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ABSTRACT

Olufadi, Yunusa. PhD. The University of Memphis. May/2020. Approaches for An-
alyzing Multivariate Mixed Endpoints With High-Dimensional Covariates. Major Professor:
E. Olusegun George, PhD

In clinical trials and observational studies, clinicians often observe measurements on

multiple causes of clinical progression or synthesize information from various sources. These

measurements are collected because a single outcome is usually inadequate to describe the

disease complexities or because the primary outcomes of interest are abstract constructs

(e.g., quality of life, disease conditions) that cannot be measured directly. It is usually nec-

essary to collect multiple endpoints in order to fully understand the true associations that

exist among several clinical outcomes and how they jointly affect the primary outcomes. In

addition, such datasets are often useful for characterizing treatment effectiveness, evaluate

the risk-factors, or investigate the impact of health policy initiatives. Examples of multi-

variate mixed outcomes data are ubiquitous in biomedical and bio-pharmaceutical studies,

psychometric, behavioral research, and pre-clinical teratology and developmental toxicity

studies, among others. The different data structures of endpoints present interesting statis-

tical and computational challenges. For example, there would be several levels of correlations

inherent in the outcomes data, especially when dealing with a clustered or longitudinal de-

sign. The common modeling strategy of analyzing each endpoint separately in a univariate

manner usually leads to misleading findings because such an approach ignores the correla-

tions and interactions among the outcomes. The introduction of high-dimensional covariates

such as gene expressions and large dimensional clinical information further exacerbates the

modeling and analysis (the p � n problem), leading to a need for sophisticated variable

selection strategy. While variable selection methods are well-developed for many statistical

models, the procedure is underdeveloped for multivariate mixed endpoints. This disserta-

tion is motivated by the statistical and computational challenges that arise from analyzing

such data. The overarching goal of this dissertation is to develop statistical procedures for
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jointly modeling, estimation, and efficient identification of significant predictors in the anal-

ysis of multivariate clustered/longitudinal mixed endpoints datasets that are characterized

by high-dimensional covariates. Specifically, we develop a procedure to guide both the model

estimation and the efficient extraction of potential active predictors. We demonstrate the

advantages of our procedure in terms of variable selection, prediction, and computational

scalability via extensive simulations study and apply the method to two real-life datasets.

In addition to other properties, we find that the estimates identified by dynamic posterior

exploration in our procedure stabilize rapidly and very early in their trajectories, especially

in the implementation of the dynamic weighted LASSO.
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Chapter 1

Introduction

In clinical trials (Oliveira & Teixeira-Pinto, 2015) and observational studies (Holmes

et al., 1994), clinician often synthesize information from various sources or observed measure-

ments on multiple causes of clinical progression for many reasons. Clinician/investigators

collect these multivariate mixed measurements (e.g., discrete, ordinal, continuous, and nom-

inal) because the primary outcomes of interest are an abstract construct (e.g., quality of life,

Alzheimer’s disease conditions, functional dependency, quality of care, cognitive level) that

are hard to quantify, measured directly or expensive to measure, and a single outcome is

not adequate to describe the disease complexities. In Alzheimer disease for example, many

clinical and neuropathologic outcomes such as Functional Activities Questionnaire (FAQ),

Clinical Dementia Rating (CDR), Montreal Cognitive Assessment (MoCA), Mini-Mental

State Examination (MMSE), score derived from clinician judgment on neuropsychological

tests (COG) etc., are collected on everyone under study to determine the disease condition.

In psychiatric studies, several variables are measured as proxies of the underlying primary

outcome of interest. For instance, in evaluating the effectiveness of a new anti-psychotic, clin-

ician combine measurements such as symptoms of relapse, positive and negative syndrome

scale (PNASS) score, quality of life and so on.

These multiple information are collected to understand the true associations that

exists among these multiple endpoints and how they affect the primary outcome jointly.

Other reasons might be to characterize the treatment effectiveness, evaluate the risk-factors,

or investigate the impact of large policy initiatives. Examples of these multivariate mixed

outcomes data are ubiquitous in biomedical and bio-pharmaceutical studies, psychometric,

behavioral research, developmental toxicity study, and psychology among others. We present

some of these examples in Table 1.
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In addition to the multiple mixed responses, large number of variables that may

help, say, predict disease, are also frequently collected. For example, in disease classification

using microarray or proteomics data, tens of thousands of expressions of molecules or ions

are potential predictors. Also, in genome-wide association studies between genotypes and

phenotypes, hundreds of thousands of SNPs are potential covariates for phenotypes such as

cholesterol levels or heights. The dimensionality of the data grows rapidly when interactions

between predictors are also important. Such high-dimensional data are used to investigate

questions such as which genes are potentially informative to predict the causes/pathway of

disease.

The different data structures of endpoints that result from mixed outcomes design

studies such as those described in Table 1 present interesting statistical and computational

challenges. These includes:

1. Complex correlation structures. There are at least two levels of correlations inherent

in such data set.

(a) Statistical dependence between different endpoints on the same subject.

(b) Correlation between repeated/longitudinal measurements.

(c) Litter effects in teratology and developmental toxicity studies due to genetic sim-

ilarity or shared maternal environment during gestation.

2. Further consideration are needed because the outcomes measurements on the same

subject are of differing nature such as discrete, continuous, and nominal. We delay the

discussion of some of the attempts that have been made in the past to handle these

challenges to Section 1.2.

3. Further challenges are presented by the high dimensionality of covariates with rela-

tively small sample sizes (p� n) leading to a need for dimension reduction for mean-
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ingful estimating equations. Addressing the problem of high dimensionality is further

complicated by multivariate mixed endpoints. While variable selection methods are

well-developed for models such as linear regression (Efron et al., 2004; George & McCul-

loch, 1997; Park & Casella, 2008; Ročková & George, 2014), generalized linear models

(Friedman et al., 2010), quantile regression (Alhamzawi & Ali, 2018; Alhamzawi &

Yu, 2012; Li et al., 2010; Wu & Liu, 2009); graphical models (Deshpande et al., 2019;

Gan et al., 2019), methodologies for variable selection to address multivariate mixed

endpoints have received very rare statistical consideration in the literature. We devote

Section 1.1 to the importance of the multivariate mixed endpoints high-dimensional

data sets.

In Table 1, we present a tabulated summary of some of the studies that are relevant

to the theme of this dissertation.

In each of the studies listed in Table 1, applications of the standard procedures are

not adequate for analyzing such data set. The common modeling strategy of analyzing each

endpoint separately ignores potential correlation among the outcomes which can lead to

misleading conclusion. Joint modeling the multivariate mixed endpoints as opposed to the

popular separate univariate analysis:

(a) provides a general framework to better describe the association among the outcomes.

For instance, joint modeling can help elucidate the link between continuous progres-

sion of diseases through longitudinal outcomes such as biomarkers or more generally

indicators of health, and the incidence of clinical events such as diagnosis, recurrence

and death.

(b) offers the ability to answer fundamental multivariate question, for example, interest

might be in assessing the impact of a policy change on the quality of care (the under-
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Table 1. Some Examples of Multivariate Clustered and Longitudinal (Repeated-Measures)
Mixed Endpoints Studies

Studies Study Goal Discrete Endpoints Continuous Endpoints References

1
Anticonvulsant

teratogenesis study

To assess the effect of in utero

anticonvulsant exposure on a

variety of birth outcomes

hypoplastic fingernails, tapered

fingers, antiverted nostrils,

hypoplastic toenails

birth weight, head

diameter
Holmes et al. (1994)

2 Irwin’s toxicity study

To determine treatment effects

and association between some

mixed outcomes

toe pinch, abnormal biting,

restlessness, pinna reflex

temperature, pupil size

grip strength, vocalization
Faes et al. (2008)

3
VHA performance

monitoring study

To characterize trends in quality

of individual service networks

based on the mixed outcomes

visits, readmissions
days between visits, days

between readmissions
Daniels and Normand (2006)

4 Restenosis study

to estimate restenosis for

diabetic patients accounting

for potential confounders

target lesion

revascularization

proportion diameter

stenosis
Teixeira-Pinto and Normand (2009)

5
Macular degeneration

study

To investigate the relationship

between the mixed endpoints

loss of at least three lines

of vision
visual acuity difference Teixeira-Pinto and Normand (2009)

6
Managed care & quality

of care for schizophrenia

To compare care for patients

who were & were not enrolled

in managed care

atypical antipsychotic

medication

self-reported interpersonal

interaction
Dickey et al. (2003)

7
St Louis risk Research

project

To determine effects of parental

psychological disorders on

children’s development

number of adverse psychiatric

symptoms found in a child

standardized reading score,

standardized verbal

comprehension score

Little and Schluchter (1985)

8 Harvard Six Cities Study

To determine the effect of

maternal smoking on respiratory

illness in children

AVF and FGS UYH and HGF Wang et al. (1994)

9
Restenosis after coronary

stenting

To estimate the treatment effect

and identify baseline risk factors

predictive of outcome after the

stenting procedure

target lesion

revascularization,

binary restenosis

Late lumen loss Teixeira-Pinto and Mauri (2011)

lying outcome) rather than its impact on each outcome measured as a proxy of the

quality of care.

(c) reduces the need for multiple testings that naturally leads to global tests that results

in increased power and reduced false discovery rates.

(d) results in gains in efficiency as reported by Gueorguieva and Sanacora (2006), Teixeira-

Pinto and Normand (2009) and others.

This theses also addresses the additional computational challenges that arise in the formu-
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lation of methods in the context of mixed multivariate data. The procedure proposed here

incorporate ways of handling the variable selection that result from high dimensionality of

the data. The overarching goal of this dissertation is to address the following question: how

do we jointly model, carry out estimation, and efficiently identify active potential predictors

in a multivariate clustered/longitudinal mixed endpoints characterized by high-dimensional

covariates?

1.1 Variable Selection

The collection of high-dimensional data has become increasingly common in diverse

fields of sciences, engineering, and humanities, ranging from genomics and health sciences

to economics, finance and machine learning. The development of appropriate statistical and

computational methods to extract meaningful information from such data has become a

universally important research preoccupation of statistician and computer scientists. While

it is clear that not all the available variables can be included in the statistical model, it is not

known a priori which variables should be included in the model. A crucial task is then to

identify a sparse model that has better statistical interpretability and prediction accuracy.

This task is usually accomplished through variable selection.

The essence of variable selection becomes even more apparent when the number of pre-

dictors is larger than the sample size (the so-called curse of dimensionality or NP-hard prob-

lem). The famous “Occam’s razor” principle is quite apt when modeling high-dimensional

variables. The inclusion of noise or irrelevant variables when modeling data makes it diffi-

cult to identify the true predictor variables that have an important influence on the response

variable, leading to models that are not efficacious.

The earliest traditional procedures for variable selection include forward, backward or

step-wise approaches. Among the drawbacks of these procedures are high computational cost

for high-dimensional data and tendency to be stuck at local optimal points during stepwise
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searching. These approaches can also induce biased estimates and non-valid p-values as

well as nominal confidence levels. To overcome these issues, new advanced tools have been

proposed, perhaps the most prominent frequentist of which is LASSO and its many variants

(Tibshirani, 1994; Tibshirani et al., 2005; Zou, 2006). Another popular approach is through

Bayes method (Buhlmann et al., 2010; Carvalho and Polson, 2010; Castillo et al., 2015;

Castillo and van der Vaart, 2012; George and McCulloch, 1993, 1997; Huang et al., 2016;

Mitchell and Beauchamp, 1988; Park and Casella, 2008; Polson and Scott, 2010; Zhang and

Huang, 2008; Zhang et al., 2016a; Zhang et al., 2016b).

The literature on sparse estimation either from a frequentist perspective or Bayesian

framework is vast. There are also some attempts to optimize variable selection and stan-

dardize it for any kind of data, however; there are no general variable selection methods for

all statistical models. A comprehensive review of variable selection procedures is given by

Bhadra et al. (2017) and van Erp et al. (2019). In the next section, we present a brief review

of statistical modeling of mixed outcomes data.

1.2 Review of Existing Methods on Mixed Outcomes

The principal statistical challenge when analyzing mixed outcomes is the construction

of the joint model. There have been several attempts in the past to address this issue, some

have been non-Bayesian (e.g., Catalano and Ryan, 1992; Fitzmaurice and Laird, 1995; George

et al., 2007; Geys et al., 1999; Gueorguieva and Agresti, 2001; Regan and Catalano, 1999)

while others have adopted a Bayesian framework (e.g., Bowman and George, 2018; Das et al.,

1999; Dunson, 2000; Dunson et al., 2003). We classify the existing attempts at modeling

mixed outcomes into four groups.
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1.2.1 Factoring Method

This method was first discussed by Tate (1954), later, Olkin and Tate (1961) in-

troduced the general location model (GLOM). The main idea behind GLOM is to jointly

factor the joint likelihood into a product of marginal distribution and conditional distribu-

tion, where the conditioning can be done either on the discrete or the continuous outcome.

Fitzmaurice and Laird (1995) extended GLOM procedure to clustered data by proposing a

model with logit link function for the marginal probability of binary response and a normal

distribution for the continuous response given the binary response. Although Fitzmaurice

and Laird (1995) has an attractive interpretational feature, the specification of the regression

model conditional on the cluster-specific random effects is entirely unknown.

Cox and Wermuth (1992) compared different joint distribution models for analyz-

ing data with continuous and discrete responses as a function of the covariates. Liu and

Rubin (1998) extended the common covariance matrix to allow different, but proportional

covariance matrices and replace the multivariate normal distribution specified for continuous

variables by multivariate t distribution. George et al. (2007) made a novel contribution by

assuming the exchangeability of joint bivariate outcomes within the litter. They factored

the joint likelihood as the product of continuous response given the binary response and the

marginal distribution of the binary responses to produce the parameter estimates. Other au-

thors that used general location model include de Leon and Carrière (2007) and Fitzmaurice

and Laird (1997).

A drawback of mixed outcome models based on factorization is that it may be chal-

lenging to implement it for quantitative risk assessment because there is no direct access to

the marginal distributions (Geys et al., 2001). Also, factorization models do not easily ex-

tend to the setting of three or more outcomes and the correlation among the mixed responses

itself cannot be directly estimated.
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1.2.2 Latent Variable Method

The introduction of a continuous latent variable as an underlying mechanism for the

generation of the discrete outcome is another method commonly used by Bayesian and non-

Bayesian researchers when modeling mixed endpoints of different kinds. This approach was

first introduced by Cox (1972) to model correlated binary data and extended to clustered

mixed outcomes with missing data by Little and Schluchter (1985) and Little and Rubin

(2002). Sammel et al. (1997) proposed a latent variable multivariate mixed effects model

by assuming a latent variable, linearly linked to the observed covariates, for each subject

under study. The distribution for each type of measurement given the latent variable is

assumed to come from an exponential family model. These authors modeled the observed

outcomes as functions of fixed covariates and subject-specific latent variable. A deficiency of

this approach is that it is not robust to misspecification of the covariance because the mean

parameters depend heavily on the covariance parameters. For example, if the outcomes are

not correlated, the estimates of the covariance effects may be biased Sammel et al. (1999).

Catalano and Ryan (1992) noted that latent variable models provide a useful and

intuitive way to motivate the distribution of discrete endpoints. In the bivariate case, a

standard method assumes an unobservable normally-distributed random variable underlying

the discrete outcomes, resulting in a probit-type model. One drawback of this method is

that regression parameters for the binary response using the probit link function do not

have an odds ratio interpretation. Alternatively, Geys et al. (2001) presented a model based

on a Plackett-Dale approach, where a bivariate Plackett distribution is assumed. O’Malley

et al. (2002) combined the general location model and the latent trait model for mixed

outcomes. Several other studies such as Daniels and Normand (2006), Goldstein et al.

(2009), Moustaki and Knott (2000) have employed the latent variable model when dealing

with mixed endpoints data.
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1.2.3 Pairwise Modeling Method

Many authors (Faes et al., 2008; Fieuws & Verbeke, 2006; Molenberghs & Verbeke,

2005) adopted the use of mixed models to directly specify the joint distribution of discrete

and continuous outcomes instead of a latent variable or factorization approach. They did

this by specifying the marginal distribution, conditioned on a correlated random effects. An

advantage of the mixed model approach is that additional correlation structures in the data,

such as the cluster effect or a longitudinal data structure, can be modeled within the same

framework. However, it becomes difficult to implement this procedure as the number of

outcomes increases. In fact, the higher the number of endpoints, the higher the dimension of

the random-effects vector when modeling the correlation between the different outcomes via

a random effect, and the more likely computational problems will arise during the estimation

process.

A pairwise model-fitting procedure was presented by Fieuws and Verbeke (2006) to

circumvent the computational complexities in the setting of many continuous outcomes, re-

placing the maximization of the full likelihood distribution by maximization of each pairwise

density separately. The authors reported that pairwise estimation procedure achieves sig-

nificant computational gains and yields unbiased estimates as well as valid standard errors.

An extension of the pair-wise model is reported in Faes et al. (2008) who used a pseudo-

likelihood approach to jointly model the mixed outcomes of differing types. However, in

contrast to Fieuws and Verbeke (2006), they maximized the pseudo-likelihood function at

once rather than maximizing all pair-wise likelihoods separately.

In general, Non-Bayesian methods are usually computationally expensive (see, for

example, the procedure described in Fieuws and Verbeke, 2006; Gueorguieva and Agresti,

2001; Regan and Catalano, 1999). Except for Faes et al. (2008), Fieuws and Verbeke (2006),

most of the frequentist methods described above can only model a single discrete outcome
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and a single continuous outcome. The extension to multiple mixed endpoints of different

kinds is computationally prohibitive. However, a Bayesian approach like the one developed

in (Bowman & George, 2018; Das et al., 1999; Dunson, 2000) can be easily extended for

applications to multiple outcomes of differing types, although, they are also not designed to

handle high-dimensional covariates settings.

1.2.4 Bayesian Method

To our knowledge, the use of Bayesian procedure for jointly modeling mixed discrete

and continuous outcomes was first introduced by Das et al. (1999). These authors proposed

a set of latent variables to deal with binary responses in their data to construct a multivari-

ate mixed response model and use Gibbs sampling to derive the joint conditional density of

the outcomes. In a more generalized setting, Dunson (2000) described a Bayesian approach

using a mixture of generalized linear models for the joint distribution of latent variables for

the clustered mixed outcomes. Cluster and subject level latent variables were assigned mul-

tivariate Gaussian densities or linked to variables with simple exponential families. Dunson

(2000) developed MCMC algorithms for estimation of the posterior distribution. Addition-

ally, Dunson et al. (2003) proposed a Bayesian framework for jointly modeling cluster size

and multiple categorical and continuous outcomes measured on each subunit. They used a

continuation ratio probit model for the cluster size and underlying normal regression models

for each of the subunit-specific responses and accommodated the dependency between cluster

size and the different endpoints through a latent variable structure. This model facilitates

posterior computation via a simple and computationally efficient Gibbs sampler. In another

study, Weiss et al. (2011) assumed some exponential distributions for the different outcomes

and then linearly linked the unknown mean functions with random effect variables to account

for the correlated structure.

Recently, Bowman and George (2018) developed a Bayesian approach for a joint
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regression model of mixed type by building on Bayesian procedure developed for develop-

mental toxicity studies in George et al. (2007). Following Albert and Chib (1993), they

assume Gaussian latent variables for binary/ordinal and continuous responses and employ

Gibbs sampling algorithm to obtain the exact posterior distribution of the parameters and

latent variable of the discrete outcomes. One advantage of Bayesian methods proposed by

Bowman and George (2018) is that all responses can be modeled jointly without factoring

the likelihood and all correlations between outcomes and litter-mates are easily accounted

for.

Almost all of the existing procedures focused on bivariate outcomes with a single

(clustered/longitudinal) binary outcome and a single continuous outcome (see, for example,

Catalano and Ryan, 1992; Fitzmaurice and Laird, 1995; George et al., 2007). While the

model proposed by Dunson (2000), Faes et al. (2008) accommodate multiple mixed endpoints,

they are not flexible or designed to handle high-dimensional covariates even in the context

of small data set. In particular, Faes et al. (2008) model based on the likelihood framework

involves complex numerical optimization (usually non-trivial) and may be sensitive to the

choice of starting value and can be heavily biased for small samples. Model proposed in

this theses also differ from that of Dunson (2000), Faes et al. (2008) in that it is designed

to simultaneously carry out parameter estimation and variable selection when dealing with

mixed outcomes that are characterized by high-dimensional covariates.

1.3 Contributions of this Study

The rapid increase in the use of technological advancement in research has made high-

dimensional data sets widely available in many fields such as health sciences, economics,

engineering, humanities, business, and finance among others. Examples of such data in-

cludes functional and longitudinal data, genetic marker analysis data, tomography, DNA

methylation, microarray and proteomics data, natural language processing, e-commerce and
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marketing data, signal processing, functional magnetic resolution imaging (fMRI), high res-

olution images etc. In such data sets, the number of covariates is usually bigger than the

number of samples. Typically, some of these high-dimensional data are collected or observed

in addition to the primary endpoints. Statisticians have developed some procedures for han-

dling such data, however, there is dearth of variable selection procedures in the context of

multivariate mixed endpoints.

While there have been several proposals put forward by several authors to address

the statistical challenges that emanate from the mixed outcome data, the computational

difficulties introduced by the availability of high-dimensional data is rarely discussed in the

literature for multivariate mixed outcomes. To the best of our knowledge, this is the first

attempt at addressing both the statistical and computational issues related to such data sets.

In this dissertation, we developed a novel procedure to efficiently estimate the parameters

and extract potentially active predictors simultaneously.

For our procedure, we suggest the use of spike-and-slab prior (Mitchell & Beauchamp,

1988) on the regression coefficients, we referred to this procedure as EMMEVS (EM mixed

endpoints variable selection). While the originality of EMMEVS relies on the MCMC proce-

dure, EMMEVS is a deterministic alternative (inspired by Ročková and George, 2014) based

on the EM algorithm and can be used to rapidly expose potential sparse high posterior

probability submodels. We described the EMMEVS procedure in Chapter 4.

The computational speed of EMMEVS procedures allow for the exploration of many

sub-models within a short period and both have the potential of lowering the computational

burden of MCMC methods when estimating posterior distributions over subsets of poten-

tial predictors. Finally, the method developed here easily extends to clustered longitudinal

(or repeated measures) binary/polychotomous and continuous outcomes as well as spatial

outcomes data of different kinds.

To our knowledge, there is a lack of software/packages for the implementation of
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the multivariate mixed endpoints procedures; we shall make freely available an R package

“mme” (under development) to implement our methods at the following GitHub address:

https://github.com/yone4real/mme. We also plan to include the implementation of other

procedures such as general location model and some latent variable approach in the nearest

future.

The remainder of the dissertation is organized as follows: Chapter 2 describes the

model specification for high-dimensional multivariate mixed endpoints models for clustered

design (Section 2.1) and longitudinal/repeated-measures design (Section 2.2). Chapter 3

presents the use of EMMEVS to answer our research question posed in Section 1.1. The

details of the prior formulation and the EMMEVS procedure are described in Chapter 3. In

Chapter 4, we present the analysis of two real-life data to demonstrate the application of our

EMMEVS algorithm. In Chapter 5, we give a comprehensive accounts of the ongoing/future

work. In particular, we give a partial discussion of two new methodologies that can be used to

jointly modeled multivariate mixed endpoints and conduct variable selection simultaneously.
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Chapter 2

High-dimensional Multivariate Mixed Endpoints Models

2.1 Introduction

The models proposed in this dissertation are fitted to clustered mixed endpoints, re-

peated measures mixed endpoints, longitudinal mixed endpoints, and clustered longitudinal

(or repeated measures) mixed endpoints data. We start by providing the definitions of these

designs.

2.1.1 Clustered Mixed Endpoints Data

By clustered mixed endpoints data, we mean data sets in which endpoints of different

structures such as continuous, ordinal, binary/polychotomous are measured once on each

subject or experimental unit, and the subjects are grouped or nested within the clusters of

units. As an example, consider an experiment with G treatment groups in which mi indepen-

dent clusters are exposed to the ith (i = 1, · · · , G) treatment group of a test compound. In

Figure 1, we illustrate the data structure of the clustered mixed endpoints characterized by

high-dimensional covariates in the context of developmental toxicity experiment. The char-

acteristics of the clustered mixed endpoints data described above naturally exhibits three

levels (see, Figure 2). The subject (level 1 data) is nested within-cluster (level 2) which

are in turn nested within the experimental group. The endpoints and other variables of

interests are measured on the unit of analysis at level 1. Features obtained at the subject

level help to understand the within-subject variability on the responses of interests; also,

cluster characteristics help explain the within-cluster variability in the cluster-specific aver-

age responses, and treatment features help to understand the variations in treatment-specific

mean responses. Three sources of variations to the responses arise in the experimental setting
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Figure 1. Data Structure for Multivariate Clustered Mixed Endpoints in a Developmental
Toxicity Study

Subjects
nested

Clusters
nested

Treatments

Figure 2. Nesting Structure for Clustered Mixed Endpoints.

above:

(a) σ2
ε , variation in the responses that occurs across responses obtained from the kth

subject (level 1) nested within the jth cluster (level 2) in the ith treatment group

(level 3),

(b) σ2
1` and σ2

2f , the variation in the average responses at the jth cluster (level 2) nested

within the ith treatment group (level 3), and

(c) σ2
a, variation in the mean responses across the G treatment groups (level 3).

2.1.2 Longitudinal (or Repeated Measures) Mixed Endpoints Data

We define longitudinal mixed endpoints data as data sets with repeated measurements

on the same subject at the same treatment level. The repetition may be overtime and in
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this case, measurements are labeled as longitudinal. An illustration of the data structure for

the longitudinal mixed endpoints data is depicted in Figure 3.

Figure 3. Data Structure for the Multivariate Longitudinal Mixed Endpoints Design

2.1.3 Clustered Longitudinal (or Repeated Measures) Mixed Endpoints Data

Here, we combined the features of both clustered and longitudinal (or repeated mea-

sures) data described in Sections 2.1.1 and 2.1.2 respectively. Consider a design in which

at each of the tij time-points, multiple mixed endpoints of different nature are collected on

the jth subject (or unit of analysis), j = 1, · · · ,m, i = 1, · · · , nj. For example, consider a

dose-response animal teratology study in which mixed longitudinal measurements are made

on each animal. This design is complex due to an extra layer of correlation introduced to

accommodate the longitudinal structure in the data. Faes et al. (2004), Gueorguieva and
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Sanacora (2006) and others addressed data of this type, however, not in the context of

high-dimensional covariates.

2.2 Model Specification

The model for analyzing mixed longitudinal data accommodate more than two pri-

mary endpoints of differing types. In the next section, we focus on the model for clustered

mixed endpoints and used that to lay foundation for mixed longitudinal/repeated-measures

in Section 2.2.2

2.2.1 Model for Clustered Mixed Endpoints

Let W`ijk and X∗fijk represent the `th continuous and fth discrete endpoints obtained

from the kth subject of the jth cluster in the ith treatment group, 1 ≤ i ≤ G, 1 ≤ j ≤

mi, 1 ≤ k ≤ nij, where nij is the number of measurements in the jth cluster of the ith

treatment group, mi is the number of clusters in the ith treatment group, and G denote the

number of treatment groups. Also, let the observed discrete outcomes, X∗fijk, have s distinct

values (i.e., s mutually exclusive ordered categories), say x1 < · · · < xs. Corresponding to

each observation X∗fijk and following Albert and Chib (1993), a continuous latent variable

Xfijk associated with the discrete endpoints, X∗fijk, is introduced and defined by

X∗fijk =



x1 if Xfijk ∈ (ζ0, ζ1)
...

...

xO if Xfijk ∈ [ζO, ζO+1)
...

...

xs if Xfijk ∈ [ζs−1, ζs)

(2.1)

with ζ0 = −∞ and ζs = ∞ and the remaining unknown cutpoints satisfying ζ1 <

ζ2 < · · · < ζ(s−1). For binary data, it suffices to assume a single cutpoint in (2.1) is set to

zero as adopted in Catalano and Ryan (1992).
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The model equation for W`ijk and Xfijk is assumed to satisfy the linear mixed effects

model

W`ijk = α0` + α1`di + z∗
′

i`α
∗
` + aijk + b1`ij + ε`ijk

= z
′

i`α` + aijk + b1`ij + ε`ijk

Xfijk = β0f + β2fdi + z∗
′

ifβ
∗
f + aijk + b2f ij + εfijk

= z
′

ifβf + aijk + b2f ij + εfijk

(2.2)

for 1 ≤ f ≤ h, 1 ≤ ` ≤ c, 1 ≤ i ≤ g, 1 ≤ j ≤ mi and 1 ≤ k ≤ nij, where, α0` and α1`

the intercept and slope of the `th outcome with β0f and β2f defined analogously for the fth

discrete endpoint, zi` and zif represents the design vector for the fixed effects (modeled as a

function of the treatment group and other covariates), α∗` and β∗f are p-dimensional vector

of unknown fixed regression coefficients, aijk the random effects for the association between

continuous and discrete endpoints, b1`ij and b2f ij is the random effects that accommodates

the clustering structure in the data, ε`ijk and εfijk are the random (measurement) error.

The different terms in (2.2) reflects the eight different types of association between

the endpoints, as illustrated in Figure 4. The

(a) cluster-mates on the same continuous outcomes is cov
(
W`ijk,W`ijk′

)
= σ2

1`
,

(b) cluster-mates on the same latent variable have cov
(
Xfijk, Xfijk′

)
= σ2

2f
,

(c) `th continuous outcomes and fth latent variable on the same subject have cov (W`ijk, Xfijk)

= σ2
a + σ1`2f ,

(d) `th continuous outcomes and fth latent variables between cluster-mates have cov
(
W`ijk, Xfijk′

)
= σ1`2f ,

(e) different continuous outcomes on the same subject have cov
(
W`ijk,W`′ ijk

)
= σ2

a+σ1`1`′ ,

(f) two latent variables on the same fetus have cov
(
Xfijk, Xf ′ ijk

)
= σ2

a + σ2f2f ′ ,
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(g) different continuous outcomes on cluster-mates from different subject have cov
(
W`ijk,W`′ ijk′

)
= σ1`1`′ ,

(h) different latent variables on cluster-mates from different subject have cov
(
Xfijk, Xf ′ ijk′

)
=

σ2f2f ′ ,

Figure 4. Association structure for two continuous and two latent variables for subject k
and k

′
in the jth cluster of the ith treatment group.
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Distributional Assumptions

In equation (2.2), we have four random variables (aijk, b1`ij, b2f ij, and ε`ijk), the

condition for the variance components form of equation (2.2) is given as:

E (aijk) = 0 and var (aijk) = σ2
a, ∀ i, j, k,

E (b1`ij) = E
(
b2f ij

)
= 0 and var (b1`ij) = σ2

1`
, var

(
b2f ij

)
= σ2

2f
, ∀ `, f, i, j

E (ε`ijk) = E (εfijk) = 0, and var (ε`ijk) = var (εfijk) = σ2
ε , ∀ `, f, i, j, k

cov
(
aijk, ai′j′k′

)
= 0, ∀ i 6= i

′
, j 6= j

′
, k 6= k

′
except for i = i

′
, j = j

′
, k = k

′
,

cov
(
b1`ij, b1`′ ij

)
= cov

(
b2f ij, b2f ′ ij

)
= 0, ∀ ` 6= `

′
, f 6= f

′
except for ` = `

′
, f = f

′
,

cov
(
ε`ijk, ε`′ i′j′k′

)
= 0, ∀ i 6= i

′
, j 6= j

′
, k 6= k

′
, ` 6= `

′
, except for i = i

′
, j = j

′
, k = k

′
, ` = `

′

(2.3)

We assumed a Gaussian distribution for the unobserved continuous latent variable underlying

the discrete outcome, X∗fijk, that is Xfijk ∼ N
(
z

′

ifβf + aijk + b2f ij, σ
2
ε

)
, leading to the the

joint density of X∗fijk and Xfijk, conditional on βf , aijk, b2f ij, and σ2
ε , as

f
(
xfijk, x

∗
fijk|βf , aijk, b2f ij, σ2

ε

)
∝
[ s∑
q=1

{
I
(
x∗fijk = q − 1

)
I (ζq−1 < Xfijk ≤ ζq)

}]
× φ

(
xfijk; z

′

ifβf + aijk + b2f ij, σ
2
ε

) (2.4)

where φ (·) is the probability density function of normal distribution and I (.) is the indicator

function. In particular, if we assumed X∗fijk is binary, then, equation (2.4) becomes:

∝
[{
I
(
xfijk > 0, x∗fijk = 1

)
+ I

(
xfijk ≤ 0, x∗fijk = 0

) }]
φ
(
xfijk; z

′

ifβf + aijk + b2f ij, σ
2
ε

)

We make the following assumptions about the four random components in equations (2.2),

ε`ijk, εfijk are iid N(0, σ2
ε ), aijk ∼ N(0, σ2

a), and b =

(
b11ij · · · b1cij b21ij · · · b2hij

)′

∼
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Nq (0,Σ), where q = c+ h and

Σ =



σ2
11

σ1112 · · · σ111c σ1121 σ1122 · · · σ112h

σ2
12
· · · σ121c σ1221 σ1222 · · · σ122h
. . . σ2

1c σ1c21 σ1c22 · · · σ1c2h

σ2
21

σ2122 · · · σ212h

σ2
22
· · · σ222h
. . . σ2

2h


. We also assume that the random effects b, aijk, as well as the random errors ε`ijk and εfijk

are all mutually independent.

Joint density of W , X, and X∗

In view of equations (2.2), (2.4), and using the distributional assumptions given in

section 2.2.1, the joint density of W , X, and X∗ is given by

f (·) = f(W`ijk|α`, aijk, b1`ij, σ2
ε )× f

(
Xfijk, X

∗
fijk|βf , aijk, b2f ij, σ2

ε

)
=
∏
`ijk

(
1

σ2
ε

) 1
2

exp

(
−
(
W`ijk − z

′

i`α` − aijk − b1`ij
)2

2σ2
ε

)

×
∏
fijk

[
s∑
q=1

{
I
(
X∗fijk = q − 1

)
I (ζq−1 < Xfijk ≤ ζq)

}
×
(

1

σ2
ε

) 1
2

exp

(
−
(
Xfijk − z

′

ifβf − aijk − b2f ij
)2

2σ2
ε

)]

2.2.2 Model for Longitudinal (or Repeated Measures) Mixed Endpoints

Here, we define W`ij as the longitudinal measurements observed on the jth subject

or unit of analysis at time i for the `th continuous endpoint. Similarly, we let X∗fij be the
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longitudinal measurements observed on the jth subject or unit of analysis at time i for the

fth discrete endpoint. The observed discrete endpoints X∗fij is assumed to be related to the

unobserved latent variable Xfij by

X∗fij =


1 if ζ0 < Xfij ≤ ζ1

l if ζl−1 < Xfij ≤ ζl, l = 2, · · · , L− 1

L if ζL−1 < Xfij ≤ ζL

(2.5)

where ζ0, ζ2, · · · , ζL are cutpoints whose coordinate satisfy −∞ = ζ0 < ζ1 < · · · < ζL−1 <

ζL =∞. Here, ζL−1 and ζL are respectively defined as the lower and upper endpoints of the

interval corresponding to observed outcome L. We also assume that W`ij and Xfij satisfy

the linear mixed-effect model

W`ij = α0` + α1`tij + z∗
′

i`α
∗
` + aij + b1`i + ε`ij

= z
′

i`α` + aij + b1`i + ε`ij

Xfij = β0f + β2f tij + z∗
′

ifβ
∗
f + aij + b2f i + εfij

= z
′

ifβf + aij + b2f i + εfij

(2.6)

for 1 ≤ f ≤ h, 1 ≤ ` ≤ c, 1 ≤ i ≤ nj, 1 ≤ j ≤ m, where, α0` and α1` the intercept and slope

of the `th outcome with β0f and β2f defined analogously for the fth discrete endpoint, zi`

and zif represents the design matrix for the fixed effects (can be modeled as a function of

the time/repeated-measures and other covariates), α∗` and β∗f are p-dimensional vector of

unknown fixed regression coefficients, aij the random effects for the association between the

`th continuous and fth discrete endpoints observed on the jth subject at time i, b1`i and

b2f i are the random effects that accounts for the correlation between measurements from the

same subject, ε`ij and εfij are the random (measurement) error, nj is the number of times
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the jth subject is observed, tij indexes the nj longitudinal measurements made on the jth

subject at time i.

Similar to the clustered mixed endpoint model, we assumed that aij ∼ N (0, σ2
a),

b =
(
b1`i, b2f i

)′
∼ Nq (0,Σ), and ε`ij and εfij are independent pairs of N (0, σ2

ε ) random

errors. The matrix specification of equation (2.6) is the same as that given in (2.7) with

slight notation in the definition.

Matrix Specification of Regression Model (2.2)

In this section, we consider a general matrix specification of (2.2) for all subjects in

the study. We do this by stacking formula (2.2) (given for individual k) into vectors and

matrices. Let n1 = c×G×
∑

imi ×
∑

ij nij represent the total number of observations for

the continuous responses and n2 = h × G ×
∑

imi ×
∑

ij nij be similarly defined for the

continuous latent variable. Define n = n1 + n2 as the total number of observations in the

study, q1 = G×
∑

imi×
∑

ij nij and q2 = G×
∑

imi. A more compact notation for equation

(2.2) is given by

W = Z1α+ a+ b1 + ε1

X = Z2β + a+ b2 + ε2

(2.7)

where

• W ′
=
(
W1111, · · · ,WcGmGnGmG

)
is an n1 × 1 vector of continuous responses,

• X ′
=
(
X1111, · · · , XhGmGnGmG

)
is an n2 × 1 vector of continuous latent variable,

• α = (α1, · · ·α`)
′

is a [(c× (2 + p))× 1]-dimensional vector,

• β = (β1, · · ·βf )
′

is a [(h× (2 + p))× 1]-dimensional vector,

• Z ′
1 =

[
(1N1 ⊗ z1`)

′
, · · · , (1NG ⊗ zG`)

′ ]
, is (n1 × 2c) dimensional matrix,
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• Z ′
2 =

[
(1N1 ⊗ z1f )

′
, · · · , (1NG ⊗ zGf )

′ ]
, is (n2 × 2h) dimensional matrix,

• a′
=
(
a111, · · · , aGmGnGmG

)
, a q1 × 1 vector of random effects,

• b′
=
(
b

′
1, b

′
2

)′
is a q2 × 1 vector of random effects associated with the cluster with

b
′
1 =

(
1n11b111, · · · ,1nGmG b1nGmG

)′

, b
′
2 =

(
1n11b211, · · · ,1nGmG b2nGmG

)′

,

• ε1 =
(
ε1111, · · · , εcGmGnGmG

)
is an n1 × 1 vector of measurement errors for the contin-

uous outcomes, and

• ε2 =
(
ε1111, · · · , εhGmGnGmG

)
is an n2 × 1 vector of measurement errors for the latent

variables.
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Chapter 3

The EMMEVS Procedure

3.1 Introduction

The MCMC stochastic search method is one of the most commonly used procedure

for analyzing high-dimensional data and when the posterior is intractable (George & McCul-

loch, 1997; Li & Zhang, 2010; Mitchell & Beauchamp, 1988), however, using these methods

have been shown to be slow and inefficient (Griffin & Brown, 2010; Ročková & George, 2014)

especially when dealing with high-dimensional data. A rapid and efficient deterministic al-

ternative expanding on the EM approach of Ročková and George (2014) is suggested to lower

the computational burden of the MCMC procedure and simultaneously conduct variable se-

lection and parameter estimation. Our proposal, referred to as EM for multivariate mixed

endpoints variable selection (EMMEVS) can carry out parameter estimation and variable

selection simultaneously. Also, EMMEVS can identify the posterior modes directly without

the need for full stochastic search thereby leading to some computational time saving. Fur-

ther, we showed that EMMEVS enables fast exploration of the posterior under a sequence

of mixture priors.

The EMMEVS algorithm uses Laplace distribution on the regression coefficients α

and β rather than the commonly used Gaussian distribution, this strategy enables a simpler

closed form update and leads to an adaptive LASSO-type objective function. With this

property, the EMMEVS algorithm can benefit from some efficient algorithm such as glmnet

of Friedman et al. (2010), dynamic weighted LASSO of Chang and Tsay (2010), and LARS

algorithm of Efron et al. (2004) to estimate the parameters and conduct variable selection

simultaneously. Thus, EMMEVS estimator can shrink most of the redundant variables to

exactly zero or near zero.

The idea behind EMMEVS formulation is akin to (Figueiredo, 2003; Griffin & Brown,
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2005, 2012; Kiiveri, 2003; Ročková & George, 2014), in which they combine the EM algorithm

with Bayesian shrinkage estimation under sparsity priors. Although the originality of our

proposal is anchored on stochastic search variable selection (SSVS) procedure developed

by (George & McCulloch, 1993, 1997), EMMEVS is a flexible deterministic alternative to

the SSVS based on EM algorithm (Dempster et al., 1977). In contrast to the SSVS where

inference is drawn from the fully sampled posterior distribution using MCMC, EMMEVS

estimates the posterior modes with the EM algorithm. Meanwhile, it is widely recognized

that the EM algorithm is not guaranteed to converge to the global mode (this can result

in biased estimates) and is sensitive to starting values, we suggest a deterministic annealing

variant of the EMMEVS to help mitigate the potential problem of entrapment in local modes

and thus, improves its performance. This is discussed in section 3.5.

3.2 The EMMEVS Algorithm

3.2.1 Setup and Hierarchical Prior Formulation

To conduct model selection through Bayesian method, two main ingredients are essen-

tial: (a) a prior to induce the posterior distribution over the subsets of potential covariates,

and (b) a method to retrieve/identify the potential promising covariates from the posterior.

In this section, we detailed the formulation of prior for our proposed method - EMMEVS. In

what follows, we let Θ = (α,β,a, b, σ2
ε , σ

2
a,Σ) be the vector of parameters to be estimated.

First, we consider an hierarchical prior formulation for the regression coefficients α and β.

To identify active predictors in Z that are potentially associated with the continuous

and discrete outcomes W and X, two p-dimensional vector of binary latent variables γ =

(γ1, · · · , γp)
′

and µ = (µ1, · · · , µp)
′

are introduced, for (γr, µr) ∈ {0, 1}, r = 1, · · · , p. The

model selection proceeds by selecting the columns of Z for which γr = 1 or µr = 1. Combined

with suitable prior distributions over Θ, γ, and µ, the induced posterior distribution τ (γ|W )
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and τ (µ|X), then summarizes the post-data variable selection uncertainties. Next, we

describe our prior specification on the regression coefficients α and β, we placed the following

spike-and-slab Laplace mixture of priors on each entries of α`r and βfr

τ(α`r|γr, λ`r) =
c∏
`=1

p∏
r=1

1

2λ`r
e
− |α`r |

λ`r with λ`r = λ0(1− γr) + λ1γr

τ(βfr|µr, ωfr) =
h∏
f=1

p∏
r=1

1

2ωfr
e
−

|βfr |
ωfr with ωfr = ω0(1− µr) + ω1µr

(3.1)

where λ0 and ω0 are the variance of the spike distribution, and λ1 and ω1 are the variance

of the slab distribution for both continuous and discrete endpoints respectively. Our prior

specification in (3.1) differs from the Bayesian LASSO of Park and Casella (2008) in that

the degree of shrinkage for the rth coefficient is controlled by the hyperparameters λ`r and

ωfr (for r = 1, · · · , p), each a mixture of two different scales (λ0, λ1) and (ω0, ω1).

Several authors have recommend different values for the scale parameter of the spike

distribution. In the traditional spike-and-slab prior, the spike component is set to be a mass

at zero, which corresponds to our setting λ0 = 0 and ω0 = 0. This approach of setting λ0

and ω0 to zero has been implemented in Brown et al. (2002), Panagiotelis and Smith (2008)

and Hu et al. (2015). Here, we use a small continuous version of the spike-and-slab prior in

which λ0 and ω0 is set to positive nonzero value but relatively small compared with λ1 and ω1,

this strategy has also been used in George and McCulloch (1997) and Ročková and George

(2014). We found this strategy to be very efficient in excluding unimportant nonzero effects

(by inducing strong shrinkage on estimation) and to lead to a rapid EMMEVS procedure. An

advantage of using a continuous spike-and-slab prior is that the continuous prior distribution

on α and β allows the use of efficient algorithm that do not require substituting the active

dimension of the parameters (George & McCulloch, 1993, 1997).

As for λ1 and ω1, they are set to be relatively large, thereby serving as the “slab scale”
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for modeling large coefficients and thus induce weak or no shrinkage on the estimation. In

sum, by setting λ1 � λ0 and ω1 � ω0, the Laplace mixture of priors imposes a different

strength of shrinkage for elements drawn from the slab parameters (λ1, ω1) and spike param-

eters (λ0, ω0). The advantage of this representation is that it allows us to shrink coefficients

in α and β to zero if they are small in scale while not biasing the large coefficients.

The remaining components of the hierarchical prior specification is completed with a

prior distribution on τ (γ) and τ (µ) over the 2p possible values of γ and µ. Here, we focus

on an hierarchical prior specifications of the form

τ (γ) = Eτ(θ1)τ (γ|θ1) and τ (µ) = Eτ(θ2)τ (µ|θ2) (3.2)

where θ1 and θ2 controls the sparsity and are defined as vectors of the proportion of non-

zero regression coefficients for the continuous and discrete outcomes respectively. A default

choice for τ (γr|θ1`) and τ (µr|θ2f ) is iid Bernoulli prior

τ (γr|θ1`) =
c∏
`=1

θ
∑p
r=1 γr

1` (1− θ1`)1−
∑p
r=1 γr with 0 ≤ θ1` ≤ 1

τ (µr|θ2f ) =
h∏
f=1

θ
∑p
r=1 µr

2f (1− θ2f )1−
∑p
r=1 µr with 0 ≤ θ2f ≤ 1

(3.3)

however, in the presence structural information or networking group about the covariates,

other structured priors such as logistic regression product prior (Stingo et al., 2010) and

Markov random field prior (Li & Zhang, 2010) can be used. The probability parameters

θ1` and θ2f can be view as the overall shrinkage parameters that equals the prior proba-

bilities Pr (γr = 1|θ1`) and Pr (µr = 1|θ2f ). The prior expectation of the scales λr and ωr

are given as, E (λr) = λ0(1 − θ1`) + λ1θ1` and E (ωr) = ω0(1 − θ2f ) + ω1θ2f with their val-

ues lying in the range [λ0, λ1] and [ω0, ω1] respectively; with this form, any marginal τ (γ)

and τ (µ) given in (3.2) will be exchangeable on the components of γ and µ. We consider
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exchangeable priors τ(θ1`) ∼ beta(l1, o1) ∝ θl1−11` (1− θ1`)o1−1 and τ(θ2f ) ∼ beta(l2, o2) ∝

θl2−12f (1− θ2)o2−1 for li, oi > 0 (i = 1, 2) which results in beta-binomial priors τ (γ) and

τ (µ) that can favor parsimony (Scott & Berger, 2010).

One advantage of using the Laplace mixture of priors on α and β over the Gaussian

mixture formulation is that it leads to faster convergence (Armagan et al., 2013). Also, the

regression coefficients cannot attain exact zeros in the normal mixture representation, and

additional post-processing steps are required for variable selection, which can be sensitive

to cut-off values. In the context of structured high-dimensional data, Chang et al. (2018)

reported numerical inconveniences that may arise when α and β approaches zero under the

Gaussian mixture formulation, noting that the conditional mean may explode to infinity.

The prior specifications for other parameters are aijk|σ2
a ∼ N (0, σ2

a), b|Σ ∼ N (0,Σ).

As for the variance components, we assume the following non-informative prior distributions;

σ2
ε ∼ IG(ν1, κ1), σ2

a ∼ IG(ν2, κ2), Σ ∼ IW(ν0,Σ
−1
0 ) (3.4)

with ν0 > (p − 1) to ensure inversion of Σ. Meanwhile, we assume νi = κi = 1000, i = 1, 2

for the variance components of σ2
ε and σ2

a to ensure that they are non-informative. This is

in contrast to the νi = κi = 1, i = 1, 2 as used in (George & McCulloch, 1997; Ročková

& George, 2014) because the form of the inverse gamma distribution we employed here is

different from theirs. Similarly, the parameters ν0 and Σ−10 can be chosen to make it flat and
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non-influential. In sum, the hierarchical model formulation for our procedure is given as:

α|γ ∼ DE (α|0,λ)

γ|θ1 ∼ Bern (γ|1,θ1) with θ1 ∼ τ (θ1)

βf |µ ∼ DE (β|0,ω)

µ|θ2 ∼ Bern (µ|1,θ2) with θ2 ∼ τ (θ2)

aijk|σ2
a ∼ N

(
0, σ2

a

)
σ2
a|ν2, κ2 ∼ IG(ν2, κ2)

σ2
ε |ν1, κ1 ∼ IG(ν1, κ1)

b|Σ ∼ N (0,Σ)

Σ|ν0,Σ0 ∼ IW(ν0,Σ
−1
0 )

3.3 A Closer Look at the EMMEVS Algorithm

We used EM algorithm for extracting information from the posterior distribution in-

duced by the hierarchical prior formulation described in section 3.2.1. To implement the

EM, we treated γ and µ as missing data and replace them by their conditional expecta-

tions given the observed data Y = (W ,X) and current parameter estimates denoted Θ(m)

- this step is known as the expectation step (E-step). Thereafter, we maximize the expected

complete-data log-posterior log (τ (Θ,θ1,θ2,γ,µ|Y )) with respect to Θ,θ1,θ2. Specifically,

the EM algorithm indirectly maximizes τ (Θ,θ1,θ2|Y ) by iteratively maximizing the objec-
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tive function Q
(
Θ,θ1,θ2|Θ(m)

1 ,θ
(m)
1 ,θ

(m)
2

)

Q (·)(m+1) = Eγ.µ|.

[
log (τ (Θ,θ1,θ2,γ,µ|W ,X)) |Θ(m)

1 ,θ
(m)
1 ,θ

(m)
2 ,W ,X

]
=
∑
γ

log
[
τ
(
Θ\βf ,µ,θ1,γ|W

)]
τ
(
γ|Θ(m)

\βf ,θ
(m)
1

)
×
∑
µ

log
[
τ
(
Θ\α`,γ ,θ2,µ|X

)]
τ
(
µ|Θ(m)

\α` ,θ
(m)
2

) (3.5)

where Eγ.µ|. represent the conditional expectation Eγ.µ|Θ(m),θ
(m)
1 ,θ

(m)
2 ,W ,X(·) and Θ\M

denotes the parameter M is not included in Θ, for instance, Θ\σ2
a

= (α,β,a, b, σ2
ε ,Σ).

Assuming a beta prior on (θ1`, θ2f ) and using the spike-and-slab hierarchical formulation

described earlier, the objective function in (3.5) is of the form

Q (·)(m+1) = Q1

(
Θ|Θ(m),θ

(m)
1 ,θ

(m)
2

)
+Q2

(
θ
(m)
1 ,θ

(m)
2 |Θ(m),θ

(m)
1 ,θ

(m)
2

)
+ Constant (3.6)

where

Q1 (·)(m+1) ∝ −n1 + n2 + 2(ν1 + 1)

2
logσ2

ε −
1

2σ2
ε

[∑
`ijk

~W 2
`ijk +

∑
fijk

~X2
fijk + 2κ1

]

−
c∑
`=1

p∑
r=1

|α`|
q`r
−

h∑
f=1

p∑
r=1

|βf |
qfr
− q2 + ν0 + q + 1

2
log|Σ| − 1

2σ2
a

(∑
ijk

a2ijk + 2κ2

)

− q1 + 2(ν2 + 1)

2
logσ2

a −
1

2
b

′
Σ−1b− 1

2
tr
(
Σ0Σ

−1)
Q2(·)(m+1) =

c∑
`=1

[
p∑
r=1

ρ
(m)
`r log

(
θ
(m)
1`

1− θ(m)
1`

)
+ (l1 − 1) logθ

(m)
1` + (p+ o1 − 1) log

(
1− θ(m)

1`

)]

+
h∑
f=1

[
p∑
r=1

ρ
(m)
fr log

(
θ
(m)
2f

1− θ(m)
2f

)
+ (l2 − 1) logθ

(m)
2f + (p+ o2 − 1) log

(
1− θ(m)

2f

)]

where ~W`ijk = W`ijk − z
′

i`α` − aijk − b1`ij and ~Xfijk = Xfijk − z
′

ifβf − aijk − b2f ij. It is

obvious that Q2(·) corresponds to sum of two beta-binomial priors, one each for binary latent
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inclusion indicators γ and µ. If we assume a uniform prior for θ1 and θ2, then we have

Q2 (·)(m+1) =
c∑
`=1

[
p∑
r=1

ρ
(m)
`r log

(
θ
(m)
1`

1− θ(m)
1`

)
+ p log

(
1− θ(m)

1`

)]

+
h∑
f=1

[
p∑
r=1

ρ
(m)
fr log

(
θ
(m)
2f

1− θ(m)
2f

)
+ p log

(
1− θ(m)

2f

)]

Meanwhile, a closer look at the objective function Q(·) reveals that it has two appealing

features that facilitates significant simplification of the EM steps.

1. The separable nature of the objective function (3.5) is due to the following hierarchical

structure of the two binary latent variables γ and µ: (θ1,θ1) → (γ,µ) → Θ →

(W ,X) such that

Eγ·µ|·. = Eγ·µ|Θ(m),θ
(m)
1 ,θ

(m)
2 ,W ,X∗(·) = Eγ·µ|Θ(m),θ

(m)
1 ,θ

(m)
2 (·) (3.7)

Thus, the posterior distribution of γ and µ given the observed data Y and cur-

rent estimates
(
Θ(m),θ

(m)
1 ,θ

(m)
2

)
depends on Y only through the current estimates(

Θ(m),θ
(m)
1 ,θ

(m)
2

)
.

2. The separability of Q(·) into a pair of distinct functions Q1(·) and Q2(·) leads to an

M-step that is obtained by maximizing each of these functions separately.

3.3.1 The E-Step

At the E-step, the following conditional expectations Eγr|.

(
1
λ`r

)
, Eµr|.

(
1
ωfr

)
, and

Eγr|· (λ`r), Eµr|· (ωfr) for Q1(·) and Q2(·) respectively, is computed through the application
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of the Bayes theorem to (3.7). Thus,

Eγr|· (λ`r) = ρ
(m)
`r = Pr

(
γr = 1|θ(m)

1` ,α
(m)
`

)
=

e1`r
e1`r + e2`r

Eµr|· (ωfr) = ρ
(m)
fr = Pr

(
µr = 1|θ(m)

2f ,β
(m)
f

)
=

g1fr
g1fr + g2fr

Eγr|·

(
1

λ`r

)
= q

(m)
`r =

ρ
(m)
`r

λ1
+

1− ρ(m)
`r

λ0

Eµr|·

(
1

ωfr

)
= q

(m)
fr =

ρ
(m)
fr

ω1

+
1− ρ(m)

fr

ω0

(3.8)

where

e1`r = τ
(
α
(m)
` |Θ

(m)
\α` , γr = 1

)
Pr
(
γr = 1|θ(m)

1`

)
, e2`r = τ

(
α
(m)
` |Θ

(m)
\α` , γr = 0

)
Pr
(
γr = 0|θ(m)

1`

)
g1fr = τ

(
β
(m)
f |Θ

(m)
\βf , µr = 1

)
Pr
(
µr = 1|θ(m)

2f

)
, g2fr = τ

(
β
(m)
f |Θ

(m)
\βf , µr = 0

)
Pr
(
µr = 0|θ(m)

2f

)

Meanwhile, to facilitate the computation of ρ
(m)
`r and ρ

(m)
fr , we take advantage of the condi-

tional independence of the γr’s and µr’s given in (3.3), this results in Pr
(
γr = 1|θ(m)

1`

)
= θ

(m)
1` ,

Pr
(
γr = 0|θ(m)

1`

)
= 1− θ(m)

1` , Pr
(
µr = 1|θ(m)

2f

)
= θ

(m)
2f , and Pr

(
µr = 0|θ(m)

2f

)
= 1− θ(m)

2f .

3.3.2 The M-Step

The maximizer of the expected log-posterior with respect to Θ, θ1, and θ2 is partly

facilitated by the separability of the objective function Q(.) given above and partly by the

conjugacy of the prior formulation. In what follows, we describe the sequential optimization

of the objective function given in equation (3.5).

(a) M-step update for θ1 and θ2: With α(m+1) and β(m+1) fixed at α
(m)
` and β

(m)
f
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respectively, the closed form solution of θ1 and θ2 is found to be

θ
(m+1)
1 =



p∑
r=1

ρ
(m)
1r +l1−1

l1+o1+p−2
...

p∑
r=1

ρ
(m)
cr +l1−1

l1+o1+p−2

 and θ
(m+1)
2 =



p∑
r=1

ρ
(m)
1r +l2−1

l2+o2+p−2
...

p∑
r=1

ρ
(m)
hr +l2−1

l2+o2+p−2

 (3.9)

(b) M-step update for α and β: When we fixed Θ
(m+1)
\α at Θ

(m)
\α and Θ

(m+1)
\β at Θ

(m)
\β ,

and let G1` = W − a − b1, G2f = X − a − b2, it is easy to recognize that the value

of α(m+1) and β(m+1) that maximizes Q1(.) as weighted LASSO problem, hence, the

update for α and β are

α(m+1) =


arg min

α1

(
1

2σ2
ε
‖G11 − z

′

i`α1‖22 +
p∑
r=1

|α1|
q
(m)
1r

)
...

arg min
αc

(
1

2σ2
ε
‖G1c − z

′

i`αc‖22 +
p∑
r=1

|αc|
q
(m)
cr

)


β(m+1) =


arg min

β1

(
1

2σ2
ε
‖G21 − z

′

ifβ1‖22 +
p∑
r=1

|β1|
q
(m)
2r

)
...

arg min
βh

(
1

2σ2
ε
‖G2h − z

′

ifβh‖22 +
p∑
r=1

|βh|
q
(m)
hr

)


(3.10)

where ‖ · ‖2 denote the `2 norm. Many efficient algorithm are available to solve the

maximization in (3.10). Some of these algorithms are the least angle regression of

Efron et al. (2004), dynamic weighted lasso (DWL) algorithm developed in Chang

and Tsay (2010), glmnet of Friedman et al. (2010), Wu and Lange (2008) procedure.

We investigate the performance of our EMMEVS algorithm and study their behavior

through glmnet and DWL.

(c) M-step update for σ2
ε , σ

2
a and Σ: Fixing relevant parameters constant, we need to
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solve the following equations in order to obtain the MLE solution of σ2
ε , σ

2
a and Σ

σ2(m+1)
ε = arg min

σ2
ε

(
− c1

σ
2(m)
ε

− c2logσ2(m)
ε

)
σ2(m+1)
a = arg min

σ2
a

(
− c4

σ
2(m)
a

− c3logσ2(m)
a

)
Σ(m+1) = arg min

Σ

[
−c5log|Σ(m)| − 1

2
b

′
Σ−1(m)b− 1

2
tr
(
Σ0Σ

−1(m)
)]

where c1 = 1
2

[∑
`ijk

~W 2
`ijk +

∑
fijk

~X2
fijk + 2κ1

]
, c2 = n1+n2+2(ν1+1)

2
, c3 = q1+2(ν2+1)

2
,

c4 =
∑
ijk a

2
ijk+2κ2

2
, c5 = q2+ν0+q+1

2
. The MLE solution of σ2

ε , σ
2
a, and Σ are given as

σ2(m+1)
ε =

c1
c2
, σ2(m+1)

a =
c4
c3
, Σ(m+1) =

1

2c5
Iq

(
bb

′
+ Σ

′

0

)′

(3.11)

(d) M-step update for aijk and b: Let W̃`ijk = W`ijk − z
′

i`α` − b1`ij and X̃f = Xfijk −

z
′

ifβf − b2f ij. When we fixed Θ
(m+1)
\aijk at Θ

(m)
\aijk , extract the part of Q1(·) that is related

to aijk (denote it as Q1(aijk)). Thereafter, take the partial derivative of Q1(aijk) with

respect to aijk (i.e.,
∂Q1(aijk)

∂aijk
), set the result equal zero and simplifying, we have

a
(m+1)
ijk =

(
σ
2(m)
a

σ
2(m)
a (c+ h) + σ

2(m)
ε

)(
c∑
`=1

W̃`ijk +
h∑
f=1

X̃fijk

)
(3.12)

Similarly, focusing on the part of Q1(·) that is related to b =
(
b
′
1, b

′
2

)′
and treat others

as constant, we have

b(m+1) =

(
nij

σ
2(m)
ε

Iq + Σ−1(m)

)−1(
1

σ
2(m)
ε

) nij∑
k=1

µijk (3.13)
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where

nij∑
k=1

µijk =


∑nij

k=1

(
W1ijk − z

′
i1α1 − aijk

)
...∑nij

k=1

(
Xhijk − z

′

ihβh − aijk
)


In sum, the goal of the EMMEVS algorithm is to locate the posterior mode of log τ (Θ,θ1,θ2|W ,X).

The idea is to of treat γ and µ as “missing data” and solve the complete-data log posterior,

log τ (Θ,θ1,θ2,γ,µ|W ,X) using EM approach. Thus, at the E-Step, we replace the unob-

servable γ and µ by their conditional expectations given y and Θ(m),θ
(m)
1 ,θ

(m)
2 and at the

M-step, we maximize the expected complete-data log-posterior with respect to Θ,θ1,θ2. The

EMMEVS algorithm proceed iteratively between the E and M steps, generates a sequence

of parameter estimates which under regularity condition converges monotonically toward a

local maximum of τ (Θ,θ1,θ2|y). The EMMEVS algorithm is presented in Algorithm 1.

Algorithm 1 EMMEVS Algorithm

1: Initialize Θ, θ1, θ2 with fixed λ0, ω0, λ1, ω1, l1, l2, o1, o2.
2: E-step computation: Compute the E-step using equation (3.8)
3: Set m = 0.
4: while m ≤M do
5: update θ1 and θ2 using equations (3.9)
6: update α and β using equations (3.10)
7: update σ2

ε , σ
2
a, and Σ using (3.11)

8: update a and b using equations (3.12) and (3.13)
9: Set m← m+ 1.
10: end while
11: Stopping Criterion ‖α(m+1) −α(m)‖ ≤ 10−5 and ‖β(m+1) − β(m)‖ ≤ 10−5
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3.3.3 Ideas Behind EMMEVS Implementation

As noted earlier, EMMEVS employs MAP idea to select sparse model. This section

lays out how EMMEVS algorithm performs variable selection. The variable selection is done

in two specific appealing ways.

(1) Thresholding Rule: One of the procedures by which EMMEVS operates to carry out

variable selection is by thresholding. Following from the hierarchical formulation in

section 3.2.1, the idea here is that the modes for the parameters in the continuous

endpoints τ
(
Θ\β,θ2 ,θ1|W

)
and the corresponding parameters for the discrete end-

points τ
(
Θ\α,θ1 ,θ2|X

)
can be found deterministically. Thereafter, the associated

modes of τ (γ|W ) and τ (µ|X) are obtained by thresholding rule. Specifically, once

we obtain the posterior modes (MAP estimates) i.e., Θ̂, θ̂1, θ̂2, we can find the most

probable γ̂ and µ̂ given
(
Θ̂, θ̂1, θ̂2

)
. Expanding on the univariate linear regression

framework of Ročková and George (2014), the thresholding for our model occurs at

the intersection of ±α∗`
(
λ0, λ1, θ̂1`

)
and ±β∗f

(
ω0, ω1, θ̂2f

)
of the Pr

(
γr = 1|α̂`, θ̂1`

)
and Pr

(
µr = 1|β̂f , θ̂2f

)
weighted mixture of the spike-and-slab priors, namely

α∗` (·) = ±
√

(2λ0log (d`f1) f 2
1 ) / (f 2

1 − 1) and β∗f (·) = ±
√

(2ω0log (dff2) f 2
2 ) / (f 2

2 − 1)

where f 2
1 = λ1/λ0, d` =

1−Pr(γr=1|θ̂1`)
Pr(γr=1|θ̂1`)

, f 2
2 = ω1/ω0, and df =

1−Pr(µr=1|θ̂2f)
Pr(µr=1|θ̂2f)

. Hence,

the thresholding rule is

γ̂r =


1 if |α̂`r| ≥ α∗`

(
λ0, λ1, θ̂1

)
0 otherwise

; µ̂r =


1 if |β̂fr| ≥ β∗f

(
ω0, ω1, θ̂2

)
0 otherwise

(2) Dynamic Posterior Exploration: This is the second feature of the EMMEVS algorithm

that makes it appealing. Here, rather than restricting attention to a single value
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of (λ0, ω0), the computational speed of the EMMEVS algorithm makes it feasible to

run the algorithm over a sequence of (λ0, ω0) to estimate the modes of a range of

different posteriors. This is unlike the MCMC procedure developed in Chapter 3

which expends considerable computational effort sampling from a single posterior, the

dynamic posterior exploration approach provides a snapshot of the several different

posteriors. This feature of EMMEVS has practical significance that it helps the user

to visualize the results and identify variables that should be included in the model.

The EMMEVS algorithm achieve this through regularization plot such as the LASSO

regularization diagram of Hastie et al. (2009). The plot captures the evolution of the

modal estimates as well as the model configurations and their posterior probabilities

over a sequence of spike-and-slab Laplace mixture of priors with increasing λ0 > 0

and ω0 > 0. As λ0 > 0 and ω0 > 0 increases, the negligible coefficients are more

and more absorbed in the spike part of the mixture, there by reducing the posterior

multimodality and exposing sparse high-probability submodels for thresholding iden-

tification. Contrary to shrinkage estimators such as the LASSO or the Ridge, as λ0

increases, the EMMEVS does not shrink the large coefficients to zero too much when

negligible coefficients are getting closer to zero. In Section 3.5.1, we illustrate the

implementation of the regularization plot using synthetic data.

3.4 Simulation Study

This section presents an artificial data to evaluate the performance of the procedures

developed in this chapter. The data is generated as follows;
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3.4.1 Data Generation

Clustered Mixed Endpoints Design

In this section, we describe a simulation study for illustrating the methods proposed

in this dissertation and to evaluate their performances and behaviors. The simulated data

are consistent with data that are commonly encountered in practice. Specifically, our simu-

lated data include four dose levels and a control group. The dose levels are spaced equally

between the control dose and the maximum dose. In particular, we set the dose levels

to 0, 0.25, 0.50, 0.75, and, 1.0. In addition to the five distinct dose levels, we assigned p-

dimensional predictors, z∗ik, to each of the kth pup. The z∗ik is generated from Np (0, Θ)

where Θ =
(
0.6|i−j|

)p
i,j=1

. We assume that there are c = 3 continuous endpoints and h = 2

binary endpoints. Further, we assume the `th continuous outcomes are decreasing linearly

with dose while the fth clustered binary outcomes are increasing linearly with dose and that

the dose are constant over time (see Figure 5). To fit the joint model in (2.2), we set

α01 + α11di = 1.5− 2di

α02 + α12di = 1− 0.5di

α03 + α13di = 0.5− 1.5di

β01 + β11di = 5 + 3di

β02 + β12di = 2 + 1.5di

(3.14)

σ2
ε = 0.01, σ2

a = 0.1, aijk ∼ N (0, σ2
a), ε`ijk ∼ N (0, 0.02), εfijk ∼ N (0, 0.04). The de-

pendence of the five endpoints is characterized by a multivariate normal distribution of

b = (b11ij, b12ij, b13ij, b21ij, b22ij)
′
∼ N (0,Σ) with Σ ∼ IW

(
ν0,Σ

−1
0

)
. We consider a bal-

anced design experiment consisting of equal number of dams per dose group and equal num-

ber of pups per dam. Thus, we fixed the number of pups in each dam to 10 and the number of
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dams per dose group was set to 15. This corresponds to study sizes (c+h)×5×15×10 = 3750,

c × 5 × 15 × 10 = 2250 for the continuous endpoints and h × 5 × 15 × 10 = 1500 for the

discrete endpoints. Lastly, for the regression coefficients α and β, we set their values to

α = β = 1, 2, 3, 4 and the remaining coefficients (4 < r ≤ p) were set to 0, such that only

the first four coefficients are significant. The data is then generated according to (2.2).

Figure 5. Simulated Data showing Trend

3.4.2 Simulation Results

To illustrate the performance of the EMMEVS algorithm, we applied the simulated

data described in Section 3.4.1 using the spike-and-slab mixture priors given in (3.1) with

fixed slab parameter at λ1 = ω1 = 100 and a single value of λ0 and ω0 fix at 0.5. Further,

we set α(0) = β(0) = 1p, σ
2(0)
ε = 0.01, σ

2(0)
a = 1, Σ = Iq. The hyper-parameters ν1, ν2, κ1,
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and κ2 are set to 1000 and ν0 = p + 1. Lastly, following the suggestion in Castillo and van

der Vaart (2012), we set a1 = a2 = 1, b1 = b2 = p to avoid putting an informative prior on

θ1` and θ2f in order to obtain optimal posterior concentration rates.

The modal coefficient estimates for α̂ and β̂ are depicted in Figure 6 implemented

for p = 100 using the DWL algorithm. The algorithm converges in less than 3 seconds

with the number of iterations to convergence ranging between 3 and 7 iterations. It is

obvious from Figure 6 that our algorithm is able to separate the significant coefficients from

non-significant coefficients. Overall, we observed the powerful strength of the EMMEVS

algorithm to constantly identify the true significant variables and drag to near zero (or

exactly zero) those variables that are set to be unimportant.

Figure 6. Plot of the true coefficients of α and β against their MAP Estimates α̂ and β̂ for

p = 100 using glmnet package in R.
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3.5 Deterministic Annealing Variants of the EMMEVS Algorithm

We will start this section with a quotation from Wikipedia regarding the description

of annealing as used in the steel industry.

“Annealing is a heat treatment wherein a material is altered, causing changes in

its properties such as strength and hardness. It is a process that produces con-

ditions by heating to above the re-crystallization temperature and maintaining a

suitable temperature, and then cooling.” Wikipedia

The EM algorithm is one of the techniques used to find the ML estimates of parame-

ters of interest. Although the method guarantees monotonical convergence towards at least

a local maximum; there is no assurance that the estimates will converge to the global mode

(because the estimates are prone to entrapment in local maximum mode), this is one of the

potential drawbacks of the algorithm. Besides, the performance of the EM algorithm is de-

pendent and sensitive to the starting values used to initialize the iterations in the algorithm.

Several approaches have been suggested to reduce the dependence of the algorithm on the

starting values. One such popular method recommended by McLachlan and Basford (2004)

is to run the algorithm for various choice of the starting values or mitigate the entrapment to

local modes. Another approach to mitigate this issue (an approach we use in this study) and

which can further improve the chances of finding a global mode is the use of deterministic

annealing variant of EM algorithm (DAEM) suggested by Ueda and Nakano (1998).

The deterministic annealing variant of EMMEVS referred to as DAEMMEVS, like

the DAEM, uses the principle of entropy to redefine the objective function given in (3.5) with

the aim of minimizing the so-called free-energy function at gradually cooler temperatures.
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In our context, this is equivalent to maximizing the negative free-energy function

−Ft (Θ, θ1`, θ2f ) = Ut (Θ, θ1`, θ2f )
internal energy

+
1

t
St (Θ, θ1`, θ2f )

entropy

=
∑
γ

log
[
τ
(
Θ\βf ,µ, θ1`,γ|W

)]t∑
µ

log
[
τ
(
Θ\α`,γ , θ2f ,µ|X

)]t
,

(3.15)

for 0 < t ≤ 1, where

Ut (Θ, θ1`, θ2f ) =
∑
γ

log
[
τ
(
Θ\βf ,µ, θ1`,γ|W

)]t
τ
(
γ|Θ(m)

\βf , θ
(m)
1

)t
×
∑
µ

log
[
τ
(
Θ\α`,γ , θ2f ,µ|X

)]
τ
(
µ|Θ(m)

\α` , θ
(m)
2f

)t

is the internal energy and St (Θ, θ1`, θ2f ) is the entropy. In equation (3.15), 1
t

acts as the

temperature of the annealing process that regulates the degree of separation between the

multiple modes of Ft (Θ, θ1`, θ2f ). In practice, the annealing process starts with a high

temperature (at t close to 0). At this high temperature, the landscape of −Ft (Θ, θ1, θ2) is

smooth, this therefore prevents the algorithm from getting stuck in a local mode early in its

iterations. And as the temperature cools down (at t close to 1), the effect of the inclusion

posterior is strengthened. As a result, local modes begin to appear and the landscape of

−Ft (Θ, θ1`, θ2f ) progressively approaches the true, incomplete posterior. In fact, equation

(3.15) embeds the actual log incomplete posterior as a special case when t = 1.

We formulate the deterministic annealing variant of EMMEVS by introducing an

annealing loop within the algorithm. Doing this does not change the M-step; however,

it changes the E-step which now requires the computation of the expected complete log

posterior density with respect to a modified posterior distribution. Following Ročková and

George (2014), the tempered probabilities of inclusion can be estimated by

ρt`r =
et1`r

et1`r + et2`r
, and ρtfr =

gt1fr
gt1fr + gt2fr

(3.16)
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where

e1`r = τ
(
α
(m)
` |Θ

(m)
\α` , γr = 1

)
Pr
(
γr = 1|θ(m)

1`

)
, e2`r = τ

(
α
(m)
` |Θ

(m)
\α` , γr = 0

)
Pr
(
γr = 0|θ(m)

1`

)
g1fr = τ

(
β
(m)
f |Θ

(m)
\βf , µr = 1

)
Pr
(
µr = 1|θ(m)

2f

)
, g2fr = τ

(
β
(m)
f |Θ

(m)
\βf , µr = 0

)
Pr
(
µr = 0|θ(m)

2f

)

The DAEMMEVS, is obtained by replacing ρ`r and ρfr given in (3.8) with ρt`r and ρtfr

respectively. The DAEMMEVS procedure is specifically described in Algorithm 3.

Algorithm 2 DAEMMEVS Algorithm

Initialize Θ, θ1, θ2 with fixed λ0, ω0, λ1, ω1, l1, l2, o1, o2
2: EM-step computation: Compute the EM step at the current temperature, t, until
‖α(m+1) −α(m)‖ ≤ 10−5 and ‖β(m+1) − β(m)‖ ≤ 10−5

Set m = 0.
4: while m ≤M do

(a) E-step: evaluate ρt`r and ρtfr
6: (b) M-step: compute Θ(m+1), θ

(m+1)
1 and θ

(m+1)
2

(c) Set m← m+ 1.
8: end while

If t < 1, return to step 2, on each return, use the previous estimates to initiate the
algorithm at the current temperature t. The algorithm stops at t = 1.

The strategy here is that at each cooling step, t, we find a global mode that is

used to initiate the algorithm at the next temperature, thereby finding a new global mode.

This strategy increases the probability of convergence to the true global mode if the new

global mode is close to the previous one. While convergence at the global mode is still not

guaranteed, the deterministic annealing approach removes the algorithm’s dependence on the

starting values and finds the global mode more often than the conventional EM algorithm

(Ueda & Nakano, 1998).
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3.5.1 Sensitivity Analysis

In this section, we investigate the sensitivity of the EMMEVS and its determinis-

tic annealing variants at varying temperatures. We carry out the performance evaluation

through the following: (1) regularization plots and (2) assessment of recovery support and

estimation performance. For our illustration, we consider the same data set described in

Section 3.4.1 to implement the tempered version of the EMMEVS algorithm and use the

starting values for the parameters and hyper-parameters described in Section 3.5. We con-

sider grid of λ0 and ω0 values, we ran these values from 0.001 to 0.05 equally divided into 20

values and we choose as the optimum model, the model that yield the largest log-posterior

among the sequences of the scale parameters. The results of this is depicted in Figures 7, 8,

9, 10, and 11 at temperatures t = 1, 5, 10, and, 20 using DWL scheme.

Figures 7, 8, 9, 10, and 11 showed that both the EMMEVS and DAEMMEVS consis-

tently identified the fixed covariates and shrunk redundant variables towards zero. For each

of the Figure 7 to 11, we observed that the red dots (representing the irrelevant variables)

are thresholded towards zero and that the trajectories of individual regression coefficients

estimates appeared to stabilize relatively early in the path; this would mean that the param-

eter estimates had clearly segregated into groups of zero and non-zero values. Specifically,

we observed that the DWL implementation of the EMMEVS and DAEMMEVS algorithm

stabilizes very early in its trajectory and almost immediately identify the significant variables

as early as the first computation compared to the ADL (adaptive LASSO implemented via

the glmnet package of Friedman et al. (2010)) that consistently delay this till after about 10

computations. This is a consequence of the annealing process and the capability of the DWL

to rapidly compute the solution by borrowing information from previous iterations when the

regularization parameters (λ0, λ1, ω0, ω1) change across the EM iterations.

The stabilization we observed in Figures 7, 8, 9, 10, and 11 allows us to focus and
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report a single value of λ0 and ω0 out of the many that were computed without the need for

cross-validation. The following analogy (reported in Deshpande et al. (2019)) of comparing

the dynamic posterior exploration pre-stabilization to focusing a camera lens should bring

home the points we are trying to make regarding the behavior of the regularization plots

presented in Figures 7 to 11: “starting from a blurry image, turning the focus ring slowly

brings an image into relief, with the salient features becoming increasingly prominent. In

this way, the priors serve more as filters for the data likelihood than as encapsulations of

any real subjective beliefs.”
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Figure 7. Plots for the trajectories of the regression coefficients α̂ and β̂ computed for varying
choices λ0 and ω0. The blue dots corresponds to the variables that are in the slab component
while the red dots are for variables in the spike component of the Laplace mixture.

Figure 8. Plots for the trajectories of the regression coefficients α̂ and β̂ computed for varying
choices λ0 and ω0. The blue dots corresponds to the variables that are in the slab component
while the red dots are for variables in the spike component of the Laplace mixture.
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Figure 9. Plots for the trajectories of the regression coefficients α̂ and β̂ computed for varying
choices λ0 and ω0. The blue dots corresponds to the variables that are in the slab component
while the red dots are for variables in the spike component of the Laplace mixture.

Figure 10. Plots for the trajectories of the regression coefficients α̂ and β̂ computed for
varying choices λ0 and ω0. The blue dots corresponds to the variables that are in the slab
component while the red dots are for variables in the spike component of the Laplace mixture.
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Figure 11. Plots for the trajectories of the regression coefficients α̂ and β̂ computed for
varying choices λ0 and ω0. The blue dots corresponds to the variables that are in the slab
component while the red dots are for variables in the spike component of the Laplace mixture.

To further explore the full potential of DAEMMEVS and the impact of starting values

that are far away from the true coefficient vector, we consider two more randomly generated

starting vectors α(0) = β(0) ∼ Np (0, 3× Ip) and α(0) = β(0) ∼ Np (0, 5× Ip) independently.

For exposition, we set λ0 = ω0 = (0.1, 0.4, 0.7, 1) and applied both EMMEVS and DAEM-

MEVS at temperatures t = 5, 10, and, 20. To assess the recovery support and estimation

performance, we tracked several quantities like numbers of iteration to convergence (ITER),

number of times a true model is selected (FTM), Bias, mean squared error (MSE), execu-

tion time in seconds (TIME). In addition, we evaluate the sensitivity and specificity of our
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procedure. Let

false positive rate (FPR) =
FP

FP + TN

false negative rate (FNR) =
FN

FN + TP

sensitivity (SEN) =
TP

TP + TN

specificity (SPE) =
TN

TN + FP

balanced accuracy rate (BAR) =
SPE + SEN

2

accuracy (ACC) =
TP + TN

TP + TN + FP + FN

Mathew’s correlation coefficient (MCC) =
(TP × TN)− (FP × FN)√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

where TP(TN) and FP(FN) are the total number of true positives (negatives) and false

positives (negatives) identification made in the support recovery respectively. The MCC is a

measure that shows the quality of the classification; its values ranges between −1 (indicates

complete disagreement between the observed and predicted classification) and +1 (indicates

complete agreement between the observed and predicted classification). The BAR is a com-

prehensive performance metric that combines both the sensitivity and the specificity of a

classifier.

We collect the results of these analysis in Tables 2, 3, 4, and 5. We observe from

Tables 2 to 5 that depending on the choice of the starting vectors α(0) and β(0) the bias and

MSE of the EMMEVS algorithm converges to a different solution. In contrast, at higher

temperatures, the DAEMMEVS converges to the same or approximate values of the bias

and the MSE even for distant values. We also notice a downward decrease in the bias and

MSE as the temperature increases. We also observed a similar trend when we look at other

performance metrics (such as MCC, ACC, FTM, and BAR) to investigate the sensitivity

of our procedure to identifying the true model. It is therefore evident from the Tables 2,
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3, 4, and 5 that tempering act to reduce the posterior multimodality and gravitate smaller

coefficient estimates towards zero.
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Table 2. Simulation study for the average variable selection performance of EMMEVS algorithm when p = 20 using 100
repetitions: MSE (average mean squared error), BIAS (average bias), FTM (average number of true models detected),
ACC (average accuracy), MCC (average Mathew’s correlation coefficient), BAR (balance accuracy rate). The MSE has
been re-scaled by a factor of 100 while the BIAS was re-scaled by a factor of 10000.

Temperature Endpoints
α(0) = β(0) = 1p α(0) = β(0) ∼ Np (0, I) α(0) = β(0) ∼ Np (0, 9× I) α(0) = β(0) ∼ Np (0, 25× I)

BIAS MSE FTM ACC MCC BAR BIAS MSE FTM ACC MCC BAR BIAS MSE FTM ACC MCC BAR BIAS MSE FTM ACC MCC BAR

1

α1 -135.75 198.44 1.00 67.82 38.25 75.16 -162.48 187.77 2.00 63.41 34.30 73.72 -159.64 182.03 2.00 60.33 29.95 70.79 -152.21 199.72 1.00 65.33 36.38 74.35

α2 -141.66 197.36 3.00 66.60 36.87 74.39 -166.39 177.16 1.00 63.69 33.59 73.70 -156.84 182.38 0.00 59.18 28.46 70.44 -147.50 207.05 3.00 64.18 35.29 74.19

α3 -142.72 202.68 2.00 63.12 32.97 72.70 -165.68 185.67 0.00 61.97 31.88 73.00 -163.70 196.65 2.00 62.88 33.54 73.01 -158.37 188.11 2.00 63.33 33.65 72.92

β1 -107.05 211.19 7.00 72.90 47.18 79.53 -168.72 191.48 2.00 61.42 31.61 72.67 -150.05 206.97 3.00 63.06 33.67 73.77 -136.12 214.29 3.00 62.84 33.61 72.54

β2 -101.57 210.50 3.00 71.03 44.57 78.66 -159.39 187.87 1.00 62.05 32.47 72.60 -142.20 205.05 2.00 60.00 30.17 71.05 -125.85 184.30 1.00 60.70 31.25 71.76

2

α1 -6.80 16.59 66.00 97.07 92.28 97.79 -10.36 46.61 61.00 96.02 89.94 97.32 -6.23 24.91 53.00 96.02 89.35 97.04 -6.19 21.51 64.00 97.27 92.48 97.73

α2 -8.21 19.37 92.00 99.52 98.39 99.13 -11.05 40.64 77.00 97.97 94.39 98.35 -8.79 30.43 81.00 98.43 95.73 98.73 -7.94 27.54 91.00 99.51 98.42 99.22

α3 -8.77 26.10 93.00 99.56 98.62 99.25 -9.80 43.24 57.00 96.20 90.15 97.53 -11.24 41.86 73.00 97.92 94.11 98.03 -8.06 33.44 86.00 99.26 97.67 99.06

β1 -12.51 32.63 82.00 98.92 96.68 98.75 -10.13 40.22 59.00 95.70 89.17 97.31 -10.56 37.51 73.00 97.96 94.40 98.25 -9.27 33.88 77.00 98.43 95.39 98.26

β2 -10.06 30.44 93.00 99.37 98.16 99.13 -14.44 54.88 71.00 97.40 93.24 98.19 -11.46 42.06 84.00 99.01 97.11 99.09 -10.95 37.06 82.00 98.72 96.26 98.63

3

α1 -2.36 3.13 92.00 99.60 98.81 99.75 -1.89 4.75 98.00 99.90 99.70 99.94 -1.35 4.78 98.00 99.90 99.70 99.94 -2.99 4.11 96.00 99.70 99.20 99.81

α2 -2.73 1.26 100.00 100.00 100.00 100.00 -2.38 1.65 99.00 99.95 99.85 99.97 -2.74 4.67 100.00 100.00 100.00 100.00 -2.61 4.77 100.00 100.00 100.00 100.00

α3 -2.61 1.39 100.00 100.00 100.00 100.00 -2.54 1.62 100.00 100.00 100.00 100.00 -2.66 1.57 100.00 100.00 100.00 100.00 -3.11 1.58 100.00 100.00 100.00 100.00

β1 -0.15 3.95 100.00 100.00 100.00 100.00 1.00 3.03 100.00 100.00 100.00 100.00 -6.01 5.22 97.00 99.80 99.44 99.88 -3.21 5.40 100.00 100.00 100.00 100.00

β2 -2.38 3.78 99.00 99.95 99.85 99.97 -0.96 3.76 98.00 99.90 99.70 99.94 -2.81 5.19 98.00 99.90 99.70 99.94 -2.81 5.47 100.00 100.00 100.00 100.00

4

α1 0.05 0.06 100.00 100.00 100.00 100.00 0.34 0.06 100.00 100.00 100.00 100.00 -0.08 0.07 100.00 100.00 100.00 100.00 -0.18 0.07 100.00 100.00 100.00 100.00

α2 -0.31 0.06 100.00 100.00 100.00 100.00 -0.45 0.06 100.00 100.00 100.00 100.00 -0.57 0.06 100.00 100.00 100.00 100.00 -0.25 0.06 100.00 100.00 100.00 100.00

α3 -0.12 0.06 100.00 100.00 100.00 100.00 0.07 0.06 100.00 100.00 100.00 100.00 -0.43 0.06 100.00 100.00 100.00 100.00 -0.22 0.06 100.00 100.00 100.00 100.00

β1 -0.62 0.88 100.00 100.00 100.00 100.00 1.05 0.98 100.00 100.00 100.00 100.00 0.71 1.31 100.00 100.00 100.00 100.00 -0.56 1.32 100.00 100.00 100.00 100.00

β2 -0.18 0.06 100.00 100.00 100.00 100.00 -0.40 0.06 100.00 100.00 100.00 100.00 0.19 0.06 100.00 100.00 100.00 100.00 -0.19 0.06 100.00 100.00 100.00 100.00
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Table 3. Simulation study for the average variable selection performance of EMMEVS algorithm when p = 50 using 100
repetitions: MSE (average mean squared error), BIAS (average bias), FTM (average number of true models detected),
ACC (average accuracy), MCC (average Mathew’s correlation coefficient), BAR (balanced accuracy rate). The MSE has
been re-scaled by a factor of 100 while the BIAS was re-scaled by a factor of 10000.

Temperature Endpoints
α(0) = β(0) = 1p α(0) = β(0) ∼ Np (0, I) α(0) = β(0) ∼ Np (0, 9× I) α(0) = β(0) ∼ Np (0, 25× I)

BIAS MSE FTM ACC MCC BAR BIAS MSE FTM ACC MCC BAR BIAS MSE FTM ACC MCC BAR BIAS MSE FTM ACC MCC BAR

1

α1 -57.28 1219.78 4.00 79.54 45.09 81.35 -53.07 741.15 0.00 53.79 16.27 66.34 -52.62 830.07 0.00 59.41 21.47 69.73 -59.55 919.43 3.00 63.36 27.01 73.59

α2 -54.45 1205.11 2.00 69.41 31.75 76.42 -51.31 741.21 0.00 56.73 19.37 68.73 -53.56 853.24 0.00 58.52 21.19 70.73 -58.66 954.55 0.00 61.55 23.38 72.83

α3 -54.86 1238.30 0.00 68.67 30.03 75.90 -50.23 774.13 0.00 57.08 19.35 69.15 -50.63 877.72 0.00 60.24 22.42 71.44 -55.86 1005.88 0.00 63.67 25.07 72.61

β1 -47.49 1936.16 2.00 80.27 44.32 83.79 -51.99 954.40 0.00 55.79 18.00 67.65 -54.68 1352.10 0.00 64.27 26.31 74.88 -57.05 1637.11 0.00 68.15 30.58 78.47

β2 -46.59 2067.50 2.00 78.45 42.20 82.81 -50.05 953.34 0.00 57.85 20.03 68.31 -52.22 1357.61 0.00 66.64 28.26 75.60 -52.92 1670.32 1.00 69.57 31.25 78.10

2

α1 -1.54 40.69 64.00 98.21 91.39 98.45 -0.98 57.84 59.00 98.30 91.63 98.73 -1.59 61.10 66.00 98.72 93.21 98.85 -2.10 53.15 59.00 98.11 90.47 98.28

α2 -0.70 46.54 94.00 99.86 99.04 99.47 -0.42 62.96 76.00 99.30 95.89 99.16 -2.87 67.41 92.00 99.76 98.58 99.64 -2.23 54.23 92.00 99.84 99.01 99.80

α3 -0.42 68.18 97.00 99.94 99.55 99.63 -0.96 64.41 43.00 96.60 84.58 97.01 -2.39 81.45 77.00 99.02 95.06 99.01 -1.71 71.52 86.00 99.64 97.83 99.46

β1 -2.21 52.24 84.00 99.54 97.50 99.52 -2.76 72.56 63.00 98.68 93.03 98.83 -1.62 67.19 76.00 99.26 95.83 99.26 -2.47 70.68 76.00 99.30 96.11 99.39

β2 -2.12 53.86 92.00 99.82 98.80 99.33 -1.59 69.55 79.00 99.50 97.01 99.39 -2.79 79.34 75.00 99.40 96.33 98.99 -3.53 77.64 93.00 99.86 99.07 99.58

3

α1 -0.53 5.25 81.00 99.50 97.19 99.73 -0.34 10.19 87.00 99.68 98.17 99.83 -0.31 9.99 91.00 99.78 98.74 99.88 -0.71 10.83 91.00 99.80 98.83 99.89

α2 -0.29 1.44 100.00 100.00 100.00 100.00 -0.22 2.45 92.00 99.82 98.95 99.90 -0.98 8.77 99.00 99.98 99.88 99.99 -0.72 12.52 99.00 99.98 99.88 99.99

α3 -0.29 1.59 100.00 100.00 100.00 100.00 -0.03 2.40 100.00 100.00 100.00 100.00 -0.36 2.13 100.00 100.00 100.00 100.00 -0.66 2.42 100.00 100.00 100.00 100.00

β1 0.26 8.32 96.00 99.92 99.52 99.96 -0.40 8.88 97.00 99.94 99.64 99.97 -0.15 12.60 93.00 99.84 99.07 99.91 -0.34 14.34 93.00 99.86 99.16 99.92

β2 -0.30 7.72 96.00 99.92 99.52 99.96 -1.66 9.58 99.00 99.98 99.88 99.99 -0.85 11.74 97.00 99.94 99.64 99.97 0.00 12.86 95.00 99.90 99.40 99.95

4

α1 0.08 0.17 100.00 100.00 100.00 100.00 -0.08 0.18 100.00 100.00 100.00 100.00 -0.05 0.17 100.00 100.00 100.00 100.00 -0.01 0.17 100.00 100.00 100.00 100.00

α2 0.10 0.16 100.00 100.00 100.00 100.00 -0.22 0.15 100.00 100.00 100.00 100.00 -0.12 0.16 100.00 100.00 100.00 100.00 -0.02 0.16 100.00 100.00 100.00 100.00

α3 0.12 0.15 100.00 100.00 100.00 100.00 -0.01 0.15 100.00 100.00 100.00 100.00 -0.09 0.15 100.00 100.00 100.00 100.00 0.02 0.16 100.00 100.00 100.00 100.00

β1 -0.43 2.70 100.00 100.00 100.00 100.00 0.52 2.77 100.00 100.00 100.00 100.00 0.24 3.83 100.00 100.00 100.00 100.00 -0.81 3.55 100.00 100.00 100.00 100.00

β2 -0.13 0.17 100.00 100.00 100.00 100.00 -0.02 0.18 100.00 100.00 100.00 100.00 -0.13 0.18 100.00 100.00 100.00 100.00 0.04 0.17 100.00 100.00 100.00 100.00
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Table 4. Simulation study for the average variable selection performance of EMMEVS algorithm when p = 100 using 100
repetitions: MSE (average mean squared error), BIAS (average bias), FTM (average number of true models detected),
ACC (average accuracy), MCC (average Mathew’s correlation coefficient), BAR (balanced accuracy rate). The MSE has
been re-scaled by a factor of 100 while the BIAS was re-scaled by a factor of 10000.

Temperature Endpoints
α(0) = β(0) = 1p α(0) = β(0) ∼ Np (0, I) α(0) = β(0) ∼ Np (0, 9× I) α(0) = β(0) ∼ Np (0, 25× I)

BIAS MSE FTM ACC MCC BAR BIAS MSE FTM ACC MCC BAR BIAS MSE FTM ACC MCC BAR BIAS MSE FTM ACC MCC BAR

1

α1 -0.20 9772.04 1.00 87.76 42.10 86.08 -21.14 6252.80 0.00 68.79 18.80 72.36 -19.02 8609.77 0.00 76.96 24.67 77.22 -21.30 8968.26 0.00 80.16 29.37 80.80

α2 -0.18 10286.59 0.00 87.59 40.80 86.58 -19.28 6687.38 0.00 69.65 20.84 75.33 -16.81 9303.40 0.00 81.30 30.92 81.63 -20.91 9523.92 0.00 82.34 32.76 83.37

α3 -0.17 10374.77 0.00 87.99 40.85 86.31 -16.54 6623.88 0.00 70.24 22.43 77.44 -15.72 9551.39 0.00 83.68 35.11 84.31 -19.68 9771.44 0.00 84.59 35.86 84.43

β1 -0.13 10565.65 0.00 88.61 44.50 88.67 -18.01 6915.19 0.00 70.44 21.37 76.34 -17.33 9096.29 0.00 81.13 31.44 83.23 -16.84 9516.13 0.00 83.94 35.98 85.88

β2 -0.12 11355.56 0.00 90.56 47.25 88.61 -14.68 7784.59 0.00 73.96 23.95 77.93 -12.97 10203.50 1.00 85.68 37.97 85.59 -15.32 10929.46 0.00 87.40 41.71 87.33

2

α1 0.00 587.90 44.00 98.21 84.85 95.71 -0.57 120.71 43.00 98.19 85.16 97.62 -0.88 383.95 37.00 97.59 81.62 96.59 -1.91 475.39 28.00 97.71 81.27 96.65

α2 0.00 730.23 79.00 99.73 96.29 97.22 -0.90 120.85 68.00 99.25 93.06 98.05 -0.81 504.39 67.00 99.24 92.33 97.45 -1.12 616.78 64.00 99.34 92.64 96.66

α3 0.00 977.78 62.00 99.17 92.17 96.21 -0.36 138.04 39.00 97.42 80.59 96.38 -1.55 889.73 37.00 97.90 82.75 96.03 -1.83 972.25 38.00 97.92 82.13 94.72

β1 0.00 1655.84 72.00 99.59 95.24 97.87 -0.07 93.19 55.00 98.78 88.45 97.21 -0.36 649.68 41.00 98.66 86.57 96.42 -1.01 1525.09 42.00 98.80 88.13 97.10

β2 0.01 2266.87 79.00 99.74 96.50 97.47 -1.23 121.82 62.00 99.38 92.93 97.76 -0.56 1517.35 36.00 98.60 85.16 95.44 -1.15 2637.24 33.00 98.56 84.78 95.77

3

α1 0.00 10.03 47.00 98.95 90.17 99.45 -0.28 23.84 81.00 99.59 96.24 99.79 -0.01 24.80 80.00 99.52 96.04 99.75 -0.81 24.33 80.00 99.58 96.36 99.78

α2 0.00 1.92 98.00 99.98 99.77 99.99 -0.29 6.25 86.00 99.78 97.84 99.89 -0.22 17.04 94.00 99.89 98.94 99.94 -1.03 22.01 95.00 99.93 99.29 99.96

α3 0.00 2.56 98.00 99.94 99.49 99.97 -0.02 4.13 95.00 99.87 98.85 99.93 -0.15 8.01 100.00 100.00 100.00 100.00 -0.32 10.16 100.00 100.00 100.00 100.00

β1 0.00 20.00 100.00 100.00 100.00 100.00 -0.88 25.83 87.00 99.83 98.25 99.91 0.12 25.62 77.00 99.66 96.56 99.82 0.47 24.67 69.00 99.57 95.58 99.78

β2 0.00 21.56 87.00 99.78 97.84 99.89 -0.26 25.31 84.00 99.73 97.36 99.86 -0.38 22.09 79.00 99.64 96.43 99.81 0.19 18.62 73.00 99.60 95.93 99.79

4

α1 0.00 0.38 100.00 100.00 100.00 100.00 0.01 0.39 100.00 100.00 100.00 100.00 -0.04 0.38 100.00 100.00 100.00 100.00 0.00 0.39 100.00 100.00 100.00 100.00

α2 0.00 0.34 100.00 100.00 100.00 100.00 -0.04 0.33 100.00 100.00 100.00 100.00 0.02 0.35 100.00 100.00 100.00 100.00 0.00 0.35 100.00 100.00 100.00 100.00

α3 0.00 0.34 100.00 100.00 100.00 100.00 0.02 0.33 100.00 100.00 100.00 100.00 0.03 0.36 100.00 100.00 100.00 100.00 -0.06 0.35 100.00 100.00 100.00 100.00

β1 0.00 7.59 100.00 100.00 100.00 100.00 0.18 8.48 100.00 100.00 100.00 100.00 0.57 11.16 100.00 100.00 100.00 100.00 -0.08 11.07 100.00 100.00 100.00 100.00

β2 0.00 0.37 100.00 100.00 100.00 100.00 0.00 0.38 100.00 100.00 100.00 100.00 -0.04 0.37 100.00 100.00 100.00 100.00 -0.18 0.37 100.00 100.00 100.00 100.00

54



Table 5. Simulation study for the average variable selection performance of EMMEVS algorithm when p = 200 using 100
repetitions: MSE (average mean squared error), BIAS (average bias), FTM (average number of true models detected),
ACC (average accuracy), MCC (average Mathew’s correlation coefficient), BAR (balanced accuracy rate). The MSE has
been re-scaled by a factor of 100 while the BIAS was re-scaled by a factor of 10000.

Temperature Endpoints
α(0) = β(0) = 1p α(0) = β(0) ∼ Np (0, I) α(0) = β(0) ∼ Np (0, 9× I) α(0) = β(0) ∼ Np (0, 25× I)

BIAS MSE FTM ACC MCC BAR BIAS MSE FTM ACC MCC BAR BIAS MSE FTM ACC MCC BAR BIAS MSE FTM ACC MCC BAR

1

α1 -4.99 54569.13 3.00 93.41 44.77 87.21 -3.67 32077.69 0.00 73.31 15.18 74.26 -3.31 50261.30 0.00 86.06 25.66 82.11 0.24 51398.29 0.00 86.37 25.28 81.54

α2 -4.29 60201.17 2.00 92.35 40.12 87.53 -4.30 28684.30 0.00 68.04 13.36 72.80 -3.52 56145.78 0.00 85.35 25.69 83.47 1.10 58653.87 0.00 87.20 27.38 83.79

α3 -3.72 62260.86 1.00 91.59 37.83 87.99 -2.59 23920.66 0.00 63.18 11.60 70.68 -2.94 58007.38 0.00 85.63 26.11 83.85 1.64 60150.30 0.00 87.91 28.90 84.53

β1 -4.53 57537.72 0.00 93.51 42.29 86.52 -1.17 36530.07 0.00 75.38 16.54 75.81 -0.77 49907.72 0.00 84.53 23.47 80.96 -0.21 51868.92 0.00 86.03 25.60 82.71

β2 -3.00 59540.13 0.00 91.73 36.98 87.46 -1.71 31491.37 0.00 69.87 14.05 73.12 -2.46 51665.37 0.00 85.06 24.50 81.85 0.05 55094.51 0.00 86.48 26.76 83.18

2

α1 0.81 28186.75 12.00 96.63 59.29 87.14 -0.15 3038.24 0.00 85.89 32.67 82.64 1.00 19546.60 2.00 94.68 46.56 85.29 1.52 22900.82 3.00 95.50 52.34 86.56

α2 1.14 35508.10 43.00 99.56 87.65 90.34 -0.17 4910.61 4.00 86.75 35.99 82.22 1.46 28849.13 17.00 98.60 71.85 88.02 2.23 29839.19 17.00 98.82 75.23 89.35

α3 1.06 40488.97 27.00 99.03 79.91 89.10 -0.54 5927.49 1.00 80.39 24.44 77.62 1.71 35718.24 12.00 97.74 66.16 89.30 2.95 35943.10 13.00 97.74 66.13 88.80

β1 -0.21 38292.09 24.00 99.03 79.40 88.73 -0.60 2729.11 2.00 87.62 38.02 83.15 0.42 30101.75 4.00 97.67 60.37 86.68 -1.53 34637.61 9.00 98.10 66.67 88.13

β2 0.24 40359.36 25.00 99.27 81.80 88.73 -0.15 5501.73 2.00 89.47 41.25 84.22 1.05 37024.72 9.00 98.21 66.72 88.67 -2.00 39645.65 13.00 98.38 69.38 88.52

3

α1 0.24 58.79 64.00 98.77 86.35 99.37 0.12 71.13 80.00 99.18 91.80 99.58 0.01 64.36 63.00 98.49 85.80 99.23 -0.14 54.52 51.00 97.73 80.57 98.84

α2 0.00 3.14 100.00 100.00 100.00 100.00 -0.07 8.16 76.00 98.97 89.32 99.47 0.24 49.96 98.00 99.89 98.97 99.94 -0.08 63.29 99.00 99.93 99.45 99.96

α3 -0.03 4.96 95.00 99.64 97.37 99.82 -0.01 18.78 37.00 96.92 71.59 98.43 -0.18 94.48 96.00 99.81 98.19 99.90 -0.12 92.67 99.00 99.97 99.62 99.98

β1 -0.04 48.59 64.00 99.50 91.97 99.74 -0.15 57.25 57.00 99.41 90.71 99.70 -0.17 58.21 63.00 99.49 91.97 99.74 0.29 239.85 66.00 99.64 93.85 99.82

β2 -0.08 27.88 49.00 97.51 76.34 98.73 -0.10 41.51 55.00 97.84 79.46 98.90 -0.22 95.87 86.00 99.42 94.42 99.70 -0.22 1604.30 84.00 99.30 93.20 99.64

4

α1 0.00 0.89 100.00 100.00 100.00 100.00 0.01 0.90 100.00 100.00 100.00 100.00 -0.03 0.90 100.00 100.00 100.00 100.00 0.00 0.92 100.00 100.00 100.00 100.00

α2 0.01 0.79 100.00 100.00 100.00 100.00 -0.02 0.81 100.00 100.00 100.00 100.00 0.02 0.83 100.00 100.00 100.00 100.00 0.00 0.82 100.00 100.00 100.00 100.00

α3 -0.02 0.79 100.00 100.00 100.00 100.00 0.01 0.82 100.00 100.00 100.00 100.00 0.00 0.81 100.00 100.00 100.00 100.00 -0.02 0.82 100.00 100.00 100.00 100.00

β1 0.18 23.69 67.00 99.77 95.34 99.88 -0.01 42.82 71.00 99.80 95.93 99.90 -0.06 38.73 85.00 99.89 97.78 99.94 -0.18 33.72 85.00 99.92 98.20 99.96

β2 -0.01 0.90 100.00 100.00 100.00 100.00 -0.01 0.89 100.00 100.00 100.00 100.00 -0.02 0.90 100.00 100.00 100.00 100.00 -0.05 0.87 100.00 100.00 100.00 100.00

55



Discussion and Chapter Summary

Motivated by the practical applications in clinical, medical, and behavioral studies as

well as toxicology and psychometric among others, we propose a deterministic shrinkage pro-

cedure to select relevant covariates and conduct parameter estimation simultaneously. The

method extends the univariate linear regression solution of Ročková and George (2014) to

the complex multivariate (clustered or longitudinal) mixed outcomes with high-dimensional

covariates.

We deployed our proposed EMMEVS algorithm and its deterministic annealing vari-

ant within a path-following scheme to identify the modes of several posterior distributions,

corresponding to different choices of λ0 and ω0 from the spike distributions. In contrast to

MCMC procedures which attempts to characterize a single posterior, our usage of the dy-

namic posterior exploration enables us to report the modes of several posterior distributions

based on the grid of λ0 and ω0 from the spike distribution. We take advantage of some of the

available algorithm (such as DWL of Chang and Tsay (2010) and glmnet of Friedman et al.

(2010)) to obtain a computationally efficient scheme which is scalable to high-dimensional

data.

We demonstrate the advantage of our procedure in terms of variable selection, pre-

diction, and computational scalability via extensive simulation study. The results obtained

from the simulation revealed that the modal estimates identified by our dynamic posterior

exploration stabilized rapidly very early in their trajectories (especially with our implemen-

tation of DWL scheme and as the temperature increases); thus, allowing us to report a single

estimate out of the many we computed without the need for cross-validation.

While there is no general guarantee that these trajectories will stabilize, figures like

Figures 7, 8, 9, 10, and 11 provide a useful self-check: if one observes stabilization in the

supports of α and β and in the log-posterior, one can safely report the final mode identified.
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On the other hand, if the modal estimates have not stabilized, one can simply add larger

values of λ0 and ω0 to the ladders and continue exploring. Although our focused in this

dissertation was on the simplest setting where the γ’s and µ’s are treated as exchangeable,

it is not difficult to incorporate more thoughtful structured sparsity within our framework.

For example, if the predictors displayed a known grouping structure, we could introduce

several parameters, one for each group, with little additional computational overhead
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Chapter 4

Real Data Analyses

4.1 The HELP Study Data Set

4.1.1 Background on the HELP study

Some patients with identified alcohol dependency, drug addiction, and substance

abuse problems are fortunate to undergo detoxification programs by the federal/state gov-

ernments or through their primary care physicians. However, despite an apparent need for

medical services, many of these patients without primary medical care (PMC) do not receive

adequate medical care (D’Aunno, 1997; Saitz et al., 1997). For this population of patients

without PMC, there is a high chance of relapse due to other mental and emotional issues

that go with substance abuse (cocaine, heroin) and alcohol dependency. To reduce relapse,

patients are either linked to existing medical services or received treatment at the substance

abuse treatment site. The practicality of linking patients with substance abuse problems to

an off-site PMC has been implemented. Such implementation was carried out in the HELP

(Health Evaluation and Linkage to Primary Care) study.

The HELP study was a clinical trial for adult inpatients recruited from a detoxification

unit. Patients with no primary care physician were randomized to receive a multidisciplinary

assessment and a brief motivational intervention or usual care, to link them to PMC. Eligible

subjects were adults, who spoke Spanish or English, reported alcohol, heroin, or cocaine as

their first or second drug of choice, and either resided in proximity to the primary care

clinic to which they would be referred or were homeless. Patients with established primary

care relationships they planned to continue, significant dementia, specific plans to leave the

Boston area that would prevent research participation, failure to provide contact information
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for tracking purposes, or pregnancy were excluded. Subjects were interviewed at baseline

during their detoxification stay, and follow-up interviews were undertaken every six months

for two years. A variety of continuous, count, discrete, and survival time predictors and

outcomes were collected at each of these five occasions. The details of the randomized trials

is described in Samet et al. (2003). The analyses carried out here are intended to illustrate

our proposed procedures, a comprehensive study of the data is planned for future.

Meanwhile, since all the patients cannot be linked to the PMC, the physician have

to decide which patient should be connected and who should not. To help the physician

in making this decision, we are using the data from the HELP study to identify the risk

factors for those that may be linked to the PMC using the novel methodology developed in

this dissertation. In our analyses, we assembled five endpoints (two continuous and three

discrete as presented in Table 6). There were 39 covariates including the time factor.

Table 6. Description of endpoints extracted from the HELP study data. Note that we used
the cut-off point of to dichotomized the cesd scale. We computed the range for pcs and mcs
from the baseline visit.

Variables Description Type Range

pcs SF-36 Physical Component Score continuous 14.07 - 74.81
mcs SF-36 Mental Component Score continuous 6.76 - 62.18
cesd Center for Epidemiological Studies Depression Scale discrete 0-1
g1b Experienced serious thoughts of suicide (last 30 days) discrete 0-1
pcrec Number of primary care visits last 6 months discrete 0-2

4.1.2 Results - HELP Study

In this section, using the HELP study data described above, we apply the EMMEVS

procedure to identify the risk factors to help physician decide on whether to link a patient

to PMC or not after undergoing detoxification. In the analyses, we set α(0) = β(0) = 1p,

σ
2(0)
ε = 0.1, σ

2(0)
a = 0.9, Σ = Iq. The hyper-parameters ν1, ν2, κ1, and κ2 are set to 10000

and ν0 = p + 1. We also set a1 = a2 = 1, b1 = b2 = p in order to obtain optimal posterior
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concentration rates as suggested by Castillo and van der Vaart (2012). Further, the slab

variance parameter λ1 and ω1 is fixed at 150 and for λ0 (ω0), we consider grid of 20 evenly

spaced out values between 0.1 and 0.2 for each endpoints. We consider the sensitivity of the

results to the tuning parameters λ0(ω0) and λ1 (ω1) and found them to be robust. Meanwhile,

increasing the slab scale parameters (λ1 and ω1) only affect the number of iterations to

convergence; in other words, the larger the λ1 and ω1, the more time it takes EMMEVS

to converge. As with our simulation, we found the deterministic annealing variants of the

EMMEVS to perform better and this is what we report here. Figure 12 presents the dynamic

posterior exploration results and Table 7 displays the variables selected for each endpoints.

The variables selected by each of the five endpoints differs, however.
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Table 7. Variables selected using deterministic annealing version of EMMEVS at temperature
= 20 for selected λ0(ω0) values along the regularization path leading to the selection of the
predictors indicated with a bold font.
Variable Names pcs mcs cesd g1b pcrec Variable Description

a15a 0.42 0.27 0.94 -6.89 20.03 # nights in overnight shelter-last 6 months

a15b -0.74 -0.10 -7.48 0.00 16.56 # nights on street-last 6 months

d1 -0.99 -0.75 -2.15 1.47 -3.40 # times ever hospitalized for medical problems

i1 -0.73 -0.15 -0.33 0.22 -8.42 Average # drinks in first 30 days before detoxification

i2 0.68 -0.01 -1.97 6.67 -3.08 Most drank any 1 day in first 30 before detoxification

age -1.85 -0.10 -3.18 -0.62 -0.90 age at baseline (in years)

pss fr 0.63 0.65 -0.20 0.12 -0.43 perceived social supports (friends)

daysdrink -0.57 1.26 -38.71 -80.71 -7.49 Time (days) from baseline to first drink since leaving detoxification (6 months)

daysanysub 0.11 -0.50 38.52 13.81 19.54 Time (days) from baseline to first alcohol, heroin, or cocaine since leaving detoxification (6 months)

dayslink -0.23 -0.31 -31.48 -67.68 -14.84 Time (days) to linkage to primary care within 12 months (by administrative record)

e2b 0.32 -0.13 -2.16 -0.19 1.09 # of times in past 6 months entered a detoxification program

drugrisk -0.24 -0.20 0.12 1.57 -1.44 RAB-Drug Risk Total

sexrisk 0.00 0.12 -0.35 0.03 -0.97 RAB-Sex Risk Total

p1b 0.00 1.64 -8.32 -5.63 -0.89 Age first physical assaulted by person know

p2b -0.63 -0.16 -2.96 -8.02 -2.31 Age first physical assaulted by stranger

p5b 1.14 -2.16 1.08 3.30 -2.94 Age first sex assaulted by person know

p6b -0.38 -1.92 -6.06 -2.21 -2.97 Age first sex assaulted by stranger

c au -0.49 -0.93 0.04 0.01 -0.14 ASI-Composite Score for Alcohol Use

c du 0.42 -0.47 -0.24 -0.08 -0.03 ASI-Composite Score for Drug Use

phys -1.92 -1.75 0.30 0.11 0.01 InDUC-2L-Physical-RAW

inter 0.00 0.80 -0.22 -0.28 -0.66 InDUC-2L-Interpersonal-RAW

intra 0.38 -1.05 0.27 -0.08 0.00 InDUC-2L-Intrapersonal-RAW

impul -0.06 -0.98 0.93 -1.01 -0.97 InDUC-2L-Impulse Control-RAW

sr 0.91 0.68 -0.25 -0.10 0.11 InDUC-2L-Social Responsibility-RAW

minage -0.26 0.00 -3.43 -1.75 1.61 Age of first experience of physical or sexual abuse

female2 -2.21 -5.36 -0.41 -0.47 -0.43 Gender of respondent, baseline is male

substance2 3.05 2.85 -1.22 -0.21 0.14 primary substance of abuse cocaine, heroin is baseline

substance3 2.82 2.56 -0.76 -0.61 -0.30 primary substance of abuse alcohol, heroin is baseline

racegrp2 -0.86 -1.41 -1.49 -0.25 -1.79 hispanic, baseline is others

racegrp3 1.25 0.58 -1.16 -1.52 -1.18 white, baseline is others

racegrp4 0.34 1.26 -1.49 -0.78 -1.13 black, baseline is others

homeless2 0.82 -1.21 -0.50 0.47 0.37 Homeless-shelter/street past 6 months

satreat2 0.14 -0.13 -0.04 -0.06 0.63 Any substance abuse treatment this time point

drinkstatus2 -0.85 1.71 0.75 -0.05 -0.27 Drank alcohol since leaving detoxification? (6 month)

anysubstatus2 1.00 -3.14 -0.58 -0.37 -0.56 Used alcohol, heroin, or cocaine since leaving detoxification? (6 months)

abuseage2 0.49 3.97 0.17 0.00 -0.76 Age of onset of physical or sexual abuse is between 13 and 17 years, baseline is <13 years

abuseage3 0.64 3.95 -0.09 -0.58 0.00 Age of onset of physical or sexual abuse is more than 17 years, baseline is <13 years

hs grad2 2.05 1.25 0.24 -0.26 -0.37 High School graduate, baseline is no
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Figure 12. Plots of estimated regression coefficients for the trajectories of α̂1, α̂2, β̂1, β̂2,
and β̂3 for varying choices λ0 and ω0. The estimates for variables with conditional posterior

inclusion probability P
(
γr = 1|α̂, θ̂1

)
and P

(
µr = 1|β̂, θ̂2

)
above (below) 0.5 depicted in

blue (red). The last log posterior plot in the third row is used for submodel evaluation, i.e,
the selection of the optimum λ0(ω0) defined as the model with maximum λ0, in this case was
found to be 16 at λ0 = 0.1789474
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4.2 The National Alzheimer’s Coordinating Center’s Uniform Data Set

4.2.1 About the Data

The National Alzheimer’s Coordinating Center is responsible for developing and

maintaining a database of participant information collected from the 34 past and present

Alzheimer’s Disease Centers (ADC). The NIA organized the Alzheimer’s Disease Centers

Clinical Task Force and defined a standardized Uniform Data Set (UDS) (Beekly et al.,

2007). The ADC provides researchers a standard set of assessment procedures to charac-

terize mild Alzheimer’s disease (AD) and mild cognitive impairment (MCI) in comparison

with non-demented controls. NACC provided the patient data set used in this study. The

data includes patients’ demographics, health history, physical information, and four primary

measurements of AD condition presented in Table 8. Our analysis is based on a subset of

this data set concerning the status of AD for patients that attended the clinic for at least

four times. The total number of subjects that met this requirement is 16070.

To focus on the identification of the risk factors of AD, patients who were marked with

probable AD and had more than three visits were chosen from the original data set. As a

result, 16,070 patients with likely AD between August 2005, and December 2019, as a subset

of the NACC data set, were used in this study. The number of visits varies with patients

in the subgroup, with an average of 4.98 visits for a patient while the maximal number

reaches as high as 14. In total, there are 78 features/predictors (including time interval)

in the created data subset. Detailed descriptions of other variables are available in Table

9. There are different data types in this data subset, such as continuous variables, ordinal

variables, and nominal variables (including dummy variables). Four primary measurements

mainly characterized the condition of AD for each patient:

We note that our proposed model is neutral to etiologic diagnoses, which implies that
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Table 8. Description of endpoints extracted from the NACC uniform data set.

Endpoints Endpoint Description Type Range

CDRGLOB (Morris, 1993) Global Staging CDR Ordinal

0.0 = No impairment

0.5 = Questionable impairment

1.0 = Mild impairment

2.0 = Moderate impairment

3.0 = Severe impairment

FAQ (Pfeffer et al., 1982) Functional Activities Questionnaire Discrete 0-30

MMSE and MoCA

(Folstein et al., 1975; Hobson, 2015)
Mini-Mental State Examination Discrete 0-30

CDRSUM (Morris, 1993) Standard CDR sum of boxes Discrete 0 - 18

other metrics defining AD progression stages can be used to replace the primary endpoints

defined above.

4.2.2 Research Question

Clinicians and researchers have conducted numerous studies to identify the risk factors

of AD. Most of these studies are carried out using a single endpoint (Gomar et al., 2011;

Helzner et al., 2009; Lindsay et al., 2002; Ravaglia et al., 2006). However, due to the

complex nature of the AD, AD condition is usually measured by multiple neuropathologic

and clinical measurements. Thus, failing to leverage the association between these mixed

endpoints when trying to identify the risk factors of AD may cast doubt on the results

reported. In the present study, we assembled four of the most commonly used measurements

for diagnosing the AD in order to address this shortcoming. Why is it essential to identify

the risk factors for AD? Identifying the risk factors can help

1. retard disease progression during presymptomatic phases of AD/MCI, when it is more

likely that pathologic changes can be arrested or reversed, and

2. demonstrate intervention efficacy, for instance, during clinical trials, it is essential to
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recruit only subjects that are highly likely to have the disease (e.g., AD) because

little or no prevention can be detected among the subjects that are not likely to have

the disease. Selecting participants to maximize treatment benefits (such as study

enrichment, for example, recruiting those with high risk for developing AD) is critical

for a reduction in the cost of following false-positive subjects longitudinally and avoid

trial failure due to the benefits among the experimental group.

The question is, how do we identify patients that are likely to develop the AD (or other

potential outcomes of interests) accurately when multivariate mixed endpoints characterized

by high-dimensional predictors?

4.2.3 Results - UDS Data Analyses

Our analysis in this section was based on the NACC UDS data set described above.

We used this data to illustrate the power of EMMEVS and answer the research question

posed in Section 4.2.2. In the analyses, we set α(0) = β(0) = 1p, σ
2(0)
ε = 3, σ

2(0)
a = 0.1,

Σ = Iq. The hyper-parameters ν1, ν2, κ1, and κ2 are set to 10000 and ν0 = p + 1. We

also set a1 = a2 = 1, b1 = b2 = p in order to obtain optimal posterior concentration rates

as suggested by Castillo and van der Vaart (2012). Further, the slab variance parameter

λ1 and ω1 is fixed at 100 and for λ0(ω0), we consider grid of 20 evenly spaced out values

between 0.01 and 0.015 for each endpoints. We consider the sensitivity of the results to the

tuning parameters λ0(ω0) and λ1(ω1) and found them to be robust. Meanwhile, increasing

the slab scale parameters (λ1andω1) only affect the number of iterations to convergence; in

other words, the larger the λ1andω1, the more time it takes EMMEVS to converge. As with

our simulation, we found the deterministic annealing variants of the EMMEVS to perform

better and this is what we report here. Figure 13 presents the dynamic posterior exploration

results and Table 9 displays the variables selected for each endpoints.
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It is pertinent to remark here that the analysis of the UDS data presented here is for

illustrative purposes only, we plan to do a more substantive and comprehensive analysis of

this data in the nearest future.

Table 9. Variables selected using deterministic annealing version of EMMEVS at temperature
= 20 for selected λ0(ω0) values along the regularization path leading to the selection of the
predictors indicated with bold font.

Variable Names CDRGLOB FAQ MMSE CDRSUM Variable Description

SEX2 -0.38 0.83 -0.98 0.07 Subject’s sex

NACCAPOE2 0.72 -0.21 1.84 4.33 APOE genotype e3,e4

NACCAPOE3 -0.04 0.31 0.12 -2.37 APOE genotype e3,e2

NACCAPOE4 1.31 -0.73 3.05 -3.23 APOE genotype e4,e4

NACCAPOE5 0.58 -0.23 0.75 2.70 APOE genotype e4,e2

NACCAPOE6 0.54 0.31 1.08 0.01 APOE genotype e2,e2

NACCAGE 0.01 0.05 0.38 0.36 Subject’s age at visit

NACCAGEB 0.00 0.03 -0.36 1.35 Subject’s age at initial visit

EDUC -0.01 0.32 -0.07 -1.78 Years of education

NACCBMI 0.02 0.13 0.04 -0.64 Body mass index (BMI)

BPDIAS 0.01 0.05 0.01 -1.67 Subject blood pressure (sitting), systolic

BPSYS 0.00 0.02 0.00 -1.73 Subject blood pressure (sitting), diastolic

HRATE 0.01 0.04 0.03 -0.54 Subject resting heart rate (pulse)

SMOKYRS 0.00 0.00 0.00 1.81 Total years smoked cigarettes

QUITSMOK 0.00 0.04 -0.01 -1.60 Age at which subject quit smoking

NACCETPR -0.09 0.09 -0.22 1.20 Primary etiologic diagnosis e.g., MCI, impaired, not MCI
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Figure 13. Plots of estimated regression coefficients for the trajectories of α̂1, α̂2, α̂3, and
β̂1 for varying choices λ0 and ω0. The estimates for variables with conditional posterior

inclusion probability P
(
γr = 1|α̂, θ̂1

)
and P

(
µr = 1|β̂, θ̂2

)
above (below) 0.5 depicted in

blue (red).
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Chapter 5

Conclusion and Further Research

In this chapter, we present the details of the ongoing work and further research. In

particular, we give a comprehensive account of two key methodologies that can be used to

model and analyze multivariate mixed endpoints with high-dimensional covariates.

5.1 Use of Scale Mixture of Uniform Distribution

To address the statistical and computational challenges described in Chapter 1, we

are working on another novel procedure that makes use of a data augmentation strategy

motivated by a scale mixture representation of the uniform distribution. We consider a

fully Bayesian solution to answer the research question posed in Section 1 by assigning in-

dependent priors on the regression parameters. Due to the Bayesian interpretation of the

frequentist LASSO, the Bayesian regularization framework has enjoyed increased applicabil-

ity in the literature (see, for example, Armagan et al., 2013; Bhadra et al., 2017; Figueiredo,

2003; Hans, 2009; Park and Casella, 2008. Park and Casella (2008) introduced the Gibbs

sampling procedure using a conditional Laplace prior with a particular focus on address-

ing the multimodality issues. Other methods based on Laplace priors include the Bayesian

LASSO via reversible-jump MCMC (Chen et al., 2011) and Bayesian LASSO regression

of Hans (2009). In our ongoing study, we suggest a new hierarchical formulation of the

Bayesian LASSO utilizing the SMU representation of the Laplace distribution in the context

of multivariate mixed endpoints data. We are motivated to consider a regularized Bayesian

procedure because compared to the classical counterpart, the Bayesian framework:

1. Is endowed with several model summaries and parameter uncertainties (e.g., mean,

standard errors), which follows naturally from the posterior distributions.
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2. Have estimates with an intuitive interpretation. For example, a 95% Bayesian credi-

bility interval can simply be interpreted as the interval in which the actual value lies

with 95% probability.

3. Is flexible and computationally efficient, leading to scalable MCMC algorithms with

good convergence and mixing properties. The cost of the flexibility of MCMC, how-

ever, is that it requires more computation time compared to standard optimization

procedures.

4. Can estimate the penalty parameter(s) simultaneously with the model parameters in

a single step.

5. Can handle multimodal optimization problems well. Indeed, this is one of the most

persuasive arguments for pursuing a fully Bayesian approach, as summarizing a multi-

modal surface with a single frequentist point estimate can be vastly misleading (Polson

et al., 2014). This multimodal issue is particularly worrisome in our case, where we

are dealing with multivariate mixed endpoints with high-dimensional covariates.

Andrews and Mallows (1974), Feller (1971) introduced the use of scale mixtures in

the statistics literature. These authors used it to sample symmetric distribution with normal

components and become what is known as the scale mixture of normal (SMN) distribution.

Walker and Gutierrez-Pena (1999), Walker et al. (1997) proposed a new class of scale mixture

of distribution known as the scale mixtures of uniform (SMU) distribution.

The SMU density representation is similar to the SMN representation but with the

normal distribution replaced by a uniform distribution whose support is determined by the

mixing parameter. Since the appearance of SMU, several authors Choy et al., 2009; Choy

and Chan, 2008; Mallick and Yi, 2014; Qin et al., 1998a, 1998; Qin et al., 2003 have applied

the SMU distribution in their research. Walker et al. (1997) used SMU distribution in normal

regression models in the non-Bayesian framework. Qin et al. (1998) provided Gibbs sampler
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by using SMU in variance regression models and also to derive Gibbs sampler for auto-

correlated heteroscedastic regression models (Qin et al., 1998a). Choy et al. (2009) used it

in a stochastic volatility model with a two-stage scale mixture representation of the student-t

distribution. The use of SMU in multivariate mixed endpoints data settings has received

less attention. Our goal is to propose a Gibbs sampler that utilizes the SMU distribution

for the Laplace density.

Typically, a popular choice of the prior distribution for the regression coefficient is a

normal distribution with zero mean and unknown variance. The use of the Gaussian prior

distribution leads to a ridge estimator and has been reported to perform poorly if there are

large differences in the size of the fixed coefficients (Griffin & Brown, 2010). According to

Tibshirani (1996), Laplace prior is a generalization of the ridge prior and leads to the LASSO

estimator, we, therefore, elected to place the following independent Laplace distribution as

a prior on the regression coefficients α and β

τ(α`|λ) =
c∏
`=1

1

2λ
exp

{
−|α`|

λ

}
and τ(βf |ω) =

h∏
f=1

1

2ω
exp

{
−|βf |

ω

}
(5.1)

A noteworthy feature of the Laplace densities given in (5.1) is that it can be reformulated as

an SMU distribution; this formulation which makes the model inference tractable is presented

in the proposition

Proposition 1. The Laplace density τ(x) = 1
2Ξ

exp
(
− |x|

Ξ

)
can be written as a scale mixture

of uniform distribution, the mixing density being a gamma distribution. That is

1

2c
exp

(
−|x|
Ξ

)
=

∫
−uΞ<x<uΞ

1

2u
Gamma

(
2,

1

Ξ

)
du (5.2)

As with many penalized regression problems, we add a penalty term to the minimiza-

tion of the sum of squared residuals, resulting in the following regularization problem (with
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the goal of shrinking small coefficients towards zero while leaving large coefficients large.)

minimize{RSS + penalty} (5.3)

However, rather than minimizing (5.3), we addressed the problem from a Bayesian perspec-

tive. We solve the problem by constructing a Markov chain whose stationary distribution is

the joint posterior for α and β and the minimizer of (5.3) as its global mode.

5.2 Use of the Spike-and-Slab LASSO

In chapter 3, we used the spike-and-slab mixtures of Laplace priors to address the

statistical and computational challenges inherent in the multiple mixed endpoints character-

ized with high-dimensional variables. The procedure derived therein considered the problem

of estimation and variable selection from a non-penalized perspective. In this chapter, we

present a new method that combine the advantage of the Bayesian procedure with the read-

ily available computational algorithm in the frequentist paradigm. Specifically, we suggest a

penalized procedure that borrows strength from the spike-and-slab Laplace densities and the

frequentist LASSO which induces sparsity through penalty functions. This chapter draws

inspiration from Ročková and George (2018) spike-and-slab LASSO for sparse normal means

estimation in a univariate linear regression setting.

The Spike-and-Slab LASSO (SSL) was introduced by Ročková and George (2018),

SSL places a mixture of two Laplace densities on each regression coefficients, δj, as follows:

τ(δ|ϑ) =

p∏
j=1

[ϑjτ (δj|η1) + (1− ϑj) τ (δj|η0)] (5.4)

where 0 < θ < 1 is defined as the mixing proportion and τ (δ|η) = η
2

exp{−η|δ|} denotes a

univariate Laplace distribution with mean 0 and variance 2
η2

. Typically, it is assumed that
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η0 � η1 > 0, this allows the spike distributions τ (δj|η0) to be concentrated around zero and

the slab distribution, τ (δj|η1) to be relatively diffuse (Ročková & George, 2018).

The SSL model has wide-applicability outside of univariate linear regression: it has

been adapted to address wide-ranging statistical and computational problems such as gen-

eralized linear models problems (Tang et al., 2018; Tang et al., 2017a), covariance matrix

estimation(Deshpande et al., 2019; Gan et al., 2019), causal inference (Antonelli et al., 2019),

group LASSO and generalized additive models, (Bai et al., 2019) factor analysis (Ročková

& George, 2016), and Cox proportional hazard models (Tang et al., 2017b). Meanwhile,

the use of SSL in multivariate mixed endpoints model with high-dimensional covariates is

sparse, and to the best of our knowledge, this is the first study to apply SSL in that setting.

We extend the use of the SSL to analyze data with multiple mixed endpoints and

large number of covariates. We referred to our formulation as the spike-and-slab LASSO

with mixed endpoints (hereafter, SSLME). Under the SSLME prior, the global posterior

mode is exactly sparse, thereby allowing the mode to automatically separate the active from

the non-active regression coefficients. Our development here is based on the non-separable

(fully Bayes) and self-adaptive penalty that allow us to automatically adapt to ensemble

information about sparsity. The continuous nature of our prior is critical in facilitating

efficient coordinate ascent algorithm for the maximum a posteriori (MAP) estimation that

allow us to bypass the use of MCMC such as the Gibbs sampling procedure described in

Section 5.1.

5.3 Further Research

In Chapter 3, we assumed a Gaussian distribution for the unobserved continuous la-

tent variable underlying the discrete outcomes to jointly modeled the discrete and continuous

responses. However, there are other potential alternatives to the Gaussian distribution. To

this end, we intend to investigate the effects of assuming other distributions like t-latent
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distributions (de Leon & Wu, 2011; Liu, 2005; Tan et al., 1999), latent logistic regression

(Nikoloulopoulos & Karlis, 2008), and the Gaussian copula method (de Leon & Wu, 2011)

on our model. It will be interesting to investigate the behavior and sensitivity of our model

under each of these assumptions.

Another extension of our proposed methodology which we intend to research in the

future is when the structural information about the predictors is available such as biological

information in a genetic context. to achieve the modeling here, a more flexible priors, such as

the logistic regression product prior (Stingo et al., 2010) and the Markov random field prior

(Li & Zhang, 2010; Stingo & Vannucci, 2011) can be employed to transmit the biological

information.

One crucial reality with any modeling and data analysis is the practicality of having

to deal with missing data – usually, this is a common situation. For example, in the two

real-data sets we analyzed in Chapter 4, there are so many missing observations. Therefore,

part of our future plan is to continue research on variable selection in clustered/longitudinal

multivariate mixed endpoints characterized by high dimensional covariates to a more realistic

case of missing responses in both discrete and continuous responses. The analysis of mixed

endpoints data with missing values have been investigated in the past in the context of

bivariate data. For example, Little and Schluchter (1985) and Fitzmaurice and Laird (1997)

modeled such data using the general location model of Olkin and Tate (1961) and assume

the missing values are missing at random to justify their ignoring the missing data.

Another potential future research focus of mine is to extend the model selection

research to the informative visit processes in a longitudinal design.

5.4 Conclusion

Statisticians have developed several procedures for the estimation and variable selec-

tion in high-dimensional dynamic regression models for linear regression (Fan & Li, 2001;
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Tibshirani, 1996; Tibshirani et al., 2005; Zou & Hastie, 2005), logistic/multinomial data

(Holmes & Held, 2006; Tutz & Pössnecker, 2012), quantile regression (Alhamzawi & Yu,

2012), count/zero-inflated models (Algamal, 2019; Buu et al., 2011; Wang et al., 2015), cen-

sored survival data (Faraggi & Simon, 1998; Johnson, 2009; Zhanfeng et al., 2010), ordinal

regression (Aljabri & Alhamzawi, 2019; Feng et al., 2017; Fu & Archer, 2020; Sukthuayat

& Chaimongkol, 2018), and Tobit regression (Huang et al., 2020; Liu et al., 2013) among

others. However, despite the presence of the mixed endpoints data of differing types for over

two decades and more importantly during this era of big data analysis, it is surprising that

we do not have a method to carry out both parameter estimation and variable selection.

This dissertation fills the gap.

In the dissertation, we present the first-ever known variable selection procedure for

multivariate mixed endpoints that are characterized by high-dimensional covariates. We

referred to this method as EMMEVS - a rapid deterministic method based on EM algorithm.

It is a deterministic alternative to MCMC methods that has the potential to lower the

computational burden commonly encountered with the use of MCMC. The computational

speed of the EMMEVS algorithm allows for the exploration of many sub-models within a

short period.

We demonstrate the advantage of our procedure in terms of variable selection, predic-

tion, and computational scalability via extensive simulation study and apply the method to

two real-life data. The results obtained from the simulation and analysis of the two real data

revealed that the modal estimates identified by our dynamic posterior exploration stabilized

rapidly very early in its trajectories (especially with our implementation of the dynamic

weighted LASSO scheme and as the temperature increases); thus, allowing us to report a

single estimate out of the many we computed without the need for cross-validation.
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