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ABSTRACT

Self-assembly is a pervasive process in natural phenomena that builds complex structures from

very simple components. These processes are central to nanoscale manufacturing and crystallog-

raphy and rely on stochastic self-assembly to bring order out of molecular chaos. In particular,

the algorithmic models of self-assembly (for example, the aTAM) employ highly nondeterministic

dynamics in an attempt to emulate the massively parallel physical feats effected by DNA in vivo to

support life. In this work, we define a new object in algorithmic self-assembly called the synoptic

pattern to explore structural properties and the long-term behavior of algorithmic self-assembly

systems. The synoptic pattern is analogous to the computation tree of a nondeterministic Turing

machine, which are known to be computational universal and hence unpredictable algorithmically.

We show that synoptic patterns are a robust and useful framework for self-assembly processes at

large and enable analysis of their behavior. In particular, they afford a useful analytical tool to

understand structural properties of and a nontrivial probabilistic analysis of the long-term behavior

of self-assembly processes in large families of 1D and some 2D aTAM self-assembly systems, in-

cluding systems generating infinite families of patterns describable by regular and linear languages

in the Chomsky hierarchy. Finally, we also introduce probabilistic definitions of the efficiency of

assembly processes and expand on previous work to show how one assembler can efficiently prob-

abilistically approximate a given target assembler by mostly producing patterns that match closely

patterns produced by the target assembler, even in the presence of assembly errors.
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CHAPTER 1

TILE ASSEMBLY SYSTEMS

Introduction

Self-assembly is a pervasive process in nature by which simple atomic components arrange them-

selves into complex structures. It plays a role in the formation of nanoscale structures like the

DNA double helix or colloidal crystals and stellar-scale structures like star systems [1, 2, 3].

Modern DNA computing and nanoscale self-assembly were inspired by the combination of physical-

chemical research and algorithmic design. Ned Seeman (a father of modern DNA crystallogra-

phy and DNA computing) and Len Adleman (also known for his contributions to cryptography)

are responsible for foundational work in molecular computing called DNA self-assembly. Self-

assembly leverages DNA hybridization as a smart glue to form complex 2D and 3D nanoscale

structures that are not otherwise manufacturable by traditional methods [3, 4, 5, 6]. Algorith-

mic models of self-assembly abstract the crystallography to simple binding relationships and

prove that these assembly processes can be as complex as arbitrary computations in the Turing

model [7].

A generic approach to spatial pattern formation loosely describes models of assembly fitting the

following criteria:

1. Local interactions among atomic building blocks proceed without external guidance;

2. Complex, ordered patterns arise as a product of local interactions over space and time.

The abstract Tile Assembly Model (aTAM), introduced by Erik Winfree [7], is the touchstone

model for algorithmic self-assembly and has invigorated the last 25 years of research, combining

self-assembly with computer science, modern notions of power domains, and modern algorith-

mic design tools. Presented side-by-side with a more physically realistic kinetic Tile Assembly

Model (kTAM), the aTAM provides an accessible, feasible, and powerful model on the order of
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the Turing machine for massively parallel, massively nondeterministic self-assembly systems.

Like the changing configuration of a Turing machine over time, an assembly sequence produced

by a tile assembly system gives a single possible path of transformation from a fixed input. In

analogy with crystallography, this input is called a seed assembly, or just a seed. New assemblies

are formed from the seed by the attachment of tiles according to pairwise glue interactions and

respecting an abstract temperature inspired by the physical melting temperature of nucleic acid

chemical bonds. Collecting these assembly sequences together organizes the nondeterministic

growth of the constituent patterns over time, but a simple family of assembly sequences does not

capture the full picture of the relationship between these assembly sequences. In this dissertation,

we build on the formal notions of assembly established by prior work with a new object called a

synoptic pattern that organizes the disparate assembly sequences into a single comprehensive ob-

ject akin to the computation tree of a nondeterministic Turing machine. We then adapt this object

for probabilistic analysis by endowing it with a probability model to form a so-called probabilis-

tic synoptic pattern.

Probabilistic analysis of self-assembly is a natural idea given the stochastic nature of real self-

assembly systems. In the literature, there are essentially two approaches to establishing useful

probabilistic models of assembly: tile concentration and probability of formation based on free-

energy. Tile concentrations for each tile type model over time how often individual tiles and as-

semblies come into contact with each other in a well-mixed solution. We see the roots of both

in the kTAM, where growth depends on a function of tile concentration called the forward rate

and a function of the energy cost of breaking a bond, called binding strength. To prevent errorful

growth, probabilistic techniques like proofreading [8] are used that rely on a series of dependent

attachments to lock in an error. The probability of an error decreases with the scale of this tech-

nique, modeled as a random walk. Concentration is an accessible parameter to the experimenter

and the introduction of the kTAM and subsequent inquiries building on its definition have had a

great impact on developing actual nanoscale self-assembly systems, reducing error rates and im-

proving yield. Models of self-assembly, such as a Markov process where states are assemblies

2



and the transition probability is a function of tile concentration or a probability of formation,

provide stable ground to make strong statements about average- and worst-case complexity in

abstract tile models of self-assembly. Abstractions of tile concentration have been shown to be

effective theoretical tools for programming shape and size [9], as well as robust probabilistic as-

semblers [10, 11]. In Chandran et al’s PTAM [11], nondeterminism and tile concentration are

used to guarantee the realistic production of a target with high probability rather than determin-

istically in theory. Their construction employs a variation of a technique called tile concentra-

tion programming [12, 13, 14]. By treating the nondeterministic system probabilistically, works

that employ tile concentration programming seek to understand the global behavior of the assem-

bler without explicitly and directly constructing a single probability space that encompasses the

potentially infinite number of all possible assemblies. The approach used in the PTAM and in

later work [15] is particularly suited to their specific results, but does not scale well to other infi-

nite sets of assemblies. Such a construction should assign some probability to each assemblable

pattern relative to all other assemblies in a single comprehensive probability space. A naive ap-

proach could simply give an arbitrary mass to each assembly of a given size n, which can be nor-

malized and extended to all patterns of size less than n. If only finitely many assemblies have

positive mass, this technique can work. On the other hand, if the assembly process produces an

infinite number of assemblies, it would assign a limit probability of 0 to infinitely many assem-

blies. The process of Bayesian inference from Bayesian statistics looks like an attractive choice

to describe a statistically sound probability model of self-assembly. Inference proceeds from an

initial probability model called the prior. We then sample and infer a posterior model based on

the sample and prior. Unfortunately, attempting to produce a probability measure for an infinite

sample space based on the traditional Bayesian inference is fraught. As shown in [16], there are

choices of priors such that the process of Bayesian inference almost surely does not converge

asymptotically. Even simply identifying a probability model that incorporates realistic assump-

tions from observations of nanoscale manufacturing systems is nontrivial. In chapter 2, our ap-

proach to address these issues is discussed at length. In this chapter, we first define the necessary
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foundational concepts underlying our methodology to approach our research goal including basic

notions of patterns, assemblies and the aTAM, as well as basic concepts such as graphs, probabil-

ity spaces and probabilistic analysis methods.

General Definitions

In principle, assembly models assemble configurations (or assemblies) nondeterministically. The

most well-known tile assembly model, the abstract Tile Assembly Model (aTAM), took inspira-

tion from Wang tiles [17]. While Wang tile sets were originally designed with the goal of per-

fectly tiling the Euclidean plane, tile assembly systems in the aTAM are designed to algorith-

mically construct shapes or patterns or to compute some observable value within a collection of

tiles. These tiles are usually labeled square units with labeled edges called glues and each is one

of finitely many such tile types. Tiles are available in unlimited supply, but cannot be rotated,

reflected or deformed. They arrange themselves in a container space according to a finite set of

local rules applied uniformly everywhere. These local rules are expressed through a glue function

and an abstract temperature value. Glue interactions below the temperature value are nonbinding,

i.e., do not create a stable bond. When a tile is adjacent to more than one other tile, glue inter-

actions are summed, creating a cooperative effect where multiple glue interactions among the

adjacent tiles may be necessary to create a stable bond.

Typically, assemblies are 2-dimensional (2D) and composed of square tiles within Euclidean con-

tainer spaces. The model is easily extended to higher dimensions, polyominos, polygonal tiles,

and other container spaces [18, 19, 20, 21, 22, 23, 24, 25, 26]. In this work, we will restrict our-

selves mostly to 1D and 2D assembly systems in Euclidean spaces.

An assembly in the aTAM can be described as an arrangement of labels in a container space, i.e.,

as a spatial pattern. Traditionally, computer science is concerned with 1D spatial patterns called

strings or words. Examples of spatial patterns in two dimensions include digital images, paint-

ings, or graphs. Generally, spatial patterns consist of connected labeled regions. To define these
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and other core concepts more precisely, we present here some well-known concepts and notation

from mathematics and computer science.

Definition 1. A label alphabet is a finite nonempty set Σ including a special (“blank”) symbol

λ . A spatial pattern x is a d-dimensional (dD) finite word over some alphabet Σ, with d > 0, i.e.,

a function that assigns a label to arbitrary positions i in Zd (the unit cells or sites) from a label

alphabet. A notion of size | ∗ | is a function of x that assigns a value s ∈ Z to every spatial pattern

describing a digital volume in nonempty cells. A subpattern x′ of x is a spatial pattern of the same

dimension over the same alphabet such that x contains x′, i.e., there is some translation of x′ such

that for every translated cell in x′, either x has a matching label in that cell or x′ has a λ label in

that cell.

In this this work, we will only be interested in finite patterns, i.e., patterns where only finitely

many cells have a nonblank label. Additionally, we will only be concerned with analyses of as-

sembly systems producing connected spatial patterns, i.e., patterns where every nonempty cell is

connected to other nonempty cells in its North, East, West or South directions, i.e., in the NEWS

(also called the von Neumann) neighborhood. The notion of size for a pattern x we will com-

monly use is the number of nonempty unit cells in it, unless another notion such as width or height

is explicitly mentioned, although results will apply to arbitrary notions of size with some mild

conditions. We are concerned chiefly with assembly models that do not allow the detachment of

tiles (the size of a pattern in an assembly sequence in these models is nondecreasing.)

Definition 2. Let G be a label alphabet of glues. A tile type is a k-tuple (a,g1,g2, ...,gk−1) where

a is a tile label and g j ∈ G. A 2D tile assembly system (TAS) T = (T,σ ,τ) in the aTAM consists

of a set of 5-tuple tile types T with glues from a common G, a seed tile σ , and an integer τ called

the (abstract) temperature of the system. A glue function g : G×G→ Z+
0 must also be specified

where the range values are glue strengths given by nonnegative integers. The special glue (tile)

label λ is called the empty glue (empty tile) and it will be assumed that g(gi,g j) = 0 if either gi

or g j are λ .
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In the aTAM, we use the convention that glues in a tile type are listed in clockwise order from the

north glue like so (a,gN ,gE ,gS,gW ).

In the aTAM, new assemblies are composed from the seed or smaller assemblies by tile accretion

over time according to the glue function and temperature. When the sum of the glue strengths

in a binding context around a binding site for a potential attachment tile is equal to or exceeds

τ , the binding context is sufficient for a stable bond and the attachment does occur. When y is

producible from x by the attachment of a tile from the tile set T ∈ T, we write x 7→T y.

Example 1. Constructing squares of fixed side length is a touchstone problem [27, 12] in the tile

assembly literature. Consider the TAS T= (T,σ ,τ) with

T = {(s,λ ,h1,v1,λ ),(v1,v1, in,v2,λ ),(v2,v2, in,λ ,λ ),

(h1,λ ,h2, in,h1),(h2,λ ,λ , inh2),(in, in, in, in, in)},

σ = (s,v1,h1,λ ,λ ), and τ = 2. The set of tile labels and the set of glue labels are identical; the

glue function is diagonal and symmetric, i.e., g(a,b) = 0 when a 6= b and g(a,b) = g(b,a); and

the strength of all positive glue interactions is 2 except g(in, in) = 1.

This TAS assembles a 3x3 square using 6 tile types: s, v1, v2, h1, h2, in. The assembly process

proceeds nondeterministically from a seed that allows v1 or h1 to stably bind. As soon as both v1

and h1 are bound, in may cooperatively bind. Each assembly sequence ends with a single unique

terminal assembly produced after 8 tile attachments, as shown in Figure 2.

In the aTAM, stably bound tiles cannot be removed from assemblies. Thus, assemblies grow

monotonically over time. Models like the kTAM and the restricted glue Tile Assembly Model [28]

that include a mechanism for detachment of previously stably bound tiles, a reverse rate and neg-

ative strength glues, respectively, will not be considered in this work.

Definition 3. A tile assembly system T is monotonic if the attachment of any tile does not cause

any detachments.
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Figure 1: [Left] A tile diagram using a common convention for centered tile labels along with
glue labels and prongs to show binding strength. Glue and tile labels may also be denoted by
colors and/or shapes. [Right] A representation of a tile assembly system that uniquely assembles
a 3x3 square, defined in Example 1.
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where a tile from the tile set can attach by forming a temperature stable bond are shown in a dot-
ted outline. The rightmost assembly is the single terminal produced by the TAS from seed tile s
through successive stable attachments at open binding sites.
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This work is concerned with the temporal relationships in the full set of assemblies produced by

a TAS, including the local behavior, global properties, and long-term dynamical behavior of the

TAS. However, we do not ignore the local composition of the patterns, including their shapes. A

1D spatial pattern like a length of yarn can be knit into a 2D pattern like a scarf or a 3D pattern

like a glove. The use of additional dimensions to define additional aspects of the spatial pattern is

intrinsic to the assembly system. A length of yarn is not a scarf unless it is composed in the form

of a scarf.

Definition 4. A silhouette is a spatial pattern over a unary alphabet of one nonblank label and λ .

If a spatial pattern is made of stained glass, then a silhouette is that same stained glass with opaque

paint slathered over it. When necessary, this paint may be scraped away in small, carefully cho-

sen areas so some light shines through. Some labels in the spatial pattern may be maintained in

a principled way to aid in comparisons between patterns. For example, in assemblies produced

by an aTAM TAS, it is useful to preserve the seed label since all patterns grow from the seed and

thus contain it as a point of common comparison.

Graphs are often used for representations of assembly sequences or relationships between assem-

blies. A graph is a collection of nodes and edges, where a node is typically drawn as a point and

an edge is a line between two adjacent nodes. In a simple graph, adjacency is a symmetric prop-

erty. If x is adjacent to y, then y is adjacent to x.

Definition 5. A directed graph (digraph) is a pair G = (V,E), where V is a set of vertices and E is

a subset of V ×V = {(x,y) : x,y ∈V}, whose elements are called arcs, or directed edges. A graph

is a digraph where for every arc (x,y) ∈ E, the arc (y,x) ∈ E.

A bipartite graph is a simple graph where V can be partitioned into two (disjoint) subsets A,B

such that E ⊆ A×B. The bipartite graph is called complete when E = A×B. These graphs are

denoted by Ki, j where i = |A| and j = |B|.

Definition 6. A partial order ≤ is a relation on a set S satisfying the following properties for all

x,y,z ∈ S
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1. Reflexive: x≤ x

2. Antisymmetric: If x≤ y and y≤ x, then x = y

3. Transitive: If x≤ y and y≤ z, then x≤ z

A strict partial order < is irreflexive, antisymmetric, and transitive.

We note the containment relationship between a pattern and subpattern is a partial order on the

set of finite dD spatial patterns with labels from Σ. It is clear that the relation is reflexive and

transitive. To show the relation is antisymmetric we note that the patterns are finite (contain finitely

many non-λ labels) and connected with a tightly bounding perimeter of cells with λ labels such

that every cell with a non-λ label is inside the perimeter. Since x contains y and y contains x this

perimeter fixes the translation of x or y. Any shift would introduce a mismatched cell. Therefore,

every cell is identically labeled in x and y and they are identical.

Definition 7. Given an aTAM TAS T that produces a set of assemblies S, let the immediate suc-

cessor relation be the relation ≺ on the set S such that x ≺ y if and only if y is producible from x

by the attachment of a single tile. We note that, by the monotonicity condition, the transitive clo-

sure of this relation denoted ≺∗ is a strict partial order on S.

In the aTAM, x ≺∗ z if and only if z is producible from x by the attachment of a finite number

of tiles in T in an assembly sequence. Assembly sequences represent successive changes in an

assembly from the seed over time. Collecting these assembly sequences together and reasoning

about the relationship between these sequences has led to fundamental concepts in the literature,

including a notion of directed assembly and local determinism [29]. Locally deterministic assem-

bly systems are computational systems that produce a single terminal assembly regardless of the

effects of nondeterministic attachment choices that give rise to many distinct assembly sequences

to a unique terminal. The strength of the locally deterministic constraint comes from the under-

standing that the time order of attachment can be critical to what assemblies are producible by

some TAS as in Adleman’s partial order systems [12]. The aim of this work is to take a step back
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and treat the collection of all assembly sequences as an interesting object in and of itself. The

partially ordered set of assemblies captures the totality of the assembly system as an infinite ob-

ject. The graph of the strict partial order of the 3x3 square TAS presented in Example 1 is shown

in Figure 3.

Figure 3: A graph of the immediate successor relation on spatial patterns assemblable by the 3x3
square TAS defined in Example 1.

In this work we will frequently return to the aTAM TAS whose terminal assemblies correspond

to the string language anbn for illuminating examples. We introduce the tile set and minor details

about the TAS below and will discuss other important features in more detail as needed.

Example 2. Consider an aTAM TAS Tanbn = (T,st ,1) with a diagonal glue function and tile set

as shown in Figure 4 and whose terminals are in correspondence with the string language L =

{anbn : n > 0}.

10



s1

s2 a

s2

s2

a aa at
bt

a

btb

bt
b bb

Figure 4: The tile set T belonging to TAS Tanbn . Grey tile types map to character ‘a’ and black
tile types map to character ‘b’.

Probability Theory

This work is primarily concerned with understanding the global properties of a TAS to produce

families of patterns as whole collections, perhaps consisting of single terminal assemblies but not

necessarily specific single assemblies. Intrinsic to this idea is the notion of production, which re-

quires an understanding of the dynamics of assembly, or how the assembly process unfolds and

develops over time. Inherent in a nondeterministic computational model is uncertainty. The tradi-

tional way to address uncertainty is through probability theory [30, 31]. At the heart of probabil-

ity theory is the notion of a random experiment, a procedure that produces one of a fixed number

of outcomes where no single outcome can be predicted with certainty before performing the ex-

periment. Flipping a coin or rolling a die are canonical examples of random experiments. The

experiment must be repeatable any number of times.

Definition 8. A discrete sample space Ω is the finite or countably infinite set of all elementary

events, where an elementary event is a possible outcome of a random experiment.

For rolling a 6-sided die, Ω = {1 . . .6}. Probabilistic analysis proceeds by assigning a measure

of uncertainty, a probability, to these outcomes. Intuitively, a fair die should roll a 1 about as of-

ten as it rolls a 6 (or 5, etc.), and we might naturally extend this intuition and say that it should

roll an even about as often as it rolls an odd, i.e., the probability of {2,4,6} is equal to that of

{1,3,5}. Rather than rolling a die, we could consider a TAS where the random experiment is to
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choose a tile and attach it to a growing assembly to produce a new assembly. This random exper-

iment is used in a continuing line of research to establish a time resource and complexity hierar-

chy [12] for self-assembly systems. Uncertainty in tile assembly occurs when there are several

tile types that may bind at one or more binding sites. In extreme cases (e.g., a trick die that has a

6 on each face) the outcome may not be uncertain at all. TAS produced as a product of the zigzag

transformation [18] from a deterministic Turing machine are similarly certain in their outcome.

Ultimately, if we want to actually evaluate the probabilities for these compound events, we must

satisfy certain formal conditions.

Definition 9. A σ -algebra is a collection of subsets (the measurable events) of a sample space Ω

of a random experiment that

• contains the sample space,

• is closed under the operation of complementation, and

• is closed under the operation of taking countable unions.

For clarity, a set of more than one elementary event will be referred to as a compound event. Ex-

treme examples of a σ -algebra include F = { /0,Ω} and the full σ -algebra of all subsets of Ω. A

common way to define a σ -algebra is to define some subsets of Ω as desirable measurable sets

(e.g., the intervals in the unit interval, with length as their probability measure), and then obtain

the σ -algebra as the closure under complementation and countable unions (e.g., to obtain the so-

called Borel measure from intervals.)

Definition 10. A probability measure (or mass function) for a σ -algebra F is a function ρ : F →

[0,1] such that ρ( /0) = 0, ρ(Ω) = 1, and for any set of pairwise disjoint sets of elementary events

{E1,E2, . . .} with Ei ∈F , ρ(
⋃

i Ei) = ∑i ρ(Ei).

In measure theory, a σ -algebra describes the measurable subsets of a sample space. The sample

space, σ -algebra and the probability measure taken together define a probability space.

Definition 11. A probability space is a triple (Ω,F ,ρ), where Ω is a sample space of elemen-

tary events, F is a σ -algebra over Ω that contains the measurable events, and ρ is a probability
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measure on F .

Example 3. The probability space associated with a fair six-sided die consists of

• Ω = {1,2,3,4,5,6},

• F = P(Ω), the power set of Ω, and

• ρ(e) = 1
6 , where e ∈Ω.

A uniform probability space can likewise be defined for any finite sample space Ω .

Probabilistic analysis is concerned with calculating or estimating the probability of events in a

given probability space. For example, for any event A ∈ F , ρ(A ∪ Ac) = ρ(Ω) = 1, so that

ρ(Ac) = 1−ρ(A). Often, these events are defined by observations one can make on an outcome,

like a gambler’s winnings or losses on a die roll.

Definition 12. Let Ω be a sample space. A discrete random variable is a map X : Ω→ R assign-

ing a value to every outcome of a finite or countably infinite random experiment.

We introduce a discrete random variable to stipulate a constraint on the random experiments of

self-assembly. In the aTAM, the seed is finite, the set of tile types is finite, and one tile is added at

a time, thus the set of spatial patterns produced by an aTAM TAS is finite or countably infinite.

Example 4. The random variable X associated with the random experiment “Roll a fair six-

sided die 3 times and take the highest result” takes values 1, 2, 3, 4, 5, or 6. The probability of a

particular outcome is computed from the probability space and can be described by the probabil-

ity mass function ρ . For example, ρ(X = 1) = 1
63 since the probability of a single 1 is 1

6 and only

one trial of the random experiment has value 1, the outcome where all three rolls have value 1.

The event X = 6 is much larger, containing 91 trials with ρ(X = 6) = 0.421296

One way to summarize a collection of values with a single number is the mean. The mean of a set

of numbers is the average of the values in the set, the sum divided by the size. Random variables

have a similar summary, a sort of weighted average called the expected value.
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Definition 13. The mean or expected value of a random variable X is defined as E(X)=∑k xkρ(X =

xk) = ∑k xkρ(xk), where the xks range over all the values of the random variable.

The expected value is sometimes called the first moment of a random variable. Given a system of

weights placed in the plane, the sum of the distances of the weights from the origin multiplied by

the mass of the weight is the first moment about the origin. The expectation of a random variable

is similar to the centroid of this system of weights, the first moment about the mean. The second

moment about the mean provides another number to add to our helpful summary of a random

variable and it is called the variance.

Definition 14. The variance of X is given by ∑k(xk−E(X))2ρ(xk) = E((X−E(X))2).

Our approach to address the major goal of this work, as sketched above, is to define appropri-

ate probability spaces to understand interesting properties of assemblies and assembly dynamics

in a given TAS. A more interesting example for this work is choosing a tile type in a TAS and

finding a possible attachment in an existing assembly, or whether the resulting assembly is ter-

minal, i.e., cannot be further extended. By treating the abstract stochastic process of assembly

with a probability space, computationally difficult questions can be approached in a structured

way through methods from probability and statistics. In general, the problem of the assembla-

bility of a specific pattern or a pattern with a specific property is algorithmically unsolvable, but

with well-reasoned probabilistic arguments some aspects of the long-term behavior of some TAS

can be partially described by a probabilistic statement. Furthermore, the presence or absence of a

property-in-question may be determined by the formation of an ‘almost certainly’ argument about

the property of spatial patterns corresponding to compound events in the probabilistic synoptic

pattern. Toward this goal chapters 2, 3, and 4 present the central object of study, the synoptic pat-

tern, the marriage of this object with a probability space to form a probabilistic synoptic pattern,

and the operationalization of the probabilistic synoptic pattern to explore interesting questions

about TAS. We focus on the capacity for a probabilistic synoptic pattern produced by certain fam-

ilies of assembly systems to be understood holistically through a Markov chain, a more manage-
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able probabilistic object, in chapter 3, or even another probabilistic synoptic pattern in chapter

4.
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CHAPTER 2

SYNOPTIC PATTERNS

Synoptic Patterns

Self-assembly systems generate spatial patterns that are the product of accretion. Tile assembly

models of self-assembly accrete tiles, the atoms of the tile self-assembly process. Spatial patterns

produced through self-assembly are assemblies that generally contain no explicit temporal infor-

mation about the assembly process. Each pattern is a snapshot of the assembly process at a point

in time. Collecting and exploring the full set of spatial patterns along with this temporal informa-

tion produces sequences of spatial patterns that may reveal additional complexity beyond how the

labels are arranged in space and what local rules control growth. The major aim of this chapter is

to explore the structural properties of such spatio-temporal patterns.

Definition 15. A synoptic pattern S = (S,≺) consists of a collection of dD spatial patterns S

and an immediate successor binary relation ≺ on S (or x ≺ y for the distinct elements x,y). The

(irreflexive-) transitive closure of ≺ is the successor relation on S and is also denoted by ≺ (or

≺∗ if the distinction is important.) A skeleton synoptic pattern is a synoptic pattern with silhou-

ette labels. An abstract synoptic pattern is a synoptic pattern without labels.

A synoptic pattern of a monotonic self-assembly system is represented by a directed graph of the

relation ≺, a strict partial order, where nodes are labeled with spatial patterns x,y ∈ S and edge

(x,y) ∈ E(G) if and only if x≺ y. This is a directed and acyclic graph (DAG) and will be referred

to as the abstract synoptic pattern associated with a given synoptic pattern. When it is useful to

identify the portion of y not previously in x we use the notation (x,xa) where y = (xa) and a is the

additional label or labels used to construct y from x. In the aTAM, this is always a single label.

Example 5. An aTAM TAS T generates a full set of assemblies S. A pair (x,y) with x,y ∈ S is

related by the immediate successor relation if y is obtained from x by the attachment of one tile.
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The size n of a tile assembly x is the number of tiles in x. For a monotonic TAS (as in the aTAM),

it is easy to verify this relationship induces a strict partial order on S. Thus, with S and ≺ we

have a synoptic pattern collecting the full history of all possible assemblies producible by T. Fig-

ure 3 shows the synoptic pattern of a 2D TAS that assembles a 3x3 square. The abstract synoptic

pattern is a rooted DAG where paths from the root encode assembly sequences in the TAS from

the seed.

To explore conditions on the structure of the abstract synoptic pattern, we define the overlap of

two spatial patterns. We say two spatial patterns have an overlap when the intersection of their la-

bel sets includes a common element called the seed and, after a suitable translation such that their

seed labels are matched, every non-λ label in one pattern is matched by either the same label or

λ in the other pattern. We take the position i of each cell in these spatial patterns relative to the

seed.

Definition 16. Given two dD spatial patterns x,y with labels from Σ that share at least a common

seed label, the overlap z of x and y is a spatial pattern obtained by overlapping x and y at the

common seed label, without rotation, and selecting all non-λ labels in x (y) matching labels in y

(x) at the same positions relative to the seed and all non-λ labels in x (y) where y (x) has λ at the

same position relative to the seed.

Thus, without loss of generality, if x contains a non-λ label at position i from the common seed

and y contains a different non-λ label at position i, then x and y do not admit a valid overlap.

By exploring the structure of the abstract synoptic pattern, we gain a better understanding of the

behavior of aTAM TAS. We build the necessary formalism to address the question whether every

rooted tree is induced as a (an abstract) synoptic pattern of some aTAM TAS.

Proposition 1. If a graph G is an abstract synoptic pattern associated with an aTAM TAS, then

1. G is a rooted directed and acyclic graph (a DAG);

2. Vertices in G can be layered by graph distance n (their size) from a node with in-degree 0

such that each node in a layer is adjacent to finitely many nodes in the next layer;
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z

Figure 5: Spatial pattern z is the overlap of x and y relative to the yellow seed label. Although x′

has labels in identical cells as y and the same seed label, x and x′ do not form a valid overlap.

3. Vertices in G have finite out-degree, bounded by a function O(|T |nd
) of the size n, where T

is the tile set and assembly is performed in a dD container space;

4. G does not contain K2,2 as a subgraph.

Proof. The successor relation ≺∗ is a strict partial order, therefore the graph of the relation is a

rooted DAG, with the seed at the root. Since each assembly is either the seed or grows from the

seed by the attachment of tiles, a natural layering over time based on node labels (patterns) is

constructible by following assembly sequences in the TAS (chains in the partial order.) Since

each assembly is of finite size and the tile set has finitely many tile types, the number of assem-

blies producible from any pattern in one step is also finite and is bounded by the product of the

count of open binding sites with the size of the subset of the tile set that consists of tiles that may

form a stable bond at that binding site, at most |T |. G cannot contain K2,2 as a directed subgraph

because every pair of different patterns of size n + 1 that share a predecessor share a common

subpattern of size n, which is their common predecessor and thus unique.

In the abstract synoptic pattern, the shape and pattern are absent and it is difficult to characterize
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and derive the underlying tile assembler. Separating the influence of geometry from the algorithm

implemented by the TAS is impossible in general. Skeleton synoptic patterns provide the step-

by-step geometry of the growing assembly with none of the pattern information present in a full

synoptic pattern (excepting seed information so that skeleton synoptic patterns can be reliably

compared.) Comparisons between silhouette pattern labels in these synoptic patterns yield infor-

mation about the underlying assembler, including when sites require cooperation to be occupied

and time order relationships concerning when empty sites may be occupied.

Definition 17. A cone in a synoptic pattern is the set of patterns z++ = {x : z ≺∗ x}∪{z} con-

sisting of all descendants from a pattern z by the successor relation and z itself. Conversely, an

anticone is the set of patterns z−− = {x : x≺∗ z}∪{z} consisting of all predecessors of a pattern

z and z itself.

Intuitively, a cone is the potential future of an assembly in a synoptic pattern; an anticone is the

necessary past of an assembly in a synoptic pattern. Any pattern in a cone may arise from the pat-

tern at the tip of the cone, and any pattern in an anticone can produce the pattern at the tip of the

anticone. In an aTAM TAS, this representation of long-term behavior comes from the sequential

transformation of local regions in each assembly.

Local interactions in an aTAM TAS occur in a local context, a finite subregion of an assembly

that contains sufficient information to decide whether a particular tile may stably bind. For sim-

plicity, we will discuss aTAM TAS in 2D (i.e., d = 2), although most results below generalize

to 3D TASs (d = 3.) In the 2D aTAM, this local context is exactly a cell and the NEWS adja-

cent cells. Although a local context may not consist of contiguous tiles (e.g., those occupying

the NEWS neighborhood), an assembly resulting from some TAS can be decomposed into a set

of subregions (that may overlap) that represent local contexts where local interactions can grow

new assemblies by allowing for a tile to stably bind. We abstract this notion to spatial patterns.

The center of a local context is mutable because the self-assembly process may change the la-

bel in the center cell as a result of local interactions. The local context with λ in the center cell

is referred to as the precondition for this change. The precondition is sufficient for a postcondi-
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w2
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w3

Figure 6: A spatial pattern with local contexts w1,w2,w3 identified in red. A local context may
appear in a spatial pattern many times.

tion, i.e., the label in the center cell after mutation along with the surrounding neighborhood. An

example is shown in Figure 7.

Definition 18. A local context is a dD word w (called its support) with fixed orientation over

a label alphabet Σ with a designated cell called its center. Each cell in the support is uniquely

identified by its position i = (i1, i2, . . . , id), the vector of integer coordinates describing the cell’s

relative distance in each dimension from the center, which is assumed to be at position 0. The

label in w at position i is denoted wi. The size of a local context is the number of non-λ labels in

it, excluding the center. The radius of the local context is the maximum Manhattan distance of any

non-λ cell in w from the center.

When comparing local contexts it is often useful to overlay one on the other at their center so that

a single position vector can coordinate the label in that cell in any of the local contexts.

We describe the relationship between local contexts in spatial patterns generated by some aTAM

TAS with a special graph called a claw shown in Figure 7.

Definition 19. A claw is a tree of depth 1 rooted at a local context, called the precondition, and

with one or more leaf node(s) called the postconditions. A precondition is a local context w with

w0 = λ . A postcondition consists of a copy of w except with a nonempty label a 6= λ in the center.
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The radius of the claw is the radius of the precondition. The pair (w,wa) with precondition w and

postcondition wa is called a finger of the claw.

Every claw requires a postcondition, so that if no attachment can occur, no claw is added. For

simplicity and without loss of generality, we exclude sets of dD claws where any pair of different

claws have identical preconditions since they can be consolidated into a single claw.

Definition 19 is quite general and may be used to study assembly systems where local contexts

do not correspond to sites in Euclidean spaces. A context makes explicit the geometry of assem-

bly in a way that tiling models only mark implicitly. While in the following we will be mostly

concerned with 1D or 2D spatial patterns, as illustrated in Figure 7, contexts and, by extension

synoptic patterns can be useful tools in precisely determining the geometry of other assembly

spaces as well because of this explicit description of assembly behavior.

Precondition

Postconditions
Figure 7: Each node in a claw is a local context. Sites with λ labels are left blank. At the root,
the region surrounding the site in the dotted outline (the center) is the precondition. That same
region in a leaf is a postcondition with a tile label in the center. A single precondition may lead to
many postconditions in a nondeterministic assembly system.

We now establish that a set of claws can be produced from any given aTAM TAS.

Lemma 1. Given a 2D aTAM TAS T, there exists a finite set of claws with NEWS supports speci-

fying all possible attachments in the synoptic pattern of T.
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Proof. Preconditions are NEWS (von Neumann) neighborhoods of radius 1 anchored at an empty

cell offering glues that enable an attachment at the center. Postconditions are associated with all

possible attachments on these preconditions. A claw consists of a precondition and all the pos-

sible arising postconditions where the center would be stably occupied by a tile from the tileset,

according to the glue function g and temperature τ . If only one attachment can occur determinis-

tically, then the claw is a labeled path of length 2.

Note that although this set of claws makes no reference to glues, temperature, or attachments, it

enables an assembly process that adds tiles to the preconditions as described by their postcondi-

tions. It is thus not clear a priori that any such finite set of claws can be conversely turned into a

TAS in the aTAM, particularly if two different claws present contradictory postconditions from

the preconditions, or are oblivious to some local contexts in a partial assembly. The full set of

claws derived from a TAS might over-define the assembly system and indicate the assemblability

of preconditions that are not bona fide, i.e., that do not appear in any actual assembly. During the

assembly process, the container space or the assembly itself may limit new growth through ex-

cluded volume events, where a glue offers a positive strength bond, but the binding site is already

occupied by some previously laid tile. In what follows, we consider these issues and demonstrate

how we may account for them.

More generally, a synoptic pattern S = (S,≺) of an aTAM TAS defines a set of local contexts as

follows. Every λ cell adjacent to a non-λ cell in a pattern is the center cell of a local context with

radius 1 (in Manhattan distance.) This local context (a precondition) taken together with the cor-

responding support with an occupied center in immediate successors across all spatial patterns in

S (the postconditions) defines a claw. To find this corresponding support, we translate the patterns

such that the center cells are overlaid. If the same local context occurs again anywhere in nodes

in S, the entire claw must also appear because of the locality of the interactions. This is true even

though the labels in the spatial pattern outside the local context in the precondition may be differ-

ent.

We continue to relate the aTAM and a set of claws by noting an implication of the rules for stable
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binding in the aTAM. A small local context sufficient for some tile cannot be made insufficient

by adding more tiles in the NEWS positions around the center. In a set of claws, there may be

many preconditions that have some identical labels in the same positions relative to their common

center cell. When the support of one precondition contains as a subpattern the support of another

precondition translated so their center cells overlap, there is a relationship between the precondi-

tions we call domination. The local contexts are similar, with the dominating one containing new

nonempty labels not in the other.

Definition 20. A local context u dominates u′, denoted u→ u′, if and only if u′ is a subpattern

of u relative to a common center cell, i.e., u contains all of the non-λ labels in u′ in the same po-

sitions. When u does not dominate u′, we write u 9 u′. If neither dominates the other, we write

u = u′.

By definition, each postcondition dominates the precondition in the same claw. For example, in

Figure 13, precondition u→ u′ and each postcondition of u dominates u.

It is clear that the relation→ induces a partial order in the set of all local contexts over a given

label alphabet Σ, for any given linear ordering of the labels with λ as the minimum element. This

partially ordered set (poset) may not be connected but may contain large connected components.

In this poset, a postcondition is an immediate successor to its precondition. The local context

with only empty labels is a minimum element, that with only maximum labels is a maximum ele-

ment, and any nonempty subset has maximal elements.

In the aTAM, tiles bind to assemblies one at a time, so every assembly sequence determines many

connected components of local contexts in this poset. A small local context that is dominated by

a much larger local context suggests that there should be some intermediate contexts between

them. When the local contexts are preconditions and are sufficient for some postconditions, the

intermediate preconditions should also be present upon examining the assembly sequence. We

establish a notion of completeness in a set of claws as a necessary condition for the set of claws

defining a TAS in the aTAM.
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Figure 8: [Left] A set of two claws where precondition u dominates u′. It is not complete. [Right]
We can add a claw with precondition u′′ to make the set complete under domination.

Definition 21. A set of claws K is complete under domination (or simply, complete) if for every

pair of preconditions u,u′ in K where u→ u′, either u contains exactly one more non-λ label than

u′ or there exists an intermediate precondition u′′ ∈ K such that u→ u′′→ u′.

Every set of claws produced from a 2D aTAM TAS is complete under domination. An example

of a complete set of claws associated with an aTAM TAS that assembles a 3×3 square is shown

in Figure 9. A set of claws that is incomplete under domination cannot arise from an aTAM TAS

if every precondition appears as a local context in an assembly produced by the TAS. Tiles are

bound one at a time, so a large local context cannot suddenly appear in an assembly. It must be

built up, tile by tile.

24



S v1

v2
S h1 h1 h2

v1 in

h1

v2 in

in

in in

in

in in

h2

S v1

S h1

v1

h1

v2

in

in

in

in

h2

v1

S

Figure 9: A complete set of claws representing the TAS that assembles a 3×3 square defined in
Example 1.

We note here that a set of claws K with unique preconditions implies that, in the corresponding

synoptic pattern, for every pair of spatial patterns x,y in the immediate successor relationship

x ≺ y, if the support of precondition u is a subpattern of x and u is sufficient for postcondition v,

then the support of v is a subpattern of y.

As mentioned previously, in the aTAM, a sufficient set of glues for a stable bond cannot be made

insufficient by adding more glues, but removing some glues might prevent the bond. We call this

tipping point from sufficient to insufficient barely sufficient. We formalize this notion in a set of

claws.

Definition 22. Let K be a set of claws and (u,ua) be a finger of a claw κ ∈ K. Precondition u

is called barely sufficient for a if for every other claw in K with precondition u′ sufficient for a,

u 9 u′. In this case, postcondition ua is also called barely sufficient for a.

As shown in Figure 10, if u is barely sufficient for a, u may dominate other preconditions in K for

other labels. The definition only requires that ua dominate no other postcondition.

In the aTAM, a glue relation describes the strength of a bond between two adjacent tiles. This

strength does not depend on any other information about the assembly or even the local context
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u

ua

Figure 10: Precondition u dominates each other precondition in the set of claws. u is barely
sufficient for ua as ua does not dominate any other postcondition.

outside of the pair of adjacent tiles. Provided a pair of local contexts in a tile assembly, each suf-

ficient for the same tile, it seems reasonable that some type of disjunction of the two local con-

texts might also be sufficient for the tile to attach.

Definition 23. Let S be a set of dD spatial patterns over a label alphabet Σ and let u1,u2 be fi-

nite local contexts over Σ with common center label a ∈ Σ and supports occurring in S. A dD

finite local context v is a disjunction of u1 and u2 if and only if for every position i in v, each la-

bel vi matches either u1
i or u2

i . For 2D local context u consisting of a center cell and the NEWS

adjacent cells, we denote the labels about the center by a 4-tuple (un,ue,us,uw). The set of all

disjunctions of u1 and u2 is denoted δ (u1,u2). The union of the sets of all disjunctions of local

contexts in W with common center label a is δ a(W ) =
⋃

u,v∈W δ (u,v). A disjunction of u1,u2 is

sufficient for a with respect to S if its support appears as a subpattern of some spatial pattern in

S. The set of all such disjunctions is denoted δ S
su f (u

1,u2). Likewise, the union of the sets of all

such disjunctions of local contexts in set W with common center a is δ
S,a
su f (W ) =

⋃
u,v∈W δ S

su f (u,v).

Note that, in particular, δ (u1,u2) contains u1 and u2. An example of the set of all disjunctions for

a pair of local contexts is shown in Figure 11.

In what follows, we seek to establish a complete characterization of a special subset of the set

of all disjunctions of any local contexts u1,u2 under some reasonable constraints. Our strategy

is to show that each pair of suitably different local contexts with an identical center related to an
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Figure 11: The set of all disjunctions of local contexts u1,u2 with common center c and labels
from alphabet Σ including distinct labels a1,a2,a3,a4,b1,b2,b3,b4,c, one of which may be λ .
The size of the set of disjunctions is 2r where r is the number of positions at which the local con-
texts differ. If a1 = b1, then the set of disjunctions would be a subset of the above consisting of
only 8 local contexts.
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aTAM TAS has a nontrivial subset of disjunctions that is also sufficient for the same center. We

then construct a finite set of such nontrivial subsets that serves as a library for sets of disjunc-

tions (sets of local contexts) sufficient for that center. In order to identify if a set of claws con-

tains an ideally sufficient set of disjunctions with center a as postconditions, we simply identify

a set of postconditions with the necessary properties and check their local contexts against the

library with some matching-preserving isomorphism. If the set has local contexts that are isomor-

phic to the local contexts in some set in the library, then it is a set of disjunctions sufficient for

a. If no such isomorphism exists, then it is not such a set. We now formally define this notion of

matching-preserving isomorphism and the library.

Definition 24. Let (u1,u2) be local contexts over alphabet Σu and (v1,v2) be local contexts over

alphabet Σv. (u1,u2) and (v1,v2) are matching-preserving isomorphic (simply, isomorphic) if

there exists a 1-1 correspondence between labels in Σu and Σv such that every pair of labels in

(u1,u2) match if and only if their corresponding labels in (v1,v2) match. This matching is the

isomorphism type of (u1,u2).

A pair of local contexts is trivially isomorphic to itself. For any pair of 2D local contexts con-

sisting of a center and the NEWS adjacent cells belonging to a set of claws with labels from Σ, at

most 9 unique symbols from Σ label them. Such a pair is isomorphic to some pair of local con-

texts with similarly shaped supports and labels from M9 = {m1, ...,m9} according to the isomor-

phism type of the pair since there are exactly 9 distinct possible comparisons between their labels

across all five positions. We can construct such isomorphic local contexts by greedily labeling a

pair of unlabeled supports with labels from M9 respecting the isomorphism type.

Definition 25. Let S be a set of 2D spatial patterns over label alphabet Σ and W the set of 2D

local contexts consisting of non-λ centers and the NEWS-adjacent sites whose supports appear

as subpatterns of any spatial pattern in S. A library for S is a set of sets of disjunctions over the

alphabet M9 = {m1, ...,m9} constructed as follows

1. for each label a ∈ Σ, for each pair ui,u j ∈W with center a, construct ∆a
i, j = δ S

su f (u
i,u j) =
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δ (ui,u j)∩W

2. for all i, j construct the set of local contexts over M9 of all contexts in ∆a
i, j by the isomor-

phism type.

When S is generated by some 2D aTAM TAS, the library for S contains only local contexts repre-

senting stable bindings of tiles to growing assemblies.

Definition 26. A full library for the 2D aTAM is the union of all libraries for sets of spatial pat-

terns generated by all possible 2D aTAM TASs.

This definition is not trivial. Every set of disjunctions in the complete library is a subset of δ (v1,v2)

with v1,v2 over M9, but not every subset of δ (v1,v2) for every v1,v2 over M9 is in the full library

as indicated in Proposition 2. For example, consider barely sufficient local contexts drawn from

some set of spatial patterns generated by a 2D aTAM TAS u1,u2 over Σ that share no labels ex-

cept the center label. The full library contains sets with elements v1,v2 over M9 isomorphic to

u1,u2. The full library does not contain the set {v1,v2,v} for any v over M9.

We can build the full library without constructing a library for each of the infinitely many TAS

by interpreting the binding constraints in the aTAM and exhausting the relationship between the

sums of glue strengths and τ for any pair of local contexts isomorphic to v1,v2 over M9.

Having established the existence of a full library for the 2D aTAM and other necessary formalisms,

we now show that the full library is not trivially empty. Note that for any pair of local contexts

u1,u2 matching-preserving isomorphic to v1,v2 where δ (v1,v2) has some subset in a library,

u1,u2 has the same subset in the same library under the same isomorphism. As shown above, we

can expand this library to be agnostic of S (i.e., we can construct a full library) by exhausting all

possible disjunctions of any pair of local contexts and constructing the necessary subsets of dis-

junctions sufficient for the center a. In support of this strategy, we now show these subsets exist

for any two unique local contexts sufficient for the same tile by the constraints of the aTAM that

guarantee that some, but not necessarily all, of their disjunctions will also be sufficient for that

tile.
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Proposition 2. Let S be the set of spatial patterns produced by a 2D TAS T = (T,σ ,g,τ) in the

aTAM. If two 2D preconditions u1 6= u2 sufficient for label a ∈ T satisfy the following conditions:

1. for any disjunction u ∈ δ (u1,u2), there exists a spatial pattern x ∈ S that contains u’s sup-

port as a subpattern, and

2. {u1,u2} 6= δ (u1,u2),

then there exists a third context v ∈ δ (u1,u2), u1 6= v 6= u2, that is also sufficient for a.

Proof. Given the conditions, a third disjunction v0 must appear in at least one spatial pattern pro-

duced as an assembly of T. Therefore, there must exist two positions i1 6= i2 where u1
ik 6= u2

ik for

both k = 1,2. For simplicity, we assume that i1 = n and i2 = e (other cases are similar.) Further-

more, since u1,u2 are sufficient for a, tiles with labels from u1 (u2) in the same positions stably

bind the tile with label a and have total glue strength with a at least τ . The additive glue strengths

in the aTAM allow the substitution of one tile for another to form a new local context sufficient

for the center if the glue strength between the new tile and center is at least the strength of the

glue between the old tile and the center. Consider the two disjunctions obtained from u1 and u2

respectively: v1 = (u1
n,u

2
e ,u

1
s ,u

1
w) and v2 = (u1

n,u
2
e ,u

2
s ,u

2
w). Notice that v1 and v2 consist of labels

from u1 and u2 but are not identical to either. If g(a,u1
e) ≤ g(a,u2

e), v1 is sufficient for a since u1

is sufficient for a and the glue strength has increased in value between the center and the label at

position e. Likewise for v2 when g(a,u1
n) ≤ g(a,u2

n). If neither condition is true, then v2 is suffi-

cient for a since the glue strength g(a,u2
n) is less than g(a,u1

n). Thus, one of the two disjunctions

v1,v2 must be sufficient for a.

Using the technique in the proof of the proposition, we define the set of disjunctions sufficient for

a for any pair of local contexts sufficient for center label a found in any spatial pattern produced

by a given tile assembly system.

We now characterize the sufficiency of a set of claws on label a.

Definition 27. Let S be a set of spatial patterns, K a set of claws, W a
su f the set of all postcondi-

tions in K sufficient for label a, and W a
bsu f the set of all postconditions in K barely sufficient for a.
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K is perfectly sufficient for a if and only if W a
su f = δ

S,a
su f (W

a
bsu f ).

In a set of claws K, we take the set of postconditions barely sufficient for a and examine all dis-

junctions of the local contexts of those postconditions and compare that set to the set of all post-

conditions in K sufficient for a. If K is perfectly sufficient for a and S is generated by a 2D aTAM

TAS, then K has a set of postconditions sufficient for a in the full library for the 2D aTAM. Fur-

thermore, as demonstrated in the proof of Proposition 2 and contained in the full library for the

2D aTAM, for any set of disjunctions of sufficient local contexts with identical center labels with

respect to the spatial patterns of some aTAM TAS, there exists such a nonempty sufficient subset.
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Figure 12: The local contexts shown here are a subset of δ (u1,u2) where u1 shares only a center
label with u2. If the depicted local contexts appear as postconditions in some set of claws K and
K has no other postconditions sufficient for c, then W c

bsu f = {u
1,u2} and W =W c

su f = δ
S,c
su f (W

c
bsu f ),

so that K is perfectly sufficient for c.

Example 6. Consider the disjunctions of local contexts u1 =(an
1,a

e
2,a

s
3,a

w
4 ) and u2 =(bn

1,b
e
2,b

s
3,b

w
4 ),

both sufficient for c shown in Figure 12. These are the local contexts sufficient for c whose sup-

ports appear as subpatterns of some spatial pattern s ∈ S, where S is generated by a 2D aTAM

TAS with the following relationship between glue strengths.

g(c,a1)< g(c,b1)
g(c,a2)> g(c,b2)
g(c,a3)> g(c,b3)
g(c,a4)> g(c,b4)

When a set of claws K contains a pair of local contexts isomorphic to u1 and u2 and the set of

postconditions sufficient for the label isomorphic to c W c
su f = δ

S,c
su f ({u1,u2}), then K is perfectly
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sufficient for c. Furthermore, there exists an isomorphism between disjunctions in δ
S,c
su f ({u1,u2})

and a set of disjunctions in the full library for the 2D aTAM.

Definition 28. A set of claws K over alphabet Σ is consistent if and only if it has the following

properties:

1. K is complete under domination;

2. For each label a ∈ Σ, for each pair of claws κ1,κ2 ∈ K with preconditions u1,u2, respec-

tively, for each finger (u2,u2a) ∈ κ2, if u1→ u2, then there exists a finger (u1,u1a) ∈ κ1.

3. For each a ∈ Σ, K is perfectly sufficient for a.

If we consider the partial order of the domination relation on poset local contexts, we can restate

the first two properties as follows. Every precondition belongs to a finite connected component

such that its postconditions also belong to related finite connected components.

Example 7. Consider the set of two claws shown in Figure 8. The large precondition u domi-

nates the small precondition u′ and each postcondition of u′ is dominated by some postcondition

of u. Since u has 2 non-λ labels more than u′, the set is inconsistent. We can add the claw with

precondition u′′ to make the set consistent.

Example 8. Consider the set of two claws shown in Figure 13. u′ is barely sufficient for green,

u is sufficient for red and is not sufficient for green, and u→ u′. If the centers of these postcon-

ditions were the same, the set would be consistent. Since the centers are different, the set does

not exhibit property 2 and is inconsistent. The set can be made consistent by adding a finger to u

such that u is sufficient for green.
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u u'

Figure 13: [Left] An inconsistent set of claws with preconditions u and u′. [Right] Adding a
finger to u such that u is sufficient for green renders the set consistent.

Example 9. Consider the set of two claws shown in Figure 14. Postconditions v,v′ are sufficient

for a and v = v′, thus v,v′ are barely sufficient for a, i.e., W a
su f = W a

bsu f = {v,v
′}. By Proposi-

tion 2, there does not exist a set of spatial patterns S generated by some 2D aTAM TAS such that

W a
su f 6= δ S

su f (W
a
bsu f ). Therefore, this set of claws is inconsistent as it is not perfectly sufficient for a

and W a
su f is not contained in the full library for the 2D aTAM. The set can be made consistent by

adding the new claw on the right as shown.

aa a

v
v'

Figure 14: [Left] An inconsistent set of claws with postconditions v and v′ sufficient for a. By
Proposition 2, the set of claws should contain at least one more claw with a precondition in the
disjunction. [Right] Adding a single new claw with a postcondition sufficient for a renders the set
consistent.

Structure of Synoptic Patterns

With these preliminaries in place, we now describe how arbitrary synoptic patterns of aTAM

TASs may be formed from a set of claws by the recursive application of the operation of claw

extension from a seed spatial pattern and vice versa.
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Definition 29. Let K be a set of claws over a label alphabet Σ and S be the set of all (finite) spa-

tial patterns with labels from K. The extension function E : S×K → 2S associates to a spatial

pattern x ∈ S and claw κ ∈ K, a set of spatial patterns obtained by replacing a subpattern of x

matching the support of κ’s precondition u with the support of ua from finger (u,ua) of κ .

Starting from a seed pattern in S0 = {σ} (as in an aTAM TAS), the union of the extensions by

all preconditions in a consistent set of claws produces a set of spatial patterns of size one larger

containing the seed as a subpattern. Iteratively performing the extension of each pattern in this

new set produces a sequence of layers of spatial patterns of larger and larger sizes, given by

SE0 = S0;

SEi+1 =
⋃

κ∈K

E(SEi ,κ) for i≥ 0;

SEω =
⋃
i≥0

SEi .

Taken together, then, (SEω ,≺) is a synoptic pattern. It is clear that, performed with the set of claws

equivalent to a given TAS, this extension closure produces the synoptic pattern generated by the

TAS. We now expand Lemma 1 to the synoptic patterns of a 2D aTAM TAS and of a set of claws.

Lemma 2. Given a 2D aTAM TAS with assemblies S, there exists a finite and consistent set of

claws with NEWS supports specifying all possible attachments whose extension closure is a syn-

optic pattern identical to S.

Proof. Take the set of claws K known to exist by Lemma 1 and produce a set of spatial patterns

from the seed σ by extension closure SEω . It is easy to verify that K is consistent. Produce a syn-

optic pattern (SEω ,≺). For each pair of spatial patterns (x,xa) in the synoptic pattern of the TAS,

there exists a tile type a that extends x to be xa by stable binding to x and, by Lemma 1, produces

a corresponding claw in K. Performing an extension on x with this claw produces a set of patterns

that contains xa, i.e., S ⊆ SEω . Conversely, for each pair of spatial patterns y,yb ∈ SEω , there exists

a claw in K with a precondition whose support is in y and postcondition with center b. b is a tile
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type in the TAS and b can stably bind to y in the context consisting of tile types with labels in the

support of the precondition. Therefore, the synoptic pattern of the TAS contains a pattern yb for

all y and b. Thus, the synoptic patterns of the given 2D aTAM TAS and generated by the set of

claws are identical.

The question arises as to whether, conversely, an arbitrary set of claws K determines an aTAM

TAS, with a finite set of tiles, glues, and a temperature τ . This is not obvious but indeed so, as

established in the remainder of this section.

Theorem 1. For every synoptic pattern S of a 2D aTAM TAS, the following two conditions are

equivalent:

1. S is generated by a TAS T;

2. S is generated by claw extension from a seed by a consistent set of claws K.

Proof. Lemma 2 proves that (1) implies (2). For the converse, given a synoptic pattern generated

by claw extension on a consistent set of claws K, construct the associated tile assembly system

T = (T,σ ,g,τ) in the following way. The tile set T consists of a finite number of k-tuples, where

the tile label and glue information along the edges of the tile uniquely defines each tile type. The

labels come directly from the labels on the pre- and postconditions. The seed σ is the smallest

spatial pattern in the synoptic pattern. Algorithm 2 below produces a system of inequalities (an

AMCS, precisely defined below) from K characterizing the attachment conditions in a 2D aTAM

TAS. By Lemma 4 below, the AMCS always has a feasible solution if K is consistent. Each ad-

jacent pair of tile labels in any postcondition has a glue interaction that is labeled uniquely by

Algorithm 2. Glue strength and the temperature can be determined algorithmically via the b-rule

on the AMCS to identify a feasible solution that represents an assignment of integers to glue in-

teractions defined by g and the abstract temperature τ . (When the feasible solution has rational

non-integer solutions, we multiply the solution to clear the denominators and produce a new so-

lution with only integer components.) In this way, a TAS T can be constructed from K. We show

that the synoptic pattern of T is identical to the synoptic pattern generated by claw extension on
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K. By the construction, T contains a tile type t for the seed and for the center of each postcondi-

tion v in K and the glue function and temperature are such that t stably binds in a local context of

tile types with labels from the support of v. Therefore, the synoptic pattern of T contains patterns

x,xt for any x with the support of v’s precondition as a subpattern and xt contains the support of v

as a subpattern. By the definition of claw extension, the synoptic pattern generated by claw exten-

sion on K from seed σ contains σ and the set of patterns produced by iteratively replacing sub-

patterns identical to the support of some precondition in a claw κ in K with a subpattern identical

to the support of a postcondition in κ . Thus, every pattern in the synoptic pattern generated by

claw extension from σ by K is in the synoptic pattern of T and vice versa. Therefore, (2) implies

(1).

We now provide the definitions and constructions in support of the proof of Theorem 1. First,

we describe a system of inequalities called an assembly model constraint system (AMCS). Note

that the set of tiles for any 2D aTAM TAS produced from a set of claws K is derived from K. Tile

labels are cell labels in the pre- and postconditions. Glue labels can be described by coordinat-

ing pairs of tile labels in the corresponding direction of the gluing interaction. Attachment in the

aTAM is determined by the total strength of glues at the binding site and the temperature. If we

treat these as unknown variables (glue strengths and the temperature) we can construct a system

of inequalities that characterize the conditions on binding as determined by pairs of preconditions

and postconditions. If the system of inequalities afforded by the set of claws is feasible, then any

integer solution constitutes valid glue strengths and temperature. The glue function with a do-

main of glue pairs and a range of glue strengths defined by a feasible solution, along with the

temperature, taken together with the seed and tile set defines an aTAM TAS. The system of inte-

ger linear inequalities is guaranteed to be either feasible or infeasible by the well known Farkas’s

Lemma.

Lemma 3. [Farkas’s Lemma [32]] If A ∈ Rm×n and b ∈ Rm, then exactly one of the following

two statements is true:

1. There exists an x ∈ Rn such that Ax = b and x≥ 0.
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2. There exists a y ∈ Rm such that ATy≥ 0 and bTy < 0.

We operationalize the lemma using Algorithm 1 called the b-rule inspired by Bland’s pivot rule [33]

in Linear Programming. The b-rule algorithm constructs a system of equations from a system of

inequalities by introducing additional slack variables representing the slack in each inequality

between the left-hand side and the right-hand side and then uses a series of substitutions to deter-

mine the (in)feasibility of the system.

Algorithm 1: [The b-rule [34]]
Input: A system of linear inequalities Γ

Output: A feasible solution or ‘Infeasible’
1. Index the inequalities α ≤ β ∈ Γ with positive integers.

2. Replace each inequality i by equation xi = βi−αi, where xi is a slack variable.

3. For each slack variable xi, add inequality xi ≥ 0 to Γ.

4. Temporarily set each variable in the right-hand side to 0 and choose an equation where the
left-hand side now evaluates to be negative. (If many left-hand side variables evaluate to be
negative, choose the one with the smallest index.) If no equation fits the criteria, the system
is consistent. Return a feasible solution to the system of inequalities restricted to the
original variables (i.e., the non-slack variables.)

5. If no variable g j with a positive coefficient exists in the selected equation, the system is
inconsistent. Return ‘Infeasible’. Otherwise, solve for g j in the equation with smallest
index.

6. Eliminate g j in each other equation by substitution.

7. Repeat steps 4-6.

To apply the b-rule, we must generate a representative system of inequalities. The system should

be formed of three subsets: the model inequalities, the glue inequalities, and the imputed glue

inequalities. The model inequalities represent the explicit constraints on interactions captured

in the model of assembly, e.g., the nonnegative glue strength requirement for the aTAM. Dif-

ferent models may strengthen or relax constraints on gluing that influence the form and number

of these inequalities. Additional one-off constraints (e.g., the abstract temperature) should also

be represented by a model inequality. The glue inequalities are informed by the model’s defini-
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tion of binding and are taken from the postconditions. Imputed glue inequalities are formed from

the sufficient conditions for binding. When a dominated local context is insufficient for binding

a tile the dominating local context binds, this can be represented as an imputed glue inequality.

When a dominating local context is insufficient for binding a tile a dominated precondition binds,

this is also an imputed glue inequality. We call such a system of inequalities an assembly model

constraint system (AMCS). An AMCS for the aTAM is constructible via Algorithm 2. The un-

knowns xd
a,v are denoted by a tile label a indexed by a local context (either the associated post-

condition v or a bespoke local context if no associated postcondition exists) and a direction d of

interaction from the set {N,E,W,S} forming the variable xd
a,v as a proxy for the glue g between

the center labeled a of a local context v to the label in direction d in v.

Algorithm 2: Constructs an AMCS for a set of claws
Input: A finite set of claws K
Output: An assembly model constraint system (AMCS)

1. Let Σ consist of the labels in the supports of preconditions and postconditions in K and W
consist of all local contexts w with labels from Σ.

2. Add ‘xτ ≥ 1’.

3. For each local context w with center labeled a ∈ Σ and each direction d, add ‘xd
a,w ≥ 0’.

4. For each local context w with center labeled a and each direction d where w has label λ ,
add ‘xd

a,w = 0’.

5. For each postcondition v with center labeled a, add ‘∑d∈D xd
a,w ≥ xτ ’.

6. For each postcondition v′ with center labeled a whose precondition u′ is dominated by
another precondition u and for each local context w dominated by u where, after mutating
the center to label a, w→ v′, add ‘∑d∈D xd

a,w ≥ xτ ’.

7. For each local context w with center labeled a that is not a postcondition, add
‘∑d∈D xd

a,w ≤ xτ −1’.

8. For each maximal set of postconditions
W a = {v : v(0,0) = a, v does not dominate any other postcondition in K}, verify W a

su f has a
set of isomorphic local contexts in the full library. If not, add ‘xτ = 0’.

9. Return the current system of inequalities as an AMCS.
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Lemma 4. If the AMCS generated by Algorithm 2 for a set of claws K is feasible, then K is con-

sistent.

Proof. We proceed by contradiction. Suppose the AMCS is feasible and generated from a set of

claws, but the set of claws is inconsistent. To be inconsistent, the set of claws must fail to satisfy

at least one of the three parts of the definition. To be incomplete, if precondition u1 dominates no

precondition with 1 fewer label and u1 dominates precondition u2, then by step 7, the AMCS con-

tains a glue inequality of the form ‘∑d∈D xd
a,w ≤ xτ − 1’, where u1 → w→ u2, v 6= u1 6= u2, and

v(0,0) = a. By step 6, the AMCS contains a glue inequality of the form ‘∑d∈D xd
a,w ≥ xτ ’ and is

infeasible, a contradiction. To violate the second property, the set of claws must contain at least

one pair of different claws c1 and c2 where precondition u1 ∈ c1 dominates u2 ∈ c2 but no post-

condition in c1 is centered on some label a in a postcondition v ∈ c2. In step 5, the inequality

∑d∈D xd
a,u2 ≥ xτ is added that represents the ability to stably bind a tile a to the local context u2.

In step 7, the inequality ∑d∈D xd
a,u1 < xτ is added that represents the inability to stably bind a tile

a to the local context u1. Note that u1→ u2 and therefore a subset of the terms have sum greater

than or equal to xτ while the sum of all terms is less than xτ . Therefore, the AMCS is infeasible,

a contradiction. To violate the third property, either K does not contain as a postcondition each

local context in some sufficient disjunction of a set of postconditions W a that are barely suffi-

cient for a center labeled a, or K contains as a postcondition each local context in some sufficient

disjunction of W a and some other postcondition v with v(0,0) = a such that {v}∪ δ a(W ) is not a

sufficient disjunction. In either case, xτ = 0 and xτ > 0, the AMCS is infeasible, a contradiction.

In any case, we derive a contradiction. Therefore, the proposition holds.

Example 10. For the set of claws for a 2x2 square shown in Figure 15, Algorithm 2 produces the

AMCS described next. Glue labels are abstracted as pairs of adjacent unit labels, focused on the

newly occupied center, along with a direction from the set {N,E,W,S}.
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Figure 15: u1,u2,u3 form a consistent set of claws for a TAS that assembles a 2x2 square.

Model Glue

xS
b,u1 ≥ 0 xS

b,u1 ≥ xτ

xW
c,u2 ≥ 0 xW

c,u2 ≥ xτ

xW
d,u3 ≥ 0 xW

d,u3 + xS
d,u3 ≥ xτ

xS
d,u3 ≥ 0

xτ > 0

Imputed

xS
d,u3 < xτ

xW
d,u3 < xτ

By Algorithm 1, we introduce a nonnegative slack variable for each inequality and rewrite the
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inequalities as equations.

x1 = xS
b,u1

x2 = xW
c,u2

x3 = xW
d,u3

x4 = xS
d,u3

x5 = xS
b,u1− xτ

x6 = xW
c,u2− xτ

x7 = xW
d,u3 + xS

d,u3− xτ

x8 =−1− xW
d,u3 + xτ

x9 =−1− xS
d,u3 + xτ

x10 =−1+ xτ

We perform the selection step, identifying the equation with x8 and solving for variable xτ , yield-
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ing xτ = x8 + xW
d,u3 +1. We then rewrite and simplify the system.

x1 = xS
b,u1

x2 = xW
c,u2

x3 = xW
d,u3

x4 = xS
d,u3

x5 = xS
b,u1− x8− xW

d,u3−1

x6 = xW
c,u2− x8− xW

d,u3−1

x7 = xS
d,u3− x8−1

x9 = xW
d,u3− xS

d,u3 + x8

x10 = x8 + xW
d,u3

xτ = x8 + xW
d,u3 +1

We select x5 and solve for xS
b,u1 , rewriting and simplifying.

x1 = x5 + x8 + xW
d,u3 +1

x2 = xW
c,u2

x3 = xW
d,u3

x4 = xS
d,u3

x6 = xW
c,u2− x8− xW

d,u3−1

x7 = xS
d,u3− x8−1

x9 = xW
d,u3− xS

d,u3 + x8

x10 = x8 + xW
d,u3

xτ = x8 + xW
d,u3 +1

xS
b,u1 = x5 + x8 + xW

d,u3 +1
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Next, we select x6 and solve for xW
c,u2 , rewriting and simplifying.

x1 = x5 + x8 + xW
d,u3 +1

x2 = x6 + x8 + xW
d,u3 +1

x3 = xW
d,u3

x4 = xS
d,u3

x7 = xS
d,u3− x8−1

x9 = xW
d,u3− xS

d,u3 + x8

x10 = x8 + xW
d,u3

xτ = x8 + xW
d,u3 +1

xS
b,u1 = x5 + x8 + xW

d,u3 +1

xW
c,u2 = x6 + x8 + xW

d,u3 +1

We now select x7, continuing to follow the selection algorithm, and solve for xS
d,u3 before rewrit-
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ing and simplifying.

x1 = x5 + x8 + xW
d,u3 +1

x2 = x6 + x8 + xW
d,u3 +1

x3 = xW
d,u3

x4 = x7 + x8 +1

x9 = xW
d,u3− x7−1

x10 = x8 + xW
d,u3

xτ = x8 + xW
d,u3 +1

xS
b,u1 = x5 + x8 + xW

d,u3 +1

xW
c,u2 = x6 + x8 + xW

d,u3 +1

xS
d,u3 = x7 + x8 +1

Finally, we select x9 and solve for xW
d,u3 , producing xW

d,u3 = x7 + x9 + 1. We perform substitution

and produce a new system of equations with only slack variables and constants in any right-hand
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side.

x1 = x5 + x7 + x8 + x9 +2

x2 = x6 + x7 + x8 + x9 +2

x3 = x7 + x9 +1

x4 = x7 + x8 +1

x10 = x7 + x8 + x9 +1

xτ = x7 + x8 + x9 +2

xS
b,u1 = x5 + x7 + x8 + x9 +2

xW
c,u2 = x6 + x7 + x8 + x9 +2

xS
d,u3 = x7 + x8 +1

xW
d,u3 = x7 + x9 +1

We set the slack variables in every right-hand side to 0, rewrite and simplify to produce a feasible
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solution.

xW
d,u3 = 1

xS
d,u3 = 1

xW
c,u2 = 2

xS
b,u1 = 2

xτ = 2

x1 = 2

x2 = 2

x3 = 1

x4 = 1

x10 = 1

For our purposes, we restrict the feasible solution to the nonslack variables.

With these algorithms and results in place the proof of Theorem 1 is complete. We move our fo-

cus now to the analysis of the long-term behavior of assembly systems.

Probabilistic Synoptic Patterns

In addition to the difficulties with the naive probability model and Bayesian inference discussed

in chapter 1, we also recognize that the process of assembly generally precludes the usual i.i.d.

assumptions among a sequence of random variables on discrete spaces. It is incumbent on any

probabilistic analysis of the long-term behavior of synoptic patterns, including those that may

contain an infinite number of terminal patterns, that the underlying probability measure will as-

sign probabilities to every spatial pattern in such that the process of self-assembly can be treated

in a holistic way. We now address these issues by constructing several families of probability
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measures on arbitrary synoptic patterns.

Definition 30. A probabilistic synoptic pattern P(S,ρ) is a synoptic pattern S along with a prob-

ability measure on the set of elementary events given by

Ω = {(x,y) ∈ P : x≺ y}. (1)

The size of an elementary event (x,y) is n = |(x,y)|= |x|, the size of the spatial pattern x.

By analogy with claws, when discussing the spatial patterns in an elementary event, we refer to x

as the precondition and y as the postcondition although they are full spatial patterns, not just con-

texts. We also expand the definition of cone and anticone with respect to probabilistic synoptic

patterns.

Definition 31. In a probabilistic synoptic pattern P, the cone at the event (x,xa) is (x,xa)++ =

{(x,xa)}∪{(y,z) : (y,z) ∈ Ω and xa ≺∗ y} , and the anticone at (x,xa) is the event (x,xa)−− =

{(y,z) : (y,z) ∈ Ω and y ≺∗ x}∪{(x,xa)} . When the postcondition is not specified, the cone or

anticone also contains all events with the specified precondition and we use the notation x++ or

x−−.

By extending the notion of from spatial patterns to elementary events, we can partition Ω into

layers Ωn containing pairs of patterns in the immediate successor relation with a given size n, for

all size n > 0, such that Ω =
⋃

n>0 Ωn (disjointly.) Such a probabilistic synoptic pattern may be

constructed from the set of producible assemblies of a TAS by the following construction on an

arbitrary TAS.

Given a probability measure ρn defined on each Ωn, let F be a σ -algebra on Ω (e.g., the σ -

algebra generated by unions of the form
⋃

n>0 En, where En is a measurable event in the corre-

sponding σ -algebra for ρn.)

Lemma 5. Let T be a TAS with a notion of size | ∗ | and let ρn be a sequence of probability mea-

sures defined on each Ωn with corresponding σ -algebras Fn in the corresponding layers Ωn. The
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family of subsets F of Ω given by unions of the form
⋃

n>0 En, where Ens are arbitrary measur-

able events in the corresponding σ -algebras, is also a σ -algebra.

Proof.

1. F contains Ω since it is the union Ω = ∪Ωn of all full sets of elementary events Ωn of size

n.

2. F is closed under complementation. Consider a compound event E = ∪n>0En of events

En ∈ Fn. Note the complement of En with respect to Ωn is Ec
n. The complement of E is

then Ec = Ω−∪n>0En = ∪n>0Ωn−∪n>0En = ∪n>0(Ωn−En) = ∪n>0Ec
n . Since Fn is

a σ -algebra for Ωn, the complement Ec
n with respect to Ωn is in Fn. Therefore, Ec is also

such a union and belongs to Ω.

3. F is closed under countable unions. Consider a sequence of compound events Ek (k > 0)

in each union Ek = ∪n>0Ek
n , where Ek

n ∈Ωn. The union of the sequence

E = ∪k>0Ek = ∪k>0∪n>0 Ek
n = ∪n>0∪k>0 Ek

n .

Since Fn is a σ -algebra for Ωn, the union ∪k>0Ek
n also belongs to Fn, and therefore the

union E is also in F .

The sequence of probability measures ρn can now be extended to a probability measure ρ for

events E ∈F in a variety of ways.

Proposition 3. If wn is an arbitrary sequence of nonnegative real numbers partitioning unity, i.e.

∑n wn = 1, then (Ω,F ,ρ) is a probability space for Ω, where ρ is given by

ρ(E) = ∑
n>0

wnρn(E ∩Ωn) . (2)
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Proof. As defined, ρ is a function from Ω to [0,1] since ρ(E)≤∑nWn = 1. If E = Ω, then ρn(E∩

Ωn) = ρn(Ωn) = 1, for all n ≥ 0, yielding ρ(Ω) =
∞

∑
n=0

wn = 1. A set of pairwise disjoint sets

of elementary events E = ∪iEi can be written as E =
⋃

i(∪nEi,n) =
⋃

n(∪iEi,n) =
⋃

En, where

Ei,n = Ei∩Ωn by intersection with the Ωns, a disjoint union. Hence, ρn(En) = ∑i ρn(Ei,n). ρ(E) =

ρ(
⋃

n En) = ∑
n>0

wnρn(En) = ∑
n>0

wn ∑i ρn(Ei,n) Therefore ρ(E) = ∑i ∑
n>0

ρn(Ei,n) +∑i ρ(Ei), as

required.

Examples of such weight sequences include wn = 1/2n (geometric weights), wn = K/ns (poly-

nomial weights, e.g., quadratic for s = 2 and K = 6/π2), and wn = K/2n−n0 (radial geometric

weights defined more precisely below), for appropriate normalizing constants K to make them a

partition of 1. Geometric weight concentrates most of the probability mass in events represent-

ing small assemblies and decreases exponentially fast as the size grows away from the transitions

from the seed. Polynomial weights spread this probability across a larger initial segment of the

synoptic patterns. Radial weights do likewise but place larger masses around a region of a partic-

ular size n0.

Example 11. For the synoptic pattern associated with the TAS Tanbn in Figure 4, examples of

events in Ω are shown in Figure 16. The size of an assembly is the number of tiles used in its

construction. When partitioning Ω, an elementary event e = (x1,x2) has size |e| = |x1|. The σ -

algebra associated with Ω is 2Ω. The probability measure is as defined above with geometric

weights and the standard counting measure for each Ωn. The probability of the elementary event

e1 = (x1,x2) shown in Figure 16 is

ρ((x1,x2)) = w1ρ1((x1,x2)) =
1
2
. (3)

The probability of e2 = (x2,x3) in Figure 16 is

ρ((x2,x3)) = w2ρ2((x2,x3)) =
1
4
· 1

2
=

1
8
. (4)

Note that there are two events in Ω2,e2 and the event where tile at attaches instead of tile a. Now
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consider the probability of the compound event E = {e1 = (x1,x2),e2 = (x2,x3),e2 = (x3,x4)}.

ρ(E) = ρ((x1,x2))+ρ((x2,x3))+ρ((x3,x4)) (5)

= w1ρ1((x1,x2))+w2ρ2((x2,x3))+w3ρ3((x3,x4)) (6)

=
1
2
+

1
4
· 1

2
+

1
8
· 1

3
(7)

=
2
3

(8)

Intuitively, ρ(E) is the probability of assembling pattern x4 from pattern x1.

By substituting alternative weights, these calculations can vary. With polynomial weights in-

spired by the ζ function where n = 2

w =
∞

∑
i=1

wi, (9)

wi =

1
(i+1)2

ζ (2)−1
. (10)

and radial geometric weights defined by

w =
∞

∑
i=1

wi, (11)

wi =



1
2(2+(n0−i)) 0 < i < n0

1
21 i = n0

1
22+(i−n0)

n0 < i < 2n0

1
2n0+(i−2n0)+1 2n≤ i

(12)

centered at n0 = 2, we can build the following table.
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Weight at size n 1st event 2nd event Compound event

Geometric 1
2n

1
2

1
8

2
3

Polynomial
1

(n+1)2

ζ (n)−1 ' 0.388 ' 0.086 ' 0.506

Radial2 varies piecewise 1
16

1
4

3
8

s s,( (

s s,( (

s s,( (

e1

e2

e3

=

=

=
1 1

11

1 1

a

a a as2s2

s2s2

s2

Figure 16: Shown here is a set of events in the probabilistic synoptic pattern of Tanbn . Pattern
labels are taken from the tile set. Grey tiles map to the symbol ‘a’ in the alphabet of language
L = {anbn : n > 0}.

This construction will be referred to as the geometric, polynomial, and radialn0 geometric con-

struction, respectively.

Theorem 2. For any sequence of weights {wn}n>0 partitioning 1, any choice of local σ -algebras

Fn and local probability measures ρn, the induced probability space with probability measure ρ

along with the original synoptic pattern is a probabilistic synoptic pattern.

Proof. Define Ω to be the set of pairs of spatial patterns in the immediate successor relation for

the synoptic pattern, layered as described above. Let ρn be a probability measure on Fn, a σ -

algebra of Ωn. By Lemma 5, F is a σ -algebra for Ω. Let ρ be an extension defined previously of

the collection of ρn for all n. As shown above, ρ is a probability measure. This induced probabil-

ity space along with the synoptic pattern is then a probabilistic synoptic pattern.
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These families of probability spaces offer an incredible flexibility to the analyst. The weight

function and local probability measures can be completely arbitrary. Any function that parti-

tions the unit interval into countable infinitely many weights is a valid weight function. Differ-

ent weight functions may aid the probabilistic methods used to discern the details of an assem-

bly system underlying a probabilistic synoptic pattern. Polynomially decreasing weights may be

useful when properties localized over more extended areas may be of interest (e.g., quantifying

the uncertainty in a synoptic pattern or the constituent spatial patterns in the probability space.)

Radial geometric weights centered about some critical size can aid the analysis around target pat-

terns of a certain size or the time of their assembly. The geometric weights presented above shift

focus to the critical, delicate beginnings of an assembly process, where any small deviation can

have potentially radical effects arbitrarily far into the future in a monotonic assembly system. The

choice of weights is a critical one to any subsequent analysis and the local probability measure

can be tailored to specific laboratory conditions for a practical assembly and choice of Ωn. The

obvious choices are the counting measure or a bespoke assignment of measure in each finite Ωn

in our examples, but more statistically motivated or physically realistic local measures could be

used as well.

Probabilistic Analysis of 1D Rulers

In the probabilistic Tile Assembly Model (PTAM) introduced by Chandran et al [11], assembly

systems produce a family of 1D spatial patterns (so-called rulers) with expected length n0 as

terminal assemblies using Ω(log n0) tile types. The PTAM defines an assembly system as a tu-

ple (T,E,g), where the tile set T is a multiset of tile types and may contain many copies of each

unique tile type. Tile types have glues on their east and west edges only and each has multiplic-

ity equal to the number of its copies in T . The seed tile type E ⊂ T has a noninteractive glue on

its west edge so that growth happens only in one direction. g is the glue function as in the aTAM

definition: glues are either interactive and form a stable bond with at least one glue or are nonin-
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teractive and form no stable bonds with any glue. This forms a de facto temperature 1 assembly

system (although no explicit abstract temperature τ is given.)

A PTAM assembly system is said to probabilistically assemble a ruler of length n0 [11] if the ex-

pected length of a terminal produced by the assembly system is n0. To compute this probability,

they construct the probability of a tile binding in some context as the ratio of that tile type’s mul-

tiplicity to the sum of the multiplicities of all tile types that could bind in that context. The PTAM

thus models concentration and a rate of accretion in a well-mixed solution of tiles. The proba-

bility of a particular assembly xk of size k is defined recursively as P(xk) = ptP(xk−1), with the

probability of the seed P(x1) = 1. pt is the probability of binding the tile that produces assem-

bly xk from assembly xk−1. The probability of a set of assemblies (e.g., the set of terminals) is the

sum of the individual probabilities.

Chandran et al. define a PTAM assembly system construction with parameterized multiplicity to

assemble rulers of arbitrary expected length n0 as (T,E,g) with T = {S,H,C}, E = S, and a glue

function g that admits the following positive strength bonds: Hw binds to Se and Ce, Cw binds to

Seand Ce. H has multiplicity 1 and C has multiplicity n0− 2. In the next example, we define a

comparable aTAM TAS and carry out a similar analysis for the expected length of a terminal in

our framework through the construction of a probabilistic synoptic pattern and relevant random

variable.

Example 12. We consider the aTAM assembly system T = (T,E,g,τ) with T = {S,C,H}, E =

S, and a glue function g that admits the following positive strength bonds: Hw binds to Se and

Ce, Cw binds to Seand Ce. The temperature τ = 1. Since H does not use its east glue to form a

positive strength bond, an assembly becomes terminal after an H tile binds.

We take the set of all spatial patterns S produced by the assembler T along with the immediate

successor relation ≺ on S to form a synoptic pattern, as shown in Figure 17.
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S

C

C

C

C

C

C

H

H

H

H

H

H

Figure 17: The synoptic pattern for the TAS in Example 12 is reminiscent of a herringbone pat-
tern, with a nonterminal spine and terminal ribs. Patterns having most recently bound a C tile
form the spine, and patterns having most recently bound a H tile form ribs of length 1.

To obtain a probabilistic synoptic pattern, we define the local probability spaces indexed by size,

from individual sample spaces, σ -algebras, and local probability measures respectively given by:

• Ωn = {(x,y) : x≺ y and |x|= n},

• Fn is the full σ -algebra on Ωn, and

• ρn((x,y)) =


.25 when y is terminal

.75 otherwise.

By Lemma 5, F is a σ -algebra for Ω and, by Proposition 3, ρ is a probability measure for F .

By Theorem 2, this probability space with an appropriate weight function and the above synoptic

pattern forms a probabilistic synoptic pattern for T. We may now calculate the expected size of a

terminal assembly by considering the random variable on Ω given by

X(e = {(x,y)}) =


n = |y| when y is terminal

0 otherwise

Table1 shows this probabilistic analysis of the length of a ruler for a trio of weight functions and

three ρn of interest. Columns are labeled with the local probability of assembling a terminal for
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Table 1: Probabilistic Analysis of Linear Assemblies, N=5
E(X) ρn((x,y)) = 1

4 ρn((x,y)) = 16
17 ρn((x,y))→ 1

Geometric .75 2.824 3
Radial4 1.328 5 5.3125

Polynomial ∞ ∞ ∞

three different ρn and rows are labeled with three different weight functions. Generally, the ex-

pected length of a ruler is much shorter than in the PTAM probabilistic analysis. X observes 0

for infinitely many nonterminal assemblies. When the probability of formation of a terminal is in-

creased, the expected length increases to a limiting value. Under the Radial4 geometric weights,

we can choose ρn such that E(X) = 5 and recover Chandran et al.’s analysis. Under the Polyno-

mial weights, the expected length of a terminal is ∞ regardless of the local probability of assem-

bling a terminal.

In our framework, the aTAM assembly system T given in Example 12 can probabilistically as-

semble rulers of arbitrary integer length n0 through a reasonable choice of weights and local

probability measures ρn. The region of interest in the synoptic pattern should be around the ter-

minals of size n0, so radial geometric weights centered on events representing terminals of size n0

comprise our weight function. The local probability measures should weight terminal events such

that E(X) = n0. We can choose such a measure uniformly for every local probability space (in-

dependent of size) due to the similarity of Ωn for all n. The sample space always consists of two

events, one representing the assembly of a terminal and one representing the assembly of a non-

terminal, regardless of n. We weigh terminals highly as a function of the desired expected length.

For n0 > 2, we define each ρn in this way

ρn((x,y)) =


2n0−1/(2n0−1 +1) when y is terminal

1/(2n0−1 +1) otherwise.
(13)

Radialn0−1 geometric weights together with these local probability measures on the appropriate

local probability spaces complete the probabilistic synoptic pattern for any choice of n0 > 2.
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Another assembler presented by Chandran et al. is designed to produce rulers with expected

length n0 = 2k for k ∈ N with fewer than n0 tile types. For n0 = 8, Chandran et al.’s power-of-2

PTAM assembler T8 = (T8,E,g8) has tile set T8 = {S,S1,T1,T2,R1,R2} and includes seed E = S,

each with multiplicity 1. The glue function g8 defines the following tile interactions:

• Se binds only Sw
1 ,

• Se
1 binds T w

2 or Rw
2 ,

• T e
2 binds T w

1 or Rw
1 ,

• Re
2 binds T w

2 or Rw
2 ,

• T e
1 is noninteractive, and

• Re
1 binds T w

2 or Rw
2 .

Although T8 has fewer tile types than the expected length of the rulers Chandran et al. calcu-

late the TAS produces, the resulting synoptic pattern is far more complex than in Example 12.

New terminals are produced at a rate on the order of Θ(F(n)) and nonterminals on the order of

Ω(F(n)), where F(n) is the nth Fibonacci number. As a part of their probabilistic analysis, their

work makes the implicit assumption that a terminal is inevitable. As we demonstrate here by a

methodology that explicitly constructs a probability space and appropriate random variable, this

assumption is not well founded. The behavior of an assembler in the limit and the qualities of the

limiting pattern or patterns are dependent on the branching nondeterministic assembly process

and specific choices in building the probability space in which the assembler is analyzed. In Ex-

ample 13, we perform a probabilistic analysis on T for n0 = 8 with various weights and ρn.

Example 13. Beginning with T as described in Example 12, we form a synoptic pattern. We build

the local probability spaces indexed by size, forming the individual sample spaces, σ -algebras,

and local probability measures in the following way:

• Ωn = {(x,y) : x≺ y and |x|= n},

• Fn is the full σ -algebra, and
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Table 2: Probabilistic Analysis of Linear Assemblies, N=8
E(X) ρn((x,y)) = .5 ρn((x,y)) = 128

129 ρn((x,y))→ 1
Geometric 1.5 2.977 3

Radial7 4.031 8 8.063
Polynomial ∞ ∞ ∞

• ρn((x,y)) =


.5 when y is terminal

.5 otherwise.

As in Example 12, we compose these local probability spaces and a weight function to form a

probability space. The synoptic pattern and probability space form a probabilistic synoptic pat-

tern. We can calculate the expected size of a terminal assembly of this assembly system in a prob-

abilistic synoptic pattern by considering the random variable on Ω given by

X({(x,y)}) =


n = |y| when y is terminal

0 otherwise

We again take different weight schemes and local probability spaces under analysis to produce

Table 2. Columns are labeled with the local probability of assembling a terminal for three dif-

ferent ρn. Rows are labeled with three different weight functions. The expected length of a ruler

in various probabilistic synoptic patterns for various weights is again much shorter than in the

PTAM probabilistic analysis. When the probability of formation of a terminal is increased, the

expected length increases to a limiting value. With Radial7 geometric weights and a ρn that con-

centrates mass in terminal events, we recover the PTAM probabilistic analysis. Under the Poly-

nomial weights, the expected length of a terminal is again infinite (∞) regardless of the local

probability of formation of a terminal.

In summary, Examples 12 and 13 show that setting a local probability by construction and defin-

ing a probability of formation without explicitly defining the probability space is not enough to

establish a robust foundation for probabilistic analysis. Example 13 shows that the rate at which
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terminals are produced in ratio to the nonterminals is important to any resulting analysis of an as-

sembler. Ignoring large parts of the set of assembled patterns to focus on only the set of terminal

patterns produces an incomplete analysis of the properties of the assembler, even when the view

is restricted to only measurable qualities of the terminals. Fundamentally, a probabilistic synoptic

pattern performs two roles in a well founded probabilistic analysis not present in the literature:

the probability space is well defined for all spatial patterns and the relationships between them,

and the synoptic pattern is rooted in the complete behavior of the assembler. Furthermore, this

robust framework does not need a bespoke model to produce a reasonable probabilistic analysis,

as shown by the flexibility of the simple aTAM assembly system T.
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CHAPTER 3

PROBABILISTIC ANALYSIS OF LONG-TERM BEHAVIOR

Traditionally, tile self-assembly has been focused on the production of single, unique patterns

due to its usefulness as a representation of nanoscale manufacturing processes. It is desirable to

be able to analyze tile self-assembly systems to understand the long-term behavior of the assem-

bly process, especially if the systems generate arbitrarily large patterns. This would facilitate the

process of producing more general self-assembly systems based on tile self-assembly models.

Unfortunately, an algorithmic analysis is impossible in general because determining the products

of aTAM TASs can be as complex as deciding the long-term behavior of arbitrary Turing ma-

chines, e.g., solving the Halting Problem [35]. The standard aTAM assumes assembly proceeds

in the Euclidean plane without any errors and produces fully 2D spatial patterns as products. Re-

lating an aTAM TAS and a Turing machine (TM) that terminates in some configuration is not so

simple as examining the spatial pattern and the configuration of the Turing machine (TM) to find

out whether they are identical. Strings are 1D words and spatial patterns are 2D words. Inherent

in the representation of a computation by an aTAM TAS simulating a Turing machine is a notion

of an interpreter to map the halting configuration to the spatial pattern and vice versa. Interpret-

ing an arbitrary 2D word has a deep literature already [36, 37] with many interesting branches in

natural language processing and graph theory. In tile assembly, this problem of interpretation is

usually addressed by testing for an essentially linear subpattern. For example, the zigzag trans-

formation described earlier produces the total history of configurations of the simulated TM as

a spatial pattern. The final configuration is ‘read’ from a designated region of a terminal. This

interpretation reduces the complexity of the spatial pattern to a linear subpattern that depends

on the smaller assemblies that were produced before it like the halting configuration of the TM

depends on the prior configurations. Hand-in-hand, restricting the aTAM to the 1D lattice also

restricts its computational power. The natural dynamics of assembly are fundamentally different

from the TM and reasonable choices must be made when comparing the long-term behavior of
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the models. In this work, we are interested fundamentally in the dynamics of assembly and the

process by which new assemblies are formed. We take the approach that the assembler should be

responsible for producing a 1D word as directly as the associated grammar. We read the word

starting from the seed, following positive strength glues until the spatial pattern is exhausted.

This serialization respects the dynamics of assembly, but it does not greatly limit the generative

power of self-assembly. Such systems are not Turing computation universal, but they penetrate

into the Chomsky hierarchy and have been considered in the literature as interesting assemblers

for both traditional and probabilistic analysis [38, 11].

In this work, we broaden the scope to include assembly systems that produce potentially in-

finitely many unique patterns of interest, but will continue the focus on sets of terminal patterns

as representative of this long-term behavior. Furthermore, interesting sets of terminal patterns can

be produced by relatively simple TAS. We construe self-assembly as a stochastic process [39]

on probabilistic synoptic patterns in various ways and seek to find tools for predicting long-term

behavior probabilistically. Markov chains [39] are well known probabilistic models that make

these predictions possible, so we explore such models on probabilistic synoptic patterns. In this

chapter, we discuss Markov chains of essentially 1D TASs, i.e. assemblers whose products can

be described by single strings. The class of regular assemblers [40] are the computationally sim-

plest TAS in the aTAM. These assembly systems are capable of simulating the class of right or

left linear grammars and are capable of producing infinite sets of terminal patterns as described

by regular sets in the Chomsky hierarchy.

1D Language Assemblers

Regular languages are the simplest class of string languages defined in the Chomsky hierarchy.

There are many equivalent definitions of regular languages, including that a string language is

regular if and only if there exists a deterministic finite automaton that recognizes it, i.e., that ac-

cepts every string in the language and does not accept any string not in it.
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Definition 32. A deterministic finite-state automaton (fsa) is a 5-tuple D = (Q,Σ,δ ,q0,F) where

• Q is a finite set of states,

• Σ is a (finite) alphabet of symbols,

• δ : Q×Σ→ Q is a transition function,

• q0 ∈ Q is the initial state, and

• F ⊆ Q is a set of accepting states.

q0 q1

0

1

1

0

Figure 18: Here is an fsa that recognizes the language of binary strings consisting of all strings
containing an even number of ‘1’s.

Given a string x (a 1D word) over the alphabet Σ and an fsa M, x takes M from the initial state q0

through a sequence of states forming a path of length n = |x| and labeled by x leading to some

state q. M accepts x if and only if q ∈ F . The language recognized by M is the full set of strings

accepted by M. A language L is regular if it is recognized by some fsa.

An equivalent definition of regular languages can be given with another type of production sys-

tem, a Chomsky grammar. A left (or right) linear grammar is a generator for regular languages

and is a particular case of a context-free grammar.

Definition 33. A context-free grammar G = (V,Σ,R,S) consists of

• V , a finite set of variables;

• Σ, a finite set of terminals;

• R, a set of production rules of the form A→ β that describe how variables are rewritten

into strings over the alphabet Σ∪V (sentential forms);

• S is the“sentencehood” variable in V .
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The language generated by G is the set of strings in Σ∗ generated from S by transforming senten-

tial forms according to G’s rules. G is called right-linear if every rule in R is either of the form

A→ aB, i.e, β = aB, or A→ a where a ∈ Σ, B ∈ V . G is called linear if every rule in R has at

most one variable in its right-hand side β .

Thus, iterated applications of the rules in a right-linear grammar only produce sentential forms

with at most one nonterminal as the last character.

In [40], Winfree demonstrates a DNA tile self-assembly system that produces as a set of termi-

nal assemblies precisely those patterns encoding all the strings of a given regular language. The

proof is a robust algorithm for transforming a right (or left) linear grammar into a TAS in the

aTAM. Using Winfree’s algorithm, every regular language has a corresponding regular assem-

bler that produces terminals described exactly by the strings in the language.

Algorithm 3: [Winfree’s Algorithm [40]]
Input: A right linear grammar
Output: A regular assembler

1. Form a tile set T in the following way:

(a) For each rule in R of the form X → xY , create a tile (x,λ ,Y,λ ,X), where x is a tile
label and the glue set contains X ,Y

(b) For each rule in R with the form X → x, create a tile (x,λ ,λ ,λ ,X)

2. Set the abstract temperature τ = 1

3. Create g, a diagonal glue function with all positive glue strengths equal to τ

4. Create a seed tile σ = (λ ,λ ,S,λ ,λ )

5. Return the regular assembler (T, σ , g, τ)

Stochastic Processes for 1D Assemblers

We now formalize the notion of stochastic process. Intuitively, a stochastic process is a sequence

of observations on successive outcomes of a random experiment in a probability space.
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Definition 34. A stochastic process is a sequence of random variables {Xt}t∈N defined on a com-

mon probability space (Ω,F ,ρ).

In the literature [12, 41, 42], continuous stochastic processes, often in analogy with physical

chemical systems, have been used to analyze time complexity in tile assembly models. To es-

tablish a foundation for probabilistic analysis of tile assembly, we start with a formalization of a

TAS as such a process. The underlying random experiment is the attachment of a tile, randomly

selected from the tile set, at a particular position in an assembly. Generally, self-assembly is a

stateful process with dependencies. The existence of a large pattern depends on having assembled

smaller patterns under the constraints imposed by the glues and the container space. Iterating

the random experiment highlights these dependencies between outcomes that violate the usual

assumptions in probability theory, namely that random variables are independent and have identi-

cal distribution (the so-called i.i.d. assumption.) By using probabilistic synoptic patterns and the

supporting constructions, we can design processes that factor in these dependencies and holisti-

cally analyze the long-term behavior of an assembler.

Example 14. Given a probabilistic synoptic pattern on a 1D TAS T = (T,σ ,g,τ) that assembles

a set of spatial patterns P, consider a stochastic process that observes the tth or the last tile in the

postcondition of an elementary event (x,y), i.e. for all t ∈ N+, Yt : Ω→ T is given by

Yt((x,y)) =


yt if t ≤ |y|

y|y| if t > |y| .
(14)

Given a tile label a ∈ T , the event [Yt = a] consists of all elementary events where the spatial

pattern y has a tile of type a in the tth position (if t ≤ |y|), along with the elementary events of

length less than t with a spatial pattern ending with a tile of type a (if t > |y|.) In particular, the

event [Yt = a] is empty if a tile of type a is never attached to an assembly. Therefore, the event

At = [Y1 = a1]∩ ·· · ∩ [Yt = at ] is the cone (xt ,yt)
++ with yt = a1a2...at . When (yt ,ytat+1) exists,

the conditional probability is then ρ([Yt+1 = at+1] | At) =
ρ(At+1)
ρ(At)

. Otherwise, the conditional
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probability is 0.

The union of the values of the random variables in stochastic processes in these examples could

be an increasingly large or infinite set (which are usually called the states of the process), but

we are primarily concerned with observation of a finite number of values. In these examples, we

assume that the state set (either the tile set or a set of patterns) has been enumerated as positive

integers by some indexing function in lexicographic order so that the RVs in the stochastic pro-

cesses make numerical observations, as required. We restrict this union in various ways to main-

tain the accessibility of the representation to analysis. Ultimately, the goal is to identify stochastic

processes that both capture the assembly process but are also amenable to analysis of their long-

term behavior.

Example 15. Given a probabilistic synoptic pattern on a 1D TAS T = (T,σ ,g,τ) that assembles

a set of spatial patterns P, a stochastic process {Xt} observes the tile label at the tth position in

the postcondition of an elementary event (x,y), if such a tile exists, or declares no observation

was made, i.e. for all t ∈ N+, Xt : Ω→ P is given by

Xt((x,y)) =


yt if t ≤ |y|

0 else, if t > |y| .
(15)

Given a tile label a ∈ T , the event [Xt = a] consists of the union of the cones of elementary events

where the postcondition y has a tile labeled a in the tth position. The event [Xt = 0] consists of all

the elementary events of length less than t. In particular, the event [Xt = 0] = Ω if P is finite and

t exceeds the size of the largest pattern in P. Therefore, the event At = [X1 = a1]∩ ·· · ∩ [Xt = at ]

consists of cone (xt ,yt)
++ with yt = a1a2...at . As in Example 14, when (yt ,ytat+1) exists, the con-

ditional probability is then ρ([Yt+1 = at+1] | At) =
ρ(At+1)
ρ(At)

. Otherwise, the conditional probability

is 0.

In contrast to the previous examples, we next explore stochastic processes with an infinite num-

ber of observed states.
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Example 16. Given a probabilistic synoptic pattern on a 1D TAS T = (T,σ ,g,τ) that assembles

a set of spatial patterns P, a third stochastic process is given by

Wt((x,y)) = x (16)

Given an observation spatial pattern s ∈ P, the event [Wt = s] consists of the elementary events

in the claw with precondition x = s. Therefore, the event At = [W1 = s1]∩ ·· · ∩ [Wt = st ] is either

empty, or consists of events where x1 = s1, · · · ,xt = ... = st where the patterns sk are nested as

prefixes (denoted st ≤ st+1) of the next, for all 1 ≤ k ≤ t − 1. When st ≤ st+1, the conditional

probability is then ρ([Wt+1 = at+1] | At) = 1 or 0 otherwise.

In the next example, we explore a stochastic process where the event corresponding to a partic-

ular observation at time t may be infinite. To facilitate an analysis of long-term behavior, it may

be more suitable to have a finite state set of observations (discussed in the next section.) There-

fore, in the following example we truncate the synoptic pattern at some size n and take the set of

spatial patterns of size n or smaller to be the (finite) state space. The resulting stochastic process

is called a truncation, or more precisely the n-truncation, on the associated probabilistic synoptic

pattern, where the random experiment consists of selecting at random an elementary event repre-

senting a preexisting assembly binding a tile at a particular position. To ease discussion, we refer

to a spatial pattern directly as a sequence of tile types x1x2...xn rather than by its index.

Example 17. Given a probabilistic synoptic pattern on a 1D TAS T = (T,σ ,g,τ) that assembles

the set of spatial patterns P, a stochastic process {Zt} observes an initial segment of the assembly

up to a certain size, for example,

Zt((x,y)) =


x if |(x,y)|< t and

x1x2...xt otherwise.
(17)

Alternatively, we can put a bound on the size of the observation and define the n-truncation {Zn
t }

just as Zt =Yt for t < n and Zt =Yn otherwise. Given a spatial pattern s∈P, [Yt = s] is, depending
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on |s|, either a claw of elementary events with precondition s or a cone s++. In particular, when

s is terminal (exists only as a postcondition in Ω) [Yt = s] = /0. Therefore, the event At = [Y1 =

s1]∩·· ·∩ [Yt = st ] is either empty or [Yt = st ]. For At to be empty, there must have been some event

[Yi = s′], i < t where |s′| < i and [Yi+1 = si+1] with si+1 6= s′ or two events [Yi = si] and [Y j = s j],

i < j where si is not a prefix of s j. The conditional probability is thus either 0 or ρ[Xt+1 = st+1 |

At ] = ρ(At+1)/ρ(At).

Up to n, this is a faithful representation of the assembly process. Past n, the stochastic process

lacks the resolution to represent the full status of the assemblies and it can only myopically ob-

serve initial chunks of size n in larger assemblies.

Markov Chains

Discrete Markov processes, a class of stochastic process, are particularly interesting because they

admit a very elegant and relatively simple analysis of their long-term behavior. The assumptions

on the model are what allow this analysis. Markov processes have bounded memory, i.e., their

observations only depend on the observations immediately before, not on farther previous obser-

vations. We are especially interested in Markov processes with a finite number of states, com-

monly referred to as Markov chains.

Definition 35 (Markov property (MP)). A discrete stochastic process {Xt} in a probability space

(Ω,F ,ρ) on state space S is a Markov process if and only if

ρ(Xt+1 = st+1 | X1 = s1,X2 = s2, ...,Xt = st) = ρ(Xt+1 = st+1 | Xt = st) (18)

for every t ≥ 0 and s1,s2, ...,st ,st+1 ∈ S.

The Markov process is called time homogeneous if the probability in the right-hand side is inde-

pendent of t, depending only on (si,s j) ∈ S2. In that case, Msi,s j (also denoted Mi j or pi j) is the

transition probability given by ρ(Xt+1 = s j | Xt = si). The process is a Markov chain if the set of
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states S is finite.

We remark that it is customary to assume the MP is satisfied when events in the conditional prob-

abilities (such as [Xt = st ]) are empty, and the conditional probability is not defined (division by

0.) Obviously, the MP is not guaranteed for an arbitrary stochastic process that appears to rep-

resent the assembly process. For example, the stochastic process of a 1D aTAM TAS in Exam-

ple 14 is not a Markov chain.

Example 18. To demonstrate {Yt} does not have the MP, we note that spatial patterns belonging

to unique runs may still have the same tile type in the same position. The event [Yt = at ] may be

a forest of cones with some scattered smaller events while ∩t [Yt = at ] is either a single cone or

empty. The sequence of observations either corresponds to a valid run up to time t or it does not.

Thus, when the intersection is not empty, ρ(Yt+1 = st+1 | Y1 = s1,Y2 = s2, ...Yt = st) 6= ρ(Yt+1 =

st+1 | Yt = st) and {Y (t), t ∈ N+} is not a Markov chain.

On the other hand, the stochastic process {Zt} of Example 17 is a Markov process.

Proposition 4. The stochastic process {Zt} in Example 17 is a Markov process.

Proof. To show that the MP holds for all t, we note that the intersection of two different claws

is empty, the intersection of a claw and a cone is either the claw or empty, and the intersection of

two cones in the synoptic pattern of a 1D TAS is either the cone pointed at the larger pattern or

empty. To guarantee the MP, we analyze cases where [Zt = st ] is a claw or a cone.

When [Zt = st ] is a claw and the intersection is not empty, [Z1 = s1]∩ ...∩ [Zt = st ] = [Zt = st ] and

the probability on the left-hand side and right-hand sides are equal. When [Zt = st ] is a cone and

the intersection is not empty, the intersection is again exactly [Zt = st ] since no prior observation

by any Zi is of an event of size |(x,y)| < i and every set of outcomes associated with the prior

observations has [Zt = st ] as a subset (i.e., is a cone that contains the cone s++
t .) The conditional

probabilities on the left-hand and right-hand sides are thus equal.

Furthermore, the intuitive idea of assembly is preserved in this Markov process through a rep-

resentation of assembly as a nesting of cones pointed at successive patterns in an assembly se-
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quence. It cannot be the case that the intersection is a claw when [Zt = st ] is a cone. By the def-

inition of the stochastic process, claws are the preimages of observations smaller than the index

of the random variable. If [Zt = st ] is a cone, it is pointed at st , a spatial pattern that is larger than

every observation si for 1 ≤ i < t. Therefore, the subsequent observations of random variables in

the stochastic process are indeed associated with nested cones in the synoptic pattern.

When discussing time homogeneous Markov chains, the stochastic transition matrix or stochas-

tic matrix holds the key to an analysis of the long-term behavior. Operations on the associated

stochastic matrix can help to understand the long-term behavior of a Markov chain.

Proposition 5 ([39]). A transition matrix M of a Markov chain with state set S = {s1,s2, . . . ,sn}

satisfies the following conditions:

a. 0≤ pi j ≤ 1, for all si,s j,

b. ∑ j pi j = 1, for all si, and

c. Mk
i j is the probability of being in state s j after k steps given starting state si

Properties (a) and (b) define a stochastic matrix M.

Although the process {Zt} in Example 17 is a Markov process and any n-truncation is a Markov

chain, they are not time homogeneous. We can construct a new time homogeneous Markov chain

informed by these stochastic processes. We derive a stochastic matrix from the pairwise matrices

computed from the conditional probabilities ρ(Zi+1 | Zi). By the Kolmogorov Extension Theo-

rem [43], this stochastic matrix has a backing stochastic process founded on a probability space.

Example 19. We construct a homogenized stochastic matrix Msq from the n-truncation {Zn
t } in

Example 17 by an iterative construction from the empty matrix using Algorithm 4.

For a probabilistic synoptic pattern with geometric weights and a local counting measure of the
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Algorithm 4: [Compute Square Matrix Msq]
Input: A matrix M, a stochastic process X(t), and a size n > 0
Output: An n×n stochastic matrix Msq

1. For t from 1 to n

(a) Compute ρ(Xt+1 = st+1 | Xt = st) for each pair of observations st ,st+1

(b) Build Mt+1 from these values

(c) Compare M to Mt+1 and compute M′ by taking rows in Mt+1 not in M and
concatenating them with M

(d) Assign M′ to M

2. Add rows from the identity matrix to form a square matrix Msq from M, filling any empty
entries in Msq with 0s if needed.

3. Return Msq.

simple herringbone synoptic pattern, a homogenized 5-truncation is shown here.





.5 .5 0 0 0 0 0 0

0 .5 .41667 .08333 0 0 0 0

0 0 .4 0 .5 .1 0 0

0 0 0 1 0 0 0 0

0 0 0 0 .4 .5 .1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

For general n-truncations without the special row-wise structure of {Zn
t }, averaging the individual

matrices and padding appropriately to form a square matrix yields a stochastic matrix. This trans-

formation of a series of matrices of conditional probabilities into a single stochastic matrix will

prove useful in probing into the long-term behavior of a stochastic synoptic pattern.

It is indeed possible to use the thorough analysis afforded by Markov chains to learn something
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useful about the long-term behavior of self-assembly systems through synoptic patterns. Since

the probabilistic synoptic pattern is potentially infinite, the Markov chain will need to perform

a kind of averaging over the whole space by mapping the potentially infinite set of states in the

assembly process to the finite set of states in the Markov chain.

Definition 36. Let P be a probabilistic synoptic pattern with weights wn and probability measure

ρ , let {Xt} be a stochastic process on P with state set R and let ε be a real number in the unit

interval. A Markov chain M with states S and transition matrix [pi j] is an ε-approximation of

{Xt} if and only if, there exists a function f : R→ S such that for all pairs (i, j),

|E(Zi j)− pi j| ≤ ε , (19)

where Zi j(t)= ρ(B j
t |Ai

t−1) with B j
t = {b∈Ω : Xt(b)∈ f−1( j)}, Ai

t−1 = {a∈Ω : Xt−1(a)∈ f−1(i)}

and E(Zi j) = ∑n wnZi j(n).

We first examine the definition for soundness, i.e. is it true that a stochastic process on a proba-

bilistic synoptic pattern that is a Markov chain is a 0-approximation of itself?

Proposition 6. If the stochastic process {Xt} on a probabilistic synoptic pattern is a time homo-

geneous Markov chain, then the process admits a 0-approximation.

Proof. If f is the identity function on the state space of {Xt}, then B j
t = [X(t) = j] and Ai

t−1 =

[Xt−1 = i] and the conditional probability ρ(B j
t | Ai

t−1) = ρ(Xt = j | Xt−1 = i). ρ(Xt = j | Xt−1 =

i) is independent of t, so the expectation of a constant random variable is its constant value and

|E[Zi j]− pi j|= 0 = ε , as required.

We next examine a simple state Markov chain with three states that preserves the assembly re-

lationship in the probabilistic synoptic pattern. The stochastic process is time nonhomogeneous,

but only on the parity of the time index t. By alternating definitions of random variables, the in-

tersection becomes the image of the observation of one random variable through the lens of an-

other random variable’s observation. If this is the stochastic process of a probabilistic synoptic
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pattern, the related time homogeneous Markov chain is a 1
3 -approximation, shown next. Through

constraint optimization on the values in the resulting stochastic matrix, a derived time homoge-

neous Markov chain is shown to be a 1
6 -approximation.

Example 20. We first define the Parity stochastic process, a time nonhomogeneous stochastic

process on a probabilistic synoptic pattern.

Xodd((x,y)) =


x|x| if |(x,y)| ≡ 0 (mod 2)

y|y| else;

Xeven((x,y)) =


x|x| if |(x,y)| ≡ 1 (mod 2)

y|y| else.

Thus, the event [Xeven = s2]∩ [Xodd = s1] consists of the events where s1 binds s2. This behavior

is brittle, though. When Xodd makes an observation, it is for the entire probabilistic synoptic pat-

tern. The notions that s1 binds s2 and that s2 binds some new tile type s3 are incompatible (the

intersection is empty) since Xodd would have to observe s1 and s3 simultaneously. The behavior is

interesting enough for an assembly process where limited memory precludes such concerns.

We can homogenize the Parity stochastic process any number of ways. If we take the nonzero

conditional probabilities between the odds and evens directly from the definition of the stochas-

tic process, we produce the following stochastic matrix.

0 1 S
0 .25 .25 .5
1 .25 .25 .5
S .5 .5 0

It is natural to test this new time homogeneous Markov chain as an approximation of the original

stochastic process. Take f to be the identity and use the probabilistic synoptic pattern’s geomet-

ric weights for each E(Zi j). The result is a 1
3 -approximation. With the same f , we can optimize
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the stochastic matrix to form a new time homogeneous Markov chain that is a witness for a 1
6 -

approximation.

While the Parity stochastic process is simple, it does illuminate the long-term behavior of the ap-

proximated probabilistic synoptic pattern. The ε is sensitive to the weight function in the proba-

bilistic synoptic pattern. In Example 20, the geometric weights essentially set the transition prob-

abilities from S to other states. The details of the probabilistic synoptic pattern are set by the ex-

perimenter. Weighting small patterns highly implies a slow assembly process. After a long time,

the experimenter expects to see more small patterns in their set of assemblies.

The n-truncation as an approximation is similar to the Parity stochastic process. It is dependent

on the choice of weight function, but can give additional insight into the assembly process with-

out compromising the analysis of the long-term behavior as aggressively as partitioning the state

space into 3 parts.

Example 21. We first demonstrate a reasonable application of the definition for a particular

stochastic process, namely the MP of self-assembly on a probabilistic synoptic pattern. For this

fixed stochastic process on a probabilistic synoptic pattern with geometric weights we show the

n-truncation is a .25-approximation for any n with this function

f (r) =


r |r|< n

r1r2...rn |r| ≥ n
(20)

Br
t is a compound event that is exactly the cone r++ when |r| > t or a claw with precondition r

when |r| ≤ t. By definition, Xt has no observations of size larger than t. Ar
t−1 only contains ob-

servations of size smaller than t. Considering the conditional probability, when the intersection

exists, written B j
t

Ai
t−1

it has mass 1 when j = i < t,r and 0 when j 6= i < t,r. The n-truncation sets
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pi j =
ρ(B j

| j|)

ρ(Ai
| j|−1)

. The weighted sum is, then,

E(Zi j) ∈ {
| j|

∑
k=2

wk
ρ(B j

k)

ρ(Ai
k−1)

+w| j|,
| j|

∑
k=2

wk
ρ(B j

k)

ρ(Ai
k−1)

,0} (21)

Either the intersection exists at size | j| and larger (meaning i = j), or the intersection exists ex-

actly at size | j| (meaning B j
| j| is in Ai

| j−1|), or the intersection is empty. In any case, by shuffling

the geometric weights such that the most weight is given to observations at time | j|, the absolute

value of the difference is no more than half the ratio of two adjacent weights, i.e., ε = .25. We can

continue to improve this epsilon by using deeper knowledge of the assembler. We match weights

for each Zi j to the relative mass of cones represented by B j
| j| and Ai

| j−1|. The higher the ratio, the

higher the weight, since the remaining values will either be 1 (receiving more weight) or 0 (no

weight consideration is given).

Previously, we have loosely used the idea of ‘long-term behavior’ to mean how the modeled as-

sembler spends most of its time. Through the definition of ε-approximation, we can tie this loose

idea of long-term behavior to the precise concept of communication classes used for the same

purpose in the analysis of in Markov chains by partitioning the state set into specially identified

classes.

Definition 37. Let M be a Markov chain with transition matrix [pi j] and its powers [p(n)i j ]. A state

j is said to be accessible from state i, written i→ j, if there exists n ∈ Z+ such that

p(n)i j > 0 , (22)

i.e., there is a positive probability of reaching j from i in finitely many steps. Two states i and j

communicate, denoted i←→ j, if and only if j is accessible from i and i is accessible from j. The

period of a state i is the greatest common divisor of {n≥ 1 : pn
ii > 0}. The chain is ergodic if and

only if there is one communication class (the chain is irreducible) and the period of any state is 1

(the chain is aperiodic.)
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Communication defines a binary equivalence relation among states in a Markov chain and thus

the state set S can be decomposed into equivalence (called communication) classes. Two states

belong to the same class if and only if they communicate with each other.

Proposition 7 (Decomposition Theorem for Markov Chains [39]). The communication classes

C1,C2, ...,Ck form a partition of the state set of a Markov chain , i.e., for every i, j

Ci∩C j = /0 ( for i 6= j), and⋃
i

Ci = S.

Thus, any two states in the same class transition from one to the other, but states from different

classes will not.

Definition 38. A state i is recurrent if and only if ∑
∞
n=1 p(n)ii = ∞. Equivalently, the probability of

returning to state i is 1 for infinitely many times n. If state i is not recurrent, it is called transient.

A communication class that contains recurrent (transient) states is a recurrent (transient, respec-

tively) communication class.

Once a Markov chain enters a recurrent state, one can guarantee that the system will return to

that state again and again, infinitely often. Our interest is in those communication classes con-

taining states representing spatial patterns produced by the assembler whose presence is guar-

anteed in the limit, the recurrent communication classes. Were the experimenter to leave and re-

turn, in what condition would they find their experiment? An ε-approximation is a time homoge-

neous Markov chain and can provide these answers through the calculation of its communication

classes.

Example 22. Consider the n-truncation {Zn
t } on the herringbone probabilistic synoptic pat-

tern. The synoptic pattern has a regular structure, existing patterns are either extended by a

self-binding tile type, or enter a terminal branch. The state set is S, labeled by spatial patterns

up to size n. We recall the assembly partial order, the notion that large patterns cannot grow to
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be small patterns. This order persists through the mapping between states and spatial patterns,

so we see that borne out in the n-truncation’s states. States either have transitions to states rep-

resenting larger patterns or they only have self-transitions. Trivially, every state communicates

with itself, but it is those states with only self-transitions that are representative of the long-term

behavior of the n-truncation. These are the recurrent communication classes.

S

C

C

C

C

C

C

H

H

H

H

H

H

Transient

Recurrent

Figure 19: In this Markov chain, the transient communication classes are circled. The remaining
states belong to singleton recurrent communication classes.

Example 23. Consider the homogenized Markov chain {H(Y )t} of {Yt} from Example 14 on

the probabilistic synoptic pattern of the TAS that assembles spatial patterns corresponding to

binary strings divisible by three as terminals. The tile set consists of tiles with labels from the set

{s,0c,1c,0t ,1t} which is the state set for {H(Y )t}. 0t and 1t offer no glues and mark the string

as being divisible by three. Trivially, s communicates only with itself. 0c, and 1c communicate

with each other, forming another communication class. Finally, 0t communicates only with itself

and 1t communicates only with itself. The recurrent communication classes that represent the

long-term behavior of the TAS consist of these terminal states. Either the assembler is building a

larger string that is divisible by three, or it has produced a terminal that ends in a 0 or a terminal

that ends in a 1.

We can modify the underlying TAS by removing the tiles labeled 0t and 1t . Applying the same

process, we find the communication classes to be a singleton containing only s and another con-
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taining both 0c and 1c. {0c,1c} is a recurrent communication class. After a long time, we ex-

pect the assembler to be producing spatial patterns corresponding to longer and longer binary

strings.

Example 24. Consider the Markov chain {Xt} on the probabilistic synoptic pattern of a TAS that

assembles infinitely many unique patterns, some of which are terminal. {Xt} has two states, one

labeled “terminal” s and one “nonterminal” r, along with the conditions that pss = 1, prs > 0,

and prr > 0. We ignore the natural choice of f to produce an ε-approximation with ε close to 1

by mapping states that represent nonterminals to s and states that represent terminals to r. {s} is

a recurrent communication class that fails to capture the long-term behavior of the TAS through

the probabilistic synoptic pattern.

The truncation technique to produce a Markov chain from a Markov process can be refined for

the analysis of long-term behavior through communication classes by the use of a mapping be-

tween the spatial patterns and a finite set of states. In the case of the size truncation for arbitrary

assemblers, the function is the identity up to size n. Each regular assembler has an associated fsa

that recognizes the regular language assembled. Take the fsa mapping function to be the function

f : A→ S that maps spatial patterns in A to states in the fsa by simulating the fsa on the string rep-

resentation of the spatial pattern and mapping the spatial pattern to the state the fsa is in when the

string representation is exhausted. When f has a finite range, the size truncation is unnecessary

and f maps the infinite set of spatial patterns onto the state space of the fsa.

Example 25. We utilize the truncation technique on a finite state stochastic process associated

with the regular assembler for the language of strings divisible by three. This produces a Markov

chain with three states 0,1,2. The truncation for this Markov process is a homogenization of the

time nonhomogeneous Markov chain, resulting in the following stochastic matrix of a Markov

chain.

As in the Parity example, this homogenization is not unique. Any procedure that dutifully trans-

forms the potentially infinite set of time-dependent matrices of conditional probabilities is a valid

76



0 1 2
0 .85 .15 0
1 .16 .68 .16
2 .13 .19 .68

homogenization. Above, the geometric weights from the probabilistic synoptic pattern are used.

Next, we homogenize with the radial weights.

0 1 2
0 .94 .06 0
1 .08 .84 .08
2 .06 .12 .82

A homogeneous Markov chain is amenable to the analysis of its long-term behavior through a

steady state analysis.

Geometric Radial
0 .275 .557
1 .358 .31
2 .367 .133

Both homogenizations are ergodic and the single communication class is faithful to the long-term

behavior of the associated assembler.

The homogenization procedure remains an opportunity for effective summary, regardless of the

source time nonhomogeneous Markov chain. Any procedure that faithfully transforms the poten-

tially infinite set of time-dependent matrices of conditional probabilities is a valid homogeniza-

tion. When the language recognized by a fsa is infinite, the finite prefixes and suffixes outside of

the pumpable portion of strings in the language have an outsized effect at small sizes, so we also

explore the use of radial weights in addition to geometric weights from the probabilistic synoptic

pattern.

Taken together, this approach provides the analyst a robust technique to examine the long-term

behavior of any regular assembler. It extends from an fsa, a deterministic automaton, to a tile as-

sembly system, a stochastic model of growth and is a well founded and sound statistical method-
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ology. In the specific case of regular assemblers, the use of the weights from the probabilistic

synoptic pattern will produce a 0-approximation, a stochastic model from a deterministic one.

Theorem 3. The homogenized truncation of a regular assembler with matching weights is a 0-

approximation of the associated stochastic process.

Proof. Take f to be the function that maps spatial patterns to the state the fsa is in after process-

ing the binary string representation of that spatial pattern. In Definition 36, B j
t is the set of ele-

mentary events such that observations by Xt get mapped to j by f . Since the set of observations

of random variables in the stochastic process is identical to the states in the Markov chain, f is

the identity. Thus, B j
t = [Xt = j]. Zi j(t) is then the conditional probability ρ(Xt = j | Xt−1 = i) and

E(Zi j) = ∑n wnρ(Xt = j | Xt−1 = i) = pi j where wn is the weight at size n from the probabilistic

synoptic pattern. Therefore, |E(Zi j)− pi j|= 0 for all pairs (i, j).

Thus, for the regular assemblers, we have a tool to gain some understanding of the long-term be-

havior in the recurrent communication classes with the steady state vector as well as a good ap-

proximation of the stochastic process of assembly in a probabilistic synoptic pattern.

ε-Approximability of Linear Languages

Linear string languages are those generated by the linear grammars, i.e., context-free grammars

with at most one nonterminal on the right-hand side of every rule. This class of languages ex-

tends the notion of the regular languages described by the right-linear grammars used in the con-

struction of the class of regular assemblers. These languages are known to be recognized by

one-turn pushdown automata (pda), finite state machines with access to an infinite stack and the

caveat that after some transition decreases the size of the stack, no subsequent transition can in-

crease the size of the stack.

Definition 39. A pushdown automaton (pda) is a 6-tuple (Q,Σ,Γ,δ ,q0,F), where

1. Q is the finite set of states,
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2. Σ is the finite input alphabet,

3. Γ is the finite stack alphabet,

4. δ : Q×Σε ×Γε →P(Q×Γ∗ε) is the transition function

5. q0 ∈ Q is the initial state, and

6. F ⊆ Q is the set of accepting states.

A one-turn pda has the additional conditions that

1. Q = Q1∪Q2, where Q1∩Q2 = /0,

2. q0 ∈ Q1, and

3. each transition δ (q,a,z) = (q′,z′) is defined such that either

(a) q ∈ Q1, q′ ∈ Q, a ∈ Σε , z,z′ ∈ Γ+, OR

(b) q,q′ ∈ Q2, a ∈ Σε , z ∈ Γ,z′ ∈ Γε .

Theorem 4 ([44]). The class of one-turn pda recognizes the linear languages.

Following the blueprint from the prior section, we present an algorithm to construct an aTAM

TAS to produce a linear tile representation of strings in the language generated by a linear gram-

mar.

We note that, as with the regular assemblers, the abstract synoptic pattern of the resulting aTAM

TAS is a tree (i.e., a rooted acyclic graph.)

Example 26. We present a linear grammar that produces the language L = {anbn : n≥ 1},

S→ aSb. (23)
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Algorithm 5: [Linear Grammar to Linear Assembler]
Input: A linear grammar G that generates language L
Output: An aTAM TAS T whose terminals correspond to strings in L

1. Convert each rule that is not right- or left-linear into two rules, one right-linear and one
left-linear by introducing a new variable;

2. For each right-linear rule, create a tile type as in Winfree’s algorithm3;

3. For each left-linear rule, create a tile type as in Winfree’s algorithm, except the east and
west glues are mirrored;

4. For any introduced variables or pre-existing variables with rules that are a mix of left-linear
and right-linear or with at least one linear rule, produce a set of tile types that describe the
deterministic substrings of terminals derived. If a variable can derive itself (the substring
can be arbitrarily long), add k new tile types labeled with the k terminals derivable from the
variable in any sentential form;

5. When the ratio of the lengths of dependent substrings is not 1, produce a set of tile types
representing a deterministic substring by turning north (south) and reproducing the
deterministic substring in part before turning back south (north) to return to the main axis
of assembly. This ensures the rate at which substrings are generated in the first half of the
string matches the rate at which they are generated in the second half;

6. The center of any of these substrings is represented with a special pair of ‘turning’ tile
types, the first with a glue on its west and south, the second with a glue on its north and
west, with the west glue marked as mirrored with a superscript m;

7. Create a seed tile and a tile type whose east glue is the start variable as in Winfree’s
algorithm;

8. Glues labeled with matching variables have positive strength. Glues on mirrored tile types
with the same label are differentiated by a superscript m and are given positive strength;

9. Glues on tile types designed to interact deterministically are given positive strength;

10. Return the resulting TAS.
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First, we split the rule S→ aSb by adding a new variable V1 to produce the equivalent grammar

S→ aV1

V1→ Sb.
(24)

Then we create tile type {a,λ ,V1,λ ,V1} for the rule S→ aV1. Next, we create tile type {b,λ ,V m
1 ,λ ,V m

1 }

for the rule V1 → Sb. The ‘turning’ tile types are next, {a,λ ,λ ,T,V1} and {a,T,λ ,λ ,V m
1 }. Fi-

nally, we create the seed construction tile types {ε,S,λ ,λ ,λ} and {ε,λ ,V1,S,λ}. The glue func-

tion is diagonal and the strength of each non-zero interaction is τ , the temperature of the system.

This TAS is the one presented in Figure 4.

The one-turn pda that recognizes this language is a finite state machine and we use these states in

a definition of a stochastic process on the probabilistic synoptic pattern of the TAS produced by

the above algorithm.

Example 27. Given a probabilistic synoptic pattern on a 1D TAS T = (T,σ ,g,τ) that assem-

bles a set of spatial patterns whose terminals correspond to strings in a language recognized by

a one-turn pda P, consider a stochastic process that observes in an elementary event (x,y), the

state of P having processed the string corresponding to x.

By applying the truncation technique, we can derive from this time nonhomogeneous Markov

chain a homogenized Markov chain, as in the previous section.

Theorem 5. The homogenized truncation of an aTAM TAS corresponding to a linear grammar

with matching weights is a 0-approximation of the associated stochastic process.

Proof. We follow in the steps of the proof strategy used in the previous section, instead using this

new construction from the one-turn pda. Again, we take f to be the function that maps spatial

patterns to the state the one-turn pda is in after processing the binary string representation of that

spatial pattern. In Definition 36, B j
t is the set of elementary events whose observations by Xt get

mapped to j by f . Since the set of observations of random variables in the stochastic process is
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identical to the states in the Markov chain, f is the identity. Thus, B j
t = [Xt = j]. Zi j(t) is then the

conditional probability ρ(Xt = j | Xt−1 = i) and E(Zi j) = ∑n wnρ(Xt = j | Xt−1 = i) = pi j where

wn is the weight at size n from the probabilistic synoptic pattern. Therefore, |E(Zi j)− pi j|= 0 for

all pairs (i, j).

The insight that supports these 0-approximations of essentially linear TAS is three-fold. We first

note the stochastic process is a production experiment, each iteration produces a spatial pattern.

This is true for the stochastic process of any self-assembler. Uniquely to the essentially linear

TAS, the produced assemblies have spatial patterns that are serializable without affecting the

dynamics of the assembler in producing them. We can use the n-truncation for the stochastic

process as a 0-approximation because for any time t, the first t positions of any spatial pattern

represent the first t tiles laid in the corresponding assembly. Since there is no confluence, these

tiles in this sequence define a unique spatial pattern in the synoptic pattern. Finally, finite state

automata have decidable halting problems and thus there is a procedure to decide, for any finite

string (spatial pattern), the state of the finite state machine after processing that finite string. If

any of these three supporting conditions fails for a recognizer or the assembler, we cannot guar-

antee a 0-approximation for the assembler with these methods. Whether these approximations

can be extended to other families remains an interesting question for further research.
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CHAPTER 4

APPROXIMATION BY SELF-ASSEMBLY

Examining the long-term behavior of a computationally complex assembler through approxi-

mation by Markov chain does not fully address the connection between theoretical algorithmic

self-assembly and practical algorithmic self-assembly. Theory informs the design of experimen-

tal systems, but the physical chemical systems themselves often require herculean experimental

efforts and dedicated design tools to fine-tune and reduce errors in the final product. Historically,

these tools rely on making errors less energetically favorable through techniques like proofread-

ing and algorithmically limiting facets for spurious nucleation [8]. Robust error-free assembly in

these contexts requires scaling, redundancy, and careful design. A growth error where a tile ex-

periences a weak, transient bond but is geometrically or energetically locked-in by subsequent

growth can be made to have an arbitrarily low probability at the cost of scaling, i.e. a sequence

of n incorrect attachments must be formed before a temperature stable growth error occurs. The

costs of these solutions are not especially high and they have been shown to be effective in vitro.

In terms of the products of these assembly processes, the transformed TASs exhibiting this ro-

bust error-free assembly exhibit dynamics that may not reflect the desired dynamics exhibited

by an ideal assembler (one in an error-free model.) Proofreading scales the assembled patterns

or requires particular dynamics that force certain sequences of attachments. Reducing spurious

nucleation in hierarchical models requires the use of careful design principles such that certain

small patterns cannot possibly be assembled by the assembler. These heuristics may be effective,

but are not comprehensive.

In Moore et al. [45], we approach the problem of robust error-free assembly through the approx-

imation of an ideal assembler by a realistic assembly process, under mild assumptions on the na-

ture of the assembly model (not necessarily aTAM.) That process is taken to produce the entire

set of all assembled patterns with no assumption about the method of assembly proceeding as in-

tended, but rather allowing for potential mishaps. Here we extend that analysis to more general
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situations by enhancing the notion of probabilistic assemblability into an approximation method-

ology, leveraging the framework developed in chapters 1-3. When an assembler G is intended to

assemble a set of spatial patterns in a synoptic pattern H and errors occur, then G only approx-

imately assembles H. In this chapter we introduce the notion of probabilistically approximable

assembly to quantify and assess the quality of such errorful assemblers.

Probabilistically Approximable Assemblers

We begin with a notion of pattern similarity. We say one pattern is similar to another pattern of

the same size when they can be overlapped so that some positions share matching labels. It con-

tains exactly the maximal subpattern with only matching labels (nonblank matches identical non-

blank, blank matches blank) for a fixed translation. The degree of similarity is a ratio of matching

nonblank labels to total nonblank labels.

Definition 40. Let p be a real number 0 ≤ p ≤ 1. Two spatial patterns x,y are similar modulo p,

denoted x∼p y, if and only if they are of the same size n and there exists a spatial pattern z that is

a subpattern of x and y with size |z|> pn.

Two patterns are thus similar modulo p = 1 if and only if they are identical. They are similar mod

1
2 if they can be overlapped so that the labels of at least half of their unit cells match. Since every

pair of patterns of the same size are similar modulo 0, we assume that p > 0.

Definition 41. Let H be a set of target patterns, G an assembler, and G the set of patterns as-

sembled by G . Let ρn be a sequence of probability measures for the probability space indexed by

a notion of size n on the set of elementary events Ω = G∪H as described in chapter 2. The as-

sembler G probabilistically approximates H if and only if there exists a constant 0 < p ≤ 1 such

that

∀n, ρn(Gn | Hn)≥ p, (25)
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and

∀ n ∀ y ∈ Gn ∃ x ∈ Hn such that x∼p y, (26)

where Gn (Hn, respectively) denotes the set of patterns of size n assembled by G (just contained

in H, respectively.) The constant p is called the strength of G .

Thus, every pattern x in the target set probabilistically approximated by an assembler with strength

p has a witness assembly y that is similar to x modulo p, although the complementary subpatterns

in x and y may be entirely different. Thus, even when the assembler makes patterns outside of the

target set, a significant proportion of these nontarget assemblies are close to target patterns of the

same size.

This concept also allows us to focus on the ability for one assembler to approximate another

through probabilistic assemblability.

Definition 42. An assembler H that assembles a set of patterns H is p-approximable if there

exists an assembler G that probabilistically approximates H with some strength p > 0

In chapter 3, we were concerned with exhibiting an approximation that preserves the local be-

havior of the stochastic process of assembly to some degree ε in order to obtain an informative

description of the long-term behavior of the assembler. Armed with a notion of probabilistic as-

semblability, we now can directly understand the long-term behavior of a target assembler via

a potentially simpler assembler whose long-term behavior may be more amenable to analysis.

In the aTAM, there is an open question about the relative computational power of cooperative,

sometimes called temperature 2, and noncooperative (temperature 1) assembly. It has been shown

under a variety of constraints that some terminal patterns are assemblable at temperature 2 but

not at temperature 1, but the more general question about the ability of temperature 1 systems

to simulate a significant class of temperature 2 systems is under intense scrutiny from a variety

of interesting directions [27, 46, 47, 48, 28, 49, 47]. We approach the question through an idea

of approximation that differs from extant analyses of approximate assembly [50, 51]. When we

relax the notion of simulation to one of approximation, some of the power of cooperativity to pro-
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duce interesting patterns can be harnessed in noncooperative systems at the price of a notion of

efficiency that involves the strength and a notion of purity (inversely, impurity) of the approxi-

mation. The notion of purity separates those assemblies that are responsible for useful assembly

work (have some target pattern in their cone) from those that cannot possibly contribute to assem-

bling target patterns of a larger size. Promising patterns are equivalent to some target pattern or

may grow to become a target pattern, and are positive examples for approximation.

Definition 43. In the context of Definition 41, a promising pattern is a spatial pattern x in G as-

sembled by G whose cone x++ contains at least one spatial pattern in the target set H.

Proposition 8. The assemblies of an assembler G that probabilistically approximates a target

set H can be partitioned into two sets G′ (the promising patterns), and E (the errors or junk pat-

terns) given by G′ = {a : ∃ b ∈ H ∩a++} and E = G−G′.

An assembler that generates only promising patterns may not become a 1-approximation, as a

promising pattern may not be similar modulo 1 to any pattern in the target set, but the intuition

should be that such an assembler is responsibly producing patterns in the target set. With this

notion of promising patterns we can now define the purity of an assembler, or how carefully it

manages assembly of nontarget patterns.

Definition 44. A set of patterns H is called approximable with impurity q if there exists some

assembler G assembling a set of patterns G, a constant q > 0, a probability space (Ω = G∪

H,σ ,ρ), and a notion of size n such that

∀n, ρn(Gn−G′n)≤ q ρn(Hn) (27)

If H is probabilistically approximable by an assembler G with strength p and impurity q, the ra-

tio ε = p
q is called the efficiency of G . When ε = p

q > 1 for some assembler, the target set H is

efficiently probabilistically approximable.

We now present an example of how one assembler may approximate a target set to show why
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this concept is useful to the study of tile self-assembly. This example is adapted from a series of

examples originally presented in [45].

Example 28. We construct a simple tile assembly system called the RGB gadget that exhibits a

signalling behavior in a modified aTAM . The seed is a containing square of length L on a side,

with seed tiles from the tile set incorporated into it at positions L
2 along the west and south sides.

The red and green signals grow from the seed tiles and can cooperate to produce a blue signal,

but nondeterminism in the model may prevent this cooperation through a blocking behavior. Here

we consider how we can use a cooperative (temperature 2) RGB gadget Gc to approximate a tar-

get set H consisting of a blue signal shown in Figure 20 and all assemblable subpatterns.

Gc consists of a tile set as shown in Figure 21, with the expected glue function and τ = 2. To de-

termine the strength p and impurity q, we first construct a probability space (Ω = Gc ∪H,σ ,ρ)

with the Manhattan distance as the notion of size n. Since every target pattern is produced, the

patterns that are least similar to any target pattern in the set dictate an appropriate value of p.

In this case, this pattern is the one that binds two errorful tiles to the seed and p = 1
2 . q is sen-

sitive to the local measure ρn. Using the counting measures for ρn, we recover the q as in [45],

otherwise q is the ratio of the mass of the errors to the mass of the targets at each size. Assum-

ing ρn is not highly sensitive to n (the mass of an error at size n is given by some O(n) function),

the efficiency εc under the counting measure is then Ω( 1
L), where L is the length of a side of the

container seed square. Weighting targets highly at some choice sizes, or partitioning the weights

between targets and assembled patterns according to an Ω(n) function affects q directly and can

overwhelm the effect of the size of the seed such that the efficiency is more sensitive to the chang-

ing ρn than changing the size of the seed.

Theorem 6. If a set of patterns P is probabilistically approximable with probability p, impurity q

and efficiency ε = p
q by a monotonic pattern assembler G , then

1. target patterns are assembled with positive probability at least K p
p+q = Kε

1+ε
> 0 where K is

the minimum positive probability of attachment of any single tile in the assembler; promis-
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Figure 20: The ideal RGB assembler is designed to grow two signals, one red from site R and
one green from site G, toward a point of cooperation C. The seed is an L×L square perimeter
where inputs R and G and output B are to be placed. Cooperation is achieved at the point C,
where the signals would “meet” to effect the AND and produce a deterministic signal that is
recorded at output B.

Figure 21: A tile set designed for a temperature 2 assembly system that uses cooperation to si-
multaneously detect nondeterministic input signals, red (R) and green (G), and from the designed
point of cooperation output a deterministic signal to the blue (B) site. For cooperative assembly,
double edges indicate strength 2 glues, and single edges strength 1. When the system is run in
noncooperative mode, all glues are strength 1. R and G propagate from the inputs r and g by a
series of R and G tiles. The D and E tiles are placed nondeterministically at some point along the
signal to enable attachment of the cooperation tile C. At the point of cooperation, the O tile binds
cooperatively and then grows the deterministic blue signal by a series of B tiles (only the first one
is shown here.) The number of tiles in the blue signal is constrained by the size of the assembly
space L.
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ing patterns are assembled with positive probability at least p
p+q = ε

1+ε
> 0;

2. nontarget (erroneous + nontarget promising) patterns are assemblable with probability at

most 1− K p
p+q = (1−K)p+q

p+q = 1+(1−K)ε
1+ε

.

3. With respect to all assemblies, erroneous patterns are assembled with a complementary

probability to that of promising patterns and within the interval [0, 1
1+ε

]

Proof. For a size n, let the probability of assembling a target pattern, the probability of assem-

bling a promising pattern, and the probability of assembling an error be pn, a′n, and en, respec-

tively. Let pn = ρn(Hn |Gn) be the local conditional probability of assembling a target pattern and

A denote the complementary Ω−A. By the hypotheses, ρn(Gn∩Hn)
ρn(Hn)

≥ p, so pn =
ρn(Gn∩Hn)

ρn(Hn)
ρn(Hn)
ρn(Gn)

≥

pρn(Hn)
ρn(Gn)

and en = ρn(Hn∪G′n | Gn) =
ρn(Gn−G′n)

ρn(Gn)
≤ qρn(Hn)

ρn(Gn)
≤ q pn

p ≤
q
pG′n, and thus G′n ≥

p
p+q > 0.

Since a target pattern is the extension of a promising pattern of a smaller size by the attachment

of a tile, the probability of a target pattern x of size n is the probability of attaching a new tile to

a promising pattern a of size n− 1 is given by K p
p+q , where K is the minimum probability of at-

tachment of a single tile. The probability of assembly of a nontarget pattern is then en+a′n− pn =

ρn(Gn)−ρn(Hn | Gn)≤ 1− ρn(Hn∩Gn)
ρn(Gn)

≤ 1−K p
p+q = 1+(1−K)ε

1+ε
.

Theorem 7. If a set of patterns H is efficiently probabilistically approximable by a pattern as-

sembler G , then one of the three following alternatives must hold:

1. the rate at which erroneous and nontarget promising patterns are assembled stabilizes at a

constant value;

2. the rate at which erroneous and nontarget promising patterns are assembled switches in

value in an alternating fashion;

3. or the rate at which erroneous and nontarget promising patterns are assembled is at least

exponential.
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This proof requires the following concepts in real analysis in ordinary Euclidean space. A limit

point of a given sequence of real numbers {an}n is the limit of some converging subsequence

{an j}. Thus, a converging sequence has only one limit point (its limit), but nonconvergent se-

quences such as {(−1)n} can have more than one limit point (±1.) The Bolzano-Weierstrass

Theorem [52] says that a bounded sequence of points in a real closed interval always has at least

one limit point. This nonempty set of limit points for a sequence {an}n will be denoted Lim({an}).

Proof of Theorem 7. Define pn = ρn(G′n | Gn) and vn = ρn((Gn−G′n) | Gn) to be the infinite

sequences for the corresponding sets of assembly for promising and erroneous patterns, respec-

tively. It follows from Theorem 6 that 0 ≤ pn + vn < 1− K p
p+q for all sizes n ≥ 0. Therefore, these

sequences are bounded and Lim(pn) and Lim(vn) are nonempty sets, by the Bolzano-Weierstrass

Theorem.

If Lim(pn) and Lim(vn) consist of single elements, (a) holds. Otherwise, let p and v be the supre-

mum of their respective nonempty limit sets. If p = v, then for infinitely many n pn ≥ vn and for

infinitely many n, pn ≤ vn, thus (b) holds. Otherwise p 6= v, meaning the smallest upper bound

of one sequence is greater than the smallest upper bound of the other, and either the promising

patterns or the errors eventually dominates.

Given a promising or error pattern x of size n, let the context of an assembled pattern refer to a

site where one tile may stably attach by assembly in the given assembler and let the boundary

be the set of all contexts for an assembly of size n. If x is an error, every extension of x is also an

error. Let αn(x) = |x++| be the number of all such possible attachments in x++. If x is promis-

ing, x++ contains at least one promising pattern (e.g., x.) Call βn(x) the number of promising

attachments. The number of errorful or promising attachments are complementary in the set of

all possible attachments. Let αn and βn be the minimum of αn(x) and βn(x) over all patterns x of

size n. Let α and β be the infimum, the greatest lower bound, of all αn > 0 and βn > 0 over all

n > 0. Since p 6= v, at least one must be positive and, in fact, greater than 1 for infinitely many n.

Therefore pn ≥ cαn or vn ≥ cβ n for infinitely many n.
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Conclusions

In this work, we introduced a novel object for the study of the long-term behavior of assembly

processes, synoptic patterns, a holistic representation of the process designed to focus on the re-

lationship between the products of assembly overall, rather than the relationships between atoms

within single assemblies. In chapter 2, we described the necessary conditions an arbitrary DAG

must meet to be recognizable as a synoptic pattern of some aTAM TAS. Next, we showed how

a synoptic pattern can be reconstructed from a set of special claw graphs by an operation called

extension from a seed. We connected these model-agnostic (e.g. glue-independent) claws to the

aTAM by construction and showed that any synoptic pattern associated with an aTAM TAS is

also associated with a consistent set of claws in the aTAM and vice versa. We then showed how

to add on a probability space to form probabilistic synoptic patterns where a probabilistic analy-

sis of the long-term behavior of assemblers can be undertaken. Events in the probabilistic synop-

tic pattern of an aTAM TAS represent the stable binding of a tile to a preexisting assembly. We

show how changing the probability measure in the probabilistic synoptic pattern provides a use-

ful tool for the analysis of self-assembly systems by comparing our object to a TAS in the PTAM

and demonstrating the recovery of their analysis for a particular choice of probability measure

parameterized by the same length that parameterizes the corresponding TAS. We contrast our

construction with thead hoc representation of probabilistic self-assembly as the local probability

of stable binding, showing the flexibility of the probabilistic synoptic pattern does not forgo the

expressivity of prior work in the area. In chapter 3, we expanded on the applications of a proba-

bilistic synoptic pattern by demonstrating the usefulness of a well founded probabilistic represen-

tation of the total products of a self-assembly system by introducing a notion of approximation of

string languages by aTAM TAS through the probabilistic synoptic patterns. We show that build-

ing from the finite-state automata and Markov processes, we can exhibit a 0-approximation of the

linear languages. Finally, in chapter 4 we show how the author’s prior work on efficient proba-

bilistic approximation can be expanded with the use of the probabilistic synoptic pattern. Instead
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of just counting hits and misses, the probabilistic synoptic pattern has to put a similar mass on

the matches while still conforming closely to the contents of those assemblies. We recover the

conclusions in our prior work and expand them to more general notions of assemblers and proba-

bility measures with support from the underlying definition of probabilistic synoptic pattern.

In summary, this work presents and explores a new approach to probabilistic analysis of self-

assembly by introducing the synoptic pattern and a careful construction of a probability space

to produce the novel concept of probabilistic synoptic pattern. We demonstrate its usefulness in

a robust probabilistic analysis of self-assembly, providing new perspectives on known results in

the literature and in characterizing a family of errorful but robust assemblers of high purity and

efficiency.
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