open the {@link Temperature

History}

 Intent temperatureHistoryIntent = new

Intent(FluActivity.this, Temp_HistoryActivity.class);

 // Start the new activity

 startActivity(temperatureHistoryIntent);

 //finish();

 return true;

 case R.id.action_algorithm:

 Intent algIntent = new Intent(FluActivity.this,

FluMethods.class);

 startActivity(algIntent);

 return true;

 }

 return super.onOptionsItemSelected(item);

 }

 public void onStart() {

 super.onStart();

 if (!bt.isBluetoothEnabled()) {

 Intent intent = new

Intent(BluetoothAdapter.ACTION_REQUEST_ENABLE);

 startActivityForResult(intent,

BluetoothState.REQUEST_ENABLE_BT);

 } else {

 if (!bt.isServiceAvailable()) {

145

 bt.setupService();

 bt.startService(BluetoothState.DEVICE_ANDROID);

 setup();

 }

 }

 }

 public void onActivityResult(int requestCode, int resultCode,

Intent data) {

 if (requestCode ==

BluetoothState.REQUEST_CONNECT_DEVICE) {

 if (resultCode == Activity.RESULT_OK)

 bt.connect(data);

 } else if (requestCode ==

BluetoothState.REQUEST_ENABLE_BT) {

 if (resultCode == Activity.RESULT_OK) {

 bt.setupService();

 bt.startService(BluetoothState.DEVICE_ANDROID);

 setup();

 } else {

 Toast.makeText(getApplicationContext()

 , "BluetoothActivity was not enabled."

 , Toast.LENGTH_SHORT).show();

 finish();

 }

 }

 }

 @Override

 protected void onResume() {

 super.onResume();

 mTimer1 = new Runnable() {

 @Override

 public void run() {

 GraphViewData[] gvd = new

GraphViewData[seriesX.size()];

 seriesX.toArray(gvd);

 exampleSeries1.resetData(gvd);

 mHandler.post(this); //, 100);

 }

 };

 mHandler.postDelayed(mTimer1, 100);

 }

 public void setup() {

 test.setOnClickListener(new View.OnClickListener() {

 public void onClick(View v) {

 {

 if (connected) {

146

 bt.send("OS", true);

 graph.setVisibility(View.VISIBLE);

 // progress indicator

 progressDialog = new

ProgressDialog(FluActivity.this,

 R.style.AppTheme_Dark_Dialog);

 progressDialog.setIndeterminate(true);

 progressDialog.setMessage("Collecting data...");

 Count=new CountDownTimer(500, 100) {

 public void onTick(long millisecondsUntilDone) {

 progressDialog.show();

 }

 @Override

 public void onFinish() {

 Log.i("Done", "Count Down Timer Finished");

 progressDialog.dismiss();

 }

 }.start();

 } else {

 Toast.makeText(getApplicationContext(), "Get

Connected First", Toast.LENGTH_SHORT).show();

 }

 }

 }

 });

 }

 @Override

 public void onStop() {

 super.onStop();

 }

 public void tempAlgorithm(View v) {

147

 ArrayList<Short> arr_trans = new ArrayList<Short>();

 ArrayList<Short> arr_processed1 = new ArrayList<Short>();

 ArrayList<Short> arr_processed2 = new ArrayList<Short>();

 float sum = 0.0f;

 float sum1 = 0.0f;

 float sum2 = 0.0f;

 float avgValue = 0.0f;

 float avgValue1 = 0.0f;

 float avgValue2 = 0.0f;

 float resultVoltage=0.0f;

 double temperature=0.0f;

 // make main display visible and hide arrows

 mDisplay.setVisibility(View.VISIBLE);

 arrow1.setVisibility(View.INVISIBLE);

 arrow2.setVisibility(View.INVISIBLE);

 arrow3.setVisibility(View.INVISIBLE);

 arrow4.setVisibility(View.INVISIBLE);

 arrow5.setVisibility(View.INVISIBLE);

 arrow6.setVisibility(View.INVISIBLE);

 arrow7.setVisibility(View.INVISIBLE);

 arrow8.setVisibility(View.INVISIBLE);

 arrow9.setVisibility(View.INVISIBLE);

 arrow10.setVisibility(View.INVISIBLE);

 arrow11.setVisibility(View.INVISIBLE);

 // display when there is no data

 if (arr_received.size() == 0) {

 mDisplay.setVisibility(View.VISIBLE);

 Textv.setText("No Data");

 // Veoi.setText("No Data");

 } else {

 // get date and time

 currentDateTime =

DateFormat.getDateTimeInstance().format(new Date());

 // initialize the screen

 Vdatetime.setText("");

 Textv.setText("");

 //Vprompt.setText("");

 //Veoi.setText("");

 // temperature processing begin

 /* for (int i = 0; i < arr_received.size(); i++) {

 if ((arr_received.get(i)>0)&&(arr_received.get(i)<9000)) {

 arr_trans.add(arr_received.get(i));

148

 Log.i("transferrred", "" + arr_received.get(i));

 }

 }*/

 short value=arr_received.get(0);

 for (int i=0;i<arr_received.size();i++)

 {

 short currentValue=arr_received.get(i);

 value+=((currentValue - value)/10);

 arr_processed1.add(i,value);

 try {

 writeToCsv(Integer.toString(value));

 } catch (IOException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 }

 // *****Feature 2

 // step-1-find maxima

 int max =arr_processed1.get(0);

 for (int l=0;l<arr_processed1.size(); l++){

 if(arr_processed1.get(l)> max){

 max = arr_processed1.get(l);

 }

 }

 Log.i("feature21", "" + max);

 // step-2-find maxima index

 int indexOfMaxima=0;

 for (int m=0; m<arr_processed1.size(); m++)

 {

 if (max==arr_processed1.get(m)){

 indexOfMaxima=m;

 break;

 }

 }

 // step-3-find maxima level

149

 float sumMaxima=0;

 for (int n=indexOfMaxima-10; n<indexOfMaxima+10; n++)

 {

 sumMaxima+=arr_processed1.get(n);

 }

 float avgMaxima=sumMaxima/20;

 Log.i("feature22", "" + avgMaxima);

 // ****feature

3**

 // step-1-find index of delay

 for (int q = 99; q < arr_processed1.size(); q++) {

 arr_trans.add(arr_processed1.get(q));

 }

 // step-2-find index of delay

 int indexOfDelay=0;

 for (int p=0; p<arr_trans.size(); p++)

 {

 if (((arr_trans.get(p))-2450)<5){

 indexOfDelay=p;

 break;

 }

 }

 Log.i("feature3", "" + indexOfDelay);

 // *****Feature 1

 // step-1-find minima

 int min =arr_trans.get(0);

 for (int i=0;i<arr_trans.size(); i++){

150

 if(arr_trans.get(i)< min){

 min = arr_trans.get(i);

 }

 }

 //System.out.println(min);

 // step-2-find minima index

 int indexOfMinima=0;

 for (int j=0; j<arr_trans.size(); j++)

 {

 if (min==arr_trans.get(j)){

 indexOfMinima=j;

 break;

 }

 }

 Log.i("feature11", "" + min);

 // step-3-find minima level

 float sumMinima=0;

 for (int k=indexOfMinima; k<indexOfMinima+10; k++)

 {

 sumMinima+=arr_trans.get(k);

 }

 float avgMinima=sumMinima/10;

 Log.i("feature12", "" + avgMinima);

 // ******Feature 4

 for (int s = 0; s < arr_trans.size(); s++) {

 sum += arr_trans.get(s);

 }

 avgValue = sum / arr_trans.size();

 Log.i("feature4", "" + avgValue);

 // ********** Multivariate regression

 // equation for temperature

151

 temperature= 228.6-0.04243*avgMaxima-

0.21267*indexOfDelay;

 double temp2=230.0-0.00142*avgMinima-

0.04203*avgMaxima-0.21037*indexOfDelay;

 Log.i("temp", "" + temp2);

 Log.i("sizer", "" + arr_received.size());

 Log.i("sizet", "" + arr_trans.size());

 Log.i("sizep", "" + arr_processed1.size());

 try {

 sTemperature=String.valueOf(new

DecimalFormat("###.##").format(temperature));

 ratingOfEOI = (temperature - 97) / 10;

 if(ratingOfEOI<0){

 ratingOfEOI=0;

 }else if(ratingOfEOI>1){

 ratingOfEOI=1;

 }

 sEOI = new

DecimalFormat("##.##").format(ratingOfEOI);

 sSeverity = new DecimalFormat("##.##").format(100 *

ratingOfEOI);

 if (temperature<= 97.5) {

 prompt = "Normal Temperature";

 arrow1.setVisibility(View.VISIBLE);

 sEOI="0.0";

 sSeverity="0.0";

 } else if (temperature <= 98.5) {

 prompt = "Normal Temperature";

 arrow2.setVisibility(View.VISIBLE);

 } else if (temperature <= 99.5) {

 prompt = "Normal Temperature";

 arrow3.setVisibility(View.VISIBLE);

 } else if (temperature <= 100.5) {

 prompt = "Normal Temperature";

 arrow4.setVisibility(View.VISIBLE);

 } else if (temperature <= 101.5) {

 prompt = "Low Fever,\nconsider consulting your

doctor";

 arrow5.setVisibility(View.VISIBLE);

 } else if (temperature <= 102.5) {

 prompt = "Medium Fever,\nConsult your doctor";

 arrow6.setVisibility(View.VISIBLE);

 } else if (temperature <= 103.5) {

 prompt = "High Fever,\nConsult your doctor";

 arrow7.setVisibility(View.VISIBLE);

 } else if (temperature <= 104.5) {

 prompt = "High Fever,\nConsult your doctor";

 arrow8.setVisibility(View.VISIBLE);

152

 } else if (temperature <= 105.5) {

 prompt = "Very High Fever,\nConsult your doctor

immediately";

 arrow9.setVisibility(View.VISIBLE);

 } else if (temperature <= 106.5) {

 prompt = "Very High Fever,\nConsult your doctor

immediately";

 arrow10.setVisibility(View.VISIBLE);

 } else if (temperature >= 106.5) {

 prompt = "Extremely High Fever,\nConsult your doctor

immediately";

 arrow11.setVisibility(View.VISIBLE);

 }

 } catch (NumberFormatException e) {

 prompt = "Invalid Data";

 gradient.setVisibility(View.INVISIBLE);

 }

 //------ displaying result

 Vdatetime.setText(currentDateTime);

 //Textv.append(sTemperature+"°F");

 Textv.append(String.format("%.1f",temperature)+"°F");

 Vprompt.append(prompt);

 //Veoi.append("fluSeverity(100) = " + result);

 Veoi.append(sSeverity);

 }

 // end temperature processing

 arr_received.clear();

 Log.i("sizearr_received", "" + arr_received.size());

 arr_trans.clear();

 arr_processed1.clear();

 arr_processed2.clear();

 fileSeq++;

 timeKey = false;

 diseaseKey = false;

 sensorKey = false;

 }

153

 private void initiatePopupWindow(View v) {

 try {

 //We need to get the instance of the LayoutInflater, use the

context of this activity

 LayoutInflater inflater = (LayoutInflater) FluActivity.this

.getSystemService(Context.LAYOUT_INFLATER_SERVICE);

 //Inflate the view from a predefined XML layout

 View layout = inflater.inflate(R.layout.flu_symp,

 (ViewGroup) findViewById(R.id.popup_element));

 // create a 300px width and 470px height PopupWindow

 pw = new PopupWindow(layout, 300, 470, true);

 // display the popup in the center

 pw.showAtLocation(v, Gravity.CENTER, 0, 0);

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 //write to csv file

 public void writeToCsv(String x) throws IOException {

 Calendar c = Calendar.getInstance();

 File folder = new

File(Environment.getExternalStorageDirectory() + "/project");

 boolean success = true;

 if (!folder.exists()) {

 success = folder.mkdir();

 }

 if (success) {

 // Do something on success

 String fileName = "flu" + String.valueOf(fileSeq) + ".csv";

 String csv = "/storage/emulated/0/project/"+fileName;

 FileWriter file_writer = new FileWriter(csv, true);

 String s = c.get(Calendar.YEAR) + "," +

(c.get(Calendar.MONTH) + 1) + "," + c.get(Calendar.DATE) + "," +

c.get(Calendar.HOUR) + "," + c.get(Calendar.MINUTE) + "," +

c.get(Calendar.SECOND) + "," + c.get(Calendar.MILLISECOND) +

"," + x + "\n";

 file_writer.append(s);

 file_writer.close();

154

 }

 }

 public String dexcallFluSeverity(Integer temp) {

 try {

 final String libPath =

Environment.getExternalStoragePublicDirectory(Environment.DIRE

CTORY_DOWNLOADS) + "/fludex.dex";//path to DEX file to

load

 final File tmpDir = getDir("dex", 0);//temp directory

optimized dex files should be written

 final DexClassLoader classloader = new

DexClassLoader(libPath, tmpDir.getAbsolutePath(), null,

this.getClass().getClassLoader());//create DexClassLoader object

 final Class<Object> classToLoad = (Class<Object>)

classloader.loadClass("com.example.eoiValue");//load class with

class name - eoiValue

 final Object myInstance =

classToLoad.newInstance();//create a instance of the class loaded

above

 final Method doSomething =

classToLoad.getMethod("fluSeverity", Integer.class);//get method of

the class loaded above

 String result = (String) doSomething.invoke(myInstance,

temp);//finally, invoke the method of the instance, while passing

parameter value

 return result;//return the method invocation result

 } catch (Exception e) {

 e.printStackTrace();

 }

 return null;

 }

 }

ackage nsf.esarplab.scchealth;

 import android.content.Intent;

 import android.os.Bundle;

 import android.support.v7.app.ActionBar;

 import android.support.v7.app.AppCompatActivity;

 import android.view.View;

 import android.view.View.OnClickListener;

 import android.widget.Button;

155

 public class BluetoothActivity extends

AppCompatActivity implements OnClickListener {

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.bluetooth);

 // show action bar

 ActionBar myActionBar = getSupportActionBar();

 myActionBar.show();

 /*Button btnSimple = (Button)

findViewById(R.id.btnSimple);

 btnSimple.setOnClickListener(this);

 Button btnListener = (Button)

findViewById(R.id.btnListener);

 btnListener.setOnClickListener(this);

 Button btnAutoConnect = (Button)

findViewById(R.id.btnAutoConnect);

 btnAutoConnect.setOnClickListener(this);*/

 Button btnDeviceList = (Button)

findViewById(R.id.btnDeviceList);

 btnDeviceList.setOnClickListener(this);

 Button btnTerminal = (Button)

findViewById(R.id.btnTerminal);

 btnTerminal.setOnClickListener(this);

 Button btnPair = (Button)

findViewById(R.id.btnPair);

 btnPair.setOnClickListener(this);

 }

 public void onClick(View v) {

 int id = v.getId();

 Intent intent = null;

 switch (id) {

 /*case R.id.btnSimple:

 intent = new Intent(getApplicationContext(),

SimpleActivity.class);

 startActivity(intent);

156

 break;

 case R.id.btnListener:

 intent = new Intent(getApplicationContext(),

ListenerActivity.class);

 startActivity(intent);

 break;

 case R.id.btnAutoConnect:

 intent = new Intent(getApplicationContext(),

AutoConnectActivity.class);

 startActivity(intent);

 break;*/

 case R.id.btnDeviceList:

 intent = new Intent(getApplicationContext(),

DeviceListActivity.class);

 startActivity(intent);

 break;

 case R.id.btnTerminal:

 intent = new Intent(getApplicationContext(),

TerminalActivity.class);

 startActivity(intent);

 break;

 case R.id.btnPair:

 intent = new Intent(getApplicationContext(),

BluetoothPair.class);

 startActivity(intent);

 break;

 }

 }

 }

package

nsf.esarplab.scchealth;

 import android.bluetooth.BluetoothAdapter;

 import android.bluetooth.BluetoothClass;

 import android.bluetooth.BluetoothDevice;

 import android.content.BroadcastReceiver;

 import android.content.Context;

 import android.content.Intent;

 import android.content.IntentFilter;

 import android.os.Bundle;

 import android.os.Handler;

 import android.os.Message;

 import android.support.v7.app.AppCompatActivity;

 import android.util.Log;

 import android.view.View;

 import android.widget.AdapterView;

 import android.widget.ArrayAdapter;

 import android.widget.Button;

 import android.widget.ListView;

 import android.widget.Toast;

 import java.lang.reflect.Method;

 import java.util.ArrayList;

 import java.util.Set;

157

 public class BluetoothPair extends AppCompatActivity {

 ListView listViewPaired;

 ListView listViewDetected;

 ArrayList<String> arrayListpaired;

 Button buttonSearch,buttonOn,buttonDesc,buttonOff;

 ArrayAdapter<String> adapter,detectedAdapter;

 static HandleSeacrh handleSeacrh;

 BluetoothDevice bdDevice;

 BluetoothClass bdClass;

 ArrayList<BluetoothDevice> arrayListPairedBluetoothDevices;

 private ButtonClicked clicked;

 ListItemClickedonPaired listItemClickedonPaired;

 BluetoothAdapter bluetoothAdapter = null;

 ArrayList<BluetoothDevice> arrayListBluetoothDevices = null;

 ListItemClicked listItemClicked;

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_bluetooth_pair);

 listViewDetected = (ListView) findViewById(R.id.listViewDetected);

 listViewPaired = (ListView) findViewById(R.id.listViewPaired);

 buttonSearch = (Button) findViewById(R.id.buttonSearch);

 buttonOn = (Button) findViewById(R.id.buttonOn);

 buttonDesc = (Button) findViewById(R.id.buttonDesc);

 buttonOff = (Button) findViewById(R.id.buttonOff);

 arrayListpaired = new ArrayList<String>();

 bluetoothAdapter = BluetoothAdapter.getDefaultAdapter();

 clicked = new ButtonClicked();

 handleSeacrh = new HandleSeacrh();

 arrayListPairedBluetoothDevices = new ArrayList<BluetoothDevice>();

 /*

 * the above declaration is just for getting the paired bluetooth devices;

 * this helps in the removing the bond between paired devices.

 */

 listItemClickedonPaired = new ListItemClickedonPaired();

 arrayListBluetoothDevices = new ArrayList<BluetoothDevice>();

 adapter= new ArrayAdapter<String>(BluetoothPair.this,

android.R.layout.simple_list_item_1, arrayListpaired);

 detectedAdapter = new ArrayAdapter<String>(BluetoothPair.this,

android.R.layout.simple_list_item_single_choice);

 listViewDetected.setAdapter(detectedAdapter);

 listItemClicked = new ListItemClicked();

 detectedAdapter.notifyDataSetChanged();

 listViewPaired.setAdapter(adapter);

 }

 @Override

 protected void onStart() {

 // TODO Auto-generated method stub

 super.onStart();

 getPairedDevices();

158

 buttonOn.setOnClickListener(clicked);

 buttonSearch.setOnClickListener(clicked);

 buttonDesc.setOnClickListener(clicked);

 buttonOff.setOnClickListener(clicked);

 listViewDetected.setOnItemClickListener(listItemClicked);

 listViewPaired.setOnItemClickListener(listItemClickedonPaired);

 }

 private void getPairedDevices() {

 Set<BluetoothDevice> pairedDevice =

bluetoothAdapter.getBondedDevices();

 if(pairedDevice.size()>0)

 {

 for(BluetoothDevice device : pairedDevice)

 {

 arrayListpaired.add(device.getName()+"\n"+device.getAddress());

 arrayListPairedBluetoothDevices.add(device);

 }

 }

 adapter.notifyDataSetChanged();

 }

 class ListItemClicked implements AdapterView.OnItemClickListener

 {

 @Override

 public void onItemClick(AdapterView<?> parent, View view, int position,

long id) {

 // TODO Auto-generated method stub

 bdDevice = arrayListBluetoothDevices.get(position);

 //bdClass = arrayListBluetoothDevices.get(position);

 Log.i("Log", "The dvice : "+bdDevice.toString());

 /*

 * here below we can do pairing without calling the callthread(), we can

directly call the

 * connect(). but for the safer side we must usethe threading object.

 */

 //callThread();

 //connect(bdDevice);

 Boolean isBonded = false;

 try {

 isBonded = createBond(bdDevice);

 if(isBonded)

 {

//arrayListpaired.add(bdDevice.getName()+"\n"+bdDevice.getAddress());

 //adapter.notifyDataSetChanged();

 getPairedDevices();

 adapter.notifyDataSetChanged();

 }

 } catch (Exception e) {

 e.printStackTrace();

 }//connect(bdDevice);

 Log.i("Log", "The bond is created: "+isBonded);

 }

 }

 class ListItemClickedonPaired implements

AdapterView.OnItemClickListener

 {

159

 @Override

 public void onItemClick(AdapterView<?> parent, View view, int

position,long id) {

 bdDevice = arrayListPairedBluetoothDevices.get(position);

 try {

 Boolean removeBonding = removeBond(bdDevice);

 if(removeBonding)

 {

 arrayListpaired.remove(position);

 adapter.notifyDataSetChanged();

 }

 Log.i("Log", "Removed"+removeBonding);

 } catch (Exception e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 }

 }

 /*private void callThread() {

 new Thread(){

 public void run() {

 Boolean isBonded = false;

 try {

 isBonded = createBond(bdDevice);

 if(isBonded)

 {

arrayListpaired.add(bdDevice.getName()+"\n"+bdDevice.getAddress());

 adapter.notifyDataSetChanged();

 }

 } catch (Exception e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }//connect(bdDevice);

 Log.i("Log", "The bond is created: "+isBonded);

 }

 }.start();

 }*/

 private Boolean connect(BluetoothDevice bdDevice) {

 Boolean bool = false;

 try {

 Log.i("Log", "service method is called ");

 Class cl = Class.forName("android.bluetooth.BluetoothDevice");

 Class[] par = {};

 Method method = cl.getMethod("createBond", par);

 Object[] args = {};

 bool = (Boolean) method.invoke(bdDevice);//, args);// this invoke creates

the detected devices paired.

 //Log.i("Log", "This is: "+bool.booleanValue());

 //Log.i("Log", "devicesss: "+bdDevice.getName());

 } catch (Exception e) {

 Log.i("Log", "Inside catch of serviceFromDevice Method");

160

 e.printStackTrace();

 }

 return bool.booleanValue();

 };

 public boolean removeBond(BluetoothDevice btDevice)

 throws Exception

 {

 Class btClass = Class.forName("android.bluetooth.BluetoothDevice");

 Method removeBondMethod = btClass.getMethod("removeBond");

 Boolean returnValue = (Boolean) removeBondMethod.invoke(btDevice);

 return returnValue.booleanValue();

 }

 public boolean createBond(BluetoothDevice btDevice)

 throws Exception

 {

 Class class1 = Class.forName("android.bluetooth.BluetoothDevice");

 Method createBondMethod = class1.getMethod("createBond");

 Boolean returnValue = (Boolean) createBondMethod.invoke(btDevice);

 return returnValue.booleanValue();

 }

 class ButtonClicked implements View.OnClickListener

 {

 @Override

 public void onClick(View view) {

 switch (view.getId()) {

 case R.id.buttonOn:

 onBluetooth();

 break;

 case R.id.buttonSearch:

 arrayListBluetoothDevices.clear();

 startSearching();

 break;

 case R.id.buttonDesc:

 makeDiscoverable();

 break;

 case R.id.buttonOff:

 offBluetooth();

 break;

 default:

 break;

 }

 }

 }

 private BroadcastReceiver myReceiver = new BroadcastReceiver() {

161

 @Override

 public void onReceive(Context context, Intent intent) {

 Message msg = Message.obtain();

 String action = intent.getAction();

 if(BluetoothDevice.ACTION_FOUND.equals(action)){

 Toast.makeText(context, "ACTION_FOUND",

Toast.LENGTH_SHORT).show();

 BluetoothDevice device =

intent.getParcelableExtra(BluetoothDevice.EXTRA_DEVICE);

 try

 {

 //device.getClass().getMethod("setPairingConfirmation",

boolean.class).invoke(device, true);

 //device.getClass().getMethod("cancelPairingUserInput",

boolean.class).invoke(device);

 }

 catch (Exception e) {

 Log.i("Log", "Inside the exception: ");

 e.printStackTrace();

 }

 if(arrayListBluetoothDevices.size()<1) // this checks if the size of

bluetooth device is 0,then add the

 { // device to the arraylist.

 detectedAdapter.add(device.getName()+"\n"+device.getAddress());

 arrayListBluetoothDevices.add(device);

 detectedAdapter.notifyDataSetChanged();

 }

 else

 {

 boolean flag = true; // flag to indicate that particular device is

already in the arlist or not

 for(int i = 0; i<arrayListBluetoothDevices.size();i++)

 {

if(device.getAddress().equals(arrayListBluetoothDevices.get(i).getAddress()))

 {

 flag = false;

 }

 }

 if(flag == true)

 {

detectedAdapter.add(device.getName()+"\n"+device.getAddress());

 arrayListBluetoothDevices.add(device);

 detectedAdapter.notifyDataSetChanged();

 }

 }

 }

 }

 };

 private void startSearching() {

 Log.i("Log", "in the start searching method");

162

 IntentFilter intentFilter = new

IntentFilter(BluetoothDevice.ACTION_FOUND);

 BluetoothPair.this.registerReceiver(myReceiver, intentFilter);

 bluetoothAdapter.startDiscovery();

 }

 private void onBluetooth() {

 if(!bluetoothAdapter.isEnabled())

 {

 bluetoothAdapter.enable();

 Log.i("Log", "Bluetooth is Enabled");

 }

 }

 private void offBluetooth() {

 if(bluetoothAdapter.isEnabled())

 {

 bluetoothAdapter.disable();

 }

 }

 private void makeDiscoverable() {

 Intent discoverableIntent = new

Intent(BluetoothAdapter.ACTION_REQUEST_DISCOVERABLE);

discoverableIntent.putExtra(BluetoothAdapter.EXTRA_DISCOVERABLE_DU

RATION, 300);

 startActivity(discoverableIntent);

 Log.i("Log", "Discoverable ");

 }

 class HandleSeacrh extends Handler

 {

 @Override

 public void handleMessage(Message msg) {

 switch (msg.what) {

 case 111:

 break;

 default:

 break;

 }

 }

 }

 }

package nsf.esarplab.scchealth;

 import android.app.Activity;

 import android.content.Context;

 import android.content.Intent;

 import android.database.Cursor;

 import android.database.SQLException;

 import android.database.sqlite.SQLiteDatabase;

 import android.location.Address;

 import android.location.Geocoder;

 import android.net.ConnectivityManager;

163

 import android.net.NetworkInfo;

 import android.net.wifi.WifiManager;

 import android.os.AsyncTask;

 import android.os.Bundle;

 import android.os.CountDownTimer;

 import android.util.Log;

 import android.view.View;

 import android.widget.Button;

 import android.widget.EditText;

 import android.widget.TextView;

 import android.widget.Toast;

 import com.google.android.gms.maps.model.LatLng;

 import com.google.android.gms.maps.model.LatLngBounds;

 import org.apache.http.HttpResponse;

 import org.apache.http.client.HttpClient;

 import org.apache.http.client.methods.HttpPost;

 import org.apache.http.entity.StringEntity;

 import org.apache.http.impl.client.DefaultHttpClient;

 import org.json.JSONObject;

 import java.io.BufferedReader;

 import java.io.IOException;

 import java.io.InputStream;

 import java.io.InputStreamReader;

 import java.util.List;

 import java.util.Locale;

 import static

nsf.esarplab.scchealth.ProfileDbHelper.CONTACTS_COLU

MN_CITY;

 import static

nsf.esarplab.scchealth.ProfileDbHelper.CONTACTS_COLU

MN_EMAIL;

 import static

nsf.esarplab.scchealth.ProfileDbHelper.CONTACTS_COLU

MN_ID;

 import static

nsf.esarplab.scchealth.ProfileDbHelper.CONTACTS_COLU

MN_NAME;

 import static

nsf.esarplab.scchealth.ProfileDbHelper.CONTACTS_COLU

MN_PHONE;

 import static

nsf.esarplab.scchealth.ProfileDbHelper.CONTACTS_COLU

MN_STREET;

 import static

nsf.esarplab.scchealth.ProfileDbHelper.CONTACTS_TABL

E_NAME;

164

 public class CloudActivity extends Activity implements

View.OnClickListener {

 TextView tvIsConnected;

 EditText etName, etCountry, etdiseaseType, etTime,

etEOI, etAlg, addressET;

 Button btnPost;

 String Grid;

 Person person;

 private ProfileDbHelper mydb ;

 //private FluActivity flu;

 private String activeProfile, ptAddress, ptID;

 private String diseaseType="";

 private String eoiValue="";

 private String dateTime="";

 private String actAlg="";

 // to get long lat

 private static Context context;

 double x, y, Latitude, Longitude;

 //Button addressButton;

 TextView addressTV;

 TextView latLongTV;

 private WifiManager wifiManager;

 //String

url="http://10.100.94.221/nsf/adminlogin/insertjsondb.php";

 // String

url="https://10.100.94.221.000webhostapp.com/insertjsondb.

php";

 String url="http://sscmemphis.com/insertjsondb.php";

 public static String POST(String url, Person person)

 {

 InputStream inputStream = null;

 String result = "";

 try {

 // 1. create HttpClient

 HttpClient httpclient = new DefaultHttpClient();

 // 2. make POST request to the given URL

 HttpPost httpPost = new HttpPost(url);

165

 String json = "";

 // 3. build jsonObject

{"ID":"p11","GRID_CODE":"c3","DT":"BT","EOI":"5.6","T

IME":"2017-04-10"}

 // String js = etName.getText().toString();

 JSONObject jsonObject = new JSONObject();

 jsonObject.put("ID",person.getPatientID());

 jsonObject.put("GRID_CODE",

person.getGridCode());

 jsonObject.put("DT", person.getDiseaseType());

 jsonObject.put("EOI",person.getEoi());

 jsonObject.put("TIME",person.getTime());

 jsonObject.put("ALG",person.getAlgorithm());

 // 4. convert JSONObject to JSON to String

 json = jsonObject.toString();

 Log.i("Json data",json);

 // ** Alternative way to convert Person object to

JSON string usin Jackson Lib

 // ObjectMapper mapper = new ObjectMapper();

 // json = mapper.writeValueAsString(Person);

 // 5. set json to StringEntity

 StringEntity se = new StringEntity(json);

 // 6. set httpPost Entity

 httpPost.setEntity(se);

 // 7. Set some headers to inform server about the type

of the content

 httpPost.setHeader("Accept", "application/json");

 httpPost.setHeader("Content-type",

"application/json");

 // 8. Execute POST request to the given URL

 HttpResponse httpResponse =

httpclient.execute(httpPost);

166

 // 9. receive response as inputStream

 inputStream = httpResponse.getEntity().getContent();

 // 10. convert inputstream to string

 if (inputStream != null)

 result = convertInputStreamToString(inputStream);

 else

 result = "Did not work!";

 } catch (Exception e) {

 Log.d("InputStream", e.getLocalizedMessage());

 }

 // 11. return result

 return result;

 }

 private static String

convertInputStreamToString(InputStream inputStream)

throws IOException {

 BufferedReader bufferedReader = new

BufferedReader(new InputStreamReader(inputStream));

 String line = "";

 String result = "";

 while ((line = bufferedReader.readLine()) != null)

 result += line;

 inputStream.close();

 return result;

 }

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_cloud);

 // activate wifi

 wifiManager = (WifiManager)

this.getApplicationContext().getSystemService(Context.WIFI

_SERVICE);

 if(wifiManager.isWifiEnabled()){

 }else{

167

 wifiManager.setWifiEnabled(true);

 }

 // get reference to the views

 tvIsConnected = (TextView)

findViewById(R.id.tvIsConnected);

 etName = (EditText) findViewById(R.id.etName);

 etCountry = (EditText) findViewById(R.id.etCountry);

 etdiseaseType = (EditText)

findViewById(R.id.etDType);

 btnPost = (Button) findViewById(R.id.btnPost);

 etTime =(EditText) findViewById(R.id.etTime);

 etEOI = (EditText) findViewById(R.id.etEOI);

 etAlg = (EditText) findViewById(R.id.etAlg);

 addressET = (EditText) findViewById(R.id.addressET);

 //flu = new FluActivity();

 //profile=flu.mNameText.getText().toString();

 // receive intent from a disease activity

 Intent diseaseIntent = getIntent();

 activeProfile=diseaseIntent.getStringExtra("profile");

 diseaseType=diseaseIntent.getStringExtra("DT");

 eoiValue=diseaseIntent.getStringExtra("EOI");

 dateTime=diseaseIntent.getStringExtra("Time");

 actAlg=diseaseIntent.getStringExtra("Algorithm");

 Log.i("profile",activeProfile);

 // fillup the fields to be shared

 // set disease type

 etdiseaseType.setText(diseaseType);

 // set patient ID

 getSubject();

 // set eoi

 etEOI.setText(eoiValue);

 // set date & time

 etTime.setText(dateTime);

168

 //set algorithm info

 etAlg.setText(actAlg);

 //getGridCode(address);

 // set grid code

 if(ptAddress.matches("")){

 Toast.makeText(getApplicationContext(), "No

address in database ", Toast.LENGTH_LONG).show();

 } else{

 getGridCode(ptAddress);}

 // check if you are connected or not

 if (isConnected()) {

 tvIsConnected.setBackgroundColor(0xFF00CC00);

 tvIsConnected.setText("You are connected");

 } else {

 new CountDownTimer(5000, 1000) {

 public void onFinish() {

 // When timer is finished

 // Execute your code here

 if (isConnected()){

tvIsConnected.setBackgroundColor(0xFF00CC00);

 tvIsConnected.setText("You are connected");

 }

 else {

 tvIsConnected.setText("You are NOT

connected");

 }

 }

 public void onTick(long millisUntilFinished) {

 // millisUntilFinished The amount of time until

finished.

 }

 }.start();

 }

 // add click listener to Button "POST"

169

 btnPost.setOnClickListener(this);

 // get long lat

 addressTV = (TextView)

findViewById(R.id.addressTV);

 latLongTV = (TextView)

findViewById(R.id.latLongTV);

 //addressButton = (Button)

findViewById(addressButton);

 //String address2 = addressET.getText().toString();

 /*addressButton.setOnClickListener(new

View.OnClickListener() {

 @Override

 public void onClick(View arg0) {

 // get address from database

 String address2 = addressET.getText().toString();

 getGridCode(address2);

 }

 });*/

 }

 public boolean isConnected() {

 ConnectivityManager connMgr =

(ConnectivityManager)

getSystemService(Activity.CONNECTIVITY_SERVICE);

 NetworkInfo networkInfo =

connMgr.getActiveNetworkInfo();

 if (networkInfo != null && networkInfo.isConnected())

 return true;

 else

 return false;

 }

170

 @Override

 public void onClick(View view) {

 switch (view.getId()) {

 case R.id.btnPost:

 if (!validate())

 Toast.makeText(getBaseContext(), "Enter some

data!", Toast.LENGTH_LONG).show();

 // call AsynTask to perform network operation on

separate thread

 person =new Person();

 person.setPatientID(etName.getText().toString());

person.setGridCode(etCountry.getText().toString());

 person.setEoi(etEOI.getText().toString());

person.setDiseaseType(etdiseaseType.getText().toString());

 person.setTime(etTime.getText().toString());

 person.setAlgorithm(etAlg.getText().toString());

 new HttpAsyncTask().execute(url);

 finish();

 break;

 }

 }

 private boolean validate() {

 if (etName.getText().toString().trim().equals(""))

 return false;

 else if (etCountry.getText().toString().trim().equals(""))

 return false;

 else if

(etdiseaseType.getText().toString().trim().equals(""))

 return false;

 else

 return true;

 }

 private class HttpAsyncTask extends AsyncTask<String,

Void, String> {

 @Override

 protected String doInBackground(String... urls) {

 /* Person = new Person();

 Person.setName(etName.getText().toString());

 Person.setCountry(etCountry.getText().toString());

 Person.setTwitter(etTwitter.getText().toString());*/

 return POST(urls[0], person);

171

 }

 // onPostExecute displays the results of the AsyncTask.

 @Override

 protected void onPostExecute(String result) {

 Toast.makeText(getBaseContext(), "Data Sent!",

Toast.LENGTH_LONG).show();

 }

 }

 // long lat

 public void getGridCode(String addressinput){

 String locationName=addressinput;

 Geocoder geoCoder = new Geocoder(this,

Locale.ENGLISH);

 try {

 List<Address> address =

geoCoder.getFromLocationName(locationName, 1);

 Latitude = address.get(0).getLatitude();

 Longitude = address.get(0).getLongitude();

 Log.i("Lat", "" + Latitude);

 Log.i("Lng", "" + Longitude);

 } catch (IOException e) {

 e.printStackTrace();

 Log.i("INFO", "exception");

 }

 x = Longitude;// -89.952302;

 y = Latitude;//35.1149703;

 LatLngBounds AZ19 = new LatLngBounds(

 new LatLng(-90.085643, 34.922824), new

LatLng(-90.085642, 35.0317400825));

 LatLngBounds ZG86 = new LatLngBounds(

 new LatLng(-90.085642, 34.922824), new

LatLng(-89.861741, 35.0317400825));

 LatLngBounds XP52 = new LatLngBounds(

 new LatLng(-89.8617410, 34.922824), new

LatLng(-89.6378400, 35.0317400825));

 LatLngBounds DW46 = new LatLngBounds(

 new LatLng(-89.637840, 34.922824), new

LatLng(-89.413939, 35.0317400825));

 LatLngBounds FD32 = new LatLngBounds(

 new LatLng(-90.085643, 35.0317400825), new

LatLng(-90.085642, 35.140656165));

 //central area

172

 LatLngBounds YU76B = new LatLngBounds(

 new LatLng(-90.085642, 35.08619812), new

LatLng(-89.9736915, 35.140656165));

 LatLngBounds YU76L = new LatLngBounds(

 new LatLng(-90.085642, 35.0317400825), new

LatLng(-89.9736915, 35.08619812));

 LatLngBounds YU76K = new LatLngBounds(

 new LatLng(-89.9736915, 35.08619812), new

LatLng(-89.861741, 35.140656165));

 LatLngBounds YU76Z = new LatLngBounds(

 new LatLng(-89.9736915, 35.0317400825), new

LatLng(-89.861741, 35.08619812));

 //central end

 LatLngBounds HD93 = new LatLngBounds(

 new LatLng(-89.861741, 35.0317400825), new

LatLng(-89.637840, 35.140656165));

 LatLngBounds WG49 = new LatLngBounds(

 new LatLng(-89.637840,35.0317400825), new

LatLng(-89.413939, 35.140656165));

 LatLngBounds SP71 = new LatLngBounds(

 new LatLng(-90.309543, 35.140656165), new

LatLng(-90.085642, 35.2495722475));

 LatLngBounds KT43 = new LatLngBounds(

 new LatLng(-90.085642, 35.140656165), new

LatLng(-89.861741, 35.2495722475));

 LatLngBounds BY28 = new LatLngBounds(

 new LatLng(-89.861741, 35.140656165), new

LatLng(-89.637840, 35.2495722475));

 LatLngBounds LC95 = new LatLngBounds(

 new LatLng(-89.637840, 35.140656165), new

LatLng(-89.413939, 35.2495722475));

 LatLngBounds CR63 = new LatLngBounds(

 new LatLng(-90.309543, 35.2495722475), new

LatLng(-90.085642, 35.35848833));

 LatLngBounds CX38 = new LatLngBounds(

 new LatLng(-90.085642, 35.2495722475), new

LatLng(-89.861741, 35.35848833));

 LatLngBounds VJ14 = new LatLngBounds(

 new LatLng(-89.861741, 35.2495722475), new

LatLng(-89.637840, 35.35848833));

 LatLngBounds DR27 = new LatLngBounds(

 new LatLng(-89.637840, 35.2495722475), new

LatLng(-89.413939, 35.35848833));

 if (AZ19.contains(new LatLng(x, y))) {

 Log.i("Grid Code", "AZ19");

 Grid="AZ19";

 } else if (ZG86.contains(new LatLng(x, y))) {

 Log.i("Grid Code", "ZG86");

173

 Grid="ZG86";

 } else if (BY28.contains(new LatLng(x, y))) {

 Log.i("Grid Code", "BY28");

 Grid="BY28";

 } else if (XP52.contains(new LatLng(x, y))) {

 Log.i("Grid Code", "XP52");

 Grid="XP52";

 } else if (DW46.contains(new LatLng(x, y))) {

 Log.i("Grid Code", "DW46");

 Grid="DW46";

 } else if (FD32.contains(new LatLng(x, y))) {

 Log.i("Grid Code", "FD32");

 Grid="FD32";

 } else if (BY28.contains(new LatLng(x, y))) {

 Log.i("Grid Code", "BY28");

 Grid="BY28";

 } else if (YU76B.contains(new LatLng(x, y))) {

 Log.i("Grid Code", "YU76B");

 Grid="YU76B";

 } else if (YU76L.contains(new LatLng(x, y))) {

 Log.i("Grid Code", "YU76L");

 Grid="YU76L";

 } else if (YU76K.contains(new LatLng(x, y))) {

 Log.i("Grid Code", "YU76K");

 Grid="YU76K";

 }else if (YU76Z .contains(new LatLng(x, y))) {

 Log.i("Grid Code", "YU76Z");

 Grid="YU76Z";

 } else if (HD93.contains(new LatLng(x, y))) {

 Log.i("Grid Code", "HD93");

 Grid="HD93";

 } else if (WG49.contains(new LatLng(x, y))) {

 Log.i("Grid Code", "WG49");

 Grid="WG49";

 } else if (SP71.contains(new LatLng(x, y))) {

 Log.i("Grid Code", "SP71");

 Grid="SP71";

 }else if (KT43.contains(new LatLng(x, y))) {

 Log.i("Grid Code", "KT43");

 Grid="KT43";

 }else if (BY28.contains(new LatLng(x, y))) {

 Log.i("Grid Code", "BY28");

 Grid="BY28";

 } else if (LC95.contains(new LatLng(x, y))) {

 Log.i("Grid Code", "LC95");

 Grid="LC95";

 } else if (CR63.contains(new LatLng(x, y))) {

 Log.i("Grid Code", "CR63");

 Grid="CR63";

 } else if (CX38.contains(new LatLng(x, y))) {

 Log.i("Grid Code", "CX38");

 Grid="CX38";

 } else if (VJ14.contains(new LatLng(x, y))) {

 Log.i("Grid Code", "VJ14");

 Grid="VJ14";

 } else if (DR27.contains(new LatLng(x, y))) {

174

 Log.i("Grid Code", "DR27");

 Grid="DR27";

 } else {

 Log.i("Lat2", "" + x);

 Log.i("Lng2", "" + y);

 Log.i("Grid Code", "Outside Boundary");

 Grid="Outside Boundary";

 }

 etCountry.setText(Grid);

 }

 public void getSubject() throws SQLException{

 try {

 mydb = new ProfileDbHelper(this);

 SQLiteDatabase ourDatabase =

mydb.getReadableDatabase();

 String[] columns = new

String[]{CONTACTS_COLUMN_ID,

CONTACTS_COLUMN_NAME,

CONTACTS_COLUMN_EMAIL,

CONTACTS_COLUMN_STREET,

CONTACTS_COLUMN_CITY,

CONTACTS_COLUMN_PHONE};

 Cursor c =

ourDatabase.query(CONTACTS_TABLE_NAME,

columns,null , null, null, null, null);

 ptAddress = "";

 ptID="";

 // patient id

 int iRow=

c.getColumnIndex(CONTACTS_COLUMN_PHONE);

 //int iName=

c.getColumnIndex(CONTACTS_COLUMN_NAME);

 int iAddress=

c.getColumnIndex(CONTACTS_COLUMN_STREET);

 /*for (c.moveToFirst();

!c.isAfterLast();c.moveToNext()){

 result = result + c.getString(iAddress);

 ptID = ptID + c.getString(iName);

 }*/

 /* if(c!=null)

 {c.moveToFirst();

 ptID=c.getString(1);}

 etName.setText(ptID);*/

 c.moveToFirst();

 do {

 if ((c.getString(1)).equals(activeProfile)) {

 ptID = ptID+c.getString(iRow);

 ptAddress = ptAddress + c.getString(iAddress);

175

 }

 } while (c.moveToNext());

 etName.setText(ptID);

 //etCountry.setText(result);

 addressET.setText(ptAddress);

 //return result;

 }

 catch(Exception e){

 etName.setText("");

 //etCountry.setText(result);

 addressET.setText("");

 }

 }

 }

package nsf.esarplab.scchealth;

 import android.app.Activity;

 import android.content.Intent;

 import android.os.Bundle;

 import android.view.View;

 import android.widget.TextView;

 public class ConnectionSettingsActivity extends Activity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_connection_settings);

 // Find the View that shows the profile category

 TextView bluetooth = (TextView)

findViewById(R.id.bluetooth);

 // Set a click listener on that View

 bluetooth.setOnClickListener(new View.OnClickListener()

{

 // The code in this method will be executed when the

profile category is clicked on.

 @Override

 public void onClick(View view) {

 // Create a new intent to open the {@link

ProfileActivity}

 Intent bluetoothIntent = new

Intent(ConnectionSettingsActivity.this, BluetoothActivity.class);

 // Start the new activity

176

 startActivity(bluetoothIntent);

 }

 });

 /* // Find the View that shows the profile category

 TextView wifi = (TextView) findViewById(R.id.wifi);

 // Set a click listener on that View

 wifi.setOnClickListener(new View.OnClickListener() {

 // The code in this method will be executed when the

profile category is clicked on.

 @Override

 public void onClick(View view) {

 // Create a new intent to open the {@link

ProfileActivity}

 Intent wifiIntent = new

Intent(ConnectionSettingsActivity.this, WifiActivity.class);

 // Start the new activity

 startActivity(wifiIntent);

 }

 });*/

 }

 }

package nsf.esarplab.scchealth;

 import android.content.Context;

 import java.io.File;

 import java.util.concurrent.ExecutionException;

 import dalvik.system.DexClassLoader;

 /**

 * Created by mrahman8 on 6/8/2017.

 */

 public class CustomizedDexClassLoader {

 private static Context context;

 private static DexClassLoader loader;

 public static void setContext(Context context) {

 CustomizedDexClassLoader.context = context;

177

 }

 public static DexClassLoader load(final String dexFileName) throws

RuntimeException {

 if(null == context) {

 throw new RuntimeException("No context provided");

 }

 if(null == loader) {

 final File dexInternalStoragePath = new File(context.getDir("dex",

Context.MODE_PRIVATE), dexFileName);

 if (!dexInternalStoragePath.exists()) {

 try {

 (new DexPreparationTask(context,

dexFileName)).execute(dexInternalStoragePath).get();

 } catch (InterruptedException e) {

 throw new RuntimeException(e);

 } catch (ExecutionException e) {

 throw new RuntimeException(e);

 }

 }

 final File optimizedDexOutputPath = context.getDir("outdex",

Context.MODE_PRIVATE);

 loader = new

DexClassLoader(dexInternalStoragePath.getAbsolutePath(),

optimizedDexOutputPath.getAbsolutePath(), null,

context.getClassLoader().getParent());

 }

 return loader;

 }

 }

package nsf.esarplab.scchealth;

 import android.content.Intent;

 import android.graphics.Color;

 import android.os.Bundle;

 import android.support.v7.app.ActionBar;

 import android.support.v7.app.AppCompatActivity;

 import android.view.View;

 import android.widget.Button;

 import android.widget.EditText;

 import android.widget.TextView;

 import android.widget.Toast;

 public class DB_login extends AppCompatActivity {

 Button b1,b2;

 EditText ed1,ed2;

 TextView tx1, tx2;

178

 int counter = 3;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_db_login);

 // show action bar

 ActionBar myActionBar = getSupportActionBar();

 myActionBar.show();

 b1 = (Button)findViewById(R.id.button);

 ed1 = (EditText)findViewById(R.id.editText);

 ed2 = (EditText)findViewById(R.id.editText2);

 b2 = (Button)findViewById(R.id.button2);

 tx1 = (TextView)findViewById(R.id.textView3);

 tx2 = (TextView)findViewById(R.id.textView2);

 tx1.setVisibility(View.GONE);

 tx2.setVisibility(View.GONE);

 b1.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 if(ed1.getText().toString().equals("admin") &&

 ed2.getText().toString().equals("hce")) {

 Intent NewActivityIntent = new Intent(DB_login.this,

GeneralSettingsActivity.class);

 // Start the new activity

 startActivity(NewActivityIntent);

 /* Toast.makeText(getApplicationContext(),

"Redirecting...",Toast.LENGTH_SHORT).show();*/

 }

 else{

 Toast.makeText(getApplicationContext(), "Wrong

Credentials",Toast.LENGTH_SHORT).show();

 tx1.setVisibility(View.VISIBLE);

 tx2.setVisibility(View.VISIBLE);

 tx1.setBackgroundColor(Color.RED);

 counter--;

 tx1.setText(Integer.toString(counter));

 if (counter == 0) {

179

 b1.setEnabled(false);

 }

 }

 }

 });

 b2.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 finish();

 }

 });

 }

 }

package nsf.esarplab.scchealth;

 import android.content.Context;

 import android.database.sqlite.SQLiteDatabase;

 import android.database.sqlite.SQLiteOpenHelper;

 import android.util.Log;

 /**

 * Created by mrahman8 on 7/24/2017.

 */

 public class DataBaseHelper extends SQLiteOpenHelper {

 public DataBaseHelper(Context context, String name,

SQLiteDatabase.CursorFactory factory, int version)

 {

 super(context, name, factory, version);

 }

 // Called when no database exists in disk and the helper class needs

 // to create a new one.

 @Override

 public void onCreate(SQLiteDatabase _db)

 {

 _db.execSQL(LoginDataBaseAdapter.DATABASE_CREATE);

 }

 // Called when there is a database version mismatch meaning that the

version

 // of the database on disk needs to be upgraded to the current version.

 @Override

 public void onUpgrade(SQLiteDatabase _db, int _oldVersion, int

_newVersion)

 {

 // Log the version upgrade.

180

 Log.w("TaskDBAdapter", "Upgrading from version " +_oldVersion

+ " to " +_newVersion + ", which will destroy all old data");

 // Upgrade the existing database to conform to the new version.

Multiple

 // previous versions can be handled by comparing _oldVersion and

_newVersion

 // values.

 // The simplest case is to drop the old table and create a new one.

 _db.execSQL("DROP TABLE IF EXISTS " + "TEMPLATE");

 // Create a new one.

 onCreate(_db);

 }

 }

package nsf.esarplab.scchealth;

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.view.View.OnClickListener;

import android.view.WindowManager;

import android.widget.Button;

import android.widget.EditText;

public class GraphActivity extends Activity {

 EditText num1, num2, num3, num4, num5;

 Button btnShow;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_graph);

 getWindow().setSoftInputMode(

 WindowManager.LayoutParams.SOFT_INPUT_STATE_ALWAYS_HIDDEN

);

 /* num1 = (EditText)findViewById(R.id.num1);

 num2 = (EditText)findViewById(R.id.num2);

 num3 = (EditText)findViewById(R.id.num3);

 num4 = (EditText)findViewById(R.id.num4);

 num5 = (EditText)findViewById(R.id.num5);*/

 btnShow = (Button)findViewById(R.id.show);

 btnShow.setOnClickListener(btnShowOnClickListener);

 }

 OnClickListener btnShowOnClickListener =

 new OnClickListener(){

 @Override

181

 public void onClick(View v) {

 Intent intent = new Intent(

 GraphActivity.this,

 ShowWebChart.class);

 /* intent.putExtra("NUM1", getNum(num1));

 intent.putExtra("NUM2", getNum(num2));

 intent.putExtra("NUM3", getNum(num3));

 intent.putExtra("NUM4", getNum(num4));

 intent.putExtra("NUM5", getNum(num5));

*/

 intent.putExtra("NUM1", 40);

 intent.putExtra("NUM2", 50);

 intent.putExtra("NUM3", 70);

 intent.putExtra("NUM4", 35);

 intent.putExtra("NUM5", 50);

 startActivity(intent);

 }

 };

 private int getNum(EditText editText){

 int num = 0;

 String stringNum = editText.getText().toString();

 if(!stringNum.equals("")){

 num = Integer.valueOf(stringNum);

 }

 return (num);

 }

}

package nsf.esarplab.scchealth;

import android.app.NotificationManager;

import android.app.PendingIntent;

import android.content.BroadcastReceiver;

import android.content.Context;

import android.content.Intent;

import android.support.v7.app.NotificationCompat;

/**

 * Created by mrahman8 on 7/25/2017.

 */

public class Notification_receiver extends BroadcastReceiver {

 @Override

 public void onReceive(Context context, Intent intent){

 NotificationManager notificationManager=(NotificationManager)

context.getSystemService(Context.NOTIFICATION_SERVICE);

182

 Intent repeating_intent=new Intent(context,LoginActivity.class);

 PendingIntent

pendingIntent=PendingIntent.getActivity(context,100,repeating_intent,PendingIntent.FLAG_UPDATE_CURRENT

) ;

 NotificationCompat.Builder builder=(android.support.v7.app.NotificationCompat.Builder) new

NotificationCompat.Builder(context)

 .setContentIntent(pendingIntent)

 .setSmallIcon(R.drawable.flogo)

 .setContentTitle("Health Checkup Reminder")

 .setContentText("Hey! It's time to do the test")

 .setAutoCancel(true);

 notificationManager.notify(100, builder.build());

 }

}

package nsf.esarplab.scchealth;

import android.app.Activity;

import android.content.Context;

import android.location.Address;

import android.location.Geocoder;

import android.net.ConnectivityManager;

import android.net.NetworkInfo;

import android.os.AsyncTask;

import android.os.Bundle;

import android.support.v7.app.ActionBar;

import android.support.v7.app.AppCompatActivity;

import android.util.Log;

import android.view.View;

import android.widget.Button;

import android.widget.EditText;

import android.widget.TextView;

import android.widget.Toast;

import com.google.android.gms.maps.model.LatLng;

import com.google.android.gms.maps.model.LatLngBounds;

import org.apache.http.HttpResponse;

import org.apache.http.client.HttpClient;

import org.apache.http.client.methods.HttpPost;

import org.apache.http.entity.StringEntity;

import org.apache.http.impl.client.DefaultHttpClient;

import org.json.JSONObject;

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStream;

import java.io.InputStreamReader;

import java.text.DateFormat;

import java.util.Date;

import java.util.List;

183

import java.util.Locale;

public class WifiActivity extends AppCompatActivity implements View.OnClickListener {

 TextView tvIsConnected;

 EditText etName, etCountry, etdiseaseType, etTime, etEOI, etAlg;

 Button btnPost;

 String Grid;

 Person person;

 // to get long lat

 private static Context context;

 double x, y, Latitude,Longitude;

 Button addressButton;

 TextView addressTV;

 TextView latLongTV;

 //String url="http://10.100.94.221/nsf/adminlogin/insertjsondb.php";

 // String url="https://10.100.94.221.000webhostapp.com/insertjsondb.php";

 String url="http://sscmemphis.com/insertjsondb.php";

 public static String POST(String url, Person person)

 {

 InputStream inputStream = null;

 String result = "";

 try {

 // 1. create HttpClient

 HttpClient httpclient = new DefaultHttpClient();

 // 2. make POST request to the given URL

 HttpPost httpPost = new HttpPost(url);

 String json = "";

 // 3. build jsonObject {"ID":"p11","GRID_CODE":"c3","DT":"BT","EOI":"5.6","TIME":"2017-04-10"}

 // String js = etName.getText().toString();

 JSONObject jsonObject = new JSONObject();

 jsonObject.put("ID",person.getPatientID());

 jsonObject.put("GRID_CODE", person.getGridCode());

 jsonObject.put("DT", person.getDiseaseType());

 jsonObject.put("EOI",person.getEoi());

 jsonObject.put("TIME",person.getTime());

 jsonObject.put("ALG","BT1");

 //jsonObject.put("ALG",person.getAlgorithm());

 // 4. convert JSONObject to JSON to String

 json = jsonObject.toString();

 Log.i("Json data",json);

184

 // ** Alternative way to convert Person object to JSON string usin Jackson Lib

 // ObjectMapper mapper = new ObjectMapper();

 // json = mapper.writeValueAsString(Person);

 // 5. set json to StringEntity

 StringEntity se = new StringEntity(json);

 // 6. set httpPost Entity

 httpPost.setEntity(se);

 // 7. Set some headers to inform server about the type of the content

 httpPost.setHeader("Accept", "application/json");

 httpPost.setHeader("Content-type", "application/json");

 // 8. Execute POST request to the given URL

 HttpResponse httpResponse = httpclient.execute(httpPost);

 // 9. receive response as inputStream

 inputStream = httpResponse.getEntity().getContent();

 // 10. convert inputstream to string

 if (inputStream != null)

 result = convertInputStreamToString(inputStream);

 else

 result = "Did not work!";

 } catch (Exception e) {

 Log.d("InputStream", e.getLocalizedMessage());

 }

 // 11. return result

 return result;

 }

 private static String convertInputStreamToString(InputStream inputStream) throws IOException {

 BufferedReader bufferedReader = new BufferedReader(new InputStreamReader(inputStream));

 String line = "";

 String result = "";

 while ((line = bufferedReader.readLine()) != null)

 result += line;

 inputStream.close();

 return result;

 }

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_wifi);

 // show action bar

 ActionBar myActionBar = getSupportActionBar();

 myActionBar.show();

 // get reference to the views

185

 tvIsConnected = (TextView) findViewById(R.id.tvIsConnected);

 etName = (EditText) findViewById(R.id.etName);

 etCountry = (EditText) findViewById(R.id.etCountry);

 etdiseaseType = (EditText) findViewById(R.id.etDType);

 btnPost = (Button) findViewById(R.id.btnPost);

 etTime =(EditText) findViewById(R.id.etTime);

 etEOI = (EditText) findViewById(R.id.etEOI);

 etAlg = (EditText) findViewById(R.id.etAlg);

 // set date time

 String currentDateTime = DateFormat.getDateTimeInstance().format(new Date());

 etTime.setText(currentDateTime);

 // check if you are connected or not

 if (isConnected()) {

 tvIsConnected.setBackgroundColor(0xFF00CC00);

 tvIsConnected.setText("You are conncted");

 } else {

 tvIsConnected.setText("You are NOT conncted");

 }

 // add click listener to Button "POST"

 btnPost.setOnClickListener(this);

 // get long lat

 addressTV = (TextView) findViewById(R.id.addressTV);

 latLongTV = (TextView) findViewById(R.id.latLongTV);

 addressButton = (Button) findViewById(R.id.addressButton);

 addressButton.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View arg0) {

 EditText editText = (EditText) findViewById(R.id.addressET);

 String address = editText.getText().toString();

 getGridCode(address);

 }

 });

 }

 public boolean isConnected() {

 ConnectivityManager connMgr = (ConnectivityManager)

getSystemService(Activity.CONNECTIVITY_SERVICE);

 NetworkInfo networkInfo = connMgr.getActiveNetworkInfo();

 if (networkInfo != null && networkInfo.isConnected())

 return true;

 else

 return false;

 }

 @Override

 public void onClick(View view) {

186

 switch (view.getId()) {

 case R.id.btnPost:

 if (!validate())

 Toast.makeText(getBaseContext(), "Enter some data!", Toast.LENGTH_LONG).show();

 // call AsynTask to perform network operation on separate thread

 person =new Person();

 person.setPatientID(etName.getText().toString());

 person.setGridCode(etCountry.getText().toString());

 person.setEoi(etEOI.getText().toString());

 person.setDiseaseType(etdiseaseType.getText().toString());

 person.setTime(etTime.getText().toString());

 person.setAlgorithm(etAlg.getText().toString());

 new HttpAsyncTask().execute(url);

 break;

 }

 }

 private boolean validate() {

 if (etName.getText().toString().trim().equals(""))

 return false;

 else if (etCountry.getText().toString().trim().equals(""))

 return false;

 else if (etdiseaseType.getText().toString().trim().equals(""))

 return false;

 else

 return true;

 }

 private class HttpAsyncTask extends AsyncTask<String, Void, String> {

 @Override

 protected String doInBackground(String... urls) {

 /* Person = new Person();

 Person.setName(etName.getText().toString());

 Person.setCountry(etCountry.getText().toString());

 Person.setTwitter(etTwitter.getText().toString());*/

 return POST(urls[0], person);

 }

 // onPostExecute displays the results of the AsyncTask.

 @Override

 protected void onPostExecute(String result) {

 Toast.makeText(getBaseContext(), "Data Sent!", Toast.LENGTH_LONG).show();

 }

 }

 // long lat

 public void getGridCode(String addressinput){

187

 String locationName=addressinput;

 Geocoder geoCoder = new Geocoder(this, Locale.ENGLISH);

 try {

 List<Address> address = geoCoder.getFromLocationName(locationName, 1);

 Latitude = address.get(0).getLatitude();

 Longitude = address.get(0).getLongitude();

 Log.i("Lat", "" + Latitude);

 Log.i("Lng", "" + Longitude);

 } catch (IOException e) {

 e.printStackTrace();

 Log.i("INFO", "exception");

 }

 x = Longitude;// -89.952302;

 y = Latitude;//35.1149703;

 LatLngBounds AZ19 = new LatLngBounds(

 new LatLng(-90.085643, 34.922824), new LatLng(-90.085642, 35.0317400825));

 LatLngBounds ZG86 = new LatLngBounds(

 new LatLng(-90.085642, 34.922824), new LatLng(-89.861741, 35.0317400825));

 LatLngBounds XP52 = new LatLngBounds(

 new LatLng(-89.8617410, 34.922824), new LatLng(-89.6378400, 35.0317400825));

 LatLngBounds DW46 = new LatLngBounds(

 new LatLng(-89.637840, 34.922824), new LatLng(-89.413939, 35.0317400825));

 LatLngBounds FD32 = new LatLngBounds(

 new LatLng(-90.085643, 35.0317400825), new LatLng(-90.085642, 35.140656165));

 //central area

 LatLngBounds YU76B = new LatLngBounds(

 new LatLng(-90.085642, 35.08619812), new LatLng(-89.9736915, 35.140656165));

 LatLngBounds YU76L = new LatLngBounds(

 new LatLng(-90.085642, 35.0317400825), new LatLng(-89.9736915, 35.08619812));

 LatLngBounds YU76K = new LatLngBounds(

 new LatLng(-89.9736915, 35.08619812), new LatLng(-89.861741, 35.140656165));

 LatLngBounds YU76Z = new LatLngBounds(

 new LatLng(-89.9736915, 35.0317400825), new LatLng(-89.861741, 35.08619812));

 //central end

 LatLngBounds HD93 = new LatLngBounds(

 new LatLng(-89.861741, 35.0317400825), new LatLng(-89.637840, 35.140656165));

 LatLngBounds WG49 = new LatLngBounds(

 new LatLng(-89.637840,35.0317400825), new LatLng(-89.413939, 35.140656165));

 LatLngBounds SP71 = new LatLngBounds(

 new LatLng(-90.309543, 35.140656165), new LatLng(-90.085642, 35.2495722475));

 LatLngBounds KT43 = new LatLngBounds(

 new LatLng(-90.085642, 35.140656165), new LatLng(-89.861741, 35.2495722475));

 LatLngBounds BY28 = new LatLngBounds(

 new LatLng(-89.861741, 35.140656165), new LatLng(-89.637840, 35.2495722475));

 LatLngBounds LC95 = new LatLngBounds(

 new LatLng(-89.637840, 35.140656165), new LatLng(-89.413939, 35.2495722475));

 LatLngBounds CR63 = new LatLngBounds(

 new LatLng(-90.309543, 35.2495722475), new LatLng(-90.085642, 35.35848833));

 LatLngBounds CX38 = new LatLngBounds(

 new LatLng(-90.085642, 35.2495722475), new LatLng(-89.861741, 35.35848833));

188

 LatLngBounds VJ14 = new LatLngBounds(

 new LatLng(-89.861741, 35.2495722475), new LatLng(-89.637840, 35.35848833));

 LatLngBounds DR27 = new LatLngBounds(

 new LatLng(-89.637840, 35.2495722475), new LatLng(-89.413939, 35.35848833));

 if (AZ19.contains(new LatLng(x, y))) {

 Log.i("Grid Code", "AZ19");

 Grid="AZ19";

 } else if (ZG86.contains(new LatLng(x, y))) {

 Log.i("Grid Code", "ZG86");

 Grid="ZG86";

 } else if (BY28.contains(new LatLng(x, y))) {

 Log.i("Grid Code", "BY28");

 Grid="BY28";

 } else if (XP52.contains(new LatLng(x, y))) {

 Log.i("Grid Code", "XP52");

 Grid="XP52";

 } else if (DW46.contains(new LatLng(x, y))) {

 Log.i("Grid Code", "DW46");

 Grid="DW46";

 } else if (FD32.contains(new LatLng(x, y))) {

 Log.i("Grid Code", "FD32");

 Grid="FD32";

 } else if (BY28.contains(new LatLng(x, y))) {

 Log.i("Grid Code", "BY28");

 Grid="BY28";

 } else if (YU76B.contains(new LatLng(x, y))) {

 Log.i("Grid Code", "YU76B");

 Grid="YU76B";

 } else if (YU76L.contains(new LatLng(x, y))) {

 Log.i("Grid Code", "YU76L");

 Grid="YU76L";

 } else if (YU76K.contains(new LatLng(x, y))) {

 Log.i("Grid Code", "YU76K");

 Grid="YU76K";

 }else if (YU76Z .contains(new LatLng(x, y))) {

 Log.i("Grid Code", "YU76Z");

 Grid="YU76Z";

 } else if (HD93.contains(new LatLng(x, y))) {

 Log.i("Grid Code", "HD93");

 Grid="HD93";

 } else if (WG49.contains(new LatLng(x, y))) {

 Log.i("Grid Code", "WG49");

 Grid="WG49";

 } else if (SP71.contains(new LatLng(x, y))) {

 Log.i("Grid Code", "SP71");

 Grid="SP71";

 }else if (KT43.contains(new LatLng(x, y))) {

 Log.i("Grid Code", "KT43");

 Grid="KT43";

 }else if (BY28.contains(new LatLng(x, y))) {

 Log.i("Grid Code", "BY28");

 Grid="BY28";

 } else if (LC95.contains(new LatLng(x, y))) {

 Log.i("Grid Code", "LC95");

189

 Grid="LC95";

 } else if (CR63.contains(new LatLng(x, y))) {

 Log.i("Grid Code", "CR63");

 Grid="CR63";

 } else if (CX38.contains(new LatLng(x, y))) {

 Log.i("Grid Code", "CX38");

 Grid="CX38";

 } else if (VJ14.contains(new LatLng(x, y))) {

 Log.i("Grid Code", "VJ14");

 Grid="VJ14";

 } else if (DR27.contains(new LatLng(x, y))) {

 Log.i("Grid Code", "DR27");

 Grid="DR27";

 } else {

 Log.i("Lat2", "" + x);

 Log.i("Lng2", "" + y);

 Log.i("Grid Code", "Outside Boundary");

 Grid="Outside Boundary";

 }

 latLongTV.setText("Grid Code:"+Grid);

 }

}

package nsf.esarplab.scchealth;

import android.app.Activity;

import android.app.ProgressDialog;

import android.bluetooth.BluetoothAdapter;

import android.content.DialogInterface;

import android.content.Intent;

import android.content.SharedPreferences;

import android.graphics.Color;

import android.graphics.drawable.GradientDrawable;

import android.os.Bundle;

import android.os.CountDownTimer;

import android.os.Environment;

import android.support.v7.app.ActionBar;

import android.support.v7.app.AlertDialog;

import android.support.v7.app.AppCompatActivity;

import android.telephony.SmsManager;

import android.util.Log;

import android.view.LayoutInflater;

import android.view.Menu;

import android.view.MenuItem;

import android.view.View;

import android.view.ViewGroup;

import android.widget.Button;

import android.widget.CheckBox;

import android.widget.EditText;

import android.widget.ImageView;

import android.widget.LinearLayout;

import android.widget.PopupWindow;

import android.widget.RadioButton;

import android.widget.RadioGroup;

import android.widget.ScrollView;

import android.widget.TextView;

import android.widget.Toast;

190

import com.google.android.gms.common.api.GoogleApiClient;

import java.io.File;

import java.io.FileWriter;

import java.io.IOException;

import java.text.DateFormat;

import java.text.DecimalFormat;

import java.text.SimpleDateFormat;

import java.util.ArrayList;

import java.util.Calendar;

import java.util.Date;

import java.util.Locale;

import nsf.esarplab.bluetoothlibrary.BluetoothSPP;

import nsf.esarplab.bluetoothlibrary.BluetoothState;

import nsf.esarplab.bluetoothlibrary.DeviceList;

public class oneStopService extends AppCompatActivity {

 BluetoothSPP bt;

 private TextView intro, btData, brData,hrData, ecData, oximetryData, connectionRead;

 private TextView statusTemp, statusHR, statusBR, statusO2, statusECG,

gradientFlu,gradientSA,gradientAR,gradientPD, fluScreening,postStatus;

 private LinearLayout layout1,layoutIntro,layoutProfile,sensorDisplay,sensorStatus;

 private ScrollView mDisplay;

 EditText etMessage;

 private GoogleApiClient client;

 private Button connectScanner, collectData, dispResult, shareResult;

 private boolean diseaseKey = false;

 private boolean sensorKeyBT = false;

 private boolean sensorKeyPO = false;

 private boolean sensorKeyHR = false;

 private boolean sensorKeyBR = false;

 private boolean sensorKeyEC = false;

 private boolean timeKeyBT = false;

 private boolean timeKeyPO = false;

 private boolean timeKeyHR = false;

 private boolean timeKeyBR = false;

 private boolean timeKeyEC=false;

 private boolean handShake=false;

 private int sensor = 1;

 private int fileSeq=1;

 private int sensorNo;

 private String eoiValue,sSeverity;

 double ratingOfEOI = 0.0;

 private RadioGroup radioGroup;

 private String sEOI="";

 private String sTemperature="";

 private RadioButton rb1, rb2, rb3, rb4, rb5;

 Menu menu;

 private ArrayList<String> arr_hex = new ArrayList<String>();

 private ArrayList<Short> arr_received = new ArrayList<Short>();

 private ArrayList<Short> arr_respiration = new ArrayList<Short>();

 private String currentDateTime = "";

 String s = "";

191

 private PopupWindow mPopupWindow;

 private CheckBox ch1,ch2;

 private double temperature=0.0f;

 private ProgressDialog progressDialog;

 private CountDownTimer Count;

 private boolean failedHandshake;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_one_stop_service);

 // show action bar

 ActionBar myActionBar = getSupportActionBar();

 myActionBar.show();

 TextView mNameText = (TextView) findViewById(R.id.display_name);

 bt = new BluetoothSPP(this);

 // initialize layouts

 layout1=(LinearLayout)findViewById(R.id.layout1);

 layoutIntro=(LinearLayout)findViewById(R.id.layout_intro);

 layoutProfile=(LinearLayout)findViewById(R.id.layout2);

 sensorStatus=(LinearLayout) findViewById(R.id.sensorStatus);

 //intro=(TextView) findViewById(R.id.display_intro);

 sensorDisplay=(LinearLayout) findViewById(R.id.sensorDisplay);

 mDisplay=(ScrollView) findViewById(R.id.maindisp);

 collectData=(Button) findViewById(R.id.test);

 btData=(TextView) findViewById(R.id.value_flu);

 // sensor status

 statusTemp=(TextView) findViewById(R.id.statusTemp);

 statusHR=(TextView) findViewById(R.id.statusHR);

 statusBR=(TextView) findViewById(R.id.statusBR);

 //statusO2=(TextView) findViewById(R.id.statusO2);

 statusECG=(TextView) findViewById(R.id.statusECG);

 fluScreening=(TextView) findViewById(R.id.screening_flu);

 postStatus=(TextView) findViewById(R.id.postStatus);

 oximetryData=(TextView) findViewById(R.id.display_spo2);

 connectionRead = (TextView) findViewById(R.id.textStatus);

 dispResult = (Button) findViewById(R.id.displayResult);

 connectScanner = (Button) findViewById(R.id.cScanner);

 shareResult=(Button) findViewById(R.id.shareResult);

 sensorNo=0;

 // hide sensor list & collect data button

 sensorDisplay.setVisibility(View.GONE);

 collectData.setVisibility(View.GONE);

 // hide compute & share button

 dispResult.setVisibility(View.GONE);

 shareResult.setVisibility(View.GONE);

 //Show active profile

 SharedPreferences prefs = getSharedPreferences("logindetails",MODE_PRIVATE);

 String Uname = prefs.getString("loginname","Default");

192

 mNameText.setText("\t\t"+Uname);

 s = mNameText.getText().toString().trim();

 // color line gradient

 gradientFlu = (TextView) findViewById(R.id.active_gradient_flu);

 gradientSA = (TextView) findViewById(R.id.active_gradient_SA);

 gradientAR = (TextView) findViewById(R.id.active_gradient_AR);

 gradientPD = (TextView) findViewById(R.id.active_gradient_PD);

 int[] colors = {Color.parseColor("#008000"), Color.parseColor("#FFFF00"), Color.parseColor("#FFA500"),

Color.parseColor("#ff0000"), Color.parseColor("#800000")};

 GradientDrawable gd = new GradientDrawable(

 GradientDrawable.Orientation.LEFT_RIGHT, colors);

 gradientFlu.setBackground(gd);

 gradientSA.setBackground(gd);

 gradientAR.setBackground(gd);

 gradientPD.setBackground(gd);

 // radio group for sensors

 radioGroup = (RadioGroup) findViewById(R.id.rg1);

 rb1 = (RadioButton) findViewById(R.id.rb_bt);

 //rb2 = (RadioButton) findViewById(R.id.rb_o2);

 //rb3 = (RadioButton) findViewById(R.id.rb_hr);

 //rb4 = (RadioButton) findViewById(R.id.rb_resp);

 //rb5 = (RadioButton) findViewById(R.id.rb_ecg);

 rb1.setTextColor(Color.BLUE);

 radioGroup.setOnCheckedChangeListener(new RadioGroup.OnCheckedChangeListener()

 {

 @Override

 public void onCheckedChanged(RadioGroup group, int checkedId) {

 // set text color

 int selectedId = radioGroup.getCheckedRadioButtonId();

 RadioButton selected = (RadioButton) findViewById(selectedId);

 rb1.setTextColor(Color.BLACK);

 //rb2.setTextColor(Color.BLACK);

 //rb3.setTextColor(Color.BLACK);

 //rb4.setTextColor(Color.BLACK);

 //rb5.setTextColor(Color.BLACK);

 selected.setTextColor(Color.BLUE);

 // checkedId is the RadioButton selected

 if(checkedId==R.id.rb_bt){

 sensor=1;

 }else if(checkedId==R.id.rb_resp){

 sensor=2;

 }

193

 else if(checkedId==R.id.rb_o2){

 sensor=3;

 }else if(checkedId==R.id.rb_hr){

 sensor=4;

 }else if(checkedId==R.id.rb_ecg){

 sensor=5;

 }

 }

 });

 // set the bluetooth connection

 bt.setOnDataReceivedListener(new BluetoothSPP.OnDataReceivedListener() {

 public void onDataReceived(byte[] data, String message) {

 short val = 0;

 String readAscii = new String(data);

 //textReceived.append(message + "\n");

 if (handShake) {

 arr_hex.add(message);

 Log.i("Str2@activity",message);

 Log.i("size_arr_hex",""+arr_hex.size());

 if (arr_hex.size() == 2) {

 String catHex = arr_hex.get(0) + arr_hex.get(1);

 /*int b0 = (arr_hex.get(0) & 255); // converts to unsigned

 int b1 = (arr_hex.get(1) & 255); // converts to unsigned

 int val = b0 << 8 | b1;*/

 Log.i("val1@final", catHex);

 //val = (short) (Integer.parseInt(catHex, 16));

 //Log.i("val2@final", String.valueOf(val));

 //val= (short) Long.parseLong(catHex, 16);

 val = (short) (Integer.parseInt(catHex, 16));

 //val= (int) Long.parseLong(catHex, 16);

 Log.i("val3@final", String.valueOf(val));

 arr_received.add(val);

 //Textv.append(Integer.toString(val) + "\n");

 try {

 writeToCsv(Integer.toString(val));

 } catch (IOException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 arr_hex.clear();

194

 }

 //receive data

 /*switch (sensor) {

 case 1: {

 arr_received.add(val);

 Log.i("sizearr_received", "" + arr_received.size());

 break;

 }

 case 2: {

 arr_respiration.add(val);

 //Log.i("sizearr_received", "" + arr_received.size());

 break;

 }

 case 3: {

 //hrData.append(message + "\n");

 break;

 }

 case 4: {

 //brData.append(message + "\n");

 break;

 }

 case 5: {

 //ecData.append(message + "\n");

 break;

 }

 }*/

 } else {

 if (readAscii.equals("OS")) {

 switch (sensor) {

 case 1: {

 bt.send("TP", true);

 diseaseKey = true;

 break;

 }

 case 2: {

 bt.send("PO", true);

 diseaseKey = true;

 break;

 }

 case 3: {

 bt.send("HR", true);

 diseaseKey = true;

 break;

 }

 case 4: {

 bt.send("BR", true);

 diseaseKey = true;

 break;

 }

 case 5: {

 bt.send("EC", true);

195

 diseaseKey = true;

 break;

 }

 }

 } else {

 if (readAscii.equals("TP") && diseaseKey) {

 bt.send("00020", true);

 sensorKeyBT = true;

 } else if (readAscii.equals("PO") && diseaseKey) {

 bt.send("5", true);

 sensorKeyPO= true;

 } else if (readAscii.equals("HR") && diseaseKey) {

 bt.send("6", true);

 sensorKeyHR = true;

 }else if (readAscii.equals("BR") && diseaseKey) {

 bt.send("7", true);

 sensorKeyBR = true;

 }else if (readAscii.equals("EC") && diseaseKey) {

 bt.send("8", true);

 sensorKeyEC = true;

 }else {

 if (readAscii.equals("00020") && sensorKeyBT && diseaseKey) {

 bt.send("OK", true);

 handShake = true;

 } else if (readAscii.equals("5") && sensorKeyPO && diseaseKey) {

 bt.send("OK", true);

 handShake = true;

 } else if (readAscii.equals("6") && sensorKeyHR && diseaseKey) {

 bt.send("OK", true);

 handShake = true;

 }else if (readAscii.equals("7") && sensorKeyBR && diseaseKey) {

 bt.send("OK", true);

 handShake = true;

 }else if (readAscii.equals("8") && sensorKeyEC && diseaseKey) {

 bt.send("OK", true);

 handShake = true;

 }else {AlertDialog.Builder builder = new AlertDialog.Builder(oneStopService.this);

 builder.setTitle("Communication Error");

 builder.setMessage("Restart Scanner and re-connect");

 // add the buttons

 builder.setPositiveButton("Reconnect", new DialogInterface.OnClickListener() {

 @Override

 public void onClick(DialogInterface dialog, int which) {

 // do something ...

 dialog.dismiss();

 if (bt.getServiceState() == BluetoothState.STATE_CONNECTED)

 bt.disconnect();

 connectScanner.setVisibility(View.VISIBLE);

 sensorDisplay.setVisibility(View.GONE);

 mDisplay.setVisibility(View.GONE);

 collectData.setVisibility(View.GONE);

 dispResult.setVisibility(View.GONE);

 shareResult.setVisibility(View.GONE);

 sensorStatus.setVisibility(View.GONE);

196

 layoutIntro.setVisibility(View.VISIBLE);

 arr_received.clear();

 handShake = false;

 diseaseKey = false;

 sensorKeyBT = false;

 Count.cancel();

 progressDialog.dismiss();

 failedHandshake=true;

 }

 });

 builder.setNegativeButton("Cancel", null);

 // create and show the alert dialog

 AlertDialog dialog = builder.create();

 dialog.show();

 }

 }

 }

 }

 }

 });

 bt.setBluetoothConnectionListener(new BluetoothSPP.BluetoothConnectionListener() {

 public void onDeviceDisconnected() {

 connectionRead.setText("Status : Not connect");

 connectionRead.setBackgroundColor(Color.parseColor("#D3D3D3"));

 menu.clear();

 getMenuInflater().inflate(R.menu.menu_connection, menu);

 }

 public void onDeviceConnectionFailed() {

 connectionRead.setText("Status : Connection failed");

 connectionRead.setBackgroundColor(Color.parseColor("#D3D3D3"));

 AlertDialog.Builder builder = new AlertDialog.Builder(oneStopService.this);

 builder.setTitle("Connection Error");

 builder.setMessage("Retry to connect");

 // add the buttons

 builder.setPositiveButton("Retry", new DialogInterface.OnClickListener() {

 @Override

 public void onClick(DialogInterface dialog, int which) {

 // do something ...

 bt.setDeviceTarget(BluetoothState.DEVICE_OTHER);

 Intent intent = new Intent(getApplicationContext(), DeviceList.class);

 startActivityForResult(intent, BluetoothState.REQUEST_CONNECT_DEVICE);

 dialog.dismiss();

 }

 });

 builder.setNegativeButton("Cancel", null);

 // create and show the alert dialog

 AlertDialog dialog = builder.create();

197

 dialog.show();

 }

 public void onDeviceConnected(String name, String address) {

 connectionRead.setText("Status : Connected to " + name);

 connectionRead.setBackgroundColor(Color.parseColor("#228B22"));

 menu.clear();

 getMenuInflater().inflate(R.menu.menu_disconnection, menu);

 sensorDisplay.setVisibility(View.VISIBLE);

 layoutIntro.setVisibility(View.GONE);

 layoutProfile.setVisibility(View.VISIBLE);

 collectData.setVisibility(View.VISIBLE);

 connectScanner.setVisibility(View.GONE);

 }

 });

 /*// set corresponding display for selected sensor

 final LinearLayout hrlayout = (LinearLayout) findViewById(R.id.hr_result);

 final LinearLayout spo2layout = (LinearLayout) findViewById(R.id.spo2_result);

 RadioButton rbOxygen = (RadioButton) findViewById(R.id.rb_o2);

 RadioButton rbheartRate = (RadioButton) findViewById(R.id.rb_hr);

 hrlayout.setVisibility(View.VISIBLE);

 spo2layout.setVisibility(View.GONE);

 RadioGroup radioGroup2 = (RadioGroup) findViewById(R.id.rg1);

 radioGroup2.setOnCheckedChangeListener(new RadioGroup.OnCheckedChangeListener() {

 @Override

 public void onCheckedChanged(RadioGroup group, int checkedId) {

 if (checkedId == R.id.rb_o2) {

 sensor=2;

 hrlayout.setVisibility(View.GONE);

 spo2layout.setVisibility(View.VISIBLE);

 } else {

 hrlayout.setVisibility(View.VISIBLE);

 spo2layout.setVisibility(View.GONE);

 }

 }

 });*/

// inflate the screen for info and instruction

 final TextView btnOpenPopup = (TextView) findViewById(R.id.info);

 btnOpenPopup.setOnClickListener(new Button.OnClickListener() {

 @Override

 public void onClick(View arg0) {

 LayoutInflater layoutInflater

 = (LayoutInflater) getBaseContext()

 .getSystemService(LAYOUT_INFLATER_SERVICE);

 View popupView = layoutInflater.inflate(R.layout.info_oss, null);

 final PopupWindow popupWindow = new PopupWindow(

 popupView,

 ViewGroup.LayoutParams.WRAP_CONTENT,

 ViewGroup.LayoutParams.WRAP_CONTENT);

198

 Button btnDismiss = (Button) popupView.findViewById(R.id.dismiss);

 btnDismiss.setOnClickListener(new Button.OnClickListener() {

 @Override

 public void onClick(View v) {

 // TODO Auto-generated method stub

 popupWindow.dismiss();

 }

 });

 popupWindow.showAsDropDown(btnOpenPopup, 50, -30);

 }

 });

 final TextView btnOpenInstruction = (TextView) findViewById(R.id.inst);

 btnOpenInstruction.setOnClickListener(new Button.OnClickListener() {

 @Override

 public void onClick(View arg0) {

 LayoutInflater layoutInflater

 = (LayoutInflater) getBaseContext()

 .getSystemService(LAYOUT_INFLATER_SERVICE);

 View popupView = layoutInflater.inflate(R.layout.inst_oss, null);

 final PopupWindow popupWindow = new PopupWindow(

 popupView,

 ViewGroup.LayoutParams.WRAP_CONTENT,

 ViewGroup.LayoutParams.WRAP_CONTENT);

 Button btnDismiss = (Button) popupView.findViewById(R.id.dismiss);

 btnDismiss.setOnClickListener(new Button.OnClickListener() {

 @Override

 public void onClick(View v) {

 // TODO Auto-generated method stub

 popupWindow.dismiss();

 }

 });

 popupWindow.showAsDropDown(btnOpenPopup, 50, -30);

 }

 });

 /*final TextView btnFluInfo = (Button) findViewById(R.id.buttonFlu);

 btnFluInfo.setOnClickListener(new Button.OnClickListener() {

 @Override

 public void onClick(View arg0) {

 LayoutInflater layoutInflater

 = (LayoutInflater) getBaseContext()

 .getSystemService(LAYOUT_INFLATER_SERVICE);

 View popupView = layoutInflater.inflate(R.layout.info_bodytemp, null);

 final PopupWindow popupWindow = new PopupWindow(

 popupView,

 ViewGroup.LayoutParams.WRAP_CONTENT,

 ViewGroup.LayoutParams.WRAP_CONTENT);

199

 Button btnDismiss = (Button) popupView.findViewById(R.id.dismiss);

 btnDismiss.setOnClickListener(new Button.OnClickListener() {

 @Override

 public void onClick(View v) {

 // TODO Auto-generated method stub

 popupWindow.dismiss();

 }

 });

 popupWindow.showAsDropDown(btnOpenPopup, 50, -30);

 }

 });

 final TextView btnSAInfo = (Button) findViewById(R.id.buttonSA);

 btnSAInfo.setOnClickListener(new Button.OnClickListener() {

 @Override

 public void onClick(View arg0) {

 LayoutInflater layoutInflater

 = (LayoutInflater) getBaseContext()

 .getSystemService(LAYOUT_INFLATER_SERVICE);

 View popupView = layoutInflater.inflate(R.layout.info_sleepapnea, null);

 final PopupWindow popupWindow = new PopupWindow(

 popupView,

 ViewGroup.LayoutParams.WRAP_CONTENT,

 ViewGroup.LayoutParams.WRAP_CONTENT);

 Button btnDismiss = (Button) popupView.findViewById(R.id.dismiss);

 btnDismiss.setOnClickListener(new Button.OnClickListener() {

 @Override

 public void onClick(View v) {

 // TODO Auto-generated method stub

 popupWindow.dismiss();

 }

 });

 popupWindow.showAsDropDown(btnOpenPopup, 50, -30);

 }

 });

 final TextView btnAsthmaInfo = (Button) findViewById(R.id.buttonAsthma);

 btnAsthmaInfo.setOnClickListener(new Button.OnClickListener() {

 @Override

 public void onClick(View arg0) {

 LayoutInflater layoutInflater

 = (LayoutInflater) getBaseContext()

 .getSystemService(LAYOUT_INFLATER_SERVICE);

 View popupView = layoutInflater.inflate(R.layout.info_copd, null);

 final PopupWindow popupWindow = new PopupWindow(

 popupView,

 ViewGroup.LayoutParams.WRAP_CONTENT,

 ViewGroup.LayoutParams.WRAP_CONTENT);

 Button btnDismiss = (Button) popupView.findViewById(R.id.dismiss);

 btnDismiss.setOnClickListener(new Button.OnClickListener() {

 @Override

 public void onClick(View v) {

 // TODO Auto-generated method stub

 popupWindow.dismiss();

 }

 });

 popupWindow.showAsDropDown(btnOpenPopup, 50, -30);

 }

200

 });

 final TextView btnARInfo = (Button) findViewById(R.id.buttonAR);

 btnARInfo.setOnClickListener(new Button.OnClickListener() {

 @Override

 public void onClick(View arg0) {

 LayoutInflater layoutInflater

 = (LayoutInflater) getBaseContext()

 .getSystemService(LAYOUT_INFLATER_SERVICE);

 View popupView = layoutInflater.inflate(R.layout.info_arrhythmia, null);

 final PopupWindow popupWindow = new PopupWindow(

 popupView,

 ViewGroup.LayoutParams.WRAP_CONTENT,

 ViewGroup.LayoutParams.WRAP_CONTENT);

 Button btnDismiss = (Button) popupView.findViewById(R.id.dismiss);

 btnDismiss.setOnClickListener(new Button.OnClickListener() {

 @Override

 public void onClick(View v) {

 // TODO Auto-generated method stub

 popupWindow.dismiss();

 }

 });

 popupWindow.showAsDropDown(btnOpenPopup, 50, -30);

 }

 });*/

 // connect scanner by bluetooth

 connectScanner.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 bt.setDeviceTarget(BluetoothState.DEVICE_OTHER);

 /*

 if(bt.getServiceState() == BluetoothState.STATE_CONNECTED)

 bt.disconnect();*/

 Intent intent = new Intent(getApplicationContext(), DeviceList.class);

 startActivityForResult(intent, BluetoothState.REQUEST_CONNECT_DEVICE);

 }

 });

 }

 // @Override

 /* public void onStart() {

 super.onStart();

 if (!mBoundService.isBluetoothEnabled()) {

 Intent intent = new Intent(BluetoothAdapter.ACTION_REQUEST_ENABLE);

 startActivityForResult(intent, BluetoothState.REQUEST_ENABLE_BT);

 } else {

 if (!mBoundService.isServiceAvailable()) {

 mBoundService.setupService();

 mBoundService.startService(BluetoothState.DEVICE_ANDROID);

 setup();

 }

 }

 }*/

201

 public void onDestroy() {

 super.onDestroy();

 bt.stopService();

 }

 public boolean onCreateOptionsMenu(Menu menu) {

 this.menu = menu;

 getMenuInflater().inflate(R.menu.menu_connection, menu);

 return true;

 }

 public boolean onOptionsItemSelected(MenuItem item) {

 int id = item.getItemId();

 if (id == R.id.menu_android_connect) {

 bt.setDeviceTarget(BluetoothState.DEVICE_ANDROID);

 /*

 if(bt.getServiceState() == BluetoothState.STATE_CONNECTED)

 bt.disconnect();*/

 Intent intent = new Intent(getApplicationContext(), DeviceList.class);

 startActivityForResult(intent, BluetoothState.REQUEST_CONNECT_DEVICE);

 } else if (id == R.id.menu_device_connect) {

 bt.setDeviceTarget(BluetoothState.DEVICE_OTHER);

 /*

 if(bt.getServiceState() == BluetoothState.STATE_CONNECTED)

 bt.disconnect();*/

 Intent intent = new Intent(getApplicationContext(), DeviceList.class);

 startActivityForResult(intent, BluetoothState.REQUEST_CONNECT_DEVICE);

 } else if (id == R.id.menu_disconnect) {

 if (bt.getServiceState() == BluetoothState.STATE_CONNECTED)

 bt.disconnect();

 connectScanner.setVisibility(View.VISIBLE);

 sensorDisplay.setVisibility(View.GONE);

 mDisplay.setVisibility(View.GONE);

 collectData.setVisibility(View.GONE);

 dispResult.setVisibility(View.GONE);

 shareResult.setVisibility(View.GONE);

 sensorStatus.setVisibility(View.GONE);

 layoutIntro.setVisibility(View.VISIBLE);

 arr_received.clear();

 arr_hex.clear();

 handShake = false;

 diseaseKey = false;

 sensorKeyBT = false;

 }

 else if (id == R.id.menu_reinitialize) {

 layout1.setVisibility(View.VISIBLE);

 sensorDisplay.setVisibility(View.VISIBLE);

 mDisplay.setVisibility(View.GONE);

 collectData.setVisibility(View.VISIBLE);

 sensorStatus.setVisibility(View.GONE);

 dispResult.setVisibility(View.GONE);

 shareResult.setVisibility(View.GONE);

 arr_received.clear();

202

 handShake = false;

 diseaseKey = false;

 sensorKeyBT = false;

 }

 else if (id == R.id.action_save) {

 // Save record to database

 //insertTemp();

 // Exit activity

 //finish();

 }

 // Respond to a click on the "Share to SCC" menu option

 else if (id == R.id.action_share){

 if(s.matches("")) {

 Toast.makeText(getApplicationContext(), "Create Profile First ", Toast.LENGTH_LONG).show();

 }else {

 // Go to cloud activity

 Intent shareIntent = new Intent(oneStopService.this, CloudActivity.class);

 //Bundle extras = new Bundle();

 shareIntent.putExtra("DT", "BT");

 shareIntent.putExtra("profile", s);

 shareIntent.putExtra("EOI", eoiValue);

 shareIntent.putExtra("Time", currentDateTime);

 shareIntent.putExtra("Algorithm", "BT1");

 startActivity(shareIntent);

 }

 }

 else if (id == R.id.action_sms) {

 String messageToSend = "EOI:" + eoiValue;

 String number = "9018340057";

 SmsManager.getDefault().sendTextMessage(number, null, messageToSend, null, null);

 //finish();

 }

 else if (id == R.id.action_history) {

 // Create a new intent to open the {@link Temperature History}

 Intent temperatureHistoryIntent = new Intent(oneStopService.this, Temp_HistoryActivity.class);

 // Start the new activity

 startActivity(temperatureHistoryIntent);

 //finish();

 }

 else if (id == R.id.action_algorithm) {

 Intent algIntent = new Intent(oneStopService.this, FluMethods.class);

 startActivity(algIntent);

 }

203

 return super.onOptionsItemSelected(item);

 }

 public void onStart() {

 super.onStart();

 if (!bt.isBluetoothEnabled()) {

 Intent intent = new Intent(BluetoothAdapter.ACTION_REQUEST_ENABLE);

 startActivityForResult(intent, BluetoothState.REQUEST_ENABLE_BT);

 } else {

 if (!bt.isServiceAvailable()) {

 bt.setupService();

 bt.startService(BluetoothState.DEVICE_ANDROID);

 setup();

 summarizedOutput();

 shareWithSCC();

 }

 }

 }

 public void onActivityResult(int requestCode, int resultCode, Intent data) {

 if (requestCode == BluetoothState.REQUEST_CONNECT_DEVICE) {

 if (resultCode == Activity.RESULT_OK)

 bt.connect(data);

 } else if (requestCode == BluetoothState.REQUEST_ENABLE_BT) {

 if (resultCode == Activity.RESULT_OK) {

 bt.setupService();

 bt.startService(BluetoothState.DEVICE_ANDROID);

 setup();

 } else {

 Toast.makeText(getApplicationContext()

 , "BluetoothActivity was not enabled."

 , Toast.LENGTH_SHORT).show();

 finish();

 }

 }

 }

 public void setup() {

 collectData.setOnClickListener(new View.OnClickListener() {

 public void onClick(View v) {

 {

 bt.send("OS", true);

 arr_received.clear();

 arr_respiration.clear();

 // progress indicator

 final ProgressDialog progressDialog = new ProgressDialog(oneStopService.this,

 R.style.AppTheme_Dark_Dialog);

 progressDialog.setIndeterminate(true);

 progressDialog.setMessage("Handshaking & Collecting data...");

 new CountDownTimer(1200, 100) {

 public void onTick(long millisecondsUntilDone) {

204

 progressDialog.show();

 }

 @Override

 public void onFinish() {

 Log.i("Done", "Count Down Timer Finished");

 progressDialog.dismiss();

 if(handShake){

 sensorDisplay.setVisibility(View.GONE);

 collectData.setVisibility(View.GONE);

 // make compute button visible

 dispResult.setVisibility(View.VISIBLE);

 sensorStatus.setVisibility(View.VISIBLE);

 //statusTemp.setBackgroundColor(Color.parseColor("#4CAF50"));

 }else if(failedHandshake){

 // do nothing

 }else{

 AlertDialog.Builder builder = new AlertDialog.Builder(oneStopService.this);

 builder.setTitle("No Communication");

 builder.setMessage("Restart Scanner and re-connect");

 // add the buttons

 builder.setPositiveButton("Reconnect", new DialogInterface.OnClickListener() {

 @Override

 public void onClick(DialogInterface dialog, int which) {

 // do something ...

 dialog.dismiss();

 if (bt.getServiceState() == BluetoothState.STATE_CONNECTED)

 bt.disconnect();

 connectScanner.setVisibility(View.VISIBLE);

 sensorDisplay.setVisibility(View.GONE);

 mDisplay.setVisibility(View.GONE);

 collectData.setVisibility(View.GONE);

 dispResult.setVisibility(View.GONE);

 shareResult.setVisibility(View.GONE);

 sensorStatus.setVisibility(View.GONE);

 layoutIntro.setVisibility(View.VISIBLE);

 arr_received.clear();

 handShake = false;

 diseaseKey = false;

 sensorKeyBT = false;

 }

 });

 builder.setNegativeButton("Cancel", null);

 // create and show the alert dialog

 AlertDialog dialog = builder.create();

 dialog.show();

 }

 if (arr_received.size() > 100) {

 statusTemp.setBackgroundColor(Color.parseColor("#4CAF50"));

 postStatus.setText("2. Click on COMPUTE SEVERITY ");

 dispResult.setClickable(true);

 } else {

 statusTemp.setBackgroundColor(Color.parseColor("#000000"));

205

 postStatus.setText("2. Position Sensor properly, Refresh and collect data again");

 dispResult.setClickable(false);

 }

 // after timer delay

 /*sensorDisplay.setVisibility(View.GONE);

 collectData.setVisibility(View.GONE);

 // make compute button visible

 dispResult.setVisibility(View.VISIBLE);

 sensorStatus.setVisibility(View.VISIBLE);

 statusTemp.setBackgroundColor(Color.parseColor("#4CAF50"));*/

 /*AlertDialog alertDialog = new AlertDialog.Builder(oneStopService.this).create();

 alertDialog.setTitle("Instruction");

 alertDialog.setMessage("Check sensor status and click on COMPUTE SEVERITY");

 alertDialog.setButton(AlertDialog.BUTTON_NEUTRAL, "OK",

 new DialogInterface.OnClickListener() {

 public void onClick(DialogInterface dialog, int which) {

 dialog.dismiss();

 }

 });

 alertDialog.show();*/

 }

 }.start();

 }

 }

 });

 }

 @Override

 public void onStop() {

 super.onStop();

 }

 public void summarizedOutput() {

 dispResult.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 {

 if (handShake) {

 fluAlgorithm();

 sleepapneaAlgorithm();

 arrhythmiaAlgorithm();

 asthmaAlgorithm();

 if(temperature>100) {

 LayoutInflater layoutInflater

 = (LayoutInflater) getBaseContext()

206

 .getSystemService(LAYOUT_INFLATER_SERVICE);

 View popupView = layoutInflater.inflate(R.layout.flu_symp, null);

 final PopupWindow popupWindow = new PopupWindow(

 popupView,

 ViewGroup.LayoutParams.WRAP_CONTENT,

 ViewGroup.LayoutParams.WRAP_CONTENT);

 Button btnDismiss = (Button) popupView.findViewById(R.id.dismiss);

 ch1 = (CheckBox) popupView.findViewById(R.id.checkBox1);

 ch2 = (CheckBox) popupView.findViewById(R.id.checkBox2);

 btnDismiss.setOnClickListener(new Button.OnClickListener() {

 @Override

 public void onClick(View v) {

 // TODO Auto-generated method stub

 popupWindow.dismiss();

 layout1.setVisibility(View.GONE);

 layoutIntro.setVisibility(View.GONE);

 sensorStatus.setVisibility(View.GONE);

 mDisplay.setVisibility(View.VISIBLE);

 shareResult.setVisibility(View.VISIBLE);

 dispResult.setVisibility(View.GONE);

 fluScreening.setText("Symptomps-Yes");

 }

 });

 popupWindow.showAsDropDown(dispResult, 50, 30);

 }else {

 //test.setVisibility(View.GONE);

 layout1.setVisibility(View.GONE);

 layoutIntro.setVisibility(View.GONE);

 sensorStatus.setVisibility(View.GONE);

 mDisplay.setVisibility(View.VISIBLE);

 shareResult.setVisibility(View.VISIBLE);

 dispResult.setVisibility(View.GONE);

 fluScreening.setText("Symptomps-No");

 }

 } else {

 Toast.makeText(getApplicationContext(), "Restart Scanner and Collect Data Again",

Toast.LENGTH_LONG).show();

 }

 }

 }

 });

 }

 // SHARE WITH SCC SERVER

 public void shareWithSCC(){

 //do nothing for now

 shareResult.setOnClickListener(new View.OnClickListener() {

207

 public void onClick(View v) {

 {

 if(s.matches("")) {

 Toast.makeText(getApplicationContext(), "Create Profile First ", Toast.LENGTH_LONG).show();

 }else{

 // Go to cloud activity

 Intent shareIntent = new Intent(oneStopService.this, CloudActivity.class);

 //Bundle extras = new Bundle();

 shareIntent.putExtra("DT", "BT");

 shareIntent.putExtra("profile", s);

 shareIntent.putExtra("EOI", eoiValue);

 shareIntent.putExtra("Time", currentDateTime);

 shareIntent.putExtra("Algorithm", "BT1");

 startActivity(shareIntent);

 }

 }

 }

 });

 }

 public void fluAlgorithm()

 {

 // do the severity ranking here

 TextView Textv=(TextView) findViewById(R.id.value_flu);

 TextView severityView=(TextView) findViewById(R.id.value_severity_flu);

 ArrayList<Short> arr_trans = new ArrayList<Short>();

 ArrayList<Short> arr_processed1 = new ArrayList<Short>();

 ArrayList<Short> arr_processed2 = new ArrayList<Short>();

 float sum = 0.0f;

 float sum1 = 0.0f;

 float sum2 = 0.0f;

 float avgValue = 0.0f;

 float avgValue1 = 0.0f;

 float avgValue2 = 0.0f;

 float resultVoltage=0.0f;

 double temperature=0.0f;

 // make main display visible and hide arrows

 mDisplay.setVisibility(View.VISIBLE);

 ImageView arrow1=(ImageView) findViewById(R.id.arrow1);

 ImageView arrow2=(ImageView) findViewById(R.id.arrow2);

 ImageView arrow3=(ImageView) findViewById(R.id.arrow3);

 ImageView arrow4=(ImageView) findViewById(R.id.arrow4);

 ImageView arrow5=(ImageView) findViewById(R.id.arrow5);

208

 ImageView arrow6=(ImageView) findViewById(R.id.arrow6);

 ImageView arrow7=(ImageView) findViewById(R.id.arrow7);

 ImageView arrow8=(ImageView) findViewById(R.id.arrow8);

 ImageView arrow9=(ImageView) findViewById(R.id.arrow9);

 ImageView arrow10=(ImageView) findViewById(R.id.arrow10);

 ImageView arrow11=(ImageView) findViewById(R.id.arrow11);

 // hide arrows

 arrow1.setVisibility(View.INVISIBLE);

 arrow2.setVisibility(View.INVISIBLE);

 arrow3.setVisibility(View.INVISIBLE);

 arrow4.setVisibility(View.INVISIBLE);

 arrow5.setVisibility(View.INVISIBLE);

 arrow6.setVisibility(View.INVISIBLE);

 arrow7.setVisibility(View.INVISIBLE);

 arrow8.setVisibility(View.INVISIBLE);

 arrow9.setVisibility(View.INVISIBLE);

 arrow10.setVisibility(View.INVISIBLE);

 arrow11.setVisibility(View.INVISIBLE);

 // display when there is no data

 if (arr_received.size() == 0) {

 mDisplay.setVisibility(View.VISIBLE);

 Textv.setText("No Data");

 // Veoi.setText("No Data");

 } else {

 // get date and time

 currentDateTime = DateFormat.getDateTimeInstance().format(new Date());

 // initialize the screen

 //Vdatetime.setText("");

 Textv.setText("");

 //Vprompt.setText("");

 //Veoi.setText("");

 // temperature processing begin

 /* for (int i = 0; i < arr_received.size(); i++) {

 if ((arr_received.get(i)>0)&&(arr_received.get(i)<9000)) {

 arr_trans.add(arr_received.get(i));

 Log.i("transferrred", "" + arr_received.get(i));

 }

 }*/

 short value=arr_received.get(0);

 for (int i=0;i<arr_received.size();i++)

 {

 short currentValue=arr_received.get(i);

 value+=((currentValue - value)/10);

 arr_processed1.add(i,value);

 try {

 writeToCsv(Integer.toString(value));

 } catch (IOException e) {

 // TODO Auto-generated catch block

209

 e.printStackTrace();

 }

 }

 // *****Feature 2 **

 // step-1-find maxima

 int max =arr_processed1.get(0);

 for (int l=0;l<arr_processed1.size(); l++){

 if(arr_processed1.get(l)> max){

 max = arr_processed1.get(l);

 }

 }

 Log.i("feature21", "" + max);

 // step-2-find maxima index

 int indexOfMaxima=0;

 for (int m=0; m<arr_processed1.size(); m++)

 {

 if (max==arr_processed1.get(m)){

 indexOfMaxima=m;

 break;

 }

 }

 // step-3-find maxima level

 float sumMaxima=0;

 for (int n=indexOfMaxima-10; n<indexOfMaxima+10; n++)

 {

 sumMaxima+=arr_processed1.get(n);

 }

 float avgMaxima=sumMaxima/20;

 Log.i("feature22", "" + avgMaxima);

 // ****feature 3**

 // step-1-transfer to new array

 for (int q = 99; q < arr_processed1.size(); q++) {

 arr_trans.add(arr_processed1.get(q));

 }

 // step-2-find index of delay

 int indexOfDelay=0;

 for (int p=0; p<arr_trans.size(); p++)

210

 {

 if (((arr_trans.get(p))-2450)<5){

 indexOfDelay=p;

 break;

 }

 }

 Log.i("feature3", "" + indexOfDelay);

 // *****Feature 1 ***

 // step-1-find minima

 int min =arr_trans.get(0);

 for (int i=0;i<arr_trans.size(); i++){

 if(arr_trans.get(i)< min){

 min = arr_trans.get(i);

 }

 }

 // step-2-find minima index

 int indexOfMinima=0;

 for (int j=0; j<arr_trans.size(); j++)

 {

 if (min==arr_trans.get(j)){

 indexOfMinima=j;

 break;

 }

 }

 Log.i("feature11", "" + min);

 // step-3-find minima level

 float sumMinima=0;

 for (int k=indexOfMinima; k<indexOfMinima+10; k++)

 {

 sumMinima+=arr_trans.get(k);

 }

 float avgMinima=sumMinima/10;

 Log.i("feature12", "" + avgMinima);

 // ******Feature 4 ***********

 for (int s = 0; s < arr_trans.size(); s++) {

 sum += arr_trans.get(s);

 }

 avgValue = sum / arr_trans.size();

 Log.i("feature4", "" + avgValue);

 // ********** Multivariate regression **

 // equation for temperature

211

 temperature= 230.0-0.00142*avgMinima-0.04203*avgMaxima-0.21037*indexOfDelay;

 double temp2=228.6-0.04243*avgMaxima-0.21267*indexOfDelay;

 Log.i("temp", "" + temp2);

 Log.i("sizer", "" + arr_received.size());

 Log.i("sizet", "" + arr_trans.size());

 Log.i("sizep", "" + arr_processed1.size());

 try {

 sTemperature = String.valueOf(new DecimalFormat("###.##").format(temperature));

 ratingOfEOI = (temperature - 97) / 10;

 if(ratingOfEOI<0){

 ratingOfEOI=0;

 }else if(ratingOfEOI>1){

 ratingOfEOI=1;

 }

 sEOI = new DecimalFormat("##.##").format(ratingOfEOI);

 sSeverity = new DecimalFormat("##.##").format(100 * ratingOfEOI);

 if (temperature <= 97.5) {

 //prompt = "Normal Temperature";

 arrow1.setVisibility(View.VISIBLE);

 //sEOI="0.0";

 //sSeverity="0.0";

 } else if (temperature <= 98.5) {

 //prompt = "Normal Temperature";

 arrow2.setVisibility(View.VISIBLE);

 } else if (temperature <= 99.5) {

 //prompt = "Normal Temperature";

 arrow3.setVisibility(View.VISIBLE);

 } else if (temperature <= 100.5) {

 //prompt = "Normal Temperature";

 arrow4.setVisibility(View.VISIBLE);

 } else if (temperature <= 101.5) {

 //prompt = "Low Fever,\nconsider consulting your doctor";

 arrow5.setVisibility(View.VISIBLE);

 } else if (temperature <= 102.5) {

 //prompt = "Medium Fever,\nConsult your doctor";

 arrow6.setVisibility(View.VISIBLE);

 } else if (temperature <= 103.5) {

 //prompt = "High Fever,\nConsult your doctor";

 arrow7.setVisibility(View.VISIBLE);

 } else if (temperature <= 104.5) {

 //prompt = "High Fever,\nConsult your doctor";

 arrow8.setVisibility(View.VISIBLE);

 } else if (temperature <= 105.5) {

 //prompt = "Very High Fever,\nConsult your doctor immediately";

 arrow9.setVisibility(View.VISIBLE);

 } else if (temperature <= 106.5) {

 //prompt = "Very High Fever,\nConsult your doctor immediately";

 arrow10.setVisibility(View.VISIBLE);

 } else if (temperature >= 106.5) {

 //prompt = "Extremely High Fever,\nConsult your doctor immediately";

 arrow11.setVisibility(View.VISIBLE);

 }

 } catch (NumberFormatException e) {

212

 //prompt = "Invalid Data";

 gradientFlu.setVisibility(View.INVISIBLE);

 }

//------ displaying result

 //Vdatetime.setText(currentDateTime);

 //Textv.append(sTemperature+"°F");

 Textv.setText(String.format("%.1f",temperature)+"°F");

 eoiValue=String.format("%.2f",ratingOfEOI);

 severityView.setText(sSeverity);

 //Vprompt.append(prompt);

 //Veoi.append("fluSeverity(100) = " + result);

 //Veoi.append(result);

 }

 // end temperature processing

 arr_received.clear();

 Log.i("sizearr_received", "" + arr_received.size());

 arr_trans.clear();

 arr_processed1.clear();

 arr_processed2.clear();

 fileSeq++;

 timeKeyBT = false;

 diseaseKey = false;

 sensorKeyBT = false;

 };

 public void sleepapneaAlgorithm()

 {

 Log.i("respiration",""+ arr_respiration.size());

 // end temperature processing

 arr_respiration.clear();

 timeKeyBT = false;

 diseaseKey = false;

 sensorKeyBT = false;

 }

 public void arrhythmiaAlgorithm()

 {

 // do the severity ranking here

 }

 public void asthmaAlgorithm()

 {

 // do the severity ranking here

 }

213

 //write to csv file

 public void writeToCsv(String x) throws IOException {

 Calendar c = Calendar.getInstance();

 File folder = new File(Environment.getExternalStorageDirectory() + "/project");

 boolean success = true;

 if (!folder.exists()) {

 success = folder.mkdir();

 }

 if (success) {

 // Do something on success

 //String fileName = "flu" + String.valueOf(currentDateTime) + ".csv";

 SimpleDateFormat formatter = new SimpleDateFormat("yyyy_MM_dd_HH_mm", Locale.US);

 Date now = new Date();

 String fileName = fileSeq+formatter.format(now)+ ".csv";

 String csv = "/storage/emulated/0/project/"+fileName;

 FileWriter file_writer = new FileWriter(csv, true);

 String s = c.get(Calendar.YEAR) + "," + (c.get(Calendar.MONTH) + 1) + "," + c.get(Calendar.DATE) + ","

+ c.get(Calendar.HOUR) + "," + c.get(Calendar.MINUTE) + "," + c.get(Calendar.SECOND) + "," +

c.get(Calendar.MILLISECOND) + "," + x + "\n";

 file_writer.append(s);

 file_writer.close();

 }

 }

}

	ARTIFICIAL INTELLIGENCE-ENABLED EDGE-CENTRIC SOLUTION FOR AUTOMATED ASSESSMENT OF SLEEP USING WEARABLES IN SMART HEALTH
	Recommended Citation

	tmp.1665434523.pdf.klNoV

