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Abstract

Poudyal, Subash. Ph.D. The University of Memphis. August 2021. Multi-level

analysis of Malware using Machine Learning. Major Professor: Dr. Dipankar Das-

gupta.

Malware analysis and detection is a critical capability every business and organiza-

tion needs to defend itself against a growing number of cyber threats. For example,

ransomware, an advanced form of malware, makes hostage of user’s data and asks

ransom, usually in crypto-currencies, to remain anonymous. Significant efforts have

been undertaken to combat these attacks, but the threat factors are dynamic, and

there lacks intelligent approach to defeat them. Thus, my study is focused on de-

signing a defensive solution against this advanced malware, i.e., ransomware. Many

tools and techniques exist that claim to detect and respond to malware. However,

such methods rely primarily on static features, rigid signatures, and non-machine

learning approaches. Recent tools advertise to have used machine learning tech-

niques but often lack the explainable component, often miss the zero-day malware,

and have high false positives. A smart artificial intelligence (AI) technique with

deep analysis, worthy feature analysis, and selection could have provided a height-

ened sense of proper security. This study uses an AI-powered hybrid approach to

detect ransomware. Specifically, I proposed a deep inspection approach for multi-

level profiling of crypto-ransomware, which captures the distinct features at DLL

(Dynamic Link Library), function call, and assembly levels. I showed how the code

segments are correlated at these levels for studied samples. My hybrid multi-level

analysis approach includes advanced static and dynamic methods and a novel strat-

egy of analyzing behavioral chains with AI techniques. Moreover, association rule

mining, natural language processing techniques, and machine learning classifiers are

integrated for building ransomware validation and detection model. Experiments

with samples from VirusTotal exhibited that multi-level profiling can better detect
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ransomware samples among other malware families and benign applications with

higher accuracy and low false-positive rate. The multi-level feature sequence can be

extracted from most of the applications running in the different operating systems;

therefore, I believe that my method can detect ransomware and other malware fam-

ilies for devices on multiple platforms.
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1 Introduction

Malware is any size piece of code or program that can cause minor to significant

damage to the user, computer, or network. The damage can be financial, repu-

tation, or psychological. Broadly the malware is classified [64, 110] as shown in

Figure 1. Malware analytics deals with different categories of malware written by

known or unknown adversaries or entities. These entities range from individual

hackers to organized groups, which are self or state-operated.

Figure 1: Malware classification [64, 110]

Before I briefly explain each malware categories I want to indicate that these classi-

fications are based on a generalization of essential features; however, each malware

category can exhibit the behavior of one or more malware categories.

Viruses and worms fall into the replicators category due to their replication behav-

iors. The virus attaches to the host program and replicates within the machine or

network where it has infected, but the worms can replicate and propagate without

the host program in the network. Spammers overload your email box or your we-

b/blog posts with massive amounts of data, which may put your site unresponsive
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or defaced. In comparison, logic bombs execute when some specific conditions by

the malware writer are met. At the same time, Trojan horse may hide in your app

(e.g., calculator) and record all your actions (e.g., financial calculations).

Adware presents unwanted advertisement information and may steal user’s infor-

mation as well. They pop up and try to attract users to click them. Rootkits are

malicious code designed to hide the existence of other malware variants. For exam-

ple, they may hide the presence of the Adwares.

Direct stealers, mainly sniffers, keyloggers, and password hash grabbers try to steal

the user’s keyword typing events or other system events and capture credentials to

online and financial accounts, causing further damage to the victim.

Ransomware is a particular category of malware capable of remote communication

with a command and control server for key exchange purposes. They encrypt user’s

data and hold it until some specified payment is made via cryptocurrency. Back-

doors and bots allow the attacker to connect to the victim’s computer with little or

no authentication and execute commands on the local computer systems.

The first ransomware, AIDS Disk, was first spotted in 1989. The initial version of

ransomware used symmetric encryption. Archievus ransomware seen in 2006 was

the first to use asymmetric encryption. The most common ransomware families

are determined based on different reports from security and cyber defense compa-

nies, which include Kaspersky, SonicWall, WeLiveSecurity, and others [1, 2, 34, 37].

Locky, TeslaCrypt, Cerber, GandCrab, Locker, WannaCryptor, TorrentLocker,

Locker, WannaCry, Stop, CryptoJoker, Dharma, and CrypoWall are the most com-

mon ones among the others. From 2006 to 2015, various versions of both symmetric

and asymmetric ransomware appeared. However, table 2 shows the timeline of ran-

somware for the last 10 years only [33, 39, 41].

Figure 3 shows ransomware families reported in the last three years based on attack

frequencies. These ransomware attacks and families are determined based on differ-

2



Figure 2: Timeline of ransomware families

ent reports from security and cyber defense companies, which include Kaspersky,

SonicWall, WeLiveSecurity, and others [1, 2, 34, 37]. Locky, TeslaCrypt, Cerber,

GandCrab, Locker, WannaCryptor, TorrentLocker, Locker, WannaCry, Stop, Cryp-

toJoker, Dharma, and CrypoWall are the most common ransomware families among

others.

Table 1 shows different recent crypto-ransomware families with properties such as

propagation strategy, date when it first appeared, cryptographic techniques used,

and command and control (C&C) server used. According to this table, we can in-

fer that most recent ransomware families use the asymmetric encryption method

3



Figure 3: Recent ransomware families(font size based on attack frequency) [1, 2, 34,
37]

to make the decryption task difficult for the victim. The propagation strategy has

been consistent with advanced social engineering tactics and exploits tools.

1.1 Terminology

Ransomware/Malware has evolved to become sophisticated malware, and reverse

engineering is becoming more challenging. The tug-of-war between defenders and

malware writers has created a continuous research scope. Most ransomware attacks

occur due to phishing emails which is a type of social engineering attack. This at-

tack can trigger a Denial of Service attack (DoS) or Distributed Denial of Service

attack (DDoS) attack and cause data breaches. A recent study shows that machine

learning techniques are more effective for malware detection.

Botnets typically cause DDoS attacks. A botnet is a network of devices that an

attacker has taken hostage to perform DoS or DDoS attack. DDoS attacks cause

a system to become unavailable as it cannot handle the flooding of requests from

multiple sources or devices. Due to this, the target machine cannot accept the le-

4



Table 1: Recent ransomware families with some properties
Family Propagation strategy Date appeared Cryptographic technique C&C Server
Cerber Email spam, RIG and magnitude exploit kit 2015 RC4 and 2048-RSA IP range
TeslaCrypt Angler browser exploit kit 2015 AES-256 Tor anonymity network

Shade Malicious websites, exploit kits,
infected email attachments 2015 256-AES Tor anonymity network

Locky Spam campaigns, Neutrino exploit kit,
Nuclear exploit kit, RIG exploit kit 2016 RSA and AES Using DGA algorithm

Dharma Unprotected RDP port, Spam campaigns 2016 256-AES and 1024-RSA Random IPs/locations

Stop Malicious email attachments/advertisements,
torrent websites 2018 256-AES and 1024-RSA Listed address

GandCrab Spam emails, exploit kits 2018 AES and RSA Tor anonymity network/DGA
Ryuk TrickBot and RDP 2018 AES and RSA Internet-facing Mikrotik router
Anatova Spear phishing in private p2p network 2019 RSA and Salsa20 Listed address
Maze Malspam campaign, RDP attacks 2019 ChaCha20 and RSA Tor network

AgeLocker Age encryption tool of Google 2020
X25519 (an ECDH curve),
ChaChar20-Poly1305,
HMAC-SHA256

Tor network

Snake Malspam campaign, RDP attacks 2020 AES-256 and RSA-2048 Listed address
WastedLocker Fake browser update 2020 AES-256 and RSA-4096 Tor network

Conti Phishing emails, Server Message Block 2020 AES-256 and
hard-coded public key Listed address range

Babuk Spear phishing 2021 ChaCha and
Elliptic Curves NA

Darkside Spear phishing,
unpatched vulnerability 2021 Salsa20 and

RSA-1024 Listed address

gitimate traffic and the service goes down. There was a significant increase in the

number of DDoS attacks during the COVID-19 period [3]. The attack trend can be

observed going upward in the graph shown in Figure 4.

Phishing is a social engineering attack technique where a user is lured to click a

malicious link in the email, document, blog post, or relay channels. The malicious

link is specially crafted in a seemingly legitimate email or posts that the user may

be very genuine but gets trapped. This user action allows the malware to be down-

loaded into your system and start its malicious behavior.

Reverse Engineering [74] is taking a binary file that is meant to be read by the

computer and using the opcodes to generate assembly, and then reading that as-

sembly to help accomplish whatever goals we may have. I performed the reverse

engineering using static analysis of the ransomware and normal binaries leveraging

the existing disassembler objdump [112], PE parser [31] and other advanced tech-

niques.

Machine learning allows a system to learn from data rather than through explicit

programs. Various supervised and unsupervised algorithms have been used to train

5



Figure 4: DDoS attack on the increasing trend [3]

the data, which helps to create a predictive model. This model then predicts the

outcome for the new or unseen sample. Machine learning approaches are exten-

sively used in various domains ranging from cybersecurity, health, education, busi-

ness, and space explorations.

Advanced Persistent Threat (APT) is a sophisticated technique used by an attacker

to remain undetected for a prolonged period causing significant damage to the vic-

tim’s resources. More organized criminals and gangs use APT to get into the sys-

tem and do lateral movement to find critical servers to launch further attacks. The

goal may be to steal data or lock the data/system for financial gains.

1.2 Malware Components

Malware comes in various forms with dynamic and unpredictable behavior. Most

malware families have the following components, which make malware fully func-

tional.
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1.2.1 Payload

The payload is the code portion in a malware executable responsible for malicious

action such as deleting, blocking, or encrypting data, sending spam, and so on. The

remaining is the overhead code which does tasks such as spreading over the network

and avoiding detection.

1.2.2 Packer

A packer compresses the data for various reasons, such as easy transfer over the

network and avoids detection by anti-virus or monitoring tools. It uses several data

compression algorithms, which are: APLib, LZMA, LZSS, and ZLib. Malware writ-

ers use packers to obfuscate their code to thwart detection during infection, instal-

lation, execution, and propagation. The bad guy can encrypt the code and then

pack it to make the detection more difficult. In this case, even if the defender un-

packs the code, they still need to decrypt the code. A decompression stub is gen-

erally added at the entry point of the executable. This stub is a piece of code to

decompress the compressed data.

1.2.3 Persistence

Every malware tries to be persistent through every boot of the system to fulfill its

bad intention. Windows allows a program to start when it boots if:

• The program is kept inside the startup folder.

• The absolute path of the program points to the key in the registry database.

• Some program run as a service under the svchost.exe process

• Programs absolute path is included in the certain batch and init files such as

autoexe.bat, wininit.ini, and winstart.bat.

7



1.2.4 Stealth

Malware tries to hide from victim and anti-virus tools by using various approaches:

- Simplest one is hiding the exe extension - Injecting its code into an already run-

ning legitimate process (thread injection, Dll injection, process hollowing). The

steps in thread injection are shown in Figure 5. Process hollowing is an old tech-

nique, but it is getting more popular being adapted by ransomware writers. In pro-

cess hollowing, a process is run in a suspended mode, and the malicious process

is attached to it to resume later. A rootkit is a technique adopted by malware to

hide. It does so by modifying a system function or a data structure. Ransomware

may use a rootkit to hide the malware that downloads another malware. The next

Figure 5: Steps in thread injection

technique to hide is by using a Powershell script where an adversary can download

and inject malicious code into a legitimate process’s memory. The downloaded mal-

ware is never written as a file to the hard disk. For this reason, it is called fileless

malware. SoreBrect is ransomware that makes use of fileless property.

1.2.5 Self-defense

Malware defenders utilize various tools to defend against malware attacks. Win-

dows defender, troubleshooting tools, debuggers, system monitoring tools, etc., help

track malicious activity. The attackers are notoriously clever and trick the defend-
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ers in various ways. For example, they use Microsoft’s IsDebuggerPresent() API to

detect the debugger; look for files and processes related to ollydbg.exe, idapro.exe,

tcpdump.exe, wireshark.exe; look for VMware associated processes, files, and keys

in the Windows guest OS on VMware. Sometimes malware is seen using sleep()

API to fool VMware by not executing its malicious part. The VMware sandbox en-

vironment is generally designed to run for a specific time frame and be restored to

a clean state.

1.2.6 Command and control server (C&C Server)

The command and control server (C&C Server) is the control center for the mal-

ware, and it is used to send and receive instructions/data between it and the vic-

tim machine. Malware receives configuration information and cryptographic keys

from the C&C server while sending the stolen data to the C&C server. Previously,

IPs and domain names of the C&C server were static and a part of the malware

code. These were quickly blocked by the defenders using firewalls and intrusion de-

tection tools. But, recently, malware writers have adopted a Domain Generation

Algorithm (DGA), which can generate thousands of domain names that they reg-

ister for a short period. This made the security analyst and defenders work hard.

Figure 6 shows a botmaster controlling different C&C servers, which in turn keep

tracks of the infected machines or bots [16]. Broadly, the C&C server can exist in

three forms as described below [9].

• Centralized C&C : It is a single central server with high bandwidth and

processing power under the attackers’ control. This server is used to send and

receive communications from victimized machines. This model is simple and

easy to implement with low latency. The type of communication messages de-

pends upon the nature of malware. The downside of this type is that it can

be a single point of failure. A defender once identifies the address of the C&C
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Figure 6: Interaction in C&C Server [16]

server, can block it and thus, prevent the further damages caused by an at-

tack. Example AgoBot and Zotob used this type of server.

• Peer-to-Peer (P2P) C&C: This type makes use of the P2P communication

protocol. More than one compromised machine takes part in communication

with one another. This avoids the central point of detection and failure, mak-

ing the detection harder for the defender. For example, Phatbot has used P2P

communication to control botnets.

• Random C&C: Instead of initial establishment of the communication chan-

nel, this type has one bot master which scans the internet to find other bots

or compromised machine. Once found, the instruction commands are trans-

ferred to the victim machine. This type is unpredictable so, the detection is

challenging. But, it has a scalability issue. This type is predicted to see in the

recent or coming version of the malware.
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1.3 Ransomware attack anatomy

The basic anatomy of a ransomware attack consists of five steps as shown in Fig-

ure 7

Figure 7: Basic anatomy of Ransomware attack

1.3.1 Deployment

This stage is sometimes also referred to as the infection stage. The first task of a

ransomware attack is to get into the victim’s system to infect, encrypt or lock the

user’s data. This is done by various means such as drive-by download, Watering-

hole attacks, phishing emails, and exploiting vulnerabilities in internet-connected

systems.

• In a drive-by download attack, a malicious code is downloaded automatically

and executed without the user’s knowledge. It takes advantage of a device

or software with security flaws as they were not updated. In October 2017,

CryptoLocker ransomware infected Issaquah city of Washington, the USA,

where a drive-by download attack was used [22].

• Watering-hole attacks are targeted attacks against individuals or organiza-

tions and use drive-by download techniques. There have been several target

attacks in US government and private organizations [4, 35].

• Phishing emails are specially crafted emails containing malicious attachments

or links. Users are often lured to click or download the extension by tricking
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a fake application or information to be a real one. For example, CryptoMix

that appeared in 2014, uses this technique. Figure 8 shows the workflow of

a phishing email that tries to steal the victim’s credential to escalate mal-

ware attacks further. According to a 2020 digital defense report by Microsoft,

among 6 trillion scanned email messages, they were able to block 13 billion

malicious emails and 1.6 billion URL-based phishing emails [28].

Figure 8: An example of phishing email [28]

• Exploiting vulnerabilities deals with scanning networks for vulnerable devices

or machines. These vulnerabilities may be system design flaws, buffer over-

flow, open ports, miss configurations, and so on. Once identified, the attack is

launched. For example, WannaCry uses Windows SMB vulnerability.

1.3.2 Installation

The installation process starts after the delivery of the malware payload.

The payload is usually a download dropper, a piece of code to evade easy detec-

tion. Figure 9 shows the ransomware attack pattern from initial setup to delivery

of payload [28]. Once this payload is executed, ransomware is downloaded from

the C&C server and installed into the victim’s system. Ransomware writers try

to make the detection difficult by breaking the malware components into differ-
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Figure 9: Ransomware attack pattern steps from initial access to dropping pay-
load [28]

ent pieces of scripts, processes, and batch files and may use encrypted and packed

codes. It may decide not to execute if it detects processes (e.g., VBoxService.exe,

vmtoolsd.exe) and Dlls (e.g., sbieDll.dll) related to Virtualbox machines. Its writers

use the MD5 hash of the computer name or a Mac address to identify the victim’s

machine. It then turns off shadow copy features on files and volumes, turns off sys-

tem recovery features, and kills anti-malware and logging tools. It then adopts the

rootkit technique and attaches itself to the windows process like svchost.exe.

1.3.3 C&C

Some details of the C&C server are discussed previously. Here, we deal more specif-

ically with ransomware. Most ransomware prefers TOR (open-source software to

enable anonymous communication) service rather than simple web-based commu-

nication. TOR will make a security analyst or defender’s job hard as tracing the

attack source becomes extremely difficult. TOR clients are often installed on end-

points to ensure secure communications. Once a system gets infected, a prearranged
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handshake protocol is established among the victim (client) and the C&C (server).

The adversary examines the information received from the client to ensure the in-

tended target is who they wanted. This is done via handshake protocol. Ransomware

is found to use the same key symmetric encryption to complex asymmetric encryp-

tion such as the RSA 4096-bit encryption algorithm. The private key is kept on the

server while the selected files are encrypted using the public key on the client-side.

Some commonly used C&C servers are Tor/Onion network, centralized server(static

IP address or domain name), P2P network, and dynamic server(that generally uses

domain generation algorithm).

1.3.4 Destruction

The objective of this phase is to encrypt the victim’s files or to lock the system.

The attackers define the file types to be encrypted or locked. The malcode starts to

encrypt those files. Most of the time, file contents are encrypted, but filenames are

also found to be encrypted. This makes the decryption and identification process

more difficult. The files that are needed to be destroyed are identified by most us-

age patterns seeing logs and recent files. Generally, files with .doc, .pdf, .jpeg, .jpg,

.png, .xls, .ppt and so on are encrypted and their original files destroyed thereafter.

1.3.5 Extortion

Ransomware attack launchers try to be anonymous by using the TOR network and

demand money through crypto-currency in the form of bitcoins. The typical cost

to unlock the file is between $300 and $500, but the demand is higher depending

upon the target. Some adversaries try to convince by showing one decrypted file,

while others not. It is not guaranteed that you will get your original files back even

after paying the ransom. The most common extortion techniques are bitcoin and

payment vouchers.
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1.4 Cryptographic operations

Crypto-ransomware makes use of either symmetric or asymmetric encryption to

encrypt the victim’s files. Below I discuss why each one is preferred. The recent

version of crypto-ransomware uses either asymmetric or a combination of both en-

cryption types.

1.4.1 Symmetric key encryption

This type of encryption uses the same key to encrypt and decrypt the files. Mal-

ware writers generate the symmetric key in the victim’s machine. This has few

advantages. The first is minimum resource utilization and performance overhead.

There is a reduced chance of detection as it does not make frequent calls with the

C&C server. The generated key is removed and send to the C&C after the encryp-

tion is over. The key is given back after the ransom is paid. The decryption can be

done either online or offline. The downside of this approach is that the defenders

can get the encryption key from memory by analyzing the memory using tools like

volatility. For example, Reveton ransomware is based on DES and RSA.

1.4.2 Asymmetric key encryption

This type of encryption method uses both public and private keys, commonly re-

ferred to as public-key cryptography. The keys are generated in the C&C server.

The public key is passed either by attaching to the payload or send afterward at

a suitable time. These approaches make it challenging to get back the files using

memory forensics, as seen previously in the case of symmetric key encryption. Em-

bedded public keys require a new public key for each attack, whereas the attacker

can use different key pairs for each infection for the downloaded public key. Attack-

ers often use larger primes in their encryption algorithm, for example, RSA 2048bit
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to 4096-bit.

Recent variants of crypto-ransomware use both symmetric and asymmetric encryp-

tion. CryptoDefense ransomware uses AES encryption to encrypt the files. This

locally stored symmetric key is then encrypted using a downloaded RSA-2048 pub-

lic key. After the ransom is paid, the victim is given the private key to decrypt the

locally stored symmetric key, which later on can be used to decrypt the files. For

example, CryptoWall version 3 ransomware is based on RSA public/private key

cryptography and AES in CBC mode.

1.5 Machine Learning

Machine learning is a systematic approach that allows systems to learn and improve

from experience without being explicitly programmed automatically. Malware of-

ten poses dynamic behavior, due to which signature-based detection is not effective.

To better analyze the distinct pattern from the available dataset, I have used ma-

chine learning so that the prediction model can help to detect known or unknown

samples with acceptable accuracy rates and low false positives.

Machine learning usage is becoming a more widespread technique for malware de-

tection due to the high accuracy rate. Here, I have applied various supervised ma-

chine learning algorithms. In particular, I use Bayesian Network, Logistic Regres-

sion, Support Vector Machine, Decision Tree, Random Forest, and Adaboosting

with different classifiers. A brief discussion of the machine learning classifiers used

follows below.

1.5.1 Bayesian Network (BN)

A Bayesian Network represents the joint probability distribution by specifying a set

of conditional independence assumptions (represented by a directed acyclic graph),

together with sets of local conditional probabilities [95]. Experiments were con-
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ducted using a SimpleEstimator [8] to estimate the conditional probability distri-

butions of a Bayes network once the structure has been learned. Alpha is set to

0.5, which is used to estimate the probability tables. I use K2 [69] as a search algo-

rithm. It is a hill-climbing search algorithm that adds arcs with a fixed ordering of

variables.

Bayes theorem is the backbone of Bayesian learning methods as it allows to calcu-

late of the posterior probability P(hlD) from the prior probability P(h), together

with P(D) and P(D(h). Bayes theorem:

P (h | D) =
P (D | h)P (h)

P (D)

1.5.2 Logistic Regression (LR)

Logistic Regression is the powerful machine learning algorithm used for linear and

binary classification problems. I use the multinomial logistic regression model with

a ridge estimator [13]. The algorithm is modified to handle the instance weights,

and nominal attributes are transformed into numeric attributes using a NominalTo-

BinaryFilter class. This algorithm is optimized by conditional likelihood.

In order to keep the outcome between 0 and 1, the logistic function (sigmoid func-

tion) is applied as:

g(z) =
1

1 + exp(−z)

The logistic regression hypothesis is defined as:

h/β(x) = g(βTx)
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1.5.3 SMO with Linear Kernel (SMO with LK)

Sequential Minimal Optimization (SMO), invented by John Platt, is an optimiza-

tion algorithm for training a Support Vector Classifier or Support Vector Machine

(SVM). Its implementation globally replaces all missing values and transforms nom-

inal attributes into binary ones. It normalizes all attributes by default where the

coefficients in the output are based on the normalized data and not on the original

data [14]. SMO is widely used for training Support Vector Machines and is imple-

mented by the popular LIBSVM tool [66]. Experiments were performed using SMO

with Linear Kernel and Logistic Regression as the calibrator.

Implementation: We first need to formulate the optimization problem and then

compute the support vectors by solving the optimization problem. Recover the

weight vector w and the bias b from the support vectors.

w =
k∑
j=1

αyjxj

b =
1

ys
− wTxs

Here, (xs, ys) is a support vector.

For classification of point z, compute the sign of wT z + b. If the positive sign, then

the class is positive else class is negative.

1.5.4 SMO with Poly kernel (SMO with PK)

This machine-learning algorithm is similar to the one described above. The only

difference is that here I use the polynomial kernel of degree two in our experiment.
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1.5.5 J48

J48 is the C4.5 [103] algorithm for building pruned or unpruned decision trees. It

is the predictive classifier that decides the class of new unseen samples. I choose

the pruned decision tree with a confidence factor of 25%. The lower the confidence

factor, the heavier the pruning. Also, the minimum number of instances per tree is

set to two.

The decision tree uses entropy. Entropy is used to measure the uncertainty in any

random variable.

Let S = (s1, ...., sn)be a partition of the instances based on a feature which can take

n values. pi = P (si) is the probability value that an instance has feature value i.

Entropy(S) =
∑

i pilog
1
pi

If any of the subsets si is subdivided, the new partition T has a larger entropy than

S.

1.5.6 Random Forest (RF)

Random Forests are a combination of tree predictors such that each tree depends

on the values of a random vector sampled independently and with the same distri-

bution for all trees in the forest [62]. One selected subset of training data is used

to train each tree with replacement. The remaining subset of training data is used

to estimate the error. The generalization error is dependent on the strength of each

tree in the forest and the correlation between them. I perform 100 numbers of iter-

ations with one as the minimum number of instances per leaf.

Mathematical description: A random forest is a classifier based on a family of clas-

sifiers h(x|θ1), ..., h(x|θk) based on a classification tree with parameters θk randomly

chosen from a model random vector θ.

Given data D = (xi, yi)
n
i=1 I train a family of classifiers hk(x).

Each classifier hk(x) ≡ h(x|θk) is a predictor of n.
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so y = +− 1 which is an outcome associated with input x.

1.5.7 AdaboostM1 with J48 (Ada with J48)

AdaboostM1 [75] is used to tackle the nominal class problem. It often dramatically

improves performance but sometimes overfits [12]. AdaboostM1 is used to improve

the performance of the learning algorithm. For weak classifiers such as Decision

Stump, AdaboostM1 improves the performance significantly. Experiments use the

J48 classifier with AdaboostM1.

Some mathematical derivation: I set initial probabilities of training examples as

p1, p2, ..., pN . Sample a subset St of training examples where pi is the probability of

choosing the i-th example. Then apply the weak classifier to St to compute hypoth-

esis ht.

Probability update in t-th iteration αt = 1
2
ln1−εt

εt
where εt is the weighted training

error.

qi = e−αt if ht(xi) = yi

qi = eαt if ht(xi) 6= yi

New pi =
piqi
zt

Then the final classfier becomes: ft(x) =
∑T

t=1 αtht(x)

1.5.8 AdaboostM1 with Random Forest (Ada with RF)

This algorithm uses the AdaboostM1 discussed above, but along with a Random

Forest classifier.

1.5.9 Deep learning

Deep learning is an advanced type of neural network with many layers and per-

forms complex tasks like face recognition, language translation, etc. Deep learn-

ing methods have the capability to combine the original features to form new op-
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timized meta-features automatically. These meta-features are again combined to

create even more features until the model is robust and achieves the desired accu-

racy threshold. More details about deep learning is discussed in one of the recent

work [61].

1.6 Association Rule Mining

Association rule mining is a data mining technique that finds patterns and relation-

ships among items in a given data. It is referred to as market basket analysis when

used with sales data or point-of-sales system in the supermarket. Today, associa-

tion rule mining is used in many applications, including web mining, intrusion de-

tection, network analysis, etc. In association rule mining, we need to find frequent

itemset first. A data item that frequently occurs in a given dataset becomes a part

of a frequent itemset. The support count of an item is the frequency of the item in

the dataset. Generally, a minimum support value is defined, and those items whose

support is less than the minimum support are not considered for further calculation

steps. Association rule is defined as an implication of the form of if(antecedent) and

then(consequent), which is written as X −→ Y.

Apriori algorithm is the most basic rule mining algorithm that works based on prior

knowledge of frequent itemsets [52]. A minimum support and confidence threshold

is set for the algorithm before generating candidate itemsets. Finally, I mine the as-

sociation rules. However, this approach is computationally inefficient as it requires

multiple scans of the database to generate itemset. In contrast, the FP-Growth

algorithm, an array-based, uses depth-first search and requires only two database

scans, making it more efficient and scalable.
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1.7 Natural Language Processing (NLP)

NLP language models have proved helpful in recommendation systems, text classi-

fication, speech recognition, and so on. In this work, I have exploited some popular

concepts but applied them to a unique problem domain of the multi-level analysis

model of ransomware detection. NLP schemes used are composed of three methods:

N-gram generation, N-gram probability, and TF-IDF described below.

1.7.1 N-gram Generator

An n-gram model is a type of probabilistic language model that predicts the next

possible item in a sequence. N-gram is a contiguous sequence of n items from a

given sample of text corpus or speech corpus. In my experiment, it is the DLL,

function call, and assembly instruction corpus. The items can be phonemes, let-

ters, words, DLLs, functions call, opcodes, or base pairs depending upon the type

of application considered. The value of N can be 1,2,3,4, or any other positive in-

teger. The value for N depends upon the problem domain, type, and nature of the

dataset. In text processing tasks, a smaller N usually decreases the classification

performance heavily, while the larger N is not considered too relevant. In the exper-

iment, I choose different values of N ranging from 2 to 6 to analyze the detection

accuracy of ransomware.

The n-gram generation component is responsible for generating possible sequences

of n-grams for a given value of N. I consider only the unique set of n-gram sequences.

1.7.2 N-gram Probability scoring

N-gram Probability scoring component is fed with the n-gram sequences obtained

from the n-gram generation component. I apply the Markov assumption by consid-

ering only the immediate N-1 words.
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In a n-gram, we consider the length n− 1

p(wi|w1, . . . , wi−1) = p(wi|wi−n+1, . . . , wi−1)

• unigram: p(wi)

• bigram: p(wi|wi−1) (Markov process)

• trigram: p(wi|wi−2, wi−1)

We can estimate n-gram probabilities by counting relative frequency on a training

corpus.

p̂(wb|wa) =
c(wa, wb)

c(wa)

N is the total number of words in the training set and c(·) denotes count of the

word or word sequence in the training data.

For the experiment dataset, the n-gram sequence will be the DLL, function call,

and assembly instruction sequences. N will be their corresponding total number of

sequences in the corpus. The probability scores for each n-gram sequence are stored

in a feature database.

1.7.3 TF-IDF

TF-IDF is the product of Term frequency(TF) and Inverse document frequency(IDF).

Term frequency is simply the number of occurrences of particular n-gram sequences

in a binary sample, whereas the IDF is given as:

IDF (ngram) = loge
Total no of binaries

No of binaries with ngram in it
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1.8 Research contribution

This Ph.D. work resulted in notable contributions to the research community. Fol-

lowing is the list of publications that resulted from this Ph.D. study.

• Dipankar D, Poudyal, S. AI-Powered Advanced Malware Detection System.

Patent under submission.

• Poudyal, S, Dasgupta D. Analysis of Crypto-Ransomware using ML-based

Multi-level Profiling. Under submission.

• Poudyal S, Dasgupta D. AI-Powered Ransomware Detection Framework. In

2020 IEEE Symposium Series on Computational Intelligence (SSCI) 2020 Dec

1 (pp. 1154-1161). IEEE.

• Poudyal S, Dasgupta D, Akhtar Z, Gupta K. A multi-level ransomware detec-

tion framework using natural language processing and machine learning. In

14th International Conference on Malicious and Unwanted Software” MAL-

CON 2019 Oct.

• Poudyal S, Akhtar Z, Dasgupta D, Gupta KD. Malware analytics: review

of data mining, machine learning and big data perspectives. In 2019 IEEE

Symposium Series on Computational Intelligence (SSCI) 2019 Dec 6 (pp. 649-

656). IEEE.

• Poudyal S, Gupta KD, Sen S. PEFile analysis: a static approach to ransomware

analysis. Int J Forens Comput Sci. 2019;1:34-9.

• Poudyal S, Subedi KP, Dasgupta D. A framework for analyzing ransomware

using machine learning. In 2018 IEEE Symposium Series on Computational

Intelligence (SSCI) 2018 Nov 18 (pp. 1692-1699). IEEE.
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• Basnet, M., Poudyal, S., Ali, M., & Dasgupta, D. (2021). Ransomware Detec-

tion Using Deep Learning in the SCADA System of Electric Vehicle Charging

Station. arXiv preprint arXiv:2104.07409, Accepted for: 2021 IEEE Smart-

GridTechnologies, Sept 2021.
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2 Background and Related Work

The economic benefits and anonymity has fostered cyber-criminals to perform con-

tinuous ransomware attacks in various sectors. Recent years have seen attacks be-

ing spread as a ransomware-as-a-service model. These attacks are often delivered

via phishing campaigns where a user is masqueraded with a seemingly genuine

email with a malicious link or attachment. The victim often becomes prey to so-

cial engineering attacks and lures to click the link or download the malicious at-

tachment. According to the survey done by Sophos [42], 45% of ransomware attacks

are via malicious links or attachments in emails. Also, 21% of the attacks are from

a remote attack on the server and the remaining through misconfigured systems,

USB devices, etc. Recently, phishing attacks are coming in the form of COVID-19

themed lures and exploit people’s concerns over the pandemic and safety of their

family members. The bad guys try to increase the anxiety level of internet users.

Some of the lures include information about vaccines, masks, and hand sanitizer;

insurance plans to cover COVID-19 illness, government assistance forms for eco-

nomic relief, and critical updates to consumer applications [23]. Other forms of at-

tacks include exploiting vulnerabilities in user systems or in the application they

are using. Unpatched systems provide room for remote code execution and priv-

ilege escalation. The MS17-010 [29], SMB vulnerability, and EternalBlue exploit

made several WannCry ransomware attacks all over the world in 2017 [49]. How-

ever, the same vulnerability and exploit is even used today by recent ransomware

families, including Ryuk, SamSam, and Satan [40]. This indicates systems that are

not patched are prey to continuous attacks disrupting regular businesses/services

with financial losses and reputation.

Due to the recent lockdown all over the world and restricted social behavior, peo-

ple are working remotely. People are using the internet and are busy with social
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networking and online e-commerce applications more than ever. This increased in-

ternet activities and poor network infrastructure, IoT devices, and untrusted web

applications are causing people more vulnerable to malware attacks.

On July 23, 2020, Garmin, a multi-national technology company, suffered from a

WastedLocker ransomware attack disrupting various customer services, apps, and

possible data breach [20]. The customers were unable to log in, record, or analyze

their health and fitness data. WastedLocker first appeared in the wild in April and

often leveraged the payload through SocGholish and Cobalt Strike tools [47]. The

user files are encrypted via AES symmetric keys, which are then encrypted using an

RSA-4096 public key.

On May 7, 2021, Colonial Pipeline said that a ransomware attack forced the com-

pany to proactively close down operations and freeze IT systems after becoming the

victim of a cyberattack [15]. More than 100GB of data got stolen in just 2 hours.

Salsa20 and RSA-1024 encryption were used to encrypt user files. Another recent

attack includes unauthorized access on the Washington D.C. Metropolitan Po-

lice Department (MPD) server where the Babuk Locker ransomware gang claimed

the responsibility of the attack after releasing the screenshots of the files and fold-

ers [18]. Cybercriminals have demanded an enormous ransom in return for hostage

files. The city of Tulsa, Oklahoma, suffered a ransomware attack on the first week

of May, 2021 [11]. This forced the city to shut down all of its systems, and most of

its online services have been disrupted.

Ransomware often comes in two forms: Crypto ransomware and locker ransomware.

Crypto ransomware is more prevalent these days, encrypting a user’s data and hold-

ing it until the ransom is paid. In contrast, Locker ransomware locks the user’s sys-

tem making the system unusable. The Locker ransomware often replaces the whole

screen with a warning picture with instructions to pay to get the system to a nor-

mal stage. Hybrid encryption is more common, which includes the combination of
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symmetric and asymmetric encryption. The user files are encrypted using the lo-

cally generated keys, which are encrypted by the attacker’s public key. To get the

data back, the victim needs the attacker’s private key. It may also infect the mas-

ter boot record and replace the start-up screen with a warning message. In the case

of Crypto ransomware, to make the attack vector more sophisticated so that the

defenders would not decrypt the user’s data by breaking into the algorithm used,

ransomware writers adopt advanced encryption techniques.

Ransomware attack vectors are dynamic and use sophisticated encryption tech-

niques. They come in various obfuscated and persistent forms making the analy-

sis and detection work more complex. Various anti-ransomware tools and methods

have been proposed [60, 63, 78, 81, 83, 85, 113] and claim to have reasonable de-

tection rates. However, they still fall short at detecting zero-day ransomware at-

tacks, explaining why question of the claimed better performance and the methods

often work for given malware family only. Moreover, malware with obfuscated code

is often bypassed or falsely detected in those approaches. To overcome the limi-

tations of the current prominent methods, I have proposed an automatic hybrid

analysis tool with an explainable component showing the relations at a multi-level

with behavioral chains. I analyze the extracted features at DLL, function call, and

assembly level using hybrid analysis, association rule mining, and behavioral chain

analysis. The prototype AI-powered ransomware detection (AIRaD) tool stands

on the proposed architecture and gives the user the flexibility for ease of use with

detailed analysis. Furthermore, my method detects zero-day ransomware binaries

among a broad range of malware families.

Most ransomware detection-related works are based on either static or dynamic

analysis, and few on hybrid analysis, which consists of both. Detection is also done

by analyzing network or file system activities. Below I have categorized works into

different sub-sections.
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2.1 API analysis based detection techniques

A majority of the work is based on API features, or function calls because these

are essential in implementing malware functionalities. Here, I discuss some of those

notable works.

Takeuchi et al.[113] have proposed ransomware detection using deep inspection of

API call sequence and support vector machines as classifiers with 97.48% accuracy

and missing rate of 1.64%. They have included the number of occurrences of the

given n-gram of API in their vector model. Their proposed feature vector model

improved the detection performance with fewer false positives. The model is not

tested with other malware families and lacks the explainable component of their

chosen machine learning algorithm.

Hampton et al.[78] studied the behavior of ransomware in the Windows system and

identified API calls specific to it. The frequency of API usage among ransomware

and normal binaries is useful for identifying ransomware without comparing the

code signature. They claim that their approach can better understand the ran-

somware strain in terms of API calls. Handling of obfuscated binaries that uses

obscure API calls is missing in this research.

Bae et al.[60] have used the Intel PIN tool to generate windows API call sequences

and used the N-gram approach and TF-IDF. They reported accuracies for ran-

somware, malware, and benign application using six different machine learning

classifiers. They have reported the highest accuracy of 98.65% and compared with

other works. The test environment runs with an execution time limit of five min-

utes which malware writers often fool. Steps should have been taken to handle var-

ious anti-malware analysis techniques deployed by the adversaries. Their approach

could have classified a given malware family instead of a whole set of malware.

Canzanese et al. [63] have analyzed system call traces utilizing the N-gram language
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model, TF-IDF, and machine learning classifiers (Logistic regression and support

vector machines) to detect malicious processes. They have claimed that their pro-

posed system would alarm the user if some unintended behaviors are observed,

which includes activities like host modifications. Their study showed a small set

of systems call 3-grams providing a comparable detection accuracy to more complex

models. Their detection approach is not resilient to the obfuscated behavior of the

malware.

Hwang et al. [81] have proposed a two-stage mixed ransomware detection model us-

ing the Markov model and Random Forest. They leveraged the Windows API call

sequence pattern to build a Markov model, then used the Random Forest machine

learning model to the remaining data. The overall achieved accuracy was 97.3%

with 4.8% FPR. They performed a dynamic analysis in a sandbox environment

and grouped collected APIs into different categories. Their approach could have

addressed the handling of obfuscated binaries. What if binaries detect the sand-

box environment and do not execute at all? Would the accuracy be improved after

adopting a hybrid approach? Answers to such queries are also expected.

Ki et al. [85] have assigned alphabet letters to API functions and apply a DNA se-

quence alignment algorithm to extract common API call sequence patterns of mali-

cious functions. They claim that the sequence analysis is a better approach as the

malware authors can insert dummy and redundant function calls to make the fre-

quency analysis method ineffective. The experimental result showed an accuracy of

99.8%. However, their approach could not handle the detection of obfuscated bina-

ries.

Shaukat et al. [108] have proposed the RansomWall tool, which combines the fea-

tures obtained through static and dynamic analysis. They monitor file operations

dedicated to encryption purposes. They have claimed to detect zero-day ransomware

samples. Their approach achieved an accuracy of 98.25% with the Gradient tree
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boosting algorithm. They have listed some suspicious Windows cryptographic func-

tion calls, but extensive analysis of those is missing.

Intending to overcome the limitations of supervised learning algorithms, Sharmeen

et al.[107] have proposed a semi-supervised framework to learn unique ransomware

behavioral patterns using deep learning techniques. They claim that their model

is scalable to accommodate new variants of malware executable. The ransomware

samples were run in an isolated environment using a Cuckoo sandbox with vary-

ing run times from four to nine minutes. Their approach ignored the samples that

could not run in the given experimental settings, making the model less robust. It

misses the obfuscated nature of malicious binaries and impacts the detection of ob-

fuscated ransomware samples.

Arabo et al.[56] have done process behavior analysis to determine whether a given

sample is ransomware or not. The study starts with which APIs are called and how

many system resources are used? The dynamic run result is analyzed to get the fea-

ture statistics fed into various supervised and unsupervised machine learning mod-

els. The analysis is also done using file extension, API calls made, and disk usage.

This particular analysis aims to give users a quick alert if the binary under con-

sideration is a possible ransomware executable. However, their approach has low

accuracy and lacks false-positive analysis.

Takeuchi et al.[113] have proposed ransomware detection using deep inspection of

API call sequence and support vector machines as classifiers with 97.48% accuracy

and missing rate of 1.64%. They have included the number of occurrences of the

given n-gram of API in their vector model. Their proposed feature vector model

improved the detection performance with fewer false positives. The model is not

tested with other malware families and lacks the explainable component of their

chosen machine learning algorithm.
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2.2 PE file features based detection

Khan et al. [83] have proposed a digital DNA sequencing engine for ransomware de-

tection using Naive Bayes, Decision stump, and AdaBoost algorithms for classifica-

tion. The features are obtained from the pre-processed data using Multi-Objective

Grey Wolf Optimization (MOGWO) and Binary Cuckoo Search (BCS) algorithms.

Then the digital DNA sequence is generated for the selected features using the de-

sign constraints of DNA sequence and k-mer frequency vector. The experiments

show the highest accuracy of 87.9% with AdaBoost. This approach has not men-

tioned the handling of obfuscated binaries. Moreover, more information about the

initial feature, dataset, and methods could have been given. Yuxin et al. [119] have

used opcode sequences extracting static features from PE file of malware samples.

They have used a deep belief neural network and compared their performance with

support vector machines, decision trees, and the k-nearest neighbor algorithm. A

deep belief network was used as an autoencoder to extract the feature vectors.

A block cipher algorithm is detected to prevent ransomware infection in work pro-

posed by Kim et al.[86]. The sequence and frequency characteristics are obtained

from the opcode of binary files. They have considered Alf and Vegard’s RISC (AVR)

processor microcontroller for their experiment, where they use a convolutional neu-

ral network. Their approach is restricted to static analysis and will not capture the

run-time behavior of the malware. The authors have claimed a high accuracy of

their system. They could have explained how their approach could handle the anti-

analysis behavior of the ransomware samples.

2.3 I/O file system based detection

Continella et al. [68] proposed ShieldFS, which analyzes low-level I/O file system

requests. If a write operation is suspicious, it reverts the current process file opera-
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tions. Billions of I/O requests generated from numerous benign systems were eval-

uated to design the defense system. They claim that their proposed technique can

detect malicious activity like file encryption and successfully recover the original

files.

Alam et al.[53] have proposed ransomware prevention via performance counters re-

ferred to as RAPPER. They have used neural networks and Fast Fourier Transfor-

mation with hardware performance counters (HPCs) as event traces. Perf, a well-

known tool in Linux, is used to monitor the HPCs and observe the performance

counters and the system behavior. The authors of this work claim this behavior

as a good advantage for getting the feature set for their machine learning model.

The accuracy of their approach is based on given ransomware samples. Their work

could have shown the efficiency of scaling the learning model and the approach to

resilience to obfuscation behavior of ransomware samples.

2.4 Defense by encryption tracking

PayBreak [87] tried to recover the data corrupted by ransomware by extracting the

encryption key. This approach only works for symmetric encryption or hybrid en-

cryption. Here, no accuracy evaluation is done. Moreover, they have not explained

how they would handle the false positives as encryption behavior can be found in

normal user profiles. Kharaz et al. [84] proposed a ransomware detection frame-

work called UNVEIL, which tracks the encryption behavior of ransomware. They

tracked IO operations calculating entropy scores. The authors reported the detec-

tion of 13,000 malware samples across different malware families. However, they did

not verify the accuracy of their system.
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2.5 Detection in mobile platform

Andronio et al. [55] proposed the HELDROID framework for detecting ransomware.

The framework works by searching for the requisite ransomware elements within

mobile applications. It can detect whether an app is trying to encrypt or lock the

device without permission from the user. The results of testing HELDROID on

APKs comprising ransomware, goodware, scareware, and malware showed almost

zero false positives.

Faghihi et al.[72] have presented a data-centric detection and mitigation against

smartphone crypto-ransomware using dynamic analysis and hash-based techniques.

They analyze the user’s data along with its entropy values to make detection deci-

sions. API calls related to file operations are intercepted by function hooking tech-

niques. Then entropy and structure of data are monitored to detect and neutralize

the ransomware. Their approach claims a high accuracy with a low false-positive

rate but shows a low resilience to obfuscation behavior of ransomware executable.

2.6 Network based detection

Rafal et al. [90] have used distributed machine learning for Botnet activity detec-

tion. They proposed using and implementing cost-sensitive distributed machine

learning through distributed Extreme Learning Machines (ELM), distributed ran-

dom forest, and distributed random boosted-trees. Data were analyzed in NetFlow

(ports, protocols, IPs, packets, etc., were considered). To make the analysis efficient

and scalable, they have proposed to collect the NetFlow data in an HDFS system

and Map-Reduce. Experiments were run using 1 and 8 Apache spark nodes. Using

spark clusters, there were able to improve the training process by a factor of 4.5 for

ELM and 3.7 for Random forest and gradient boosting trees. Overall classification

efficiency was considered better for ELM than others for various scenarios, so it is
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proposed as an efficient to use.

2.7 APT attacks and detection

An advanced persistent threat(APT) is a type of cyberattack where an attacker

uses sophisticated techniques to gain unauthorized access to a system or a net-

work [7]. The attack remains undetected for days to months or even a few years.

The advanced part of APT refers to using multiple advanced tools and techniques

to find a vulnerability to conduct an attack. The persistent refers to the long-term

access to the target system. The threat is the potential adverse action by the bad

actors.

Figure 10: Advanced persistent threat life-cycle [7]

Figure 10 shows the detailed steps involved in an APT attack. The first step is re-

connaissance, where the attacker identifies who the target is and plans for the at-

tack. Then the APT actors try to access the target network by using malicious

attachments, spear-phishing campaigns, exploiting vulnerabilities, and other simi-

lar techniques. Once they access the target network, they inject malware and cre-
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ate backdoors that allow for unauthorized remote access. The next stage is a lat-

eral movement by detecting additional vulnerabilities and installing more back-

doors. The APT actors also try to create a remote tunnel for data transfer at a

later stage. Data exploration is the next step where the attackers locate data of

interest to them. The next stage is the compromise step, where data exfiltration

occurs. The data transfer occurs from the victim’s network to the attacker’s server

via a remote tunnel. The final step is to remove the footprints of the APT attack

so that the victim may not know that their network is compromised, but still, APT

actors try to leave some undetected footprints for future attacks.

The steps till data exfiltration of APT attack are generally similar to the ransomware

attack plan. The difference is that in a ransomware attack, the data is encrypted,

and still, there is possible double extortion where the attacker may encrypt the vic-

tim’s file and sell the data to the dark web.

Ghafir et al. [76] have proposed a machine learning-based APT attack detection

framework. The framework mainly focuses on different methods of threat detection

using real network traffic. They try to establish correlation among the output of de-

tection methods, and finally, attack prediction is made, which can fire early alerts.

They claim an accuracy of 84.8%. However, their approach has to be polished to

deal with false positives and missed detection.

Li et al. [92] have used a hierarchical approach for APT detection using attention-

based Graph Neural Networks. They claim that previous strategies that use coarse-

grained correlation graphs cannot explore log node attributes and mainly depend

on system calls. The authors claim to capture the features at both system and net-

work levels.
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3 Proposed Research

The proposed methodology is a ransomware detection framework via deep inspec-

tion of its multi-level features leveraging hybrid analysis, advanced reverse engi-

neering, and Artificial Intelligence (AI) techniques. This research aims at propos-

ing an AI-based ransomware analysis and detection framework using a combination

of both static and dynamic malware analysis techniques. Specifically, I proposed

a deep inspection approach for multi-level profiling of crypto-ransomware, which

captures the distinct features at DLL, function call, and assembly levels. I have

shown how the code segments are correlated at these levels for studied samples.

This hybrid multi-level analysis approach includes advanced static and dynamic

methods and a novel strategy of analyzing behavioral chains with AI techniques.

Moreover, association rule mining, natural language processing techniques, and ma-

chine learning classifiers are integrated for building ransomware validation and de-

tection model. I experimented with 550 crypto-ransomware samples (collected from

VirusTotal), and the result exhibited that multi-level profiling can better detect

ransomware samples with higher accuracy. The multi-level feature sequence can be

extracted from most applications running in the different operating systems; there-

fore, this method can detect ransomware for devices on multiple platforms. Below I

have discussed about the goal and objectives.

This research aims to design and implement an advanced malware detection frame-

work called "AI-Powered Ransomware Detection Framework." To achieve this goal,

the following objectives identified need to be fulfilled.

Objective 1: Malware sample collection and categorization.

Objective 2: Design an advanced reverse engineering framework for pre-processing

and feature extraction.

Objective 3: Design a machine learning training, validation, and testing model for

37



malware detection.

Objective 4: Implement components of the proposed framework.

Following tasks need to be performed to fulfill the objectives mentioned above.

• Collect malware samples from various sources such as Virustotal and open-

source malware repository theZoo [43].

• Create a virtual work environment for experimentation using Vmware with

host and server machine.

• Design and implement a pre-processing component using objdump of Linux

and open source Portable Executable(PE) parser tool.

• Design and implement the extractor components of the proposed framework

for feature analysis.

• Implement NLP techniques such as n-gram probability, term-frequency, and

TF-IDF for feature generation and analysis.

• Implement dynamic binary instrumentation using PIN tool.

• Implement various supervised machine learning techniques for training and

testing the ML model.

• Compare the performance of the proposed technique with the other related

works and products.

• Perform behavioral analysis of malware chains.

• Build detection signatures based on association rules and behavioral chaining.

• Implement the multi-level framework for ransomware detection.

The following chapters will show how I progressed from one method or approach to

another and, finally, a polished proposed framework.
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4 Static Analysis based Machine Learning Framework for

Ransomware Detection

In this work, I developed a reverse engineering framework incorporating feature

generation engines and machine learning (ML) to detect ransomware efficiently.

This framework is used to perform multi-level analysis (such as raw binaries, as-

sembly codes, libraries, and function calls) to examine better and interpret the pur-

pose of malware code segments. I leverage the object-code dump tool (Linux) and

portable executable (PE) parser to decode binaries to assembly level instructions

and dynamic link libraries (DLLs). Both ransomware and normal binaries are con-

sidered to conduct experiments where samples are first pre-processed to extract fea-

tures. Then different (supervised) ML techniques are applied to classify these sam-

ples. Experimental results reported the performance, i.e., the detection accuracy

of ransomware samples which varied from 76% to 97% based on the ML technique

used. In particular, among the eight ML classifiers tested, seven of these performed

well with a detection rate of at least 90%. This study also demonstrated that the

combination of static level analysis at the ASM level and Dll-level could better dis-

tinguish ransomware from normal binaries.

4.1 Proposed Methodology

The proposed ransomware detection framework has two major components: Fea-

ture Generation Engine and Machine Learning Model as shown in Figure 27. The

Feature Generation Engine is based on feature generation from ransomware and

normal binaries using reverse engineering and pre-processing (described in Section

4.1.1). Ransomware and benign application samples are each fed to the reverse en-

gineering process, where the disassembler extracts the information from the bina-

ries. This output is pre-processed and sent to the extractor component (described
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Figure 11: Framework for feature extraction and detection of ransomware using ma-
chine learning

in Section 4.1.2), which parses the processed object file and extracts the dlls and

assembly instruction set. The extractor program then does the frequency count and

builds the feature database. The similarity between binaries is found using cosine

similarity (described in Section 4.1.3). From the Feature Generation Engine, I get

the ransomware and benign binaries dataset, which is the starting component for

the machine learning model. I perform resampling using K-fold cross-validation (de-

scribed in Sections 4.1.5 and 4.1.6). The dataset is trained and tested using differ-

ent supervised machine learning classifiers (explained in Section 4.1.7). These clas-

sifiers are evaluated based on the ransomware detection rate (described in Section

4.1.8).
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4.1.1 Reverse Engineering and pre-processing

Reverse Engineering [74] is taking a binary file that is meant to be read by the

computer and using the opcodes to generate assembly, and then reading that as-

sembly to help accomplish whatever goals we may have. I performed the reverse

engineering using static analysis of the ransomware and normal binaries leveraging

the existing disassembler objdump [112] and PE parser [31].

I followed the Intel syntax to disassemble and analyze the binaries. The objdump

program, also known as assemblydumper, outputs the assembly-level code segment

containing assembly instructions. The PE parser is used to extract the code seg-

ment containing dlls required to execute the PE file. The pre-processor module

scans and processes different code segments generated by the assemblydumper and

the PE parser.

4.1.2 Extractor

I modeled an extractor tool that is required for mining the binary dump file. It has

two basic components as Assembly instruction extractor and Dll extractor. The

first component parses the output of the objdump program. It then builds the fre-

quency table of all the assembly instructions. The second component parses the

output of the PE parser and creates the frequency table of all the dlls used. The

frequency distribution for assembly instructions and dlls are stored in the feature

database, which is a MySQL database.

4.1.3 Cosine Similarity

Cosine similarity is a measure of similarity between two non-zero vectors of n di-

mensions. It’s value ranges from zero to one. If two vectors have the same orienta-

tion, then the cosine similarity becomes one. Whereas, if the orientation is perpen-

dicular to one another, then it becomes zero. Given two vectors of attributes P and
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Q, the cosine similarity is given as:

cos(θ) =
P.Q

|P ||Q|
=

n∑
i=1

Pi.Qi√
n∑
i=1

P 2
i

√
n∑
i=1

Q2
i

(1)

Here, P and Q are different ransomware or normal binaries. Pi and Qi are the cor-

responding features of P and Q, respectively. I measure the cosine similarity at in-

structions and Dll level for ransomware binaries.

4.1.4 Machine Learning Model

From the Feature Generation Engine, I get the ransomware and benign binaries

dataset which is the starting component of our machine learning training model as

shown in Figure 27. This training model accepts only those machine learning clas-

sifiers with ransomware detection accuracy greater than the threshold value. The

expert user can set this threshold. Here, for our experiment, I set it as 90%. The

resampling of the dataset is done with k-fold cross-validation, which is described

below sections.

4.1.5 Resampling

Resampling methods involve repeatedly drawing samples from a training set and

refitting a model of interest on each sample to obtain additional information about

the fitted model [82]. For example, we can repeatedly draw samples from the train-

ing dataset and estimate the variability fit of a Random Forest or any other ma-

chine learning model. There are different approaches for resampling, but I choose

k-fold cross-validation for my experiment due to its good performance and broader

acceptance.
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4.1.6 K-fold Cross-Validation

K-fold cross-validation is a statistical method to compare and select a model for a

given predictive modeling problem. It is a procedure used to estimate the perfor-

mance or accuracy of the machine learning model on new and unseen data. This

technique uses the well-known parameter K, which is the number of groups that a

given dataset is split into. It involves randomly dividing the set of observations into

K groups, or folds, of approximately equal size. The first fold is treated as a vali-

dation set, and the method is fit on the remaining K-1 folds [82]. If the value of K

is chosen with proper care and understanding, then this validation method results

in a less biased estimate of the machine learning model than due to other methods

such as Leave-one-out cross-validation and training and testing set. When K = n,

where n is the size of the dataset, then K-fold cross-validation becomes leave-one-

out cross-validation. In the experiment I performed K-fold cross-validation using K

= 10. This value has been shown empirically to yield test error rate estimates that

suffer neither from excessively high bias nor very high variance [82]. The results of

our experiment also prove this claim.

4.1.7 Supervised Machine Learning Classifiers

Machine learning usage is becoming a more widespread technique for ransomware

detection. Here, I have applied various supervised machine learning algorithms to

ransomware-labeled datasets. In particular, I use Bayesian Network, Logistic Re-

gression, Support Vector Machine, Decision Tree, Random Forest, and Adaboosting

with different classifiers. These classifiers were implemented using Weka [48] version

3.8.2. A brief discussion of the machine learning classifiers that I have used follows

below.
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4.1.8 Model Fitting and Evaluation

The training and testing dataset is generated using the K-fold cross-validation tech-

nique as defined in the earlier subsection. The model fitting is done for each su-

pervised machine learning classifier using the training dataset, and its accuracy is

evaluated using the test dataset. The classifier model is accepted if the accuracy is

equal to or greater than the defined threshold value.

4.2 Experiments and Results

In this section, I explain data collection, experimental protocols, evaluation mea-

sures, and experimental results. I performed experiments on different types of datasets

depending upon the type of feature used.

4.2.1 Dataset

A total of 302 samples of malware was collected from various sources such as Virus

Total, Virus Share, and open-source malware repository theZoo [44]. Our chal-

lenge was to categorize and confirm whether each malware is ransomware or not.

I developed a CategorizerTool that leverages RESTful API provided by VirusTo-

tal [46] which uses two parameters. The resource parameter is the hash value of the

malware, whereas the apikey parameter is specific to the user account. VirusTotal

scans the provided resource using different anti-virus engines and outputs various

statistics, including the malware type. More than fifty different anti-virus engines

classify each binary as either ransomware, malware, or another type. Also, each en-

gine has different class names for the binaries and is regularly updated. To have

consistency in categorizing ransomware binaries, I choose Malwarebytes[27] and

store the results of our CategorizerTool in the MySQL database. The malware bi-

naries with no classification result were ignored as not being a ransomware sample.
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Based on the classification done in June 2018, I have the family groupings as shown

in Table 2.

Table 2: Ransomware families

Family Name No. of Samples

Locky 74

Teslacrypt 60

FileLocker 17

FileCryptor 5

Troldesh 4

Cryptowall 4

Torrentlocker 4

CryptoLocker 3

ZeroLocker 2

CryptoTorLocker 2

CTBLocker 1

XORIST 1

WannaCrypt 1

The total number of ransomware of different families is found to be 178. I take 178

number of benign executables. The normal executables include samples from Win-

dows 10 operating system and open source applications. It includes normal to ad-

vance programs such as browser.exe, process.exe, network.exe, bitlocker.exe, putty-

gen.exe, ssh-keyscan.exe, FileZilla_Server.exe, sshsecureshellclient.exe, WinScp.exe,

OpenSSHClient.exe and so on. The FileZilla, WinScp, and BitLocker for example

uses cryptographic and communication operations which resembles some of the

functionalities of ransomware. I choose normal binaries of size in the range of 110

KB to 10 MB so as to resemble the size of ransomware samples. The normalized

size distribution of ten ransomware families and normal binaries is shown in Fig-

ure 12.
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Figure 12: Comparison of file size among ransomware and normal binaries

4.2.2 Experimental Protocols and Evaluation Measures

The collected samples are given as input to the feature extraction engine and then

output to the machine learning training model. This whole experiment is conducted

in a machine with the following configuration: Intel(R) Core(TM) i7-5500U CPU @

2.40 GHz 2.39 GHz, 8.00 GB RAM, and 1 TB disk space.

I evaluated the different supervised machine learning algorithms by various perfor-

mance metrics listed below. I used the confusion matrix of a classifier to calculate

these metrics. It tells how often the classifier is correct.
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True positive rate (TPR) =
TP

TP + FN
(2)

False positive rate (FPR) =
FP

FP + TN
(3)

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F -measure =
2 ∗ Precision ∗Recall
Precision+Recall

(6)

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

In the above equations, TP is a true positive, representing the number of ransomware

samples correctly classified. TN is a true negative, which means the number of

normal samples correctly classified. FP is a false positive which represents nor-

mal binaries incorrectly classified as ransomware. FN is a false negative which rep-

resents ransomware incorrectly classified as normal binary. TPR gives the value

of predicted ransomware classified correctly as ransomware, whereas FPR gives

the value of normal binaries incorrectly classified as ransomware. Precision defines

the accuracy of the machine learning model in terms of classifying the relevant in-

stances. Recall establishes the ability to find the relevant instances in the dataset.

F-measure is the harmonic mean of precision and recall and estimates the perfor-

mance of the given machine learning model. The accuracy is defined by the ratio of

correctly predicted instances to the total testing instances expressed in percentage.

4.2.3 Experimental Results

Here, I provide an experimental evaluation of the proposed ransomware detection

system. I experimented with assembly level instruction, Dll level, the combination

of the above two, and the result is analyzed accordingly.
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Table 3: Machine learning algorithms evaluation for assembly level instructions
Machine learning Classifier TPR FPR Precision Recall F-measure Accuracy (%)

BN 0.961 0.039 0.961 0.961 0.961 96.0843
LR 0.795 0.205 0.795 0.795 0.795 79.5181

SMO LK 0.973 0.028 0.974 0.973 0.973 97.2892
SMO PK 0.934 0.067 0.934 0.934 0.934 93.3735

J48 0.967 0.033 0.967 0.967 0.967 96.6867
RF 0.976 0.025 0.977 0.976 0.976 97.5904

Ada J48 0.973 0.027 0.973 0.973 0.973 97.2892
Ada RF 0.979 0.021 0.979 0.979 0.979 97.8916

Table 4: Machine learning algorithms evaluation for DLL level
Machine learning Classifier TPR FPR Precision Recall F-measure Accuracy (%)

BN 0.766 0.246 0.825 0.766 0.752 76.5579
LR 0.819 0.182 0.819 0.819 0.819 81.8991

SMO LK 0.872 0.123 0.886 0.872 0.872 87.2404
SMO PK 0.872 0.122 0.892 0.872 0.871 87.2404

J48 0.875 0.122 0.881 0.875 0.875 87.5371
RF 0.902 0.095 0.908 0.902 0.902 90.2077

Ada J48 0.896 0.100 0.904 0.896 0.896 89.6142
Ada RF 0.908 0.089 0.912 0.908 0.908 90.8012

4.2.3.1 Accuracy at Assembly Level Instruction

The experiment is done with the assembly instruction dataset consisting of 599

unique instructions. The results in Table 3 clearly show that the detection rate

for ransomware is above 90% in seven classifiers among eight of them. The accu-

racy is more than 97% for Random forest, AdaboostM1 with J48, and AdaboostM1

with RF. The mean absolute error is also less than 0.05 in these classifiers. We can

observe the least TPR of 0.795 for just one algorithm, i.e., logistic regression, but

for other machine learning classifiers, the TPR is significantly higher above 0.934

and up to 0.979. The FPR is minimum for classifiers other than Logistic regression.

The average accuracy for assembly level instruction analysis is found to be 94.46%.
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Table 5: Machine learning algorithms evaluation for combined Assembly instruc-
tions and DLLs dataset

BN LR SMO LK SMO PK J48 RF Ada J48 Ada RF
Accuracy 97.076 89.1813 96.7836 90.6433 97.076 97.9532 97.6608 97.6608

Table 6: Ransomware detection accuracy for individual families
BN LR SMO LK SMO PK J48 RF Ada J48 Ada RF

Locky 97.2414 92.4138 95.8621 92.4138 97.931 96.5517 97.931 98.6207
TeslaCrypt 95.7627 91.5254 89.8305 88.1356 95.7627 97.4576 97.4576 97.4576

4.2.3.2 Accuracy at Dll Level

The experiment is conducted with the Dll dataset consisting of 350 unique dlls.

The results in Table 4 shows the minimum detection accuracy of 81.89% for Lo-

gistic Regression. It is a maximum of approximately 90% for Random Forest and

AdaboostM1 with RF. Adaboost generally improves the detection accuracy signif-

icantly for weak classifiers such as Decision stump. I experimented with this and

found an improvement from 77.74% to 85.45%, i.e., with Decision stump, it was

only 77.74%, but it improved to 85.45% when using AdaboostM1 with Decision

stump. The performance did not improve significantly in the case of J48 and Ran-

dom forest. The mean absolute error is least at 0.1307 for AdaboostM1 with RF.

The average accuracy for the Dll level analysis is found to be 86.38%.

4.2.3.3 Accuracy at Combined Level

In this experiment, I combined all the unique assembly instructions and dlls to

form a single feature set with 949 features for each sample. The accuracy is listed

in Table 5, and its comparison with another type of datasets is shown in Figure 13.

It is easy to see that the detection rate improves with the combined feature set for

each sample into consideration. For instance, with a combined feature set, the aver-

age accuracy is 95.5% which is approximately 1% more than the average detection

rate with an assembly instruction dataset.
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Figure 13: Comparison of detection accuracy (in percentage) using individual and
combined features of assembly instructions and dlls

4.2.3.4 Individual Family Detection Accuracy

In this experiment, I took a separate combined feature set for the Locky and Tes-

laCrypt ransomware family. Locky ransomware dataset consists of 822 unique fea-

tures while it was 782 for TeslaCrypt. Table 6 shows the accuracy rate for each ma-

chine learning classifier for each family. The detection accuracy is higher for the

Locky family than the TeslaCrypt family, with the maximum up to 98.62% for Ad-

aboosM1 with RF.

4.3 Model Building Analysis

Machine learning classifiers build the learning model to classify the new unknown

samples. I compared the model building time (expressed in seconds) for different

classifiers for three types of a dataset whose result is shown in Figure 14.

The result demonstrates that the model building time increases with the number of

features. The combined dataset having 949 unique feature set has longer building

time for each machine learning classifier compared to other datasets.
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Figure 14: Comparison of model building time (in seconds) of different machine
learning classifiers for individual and combined features dataset

4.4 Cosine Similarity Analysis

Similarity among ten different ransomware families is found using cosine similarity.

I use heatmap as shown in Figure 15 to visualize the similarity. Similarity score

ranging from 0 to 1 is shown in the right portion, whereas the top and left por-

tion shows the ransomware families. The Figure 15 shows that ransomware fam-

ilies CryptoLocker(F1), CryptoTorLocker(F2), CryptoWall(F3), Locky(F6), Tes-

laCrypt(F7), TorrentLocker(F8), TrolDesh(F9), and WannaCrypt(F10) are similar

with similarity score of at least 0.1869. FileCryptor(F4) and FileLocker(F5) are al-

most

identical with the high similarity score of 0.9997. These two samples have unique

hash values but similar characteristics though they belong to different ransomware

families. The average similarity score is 0.571, and the standard deviation is 0.213.

These two statistical metrics can be used to create malware signatures. Any new

sample with an average similarity score greater than 0.5 can be categorized as being

ransomware. Thus, heatmap analysis provides the visual representation of similarity
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Figure 15: Heatmap for Similarity Score among Ransomware Family

scores and the method to create executable signatures.

4.5 Summary

In this work, I proposed a ransomware detection framework leveraging reverse en-

gineering, static analysis, and machine learning. I built the feature database from

analysis at assembly and Dll level of binaries and trained and tested our machine

learning training model. The experimental results show that among eight super-

vised machine learning classifiers, our framework could achieve an accuracy of more

than 90% (96.5% on average) for seven of them for the combined feature dataset

and assembly level instruction dataset. The ransomware detection rate is signifi-

cantly higher for the dataset with an integrated feature dataset with a minimum of

89.18% for Logistic regression and a maximum of 97.95% for the Random Forest.

From this work, I claim that static analysis of binaries at the assembly and Dll level

is crucial to building distinguishing characteristics for ransomware detection using

machine learning.
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5 A Multi-Level Ransomware Detection Framework using

Natural Language Processing and Machine Learning

In this work, I proposed a multi-level big data mining framework combining Re-

verse engineering, Natural Language Processing(NLP), and Machine Learning(ML)

approaches. The framework analyzes the ransomware at different levels (i.e., Dynamic-

link library, function call, and assembly instruction level) via different supervised

ML algorithms. Apache Spark was employed for the faster processing of large gen-

erated feature sets. Portable Executable (PE) parser and Objectdump tool of Linux

system were used to get the raw data from the ransomware and normal binaries

processed further using our custom-built NLP processing. The n-gram probabilities,

term-frequency, and inverse document frequency (TF-IDF) were used to generate

the final feature sets. Experiments were performed with different ‘N’ values of the

n-gram language model that shows that the ransomware detection accuracy is in-

versely proportional to the value of N. Among the five chosen supervised classifiers,

Logistic regression outperformed others with a detection rate of 98.59% for gen-

erated TF-IDFs trigrams at combined multi-level, which is an improved accuracy

compared to individual levels.

5.1 Proposed Methodology

The proposed methodology is a multi-level ransomware detection framework com-

prising six major components: DLL tracker, Function call tracker, Assembly in-

struction tracker, Detector engine, Action engine, and Passive analyzer. This multi-

level framework is run in an active mode to analyze the given binaries at three

levels, as shown in Figure 16. It is initiated with the detection counter (dc) set to

zero. This framework tracks the detection rate at each level going from DLL to the

assembly instruction level, so it is named a multi-level framework. At level 1, the
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DLL tracker interacts with the detector engine, moves to the second level with the

function call tracker, and then finally moves to the assembly instruction tracker.

The details of each major component are described below sections.

Figure 16: Multi-level ransomware detection framework

5.1.1 DLL tracker

DLL tracker analyzes the DLLs of a given binary using the detection engine, as

shown in Figure 16, and calculates its classification accuracy. The details of de-
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tector engine framework is explained in Section 5.2. The detection counter is in-

cremented by one if the accuracy is greater or equal to the defined threshold value.

The threshold value is set by the expert user or the security team. For the experi-

ment, I considered the threshold as 80%.

5.1.2 Function call tracker

A function call tracker analyzes the function calls of a given binary. It also uses the

detector engine and calculates the classification accuracy. The detection counter is

incremented if the accuracy obtained is greater or equal to the defined threshold

value.

5.1.3 Assembly instruction tracker

An assembly instruction tracker works similarly to DLL and function call trackers.

The difference is that the detection counter’s value is evaluated here. If that value

is greater or equal to one, then the action engine is triggered; else, the passive ana-

lyzer comes into play.

5.1.4 Detector engine

A detector engine is a vital component of the proposed multi-level framework. It

consists of reverse engineering, pre-processing, big data analysis, natural language

processing methods, and machine learning classifiers. Each tracker, at each level,

uses this engine to identify whether the given executable is benign or ransomware.

This engine is explained in detail with a block diagram in Section 5.2.

5.1.5 Action engine

An action engine is responsible for incident handling and response. When the de-

tection counter’s value is greater or equal to one, then the action engine analyzes its

55



further action and alerts the user or system about the detection. Immediate action

or preventative actions are implemented via either manual or automatic inspectors.

The details of the action engine are beyond the scope of this work. However, more

related details can be found on these references [87, 105, 36, 50].

5.1.6 Passive analyzer

When an action engine excludes an executable or binary file, the system monitors

using a passive analyzer. The passive analyzer generates the signature of the binary

and updates its detection database. The security admin may further escalate the

analysis of a particular binary using behavior analyzer techniques such as system

monitoring, file access analyzers, and so on. Digging into the details of the passive

analyzer is, again, out of the scope of this work. More related information can be

read from these references [77, 111, 96].

5.2 Workflow of detector engine

The detector engine works in two phases: Feature generation and Machine learning

prediction, as shown in Figure 17. Each phase conducts various operations, which

are described in sections given below.

5.2.1 Reverse engineering and pre-processor

Reverse engineering deconstructs a binary executable to generate the assembly op-

codes and analyze them to fulfill some meaningful objectives. The life cycle of a

binary executable is shown in Figure 18.

The program source code, written either in C or another programming language,

is compiled, which involves steps from a lexical analyzer to a code optimizer. The

object files generated are linked to a binary file. The loader consists of OS loaders

and dynamic link libraries, which finally resolve the code’s references to become a
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Figure 17: Workflow of detector engine

running executable. The reverse engineering process aims to get the source code

functionality as close as possible. I reverse-engineered the ransomware and normal

executable using the PE parser tool [30] and Objdump Disassembler.

The PE parser tool is used to get the DLLs and function calls used by the ran-

somware and normal samples. In contrast, the objdump tool is used to get the
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Figure 18: Life cycle of a binary file

Figure 19: PE file format

assembly instructions associated with each executable sample. The pre-processor

component processes the code segments generated by the PE parser and objdump

tool.

In this work, I deal with the windows portable executable files. PE file format is

a data structure that holds the information that is required for the Windows op-

erating system loader to handle the program code [94]. It is used by windows exe-

cutable, object code, and DLLs.

PE file consists of PE header and PE sections, as shown in Figure 19.

The first segment is the header, and it contains information about the code and

its application type, necessary library or kernel functions, and how much space is

needed. The section is the second segment and includes code, import, and data.

The text section contains the instructions that the central processing unit executes,

and it is the only section that provides for code. More details of PE file format is

discussed in "PEFile analysis: a static approach to ransomware analysis" [101].
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5.2.2 Multi-level Extractor

The multi-level extractor tool collects the DLLs, function calls, and assembly in-

structions used in a sequence for a given sample from the processed data of the pre-

processor. Below is a brief explanation of each extractor type.

5.2.2.1 DLL Extractor

A dynamic link library referred to as a DLL is a library that contains code and

data that can be used by more than one program at the same time. The main ben-

efit of DLL is code re-usability and efficient memory usage. DLL can be user de-

fined or entity/Microsoft defined as shown in Figure 21.

Figure 20: Hierarchy of windows DLL

Figure 20 shows the hierarchy of windows DLL. The Windows API set is the super-

set that consists of one or more Application programming interfaces(APIs). Each

API is a header file with or without interfaces that consists of API functions. DLL

makes these API functions act upon and can be considered a bridge between the

user space and the kernel space. The DLL extractor component parses the output

of the PE parser and lists the DLLs used by the given executable.

5.2.2.2 Function call Extractor

A function call is a piece of code that actually has lines of instructions that makes

an impact to the system or user. Each DLL which is implicitly or explicitly linked

consists of both import and export functions as shown in the Figure 21.
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Figure 21: Hierarchy of function calls and assembly instructions in a DLL

Each of those functions consists of several function calls and system calls. While

disassembling the binaries, function calls and system calls appear together in se-

quence. System calls are considered a particular type of function call, so the lat-

ter is often used as a common term. In the experiment, I use the function call se-

quences, which consists of system calls as well.

5.2.2.3 Assembly Instruction Extractor

Assembly instruction is a low-level machine instruction, which is also called ma-

chine code. It can be directly executed by a computer’s central processing unit(CPU).

Each assembly instruction causes a CPU to perform a specific task, like add, sub-

tract, jump, xor, etc. Each function call or system call is implemented via assembly

instructions as shown in the hierarchy in Figure 21.

5.2.3 NLP Schemes

NLP language models have proved helpful in recommendation systems, text classi-

fication, speech recognition, and so on. I have exploited some popular concepts in

this work but applied them to a unique problem domain of the multi-level analysis

model of ransomware detection. In this work, NLP schemes are composed of three

methods: N-gram generation, N-gram probability, and TF-IDF, which are described

below.
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5.2.3.1 N-gram Generator

An n-gram model is a type of probabilistic language model that predicts the next

possible item in a sequence. N-gram is a contiguous sequence of n items from a

given sample of text corpus or speech corpus. In our experiment, it is the DLL,

function call, and assembly instruction corpus. The items can be phonemes, let-

ters, words, DLLs, functions call, opcodes, or base pairs depending upon the type

of application considered. The value of N can be 1,2,3,4, or any other positive in-

teger. The value for N depends upon the problem domain, type, and nature of the

dataset. In text processing tasks, a smaller N usually decreases the classification

performance heavily, while the larger N is not considered too relevant. In the exper-

iment, I choose different values of N ranging from 2 to 6 to analyze the detection

accuracy of ransomware.

The n-gram generation component is responsible for generating possible sequences

of n-grams for a given value of N. I consider only the unique set of n-gram sequences.

5.2.3.2 N-gram Probability scoring

N-gram Probability scoring component is fed with the n-gram sequences obtained

from the n-gram generation component. I apply the Markov assumption by consid-

ering only the immediate N-1 words.

In a n-gram, we consider the length n− 1

p(wi|w1, . . . , wi−1) = p(wi|wi−n+1, . . . , wi−1)

• unigram: p(wi)

• bigram: p(wi|wi−1) (Markov process)

• trigram: p(wi|wi−2, wi−1)
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We can estimate n-gram probabilities by counting relative frequency on a training

corpus.

p̂(wb|wa) =
c(wa, wb)

c(wa)

N is the total number of words in the training set and c(·) denotes count of the

word or word sequence in the training data.

For our experiment dataset, the n-gram sequence will be the DLL, function call,

and assembly instruction sequences, and N will be their corresponding total num-

ber of sequences in the corpus. The probability scores for each n-gram sequence are

stored in a feature database.

5.2.3.3 TF-IDF

TF-IDF is the product of Term frequency(TF) and Inverse document frequency(IDF).

Term frequency is simply the number of occurrences of particular n-gram sequences

in a binary sample, whereas the IDF is given as:

IDF (ngram) = loge
Total no of binaries

No of binaries with ngram in it

5.2.4 Machine learning prediction engine

The output of the feature database is fed to the machine learning prediction engine.

The dataset contains the feature vector values of each binary. Processing millions

of assembly instructions takes polynomial time using the traditional programming

approach, so I adopted an extensive data computing framework and used Apache

Spark to train and test our labeled dataset.
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5.2.5 Resampling

Resampling methods involve the repeated drawing of samples and reanalyzing the

model. I selected K-fold cross-validation for resampling because of its broader ac-

ceptance rate by the research community. K-fold is the statistical method to com-

pare and choose a model for a predictive modeling problem.

5.2.6 Supervised Classifiers

I applied various supervised machine learning algorithms to ransomware and benign

labeled dataset. I use Naive Bayes, Logistic Regression, SVM, Random Forest, and

Decision Tree, leveraging the Mlib spark library.

5.2.7 Model Fitting and Evaluation

I used supervised machine learning classifiers along with the training and test dataset.

The model accepts only those classifiers which have accuracy greater or equal to

the given threshold value.

5.3 Experiments and analysis

In this section, I discuss dataset collection, experimental protocol, and experimental

results.

5.3.1 Dataset

The dataset for the experiment was collected from various sources, such as Virus

Total and open-source malware repository theZoo [44]. I used 292 only ransomware

binaries and the same number of benign executables for our experiment.
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5.3.2 Experimental protocol

In this work, I use Apache Spark to do the big data processing of n-gram sequences.

Apache Spark provides Mlib library [5] to implement various machine learning algo-

rithms.

A brief description of Spark, cluster configuration, and feature table follows the be-

low sections.

5.3.3 Apache Spark

Apache Spark is the popular distributed big data processing framework, which con-

sists of Spark core and a set of libraries. It has libraries for SQL queries, streaming,

machine learning, and graph processing. Spark core is responsible for managing our

submitted job, i.e., it manages the handling of data, processing, execution, and re-

sult delivery.

Different components of the Apache Spark framework are shown in Figure 42.

Figure 22: Basic architecture of Apache Spark framework

Spark processing is faster than Hadoop due to its Resilient Distributed Dataset

(RDD), which supports in-memory processing computation. The state of memory

is stored as an object across the jobs, and the object is shareable between those

jobs [6]. Researchers mostly use Apache Spark to support the machine learning

model and real-time processing for their malware analysis job. Figure 23 shows the
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basic building blocks for malware detection using the Apache Spark framework.

Figure 23: Malware analysis using Bigdata framework

Data sources can be malware/benign executable files, network traffic data, or on-

line/offline transaction data from where we want to detect an anomaly or unusual

pattern. The pre-processor component is the most powerful component of this ar-

chitecture. The data sources go into pre-processing tasks using normal computing

processing capabilities or are solely done using Hadoop/Spark frameworks. The re-

sult of this is clean and analyzable data, where we apply various machine learning

or data mining algorithms to find the helpful pattern, also termed knowledge dis-

covery.

5.3.4 Cluster configuration

I used the Apache spark cluster with the following configuration. There are 4 data

nodes and one name node, each with 16GB RAM and eight cores, Ubuntu 16.04.3

operating system, and 1TB disk. Hadoop version-2.7.3 and Spark-2.3 are used.

5.3.5 Feature table

The Table 7 shows the distinct number of n-gram sequence features at different lev-

els.

The total number of features differs for different N values of n-grams. As the value
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Table 7: Number of unique N-gram features at multi-level
N-gram(N) DLL Function call Assembly

2 2035 24,416 71,999
3 2797 29,226 1,539,769
4 2874 30,483 7,198,017
5 2842 30,962 12,038,570
6 2746 31,196 14,147,291

of N increases, the number of features also increases in the function call and as-

sembly level. It is slightly irregular in the DLL level. From this table, we can claim

that there is less overlapping of features as we increase the value of N.

All in all, I report the performance of the proposed framework in terms of accuracy.

My prior published work [102] reported other performance matrices and results,

including false positives, which are not compared here.

5.3.6 Experimental Results

I performed four experiments at different levels. I also analyzed the top ten tri-

grams based on their n-gram probability scores. More details are provided in the

following sections.

5.3.6.1 Performance analysis of ML Malware detectors

The first three experiments shown in Tables 8, 9, and 10 is based on n-gram proba-

bility scores while the Table 11 is based on n-gram TF-IDF score.

Table 8: Experiment 1: Machine learning algorithms accuracy evaluation for n-
gram probabilities at Dll level

Machine learning algorithm N=2 N=3 N=4 N=5 N=6
Naive Bayes 82.19 75.34 73.97 73.28 72.43

Logistic Regression 89.55 88.43 85.44 84.93 82.70
SVM 88.52 86.98 85.1 84.58 82.87

Random Forest 86.64 85.27 85.27 84.76 83.4
Decision Tree 81.67 78.59 72.6 71.4 71.4
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Table 9: Experiment 2: Machine learning algorithms accuracy evaluation for n-
gram probabilities at Function level

Machine learning algorithm N=2 N=3 N=4 N=5 N=6
Naive Bayes 85.62 80.39 79.73 79.08 79.08

Logistic Regression 93.25 92.06 91.28 92.81 91.50
SVM 92.16 81.52 69.02 60.86 57.06

Random Forest 91.50 91.06 89.97 85.94 82.02
Decision Tree 74.83 72.54 65.68 65.68 61.11

Table 10: Experiment 3: Machine learning algorithms accuracy evaluation for n-
gram probabilities at Assembly level

Machine learning algorithm N=2 N=3 N=4 N=5 N=6
Naive Bayes 76.77 74.13 72.44 70.98 70.01

Logistic Regression 78.43 80.24 79.11 77.5 76.8
SVM 76.91 76.95 75.49 75.2 73.19

Random Forest 80.1 80.056 79.88 79.7 78.46
Decision Tree 79.82 79.68 76.66 75.04 73.2

Table 11: Experiment 4: Logistic regression accuracy evaluation for n-gram TF-IDF
at multi level

Level N=2 N=3 N=4 N=5 N=6
Dll 93.36 81.52 69.02 60.86 57.06

Function call 96.08 98.04 90.20 84.31 72.55
Assembly Instruction 77.14 83.33 81.67 80 80

Table 12: Experiment 5: Logistic regression accuracy evaluation for n-gram TF-IDF
at Combined multi level

Level N=2 N=3 N=4 N=5 N=6
Dll, Function call and
Assembly 97.13 98.59 90.45 85.11 72.58

At the DLL level, the highest accuracy is found to be 89.55% for Logistic regression

at N=2. SVM has the second-best performance with 88.52% at N=2. The accuracy

is found to be in a decreasing order while increasing the value of N. At the function

call level, the highest accuracy is found to be 93.25% at N=2 for the logistic re-

gression classifier. SVM follows with 92.16%. A similar trend is observed at the as-

sembly level. Logistic regression with 80.24% accuracy at N=3 is the best-observed

detection accuracy at this level.
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Table 13: Top 10 Trigram sequences at different levels
Ransomware binaries

DLL Function call Assembly Instruction
Trigram Score Trigram Score Trigram Score

ntdll, kernel32, comctl32 1.0 0CReaderWriterLock, 0CSingleList,
0CSmallSpinLock 1.0 sha256msg2, xor, or 0.33

msdart, mlang, midimap 0.5 InSendMessageEx, DialogBoxParamA,
SetMenuItemBitmaps 1.0 addss, mov, mov 0.33

msdart, mlang, advapi32 0.5 TabbedTextOutW, ReleaseDC, GetDC 1.0 vpmacssww, push, daa 0.33

dsauth, gdi32, mstask 0.5 AddAccessDeniedAce, AreAnyAccessesGranted,
GetCommandLineA 1.0 wrpkru, cld, mov 0.33

kernel32, user32, advapi32 0.40 __vbaVarSub, _CIcos, _adj_fptan 1.0 kmovd, pushf, lds 0.33

wtsapi32, psapi, msvcrt 0.33 DbgPrint, LdrGetProcedureAddress,
RtlInitAnsiString 1.0 vpxorq, xchg, ror 0.33

winhttp, comctl32, shlwapi 0.33 BuildSecurityDescriptorW,
RegSetValueW, RegConnectRegistryA 0.5 vfrczpd, in, and 0.33

msimg32, iphlpapi, oledlg 0.33 DuplicateToken, CreateServiceA,
SetSecurityDescriptorOwner 0.5 mulss, xchg, aas 0.33

midimap, icmp, mfcsubs 0.33 LdrGetProcedureAddress, RtlInitAnsiString,
LoadLibraryW 0.5 mwait, je, push 0.33

msacm32, kernel32, glu32 0.33 _lopen, LoadLibraryW, GetConsoleCP 0.375 vtestps, imul, add 0.33
Normal binaries

DLL Function call Assembly Instruction
Trigram Score Trigram Score Trigram Score
api-ms-win-core-crt-l1-1-0,
api-ms-win-core-crt-l2-1-0,
api-ms-win-core-libraryloader-l1-2-0

1.0 SetupDiGetDeviceInstanceIdW,
SetupDiDestroyDeviceInfoList, SetupDiEnumDeviceInfo 1.0 sgdtd, jne, push 0.33

dnssd, ws2_32, kernel32 1.0 SkciInitialize, SkciQueryInformation,
SkciTransferVersionResource 1.0 vcmpltps, add, sub 0.33

iumcrypt,
api-ms-win-core-heap-obsolete-l1-1-0,
api-ms-win-eventing-cp-l1-1-0

0.5 UnregisterPowerSettingNotification, DispatchMessageW,
MsgWaitForMultipleObjects 1.0 vpmacsdqh, enter, in 0.33

ntdsapi, logoncli, rpcrt4 0.5 SkciQueryInformation, SkciTransferVersionResource,
SkciValidateDynamicCodePages 0.5 cmpxchg8b, retf, lock 0.33

esent, ntdll,
api-ms-win-core-file-l1-1-0 0.5 ChooseFontW, GetSaveFileNameW, InitCommonCtrlEx 0.5 vpminuw, cwde, pop 0.33

tapi32, gdi32, user32 0.33 AddSIDToBoundaryDescriptor, CreateBoundaryDescript,
CreatePrivateNamespaceW 0.33 vcvtsd2usi, dec, jge 0.33

mshtml, urlmon, msiso 0.33 DeleteBoundaryDescriptor, OpenPrivateNamespaceW,
GetSecurityDescriptorDacl 0.33 vpshaw, ret, movabs 0.33

mswsock, ws2_32, winmm 0.33 EnterCriticalPolicySection, DeviceIoControl,
GetSystemTimeAsFileTime 0.33 pinsrb, test, je 0.33

dpx, ntdll, ole32 0.33 LogonUserExW, WaitServiceState,EncodePointer 0.33 vpminsd, xor, rex 0.33
kerbclientshared, ntlmshared, msasn1 0.33 RtlAddAccessDeniedAce, NtOpenKey, NtQueryKey 0.33 vfnmsubpd, jrcxz, jge 0.33

Table 11 shows the performance evaluation for n-gram TF-IDF at multi-level us-

ing Logistic regression. Since the above three experiments showed the best perfor-

mance for Logistic regression, I evaluated the TF-IDF feature set of n-grams using

this classifier. The highest achieved accuracy rate is 93.36% at N=2 for DLL level,

98.04% at N=3 for function call level, and 83.33% at N=3 for Assembly level. The

average accuracy for multi-level at N=2 is 88.86% and 87.63% at N=3. Table 12

shows the accuracy at combined multi-level using Logistic regression. The result

shows the improved accuracy, which is a gain of combined multi-level analysis. The

highest accuracy is achieved at N=3 with 98.59%, followed by 97.13% at N=2.
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5.3.7 Analysis of top 10 Trigrams at different levels for ransomware and nor-

mal binaries

Table 13 shows the top ten DLL sequences for ransomware and normal executables

along with their n-gram probability scores. The observed trigram sequence with

a score of 1.0 signifies the surety of that particular sequence to be called in order.

Trigram sequence ntdll, kernel32, comctl32 are expected to occur starting with nt-

dll. Kernel32, which is a part of that sequence, can be a starting sequence for other

trigrams. There is a 40% probability that the sequence kernel32, user32, advapi32

will occur starting with kernel32. The top trigram sequences for ransomware and

benign binaries differ significantly. For example, kernel32, user32, advapi32 has a

score of 0.40 in ransomware samples, whereas the trigram sequence is different with

a different score for benign samples. It is found to be the sequence: advapi32, ker-

nel32, user32 with a score of 0.192 (Not shown in table). This typical behavior is

seen with other trigrams as well.

The function call level n-grams occur with different n-gram sequences in ransomware

samples. The sequence AddAccessDeniedAce, AreAnyAccessesGranted, GetCom-

mandLineA with 1.0 for ransomware sample is sure to happen and is different than

sequence RtlAddAccessDeniedAce, NtOpenKey, NtQueryKey with 0.33 in normal

sample. We can observe the different sequence dependencies of each function calls

in ransomware and normal binaries.

Similar to the n-gram patterns described in the above two levels, the n-gram se-

quences at the assembly level exhibit distinguishing behavior. Trigram pattern

sha256msg2, xor, or is seen in ransomware with a score of 0.33, while a different

pattern vpminsd, xor, rex with 0.33 is seen in normal binaries. Though we found

the same instruction(xor) in both the samples, their sequences were different with

the same or different scores. So, I claim that these distinct sequences built the unique

feature set to achieve high detection rates using various machine learning classifiers.
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Figure 24: Logistic regression accuracy for N-gram TF-IDF at multi-level

The Figure 24 shows the accuracy graph for all three levels for n-gram TF-IDFs. I

also calculated the average accuracy among these three levels. Among three levels,

function call achieved improved high accuracy. The accuracy rate at N=3 is about

2% more than N=2, but there is a smooth decrease at other higher values of N.

There is a steep decrease in accuracy for the Dll level. The detection rate of 93.36%

at N=2 for DLL level decreases to 81.52% at N=3 and finally to 57.06% coming at

N=6. The decrease is more rapid than the other two levels. Accuracy at the assem-

bly level has a different pattern, it has improved accuracy at N=3, but the accuracy

decreases slightly and becomes constant at N=5 and N=6. The average graph line

shows that the accuracy is inversely proportional to N’s value.

5.4 Summary

In this work, I proposed a multi-level ransomware detection framework in a big

data platform leveraging the NLP domain, machine learning, and reverse engineer-

ing techniques. I experimented with ransomware at different code levels, flowing

from DLL to function call and then to assembly instructions level to better under-

stand various components and payloads. I used an Apache Spark computing en-

vironment for faster processing, but a general-purpose computer can also be used.
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The multi-level analysis produces improved detection results compared to the indi-

vidual levels. The highest detection accuracy for n-gram TF-IDF at N=3 is 98.59%,

followed by 97.13% at N=2. I found that the empirical results of the multi-level

analysis are convincing for further research to detect emerging ransomware effec-

tively.
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6 Hybrid Analysis Technique for Ransomware Detection

This work proposes an AI-based ransomware detection framework using a hybrid

(combination of both static and dynamic) malware analysis techniques. Dynamic

binary instrumentation is done using the PIN tool; function call trace is analyzed

leveraging Cuckoo sandbox and Ghidra. Features extracted at DLL, function call,

and assembly level are processed with NLP, association rule mining techniques,

and fed to different machine learning classifiers. Support vector machine and Ad-

aboost with J48 algorithms achieved the highest accuracy of 99.54% with 0.005

false-positive rates for a multi-level combined term frequency approach.

6.1 AI-powered ransomware detection Framework

The overall back end architecture for AI-powered ransomware detection framework

is shown in Figure 27. A brief discussion of each phase follows below.

Figure 25: AI-powered ransomware detection framework. Some terms used are
NLP: Natural Language Processing DM: Data Mining RE: Reverse Engineering.
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6.1.1 Hybrid Reverse Engineering

First, the ransomware and benign samples will be reverse engineered using a hybrid

approach. Hybrid reverse engineering involves both static and dynamic analysis

of ransomware and benign binaries. This static and dynamic analysis comes with

pros and cons. Static analysis is observing and extracting some features of a binary

placed or stored in a hard drive. In contrast, dynamic analysis involves extracting

behavior and features by running the binary in the memory. Static analysis is nec-

essary to capture the initial properties of the binary. Further analysis is done us-

ing Object dump, a Linux-based tool, and PE parser [30], an open-source tool that

helps to reveal properties like import and export of functions by the binaries. It

is assumed to achieve high code coverage than via dynamic analysis because some

missing parameters misguide the dynamic analysis. Static analysis generally tracks

the code from start to end though the dynamic behavior is not captured. Dynamic

analysis is done using a virtualized environment such as a Cuckoo sandbox [17] and

the dynamic binary instrumentation tool, PIN [32]. The modern version of ran-

somware families is often difficult to analyze due to their anti-analysis techniques.

Thus, I see the significance of hybrid analysis, and so is my approach. This phase

also includes the initial pre-processing of the received raw outputs obtained via the

adopted reverse engineering approaches.

6.1.1.1 Dynamic Binary Instrumentation

Programmers have used instrumentation techniques to diagnose program crashes,

analyze errors, and write trace information. Instrumentation comes in two types:

code instrumentation and binary instrumentation. Since the malware code is not

available, I consider only binary instrumentation. Binary instrumentation is often

referred to as Dynamic binary instrumentation or DBI in short, as the instrumen-

tation is done using dynamic analysis of program traces. In our approach, I use the
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PIN tool [32] for DBI. PIN makes tracking of every instruction executed possible by

taking complete control over the run-time execution of the binary.

6.1.1.2 Cuckoo sandbox

Cuckoo sandbox is an advanced open-source automated malware analysis tool that

allows execution and analysis of malware samples in a safe environment [17]. It

makes use of the virtualization technique to run malware samples. I choose the

Cuckoo sandbox because of its modular design supporting multiple environments

and allowing flexibility in result analysis. If highly sophisticated ransomware does

not run in a virtualized environment, then its function call trace is studied via re-

verse engineering provided by NSA’s Ghidra tool [21].

6.1.2 Multi-level Code Analysis

Multi-level code analysis is a unique approach since the code is inspected at three

levels i.e DLL, function call, and assembly level using a hybrid reverse engineering

approach. I extract the binary behavior and properties specific to these three levels.

6.1.2.1 DLL Level

DLLs are dynamic link libraries that are subroutines to perform actions such as

file system manipulation, navigation, process creation, communication, etc. They

are loaded into the memory whenever required and freed from memory whenever

not needed making our system lightweight. Thus, it makes effective use of avail-

able memory and resources by dynamic linking capability. DLLs have functions

that they export and make available to other programs. During a program run, all

necessary DLLs are loaded into the memory, but the referenced function call is ac-

cessed only when needed by locating the memory address where the function code

resides. There are specific DLLs that are called more often because the function
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calls implemented by them are significant to carry out actions as per malware be-

havior.

6.1.2.2 Function call Level

A function call is a piece of code that has lines of instructions that impact the sys-

tem or user. These are essential code blocks that carry out various functionalities

and have less overlapping than DLL and assembly level analysis. Analysis at this

level helps to identify function calls that are unique to malware’s behavior. Catego-

rizing functions based on functionality such as file operations, system information

gathering, file enumeration, encryption key generation, encryption, etc., are some of

the critical behaviors specific to ransomware that I analyze at this level.

6.1.2.3 Assembly Level

Assembly instruction is a low-level machine instruction, which is also called ma-

chine code. It can be directly executed by a computer’s central processing unit

(CPU). Each assembly instruction causes a CPU to perform a specific task, like

add, subtract, jump, xor, and so on. Each function call or system call is imple-

mented via assembly instructions. Assembly instructions are also analyzed based

on categorized groupings. Some of the categories are Data transfer, Logical, Control

transfer, Flag control, etc.

6.1.3 ML Processor

Machine Learning (ML) Processor consists of various machine learning components

that assist the multi-level code analysis.

Natural Language Processing (NLP) language models have proved helpful in recom-

mendation systems, text classification, speech recognition, and so on. Through the

NLP component, various popular NLP techniques such as N-gram, Term Frequency-
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Inverse Document Frequency (TF-IDF), and Term Frequency (TF) are leveraged to

generate a feature database that is fed to the ML classifier.

Association rule is a rule-based data mining (DM) approach to discover notable

relations and patterns among variables in a given data. FP-growth algorithm is

preferred as it is more efficient than others, including Apriori. Apriori takes more

execution time for repeated scanning to mine frequent items, but FP-growth scans

the database only twice for constructing a frequent pattern tree. The FP-growth

algorithm is leveraged to discover notable relations and patterns at a multi-level

through the Association rules component.

Through the Behavior chain component, ransomware-specific chains are discovered,

showing the relation at three levels.

6.1.4 Pattern Discovery Component

Both Association rules and Behavior chain component contribute to pattern discov-

ery. The pattern database consists of all the discovered patterns, either association

rule chains or behavioral chains. This database is considered as a feature database

for the ML classifier.

6.1.5 ML Classifier

ML classifier component leverages the various supervised machine learning clas-

sifiers to train, test, and validate the model and decide whether a binary in con-

sideration is ransomware or a benign application. I use Logistic Regression (LR),

Support vector machines (SVM), Random Forest (RF), J48, and Adaboost with RF

and J48.
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6.1.6 Ransomware Signature Database

If the binary is ransomware, its signature will be stored in the malware signature

database, and the binary is deleted. This decision will be based on a threshold ac-

curacy of 95%. If the binary is not ransomware, then it is labeled as benign. The

unique N-gram sequences with N-gram TF-IDF probability scores 1 are more cer-

tain to be seen. Similarly, association rules patterns with score value 1 are more

certain to be seen. So, this is the case with custom behavioral chains. These pat-

terns’ corresponding opcode locations at the PE file help to set up conditions for

the Yara rules [51]. Figure 26 shows a sample Yara rule. This rule says that if all

the string’s patterns specified in variables a, b, and c are observed in a binary, it is

probable crypto-ransomware.

Figure 26: Sample Yara rule to detect crypto ransomware

6.2 Dataset and experiments

The dataset consisted of the binaries in a portable executable (PE) file format.

Most of the malware attacks occur by leveraging the PE file format. The bad ac-

tors often target the windows operating system (OS), which uses PE file format,

and this OS is widely used all over the world. As per the security report from Fire-

eye [26], 70% of the malware attacks are launched via executable, which has PE

file format. Five hundred fifty samples of ransomware were collected from Virus

Total [45] and 540 normal samples from the Windows 10 OS and open-source soft-
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ware.

6.2.1 Experimental Protocols and Evaluation Measures

I experimented with coding in python, bash script, and the system with configu-

ration Intel(R) Core(TM) i7-5500U CPU @ 2.40 GHz 2.39 GHz, 8.00 GB RAM,

and 1 TB disk space. For running malware samples, six virtual environments were

set up with five i7 processor machines, one with 32 GB RAM and four with 8 GB

RAM.

I used widely used performance metrics of True Positive Rate (TPR), False Posi-

tive Rate (FPR), Precision, Recall, F-measure, and accuracy to evaluate the exper-

iments performed. For association rule mining, the minimum support threshold is

set to 2 and the confidence threshold to 0.8, but only association rules with a score

of 1 are shown in section 1.6.

6.2.2 Experimental Results

The experiments done with combined multi-level features with term frequency show

good accuracy with low false-positive rates as seen in Table 14. SVM and Adaboost

with J48 reported the highest accuracy of 99.54% and lowest false positive rate of

0.005. J48 achieved the second-highest accuracy of 99.26% and a false positive rate

of 0.007. The improved accuracy seen here than our previous approaches [100, 102]

is due to the hybrid reverse engineering techniques used, which builds a unique fea-

ture set.

6.3 Summary

In this work, I proposed an AI-powered ransomware detection framework using the

techniques of reverse engineering, hybrid analysis, and machine learning. Leverag-

ing dynamic binary instrumentation tool PIN, Cuckoo sandbox environment, and
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Table 14: Machine learning algorithms’ evaluation for multi-level combined ap-
proach with term frequencies
Machine learning Classifier TPR FPR Precision Recall F-measure Accuracy (%)

Logistic Regression 0.992 0.008 0.992 0.992 0.992 99.17
Support Vector Machine 0.995 0.005 0.995 0.995 0.995 99.54
Random Forest(RF) 0.990 0.010 0.990 0.990 0.990 98.99

J48 0.993 0.007 0.993 0.993 0.993 99.26
Adaboost with RF 0.987 0.013 0.987 0.987 0.987 98.71
Adaboost with J48 0.995 0.005 0.995 0.995 0.995 99.54

Ghidra framework, I generated a distinguishing feature dataset and achieved high

accuracy and low false-positive rate. Association rule mining and Ghidra’s disas-

sembly contributed to the existing analysis by other approaches to build unique

behavioral multi-level chains specific to ransomware. Collectively this contributes to

creating unique Yara rules which researchers and the security community can use.
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7 Analysis of Crypto-Ransomware using ML-based

Multi-level Behavior Profiling

In this work, I developed an AI-powered hybrid approach overcoming the recent

challenges to detect ransomware. Specifically, I proposed a deep inspection ap-

proach for multi-level profiling of crypto-ransomware, which captures the distinct

features at DLL (Dynamic-link library), function call, and assembly levels. I showed

how the code segments correlate at these levels for studied samples. Our hybrid

multi-level analysis approach includes advanced static and dynamic methods and a

novel strategy of analyzing behavioral chains with AI techniques. Moreover, asso-

ciation rule mining, natural language processing techniques, and machine learning

classifiers are integrated for building ransomware validation and detection model.

I experimented with crypto-ransomware samples (collected from VirusTotal). One

machine-learning algorithm achieved the highest accuracy of 99.72% and a false

positive rate of 0.003 with two class datasets. The result exhibited that multi-level

profiling can better detect ransomware samples with higher accuracy. The multi-

level feature sequence can be extracted from most applications running in the dif-

ferent operating systems; therefore, I believe that our method can detect ransomware

for devices on multiple platforms. I designed a prototype, AIRaD (AI-based Ran-

somware Detection) tool, which will allow researchers and the defenders to visualize

the analysis with proper interpretation [99].

7.1 Hybrid Reverse Engineering at Multiple Levels

Advance reverse engineering techniques are applied at multiple levels, i.e., Dll, func-

tion call, and assembly. Details about the methods and multiple levels are discussed

in the subsections given below.
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7.1.1 Hybrid Reverse Engineering

Reverse engineering (RE) is a backward process of re-creating things. It deals with

disassembling and dealing with each piece of disassembled components to find the

behavior of the original one. In malware analysis, the actual code is rarely known,

and there comes the need for RE to see the actual conduct of the malware to detect

and defend against its attack.

Ransomware analysis is done either using static, dynamic, or hybrid approaches.

Static analysis is the basic one that involves inspection of the binary stored in a

hard disk or drive. This analysis reveals compile-time, binary format, imports, ex-

ports, strings used, etc. However, the run-time behavior of the ransomware cannot

be captured. This shortcoming is achieved using dynamic analysis where a malware

sample is run in the memory, and its behavior is revealed to the analyst. A hybrid

analysis is the combination of both of these approaches [109, 118].

First, the ransomware and benign samples are reverse engineered using a hybrid ap-

proach. Ransomware writers often use various notoriously clever techniques to by-

pass analysis techniques to evade the defenders. Though, some virtualization tools

and environments claim they can overcome the anti-analysis techniques used by

cybercriminals. But, this is not as easy as claimed. This is also one of the reasons

why I adopted a hybrid approach. Another reason is the ability to capture distinct

features and a reasonable detection rate which we will see in the coming sections of

this work. Those binaries which do not run or exit in the middle will be analyzed

using a PE parser [30], an open-source tool that helps to reveal properties like DLL

used, import, and export of functions by the binaries. Dynamic analysis is done us-

ing a virtualized environment with Cuckoo sandbox [17], advanced disassembler,

and debugger tool from National Security Agency Research Directorate [21], and

the dynamic binary instrumentation tool, PIN [32].

Below is a description of the tools and techniques I used for hybrid reverse engi-
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neering.

7.1.1.1 Dynamic Binary Instrumentation

Programmers have used instrumentation techniques to diagnose program crashes,

analyze errors, and write trace information. Instrumentation comes in two types:

code instrumentation and binary instrumentation. Since the malware code is not

available, I consider only binary instrumentation. Binary instrumentation is often

referred to as Dynamic binary instrumentation or DBI, in short, as the instrumen-

tation is done using dynamic analysis of program traces. In this approach, I use the

PIN tool [32] for DBI. PIN makes tracking of every instruction executed by taking

complete control over the run-time execution of the binary.

7.1.1.2 Cuckoo sandbox

Cuckoo sandbox is an advanced open-source automated malware analysis tool that

allows execution and analysis of malware samples in a safe environment [17]. It

makes use of the virtualization technique to run malware samples. If highly sophis-

ticated ransomware does not run in a virtualized environment, then its function call

trace is studied via reverse engineering provided by NSA’s Ghidra tool [21].

7.1.1.3 Ghidra

Ghidra is a reverse engineering framework developed by the National Security Agency

Research Directorate [21]. This tool allows malware researchers to analyze binaries

on a variety of platforms. It will enable various features, including disassembly and

decompilation. Ghidra’s disassembly features help to analyze the behavior of ran-

somware samples better. Its use made defining the multi-level chains of ransomware

possible.
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7.1.2 Feature Extraction at multiple levels

The raw output obtained from the hybrid reverse engineering techniques is pre-

processed and fed to the feature extraction component. Features are extracted at

three levels: DLL, function call, and assembly. Below is the description of the ex-

tractor at each level.

7.1.2.1 DLL level

DLL extractor at the DLL level works via an automated script that parses through

the raw reverse engineered output. It gives the list of all DLLs being called by vari-

ous function calls. DLLs are dynamic link libraries that are subroutines to perform

actions such as file system manipulation, navigation, process creation, communi-

cation, etc. They are loaded into the memory whenever required and freed from

memory whenever our system is lightweight. Thus, it makes effective use of avail-

able memory and resources by dynamic linking capability. DLLs have functions

that they export and make available to other programs. During a program run, all

necessary DLLs are loaded into the memory. Still, the referenced function call is ac-

cessed only when needed by locating the memory address where the function code

resides. Specific DLLs are called more often because the function calls implemented

by them are significant to carry out actions as per malware behavior.

7.1.2.2 Function call level

Function call extractor at function call level is implemented through an automated

script that parses through the raw reverse engineered output. It lists all function

calls being used by the program in execution, as seen in the execution trace. A

function call is a piece of code that has lines of instructions that impact the sys-

tem or user. These are essential code blocks that carry out various functionalities

and have less overlapping than DLL and assembly level analysis. Analysis at this
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level helps to identify function calls that are unique to malware’s behavior. Catego-

rizing functions based on functionality such as file operations, system information

gathering, file enumeration, encryption key generation, encryption, etc., are critical

behaviors specific to ransomware that we analyze at this level.

7.1.2.3 Assembly Level

Dynamic binary instrumentation tool PIN is leveraged to get the assembly instruc-

tions being used by the program. Assembly instruction is a low-level machine in-

struction, which is also called machine code. It can be directly executed by a com-

puter’s central processing unit (CPU). Each assembly instruction causes a CPU

to perform a specific task, like add, subtract, jump, xor, and so on. Each function

call or system call is implemented via assembly instructions. Assembly instructions

are also analyzed based on categorized groupings. Some of the categories are Data

transfer, Logical, Control transfer, Flag control, etc.

7.2 Use of Machine learning

Traditional malware detection techniques are primarily based on signatures that

adversaries can easily evade. Machine learning systems have better detection ca-

pability as they can automate the work of creating signatures. Moreover, they can

better detect the previously unseen malware.

7.2.1 Data mining techniques

Data mining is the process of finding hidden features or patterns that can distin-

guish a given family sample from others. Various approaches are leveraged for data

mining.
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7.2.1.1 Frequency analysis

Frequency analysis is a simple but powerful data analysis technique. It gives vari-

ous insights about the most used or least used component.

7.2.1.2 Association rules

Association rules show the probability of the relationship between items. It is gen-

erally a rule-based data mining approach that helps to discover correlations among

data items. In this approach, I have used the FP-Growth algorithm, which is array-

based, uses depth-first search, and requires only two database scans, making it

more efficient and scalable. A list of DLLs, function calls, and corresponding assem-

bly instructions obtained from the advanced reverse engineering process is provided

as an input to the FP-Growth algorithm. The generated FP-Growth association

rules are used to create ransomware detection signatures.

Table 15: Association rule mining at DLL level with score: 1.0
Association rules at DLL level
[ADVAPI32, OLE32, SHELL32, WS2_32]→ [KERNEL32]
[ADVAPI32, OLE32, SHELL32, WS2_32]→ [ADVAPI32]
[ADVAPI32, OLE32, SHELL32, WININET]→ [KERNEL32]
[ADVAPI32, OLE32, SHELL32, WININET, WS2_32]→ [KERNEL32]
[KERNEL32, OLE32, SHELL32, WININET, WS2_32]→ [ADVAPI32]
[ADVAPI32, KERNEL32, OLE32, SHELL32, WS2_32]→ [WININET]
[ADVAPI32, KERNEL32, OLE32, WININET, WS2_32]→ [SHELL32]
[ADVAPI32, KERNEL32, OLE32, SHLWAPI, WININET, WS2_32] →
[SHELL32]
[ADVAPI32, KERNEL32, OLE32, SHELL32, SHLWAPI, WININET] →
[WS2_32]
[ADVAPI32, KERNEL32, OLE32, SHELL32, WININET, WS2_32] →
[SHLWAPI]
[ADVAPI32, CRTDLL, GDI32, KERNEL32, OLE32, OLEAUT32, USER32] →
[WININET]
[ADVAPI32, CRTDLL, GDI32, KERNEL32, OLE32, OLEAUT32, WININET] →
[USER32]
[ADVAPI32, CRTDLL, GDI32, OLE32, OLEAUT32, USER32, WININET] →
[KERNEL32]

85



7.2.2 Association rules at DLL level

Table 15 shows a portion of the association rules at the DLL level. These DLLs

are obtained from the import table of ransomware portable executable files. The

first-row rule shows that ADVAPI32, OLE32, SHELL32, and WS2_32 DLL imply

KERNEL32 DLL. This rule contains DLLs associated with ransomware-specific be-

havior, including encryption as described in section 7.3.1. The eighth rule shows

that ADVAPI32, KERNEL32, OLE32, SHLWAPI, WININET, WS2_32 implies

SHELL32. This rule contains DLLs specific to ransomware behavior, including the

deletion of a shadow copy.

Table 16: Association rule mining at function call level with score: 1.0
Association rules at function level
[GetCurrentThreadId, GetTickCount, RtlUnwind, WideCharToMultiByte, lstr-
lenW] → [ExitProcess]
[CloseHandle, GetModuleHandleA, GetTickCount, ReadFile, RtlUnwind,
WideCharToMultiByte] → [GetProcAddress]
[CloseHandle, GetCurrentProcessId, GetModuleHandleA, ReadFile, RtlUnwind,
WideCharToMultiByte] → [ExitProcess]
[ExitProcess, GetCurrentThreadId, GetTickCount, SetFilePointer, Sleep,
WideCharToMultiByte] → [GetModuleHandleA]
[ExitProcess, GetCurrentThreadId, GetModuleHandleA, RtlUnwind, SetFile-
Pointer, WideCharToMultiByte] → [WriteFile])
[CloseHandle, ExitProcess, GetCurrentProcessId, GetModuleHandleA, RtlUn-
wind, WideCharToMultiByte] → [ReadFile]
[GetCurrentProcess, InterlockedIncrement, IsDebuggerPresent, RaiseException,
RtlUnwind, SetUnhandledExceptionFilter, Sleep, UnhandledExceptionFilter, Vir-
tualProtect, WideCharToMultiByte] → [HeapCreate]
[EnterCriticalSection, ExitProcess, GetLastError, GetProcAddress, LeaveCriti-
calSection, WriteFile] → [HeapReAlloc]
[DeleteCriticalSection, GetCurrentProcessId, GetLastError, GetTickCount, Set-
LastError, TlsAlloc, TlsFree] → [TlsSetValue]
[GetCurrentProcessId, GetStringTypeW, GetTickCount, VirtualProtect] → [Ini-
tializeCriticalSectionAndSpinCount]
[GetCurrentProcess, GetCurrentProcessId, GetTickCount, InitializeCriticalSec-
tionAndSpinCount, IsDebuggerPresent, RaiseException, SetUnhandledException-
Filter, UnhandledExceptionFilter, VirtualProtect] → [SetHandleCount]
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7.2.3 Association rules at Function call level

Table 16 shows a portion of the association rules at the function call level. These

function calls are obtained via both static and dynamic analysis of ransomware ex-

ecutables. The first row rule shows the use of GetCurrentThreadId, GetTickCount,

RtlUnwind, WideCharToMultiByte, lstrlenW implies ExitProcess. This rule con-

tains function calls that are specific to the anti-analysis behavior of ransomware.

Table 17: Association rule mining at assembly level with score: 1.0
Association rules at Assembly level
[add, and, cmp, data16, jmp, lea, sbb, shl] → [xor]
[add, cmp, data16, jm, lea, sbb, shl, sub] → [xor]
[add, cmp, data16, jmp, or, rcr, sbb] → [ror]
[add, cmp, data16, jmp, or, rcr, shl] → [sbb]
[add, cmp, data16, jmp, rcr, sbb, shl] → [xor]
[add, cmp, fdivr, jmp, les, or, repz, sbb, sub] → [bound, ror]
[add, cmp, fdivr, jmp, les, or, repz, shl, sub] → [sbb]
[add, cmp, fdivr, jmp, les, repz, sbb, shl, sub] → [xor]
[add, call, ficom, les, lock, or, rcr, sbb, xchg] → [cmp]
[call, cmp, ficom, les, lock, or, rcr, sbb, xchg] → [add]
[add, call, cmp, ficom, les, or, rcr, sbb, xchg] → [lock]
[add, call, cmp, ficom, lock, or, rcr, sbb, xchg] → [mul]
[add, call, ficom, les, lock, or, rcr, sbb, xchg] → [cmp]

7.2.4 Association rules at Assembly level

Table 17 shows a portion of the association rules at the assembly level. These func-

tion calls are obtained via dynamic binary instrumentation. These rules are specific

to different function calls defined for various chains as shown in section 7.3.1.

The combination of association rules at three levels proves more effective to create

unique ransomware detection signatures based on functionality chains discussed in

section 7.3.1. The experimental results also show promising accuracy with low false-

positive rates.
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7.2.5 NLP techniques

Machine Learning (ML) processor makes use of natural language processing (NLP)

language models. NLP has proved useful in recommendation systems, text classifi-

cation, speech recognition, and so on. Through the NLP component, various popu-

lar NLP techniques such as N-gram, Term Frequency-Inverse Document Frequency

(TF-IDF), and Term Frequency (TF) are leveraged to generate a feature database

that is fed to the ML classifier.

7.2.6 ML Classifier

ML classifier component leverages the various supervised machine learning clas-

sifiers to train, test, and validate the model and decide whether a binary in con-

sideration is ransomware or a benign application. The threshold accuracy is set to

95%. If the binary is classified as ransomware, then I generate an alert and delete

the sample. Whereas if the binary is classified as not ransomware, then it is labeled

as a benign application. I use Logistic Regression (LR), Support vector machines

(SVM), Random Forest (RF), J48, Adaboost with RF/J48, and Neural network.

7.3 HMLP based detection and Behavioral Chaining

The computational blocks and flow diagram for hybrid multi-level profiling (HMLP)

for ransomware detection are shown in Figure 27. Both ransomware and benign bi-

naries are analyzed using hybrid reverse engineering techniques, and feature extrac-

tion at multi-level is done as discussed in section 7.1. The use of machine learning

is discussed in section 7.2. Behavioral chaining is the core component of this frame-

work and is discussed in detail below.
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Figure 27: HMLP based ransomware detection framework

7.3.1 Behavioral Chaining

A chain is a continuous sequence of components that achieve a specific functionality

or activity. Behavioral chains are collections of functionality chains at different lev-

els or can be linked across a multi-level. Functionalities are derived from different

ransomware families, which are analyzed. The algorithmic steps to find a behavioral

chain are illustrated in algorithm 1.

According to the algorithmic steps, for each ransomware family, I performed reverse

engineering to extract features to build behavioral chain profiles, also dynamic anal-

ysis is done running a binary in an isolated virtual environment. Dynamic analysis

is real execution of a binary to study the actual behavior and functionality. If some

binaries do not run in a virtualized environment, I study the behavior using static
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Algorithm 1: HMLP behavioral chaining
1: procedure HMLP_behavioral_chaining(PE binaries)
2: Step 1: Manual_chaining_crypto_ransomware
3: for one sample from each ransomware families in [Locky, TeslaCrypt, Gand-

Crab, CryptoWall, Cerber, Petya] do
4: Hybrid RE of binaries
5: Extract features at multi-level
6: Inspect/analyze run time execution trace
7: Identify and define major functionality chains
8: Add multi-level components to major chains if no minor chains are found
9: Identify and define minor functionality chains for each major chains

10: Add multi-level components to each minor sub chains
11: For all remaining chains keep as arbitrary chains
12: end for
13: Step 2: Automatic_chaining_all_samples
14: for each sample in dataset do
15: Hybrid RE of binaries
16: Extract features at multi-level
17: FP-growth rule mining at multi-level
18: For each chain/rule with confidence 0.8 and score 1
19: Check if a rule matches with defined functionality chain from Step 1
20: Add chain as a distinct chain to feature dataset if matched
21: Add chain as an arbitrary chain to feature dataset if not matched
22: end for
23: return behavioral chains
24: end procedure
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analysis techniques.

We can predict the functionality through disassembly and run trace information;

moreover, a deep manual inspection of these results helps create functionality chains

at DLL, function call, and assembly level. A self-deletion functionality of malware

has multi-level chains as shown in table 18. A major chain can have minor sub-

chains. For example, a self-delete chain contains shadow copy delete as sub-chains

under the major chain. I ignore the functionality which is commonly seen in benign

applications such as error handling chains. For all other unidentified functionality,

I keep it as an arbitrary chain. The next stage is automatic chaining for all given

sample binaries. I performed reverse engineering of each sample using our HMLP

algorithm to extract the raw features at three levels.

Figure 28: A sample arbitrary structure of a behavioral chain

I then leverage the FP-growth association rule mining algorithm. The association

rules with support 0.8 and confidence score one are checked if found from the first

stage. If found, they will be part of the final feature dataset. All non-matching

chains with previously mentioned association rules scores become part of arbitrary

chains in the final feature dataset for the given sample. An illustration of a behav-

ioral chain is shown in Figure 28. Here, the acronym Fcall refers to function calls,

and Assm refers to assembly instruction.
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7.3.2 Relationship between Behavior chain and Association Rules

Association rules discover patterns in a given feature set, while behavioral chains

are classification of those. I defined behavioral chains and sub-chains, which can be

considered a semi-expert system. While many association rules are generated with

varying lengths, properly labeling them in the behavioral chain is very important.

In particular, behavior chains provide the explainability of the association rules.

Figure 29: Behavioral chain for system profiling with default user and system lan-
guage

Figure 29 shows the behavioral chain for system profiling, particularly for the iden-

tification of default user and system language, which is obtained via the relation-

ship with the association rules. This 3-layered hierarchy is concerned with profiling

system identifiers. Some of the other often profiled system identifiers are keyboard

layout, windows version used, the domain used, CPU identifier, etc.

Figure 30 shows the behavioral chain for delete identification. If a major chain has

variations due to implementation differences or minor functionality differences, then

the major chain is broken down into all specifiable minor chains. Each minor chain

will have some variation in either one or more levels of code analysis. The chain-

building process is assisted by using association rule mining.

Based on the behavioral chain described in Figure 30 we can generate a ransomware

signature as shown in Figure 31. This rule is based on Yara rule format [51]. Vari-

able "a" contains the DLL components, "b" contains the function call components
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Figure 30: Behavioral chain for delete identification

and "c" contains the assembly components. The condition at last specifies that we

need all from “a”, 3 among “b”, and 6 among “c” or “d” and filesize.

7.3.3 Chain Validator

Chain validator component aids in the automatic validation of the behavioral chains.

I use association rule mining for this. Association rule is a rule-based data min-

ing (DM) approach to discover notable relations and patterns among variables in

a given data. FP-growth algorithm is preferred as it is more efficient than others,

including Apriori. Apriori takes more execution time for repeated scanning to mine

frequent items, but FP-growth scans the database only twice for constructing fre-

quent pattern trees. I consider association rules with minimum support threshold

two and confidence threshold of 0.8 and check whether it matches the defined chain

ingredients. Only the matching chains form the functionality chains A-M. All non-

matching chains with previously described support and confidence scores are part of

arbitrary functionality chains. I use a novel approach to calculate the ransomware

profiling chain ratio. Below, DCR represents the DLL chain ratio, FCR represents
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Figure 31: Ransomware signature based on delete identification behavior

a function call chain ratio, ACR represents the assembly chain ratio, and RPCR

represents the ransomware profiling chain ratio.

DCR =
No. of DLL chains seen
Total no. of DLL chains

FCR =
No. of function call chains seen
Total no. of function call chains

ACR =
No. of assembly chains seen
Total no. of assembly chains

MPCR =
DCR + FCR + ACR
Total number of levels
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Our HMLP detection approach chains are created at DLL, function call, and as-

sembly level for given ransomware functionality. These chains are made leveraging

the feature extraction component that relies on hybrid RE. I first manually inspect

thousands of lines of function and activity trace of prominent ransomware families

and reach a consensus to define the major chains seen in most ransomware families.

For all other remaining samples, these chains are discovered and validated automat-

ically using the chain validator component, which uses association rule mining.

Each main functionality chain can have sub-chains under them. If there is some

overlapping in the main chain, it is kept under the sub-chain with some variations.

If functionality cannot be well defined, then it is kept under an arbitrary function-

ality chain. I have identified chains from A to M, which incorporate most crypto-

ransomware families based on crypto-ransomware behavior.

The multi-level analysis is crucial for creating unique ransomware signatures.

A brief explanation of each chain follows below.

Chain A deals with the initial setup.

Chain A0 uses GetStartupInfoW which gets information related to window sta-

tion, desktop and appearance of the main window. HeapSetInformation enables fea-

tures to use heap as a data structure. HeapCreate and GetProcessHeap are used by

the HeapHandle parameter. GetModuleHandleW gets a handle for a given module,

either an executable or a DLL file. This handle is referenced later to request the

necessary function calls. GetProcAddress gets the memory address of an exported

DLL function. The first parameter is the handle to the DLL and the second param-

eter is the function name exported from that DLL. For example, CryptGenRandom

is exported from Advapi32 DLL. FlsAlloc allocates a fiber local storage index. Any

fiber in the process can subsequently use this index to store and retrieve values that

are local to the fiber [19]. It setups with three sub-functions which are FlsGetValue,

FlsSetValue and FlsFree.
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Chain A1 deals with console-setup. GetStdHandle gets a handle to the specified

IO device. These handles are used by Windows applications to read and write to

the console. These are also used by ReadFile and WriteFile functions. GetEnviron-

mentStringsW makes the environment variables available for the current process

running in an infected computer. FreeEnvironmentStringsW frees all environment

settings. This function is generally used only once. Malware writers do not want

to interfere with their work. They may use SetEnvironmentVariable to set certain

variables to fulfill their malicious behavior. IsProcessorFeaturePresent determines

whether the system in use supports the specified processor feature.

Chain A2 deals with system services with error handling. GetLastError gets the

last error code for the calling thread of the given process. Threads do not over-

write each other’s error codes. GetCurrentThreadId gets the identifier value for the

thread whose error code for execution of a particular function is to be considered.

SetLastError sets the error code for the calling thread of a given process. For ex-

ample, zero error code means error success, and the operation was completed. This

sequence comes more often to get the status of functions being executed.

Chain A3 deals with module enumeration. GetModuleFileName loads the malware

executable and GetModuleHandle gets the handle to the custom malware DLL with

obfuscated functions. The obfuscation behavior can be captured at the assembly

level.

Chain B deals with time tracking and anti-analysis behavior of the ransomware.

GetTickCount gives the time in milliseconds that have passed since the system was

started.

mov ebx, 0xdbba0

call dword ptr [kernel32.dll::GetTickCount]

cmp eax, ebx

The 0xdbba0 value i.e 900000 milliseconds or 15 minutes is compared with the time
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obtained via GetTickCount. If the user system is active for less than 15 minutes,

the malware will not execute, giving us a false impression of a benign application.

Malware writers try to evade malware analysis being done in a virtual environment.

Generally, such an analysis environment runs for less than 15 minutes or even less

than that.

GetSystemInfo and GetNativeSystemInfo use dwNumberOfProcessors method to

check the number of processors running in a system. If the system has only one

processor then the malware writers label it as a analysis environment and may

not execute at all. GetSystemInfo often invokes native low level function call Nt-

QuerySystemInformation to get the number of cores used in a system.

Chain C deals with DLL and function loading. LoadLibraryW loads the specified

DLL into the address space of the calling process. GetModuleHandleW gets the

handle object for that particular DLL. GetProcAddress receives the address of an

exported function from that specified DLL. This chain of function calls is the action

triggering point of the code section while executing a binary.

Chain D deals with access elevation.

In Chain D0, OpenProcessToken opens the token associated with a given process

while GetTokenInformation is used to obtain the token id, session id or security

identifier of the process’s owner. This obtained token is duplicated and applied to a

new thread created in suspended mode using SetThreadToken.

Chain D1 is used to bypass user access control by elevating privilege to an admin

level.

Chain D2 contains functions that destroy previously created handles for access

and privilege escalation.

Chain E is used by ransomware for process enumeration. CreateToolhelp32Snapshot

is used to create a snapshot of processes, heaps, threads, and modules. Malware of-

ten uses this function as part of code that iterates through processes or threads.
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This snapshot function is called during different functionality blocks such as load-

ing DLLs, loading application processes, loading anti-virus processes, etc. Pro-

cess32FirstW gets information about the first process seen in a system snapshot.

This is used to enumerate processes from a previous call to CreateToolhelp32Snapshot.

Malware often enumerates through processes to find a process to inject into. Ran-

somware does not want applications running as it might affect their encryption

operation as applications often lock the open or used files. lstrcmpiW compares

all observed processes with the hard-listed ones to kill out; a similar comparison

is made for observed anti-virus software to kill them. Some of the killed-out pro-

cesses are mydesktopqos.exe, sqlbrowser.exe, sqlservr.exe, msftesql.exe, mysqld.exe,

excel.exe, msaccess.exe, outlook.exe, winword.exe, wordpad.exe, etc. The malware

process is often run under explorer.exe.

Chain F deals with parameter setup. The command-line string via GetComman-

dLineA serves as one parameter value to be passed to GetCommandLineW func-

tion which later removes malware itself and deletes shadow copies via the command

prompt window.

Chain G deals with system profiling.

Chain G0 is concerned with profiling system identifiers. Some of the often pro-

filed system identifiers are keyboard layout, windows version used, the domain used,

CPU identifier, etc. RegOpenKeyExW opens the specified registry key for system

profiling. The parameter lpSubKey specifies the name of the registry key to be

open. The access right for registry key object is KEY_EXECUTE (0x20019) which

is equivalent to KEY_READ and Combines the STANDARD_RIGHTS_READ,

KEY_QUERY_VALUE, KEY_ENUMERATE_SUB_KEYS, and KEY_NOTIFY

values.

When lpSubKey="Keyboard Layout Preload" it is inferred that malware is trying

to know about keyboard layout. Similarly, other registry key values that are re-
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vealed include:

• lpSubKey="Control Panel International"

• lpSubKey="Keyboard Layout Preload"

• lpSubKey="SOFTWARE Microsoft Windows NT CurrentVersion"

RegQueryValueExW receives the type and data for the specified open registry key

while the RegCloseKey closes all open handles of the registry keys.

Chain G1 deals with user interface language reveal. GetUserDefaultUILanguage

gets the language identifier for the current user while GetSystemDefaultUILanguage

gets for the operating system. This function chain is often used to reveal the user

language so that the malware writers can decide whether to execute further or not

based on the country and spoken language preferences. Figure 32 shows its usage.

Figure 32: Disassembled code to check default user language

Chain G2 deals with checking malware footprint if it is already there in an in-

fected system. If this footprint is already available, the malware will not execute;

else, a new footprint is created. Generally, a locked file is created with a hidden at-

tribute at C drive as a footprint. The 8 characters hex as a footprint is obtained

from the volume serial number via GetVolumeInformationW function. A similar

hidden footprint is left at each folder location before encryption. The wsprintfW

writes the formatted data to the buffer while CreateFileW function creates a lock

file as a footprint.
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Chain G3 deals with creating a unique user id to identify the victim’s system. A

unique ransom id is calculated using the RtlComputeCrc32 function, which uses

the CPU name and the windows volume serial number as parameters. RtlCom-

puteCrc32 calculates the CRC32 checksum of a block of bytes. There may be other

ways to create a unique user id, for example, based on a mac address or a combi-

nation of system information and a unique random number. Various cryptographic

algorithms can be used as well.

Chain G4 deals with revealing information about disk usage. GetDriveTypeW de-

termines whether a disk drive is a removable, fixed, CD-ROM, RAM disk, or net-

work drive. Parameter lpRootPathName gives the root directory for the drive. This

function returns a value from 0 to 6, 3 being fixed hard drive. GetDiskFreeSpaceW

receives information about the given disk. It also reveals how much free space is

available on the disk.

Chain H deals with encryption setup, which is the most crucial action performed

by ransomware.

Chain H0 is concerned with RSA key pairs generation. The CryptAcquireCon-

textW function is used to acquire a handle to a key container implemented by ei-

ther a cryptographic service provider (CSP) or next-generation CSP. The szProvider

parameter specifies this information. Example:

szProvider="Microsoft Enhanced Cryptographic Provider v1.0"

The CryptGenKey generates a public/private key pair. The handle to the key is

returned in parameter phKey. It has an Algid parameter which specifies the type of

encryption algorithm being used. For example, Algid=0xa400 represents CALG_RSA_KEYX

as the “RSA public key exchange algorithm". The CryptExportKey function ex-

ports a cryptographic key pair from a CSP in a secure manner. At the receiver end,

CryptImportKey function should be used to receive the key pair into a recipient’s

CSP. CryptDestroyKey destroys the encryption handle but not the keys. CryptRe-
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leaseContext releases the handle of a cryptographic service provider and a key con-

tainer.

Chain H1 deals with private keys and the nonce generation. Private keys can be

generated using various cryptography algorithms such as AES, DES, Salsa20, etc.

Most ransomware encrypts user files using a hybrid approach. Locally generated

keys encrypt the victim’s files, and those keys, in turn, are encrypted by the at-

tacker’s public key. Only attackers corresponding private keys can decrypt the lo-

cally generated key. The purpose of function call sequences in this chain has al-

ready been discussed before except for CryptGenRandom. Random IV and random

keys are generated using getRandomBytes() method available via CryptGenRandom

function.

Chain H2 encrypts the locally generated keys by using RSA public key generally

obtained via the .data section. RSA private key is required from malware writers to

decrypt private or local keys and decrypt encrypted user files.

Chain H3 is used for storing cryptographic key pairs. RegCreateKeyExW creates a

specified registry keys while RegSetValueExW sets its data and type. Ransomware,

including Gancrab family ransomware, often stores its encrypted RSA and Salsa20

keys in the registry.

Chain H4 creates a new thread to encrypt the user files. Encryption setup is in

one thread, while encryption occurs in different threads. Thread creation is done

using CreateThread. The main thread waits for all threads running on the current

drive to finish by calling WaitForMultipleObjects. As soon as one drive is finished

and all its threads end, the next drive is encrypted, and it continues until all drives

have been encrypted. WaitForSingleObject waits for a single object to finish or for

the time-out interval to elapse.

Chain I deals with file encryption.

Chain I0 deals with file encryption via Crypto API.
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At first, ransomware iteratively finds the next files in a given folder to encrypt us-

ing FindNextFileW then writes the filename with some_unique_extension as a new

filename to the buffer using wsprintfw. The local file names are often compared if

they are not among these files: autorun.inf, ntuser.dat, iconcache.db, bootsect.bak,

boot.ini, ntuser.dat.log, thumbs.db, ransom_note.html, ransom_note.txt so that

it won’t interfere with the system’s normal functioning and should not encrypt

the ransom message. lstrcmpiW is used to compare the discovered filename with

the hardcoded list of filenames. This list or approach slightly differs among vari-

ous ransomware families. The CryptAcquireContextW handle is called to get the

CryptoAPI function i.e CryptGenRandom ready to use. Here, CryptGenRandom is

called twice: once to generate a random 32-byte key and next time to get an 8-byte

nonce. This differs among the type of symmetric encryption techniques used. Get-

ModuleHandleA refers to the handle for Advapi32 DLL and GetProcAddress gets

the CryptGenRandom function. After the random key and nonce generation, the

cryptographic handle is released, and virtual memory is freed.

The next CryptAcquireContextW is setting the cryptographic handle ready to en-

crypt the local private key and nonce using malware writers RSA public key. Again,

the next CryptAcquireContextW is to encrypt the user generated RSA private key

with Salsa20 keys. Here CryptImportKey imports the necessary keys and Crypt-

GetKeyParam gets data that handle the operations of a key. CryptEncrypt does

the real encryption of text or strings. CryptDestroyKey only destroys the encryp-

tion handle but not the keys. CryptReleaseContext releases the handle of a crypto-

graphic service provider and a key container.

The same sequence of calls(CryptAcquireContextW through CryptReleaseContext)

is observed as just before but this time to encrypt data portion from the user’s file

obtained via FindNextFileW.

CreateFileW creates a new file or opens an already existing file to overwrite its con-
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tent. ReadFile reads the just opened file using its handle from the position specified

by the file pointer. SetFilePointerEx moves the file pointer to the specified loca-

tion, and WriteFile writes the given data of buffer pointer to the specified file. Fi-

nally, the MoveFileW function moves the file to the same or different location, but

with a different filename extension, i.e., .some_extension is attached to the current

filename. Again, this differs among ransomware families. Some ransomware families

overwrite the filename with some random strings being generated using CryptGen-

Random function.

Chain I1 This chain deals with encryption via CNG (Microsoft Cryptographic API

Next Generation) implementation. Newer versions of ransomware, including Petya,

uses this.

The CryptAcquireContextW is setting the cryptographic handle ready using the

latest CNG. CryptGenKey generates symmetric keys to encrypt local files. For

example, ff Algid=0x660e, then it refers to 128-bit AES keys as symmetric keys.

CryptGetKeyParam gets data that handle the operations of a key. PathCombineW

Concatenates two strings that represent properly formed paths into one path. It

also concatenates any relative path elements example: C:/ and *. FindFirstFileW

searches a directory for a file or subdirectory with a name that matches a specific

name (or partial name if wildcards are used). The wildcard * is used to specify all

files. If no files are found, and instead, a sub-directory is found, it will use Path-

CombineW as an immediate next function. Since drives generally have many di-

rectories and sub-directories, it will again call PathCombineW. Example: C:/ and

Windows.

FindNextFileW continues a file search from a previous call to the FindFirstFile,

FindFirstFileEx, or FindFirstFileTransacted functions. If a file is found, it com-

bines that filename with the found path using PathCombineW. PathFindExten-

sionW returns the filename extension. wsprintfW function writes the string in .ex-
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tension format to the buffer. StrStrIW compares this string with its given list of

hardcoded extension strings. If it returns 1 meaning match found then this particu-

lar file is encrypted.

CryptEncrypt function does the real encryption of text or strings. Instead of Write-

File as seen in the previous chain, FlushViewOfFile writes the encrypted string to

the disk, i.e., data obtained from a buffer of the CryptEncrypt function is written

to the same file causing the file content to be replaced by the encrypted text. Un-

mapViewOfFile function unmaps a mapped view of a file. It removes the working

set entry for each unmapped virtual page being used previously. Lastly, CloseHan-

dle closes the open handle of the file that was to be encrypted.

Chain J deals with creating a ransom message. Wsprintfw function writes some

file name ransom_message.txt to buffer then creates a new file of that name and

returns the handle using CreateFileW. LstrlenW gets the length of the text to be

written while WriteFile is used to write the ransom note to the specified file. Fi-

nally, CloseHandle closes the filehandle given by the CreateFileW function.

Chain K has functions associated with network enumeration. The functions WNe-

tOpenEnumW, WNetEnumResourceW and WNetCloseEnum are used in a chain for

lateral movement across the network to infect more user machines.

Chain L deals with delete operations by ransomware.

Chain L0 deals with self-delete.

GetModuleFileNameW gets the malware executable location while the function

wsprintfW writes the previously obtained command line parameter to buffer. This

is also shown in figure 33 ShellExecuteW function via lpFile parameter value as

cmd.exe executes the given command. This is a good indication of malicious activ-

ity. Why would a normal program execute a command prompt or other executable

unless specified by a user? For example, web browser firefox.exe would execute its

portable executable file unless we give some explicit execution commands to execute
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other applications.

Figure 33: Disassembled code for self deletion of ransomware binary

Table 18: Chain L: Self deletion
DLL Function Assembly

kernel32, user32, shell32 GetModuleFileNameW,

wsprintfW, ShellExe-

cuteW

push, mov, push-5, call,

push-4, mov, call, mov,

test, jz, push-3, call,

test, jz, push-3, call, add,

push-6, call, push, call,

int

Malware can specify the number of seconds to wait. It would wait till the time

elapses or until the user presses any key. The DLL, function call, and assembly

used for this chain are shown in Table 18.

Chain L1 deletes the shadow copies. GetSystemDirectoryW gets the location to

system32 director then concatenates wbem/wmic.exe to it using lstrcatw. Shadow-

copy delete is a parameter that wmic.exe takes. It deletes shadow copies that are

created when system restore points are made. These are generally backup files cre-

ated by system restore operation.

Chain M deals with command and control(CC) server communication. This func-
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tion chain differs among different ransomware families as some use hard-coded URL,

some use domain generation algorithm, and the way to get the victim’s IP address

also differs. Here, the most seen common sequence is illustrated. InternetOpenW

function opens the browser application, InternetConnectW opens a File Transfer

Protocol (FTP) or HTTP session for a given site. Malware may use ipv4bot.whatismyipaddress.com

to find the victim’s IP address Or they could find via command prompt. In the

meantime, it connects to CC server via HttpOpenRequestW using the handle of

InternetConnectW function. HttpAddRequestHeadersW specifies the CC server.

InternetReadFile reads the data from a handle opened by the InternetOpenUrl, Ft-

pOpenFile, or HttpOpenRequest function. Finally, InternetCloseHandle closes the

internet handle.

7.4 Experiments

The focus of this work was an analysis of crypto-ransomware and proposing an ef-

ficient detection framework. Accordingly, the need for recent crypto-ransomware

binaries was fulfilled by VirusTotal [45] whom I found open to support the research

community for malware/ransomware study. I collected 2600 malware samples, in-

cluding 550 crypto ransomware from VirusTotal [45]. The malware sample dis-

tribution and the size range are shown in table 19. Also, 540 benign application

samples were collected from Windows 7/10 OS and open-source applications. It

includes normal to advance programs such as cmd.exe, explorer.exe, bitlocker.exe,

firefox.exe, openssl.exe, taskkill.exe, ssh-agent.exe, winScp.exe, ssh-keygen.exe and

so on. Among them, there are certain samples such as Openssl, WinScp, and Bit-

Locker which uses cryptographic and communication operations which are also the

properties seen in the ransomware samples. Normal binaries size varied from 16.4

KB to 36.3 MB which resembled the size of ransomware binaries.

Experimental protocols and evaluation Measures are the same as discussed in chap-
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Table 19: Malware families and number of samples (with sizes) used

Malware Type No. of Samples Size range
crypto Ransomware 550 17.1KB - 31.4MB

Adware 524 8.1KB - 11.7MB
Backdoor 498 22.4KB - 21MB
Trojan 513 5.1KB - 25.5 MB
Worm 515 51KB - 17.5 MB

ter 5. The addition is the use of a novel approach of calculating the ransomware

profiling chain ratio as discussed in the chain validator section. For association rule

mining, the minimum support threshold is set to 2 and the confidence threshold to

0.8, but only association rules with a score of 1 are shown in section 1.6.

7.4.1 Result analysis

The experiment done with combined multi-level features with term frequency for

two classes (ransomware and benign samples) is shown in table 20. SVM and Ad-

aboost with J48 reported the second-highest accuracy of 99.54% and lowest false

positive rate of 0.005. J48 achieved the second-highest accuracy of 99.26% and a

false positive rate of 0.007. A Neural network with two hidden layers, ReLu ac-

tivation function, and L1-L2 regularizers, was used as an unsupervised learning

technique, which achieved the highest accuracy of 99.69% and a false positive rate

0.005. This achieved improved detection due to improved optimization during train-

ing phases. Another experiment done with TF and tri-gram TF-IDF for the same

two classes as above is shown in the table 21. This table shows some improvements

to the previous one due to the use of the tri-gram TF-IDF approach. SVM reported

the highest accuracy with 99.72% and the lowest false positive rate of 0.003. SVM

performed better than other algorithms because SVM works more effectively to

handle high dimensional spaces, and there is less overlapping among target classes.
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The improved accuracy seen here than the similar previous approaches [100, 102] is

due to the hybrid reverse engineering techniques used, which builds a unique fea-

ture set.

Figure 34: Confusion matrix for multi-class malware using Adaboost with J48

Table 20: Machine learning algorithms’ evaluation for multi-level combined ap-
proach with TF for two classes (Ransomware and benign samples)
Machine learning Classifier TPR FPR Precision Recall F-measure Accuracy (%)

Logistic Regression 0.992 0.008 0.992 0.992 0.992 99.17
Support Vector Machine 0.995 0.005 0.995 0.995 0.995 99.54
Random Forest(RF) 0.990 0.010 0.990 0.990 0.990 98.99

J48 0.993 0.007 0.993 0.993 0.993 99.26
Adaboost with RF 0.987 0.013 0.987 0.987 0.987 98.71
Adaboost with J48 0.995 0.005 0.995 0.995 0.995 99.54

Even the experiments done with multiple malware classes show promising results

with an overall accuracy of 94.6% with the J48 machine learning classifier as shown

in table 22. The confusion matrix for the same experiment is shown at figure 34.

The table and confusion matrix shows the high true positive and low false-positive

rates for various malware classes, including the normal class. Here, the Adaboost

with J48 outperformed SVM because this experiment included more than 3000
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Table 21: Machine learning algorithms’ evaluation for multi-level combined ap-
proach with TF and Tri-gram TF-IDFs for two classes (Ransomware and benign
samples)
Machine learning Classifier TPR FPR Precision Recall F-measure Accuracy (%)

Logistic Regression 0.996 0.004 0.996 0.996 0.996 99.63
Support Vector Machine 0.997 0.003 0.997 0.997 0.997 99.72
Random Forest(RF) 0.990 0.010 0.990 0.990 0.990 98.99

J48 0.996 0.004 0.996 0.996 0.996 99.63
Adaboost with RF 0.992 0.008 0.992 0.992 0.992 99.17
Adaboost with J48 0.995 0.005 0.995 0.995 0.995 99.54

Table 22: Machine learning algorithms’ evaluation for multi-level combined ap-
proach with TF for multi-class malwares using Adaboost with J48 (Malware fam-
ilies and benign samples; accuracy: 94.58%)

TPR FPR Precision Recall F-measure Class
0.933 0.015 0.926 0.933 0.930 Adware
0.934 0.013 0.930 0.934 0.932 Backdoor
0.993 0.001 0.996 0.993 0.994 Normal
0.955 0.010 0.955 0.955 0.955 Ransomware
0.889 0.020 0.896 0.889 0.892 Trojan
0.969 0.006 0.969 0.969 0.969 Worm

samples and had more overlapping than the previous dataset with two classes. J48

decreases the complexity of the final classifier by effective pruning and thus han-

dling the problem of overfitting while the Adaboost further boosts its classification

tasks. TPR and FPR score inspection for multiple classes, including normal sam-

ples, show our approach’s performance is not degraded even in the case of multiple

malware classes.

Table 23 shows the ransomware profiling chain ratio, including other scores for

six crypto-ransomware family samples. A chain score close to 1 is expected to de-

termine the sample as ransomware. A score equal to one is a perfect score. The

threshold chain ratio score is chosen as 0.8 for RPCR. The table shows all the sam-

ples to achieve this score and can be determined as a ransomware sample.
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Table 23: RPCR calculation for different crypto ransomware families

Ransomware family DCR FCR ACR RPCR
Locky 0.78 0.94 0.81 0.84

TeslaCrypt 0.81 0.95 0.85 0.87
GandCrab 0.88 0.93 0.89 0.9

CryptoWall 0.85 0.91 0.81 0.85
Cerber 0.88 0.95 0.88 0.903
Petya 0.78 0.81 0.83 0.806

Table 24: Comparison based on various factors of this framework against existing
approaches
Analysis/
Reference Feature Classification Accuracy FPR Resilience to

obfuscation
Static [86] Opcode CNN 97% NA Low
Dynamic [81] API RF, DNN 97.3% 0.048 Low
Dynamic [78] API Frequency analysis NA NA Low
Dynamic [53] HPC event traces ANN, FFT NA NA Low
Dynamic [56] Dlls, system resources Supervised, unsupervised 75.01% NA Low
Dynamic [107] API Deep learning 95.96% 0.059 Low
Dynamic [60] API Supervised 98.65% NA Low
Hash based [72] Data entropy NA 99.24% 0.0049 Medium
Hybrid [Mine] Dll, function, assembly Supervised, unsupervised 99.72% 0.001 High

7.4.2 Comparison with others

Many works have been done using API or opcode analysis for ransomware detec-

tion that leverages portable executable file format. However, I have compared the

recent and notable ones in Table 24. This table shows different features used, clas-

sification techniques, resilience to obfuscation, accuracy, and false-positive rate of

the proposed model. The description of each work is already discussed in the lit-

erature review section. Here, I summarize the table and note the differences with

our work. Most of the compared works deal with dynamic analysis and a few with

static and hash-based analysis. But our approach deals with hybrid analysis which

is a combination of both static and dynamic analysis techniques. The advantage of

hybrid analysis is its ability to capture features and behaviors without executing
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the binaries. Static analysis, though it can achieve a high code coverage, misses the

actual run-time conduct. However, there are few downsides of dynamic analysis like

missing parameter values, and we may not capture the essential behavior or miss

certain notable behaviors of ransomware executables. The significance of the hybrid

approach, along with the feature capture at Dll, function call, and assembly level,

can be observed by our work which also achieved high accuracy and lowest false

positive rate, among other results. Another notable difference is how resilient your

approach is to obfuscation. Most related work has low resilience to obfuscation and

fails to explain whether their model can detect obfuscated binaries. My approach

has high resilience to obfuscation as I try to capture malware at three levels; even if

we miss the top Dll level, we can capture at either function call level or the lowest

assembly level. My unique hybrid analysis method using advanced tools, including

intel’s PIN and NSA’s Ghidra, allows creating a rich feature set for machine learn-

ing training models. Thus, I see a high potential for my work compared to other

related works.

7.5 Designing a prototype system AIRAD

I designed a prototype system based on the proposed HMLP approach described

earlier.

The prototype that I developed is referred to as AIRaD (AI-powered Ransomware

Detection) tool. This tool is in the development process, and I plan to make some

of its components open-source. Figure 35 is a welcome screen that shows the sig-

nificant four steps required for the malware analysis process. Step 1 includes up-

loading a binary file for analysis. Step 2 allows us to choose among the available AI

techniques. Similarly, step 3 will enable us to choose among the available reverse

engineering techniques. For steps 2 and 3, if we are unsure about which methods

to choose, one can let the system select the best ways to guarantee the best perfor-
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Figure 35: Welcome screen of AIRaD tool

Figure 36: AI techniques selection for AIRaD tool

mance.

Figure 36 shows the interface to select available AI techniques. A user is asked to

select among available machine learning techniques. Here, various supervised and

unsupervised machine learning techniques are available to choose from. Similarly,

users can choose available NLP and data mining techniques. The automatic smart

selection button allows the user to let the system decide on optimal techniques.

Figure 37 allows user to select available reverse engineering techniques. A user can

select either linear disassembly techniques such as Objectdump or recursive dis-
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Figure 37: RE techniques selection for AIRaD tool

Figure 38: Snapshot of AIRaD tool with associated analysis components and sum-
mary report

assembly provided by Capstone tool [10]. For dynamic analysis, the user can se-

lect sandboxing API analysis, dynamic binary instrumentation provided by Intel’s

PIN [32] or other advanced debuggers and disassemblers such as IDA Pro [25] and

NSA’s Ghidra [21]. Users can choose the techniques themselves or allow the system

for automatic smart hybrid selection.

Figure 38 shows one of the output interfaces of our tool. It shows the multi-level

mapping for file encryption activity. The main box shows DLL, function call, and

assembly components with an arrow pointing from DLL to the assembly level. This
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association among these three levels is significant to recognize ransomware-specific

behavior and create unique signatures. The upper part of the rightmost column

shows buttons to choose either one level of analysis or multi-level analysis. The

bottom portion of it shows buttons for machine learning techniques, NLP tech-

niques, Dynamic binary instrumentation, and Static and dynamic analysis approaches

used in our tool. The user can download the summary report for record-keeping

and further analysis. This tool is built upon the foundations provided by our pro-

posed architecture and can be considered as an explanatory AI tool as it identifies

the signature generating features.

7.6 Summary

In this work, I performed a deep forensic analysis of crypto-ransomware using hy-

brid multi-level profiling. I adopted a unique approach of behavioral chaining along

with association rule mining and AI techniques. Hybrid multi-level inspection at

DLL, function call, and assembly revealed unique behavioral chains that help create

unique ransomware signatures and a distinguishing dataset for the machine learn-

ing model. This approach is validated with experiments where I achieved high ac-

curacy with low false positives. Results show that one machine learning algorithm

achieved the highest accuracy of 99.72% and a false positive rate of 0.003 with two

class datasets. Experiments done at multi-class malware families also revealed a

reasonable accuracy rate (94.6%) with a very low false-positive rate of 0.001. Ran-

somware behavioral profiling chain ratio is a novel approach to identify ransomware

binary, and it shows significant detection accuracy.
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8 Malware Analytics: Review of Data Mining, Machine

Learning, and Big Data Perspectives

Recent advances in cyber technologies have made human life’s more accessible,

but it may lead to a high cost in terms of economic, psychological, or reputation

damage. For instance, these damages may be caused by variants of malware prop-

agated in a hidden and mostly untraceable way. Malware analytics deals with the

approaches and techniques utilized to generate the distinguishing characteristics of

the malware for robust cyber defenses. This work presents the current status of the

malware research, challenges, and methods used to overcome those challenges using

data mining, machine learning, and big data perspectives. Because of their exten-

sive computation value, I have considered these three perspectives, mostly fused

to solve a wide range of problems from security to medical, finance, and industry.

These domains as an independent technique and their interrelationships depend on

the nature of the dataset considered. I have also proposed a framework to overcome

the challenges and open issues prevalent in malware analytics. With the simplified

presentation of the most vital approaches of malware analytics, it is hoped that this

work will help the inspiring researcher or a newbie in the security field explore more

and budding engineers to choose malware analysis as their field of study. Specifi-

cally, analysis of state-of-the-art approaches with evaluation, pros and cons discus-

sion, and the current challenges and future directions will empower all the malware

enthusiasts.

8.1 Challenges

Malware analysis has always been a challenging field. The main reason is the tug

of war between the malware writers and attack defenders. Both entities are smart.

Malware writers have the upper hand as they also write the code to obfuscate the
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program or hide its presence and make disassembling very difficult for the defend-

ers. Some of the significant challenges are described below.

1. Most of the anti-virus engines are based on signature-based detection. They

particularly match the hash value of the executable or file in consideration

and match it with the hash list in their database. Some engines also see some

known listed patterns as a signature. This signature-based detection approach

is a bottleneck for malware detection and prevention as malware writers can

easily bypass the signature-based detection solutions.

2. Code obfuscation is the technique to transform the original program code by

changing its flow or structure to make it difficult to debug or reverse-engineer.

This comes with one benefit that helps preserve the original code, its authen-

ticity and prevent unauthorized tempering. However, its downside is that

malware writers do this so that reverse engineering is complex and detection

technique is challenging to formulate.

3. Petabytes and exabytes of information are being transferred between net-

work nodes every second, making rooms for hackers to enter into. There is a

need for intelligent monitoring of offline and live traffic data to built an alert

system, which will alarm if there is any anomaly in the network or system.

Moreover, the traditional way of creating a detection system is not capable of

processing big data. The detection system that uses various data mining and

machine learning techniques should handle and process big data.

4. Data coming from different sources and in different formats is another chal-

lenge. Many researchers and defense solution companies handle this, but many

are still unaware of handling it intelligently. Owing to the heterogeneous liv-

ing environment around us, the data sources are heterogeneous and come in

different forms and formats. This can be a challenge to a detection system
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since it needs to handle this so that there is no obstruction in the detection

process.

In this work, I discuss how each of these challenges is overcome and discuss

the open issues that need to be resolved.

8.2 Data Mining Perspective

Data mining is the process of finding hidden useful features or patterns from the

given dataset or sample set. The process involves all the mining steps starting from

the raw data or sample to get useful concluding features or information. It is a

multi-disciplinary approach that uses technologies such as probabilistic theory, ma-

chine learning, artificial intelligence, and database. Data mining is sometimes also

termed knowledge discovery or knowledge extraction.

Data for data mining is obtained from the data warehouse, database systems such

as relational or object-oriented, legacy, multimedia, or real-time database systems.

But for malware analytics, data mining involves obtaining raw data as an initial

feature set from malware samples. So, this starts with static or dynamic analysis of

the malware executable to receive the initial raw features, which will be mined to

get the useful distinguishing patterns to make the detection and classification pro-

cess effective. The general steps in the data mining process are shown in Figure 39

and described briefly below.

Malware samples are collected from various sources such as VirusTotal and TheZoo

open-source repository. The Raw feature extractor component uses either static,

dynamic, or hybrid techniques to extract raw malware features. These may be ap-

plication programming interfaces (APIs), function calls, system calls, opcode, as-

sembly sequences, or raw information from Portable executable (PE) file format.

This raw information is pre-processed to remove redundant or unnecessary data,

remove outliers, normalize or smooth the data. The next step is to get the analyz-
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Figure 39: Steps in Data mining for Malware analytics

able data where the data is prepared either in a CSV file, JSON, or other formats.

The obtained feature dataset is passed to the pattern discovery phase, where differ-

ent classification and clustering techniques are applied to get valuable patterns or

knowledge.

8.3 Machine Learning Perspective

Machine learning is the technique that gives the computer the ability to learn and

predict the output based on the learned patterns. Machine learning is achieved by

various machine learning algorithms where most of them use different probabilis-

tic approaches. These days machine learning has been heavily used in almost ev-

ery sector of our life. The acceptable prediction rate and its easy operation make

complex tasks easier to implement. More and more people nowadays rely on ma-

chine learning. Machine learning has proved beneficial for malware analytics and

has been used by security researchers and anti-virus companies. The generalized

operation of machine learning steps for malware analytics is shown in Figure 40.

The machine learning perspective of malware analytics involves two major compo-
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Figure 40: Steps in Machine learning for Malware analytics

nents: feature generation engine and machine learning model. Feature generation

engine starts with the collection of malware and normal sample. I then apply vari-

ous reverse engineering techniques such as binary analysis and debugging using cus-

tom program codes (researcher’s code using Linux tools such as ObjDump or other

available libraries for other operating systems), open sources (PE parser, Angr) or

commercial tools (IdaPro).

Reverse engineering is the backward process of trying to achieve what the pro-

gram is intended to do and to know the structure of the program. Malware writ-

ers make the task of reverse engineering difficult by applying various obfuscation
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techniques. The result of the reverse engineering step gives some raw data, which

is pre-processed by the feature extractor component. This gives the clean feature

dataset.

The second but vital component is the machine learning model, whose input feed

is the malware and normal binary dataset obtained from phase 1. The dataset is

divided into two subsets as training and test dataset. This division is based on

the program analyst or research team choice. K-fold cross-validation and 60 to 40

percent split is most commonly used. The training dataset is fit into the machine

learning model. Machine learning algorithms implemented here may be supervised

or unsupervised depending upon the nature of the dataset. The model is then eval-

uated with the test dataset. The accuracy should be above the defined threshold

value. The Machine learning model is accepted if the accuracy is above the thresh-

old value. Otherwise, the experiment is re-run with tuning parameters, remodeling

or changing approach used, or algorithms.

8.4 Big Data Perspective

The world is growing with a massive quantity of data termed big data. Data often

grows with increased services and resources used by different individuals and enti-

ties in an organization or a company. A social networking site, blog site, customer

browsing history, e-commerce tracking, network traffic, financial transaction, med-

ical data all add up every second, making huge tons of data. This comes up with

the data management challenge and opens the door for hackers and other adver-

saries.

Every individual, company, or organization wants to reduce or prevent the damage

caused by malware attacks. They want to detect and thwart malware attacks as

soon as possible. This would be handy with small data sources, but we have a huge

unavoidable amount of data. Primitive techniques with limited resources and pro-
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cessing capabilities are not able to handle big data. Apache Hadoop and Apache

Spark have made the task of big data analysis convenient and efficient. Among

these two big data distributed frameworks, researchers mostly use Apache Spark as

it supports the machine learning model and real-time processing for their malware

analytics job.

8.4.1 Apache Hadoop

The first distributed computing big data framework operates in two layers: Hadoop

distributed file system (HDFS) and MapReduce layer. HDFS is the storage layer

responsible for storing data in multiple nodes in a distributed fashion. At the same

time, MapReduce is responsible for Map and Reduce functions to process big data

in Hadoop clusters. Figure 41 shows the layers with name node, data nodes, and

job trackers.

Figure 41: Basic architecture of Apache Hadoop framework

Apache Hadoop is generally used to batch large datasets where we do not need the

intermediate solution. One downside of using Hadoop is that its slow performance

due to input-output disk latency.
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8.4.2 Apache Spark

Apache Spark is the popular distributed big data processing framework, which con-

sists of Spark core and a set of libraries. It has libraries for SQL queries, streaming,

machine learning, and graph processing. Spark core is responsible for managing our

submitted job, i.e., it manages the handling of data, processing, execution, and re-

sult delivery. Different components of the Apache Spark framework are shown in

Figure 42.

Figure 42: Basic architecture of Apache Spark framework

Apache spark has many advantages over Apache Hadoop. For example, it can pro-

cess batch data and real-time data processing, unlike only batch data by Apache

Hadoop. In terms of file compatibility, Spark depends on the data sources and file

formats supported by Hadoop. Spark processing is faster than Hadoop due to its

Resilient Distributed Dataset (RDD), which supports in-memory processing compu-

tation. The state of memory is stored as an object across the jobs, and the object

is shareable between those jobs [6]. Apache Spark supports the following program-

ming languages: Java, Scala, Python, and R. Whereas Hadoop supports Java pri-

marily, but languages like C, C++, Ruby, Python, Perl, Groovy are also supported.

8.5 Detection Approach

In this section, I discuss the general detection approach for malware analytics using

big data frameworks. Figure 43 shows the basic building blocks for the detection
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approach.

Table 25: Summary of recent works for malware analytics (DM: Data mining, ML:
Machine learning, BD: Big data, )

Study Perspective Feature Selection Classification Schemes

Tariq et al., 2013 [93] DM + BD Network traffic, web transactions ETL, Association rule

Wen et al., 2014 [116] ML + BD API’s n-gram SVM

Arp et al., 2014 [57] ML APIs and Permissions SVM

Joshua et al., 2015 [104] ML Contextual byte and PE features Deep Neural network

Daniel et al., 2016 [71] BD N-grams sequence for decompiled byte information Smith-Waterman algorithm

Chia et al., 2016 [65] ML + BD PE file features Random forest, SVM, Neural network

Kolosnjaji et al., 2016 [89] ML N-gram modeling of system call sequences Convolutional and recurrent neural network

Hardy et al., 2016 [79] ML API calls Deep learning using SAEs

Fan et al., 2016 [73] DM Assembly instructions All-Nearest-Neighbor

Ramkumar et al., 2017 [97] DM + ML Hex-code and assembly n-grams, dll and assembly instructions Random forest, SVM

Mozammel et al., 2017 [67] DM + ML N-gram of samples and APIs with PCA Various Supervised classifiers

Hou et al., 2017 [80] DM + ML API calls for information network Hindroid(Multi-kernel learning)

Anderson et al., 2017 [54] ML PE file features Reinforcement learning

Vinayakumar et al., 2018 [114] ML PE file features Deep Neural network, classical ML

Shankar et al., 2018 [106] DM + BD Web traffic, location, permission, etc. Signature matching

Amin et al., 2018 [58] DM + ML N-grams of opcodes Deep eigenspace learning

Rafal et al., 2018 [90] ML + BD Network features(IPs, Packet, etc.) Distributed machine learning(EL and RF)

Cui et al., 2018 [70] DM + ML Code to grayscale image Deep learning, CNN, Bat algorithm

Li et al., 2018 [91] DM + ML Permission usage SVM, Association rules

Bacci et al., 2018 [59] ML Opcodes, System calls SVM

Poudyal et al., 2018 [102] ML Assembly instructions, Dlls Various supervised classifiers

Kolosnjaji et al., 2018 [88] ML Byte code Deep neural network

Poudyal et al., 2019 [100] ML + BD Dll, Function call and Assembly Various supervised classifiers

Wang et al., 2019 [115] ML API call sequences Deep autoencoder, CNN

Yuxin et al., 2019 [119] ML Opcode of PE file Deep belief network (DBN)

Xiao et al., 2019 [117] ML API calls Deep Learning of behavior graphs

Figure 43: Malware analytics using Bigdata frameworks

Data sources can be malware/benign executable files, network traffic data, or on-

line/offline transaction data from where we want to detect an anomaly or unusual

pattern. The pre-processor component is the most powerful component of this ar-

chitecture. The data sources go into some pre-processing tasks using normal com-

puting processing capabilities or solely done using Hadoop/Spark frameworks. The
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result of this is clean and analyzable data where we apply various machine learn-

ing or data mining algorithms to find a useful pattern, also termed as knowledge

discovery.

8.6 Current Research techniques

In this section, I discuss the solutions proposed by various researchers. Each of

them has tried to address one or more challenges that I discussed in section 8.1.

Table 25 shows the comprehensive study of the techniques and perspective used.

However, some of the works are discussed in more detail below.

Tariq et al. [93] have proposed the Big Data Analytics (BDA) process, which assists

network managers in monitoring and surveillance of real-time network streams and

real-time detection of malicious and suspicious patterns. BDA helps by detecting

and predicting suspicious sources and destinations, detect and predict abnormal

user access patterns, abnormal or sudden configuration changes, abnormal usage

patterns, abnormal access time, or transaction amount. The three complexities of

big data are stated as volume: terabytes or exabytes of data; variety: co-existence

of unstructured, semi-structured, and structured data; velocity: the rate at which

the data is generated. BDA tries to address these challenges using different data

mining techniques such as predictive analytics, cluster analysis, and association rule

mining. Data are classified as either passive or active. To detect the cyberattack,

they monitor the following dimensions: network traffic, web transactions, network

servers, network source, and user credential.

Ramkumar et al. [97] have explained different types of malware datasets they col-

lected from different sources. They have used data mining and machine learning

based on N-grams, Apache Hadoop, and Apache Spark for malware classification

and detection. They have used byte 4-grams, assembly 4-grams, Dll imports, as-

sembly frequencies, Random forest, SVM, and Information gain. They have 95,608,217
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byte 4-grams, 419,888 assembly 4-grams, 26,785 Dll imports, and 82 assembly in-

structions. The experiment done in Spark took 16.42 minutes, while Hadoop took

29.37 minutes to run the classification/detection experiment. The average accuracy

they got was 96.32% for various parameters run.

Daniel et al. [71] have used the Smith-Waterman algorithm and Apache Spark to

find malware sequence alignment so that it can be used to identify malware files

faster than performing sequence alignment on two complete files. The Smith-Waterman

algorithm is stemmed from the Needleman_Wunsch algorithm. The Smith-Waterman

algorithm compares segments of all possible lengths and finds the most optimal se-

quence alignment. Distance matrix alignment is used to find the longest common

sequence of bytes in two given malware samples based on similarity scores. N-grams

of byte sequences are considered. An alignment between two files can take up to

10 hours, where each file has a size of 20MB. The experiment took 51 minutes for

Apache spark in a Standalone cluster mode. There was not much performance gain

as they used a single cluster.

Chia et al. [65] have used the dataset of malware and benign files from the static

and dynamic analysis done by virustotal. Their main goal is to find the minimum

number of features for training the machine learning model so that the training

efficiency of the algorithm is improved significantly in polynomial time with the

number of features. Spark and Torch were used along with the Support vector ma-

chines, Random Forest, and Neural network classifiers. The features considered

were a number of imports, DNS_host, PE overlay size, CALLS, Lang code, etc.

Due to the large dimensionality, they used Spark and MLib for feature selection.

ChiSqSelector was applied to get 10% of the most relevant features. They reduced

the matrix containing 68,800 features with 9448 observations and of size 2.2 GB.

Creating dataset and training took 16 minutes; NN required 255 iterations in 13

minutes. With SVM and nine features selected, the accuracy reached 99.24%.
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Wen et al. [116] have proposed DroidDolphin using APImonitor, SVM, and Hadoop

clusters. DroidDolphin uses a dynamic malware analysis approach using big data

analysis and machine learning to detect malicious Android executables. API moni-

tor tool was used to capture API sequences for Android-based applications, and an

N-gram model was used to generate features to feed into the Support vector ma-

chine (56354 number of dimensions as features). They parallelized the work on 32

AVDs (Android virtual devices) using Spark. It took up to 5 minutes for emulators

to run the APKs (Application programming) and 24 hours to process 2700 applica-

tions using 32 AVDs (Android application packages). They used 32,000 benign and

the same number of malware samples and got an accuracy of 86.1%.

Rafal et al. [90] have used distributed machine learning for Botnet activity detec-

tion. They proposed using and implementing cost-sensitive distributed machine

learning through distributed Extreme Learning Machines (ELM), distributed ran-

dom forest, and distributed random boosted-trees. Data were analyzed in NetFlow

(ports, protocols, IPs, packets, etc., were considered). To make the analysis efficient

and scalable, they have proposed to collect the NetFlow data in an HDFS system

and Map-Reduce. Experiments were run using 1 and 8 Apache spark nodes. By us-

ing spark clusters, they were able to improve the training process by a factor of 4.5

for ELM and 3.7 for Random forest and gradient boosting trees. Overall classifica-

tion efficiency was considered better for ELM than others for various scenarios, so

it is proposed as an efficient to use.

Amin et al. [58] have proposed a malware detection approach for IoT devices. Op-

code sequences were considered for feature selection which was fed to the Eigenspace

learning method for malware classification. They also claim that their approach

can minimize the junk code insertion attack. Detection accuracy was found to be

98.37%.

Hou et al. [80] has proposed a smart Android malware detection system by analyz-
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ing not only the API sequences but by studying their close interrelationship to get

some meaningful insights. They have used the meta path to get similarity scores for

apps and used multi-kernel learning. The data mining tasks are achieved through

unzipper, feature extractor, and multi-kernel learner. SVM is used to evaluate the

experimental results.

Figure 44: Papers surveyed over a year

From this work, I found that the current techniques are more focused on machine

learning, particularly deep learning methods for malware detection (See Table 25

and bar graph in Figure 44). Figure 44 gives an overall trend of use of three per-

spectives where there is a distinctive increase of machine learning techniques in re-

cent years.

8.7 Open issues

The research approaches discussed in the previous sections tried to solve the chal-

lenge of malware detection by signature as a bottleneck. Handling of large fea-

tures and petabytes of the dataset was addressed using either Hadoop or Spark

distributed system. Handling code obfuscation is a continuous challenge and de-

pends on smart feature selection techniques. Handling different data formats deals

with smart pre-processing in a distributed environment. Most of the research is fo-
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cused on static analysis of malware. Only considering static approaches will not

be effective as malware writers modify their bad purpose code to bypass the de-

tection tools and make it difficult for disassembly or static feature selection. The

dynamic feature captures the running behavior of the malware. However, it also

comes with some cost as most malware may not run in a virtual box, sandbox, or

other dynamic analysis environments. The malware code has been written so that

if any of the environments mentioned above is detected, the malware may not ex-

ecute at all or may exhibit a different behavior to hide its true intention and make

the job of defenders too difficult. A combination of both static and dynamic fea-

tures is considered a good balance and can give better accuracy while doing feature

analysis. Another open issue, which is very challenging to solve, is the malware be-

havior at different OSI (Open Systems Interconnection model) stacks and different

levels of program execution, mainly assembly, function call, and system call. Many

research has been successful in analyzing the behavior in one or more levels, but

not all. Below I have discussed the open issues and possible solutions categorized in

three perspectives.

Figure 45: Open issues in three perspectives
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8.7.1 Data Mining

A signature or heuristic-based malware detection is easily thwarted by badly smart

malware writers because they apply different techniques to hide or obfuscate the

code. Due to this, the data mining algorithms become prey to false-positive associa-

tion rules mapping. Feature mining is then considered junk data mining. For exam-

ple, in assembly code analysis of malware portable executable files, we get a certain

sequence of assembly instruction with high frequency but is irrelevant in knowledge

discovery. The proposed solution to these problems is to use Cognitive data min-

ing. I recommend using context-sensitive association rule generation and adopting

validation of the knowledge discovery process.

8.7.2 Machine Learning

Machine learning algorithms become a victim of training data manipulation by ad-

versaries. The portion of the training data may be deleted, modified, or added with

false cases. This will affect the learning process, and a malware sample may be con-

sidered a normal sample. Apart from this, the polymorphic codes, encrypted and

packed codes make it difficult for the security or malware analyst to design and

train a good machine learning model. The proposed solution to these open issues

is to use deep monitoring of the training dataset, which consists of hashing and

timestamping the dataset to maintain its integrity. On-time behavioral monitoring

is suggested to defend the polymorphic behavior of packed or encrypted codes.

8.7.3 Big Data

Terabytes of feature processing which includes log or network monitoring data and

features obtained from the reverse engineering process, is a challenging task. This

has been effectively handled by Big data frameworks like Hadoop and Spark. But,

the heterogeneity of data makes the handling and processing of big data challeng-
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ing. Moreover, there is a lack of publicly available datasets for Big data processing.

Security vulnerabilities of big data framed machine learning algorithms for malware

datasets are yet to be studied. However, various commercial products are available

for real-time and offline big data processing, which has made the computation effec-

tive. A feature-based data cleansing process is suggested to make categorical homo-

geneous data.

Figure 45 gives a Venn-diagram representation of major open issues in our men-

tioned three perspectives.

8.8 Proposed Framework

The previously discussed open issues in all three perspectives motivated us to pro-

pose a Malware analytics framework which I strongly believe will help in mitigating

the current challenging issues. Figure 46 shows different steps and interactions of

the proposed framework [98]. A brief discussion of its components follows below.

Figure 46: A Proposed framework for Malware Analytics

The malware and benign executables are reverse engineered applying context-sensitive

data mining techniques and reverse engineering tools. This mining process is a crit-

ical step and includes rule generation and knowledge discovery validation. The
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extracted features obtained through the above process are constantly monitored

and validated using deep monitoring and cross-system validation process. This is

done to overcome the challenges posed by the adversary. Big data analysis tools

and techniques make feature extraction and machine learning implementation more

efficient and effective. Here, the heterogeneous data is handled using data catego-

rization techniques. Also, we apply feature-based cleansing to make categorical ho-

mogeneous data. The training and testing dataset is passed to the machine learning

algorithms or classifiers. Here, we apply adversarial defense and algorithmic bias-

ness defense to mitigate the effects on the decision-making process. The final classi-

fication result is passed to the detection and alert system, which further handles the

necessary steps to keep the system protected against any adversary attacks.

8.9 Summary

A survey of the most relevant aspects for malware analytics, mainly data mining,

machine learning, and big data, has been reported in this work. It is showed how

malware analysis had been done using prevalent techniques in data mining and ma-

chine learning. Big data comes into play between these two fields to allow the intel-

ligent processing of massive data sets. Big data being a relative term, the available

dataset would be considered big enough if the current typical systems cannot pro-

cess it to analyze further to get some insights. Having Big data frameworks (e.g.,

Hadoop and Spark) in hand is highly recommended to fuse into the data mining

and machine learning field to better program efficiency and remove the performance

bottleneck. Malware analytics that includes handling executable, raw data, or traf-

fic data to classification and detection may not have an excellent detection rate.

Still, the performance would not be degraded below an acceptable bench-marking

efficiency rate if we wisely use the fusion of the three rapid booming technologies:

data mining, machine learning, and big data. The proposed framework is a step to-
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wards addressing open issues and challenges.

The scope of this survey is limited to analyzing the current status of the malware

research highlighting the issues, and proposing a possible solution. However, it does

not discuss issues like verifying the maliciousness of an input file, dealing with label

uncertainty, and adaptive learning, which will be addressed in future editions. Some

of the other future works to mention would be continuous research to capture code

obfuscation techniques done by bad guys or malware writers to prevent malware

detection. Another would be the constant improvement of current malware anal-

ysis and detection approaches. It is always a bonus gain of performance if we use

distributed feature selection and machine learning model implementation. Future

works should be using both, not the only one.
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9 Conclusion and Future Work

Ransomware is continuously disrupting individuals to corporate networks demand-

ing a huge ransom to give back the original unencrypted files. Social engineering

techniques have been the major way to get into the victim’s machine. Malware

writers exploit user’s urgency, need, and sentiments to trick them into clicking ma-

licious links or attachments from where they start deploying the malicious software

or payloads. Apart from this, malware writers exploit various vulnerabilities in soft-

ware tools, network/system protocols, and APIs. Many known vulnerabilities have

a patch update available, but users often ignore them and become prey to malware

attacks. In contrast, the zero-day vulnerabilities allow the bad guys to craft ma-

licious exploits and launch sophisticated attacks which even a security system or

network may not detect for days to even months. Chainalysis [38] reported the to-

tal amount paid by ransomware victims increased by 336% in 2020. The attackers

were able to gain nearly $370 million worth of cryptocurrency. According to the

IBM Threat Intelligence Index report, 23% of incidents are ransomware compared

to 2019 [24]. The most recent ransomware attack at Colonial Pipeline network

forced the company to close down operations and freeze IT systems proactively.

It is reported that they had to pay a huge ransom of nearly five million to get the

network back and running [15]. Recent ransomware attacks are motivated to gain

profit and cause damage sponsored by various underground state actors. In this

study, I mainly focused on advanced reverse engineering with static and dynamic

analysis of various ransomware families and various machine learning techniques.

This dissertation draws the following conclusions: I proposed an AI-powered ran-

somware detection framework using the techniques of reverse engineering, hybrid

analysis, and machine learning. I started with two-level static analysis using DLL

and assembly level code segments and proposed an initial framework for ransomware
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detection. Though the results were promising, I did an empirical study with three

levels adding function call code segments to the initial two mentioned earlier along

with NLP techniques. The developed models had sound performance but could not

catch the dynamic behavior of malware executables. I proposed a more robust ran-

somware detection framework using hybrid analysis, behavior profiling, advanced

reverse engineering, and AI techniques from continuous study and analysis. Lever-

aging dynamic binary instrumentation tool PIN, Cuckoo sandbox environment, and

Ghidra framework, I generated a distinguishing feature dataset and achieved high

accuracy and low false-positive rate. Association rule mining and Ghidra’s disas-

sembly contributed to the existing analysis by other approaches to build unique

behavioral multi-level chains specific to ransomware. Collectively this contributes to

creating unique Yara rules which researchers and the security community can use.

I performed a deep forensic analysis of crypto-ransomware using hybrid multi-level

profiling. I adopted a unique approach of behavioral chaining along with associa-

tion rule mining and AI techniques. Hybrid multi-level inspection at DLL, function

call, and assembly revealed unique behavioral chains that help create unique ran-

somware signatures and a distinguishing dataset for the machine learning model.

This approach is validated with experiments where I achieved high accuracy with

low false positives. Results show that one machine learning algorithm achieved

the highest accuracy of 99.72% and a false positive rate of 0.003 with two class

datasets. Experiments done at multi-class malware families also revealed a reason-

able accuracy rate (94.6%) with a very low false-positive rate of 0.001. Ransomware

behavioral profiling chain ratio is a novel approach to identify ransomware binary,

and it shows significant detection accuracy.

Malware analytics presents the current status of the malware research, challenges,

and methods used to overcome those challenges using data mining, machine learn-

ing, and big data perspectives. I have considered these three perspectives because
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of their extensive computation value, mostly fused to solve a wide range of prob-

lems from security to medical, finance, and industry. I also proposed a framework

to overcome the challenges and open issues prevalent in malware analytics.

A periodic evaluation of chain components and automating this task will make the

detection framework more robust in future work. This work can be upgraded in

the future to deal with adversarial AI. Further analysis and experiments can be

done using a wide range of ransomware families. To improve the performance of

this framework, one possible direction for extending this work will be to use cloud

computing with parallel processing capabilities. Thus, research pursued in this

dissertation- a complex combination of AI-ML and hybrid forensics will provide an

important and critical direction for future malware research and analysis.
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