
University of Memphis University of Memphis 

University of Memphis Digital Commons University of Memphis Digital Commons 

Electronic Theses and Dissertations 

2021 

Individual auditory categorization abilities are shaped by intrinsic Individual auditory categorization abilities are shaped by intrinsic 

and experience-driven neural factors and experience-driven neural factors 

Kelsey Mankel 

Follow this and additional works at: https://digitalcommons.memphis.edu/etd 

Recommended Citation Recommended Citation 
Mankel, Kelsey, "Individual auditory categorization abilities are shaped by intrinsic and experience-driven 
neural factors" (2021). Electronic Theses and Dissertations. 2661. 
https://digitalcommons.memphis.edu/etd/2661 

This Dissertation is brought to you for free and open access by University of Memphis Digital Commons. It has 
been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of University of 
Memphis Digital Commons. For more information, please contact khggerty@memphis.edu. 

https://digitalcommons.memphis.edu/
https://digitalcommons.memphis.edu/etd
https://digitalcommons.memphis.edu/etd?utm_source=digitalcommons.memphis.edu%2Fetd%2F2661&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.memphis.edu/etd/2661?utm_source=digitalcommons.memphis.edu%2Fetd%2F2661&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:khggerty@memphis.edu


 

INDIVIDUAL AUDITORY CATEGORIZATION ABILITIES ARE SHAPED 

BY INTRINSIC AND EXPERIENCE-DRIVEN NEURAL FACTORS 

 

by 

Kelsey Mankel 

 

 

 

A Dissertation 

Submitted in Partial Fulfillment of the 

Requirements for the Degree of 

Doctor of Philosophy 

 

 

 

 

Major: Communication Sciences and Disorders 

 

The University of Memphis 

August 2021



 ii 

Dedication 

 To my family, thank you for your endless love and encouragement in the pursuit of my 

dreams. To my friends, professors, and mentors, I am grateful for your support and thoughtful 

advice that guided my academic journey. And in memory of my friend and teacher Dan Ruggles, 

who fostered my passion for music and taught me to appreciate the beautiful sounds and people 

around me. Thanks to you, I will always strive to be “all that and a bag of chips.”  



 iii 

Acknowledgements 

I would like to extend my deepest appreciation to Dr. Gavin Bidelman for his wonderful 

mentorship and support. From the beginning, he saw my greatest potential and helped me charter 

a path to achieve it, gently pushing when I needed it to reach for higher goals than I thought 

possible. I know my future will be bright and successful if I have gained even a fraction of his 

drive, passion, and wisdom during my PhD experience. I will be forever grateful for his guidance 

over the past five years. 

 I also sincerely thank my committee members Dr. Eugene Buder, Dr. Deborah Moncrieff, 

and Dr. Philip Pavlik, Jr. Their questions and suggestions motivated me to think more critically 

about my dissertation topic, approach the problem from a new angle, or broaden my scope to 

address important issues in human auditory health. 

 Finally, thank you to my friends and family for their support throughout this PhD 

experience. I am grateful for my lab mates, fellow CSD PhDs, and IISSO colleagues for our 

stimulating discussions and friendships. The completion of this dissertation would not have been 

possible without them. 

 This work was supported by the National Institute on Deafness and Other 

Communication Disorders from the National Institutes of Health under award numbers 

F31DC019041 (KM) and R01DC016267 (GMB). This work was also supported by the Institute 

for Intelligent Systems Student Organization Dissertation Award at the University of Memphis.  



 iv 

Preface 

Chapter 2 was published as a manuscript in NeuroReport. Chapter 3 has been submitted 

for publication and is currently under review at the Journal of Cognitive Neuroscience. It has 

also been posted as a preprint to bioRxiv.  

 

Mankel, K., Barber, J., & Bidelman, G. M. (2020). Auditory categorical processing for speech is  

modulated by inherent musical listening skills. NeuroReport, 31(2), 162-166.  

https://doi.org/10.1097/WNR.0000000000001369 

Mankel, K., Shrestha, U., Tipirneni-Sajja, A., & Bidelman, G. M. (2021). Functional plasticity  

coupled with structural predispositions in auditory cortex shape successful music 

category learning. bioRxiv [preprint]. https://doi.org/10.1101/2021.05.12.443818   

https://doi.org/10.1097/WNR.0000000000001369
https://doi.org/10.1101/2021.05.12.443818


 v 

Abstract 

 To make sense of the auditory world, listeners must organize diverse, continuously 

varying sounds into meaningful perceptual categories. The auditory categorization process is 

believed to be a foundational skill for language development and speech perception. Despite 

decades of behavioral research, neuroscientific evidence is only beginning to uncover where, 

when, and how auditory categories arise in the brain. Although it has been proposed that 

categorical perception is shaped by both innate (nature) and experience-driven (nurture) factors, 

it is unclear how these features manifest neurally at the individual level. In the first study of this 

dissertation, we recorded multi-channel electroencephalography (EEG) in nonmusicians who 

varied in their intrinsic musical listening skills (i.e., musicality) and evaluated their performance 

on a speech categorization task. The results demonstrated that listeners with naturally superior 

musicality exhibit sensory processing advantages within the right auditory cortex which enables 

more efficient and robust categorization. The second study then assessed whether neural 

encoding differences influenced learning of unfamiliar auditory categories. Using a rapid 

learning paradigm, musically naïve listeners were trained to identify musical interval categories 

(i.e., minor and major thirds). More successful category learners showed more efficient post-

training sensory encoding of musical intervals by ~150-200 ms (i.e., P2). Structural magnetic 

resonance imaging (MRI) also revealed differences in gray matter and cortical thickness within 

auditory cortex associated with categorization performance, indicating that the acquisition of 

auditory categories is driven by a layering of preexisting and short-term plastic changes in brain 

function. Functional asymmetries were also observed across both studies, suggesting that 

networks in the right auditory cortex may contribute to enhanced categorization and/or may be 

more sensitive to individual perceptual differences in general. Taken together, these results 
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highlight the complex interplay of both nature and nurture in auditory categorization. Intrinsic, 

individual differences in neural function cultivate sensory processing advantages within auditory 

cortex that are shaped by experience (e.g., learning) and promote enhanced categorization and 

perception of sounds. 
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Chapter 1 

General Introduction 

Sensory information in the environment is varies continuously. To aid perception, the 

brain organizes this incredibly diverse and complex information into discrete groups. Stimuli that 

share similar perceptual features are classified into distinct categories where discrimination of 

objects is easier between different categories (e.g., /b/ vs. /d/ or blue vs. green) than among 

stimuli within the same category (e.g., two different instances of a /b/ sound or shades of blue). 

This phenomenon is known as categorical perception (Harnad, 1987). 

Within the auditory realm, categorizing speech sounds (i.e., phonemes) is a foundational 

skill for speech perception and language development (Pisoni & Luce, 1987). For example, 

categorical perception allows a listener to transcend superficial differences between sounds, thus 

increasing perceptual resiliency to contextual influences such as different talkers, speaking rates, 

or fundamental frequencies (Goldstone & Hendrickson, 2010). Acquisition of speech categories 

begins early in life as babies are exposed to sounds of their native language (Kuhl, 1991; Kuhl, 

2004; Kuhl et al., 2008). Categorization deficits have been observed in populations with reading 

and language difficulties, including disorders such as dyslexia and autism (Coady et al., 2005; 

McMurray et al., 2010; Mody et al., 1997; Noordenbos & Serniclaes, 2015; Wang et al., 2017; 

Werker & Tees, 1987). These results highlight a critical link between categorization abilities and 

speech-language skills.  

Theoretical basis of categorical perception 

 Several theories have emerged for how perceptual objects are organized and classified in 

the mind, particularly how this action leads to perception of speech (Harnad, 1987). According to 

the motor theory of speech perception, for example, categorical perception of speech phonemes 

is mediated by prediction of the motor patterns that produce a speaker’s articulatory gestures 
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(Liberman et al., 1967; Liberman et al., 1957; Liberman & Mattingly, 1989). In contrast, 

auditory-based accounts propose that categorical representations arise from sensitivities within 

the auditory system tuned to specific acoustic properties of the signal (Klatt, 1979; Pastore, 1976; 

Pastore et al., 1977; Stevens, 1981). Prototype theories propose that a “perceptual magnet” 

effectively warps sensory-feature space to “pull” neighboring sounds towards a mental reference 

point (Kuhl, 1991; Kuhl, 2004). Evidence from human infants (Eimas et al., 1971; Kuhl, 1991; 

Rosen & Howell, 1987) and animals (e.g., Kuhl & Miller, 1975) lends support for an innate (or 

at least ontogenetically early) basis of categorization that arises within the auditory system.  

However, some researchers claim that speech processing is far more graded than original 

theories of categorical perception would suggest (Massaro, 1987; Toscano et al., 2010). Early 

definitions of categorical perception assume that irrelevant, fine-grained phonetic details are 

discarded in favor of higher-level categorical representations, thus limiting discriminability 

between stimuli of the same category identity (e.g., Liberman et al., 1957). Gradient perception, 

in contrast, was thought to reflect impairments of phonological representations such as those 

observed in children with dyslexia or specific language impairment (Joanisse et al., 2000; 

McMurray et al., 2010; Werker & Tees, 1987). Yet, neurotypical, normal hearing listeners are 

still sensitive to within-category differences. The fuzzy logical model of perception (FLMP) 

asserts speech is initially processed as graded, continuous sensory information then classified at a 

higher-level, decisional stage according to relative goodness-of-fit to categorical representations 

(Massaro, 1987; Massaro & Oden, 1980; Oden & Massaro, 1978). Graded representations of 

speech stimuli may actually be more advantageous to listeners for resolving perceptual 

ambiguities or facilitating lexical access (Clayards et al., 2008; Kapnoula et al., in press; 

Kapnoula et al., 2017; Kong & Edwards, 2016; McMurray et al., 2002, 2009). Some even argue 
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that categorical perception is entirely an artifact of the decisional processes required for binary 

identification and forced-choice discrimination tasks common to these experiments (Crowder, 

1989; Gerrits & Schouten, 2004; Massaro, 1987; Schouten et al., 2003; Toscano et al., 2010). 

Additionally, Schouten et al. (2003) demonstrated that discrimination of speech is merely a 

relative comparison of acoustic features and does not depend on phoneme classification. Taking 

this perspective into consideration, we prefer a more general approach to categorical perception 

throughout this dissertation, one that focuses on categorization as a classification and labeling 

process (Medin & Barsalou, 1987). 

Many of these early theories were unclear on how learning and experience played a role 

in auditory categorization. Lane (1965) was one of the first to propose that categories are not 

predetermined by either articulatory or auditory constraints but rather from learning the 

categorical labels for auditory sounds. He showed that brief categorization training of nonspeech 

stimuli was sufficient to induce sharp identification and discrimination functions indicative of 

categorical perception. Additional research has demonstrated that categorical boundaries are 

flexible and can be shaped by experiential factors such as native language exposure in infancy 

(Kuhl et al., 2006; Kuhl, 1991), knowledge of a mental lexicon (e.g., Ganong effect; Ganong, 

1980; Myers & Blumstein, 2008), and long-term auditory experience such as music training 

(Bidelman et al., 2014; Burns & Ward, 1978; Howard et al., 1992; Siegel & Siegel, 1977; 

Zatorre & Halpern, 1979). These results suggest that categorical perception is more than simply a 

natural or innate property of the auditory system; rather, auditory categories can be learned and 

influenced by both short- (e.g., training) and long-term auditory experience (e.g., formal music 

practice) (Rosen & Howell, 1987). 
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Computational modeling approaches have offered additional insight into the evolving 

nature of categorical perception as the models must “learn” to uncover the underlying structure 

for accurate categorization. For example, the TRACE model of speech perception assumes that 

excitatory and inhibitory feedback connections refine target feature or phoneme inputs from 

higher, more abstract processing levels (e.g., words) on-line during perception (McClelland & 

Elman, 1986). Alternatively, some models facilitate category learning through backpropagation 

feedback (Damper & Harnad, 2000; Harnad et al., 1991; Rumelhart et al., 1986), competitive 

activations among category-detecting neurons (Goldstone et al., 1996), or modifying activation 

weights of exemplar nodes during training (e.g., ALCOVE; Kruschke, 1992; Kruschke, 1993). In 

such cases, multiple iterations (i.e., experience or training) of stimulus input prompt adjustment 

of the relative connection strengths between nodes in the model to reduce output classification 

error. While computational models may mirror human and animal data and propose mechanistic 

accounts of category learning, they do not directly specify the neural mechanisms that support 

auditory categorization. 

Neurobiology of auditory categorization 

 In recent decades, neuroscience research has attempted to uncover where categories 

reside in the brain. Electrophysiologic responses along the auditory hierarchy (measured by 

EEG) suggest that auditory categorization emerges by 150-200 ms post-stimulus onset, in the 

timeframe of the P2 event-related potential (ERP) component generated primarily within 

auditory cortex (Alho et al., 2016; Bidelman & Alain, 2015; Bidelman, Moreno, et al., 2013; 

Bidelman & Walker, 2017, 2019; Bidelman et al., 2014; Crowley & Colrain, 2004; Ross et al., 

2013; Toscano et al., 2018). Short-term categorization training induces changes in sensory 

encoding processes (Liu & Holt, 2011; Reetzke et al., 2018; Ross et al., 2013; Tremblay et al., 
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2001; Tremblay et al., 2009). Specifically, identification training leads to a decrease in 

perceptual sensitivity in auditory cortex for within-category stimuli while learning to 

discriminate sounds promotes enhanced sensitivity for differences between stimuli (Guenther et 

al., 2004). Long-term experiences such as music training (Bidelman & Alain, 2015; Bidelman & 

Walker, 2017, 2019; Bidelman et al., 2014; Wu et al., 2015) or language expertise (Bidelman & 

Lee, 2015; Zhang et al., 2005) have been associated with faster, more robust sensory-ERP 

responses of categorical stimuli. Collectively, these results suggest that categorical 

representations arise in low-level, perceptual processes along the auditory pathway and are tuned 

through experience. 

 Source analysis and functional magnetic resonance imaging (fMRI) techniques indicate a 

distributed frontotemporal brain network primarily in the left hemisphere for speech 

categorization (Alho et al., 2016; Bidelman & Walker, 2019; Binder et al., 2004; Bouton et al., 

2018; Chang et al., 2010; Feng et al., 2017; Golestani & Zatorre, 2004; Lee et al., 2012; 

Liebenthal et al., 2010; Myers et al., 2009; Myers & Swan, 2012). Sensitivity to graded acoustic-

phonetic features is often observed in left superior temporal gyrus (STG) while phoneme 

category selectivity engages primarily left inferior frontal gyrus (IFG; Alho et al., 2016; Myers et 

al., 2009; Toscano et al., 2018). A few studies have reported categorical effects for speech in the 

temporal lobe as well (Chang et al., 2010; Desai et al., 2008; Joanisse et al., 2007; Liebenthal et 

al., 2005). Evidence for auditory categories in the left hemisphere is mainly limited to the speech 

domain. In contrast, a few studies with trained musicians suggest parallel neural circuitry in the 

right hemisphere for music interval and chord categorization (Bidelman & Walker, 2019; Klein 

& Zatorre, 2011, 2015).  
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Some studies suggest that category learning requires mainly higher-level, frontal brain 

areas (e.g., left IFG, cingulate; Luthra et al., 2019; Myers & Swan, 2012) while others claim 

category formation occurs in temporal regions (e.g., STG, middle temporal gyrus; Desai et al., 

2008; Liebenthal et al., 2010). Rapid changes in both temporal and frontal source-localized 

activity have also been observed following short-term frequency discrimination training (de 

Souza et al., 2013) and tone language learning (Lee et al., 2017). Additionally, successful speech 

categorization (Fuhrmeister & Myers, 2021) and nonnative phoneme learning (Golestani et al., 

2007; Wong et al., 2008) have been attributed to preexisting structural differences within the 

auditory cortex. Despite the variety of brain regions that are sensitive to category-level 

information, it is clear both sensory (e.g., STG) and cognitive regions (e.g., IFG) play critical 

roles in categorical processing and acquisition of novel categories.  

Individual differences in auditory categorization 

Individuals naturally vary in their abilities to categorize auditory sounds (e.g., Hazan & 

Rosen, 1991; Howard et al., 1992; Kong & Edwards, 2011, 2016; Silva et al., 2020). Much of the 

research surrounding individual differences in categorical perception has focused on cue-

weighting strategies in speech perception (e.g., Hazan & Rosen, 1991; Idemaru et al., 2012; 

Kapnoula et al., 2017; Kong & Edwards, 2011). For example, listeners that display more 

gradient responses for speech identification also exhibit greater sensitivity to a secondary 

acoustic cue, fundamental frequency, suggesting that variability in speech perception is 

consistent and systematic within individuals (Kong & Edwards, 2011, 2016). These differences 

cannot be explained by general cognitive control or executive functions (Kapnoula et al., 2017; 

Kong & Edwards, 2016). 
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The neural underpinnings of speech perception and categorization variability are not well 

understood. We have previously shown that individuals with superior (music) perceptual 

listening abilities exhibit enhanced brainstem encoding for speech embedded in a noisy 

background (Mankel & Bidelman, 2018). Machine learning techniques have linked speech 

identification reaction times with functional connectivity differences between several brain 

regions, particularly right paracentral and left middle temporal gyri (Al-Fahad et al., 2020). More 

successful speech category learners generally show greater neural activation after training, 

particularly in the STG (Díaz et al., 2008; Kajiura et al., 2021; Wong et al., 2007). Structural 

differences within primary auditory cortex have also been associated with enhanced 

categorization of both native speech (Fuhrmeister & Myers, 2021) and learned, nonnative 

phonemes (Golestani et al., 2007; Golestani et al., 2002; Wong et al., 2008). These studies 

suggest that individual differences in categorical perception my at least be partially driven by 

sensory encoding processes within auditory cortex, but further work is needed to better 

characterize the underlying neurobiology of individual categorization and learning performance. 

Present work 

This dissertation was motivated to answer the following question: what makes someone 

successful in identifying and categorizing auditory sounds? Specifically, it is unclear whether 

variability in categorization performance—beyond long-term auditory experience or cue-

weighting strategies—is influenced by differential neural encoding processes in the brain. Cross-

sectional studies in highly trained listeners (e.g., musicians) do not account for innate advantages 

in auditory function that might enhance auditory categorization. Our prior work revealed an 

interplay between preexisting and experience-driven neural factors in speech perception. While a 

“musician’s advantage” for speech processing has been previously reported (e.g., Başkent & 
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Gaudrain, 2016; Besson et al., 2011; Parbery-Clark et al., 2009; Slater et al., 2015; Zendel et al., 

2015), our study demonstrated that even non-musicians with highly adept musical processing 

abilities ("musical sleepers"; Law & Zentner, 2012) exhibit enhanced neural encoding for 

speech-in-noise (Mankel & Bidelman, 2018). Chapter 2 extended Mankel and Bidelman (2018) 

by evaluating whether these differences in musical listening skills are associated with speech 

identification abilities. Specifically, this study used EEG to assess whether inherent musicality 

predicts speech categorization (i.e., vowels) at both behavioral and neural levels. We 

hypothesized that “musical sleepers” would show superior speech identification and enhanced 

auditory-evoked neural responses compared to less adept listeners.  

Another open question is whether these neural processing differences offer perceptual 

advantages in learning new auditory categories. Given its implications for second language 

acquisition, a significant portion of research on the neurophysiology of successful auditory 

category learning has focused on non-native phoneme identification (e.g., Díaz et al., 2008; 

Kajiura et al., 2021; Myers & Swan, 2012; Wong et al., 2007). Although evidence suggests 

parallel neural changes following speech and nonspeech training (Liu & Holt, 2011), how 

nonspeech categories develop in the brain through learning is not well understood. Chapter 3 

investigated the neurobiological mechanisms that contribute to the successful acquisition of 

nonspeech (i.e., music) auditory categories. Listeners were rapidly trained to identify musical 

intervals (~20 minutes of training). Individual categorization performance was evaluated against 

neural measures—both preexisting structural differences (MRI) as well as functional, 

neuroplastic changes (EEG) that arise after training—to characterize the nature/nurture processes 

in the brain that contribute to successful auditory category learning. Given evidence for left 

versus right hemispheric asymmetries in the neural processing of speech and music categories, 
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respectively (Bidelman & Walker, 2019; Binder et al., 2004; Bouton et al., 2018; Klein & 

Zatorre, 2011, 2015; Lee et al., 2012; Myers et al., 2009), we speculated that the successful 

acquisition of musical interval categories would involve a layering of both structural and 

functional differences, particularly in right auditory cortex. 
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Chapter 2 

Auditory categorical processing for speech is modulated by inherent musical listening skills 

Introduction 

 Music training is associated with enhanced auditory processing, including the categorical 

perception (CP) of speech (Bidelman & Alain, 2015; Bidelman & Walker, 2019; Bidelman et al., 

2014; Wu et al., 2015) and music stimuli (Howard et al., 1992). Musicianship has been attributed 

to sharper speech identification (Bidelman & Walker, 2019; Bidelman et al., 2014), faster 

labeling speeds (Bidelman & Alain, 2015; Bidelman et al., 2014), and higher perceptual 

sensitivities for within- vs. between-category contrasts (Wu et al., 2015). Whether these speech 

advantages truly reflect experience (training) or other predispositions remains unclear. 

Musicians’ improved speech processing may instead reflect increased motivation (McAuley et 

al., 2012), enhanced auditory attention and cognitive advantages (Yoo & Bidelman, 2019), or 

even innately superior auditory abilities (e.g., musicality) that exist without formal music 

training (Mankel & Bidelman, 2018; Swaminathan & Schellenberg, 2017).  

  While musicality is a multidimensional trait, we focus on abilities pertaining to complex 

listening, following a long tradition of describing musical aptitude via receptive skills (Gordon, 

1965; Law & Zentner, 2012; Mankel & Bidelman, 2018). Recently, we demonstrated even 

nonmusicians vary in innate music abilities and people with exceptionally high levels of 

musicality show stronger neural processing of speech (Mankel & Bidelman, 2018), a finding 

typically attributed to trained musicians (Bidelman et al., 2014; Parbery-Clark et al., 2009). 

Positive associations between phoneme discrimination and musicality (but not music training 

itself) have been observed even after controlling for cognitive and socioeconomic status (SES) 

(Swaminathan & Schellenberg, 2017). Irrespective of formal training, music aptitude also 

predicts stronger CP for musical chords (Howard et al., 1992). Such findings highlight the need 
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to distinguish innate from experience-dependent characteristics for defining neuroplasticity. 

Presumably, individual differences in auditory processing may at least partially drive sound 

categorization skills, which would temper assumptions that experience, per se, drives musicians’ 

enhancements in speech processing (Mankel & Bidelman, 2018; Swaminathan & Schellenberg, 

2017).  

 Neural evidence suggests CP emerges in the brain by 100-200 ms, in the timeframe of the 

N1-P2 event-related potentials (ERPs; Bidelman, Moreno, et al., 2013; Bidelman & Walker, 

2019; Dittinger et al., 2018). Enhanced N1-P2 amplitudes, for example, have been linked with 

stronger identification (Bidelman & Walker, 2017) and faster labeling speeds during speech 

categorization (Bidelman & Alain, 2015; Bidelman et al., 2014). Categorical effects have also 

been reported for the later N2 and P3 waves, whose amplitudes differentiate stimuli at the 

categorical boundary and between native vs. nonnative phonetic contrasts (Dittinger et al., 2018). 

Neuroimaging studies have further implicated several brain regions in auditory categorical 

processing, including the superior temporal gyrus/sulcus, middle temporal gyrus, premotor 

cortex, supramarginal gyrus, inferior parietal cortex, planum temporale, and inferior frontal 

gyrus (Bidelman & Walker, 2019; Guenther et al., 2004). These neural signatures of CP are also 

associated with formal music training (Bidelman & Alain, 2015; Bidelman & Walker, 2019; 

Bidelman et al., 2014; Dittinger et al., 2018; Elmer et al., 2012). While long-term auditory 

experience might tune categorical speech processing, it is unclear (i) how much CP is susceptible 

to individual differences and (ii) whether musicians’ enhancements in this process might be 

partially due to innate auditory sensitivities irrespective of formal experience. 

 Here, we tested whether individual differences in musicality—in the absence of formal 

music training—affect speech categorization. To this end, we measured EEGs in nonmusicians 
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who varied in their musical listening abilities as they classified vowels along an acoustic-

phonetic continuum. If individual differences in auditory perceptual skills drive CP, we predicted 

that individuals with higher levels of innate musicality ("musical sleepers"; Law & Zentner, 

2012; Mankel & Bidelman, 2018) would show stronger behavioral CP and neural responses to 

speech. Our data confirm that musical sleepers categorize speech more efficiently, as evidenced 

by stronger categorical coding compared to those with poorer music aptitude. 

Methods 

Participants 

The sample included N =14 young adults (7 females; age: µ ± σ = 24.9 ± 1.7 years). This 

sample size is comparable to studies assessing musicians and nonmusicians (Bidelman & 

Walker, 2019; Bidelman et al., 2014) and allowed us to test the premise that such variations in 

CP might result from differences in inherent musicality rather than formal training. Participants 

were right-handed, had normal hearing (thresholds ≤ 25 dB HL, 250-8000 Hz), no tone language 

experience or neurological disorders, and a collegiate level of education (17.3 ± 3.00 years). 

Average parental education, a common measure of SES [highest parental education: 1 (high 

school without diploma or GED) to 6 (doctoral degree)], was 4.14 ± 0.57 indicating a bachelor’s 

level education (Entwislea & Astone, 1994). To isolate effects of inherent music listening 

abilities on auditory processing (Mankel & Bidelman, 2018), participants were required to have 

< 3 years total of formal music training (0.57 ± 0.76 years) and no music experience within the 

past 5 years. All gave written consent according to a protocol approved by the UofM Institutional 

Review Board. 
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Behavioral test of musicality  

The brief Profile of Music Perception Skills (PROMS) assessed aptitude related to 

receptive musical skills (Law & Zentner, 2012). This test comprises same-different tasks of 

melody, tuning, accent, and tempo discrimination. Each subtest contains 18 trials, and higher 

scores indicate stronger musical listening abilities (max score=72). The PROMS can differentiate 

listeners based on their musical experience (professional vs. amateur musicians vs. 

nonmusicians), and is sensitive to detect untapped musical potential among nonmusicians 

("musical sleepers"; Law & Zentner, 2012; Mankel & Bidelman, 2018). For details see (Law & 

Zentner, 2012).1  

Stimuli 

We used a synthetic five-step vowel continuum to assess CP for speech (see Fig. 1 in ref.  

Bidelman et al., 2014). Tokens were 100 ms. Fundamental (F0), second (F2), and third formant 

(F3) frequencies were identical across tokens (F0: 100 Hz; F2: 1090 Hz; and F3: 2350 Hz). First 

formant (F1) was varied across five equidistant steps (430 to 730 Hz), yielding a perceptual 

continuum from /u/ to /a/. 

Behavioral data 

The task was identical to our recent reports (Bidelman, Moreno, et al., 2013; Bidelman et 

al., 2014). Stimuli were delivered binaurally through ER-2 earphones at 82 dB SPL. Listeners 

heard 200 trials of each speech token (random order) and were instructed to label them as “u” or 

 
1 Both the brief and full PROMS have been cross validated in large cohort studies with trained musicians as well as 

other established tests of musical abilities (Kunert et al., 2016; Law & Zentner, 2012). PROMS scores show 

discriminant validity from basic psychoacoustic skills (temporal gap detection; Law & Zentner, 2012) as well as 

cognitive functions such as working memory (Kunert et al., 2016), thus motivating its use here as a measure of 

preexisting, receptive musical abilities in nonmusicians. 
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“a” via the keyboard as fast and accurately as possible. The interstimulus interval was 400-600 

ms (20 ms steps; jittered).  

Individual identification curves were fit with a sigmoid: P = 1/[1 + e -β1(x-β0)], where P is 

the proportion of trials labeled as /a/, x is the token number, and β0 and β1 are the location and 

slope parameters of the psychometric fit. Large β1 values indicate steeper slopes and stronger 

CP. Response times (RTs) were computed as the average labeling speed per token. RTs outside 

250-2500 ms were excluded as fast guesses or lapses in attention (Bidelman, Moreno, et al., 

2013; Bidelman & Walker, 2017). 

EEG recordings 

EEGs were recorded from 64 electrodes at 10-10 scalp locations (500 Hz sample rate) 

(Synamps RT amplifiers, Neuroscan). Impedances were <10 kΩ. Pre-processing was performed 

in BESA® Research (v7) (BESA, GmbH). Blinks were nullified in the continuous data via 

spatial filtering (Gordon, 1965). Trials with voltages >±120 µV were discarded from averaging. 

Recordings were epoched (-200-800 ms), baseline corrected, filtered from 1-30 Hz, and averaged 

across trials to compute ERPs for each speech token per listener. 

Source analysis  

We transformed raw ERPs to source space using BESA’s AEP virtual source montage 

(Scherg & von Cramon, 1986). We then extracted source waveforms (units nAm) from the 

radially-oriented dipoles in left and right auditory cortices (AC) to assess categorical speech 

coding (Talairach coordinates of [-37, -18, 17] and [37, -18, 17], respectively) (e.g., Bidelman & 

Lee, 2015; Bidelman & Walker, 2019). Neural correlates of CP emerge around the N1 and P2 

waves (Bidelman & Alain, 2015; Bidelman & Lee, 2015; Bidelman, Moreno, et al., 2013). Thus, 

N1 was measured as the peak negativity between 100-160 ms; P2 as the peak positivity between 
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160-220 ms. Categorical coding in the ERPs was evaluated as the difference between P2 

responses to prototypical tokens (endpoints) and the ambiguous midpoint [i.e., mean (Tk1, Tk5)  

- Tk3; ΔP2] (Bidelman & Walker, 2017, 2019); more negative ΔP2 latencies mirror categorical 

processing whereby /u/ and /a/ exemplars elicit faster latencies than stimuli at the ambiguous 

midpoint of the continuum (i.e., Tk1/5 < Tk3).  

Results 

Behavioral data 

Listeners were highly separable based on a median split of their PROMS scores, 

revealing some nonmusicians have inherently better music listening skills (Fig. 1A) (Mankel & 

Bidelman, 2018). Low and high musicality groups did not differ in age, handedness, years of 

musical training, years of education, or SES (all Ps > 0.05). The high PROMS group 

demonstrated superior performance not only on the PROMS total score (Wilcoxon; normal 

approximation, one sided: Z = 1.79, P = 0.001) but also the tempo (Z = 1.79, P = 0.0363) and 

tuning subtests (Z = 2.78, P = 0.0027).  

Groups did not differ in their slopes of speech identification (Z = -0.9594, P = 0.3374; 

Fig. 1B) but the high PROMS group showed marginally faster RTs across the continuum (F1,52 = 

3.87, P = 0.0544, Cohen’s d = 1.136; Fig. 1C). Higher PROMS scores were also associated with 

faster RTs (r = -0.55, P = 0.0435; Fig. 1D). Thus, while speech CP was not stronger in one group 

over the other, per se, faster RTs suggest individuals with better music listening skills were more 

efficient at making speech categorization judgments.  



 16 

 

Source event-related potentials  

 Fig. 2 shows scalp topographies and source waveforms from left/right AC. Two-way, 

mixed model ANOVAs evaluated group x hemisphere effects on ERP measures (random factor 

= subjects nested within group). Pooled across tokens, we found sole hemispheric difference in 

N1 latencies (LH > RH; F1,128 = 7.15, P = 0.0085, d = 1.54). Subsequent analysis focused on 

changes in P2 (i.e., ΔP2) between phonetic (Tk1/5) and non-phonetic (Tk3) tokens as a marker 

of speech identification  and categorical processing (Bidelman & Alain, 2015; Bidelman, 

Moreno, et al., 2013; Bidelman & Walker, 2017, 2019; Bidelman et al., 2014).  

ΔP2 latencies showed a group × hemisphere interaction (F1,12 = 6.79, P = 0.023, d = 1.50; Fig. 

2C). Tukey-Kramer contrasts revealed the high PROMS group had more negative (i.e., more 

categorical) ΔP2 latencies in the RH than the low PROMS group (t12 = -2.33, P = 0.038). 

Figure 1: Behavioral data. (A) PROMS scores reveal some individuals have naturally more adept auditory 

perceptual skills in the absence of any formal music training (median split of into high- and low-musicality groups). 

High and low PROMS groups did not differ in identification (B), but highly musical listeners were more efficient 

(faster) at identifying categorical speech stimuli (C). (D) Better musical perceptual skills correlated with faster 

average RTs. *P < 0.05, error bars ± 1 SEM. PROMS, Profile of Music Perception Skills. 
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Stronger speech differentiation, as indexed by ΔP2 latencies, was also observed in RH vs. LH 

specifically in the high PROMS group (RH < LH; t12 = 3.01, P = 0.0108). No other contrasts 

including amplitude measures were significant.  

 

Discussion 

 Our findings show “musical sleepers” who exhibit naturally higher levels of musicality 

(but are nevertheless nonmusicians) are more efficient at categorizing speech sounds (i.e., faster 

RTs). Neural responses mimicked behavioral benefits in that high PROMS listeners showed 

more categorical ERPs within right AC. Our results provide novel evidence that listeners’ 

efficiency of categorical processing at both behavioral and neural levels varies with their 

inherent auditory perceptual skills. 

 Critically, our data reveal natural auditory sensitivities, in the absence of music training, 

are associated with improvements in auditory categorical processing. While both groups 

demonstrated categorical speech processing—sharp transitions at the perceptual boundary and 

delayed RTs for ambiguous relative to prototypical tokens (Bidelman et al., 2019; Pisoni & Tash, 

1974)—those with higher inherent musicality exhibited faster RTs. Interestingly, the faster RTs 

Figure 2: Neural data. ERPs reflect categorical coding around the timeframe of P2. (A) Scalp topographies (180 

ms) and (B) grand average auditory cortical source waveforms by PROMS groups. (C) Phonetic (Tk1/5) vs. non-

phonetic (Tk3) contrast of P2 (i.e., ΔP2) assessed categorical processing, which was stronger for individuals with 

better musical listening abilities. ΔP2 latencies were more categorical (i.e., negative) in the right hemisphere for the 

high PROMS group. *P < 0.05, error bars/shading ± 1 SEM. 
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observed in our high music aptitude listeners mirrors results in formally trained musicians, who 

also show faster speech categorization (Bidelman & Alain, 2015; Bidelman et al., 2014; 

Dittinger et al., 2018). While faster RTs in the high PROMS group may reflect faster 

initiation/execution of motor responses, group differences in neural activity occurred as early as 

P2 (i.e., well before RTs). This implies pre-cognitive, pre-motor brain activity (i.e., sensory 

coding) contributes to improved categorization efficiency in high aptitude nonmusicians.  

That RTs but not identification differed between groups suggests inherent auditory skills 

improve the decision processes and/or speed of access to internalized categories rather than a 

sharpening of those phonetic representations, per se (Bidelman et al., 2019; Pisoni & Tash, 

1974). A lack of difference in identification may have been expected given that our listeners 

were native speakers, highly familiar with English vowel contrasts (Bidelman & Alain, 2015; 

Dittinger et al., 2018; Foster & Zatorre, 2010b). In comparison, categorical identification (in 

addition to RTs) is more acute in actual trained musicians (cf. Bidelman & Walker, 2019; 

Bidelman et al., 2014). Collectively, this and other studies lead us to infer that long-term music 

experience improves sound classification accuracy and speeded access to speech representations 

above and beyond natural or inherent abilities observed here.  

 At the neural level, we found stronger categorical neural encoding of speech in people 

with better music perceptual skills. More categorical responses were observed in the right AC of 

the high compared to the low PROMS group. Our data here (all nonmusicians) parallel recent 

findings in highly experienced musicians which report plasticity in AC activity is associated with 

more categorical coding of sound (Bidelman & Walker, 2019). Previously, we asserted 

musicality-related differences in auditory CP require (i) strong experiential plasticity rather than 

subtle innate function, or (ii) tasks requiring top-down processing and/or attention (Mankel & 
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Bidelman, 2018). Results of this study extend previous findings by demonstrating both 

behavioral and ERP enhancements in musical sleepers during active speech identification. 

Results here show that certain individuals exhibit naturally superior auditory system function, 

specifically in the right AC and timeframe of P2 (~160-200 ms), which contributes to enhanced 

speech perception.  

Given the known LH dominance of language processing, it is surprising that categorial 

neural responses to speech were more apparent in right AC. One possibility is that highly 

musical individuals recruit additional resources in RH for speech processing, which could 

contribute to faster ERP latencies and RTs seen here. Indeed, greater training-related plasticity is 

observed in right compared to left AC (Bermudez et al., 2009). However, previous cross-

sectional studies do not isolate innate differences of brain structure and function prior to training. 

Although the role of “native abilities” have been acknowledged in studies on musicianship and 

auditory perceptual abilities (Foster & Zatorre, 2010b), they have never been fully tested to the 

extent here (cf. Mankel & Bidelman, 2018).  

While we do not refute the existence of experience-dependent plasticity of musicianship 

(Habib et al., 2016; Mankel & Bidelman, 2018), the “musical brain” is likely an interplay 

between predispositions, environmental factors, and training (Mankel & Bidelman, 2018). Our 

data reveal inherent differences in brain function can contribute to more efficient and robust 

categorical speech processing. Thus, inherent auditory skills may at least partially contribute to 

experience-dependent neuroplastic effects reported in studies on musical training and speech-

language function (Bidelman & Walker, 2019; Bidelman et al., 2014). Other studies have 

similarly shown associations between speech discrimination and musicality (i.e., rhythm 

perception) but not music training itself (Swaminathan & Schellenberg, 2017). While music-
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based interventions for communication disorders are promising (Habib et al., 2016), care should 

be taken to understand individuals’ experience and inherent auditory function in order to 

maximize learning or therapeutic benefits. We add to the growing body of evidence that some 

individuals have naturally superior auditory abilities which enables better neural processing and 

perception of speech (Mankel & Bidelman, 2018; Swaminathan & Schellenberg, 2017).   
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Chapter 3 

Functional plasticity coupled with structural predispositions in auditory cortex shape 

successful music category learning  

Introduction 

Classifying continuously varying sounds into meaningful categories like phonemes or 

musical intervals enables more efficient processing of an auditory scene (Bidelman et al., 2020). 

Categorization of auditory stimuli is also a foundational skill for language development and is 

believed to arise from both learned and innate factors (Livingston et al., 1998; Mankel, Barber, et 

al., 2020; Mankel, Pavlik Jr, et al., 2020; Perez-Gay Juarez et al., 2019; Rosen & Howell, 1987). 

Auditory categories are further shaped by experiences such as speaking a second language 

(Escudero et al., 2011; Lively et al., 1993; Perrachione et al., 2011) or musical training 

(Bidelman & Walker, 2019; Bidelman et al., 2014; Wu et al., 2015), suggesting flexibility in 

categorical perception with learning. While the behavioral aspects of category acquisition are 

well documented, the underlying neural mechanisms and the influence of individual differences 

in shaping this process are poorly understood. 

Characterizing the neurobiology of category acquisition is typically confounded by prior 

language experience and the overlearned nature of speech (Liu & Holt, 2011). For example, 

perceptual interference from native-language categories can impede the learning of foreign 

speech sounds (Flege & MacKay, 2004; Francis et al., 2008; Guion et al., 2000). Instead, 

nonspeech stimuli (e.g., music) offers the ability to probe the neural mechanisms of category 

learning without the potential confounds of language background or automaticity that stems from 

using speech materials (Goudbeek et al., 2009; Guenther et al., 1999; Liu & Holt, 2011; Smits et 

al., 2006; Yi & Chandrasekaran, 2016). In this regard, musical categories (i.e., intervals, chords) 

offer a fresh window into tabula rasa category acquisition. Indeed, nonmusicians are unable to 
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adequately categorize musical stimuli despite their exposure to music in daily life (Bidelman & 

Walker, 2019; Howard et al., 1992; Klein & Zatorre, 2011; Locke & Kellar, 1973; Siegel & 

Siegel, 1977). While several studies have assessed category learning of musical intervals, they 

either used highly trained listeners (Burns & Ward, 1978) or focused on different training 

methods that maximize learning gains (Little et al., 2019; Pavlik Jr et al., 2013). To our 

knowledge, no study has assessed the neural changes associated with category learning in music.  

Speech categorization is believed to emerge in the brain by around N1 of the cortical 

event-related potentials (ERPs) and fully manifests by P2 (i.e., ~150-200 ms; Alho et al., 2016; 

Bidelman & Lee, 2015; Bidelman, Moreno, et al., 2013; Bidelman & Walker, 2017; Mankel, 

Barber, et al., 2020; Ross et al., 2013). Fewer studies have examined the electrophysiological 

underpinnings of music categorization (i.e., intervals, chords), but evidence from musicians 

suggests a similar neural time course (Bidelman & Walker, 2019). Functional magnetic 

resonance imaging suggests that categorization training leads to a decrease in perceptual 

sensitivity for within-category stimuli in auditory cortex while learning to discriminate 

categorical sounds shows the opposite effect—greater sensitivity to differences between stimuli 

(Guenther et al., 2004). Still, the majority of studies on category learning have involved speech. 

Although there are probably some parallels (Liu & Holt, 2011), it remains unclear whether the 

neuroplastic changes that arise when rapidly learning nonspeech categories (e.g., music) parallels 

that of speech. 

More generally, auditory perceptual learning studies have reported changes in both early 

sensory-evoked (i.e., N1, P2) and late slow-wave ERP responses following training (Alain et al., 

2010; Alain et al., 2007; Atienza et al., 2002; Ben-David et al., 2011; Bosnyak et al., 2004; 

Carcagno & Plack, 2011; Tong et al., 2009; Tremblay et al., 2001; Tremblay & Kraus, 2002; 
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Tremblay et al., 2009; Wisniewski et al., 2020). A true biomarker of learning, however, should 

vary with learning performance (Tremblay et al., 2014). Because modulations in P2 amplitudes 

can occur with mere passive stimulus exposure in the absence of training improvements, some 

posit P2 reflects aspects of the task acquisition process rather than training or perceptual 

learning, per se (Ross et al., 2013; Ross & Tremblay, 2009; Tremblay et al., 2014). Given the 

equivocal role of P2 in relation to auditory learning, we aimed to clarify whether changes in 

sensory-evoked responses (i.e., P2) and/or late slow-wave neural activity scale with individual 

behavioral outcomes during the rapid learning of novel music categories.  

There is also significant variability in the acquisition of auditory categories (e.g., 

Golestani & Zatorre, 2009; Howard et al., 1992; Mankel, Pavlik Jr, et al., 2020; Silva et al., 

2020), especially for speech (Díaz et al., 2008; Fuhrmeister & Myers, 2021; Kajiura et al., 2021; 

Mankel, Barber, et al., 2020; Wong et al., 2007). More successful learners show greater neural 

activation, particularly in auditory cortex (Díaz et al., 2008; Kajiura et al., 2021; Wong et al., 

2007). Such variability might be attributable to differences in the creation or retrieval of long-

term memories for prototypical vs. non-prototypical sounds during learning (Golestani & 

Zatorre, 2009). However, we have previously demonstrated better categorizers show greater 

efficiency in early sensory encoding processes (~150-200 ms), suggesting stimulus 

representations themselves are tuned at the individual level rather than later memory-related 

processes, per se (Mankel, Barber, et al., 2020).  

In addition to differences in functional processing, individual categorization abilities may 

be partially driven by preexisting structural advantages within the brain (Fuhrmeister & Myers, 

2021). Paralleling the left hemisphere bias for speech (Binder et al., 2004; Bouton et al., 2018; 

Lee et al., 2012; Myers et al., 2009), categorization of musical sounds is believed to involve a 
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frontotemporal network in the right hemisphere, including key brain regions such as the primary 

auditory cortex (PAC), superior temporal gyrus (STG), and inferior frontal gyrus (IFG) 

(Bidelman & Walker, 2019; Klein & Zatorre, 2011, 2015; Mankel, Barber, et al., 2020). 

PAC/STG size (primarily right hemisphere) has also been associated with perception of relative 

pitch and musical transformation judgments (Foster & Zatorre, 2010a), melodic interval 

perception (Li et al., 2014), spectral processing (Schneider et al., 2005), and even musical 

aptitude (Schneider et al., 2002). To our knowledge, few studies have examined the structural 

correlates of categorization differences on the individual level. In the domain of speech, faster, 

more successful learners of nonnative phonemes exhibit larger left Heschl’s gyrus (Golestani et 

al., 2007; Wong et al., 2008) and parietal lobe volumes (Golestani et al., 2002). Additionally, 

better and more consistent speech categorizers show increased right middle frontal gyrus surface 

area and reduced gyrification in bilateral temporal cortex (Fuhrmeister & Myers, 2021). We thus 

hypothesized that successful category learning in music would be predicted by neuroanatomical 

differences (e.g., gray matter volume, cortical thickness), with perhaps effects favoring right 

PAC. 

 The aim of this study was to examine the functional and structural neural correlates of 

auditory category learning following short-term identification training of music sound categories. 

Musical intervals allowed us to track sound-to-label learning without the potential lexical-

semantic confounds inherent to using speech materials (Liu & Holt, 2011). We measured 

learning-related changes in the cortical ERPs in musically naïve listeners against a control group 

that did not receive identification training to determine the specificity of neuroplastic effects. If 

rapid auditory category learning is related to enhanced sensory encoding of sound, we predicted 

changes in early brain activity manifesting at or before auditory object formation (i.e., prior to 
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~250 ms; P2). If instead, short-term learning is associated with later cognitive processes related 

to decision and/or task strategy, we expected neural effects to emerge later in the ERP time 

course (e.g., late slow waves > 400-500 ms; Alain et al., 2007). Additionally, we anticipated 

successful learners would recruit neural resources in right auditory cortices, mirroring the left 

hemispheric specialization supporting speech categorization (Bidelman & Walker, 2019; 

Joanisse et al., 2007; Klein & Zatorre, 2011; Liebenthal et al., 2005). Our findings show that 

successful auditory category learning is characterized by both structural and functional 

differences in right auditory cortex. The presence of anatomical differences along with ERP 

changes specific to learning suggest that the acquisition of auditory categories depend on a 

layering of preexisting and short-term plastic changes in brain function.  

Materials & Methods 

Participants 

Our sample included N=33 participants. Nineteen young adults (16 females) participated 

in the learning group with behavioral and neural measurements taken at pre-test, during active 

identification training, and post-test phases. An additional fourteen (7 females) served as a no-

contact control group (previously collected unpublished data; see Mankel, Barber, et al., 2020) 

and only participated in the pre- and post-test blocks (i.e., they did no go through training). These 

group sizes are comparable to other studies investigating the neural mechanisms of category 

learning (e.g., Liu & Holt, 2011; Myers & Swan, 2012; Wong et al., 2007) and allow us to test 

whether observed neuroplastic changes are specific to learning. All had normal hearing 

(thresholds ≤25 dB SPL, 250-8000 Hz), were right-handed (Oldfield, 1971), and had no history 

of neurological disorders. Participants completed questionnaires that assessed education level, 

socioeconomic status (SES) (Entwislea & Astone, 1994), language history (Li et al., 2006), and 
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music experience. Groups were comparable in age (learners: µ = 24.9 ± 4.0 yrs, controls: µ = 

24.9 ± 1.7 yrs; p = 0.549), education (learners: µ = 18.5 ± 3.3 yrs, controls: µ = 17.3 ± 3.0 yrs; 

p = 0.321), and SES (rating scale of average parental education from 1 [some high school 

education] to 6 [PhD or equivalent]; learners: µ = 4.6 ± 1.3, controls: µ = 4.1 ± 0.6; p = 0.109). 

All were fluent in English though six reported a native language other than English. We excluded 

tone language speakers as these languages improve musical pitch perception (Bidelman, Hutka, 

et al., 2013). To ensure participants were naïve to the music-theoretic labels for pitch intervals, 

we required participants have no more than three years total of formal music training on any 

combination of instruments and none within the past five years. Critically, groups did not differ 

in prior music training (learners: µ = 1.1 ± 1.0 yrs, controls: µ=0.6 ± 0.8 yrs; p=0.145). All 

participants gave written informed consent according to protocol approved by the University of 

Memphis Institutional Review Board and were compensated monetarily for their time.  

Stimuli  

 We used a five-step musical interval continuum to assess category learning of nonspeech 

sounds continuum (Bidelman & Walker, 2017; Mankel, Pavlik Jr, et al., 2020). Individual notes 

of each dyad were constructed of complex tones consisting of 10 equal amplitude harmonics 

added in cosine phase. Each token was 100 ms in duration with a 10 ms rise/fall time to reduce 

spectral splatter. The bass note was fixed at a fundamental frequency (F0) of 150 Hz while the 

upper note’s F0 ranged from 180 to 188 Hz (2 Hz spacing between adjacent tokens). Thus, the 

musical interval continuum spanned a minor (token 1) to major third (token 5). The minor-major 

third continuum was selected because these intervals occur frequently in Western tonal music 

and connote typical valence of “sadness” and “happiness”, respectively, and are therefore easily 

described to participants unfamiliar with music-theoretic labels (Bidelman & Walker, 2017). 
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Moreover, without training, nonmusicians perceive musical intervals in a continuous mode 

indicating they are initially heard non-categorically (Bidelman & Walker, 2017, 2019; Burns & 

Ward, 1978; Howard et al., 1992; Locke & Kellar, 1973; Siegel & Siegel, 1977; Zatorre & 

Halpern, 1979). 

Procedure  

 Participants were seated comfortably in an electroacoustically shielded booth. Stimuli 

were presented binaurally through ER-2 insert earphones (Etymotic Research) at ~81 ± 1 dB 

SPL. Stimulus presentation was controlled by MATLAB routed through a TDT RP2 interface 

(Tucker Davis Technologies). Categorization was assessed in a pre- and post-test phase. 

Following brief task orientation (~2-3 exemplars), tokens of the continuum were randomly 

presented on each trial. Participants were instructed to label the sound they heard as either 

“minor” or “major” via keyboard button press as fast and accurately as possible. The 

interstimulus interval was 400-600 ms (jittered in 20 ms steps) following the listener’s response. 

No feedback was provided during the pre- or post-test. Pre- and post-test procedures were 

consistent across both the learners and controls as both groups completed the two separate 

musical interval categorization assessments during a single experimental session. The learning 

group received additional identification training (see Training paradigm below) whereas 

individuals in the control group were offered a brief break before starting the post-test phase. 

Training paradigm  

Participants in the learning group underwent a 20-min identification training between the 

pre- and post-test phases (all performed in a single ~3 hr period). Training consisted of 500 trials, 

250 presentations each of the minor and major 3rd exemplars (i.e., tokens 1 and 5), spread evenly 
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across 10 blocks1. Feedback was provided to improve accuracy and efficiency of auditory 

category learning (Yi & Chandrasekaran, 2016). The training procedure was conducted using E-

Prime 2.0 (PST, Inc.). To reduce fatigue, participants were offered a break before and after the 

training phase. 

EEG acquisition and preprocessing 

 EEG data were recorded using a Synamps RT amplifier (Compumedics Neuroscan) from 

64 sintered Ag/AgCl electrodes at 10-10 scalp locations and referenced online to a sensor placed 

~1 cm posterior to Cz. Impedances were <10 kΩ. Recordings were digitized at a sampling rate of 

500 Hz. Preprocessing was completed in BESA Research (v7.1; BESA GmbH). Continuous data 

were re-referenced offline to the common average reference, epoched from -200-800 ms, filtered 

from 1-30 Hz (4th-order Butterworth filter), baselined to the prestimulus interval, and averaged 

across trials to compute ERPs for each token per electrode. 

MRI segmentation and volumetrics 

12 out of 19 learning group participants returned on a separate day for structural MRI 

scanning. 3D T1-weighted anatomical volumes were acquired on a Siemens 1.5T Symphony 

TIM scanner (tfl3d1 GR/IR sequence; TR = 2000 ms, TE = 3.26 ms, inversion time = 900 ms, 

phase encoding steps = 341, flip angle = 8°, FOV = 256 x 256 acquisition matrix, 1.0 mm axial 

slices). Scanning was conducted at the Semmes Murphey Neurology Clinic (Memphis, TN). All 

MRI T1-weighted images were initially registered to MNI ICBM 152 T1 weighted atlas with 1 x 

1 x 1 mm3 isometric voxel size using affine transformation. The inverse transformation matrix 

was computed and applied to the brain mask in atlas space to create brain mask specific for each 

subject for skull removal (Evans et al., 1993). An LPBA40 T1 weighted atlas with 2 x 2 x 2 mm3 

 
1 Two pilot subjects received 6 and 15 blocks of training, respectively, before settling on the final 10 block training 

regimen. 
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voxel size was then used to register the images and remove the cerebellum using the atlas 

cerebrum mask and following the same process as above (Shattuck et al., 2008). After skull 

removal and cerebrum extraction, an AAL3 T1 weighted atlas with 1 x 1 x 1 mm3 voxel size that 

provides parcellation of a large number of brain regions was used for extracting gray matter 

volume in certain regions of interest (ROIs) for each participant (Rolls et al., 2020).  

Data analysis 

Behavioral data 

Identification curves were fit with a two-parameter sigmoid function P = 1/[1 + e-β1(x-

β0)], where P describes the proportion of trials identified as major, x is the step number along the 

stimulus continuum, β0 is the locus of transition along the sigmoid (i.e., categorical boundary), 

and β1 is the slope of the logistic fit. Larger β1 values reflect steeper psychometric functions and 

therefore better musical interval categorization performance. β1 slopes were square root 

transformed improve normality and homogeneity of variance. Reaction times (RTs) were 

computed as the listeners’ median response latency for the ambiguous (i.e., token 3) and 

prototypical tokens (i.e., mean[tokens  1 & 5]; see ERP data), after excluding outliers outside 

250-2500 ms (Bidelman, Moreno, et al., 2013; Bidelman & Walker, 2017; Mankel, Barber, et al., 

2020). As an index of training success, accuracy was calculated in the learning group as the 

average percent correct identification across all training trials. 

ERP data 

We analyzed a subset of electrodes from a frontocentral cluster (mean of F1, Fz, F2, FC1, 

FCz, FC2; see Fig. 1 inset) where categorical effects in the auditory ERPs are most prominent at 

the scalp (Bidelman & Lee, 2015; Bidelman, Moreno, et al., 2013; Bidelman & Walker, 2017; 

Bidelman et al., 2014). Peak latencies and amplitudes were quantified for P1(40-80 ms), N1 (70-
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130 ms), and P2 (140-200 ms). The mean amplitude was also measured for slow wave activity 

between 300-500 ms, given prior work suggesting rapid auditory learning effects in this later 

time frame (Alain et al., 2010; Alain et al., 2007).  

We also quantified neural responses at T7 and T8 to assess hemispheric lateralization. 

For these analyses, we computed difference waves derived between the ambiguous and 

prototypical tokens (ΔERP = mean[tokens 1 & 5] – token 3) for both the pre- and post-test 

(Bidelman, 2015; Bidelman & Walker, 2017; Mankel, Barber, et al., 2020). Larger ΔERP values 

indicate stronger differentiation of category ambiguous from category prototype sounds and thus 

reflect the degree of “neural categorization” in each hemisphere. 

MRI data 

Each participant’s MRI images were registered to the AAL3 atlas, ROI masks were 

transformed to subject space, and ROI volumes were then calculated (cm3). Atlas registration 

was confirmed using SPM12 toolbox in MATLAB (Penny et al., 2011). Cortical thickness was 

examined using a diffeomorphic registration based cortical thickness (DiReCT) measure (Das et 

al., 2009). We used the OASIS atlas (Marcus et al., 2009) for the computation of cortical 

thickness because it provides four brain segmentation priors for parcellating cerebrospinal fluid 

(CSF), cortical gray matter, white matter, and deep gray matter. 3D cortical thickness maps for 

each subject were computed based on these priors. Thickness maps were then multiplied with the 

AAL3 atlas (converted to subject space) to compute the cortical thickness of each brain region 

mapped to their corresponding labels. Finally, the mean, standard deviation, and range of the 

cortical thickness measurements along with the surface area and volume of the cortical regions 

were computed for each ROI. Volumetrics were normalized to each participant’s total 

intracranial brain volume to control for artificial differences across individuals (e.g., head size; 
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Whitwell et al., 2001). To test for hemispheric differences specific to auditory neuroanatomic 

measures, we restricted ROI analysis to bilateral Heschl’s gyrus (PAC; Brodmann 41). MRI 

post-processing was performed using in-house scripts coded in Python (http://www.python.org).  

Statistical analysis 

 ERPs were analyzed using GLME mixed-effects regression models in SAS (Proc 

GLIMMIX; v9.4, SAS Institute, Inc.) with subjects as a random factor and fixed effects of 

training phase (two levels: pretest vs. posttest), token (two levels: tokens 1&5 vs. 3) and 

behavioral performance (identification slopes or training accuracy; continuous measures). We 

also included the interaction of phase and behavioral performance to investigate whether brain-

behavior correspondences change after training. Similar models were used to analyze the 

behavioral and MRI data. Analyses on the individual groups alone included main and interaction 

effects of identification slopes or training accuracy (learning group only), training phase, and 

stimulus token. We used a backward selection procedure to remove nonsignificant variables and 

report final model results throughout. Post hoc multiple comparisons were corrected using Tukey 

adjustments. Identification function slopes were square-root transformed to reduce right 

skewness. Demographic variables were analyzed using Wilcoxon-Mann-Whitney and Fischer’s 

exact tests due to non-normality. An a priori significance level was set at α = 0.05. Conditional 

studentized residuals, Cook’s D, and covariance ratios were used to identify and exclude 

influential outliers (West et al., 2015). 

Results 

Training results 

 Behavioral training outcomes are plotted in Figure 3. On average, participants in the 

learning group improved 10-15% in accuracy (Fig. 3A; F9,158 = 2.05, p = 0.038) and exhibited 

http://www.python.org/
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faster RTs (Fig. 3B; F9,149 = 3.22, p = 0.001) over the course of training. Training was highly 

effective; most individuals averaged >80-90% identification accuracy across the 10 blocks (i.e., 

equivalent to the approximate performance of a musician on the same task; data not shown). N=5 

“nonlearners” had training accuracies that remained near chance performance; these individuals 

were removed for subsequent analysis. Post hoc analyses revealed RTs became faster following 

the second training block (all p’s < 0.05; block 1 vs. 2 p = 0.052). Similarly, listeners’ 

identification was more accurate starting at the 9th training block compared to the first block 

(block 9 vs. 1: t158 = 3.44, p = 0.025; block 10 vs.1: t158 = 3.40, p = 0.028). 

Figure 3: Behavioral categorization improves following rapid auditory training. Brief major/minor categorization 

training yields an increase in accuracy (A) and decrease in reaction time (B) across blocks. Pretest (C) and posttest 

(D) psychometric identification functions show stronger categorization for musical intervals after training for the 

learning group (excluding data from n=5 nonlearners); performance was identical pre- to post-test for control 

listeners (E). Error bars/shading = +/- 1 SE. *p < 0.05. 
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Behavioral categorization following training 

 We then assessed training-related improvements in categorization via listeners’ 

identification of the musical interval continuum. We found a group x session interaction for 

identification slopes (F1,26 = 4.93, p = 0.035). Importantly, control and learning groups did not 

differ at pretest (Fig. 3C; t26 = -0.14, p = 0.48), suggesting common baseline categorization. 

Critically, post hoc analyses revealed that identification slopes were steeper at posttest for 

successful learners (Fig. 3D-E; t26 = 4.42, p < 0.001), whereas performance remain static in the 

control group (t26 = 4.42, p = 0.21). For learners, in addition to training gains (main effect of 

phase: F1,13 = 11.65, p = 0.005), achieving better accuracy during training was associated with 

steeper identification functions overall (F1,13 = 8.58, p = 0.012). Similarly, RTs showed a group x 

phase interaction (F1,78 = 3.98, p = 0.050). Whereas the control group achieved faster RTs at 

posttest (t78 = -3.64, p < 0.001), RTs remained constant in the learning group (t78 = -0.73, p = 

0.47).  

Electrophysiological results 

 ERP waveforms are shown per group and experimental phase in Figure 4 (pooling all 

tokens). For the learning group, we found a training accuracy x phase interaction in P2 (F1,39 = 

5.77, p = 0.021) and P1 amplitudes (F1,39 = 11.29, p = 0.002); better performance during training 

was associated with decreased amplitudes in the posttest but not the pretest (P2 posttest: t39 = -

3.41, p = 0.010; P1 posttest: t39 = -2.32, p = 0.010). All other ERP comparisons with training 

accuracy were not significant. 
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 In learners, we found an identification slopes x phase interaction for P2 amplitudes (F1,38 

= 4.16, p = 0.048); steeper (i.e., more categorical) posttest identification slopes were associated 

with a decrease in neural activity after training (Fig. 5A). Main effects of slope (F1,39 = 8.46, p = 

0.006) and phase (F1,39 = 6.26, p=0.017) were also found for the slow wave (300-500 ms). 

Critically, these brain-behavior relationships were specific to learners and were not observed in 

the control group (Fig. 5B; all p’s > 0.05).  

Figure 4: Grand average ERP waveforms collapsed across all tokens from the frontocentral electrode cluster (mean 

F1, Fz, F2, FC1, FCz, FC2; inset). The learning group (left) underwent brief identification training whereas the 

control group (right) did not. The tick mark represents t = 0 (stimulus onset). 

Figure 5: Neural amplitudes scale with behavioral outcomes in the learning group (A) but not the control group 

(B). Better posttest categorization (i.e., steeper identification slopes) is associated with a decrease in P2 amplitudes. 

Data points indicate individual subjects (collapsed across tokens 1 & 5 and 3). Arrows/values mark outliers (which 

did not alter results). Shading = 95% CI. 
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Hemispheric asymmetries were assessed via difference waveforms (i.e., mean[tokens 1 & 

5] vs. 3) indexing the degree of categorization contained in neural responses. This analysis 

focused on electrodes T7 and T8 located over the left and right temporal lobes, respectively. We 

used a running paired t-test to evaluate training effects in a point-by-point manner across the 

ERP time courses (BESA Statistics, v2; Fig. 6). This revealed that in learners, category 

differentiation was modulated by learning 112-356 ms after stimulus onset. Training effects were 

most prominent over electrode T8 (right hemisphere; Fig. 6B). Guided by these results, we then 

extracted average amplitudes within this time window and ran a three-way mixed model 

ANOVA (group, identification slopes, training phase). The group x slope interaction was 

significant for electrode T8 (F1,23 = 7.86, p = 0.010). Post hoc analyses revealed that for learners, 

steeper identification slopes predicted larger (i.e., more categorical) responses over the right 

hemisphere (t23 = 0.59, p = 0.021). This brain-behavior relationship was not observed in controls 

nor over the left hemisphere (p’s > 0.05). These data reveal a right hemisphere bias in neural 

mechanisms supporting category learning of musical sounds.  

Figure 6: Neuroplastic changes following auditory categorical learning of music intervals are biased toward right 

hemisphere. Only data for the learning group is shown. (A-B) Difference waves (i.e., mean[token 1/5] – token 3) 

indexing categorical neural coding. An increase in neural categorization after training occurs over right (B; electrode 

T8) but not left hemisphere (A; electrode T7). Shaded region indicates a significant session effect (p < 0.05). (C) 

Topographic statistical map at t = 336 ms (dotted gray line in A & B) where pre- to post-test changes in categorical 

coding is maximal. 
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Neuroanatomical results 

 We next determined whether preexisting structural asymmetries (i.e., gray matter volume, 

cortical thickness) of primary auditory cortex were also associated with successful category 

learning. Volumetric analyses revealed that gray matter volumes were larger on average in the 

right compared to left PAC (t11 = 12.36, p < 0.001). The interaction of phase and structural 

measures were not significant for identification slopes. However, phase was kept in the models 

to isolate the relationship between structural PAC measures and behavior after factoring out 

training effects (see section 3.2). Smaller gray matter volumes in right PAC were associated with 

stronger categorization overall (F1,11 = 5.80, p = 0.035, after accounting for effects of phase) 

(Fig. 7). Meanwhile, thinner cortical thickness of left PAC corresponded to better identification 

slopes (F1,11 = 15.07, p = 0.003, after accounting for effects of phase). Cortical thicknesses and 

gray matter volumes did not correlate with each other for either right or left PAC suggesting 

these volumetrics provided independent measures of the anatomy (all p’s > 0.05). Taken 

together, these results indicate that preexisting differences in bilateral PAC structure predict 

individual categorization performance. 

 

Figure 7: Neuroanatomical measures in primary auditory cortex (PAC) predict behavioral categorization 

performance in the learning group. (Left) In left HG, larger cortical thickness is associated with poorer 

categorization. (Right) Similarly, larger gray matter volumes (cm3) in right HG were associated with poorer 

behavioral categorization. (Center) MRI image from a representative subject with left and right HG shown in blue 

and white, respectively. Data points indicate individual subject identification slopes. Shading = 95% CI.  
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Discussion  

 By measuring multichannel EEGs and brain volumetrics during short term auditory 

category learning tasks, our data reveal three primary findings: (i) rapid label learning of 

nonspeech sounds emerges very early in the brain (~150-200 ms, P2 wave), (ii) ERP responses 

decrease with more successful learning suggesting more efficient neural processing (i.e., reduced 

amplitudes) after training; (iii) neuroplastic changes in categorizing musical sounds are stronger 

in right hemisphere where smaller and thinner auditory cortical regions predicted better 

categorization performance. Successful category learning is therefore characterized by increased 

functional efficiency of sensory processing layered on preexisting structural advantages within 

auditory cortex. 

Functional correlates of auditory category learning 

 Our data suggest category acquisition for nonspeech sounds is associated with changes in 

ERP P2. The functional significance of P2 is still poorly understood (Crowley & Colrain, 2004). 

Experience-dependent neuroplasticity in P2 has been interpreted as reflecting enhanced 

perceptual encoding and/or auditory object representations (Bidelman & Lee, 2015; Bidelman et 

al., 2014; Garcia-Larrea et al., 1992; Ross et al., 2013; Shahin et al., 2003), improvements in the 

task acquisition process (Tremblay et al., 2014), reallocation of attentional resources (Alain et 

al., 2007), increased inhibition of task-irrelevant signals (Seppanen et al., 2012; Sheehan et al., 

2005), or mere stimulus exposure (Ross et al., 2013; Sheehan et al., 2005). Here, we demonstrate 

early ERP waves including P1 (~40-80 ms) as well as P2 (~150-200 ms) closely scale with 

behavioral learning. Moreover, these neuroplastic effects are surprisingly fast, occurring rapidly 

within only 20 minutes of training. Our findings parallel visual category learning where changes 

in the visual-evoked N1 and late positive component signal successful learning (Perez-Gay 
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Juarez et al., 2019). Our results also align with previous studies using various auditory training 

tasks including speech (Alain et al., 2010; Alain et al., 2007; Ben-David et al., 2011; Tremblay et 

al., 2001; Tremblay & Kraus, 2002; Tremblay et al., 2009) and nonspeech sounds (Atienza et al., 

2002; Bosnyak et al., 2004; Tong et al., 2009; Wisniewski et al., 2020) suggesting P2 indexes 

auditory experience that reflects learning success and is not simply a product of the task 

acquisition process (cf. Tremblay et al., 2014) or repeated stimulus exposure (Ross et al., 2013; 

Ross & Tremblay, 2009; Sheehan et al., 2005). The lack of clear neural changes in control 

listeners also contradicts exposure or repetition effect interpretations of our data. 

In this study, successful learning (i.e., both training accuracy and identification function 

slopes) was characterized by a reduction in ERP amplitudes after training. The specific direction 

of P2 modulations varies across experiments with some reporting an increase in evoked 

responses with learning (Atienza et al., 2002; Bosnyak et al., 2004; Carcagno & Plack, 2011; 

Ross et al., 2013; Sheehan et al., 2005; Tong et al., 2009; Tremblay et al., 2001; Wisniewski et 

al., 2020) and others a decrease (Alain et al., 2010; Ben-David et al., 2011; Zhang et al., 2005). 

As suggested by Alain et al. (2010), such discrepancies could be related to the task (e.g., active 

task vs. passive recording), the stimuli (e.g., speech vs. nonspeech), the rate of learning among 

the participants, or even the rigor of training paradigm. Studies reporting enhanced P2 often 

included multiple days of training or recorded ERPs during passive listening (Atienza et al., 

2002; Bosnyak et al., 2004; Ross et al., 2013; Seppanen et al., 2013; Tremblay et al., 2001; 

Wisniewski et al., 2020). Long-term auditory experiences (e.g., music training, tone language 

expertise) have also been associated with enhanced P2 during active sound categorization 

(Bidelman & Alain, 2015; Bidelman & Lee, 2015; Bidelman et al., 2014) as well as learning 

(Seppanen et al., 2012, 2013; Shahin et al., 2003). The ERP decreases we find in successful 



 39 

learners are highly consistent with single-session, rapid learning experiments demonstrating 

greater efficiency of sensory-evoked neural responses during active task engagement (Alain et 

al., 2010; Ben-David et al., 2011; Guenther et al., 2004; Perez-Gay Juarez et al., 2019; Sohoglu 

& Davis, 2016). Consequently, our results reinforce notions that the P2 is a biomarker of 

learning to classify auditory stimuli and map sounds to labels (Ben-David et al., 2011; Rosen & 

Howell, 1987; cf. Tremblay et al., 2014).  

On the contrary, decreased neural activity might reflect other aspects of the task, 

including arousal and/or fatigue (Crowley & Colrain, 2004; Näätänen & Picton, 1987). However, 

decreased neural activity from these factors would have been expected in both groups due to the 

similar task constraints on all participants. If better learners simply sustain arousal more 

effectively through posttest, we would have also expected faster RTs. Rather, our data suggest 

decreases in activation meaningfully reflect music category learning, paralleling findings with 

speech (Guenther et al., 2004). Alternatively, given modulations in both P2 and slow wave 

activity, a separate but overlapping processing negativity within this timeframe cannot be ruled 

out. Negative processing components have been associated with early auditory selection and 

attention (Crowley & Colrain, 2004; Hillyard & Kutas, 1983; Näätänen & Picton, 1987) and may 

therefore be another target for learning processes.  

Hemispheric lateralization and music categorization 

 Our findings show that acquiring novel categories for musical intervals predominantly 

recruits neural resources from the right auditory cortex, complementing the left hemisphere bias 

reported for speech categorization (Alho et al., 2016; Chang et al., 2010; Desai et al., 2008; 

Golestani & Zatorre, 2004; Liebenthal et al., 2005; Liebenthal et al., 2010; Myers et al., 2009; 

Zatorre et al., 1992). Specifically, we observed enhanced neural categorization over the right 
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hemisphere in more successful learners. Gray matter volumetrics in right PAC were also 

associated with behavioral categorization abilities. These findings support long-standing notions 

about lateralization for speech vs. music categorization in the brain (Alho et al., 2016; Bidelman 

& Walker, 2019; Bouton et al., 2018; Chang et al., 2010; Desai et al., 2008; Klein & Zatorre, 

2011, 2015; Liebenthal et al., 2010; Mankel, Barber, et al., 2020; Zatorre et al., 1992). Superior 

music categorization in both trained musicians (Bidelman & Walker, 2019; Klein & Zatorre, 

2011, 2015) as well as musically adept non-musicians (Mankel, Barber, et al., 2020) has been 

associated with right temporal lobe functions. We thus provide new evidence that even brief, 20-

minute identification training is sufficient to recruit right hemisphere neural circuity that 

subserves auditory sensory coding and classification of musical stimuli. 

Neuroanatomical correlates of auditory category learning 

 Our MRI results demonstrate that individual variation in structural measures (gray matter 

volume, cortical thickness) also predict behavioral categorization performance beyond mere 

training effects. Brain structure is influenced by genetic, epigenetic, and experiential factors 

(Zatorre et al., 2012). Thus, it is often difficult to know whether anatomical differences are 

innate or experience-driven, but structural measures are presumed to be more stable and less 

plastic than functional responses (e.g., ERPs) (Golestani, 2012). Structural plasticity associated 

with music training, for example, may take weeks or months to appear (Wenger et al., 2020), 

suggesting the results observed in this study reflect preexisting neuroanatomical differences 

rather than structural changes due to the brief identification training. Anatomical variability in 

auditory cortex has been related to learning rate and attainment for foreign speech sounds 

(Golestani et al., 2007), linguistic pitch patterns (Wong et al., 2008), and melody discrimination 

(Foster & Zatorre, 2010a) as well as native speech categorization (Fuhrmeister & Myers, 2021). 
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Consistent with this prior work on speech, our findings suggest that individual differences in 

music category perception and functional plasticity are influenced by anatomical predispositions 

within auditory cortex—that is, a layering of both nature and nurture. 

It is often assumed larger morphology within a particular brain area yields better 

computational efficiency (i.e., “bigger is better”) (Kanai & Rees, 2011). For example, faster, 

more successful learners of nonnative speech sounds show more voluminous primary auditory 

cortex and adjacent white matter in left hemisphere (Golestani et al., 2007; Golestani et al., 2002; 

Wong et al., 2008). Relatedly, expert listeners (i.e., musicians) often show increased gray matter 

volumes and cortical thickness in PAC (Bermudez et al., 2009; de Manzano & Ullen, 2018; 

Gaser & Schlaug, 2003; Schneider et al., 2002; Seither-Preisler et al., 2014; Wengenroth et al., 

2014; cf. Wenger et al., 2020). Instead, our data show the opposite pattern with regard to 

nonspeech category learning. To our knowledge, only one study has shown correspondence 

between decreased gyrification in temporal regions and improved consistency in speech 

categorization behaviors (Fuhrmeister & Myers, 2021). Similarly, smaller gray matter volume in 

STG has been linked to improvements in speech and cognitive training (Maruyama et al., 2018; 

Takeuchi, Taki, Hashizume, et al., 2011; Takeuchi, Taki, Sassa, et al., 2011). Congenital 

amusia—a disorder characterized by impairments in the perception and/or production of music—

has also been associated with increased gray matter volume and cortical thickness along the 

frontotemporal neural pathway (Hyde et al., 2007; Hyde et al., 2006). Thus, it seems “less is 

more” with respect to the expanse of auditory anatomy and certain aspects of listening 

performance. However, future research is needed to clarify the relationships between 

macroscopic gray and white matter volumes measured by MRI, neuronal microstructures, and 

their behavioral correlates. 
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Conclusion 

 We demonstrate that rapid auditory category learning of musical interval sounds is 

associated with increased efficiency in sensory processing in bilateral, though predominantly 

right, auditory cortex. The relationship between better behavioral gains in identification 

performance and the ERPs corroborate P2 as an index of auditory experience and a biomarker 

for successful perceptual learning. The right hemisphere dominance supporting music category 

learning complements left hemisphere networks reported for speech categorization. Individual 

categorization performance is therefore characterized by short-term functional changes 

superimposed on preexisting structural differences in bilateral auditory areas.  
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Chapter 4 

General Discussion 

The results of these studies demonstrate that auditory categorization is a complex 

interaction between preexisting and experience-dependent functional differences in the brain, 

and their relative influence on categorical functions predictably varies across individuals. The 

first study of this dissertation showed that inherent musicality—musical listening abilities 

distinct from basic psychoacoustic measures or those gained during formal music training—was 

associated with more efficient categorical processing (i.e., faster reaction times) and more robust 

neural differentiation of speech categories. The second study revealed the acquisition of novel, 

nonspeech auditory categories is a layering of neuroplastic changes in sensory function coupled 

with structural advantages for auditory processing. We thus provide evidence that categorical 

perception is neither solely pre-determined at birth nor exclusively developed through learning 

and experience but rather a highly individualized product of both nature and nurture factors.  

Both studies demonstrated that certain individuals exhibit natural sensory processing 

advantages within the auditory system which enables more efficient and robust categorization. 

The “musical sleepers” in Chapter 2 (i.e., nonmusicians with inherently superior musical 

listening abilities; Law & Zentner, 2012) were faster overall in identifying vowel categories. 

These individuals also showed more categorical event-related potentials (ERPs) compared to 

listeners with poorer musical-listening skills, specifically better P2-latency differentiation 

between prototypical and ambiguous vowels. As shown in Chapter 3, successful learners of 

musical interval categories (i.e., training accuracy and posttest identification function slopes) 

displayed more efficient early sensory ERP responses (i.e., P1, P2) after identification training. 

Although the functional significance of P2 is still poorly understood (Crowley & Colrain, 2004), 
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prior work has suggested that P2 reflects pre-cognitive (and pre-motor) perceptual encoding, 

formation of auditory object representations, and stimulus classification or evaluation of stimulus 

ambiguity within the brain (Bidelman & Lee, 2015; Bidelman et al., 2014; Garcia-Larrea et al., 

1992; Ross et al., 2013; Shahin et al., 2003; Silva et al., 2020). The results of this dissertation are 

consistent with these interpretations and extend them by demonstrating that (i) P2 is sensitive to 

individual differences in categorical perception; (ii) P2 indexes successful learning performance 

during the acquisition of auditory categories; and (iii) superior categorization abilities are 

characterized by more efficient pre-attentive, sensory-encoding processes within auditory cortex. 

Another common finding across these studies was the prevalence of laterality effects—

mainly right hemisphere—in both better speech categorizers and music interval category 

learners. Categorical processing of speech and music are thought to primarily invoke left versus 

right hemisphere dominance in the brain, respectively (Alho et al., 2016; Bidelman & Walker, 

2019; Bouton et al., 2018; Chang et al., 2010; Desai et al., 2008; Klein & Zatorre, 2011, 2015; 

Liebenthal et al., 2010; Mankel, Barber, et al., 2020; Zatorre et al., 1992). Yet, listeners with 

highly adept (musical) listening abilities showed more robust categorical processing of speech in 

the right auditory cortex. As proposed in Chapter 2, these musical sleepers may recruit additional 

resources within the right hemisphere for speech perception which could contribute to more 

efficient ERP latencies and reaction times. We also observed enhanced neural categorization 

over the right hemisphere in more successful category learners, and gray matter volumes of right 

auditory cortex predicted better categorization abilities in Chapter 3. An alternative possibility is 

that categorical processing is relatively stable across individuals in the left hemisphere due to 

either less morphological variability than the right auditory cortex (Penhune et al., 1996; 

Westbury et al., 1999) or the overlearned nature of native speech (Bulgarelli & Weiss, 2016), 
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thus permitting greater sensitivity to individual differences in categorization abilities within the 

right hemisphere. 

Finally, the broader theme of this dissertation concerned the relative contribution of 

nature versus nurture factors in auditory categorization. Chapter 2 examined these factors 

through the lens of musicality. Although musicality is a multifaceted, complex phenotype that is 

influenced by both genetics and environmental influences, (Gingras et al., 2015; Müllensiefen et 

al., 2014; Swaminathan & Schellenberg, 2018; Ullén et al., 2014), it is often presumed that 

performance on musical listening tests reflects “natural” or “innate” differences in musical 

ability (Mankel & Bidelman, 2018; Swaminathan & Schellenberg, 2018). While musicians show 

enhanced neural processing of speech and music (e.g., Bidelman & Alain, 2015; Bidelman & 

Krishnan, 2010; Bidelman & Walker, 2019; Bidelman et al., 2014; Kraus et al., 2009; Marie et 

al., 2011; Nan et al., 2018; Parbery-Clark et al., 2009; Shahin et al., 2003), formal music training 

itself is not a necessary (though perhaps sufficient) condition to enhance the categorization of 

complex sounds (Mankel & Bidelman, 2018). An unanswered question stemming from this 

research is whether the presumed music training-induced neuroplasticity and widely reported 

“musician advantage” in auditory tasks is actually due to intrinsic perceptual processing 

differences that motivate long-term engagement with formal music experiences.  

The results in Chapter 3 further suggest that individual differences in categorical 

perception and functional plasticity are influenced by inherent structural differences in auditory 

cortex. Specifically, thinner and smaller auditory cortical regions predicted better categorization 

performance. Like musicality traits, brain structure is shaped by genetic, epigenetic, and 

experiential factors (Zatorre et al., 2012). However, structural measures are presumed to be more 

stable and less plastic than functional (ERP) responses (Golestani, 2012), and any individual 
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differences in brain structure observed here are likely innate or emerge very early in the 

neurodevelopmental timeline (see Fuhrmeister & Myers, 2021) rather than from the training 

itself. We therefore concluded that successful category learning is driven by a layering of 

functional, neuroplastic changes superimposed on preexisting structural differences within 

auditory cortex.  

Limitations 

 We acknowledge that it is difficult to tease apart truly innate predispositions from 

experience-dependent factors in auditory system function and structure. It is possible that the 

individuals across these studies differed on some other environmental or experiential factor 

rather than inherent auditory-perceptual abilities, per se. We cannot rule out additional influences 

such as early exposure to music (Tierney et al., 2015), daily recreational, or personal engagement 

with music listening (Müllensiefen et al., 2014) or other auditory stimuli that possibly 

contributed to higher PROMS scores and auditory processing advantages in otherwise musically 

naïve listeners (Mankel & Bidelman, 2018). However, animal studies show mere passive 

exposure to auditory stimuli is insufficient to induce neuroplastic changes in primary auditory 

cortex (Fritz et al., 2005). It is therefore unlikely that prior informal music exposure alone drives 

the enhancements we observed in high performing listeners.  

Given that the learners in the second study had additional training trials, it could also be 

argued that the observed neural changes in this group are merely due to increased exposure to the 

musical interval stimuli relative to controls (Ross & Tremblay, 2009; Sheehan et al., 2005; 

Tremblay et al., 2010). Yet, the relationship between individual categorization performance and 

our neural measures suggests these differences were behaviorally meaningful during category 

identification and/or the acquisition of novel categories. Our results are consistent with the 
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notion that neural correlates of categorical perception emerge when listeners are actively 

engaged with in categorizing familiar (or learned) auditory categories (i.e., not during passive 

listening; Bidelman & Walker, 2017). Additionally, ERP responses scale with individual 

performance in the learning group—where the number of trials was similar—further refuting a 

mere exposure-based explanation.  

Conclusion 

Collectively, this dissertation work proposes that auditory categorization is a complex 

interaction of both nature and nurture effects. Inherent differences in neural function foster 

sensory processing advantages within auditory cortex that are shaped by experience (e.g., music 

training; learning) and promote enhanced categorization and perception of sounds. Our results 

suggest that the auditory cortex is a source of neural variability for both categorical speech 

perception and nonspeech category learning.  

Future directions 

These findings generate new avenues for uncovering the fundamental neural mechanisms 

of category acquisition and auditory learning. Planned future studies will incorporate source 

analysis (see Chapter 2) and connectivity techniques to determine whether auditory category 

learning is a bottom-up, sensory-driven or top-down cognitive process. Extensions of this work 

should also evaluate whether the neural targets identified for successful nonspeech category 

learning predict learning in other domains, such as nonnative phoneme identification (Kajiura et 

al., 2021; Wong et al., 2007) or reading abilities (e.g., Chiappe et al., 2001). Our research also 

highlights the need to assess preexisting behavioral and neural factors before attributing 

enhanced auditory processing effects to neuroplastic changes engendered by other learning 

activities such as music or cognitive training (Foroughi et al., 2016; Mankel & Bidelman, 2018).  



 48 

 

Additionally, further research is necessary to determine whether deficits in speech 

categorization, such as those observed in dyslexia or specific language impairment (Brandt & 

Rosen, 1980; Coady et al., 2005; Joanisse et al., 2000; Noordenbos & Serniclaes, 2015; Werker 

& Tees, 1987), are merely part of a normal distribution (albeit more extreme values) of 

individual differences in sensory, phonological, or even lexical processes (McMurray et al., 

2010). Alternatively, future efforts may uncover fundamental neurophysiological impairments 

that distinguish neurotypical, normal-hearing individual differences and those with speech-

language disorders. A better understanding of the neurobiology supporting categorization 

abilities across normal and disordered populations could potentially lead to more tailored 

rehabilitation and training programs that better maximize therapeutic or learning benefits for 

reading, language, and/or receptive hearing skills.  
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