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ABSTRACT

Mainali, Sambriddhi. Ph.D. The University of Memphis. August, 2021. Biomolecule
inspired Data Science. Major Professor: Dr. Max Garzon

Our ability to generate data has far outdone our ability to analyze it in order to

transform it into useful information. A major tool in addressing the problem is extraction

or selection of informative features in the data. When the data is structured,

dimensionality reduction and analyses can be much easier. However, structured data

(beyond just superficial formatting and cleansing) is rare, hopeless in case of images and

even text, particularly with DNA sequences. Deep networks resolve these issues to some

extent but the question about explainability and timeliness of results still remains. Recent

advancements in Genomic Information Systems (GenISs) have shown that the exquisite

discriminating ability of DNA hybridization (double helix formation) can be leveraged for

smarter data processing. Deep knowledge about the hybridization property of DNA

(discovered by Watson and Crick in the 1950s) has enabled us to uncover some Euclidean

embeddings of DNA oligonucleotides along with some interesting structural properties (like

centroids, center of mass and so on) analogous to that of the planets in our solar system

(like earth and saturn.) In this work, we develop a family of Genomic Information Systems

(GenISs), based on novel coordinate systems (genomic and pmeric) for DNA sequences of

arbitrary length obtained from their deep structural properties based on hybridization

patterns, that can be leveraged to improve and develop new methods for data analytics of

both biotic and abiotic data. We also assess the quality of these GenISs with a number of

applications in the field of biology and computer science at large. The quality assessment

of these results illustrate how DNA is capable of self-organizing unstructured data into

semantic clusters meaningful to humans, in addition to supporting complex life processes

for phenomics, metabolomics, species identification, pathogenicity and so on. Furthermore,

these results hint at the tip of an iceberg about the capacity of DNA for not only encoding

but also processing information that can be leveraged as a powerful tool in this era of big

data and data science.
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CHAPTER 1

Biomolecular Programming

Background

Our ability to generate enormous amounts of data through, for example, genomics (e.g.,

the human genome project, Next-Generation Sequencing (NGS)), proteomics and

metabolomics, not to mention abiotic data, has raised an enormous challenge in processing

this data to extract useful information. The purpose of this work is to further the

development of Genomic Information Systems initiated in [5], [3] to create new tools to

begin to tackle this challenge. This work was motivated by the field of DNA computing,

inspired by the ideas of using DNA itself as a computational medium pioneered by

Adleman [6] and as smart glue for self-assembly applications by Seeman [7] and Winfree [8].

Adleman [6] started the field of DNA computing by proposing to build computers

using real DNA molecules. Eventually, it was realized that fundamental problems (such as

Codeword Design (CWD) below) would need to be solved to get DNA molecules to do

something they did not evolve for better than electronic computers. Finding a solution to

this problem is NP-complete using any single reasonable metric that approximates the

Gibbs energy, thus practically excluding the possibility of finding any procedure to find

maximal sets exactly and efficiently [9]. The field then refocused on a potentially more

impactful application, namely the self-assembly of complex nanostructures [7]. Rather than

pursuing this line of research, in this work we are interested in using DNA and processes in

vivo as an inspiration to develop new tools to solve problems in computer science and

biology in silico.

It is well known that, as the blueprint of life, DNA encodes for critical information

required to develop and sustain life in every living organism (e.g., protein synthesis and

self-organization) due to its hybridization and self-organizing properties [10]. In particular,
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[4], [11], [12] have demonstrated that DNA encodes enough information about an organism

so that features about phenotype, environmental conditions of the natural habitat,

taxonomic group and so on could be predicted.

CODEWORD DESIGN PROBLEM

INSTANCE: A positive integer n and a threshold τ

QUESTION:

What is a largest set B of single DNA strands (of length

n) that do not crosshybridize to themselves or to their com-

plements (nxh set) under stringency τ , i.e., |xy| > τ for all

x ∈ B?
A systematic attempt to develop such tools (described more in detailed below as

Genomic Information Systems (GenISs)) was initiated in [9]; [3] to tackle a fundamental

problem in our time, and particularly in bioinformatics

Research Objectives

This line of research can be simply described as biomolecule-inspired data science. The

overarching goal is to probe into the questions, what kind of information can be stored in

DNA molecules? How much information can be stored in a single DNA molecule? How

could it be extracted?

My dissertation research builds up on the platform of GenISs along three distinct

components. The first component is focused in extending the foundations of a truly

universal GenIS for genomic analyses in biodata science.

The second component is focused on applying the platform developed through the

fundamental research for biotic data analytics to answer some important questions in the

field of biology. These questions include (but are not limited to) to:

• Does DNA encode enough information to enable quantitative predictions of

phenotypic features in a biological organism, even though they depend on

environmental factors presumably beyond DNA?
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• Or, does DNA actually encode enough information to say something informative

about environmental factors (e.g., latitude, longitude, temperature and so on) of the

natural habitat where these organisms grew and lived?

• Is a principled and taxon-independent definition of the concept of species possible

that is universal for biological taxonomies?

• Can we provide an objective taxon independent and systematic definition of

pathogenicity shared between hosts (e.g., homo sapiens) and micro-organisms (e.g.,

bacteria and fungi) based on a computational approach?

Finally, the third component is likewise focused on further extending these

capabilities to encoding and processing ordinary abiotic data in GenISs. We show that this

can indeed be done by providing solutions to some challenging problems, such as Malware

Classification (MC) and Semantic Image Segmentation (SIS) involving textual and image

data.

In order to make inroads into these questions, we must take a very deep look into

DNA sequences from the point of view of computer science.

Structural Properties of DNA Spaces

This chapter describes the foundational findings in the study of structural properties of

DNA spaces. To begin with, we give formal definitions of concepts and terms elucidating

these structural properties of DNA.

Definition 1 (DNA spaces). Given a positive integer n, a DNA sequence x is a string

defined over the alphabet Σ = {a, c, g, t}. They will also be referred as n-mers, where n = |x|

is the length of string x. The Watson-Crick (WC) complement of x is the string y′ obtained

after first taking the reverse of x (i.e., xr) and replacing every a (c) by t (g, respectively)

and vice-versa, in xr. A pmer (or |x|-pmer) is a pair of two WC complementary DNA
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sequences {x,WC(x)} (simply denoted x/x′, or just x, the lexicographically first element in

the pair.) The DNA space of length n > 1, Dn, consists of the set of all n-pmers.

We remark that if x is a WC-palindrome and WC(x) = x, then the corresponding

pmer is really a single string. For reasons that will become apparent to the goal of this

research, we will thus exclude palindromes from consideration throughout.

The most fundamental property of DNA is hybridization, its exquisite discriminating

ability in forming double strands (helices) as discovered by Watson and Crick [10].)

Hybridization is determined by the familiar Gibbs energy, the chemical equivalent of the

potential energy in physics, which depends on physical parameters (such as the internal

energy, pressure, volume, temperature, and entropy) of the environment in which the

duplex is formed. The more negative the Gibbs energy, the more stable the duplex formed.

Unfortunately, the available models of biochemistry are approximations, and no gold

standard exists to assess Gibbs energies other than accepted empirical approximations [13].

The most popular method to approximate the Gibbs energy is the so-called

nearest-neighbor (NN) model, but this model does not offer a metric approximation.

Further, the size and composition of nxh sets is very difficult to establish in this model due

to the lack of intuition and tools as to the structure of the Gibbs energy landscapes [9].

In the field of DNA computing, many attempts have been made to address this

issue. They have revolved about the CWD problem identified as a fundamental problem in

the field. Adleman [6] emphasized the need of a good coding strategy for using DNA to

process information. A coding scheme is crucial to experiments in vitro, for mutational

analysis and for sequencing [14]. For a biologist, the obvious criteria for good choices were

things like the GC content of the sequences since it is good indicator of the melting

temperature of short oligonucleotides. [14] introduced a template method to generate a set

of sequences of length l such that any of its member have approximately l/3 mismatches

(based on the GC content) with other sequences, their complements and the overlaps of

their concatenations. Some approaches also tested combinatorial design, random
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generation and genetic algorithms [15, 16, 17]. A more refined method used to address the

issue of undesirable changes being made to bits sent through a noisy communication

channel. Thus CWD problem makes an analogy with error correcting codes in information

theory. DNA sequences diffuse in solution (the channel) “looking” for a (WC)

complementary sequence to hybridize to. If the probes attached to the chip are not

carefully selected, we get the equivalent of a channel introducing errors in the intended

hybridizations when a target encounters the wrong probe first (i.e., the hybridization

affinity to the probe is not correct.) Thus, the CWD problem appears to be the equivalent

of designing error-detecting/correcting codes. Shannon’s solution for error-detecting codes

was to use the Hamming distance in hypercubes to quantify the error detecting and

correcting capabilities by separating codewords actually used to encode single bits so the

noisy transmissions remain noncoding and can be detected and possibly corrected. The

obvious choice for CWD is thus the Hamming distance [18]. Since the Hamming distance

between any two aligned sequences counts the number of positions in which the two differ

in a perfect alignment [19, 20], the ordinary Hamming distance must be modified so that

matching now refers to Watson-Crick complementary pairs, i.e., a’s and t’s (c’s and g’s)

occurring in aligned sequences should be considered as matches. [21] used this notion of

Hamming distance to obtain sets of “orthogonal” sequences solving the CWD problem

experimentally and theoretically for molecular recognition using microarrays. Although

this a step in the right direction, Hamming distance between two DNA strands appears to

be too crude as an estimate of the likelihood of hybridization because it seems to exclude

the possibility of two strands hybridizing in shifted alignments [22], something much more

likely to occur. To address this issue, an alternative was introduced in [5]. This

h-distance turned out to be a reasonable choice for an approximation of the Gibbs Energy

because it satisfies metric properties that the Gibbs energy does not, and more

importantly, because hybridization decisions made using the h-distance agree with those
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made using Gibb’s Energy Nearest-Neighbor Model about 80% of the time [9], [23]. This

distance is defined precisely as follows.

Definition 2 (Hybridization distance or h-distance [5]). Given an integer n > 0, the

h-measure between any two pmers x and y, h(x, y) is defined as the minimum total number

of WC complementary mismatches between facing nucleotide pairs in an optimal alignment.

Precisely, it is computed as follows:

• align x and yr (y reversed) in 2n− 1 alignments shifted by k characters (left shift if

k < 0; right if k > 0), −n < k < n;

• count the total number ck of WC complementary mismatches between facing

nucleotide pairs (single nucleotides are counted as mismatches);

• compute the h-measure

h(x, y) = min
k

ck .

The h-distance (denoted just |xy| hereforth) between two pmers x and y is defined as the

minimum of the two h-measures h(x, y) and h(x, y′) between x and y, where y′ is the

WC-complement of y.

An example of the computation of the h-distance is shown in Fig. 1.

Theorem 1 ([5, 24]). The h-distance is a metric, i.e., every triple x, y, z ∈ Dn satisfies

• (Reflexive) |xy| = 0 if and only if x = y;

• (Symmetry) |xy| = |yx|

• (Triangle Inequality) |xz| ≤ |xy|+ |yz| .

Furthermore, hybridization decisions between two mers x and y made by comparing their

h-distance against an appropriate threshold τ agree about 80% of the time with one made

using the Gibbs’ Energy Nearest Neighbor Model.
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Figure 1: Workflow for computing the h-distance |xy| between any two pmers x and y by
optimizing the frameshift for WC-complementary pairs.

These metric properties of the h-distance can be used to solve the DNA

CODEWORD DESIGN problem approximately, so that data representations can be

built and reasoned about as though they were physical objects like mass, centroids and so

on. Further, it reveals some deeper structure of DNA hybridization landscapes.

Definition 3 (Isometry). An isometry φ of a DNA space Dn is an h-distance preserving

transformation φ :Dn → Dn, i.e., for every pair of pmers x, y ∈ Dn, |φ(x)φ(y)| = |xy|.

Theorem 2 (Isometries in Dn). Every Dn space possesses the following properties:

• Every isometry φ of Dn must be injective and surjective. In particular, its inverse is

also an isometry.

• An isometric image of every ball Bτ [x] = {y ∈ Dn : |xy| ≤ τ} in Dn centered at x is

also a ball Bτ [φ(x)] centered at φ(x), for every radius τ ≥ 0.

• Dn has at least 16 isometries (shown in Table 1 for n ≤ 8.)

Proof. To prove φ is injective, let us assume that two arbitrary pmers x, y ∈ Dn have

φ(x) = φ(y) and x 6= y. Since φ is an isometry, |xy| = |φ(x)φ(y)| = 0 and the reflexive

property implies that x = y, i.e., φ is injective. For surjectivity, we know φ(Dn) ⊆ Dn and
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Table 1: Known isometries for DNA spaces for n ≤ 8. They are homomorphic substitutions
named bdef to indicate that the characters in acgt are mapped to those in bdef , respectively,
in a poligo x/x′. Any composition of two isometries is also an isometry.

Name Isometry Mapping Transformation
Identity/

WC Complement acgt acgt
a↔a, c↔c, g↔g, t↔t
Reverse+Complement

Polar φNS acgt catg a↔c, t↔g
Reverse φR acgt tgca φ(x) = xR (reverse oligo of x)
Polar + Reverse acgt gtac
gc swap acgt agct a↔a, c↔g, t↔t
at swap acgt tcga a↔t, c↔c, g↔g
Polar2 acgt gtac a↔g, t↔c

both sets are of the same finite size by injectivity, so they must be equal, i.e., every y ∈ Dn

must be y = φ(x) for some x ∈ Dn, so φ is surjective. Thus, it is clear that the inverse is

also an isometry.

By a similar argument, for the next property, it suffices to show that

φ(Bτ [x]) ⊆ Bτ [φ(x)]). Let z = φ(y) ∈ φ(Bτ [x]) i.e., |yx| ≤ τ . Since φ is an isometry,

|zφ(x)| = |φ(y)φ(x)| = |xy| ≤ τ ,

so z ∈ Bτ [φ(x)] .

The isometries in Table 1 are obtained by homomorphic (character by character)

substitutions as shown. Thus, WC matchings are preserved and the h-measure remains

unaffected upon substitutions. Therefore, they preseve the h-distance as well.

These isometries reveal an even more complete picture of the structure of the

hybridization landscapes of oligomers of a given size (defined by the h-distance) through

their images in DNA spaces. It is particularly interesting that this structure is something

we humans are very familiar with the planets earth and Saturn.

Definition 4 (Geometric structures in DNA spaces). Dn can be fully described by the

following geometric structures about ordinary Euclidean spheres:
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• Two pmers x and y are an antipodal pair if and only if |xy| = n;

• The north N (south S) pole is the an/tn-pmer (cn/gn, respectively.)

• The northern ice cap P n−1 is the set of pmers x satisfying |xN | ≤ 1 and |xS| = n.

• The equator En is the set of all pmers x equidistant from the poles, i.e., satisfying

|xN | = |xS|.

• The northern hemisphere (HN) is the set of pmers x satisfying |xN | < |xS|.

• The images under the polar isometry φ of these objects are called the corresponding

southern ice cap Pn−1 and southern hemisphere (HS).

Thus, the north and south poles are an antipodal pair, and they partition the full

DNA space Dn. The northern and southern equators are identical to the equator.

Definition 5 (Parallels). For 1 ≤ i ≤ n, the ith parallel is the set Pi of all n-pmers x

satisfying |xN | = R− i+ εN and |xS| = R + i− εS, where R is the maximum possible

value of |xN | and εN/εS are certain constants for each n.

Theorem 3 (The Equator). The equator of Dn satisfies the following properties for

arbitrary sizes n:

• It consists of (nearly) balanced n-pmers, i.e., the maximum number of occurrences of

a’s or t’s is identical to the maximum number of c’s or g’s.

• The equator is closed under the polar and reversal isometries φ, i.e., φ(En) ⊆ En.

• Dn = HN ∪ En ∪HS.

Proof. For the statement, by definition, a pmer z in the equator En satisfies |zN | = |zS|.

Now, from the definition of h-distance, it is easy to verify that |zN | = n−maxN(z) and
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|zS| = n−maxS(z), where logbz is the number of occurrences of base b in z and

maxN ,maxS,min
N ,minS are the functions defined by

maxN(z) = max{logaz, logtz}, and maxS(z) = max{logcz, loggz} ,

minN(z) = min{logaz, logtz}, and minS(z) = min{logcz, loggz} ,

respectively. Therefore, max{logaz, logtz} = maxS{logcz, loggz}

To prove the equator is closed under the polar isometry φNS , let z ∈ En so that

|zN | = |zS|. Noting that φNS (N) = S and vice versa and applying the polar isometry φNS to

both sides, we get

|φNS (z)S| = |φNS (z)φNS (N)| = |φNS (z)φNS (S)| = |φNS (z)N |

i.e., the polar isometric image of z also lies in En. For the reversal isometry φR, likewise,

|φR(z)S| = |φR(z)φR(S)| = |zS| = |zN | = |φR(z)φR(N)| = |φR(z)N |

i.e., φR(z) also lies in En. For the third statement, a pmer z ∈ Dn either satisfies

|zN | = |zS| (lies on the equator) or it does not. If not, either |zN | < |zS|, i.e., it is in the

northern hemisphere, or |zN | > |zS|, i.e., it is in the southern hemisphere.

Definition 6 (Ellipses). Given a Dn, the ellipse with foci given by two n-pmers f1, f2

and a constant c ≥ 0, is the set of n-pmers x satisfying the condition |xf1|+ |xf2| = c.

The polar ellipse (as shown in Fig. 2) has foci at the poles N, S and the maximum possible

value for c.

Theorem 4 (Properties of Polar ellipses). The nonempty ellipse with two poles N,S as foci

(called the polar ellipse) with the largest c is at least 2R, where R is the maximum possible

distance of a n-pmer in the equator from the poles and includes the whole equator En.
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Figure 2: Rendition of the structure of an ellipse in DNA space for 3 pmers with the poles
as foci (the actual 3D Euclidean distances are not identical to their h-distances.) The pmers
on both icecaps and the equator form the polar ellipse (in red.)

Proof. Since |NS| = n, there follows from the triangle inequality that the radius of the Dn

space R = maxx∈E |xN | ≥ n/2 where E is the equator and N represents the north pole and

S represents the south pole. For all x ∈ E, |xN | = |xS|, n = |NS| ≤ |xN |+ |xS| and hence,

this particular ellipse has c = 2R. Moreover, this polar ellipse must include all pmers on

the equator.

Definition 7 (Centroid). Let k > 0 be an integer and S be a set of pmers in Dn of size

|S| and wz ( z ∈ S ) be a set of real-valued weights for its elements. The (weighted) kth

error function SEk
w Dn → R , is defined as the average kth powers of the h-distances from

z to a pmer in S, i.e., SEk
w (z) = 1

|S|
∑

x ∈ S wz|zx|
k. A pmer z ∈ Dn is a k-centroid of S

(or simply centroid if k = 2) if and only if it minimizes SEk
w(z), i.e. a = arg minzSE(z)

across all z in Dn.
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Theorem 5 (Properties of Centroids in Dn). An isometric image of a centroid of Dn, is

also a centroid. There are several centroids in a Dn.

Proof. Let z is a centroid of Dn. A squared error function of a pmer a can be defined as

SE(a) = 1/|Dn|
∑

x∈Dn

|ax|2

Using the definition of a centroid, we know z minimizes SE. Since an isometry preserves

h-distance, |zx| = |φ(z)φ(x)|, i.e.,

SE(z) = 1/|Dn|
∑

x∈Dn

|φ(z)φ(x)|2 = SE(φ(z))

.

If z is a centroid and minimizes SE(z), so will φ(z) and therefore, it must be a

centroid in Dn.

These findings hint to the shape of these spaces being very similar to that of planets

in our solar system (like earth and Saturn) as shown in Figs 3 and 4.

Such structural features can be computed using brute-force method for small values

of n(≤ 8). But as the value of n increases, the size of Dn also increases exponentially (for

e.g., D3 has 32 pmers and D5 has 512 pmers but D7 has 8,192 pmers) causing

combinatorial explosion. Beyond D8, an exhaustive search of the space is practically

impossible. Therefore, algorithms to generate all and only pmers satisfying the conditions

of these properties would be useful for higher values of n. Two of them are given below.

Similarly, these attributes for the lower (n up to 8) are shown in Tables 2, 3, and 4 below.

With these structures in place, we can proceed to define GenISs to tackle the

problems described above.
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Figure 3: Rendition of the structure of DNA spaces, for left: 3 pmers (shape similar to
earth) and right: 4pmers (shape similar to Saturn.) This representation is not isometric
for n = 3, although the relative separation between the location of pmers in 3D Euclidean
space is indicative of their actual h-distance in Dn. (Watson-Crick palindromes have been
excluded.)
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Figure 4: Rendition of the structures of DNA spaces 5 and 6 pmers. This representation is
not isometric although the relative separation between the location of pmers is indicative of
their actual h-distance in 3D Euclidean space. (WC palindromes have been excluded.)

14



Algorithm 1: Algorithm to Generate the Equator En of Dn

Input: An integer n > 1
Output: A list containing all and only pmers in the equator En

begin
1. Set

(a) m = 0

(b) temp = []

(c) Eq = []

2. For i in (1, n) :

(a) m = n–i

(b) rems = ‘cgt′

(c) remPms = []

(d) j = n–m

(e) Generate all possible permutations of rems with a common length j and store
them in remPms.

(f) For each pm in remPms

i. Eq.append(concatenate(an, pm))

(g) Set rems = ′acg′, remPms = [], j = n–m

(h) Set rems = ′acg′, remPms = [], j = n–m

(i) Repeat step 3(e)

(j) For each pm in remPms

i. Eq.append(concatenate(tn, pm))

(k) Remove duplicates from Eq

(l) If n is even, remove Watson-Crick Palindromes from Eq

3. Return Eq

4. End.
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Algorithm 2: Algorithm to Generate the ith Parallel of Dn

Input: An integer n > 1
Output: A list containing all and only pmers in ith Parallel

begin
1. Set Pi, revPi = [], []

2. For each a and b (where n > k > l > 0 and a+ b = i),

(a) Set seed = alcn−k and rems = ‘gt′

(b) Generate all possible permutation of rems so that a common length is k − l and
store them in a list, temp

(c) For each pm in temp,

i. s = concatenate(seed, pm)

ii. append s to tempPi

3. For each pm in tempPi

(a) permutate pm changing positions of characters in pm in all possible ways

(b) append the resulting strings from 4(a) to Pi

4. Remove duplicates from Pi

5. For each pm in Pi, compute reverse of pm and append it to revPi

6. Append revPi to Pi

7. Return Pi

8. End.
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Table 2: Parallels Pi for the DNA spaces Dn (by their first lexicographic n-mers, e.g. ac
stands for pmer ac/gt.)

n |xN | |xS| R i/εN , εS |Pi| Pi

3 2 2 2 0/0, 0 12 E =

{
acg,act,agc,atc,
atg,cag,cga,cta,
gac,gca,gta,tca

}

1 2 1/0, 1 6 P1 =
{ aac,aag,aca,aga,

caa,gaa

}
1 3 2/1, 1 3 P2 = {aat, ata, taa}

0 3 3/1, 2 1 P3 = {aaa}

4 |E4| = 20 (see Fig 3.)
5 |E5| = 120
6 |E6| = 580
7 |E7| = 1, 820
8 |E8| = 5, 832

Table 3: Nxh bases from previous work [3, 4] for different DNA spaces.

Basis Length Size τ Avg Entropy
3mE4b 3 4 1.1 1.09 0.45
4mP3-3 4 3 2.1 1 0
8mP10 8 10 4.1 1.1 0.57

Table 4: Centroids for the DNA spaces Dn of all pmers of length n (as given by their first
lexicographical n-mers, e.g. ac stands for pmer ac/gt.)

n h-centroids
3 aca, aga, cac, ctc
4 acca, agga, caac, cttc
5 accat, aggat, caacg, cgaag, gaagc, gcaac, tacca, tagga
6 acaagc, agaacg, atccac, atggag, caccta, cgaaca, gaggta,gcaaga
7 actccat, agtggat, cagaacg, cgaacag, gacaagc, gcaagac,tacctca, taggtga
8 actatccg, agtatggc, attcgctg, attgcgtc, cggtatga, ctgcgtta, gcctatca, gtcgctta
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CHAPTER 2

Genomic Information Systems (GenISs)

This chapter describes two families of GenISs as a platform/framework to encode

and extract useful information stored in/to DNA as described below.

Genomic Coordinate Systems

A family of nxh bases used by the proposed GenISs to extract information from data

contained in DNA sequences, along with the means to assess their qualities, is described

next.

Noncrosshybridizing (nxh) Bases

Microarrays have been the standard and popular tool to extract information from DNA

sequences in biology. They are planar substrates such as glass, mica, plastic or silicon,

where DNA strands are affixed to allow specific bindings of bio-samples collected from an

organism [25]. During the early 1990s, the first microarray experiments were performed

using complementary DNA (cDNA) affixed to the microarrays. The length of a typical

cDNA is 500-2500 base pairs, and they are widely used in gene expression assays [25].

Since 1990s, microarrays have been refined to capture and mine genomic and metabolomic

information. The information gathered by these tools has wide applications in the fields of

biology, medicine, health and scientific research.

However, microarrays have a few serious disadvantages. First, the analysis relying

on their redouts gives results that are hardly reproducible because of the high uncertainty

of hybridization of targets to probes. The probes may not crosshybrize because they are

affixed to the chip far apart, but the targets are floating in solution. No constraints are

implemented in these chips to minimize crosshybridization between targets. As a result,
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the results are not accurate and hence unreliable due to the lack of reproducibility of

results, as argued in [26]. A second disadvantage of microarrays is that they might miss

target strands if they do not hybridize to any probe on the microarray, and thus miss

signals that could yield useful information.

Recent advances in next generation sequencing (NGS) have allowed us to move

away from microarrays directly to DNA fragments coding for proteins that can be used for

processing and analysis instead. Currently, a number of NGS platforms using different

sequencing technologies are available. These platforms perform sequencing of millions of

small fragments of DNA in parallel. Some bioinformatic analyses join these fragments by

mapping the individual reads to the human reference genome [27]. However, analyzing the

sequences generated using these platforms is a big challenge. Through the use of deep

learning models on these sequences directly to extract useful predictors automatically, the

disadvantages of microarray analyses could be avoided (no risk of unwanted hybridization

as the phenomenon is not considered at all.) However the performance of such networks is

highly dependent on the quality and/or relevance of the data as well as the size of the data.

In particular, such models can pretty much memorize data when it is limited. In fact, there

is an ongoing debate between two extreme approaches (i.e., feed raw data to a model

without any processing to avoid bias vs manual selection of features that might be

important) in the field of machine learning (ML) and researchers have concluded that there

should be a trade-off [28]. Further, the results obtained using these methods are not

explainable since it is not clear how the model is making decisions (e.g. non/cancerous)

that would allow a human to rationalize and accept or reject the decisions.

In this work, we use an entirely different approach. By exploiting the structural

properties described in Section 1, a selected set of nxh pmers (nxh bases) could be used to

reduce the dimension of DNA sequences and thus extract more relevant information about

the sequences based on the knowledge of Gibbs energy landscapes. These pmers will be

referred to as probes (contrary to the standard use in biology where they are referred to as
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targets.) [29] and [9] show how this problem is reduced to a popular and well-researched

problem in geometry, a sphere-packing problem. There are several advantages of these

bases over microarrays and NGS.

First, these bases can be used to transform any arbitrary sequence to numerical

features. These vectors could be used to train any conventional statistical and machine

learning models like regression models, support vector machines, random forests, decision

trees, multilayer perceptrons and so on. The drawbacks of deep networks requiring

abundant data for effective learning can be avoided with the use of these models based on

nxh features. Furthermore, the results obtained using these bases can be rationalized

because they reflect deep knowledge of the structural properties of DNA spaces. Hence, the

results will be more explainable.

However, obtaining these bases is very difficult in general because CWD is

computationally difficult (NP-complete) [29], [9]. Fortunately, the deep structural

properties of DNA spaces (as discussed in Section 1) afford a method to obtain nxh bases

of high quality, as discussed next.

Table 5 shows a number of such nxh bases along with the quantification of their

quality. These bases were obtained using a judicious selection among the centroids of the

parallels of Dn.

With the design of nxh bases in hand, we can proceed to compute feature vectors,

or genomic signatures, for target DNA sequences, as defined below.

We used a custom written Python code to shred the cleansed sequences into

fragments of uniform length n (same as that of the probes in a nxh basis.) Once the shreds

are obtained, they were tested for hybridization with the probes and a vector of total

pmer counts present in the sequences was computed. The normalized vector obtained using

the partition function will be referred to as a genomic signature of the given target DNA

sequence. Perl scripts were used to compute the h-distances of these shreds in a sequence
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Algorithm 3: Algorithm to compute nxh bases of Dn

Input: An integer n > 1
Output: A centroidal nxh basis B of Dn

begin
1. Set B = [an]

2. Generate the first parallel, P1 in the northern hemisphere and compute its
h-centroids.

3. Set i = 2

(a) Generate the (n− i)th parallel and compute its h-centroids and store them in
hSet.

(b) If there is any intersection between hSet contains B

i. Set i = i+ 1

ii. If i < n, go to step 3(a), else go to step 5;

Else

i. Choose one h-centroid randomly from hSet and append it to B

ii. Go to step 3(a)

4. for each probe p in B,

(a) Compute its polar isometric image p′

(b) Append p′ to B

5. Remove any duplicates from B.

6. Output B.

7. End.

Table 5: New centroidal nxh Bases for larger DNA spaces.

Basis ID τ Length Size Entropy
pmers hybridizing to

0 1 2 probes
7miC4Sb 4.1 7 4 0.15 4 8,024 164
7miC4Sa 4.1 7 4 0.17 4 7,997 191
6miC4Sa 4.1 6 4 0.26 0 1,928 88
5miC3Spr2 3.1 5 3 0.31 0 483 29
5miC3Mg 3.1 5 3 0.34 0 479 33
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to determine their hybridization affinity to the m probes in the nxh basis. This affinity can

be expressed as an mD vector.

Definition 8 (genomic signature). Let B be a nxh basis of probe length n > 1 with m

probes, τ > 0 and x be a DNA sequence. The m-dimensional (mD) genomic signature of x

on B for h-threshold τ is defined as follows:

• shred x to nonoverlapping fragments of size n (ignoring any shorter leftover shreds, if

any);

• for each probe zi ∈ B, compute the total number of shreds in x that hybridizes with zi

for the given threshold τ ;

• normalize the mD vector obtained from the previous step using the partition function

(i.e., dividing by the total number of shreds.)

Quality Assessment

There are two kinds of assessments of the quality of nxh bases. The first one is a principled

inherent metric where the quality of the information extracted by these bases is quantified

regardless of their application. The second one is by quantifying the quality of solution

models (by standard quantitative metrics discussed below) to problems arising in

applications based on the features extracted by nxh bases from genomic sequences.

The first metric requires the standard concepts from probability theory, namely, a

sample space Ω (the set of all possible outcomes of a random experiment), a (discrete)

probability distribution on it, random variables (RVs, observation on all possible outcomes

in Ω), and the expected value of a RV.

The metric is the (Shannon) Entropy quantifying the degree of uncertainty of a

random process [30] for the appropriate random variable counting the number of probes in

B that a random pmer hybridizes to under a given stringency τ .
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Definition 9 (Shannon entropy). Let X be random variable taking on a finite number of

values x1, x2, · · · , xn with corresponding probabilities p1, p2, · · · , pn. The Shannon entropy

H(X) of X is the average uncertainty or average information content of the underlying

probability distribution of X given by

H(X) = −Σixi log(xi) .

An ideal nxh basis (like B=4mP3-3 at τ = 2.1, obtained through an exhaustive

search of D4 shown in Table 3) will produce a noise-free genomic signature [31] with

H(B ) = 0. Table 5 shows the proposed new nxh bases having entropies less than 0.5. As

we increase the value of n, the value of the entropy comes closer to 0. Thus, as the length

of the probes grows, the quality of information extracted also increases for these nxh bases

obtained by the centroid methods.

We also performed a control for the quality of the process to obtain them, i.e., how

noncrosshybridizing they are as bases (in terms of separation and coverage of Dn by all

the balls of radius τ centered at them.) For 6-pmers, we selected a random set of pmers

containing the same number and the length of pmers as in the nxh basis in Table 5, then

repeated the same procedure 16 times for 6-pmers and 7-pmers. The test is the

comparison of their quality metrics (the average of the expected number of hybridizations

to the given probes and their entropies) to the nxh bases. We also performed two t-tests

each with a null hypothesis “the mean entropy of the sample is the same as the entropy of

our corresponding nxh basis”, for entropy for example. For α = 0.05 and one-tailed test,

the critical value is 1.746. Our computed t-values for two bases (11.748 for 7miC4Sb;

11.475 for 7miC4Sa and 14.159 for 6miC4Sa) are greater than the critical value. Thus, the

null hypotheses are rejected, i.e., the quality of the information extracted by these bases

should be statistically significantly better than that by a random set of pmers.
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Pmeric (pmc) Coordinate Systems

Another family of GenISs can be obtained by using pmeric (pmc) coordinates to extract

information from DNA sequences. The coordinate systems along with the means to assess

their qualities are described next. They use the patterns of hybridization affinity to all

h-centroids (2nd power error function defined in Section 1) to represent random pmers.

h-centroids

Proceeding in analogy with the genomic signatures, we used a Python script to shred these

sequences into uniform length pmers of size n. Each pmer in Dn can be viewed as a point

with certain weights given by its h-distances from the h-centroids of Dn. However, due to

the symmetries of Dn, there is no unique h-centroid, unlike on earth where all objects are

attracted towards a unique center of mass due to gravitational forces. Further, more than

one pmers might share the same coordinates. However, the number of appearances of these

pmers in genomic sequences of different organisms are likely to be different if we place

masses at a pmer of size equal to the ratio of the total number of times the pmer occurs in

x to the total number of n-pmers shreds in x. Thus, distinguishing several

organisms/abiotic datapoints (e.g., images) based on these vectors is still possible. These

vectors will be used as pmeric signatures for the respective organisms.

Definition 10 (pmeric signature). Let m be the number of centroids in Dn and x be a

DNA sequence of shred size n > 1. The m-dimensional (mD) pmeric signature of x is

obtained as follows:

• shred x into nonoverlapping fragments of size n (ignoring any shorter leftover shreds,

if any);

• for each centroid zi ∈ Dn and for each unique shred xj, compute yij = wj|zixj|,
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where wj is the fraction of the number of occurrences of xj to the total number of

shreds in x;

• the ith component of a pmeric signature of x is given by the average of the yij across

all shreds xj.

Quality Assessment

An entropic quality assessment of pmeric coordinates cannot be done because these

centroids are very close to each other in the expanse of the entire Dn. We must resort to

the second option, using the same quantitative metrics for ML solutions based on them

using some application problems.

The h-centroids (up to D12) were computed and are shown in Table 4. Computing

such centroids requires a brute-force search of an entire space. As we mentioned earlier,

with the increment of the length of pmers, the size of such spaces explodes

combinatorically. Thus, it is impossible to perform such a search of the space beyond D8.

Genomic Information Systems (GenISs)

GenISs are analogous to a Geographic Positioning System (GPS) for positional information

on planet earth. Methods developed for computer networks (such as the internet, the web,

and wireless communication) have enabled billions of people on the planet to use a cell

phone to communicate. This requires, in particular, the ability of the systems to determine

the location of the phone anywhere on the planet so as to quickly establish paths to send

messages through. That is similar to what biological organisms do (e.g., living cells and

brains), where location, physical proximity and obstruction represent hard anchoring

constraints that are exploited for biological function, such as cell membranes, organs and

organisms. Without them, biological reality, in particular organs and living organisms as

we know them, would be impossible. A GenIS is aimed at developing a similar system for
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abiotic/biotic information processing where planet earth is replaced by the entire biome on

planet earth. The development of these systems was initiated in [3] and is refined through

several iterations [11], [12], [4].

A GenIS for genomic information processing is an integrated software platform

comprising a coordinate system (e.g., genomic or pmeric) to transform an arbitrary DNA

sequence into a numeric vector and conventional statistical or ML models designed to solve

a data science problem using these coordinates as input features.

Methods

Sections 2 and 2 described the process of transforming a genomic sequence into numerical

feature vectors. These numerical vectors representing a group of DNA sequences (proxies

for a group of organisms, or taxon) can be used as feature vectors to train some

conventional machine learning models. Here, we summarize several machine learning

models used in this dissertation as components of the integrated platform provided by our

GenISs.

Decision trees

A Decision Tree (DT) is a decision support classifier that uses a comparison between

features in a feature vector to successively split the data into pieces (e.g., halves) and other

possible criteria to assign a category to the feature vector [32].

Random Forests

A Random Forest (RF) [33] is an ensemble classifier that combines multiple decision trees

using a bootstrap aggregation (also called bagging) technique. Specifically, a RF learns

multiple decision tree classifiers that have low correlations with one another. Increasing the

number of uncorrelated decision tree classifiers in the ensemble reduces the variance of the

RF classifier.

k-Nearest Neighbor

A k-Nearest Neighbor (kNN) classifier is an instance-based classifier that does not
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construct an explicit model for classification. Instead, it assigns a classification of a

particular data point based on that of k of its neighboring points in the training data.

Neural networks

Neural Networks (NNs) are machine learning models consisting of a number of simple

components (called neurons) [34]. They were inspired by the way our mammalian brains

process data to solve problems. The neurons interact with each other via some synaptic

connections with some predetermined weights. A neuron outputs either a certain input

value to the model (input neurons) or a linear combination of the inputs sum of all its

inputs from other neurons weighted by its characteristic weights. The neurons arranged in

several layers (the first is input layer and the last is the output layer) in a feed-forward

fashion to extract hidden patterns in data (e.g., [4 8 3 1] describes a MLP neural network

architecture with 4 input features, two hidden layers with 8 and 3 neurons respectively and

1 output layer with a single neuron coding an answer.) Several learning algorithms are

available to train these networks for specific tasks. Some of them require well designed

features through some manual process (for e.g., multilayer perceptrons (MLP), feed

forward networks (FFN) and so on). However, a recent research has shown that so-called

Deep networks, DNN (networks based on deep learning algorithms) can extract abstract

and fine-grained features from a raw dataset.

Adaboost classifier

Adaboost classifier (AB) [35] is an ensemble boosting classifier that combines multiple

poorly performing classifiers to yield a strong classifier. The core idea behind this classifier

is to set the weights of multiple classifier and train them on a data sample such that in

each iteration, more accurate predictions of unusual observations are ensured.

Support Vector Machines (SVM)

Support vector machines (SVM) [36] are supervised learning algorithms that find a

hyperplane (or a set of hyperplanes in mSVMs) in a high-dimensional space that can be

used to separate input data points under consideration into two or several categories. We
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used a nonlinear SVM classifier, so-called radial basis function (RBF) by applying a kernel

trick to maximum-margin hyperplanes [37].

Self-Organizing Maps (SOMs)

Self-Organizing Maps (SOMs) belong to the family of neural networks trained by

unsupervised algorithms (using unlabeled data, with no categories assigned a priori) to

produce a low-dimensional discretized representation of the input space of training

dataset [38]. They use competitive learning, i.e., a neighborhood function is used to

preserve the topological properties of input examples.

Voronoi Diagrams

In dD Euclidean space Rd, k points (called the centroids) define a nearest neighbor

partition (classification) of the space into k classes, i.e. a random point x belongs to the

class defined by its nearest centroid. The categories thus defined are polygonal regions with

boundaries determined by the geometric perpendicular bisectors joining two points. This

partition is called the Voronoi diagram of the given centroids [39].

kMeans clustering

kMeans clustering [40] is an unsupervised learning algorithm that aims to find an ideal set

of k centroids to determine a partition of the datapoints into k clusters in such a way that

each point belongs to the cluster with the nearest centroid. We used a careful seeding of

the centroids suggested by [41] to speed up the convergence to a stable set of centroids for

our samples.

Quality Assessment

As a platform (software package) for solving problems, an assessment of a GenIS can only

to be based on the problem it solves. This problem usually falls into three categories:

classification, clustering and prediction problems. A classification problem calls for

assigning a pre-defined category to a given data point, and for a solution based on

supervised learning so labels for a dataset is already available. A clustering problem calls
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Table 6: Several quantitative metrics

Metric Problem Classification Problems Clustering Problems Prediction Problems

Accuracy Yes N/A
Possible with
preprocessing

Precision Yes N/A
Recall Yes N/A

F1 score Yes N/A

Silhouette
Possible with
preprocessing Yes

Relative Error (RE) N/A Yes

for a solution based on unsupervised learning and hence, such labels might not be handy.

A prediction problem calls for an estimation of the value of a function f defined on the

data set Ω (e.g., a response variable.) Hence, the choice of a metric to quantify the quality

of a solution highly depends on the nature of the problem under consideration. Table 6

summarizes different available metrics suitable for an application.

We have described two families of GenISs, along with the types of analyses done to

quantify their quality. These GenISs serve as tools for analyzing both biotic and

unstructured abiotic data (like texts and images.) They originate in the deep structural

properties of DNA spaces and will prove capable of large reductions in the dimensionality

of large data sets to very few dimensional feature vectors, as will become evident in the

following two chapters.
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CHAPTER 3

Biotic Applications of GenISs

This chapter describes how GenISs can be used to solve some fundamental problems

in biology.

Phenotypic Feature Prediction

A classical problem in biology is to decouple nurture from nature i.e., determine to what

extent do genomic sequences generally and causally determine phenotypic features (i.e., the

physical and biochemical traits [42]) of a biological organism, environmental conditions

aside; likewise, how do environmental conditions modify the phenotype determined by a

genotype. Estimating these features in a biological organism from their genomic sequence

alone has major applications in anthropological paleontology and criminal forensics, for

example. The standard procedure to do so relies on *-omics (i.e., genomic, proteomic,

metabolomics and so on) analyses as described in Section 3. The common answers in

biology are usually qualitative (e.g., the offspring looks like the parent.) In this work, we

use GenISs (as described in Section 2 and presented in [29]) to make more refined

quantitative predictions using DNA sequences alone (e.g., partial subsequences of the

Cytochrome C Oxidase subunit I (COIs) and whole genome) bypassing the complex

process of protein synthesis [4].

For this purpose, we define the problem precisely as follows. We are given a DNA

sequence of an organism s in a certain taxonomic group (taxon) and a definition of a

phenotypic feature of s to predict quantitatively.

PHENOTYPIC PREDICTION(T,F)

INSTANCE: A DNA sequence x from an organism s in taxon T

QUESTION: What is the quantitative measurement of F?
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Example features are the area of cephalic apotome/postgenal clef or body color in

cephalic apotome.

To show an example of how GenISs enable us to solve this problem, we use two

model organisms. For the first one we use blackfly because species in this group have high

degree of intra- and inter-specific morphological variation that usually places limits on their

taxonomic determination [43], [44], [45]. The phenotypic features we chose were the areas

and body pattern of the cephalic apotome and postgenal cleft in 20 specimens from the

genus Simulium [1]. For the second organism we chose Arabidopsis thaliana because it is of

exceptional interest, e.g., for food production. The phenotypic features, namely life span

and rosette dry mass, were selected from 120 specimens [46]. (The precise definitions of

these features are given below in Section 3.)

Prior Work

The major problem to tackle is to infer certain components of phenotype (a set of physical

and biochemical traits that characterize a given organism both through space and time

[47]) as a function of DNA sequence alone, leveraging the relationship between the genome

and the phenotype of an organism. This complex relationship remains a major challenge in

understanding biological morphogenesis despite enormous progress in the last half century

–as seen, for example, in the survey of the field in [48], [47] or the whole cell model in [49]

for the human pathogen Mycoplasma genitalium. As the blueprint of life [10], it is plausible

that DNA deeply encodes for some of these traits in an organism, but the analysis and

quantification of the degree to which the genotype of an organism determines its phenotype

remains unearthed in full. This is a question of critical importance in matters such as

“yield improvement in food and energy crops, environmental remediation using microbes

and plants and understanding complex networks that control fundamental life processes,”

as well as in fundamental, translational and applied research [47][p. 3]. This question has

been partially addressed in [50], where a software called Traitar was introduced as a
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microbial trait analyzer for deriving phenotypes from a genomic sequence. They described

67 microbial traits, including gram positive, gram negative, bacillus/coccobacillus, coccus,

motile, and pigmentation (e.g., yellow.) Traitar reliably assigned phenotypic features to

bacterial genomes of 572 species in 8 phyla based on incomplete single-cell genomes and

simulated draft genomes. Currently, Traitar predicts the presence or absence of these

phenotypic features for a given input DNA sequence by converting them to associated

proteins, which are then used as predictors to classify a phenotype, with accuracy about

75%. Further, a good survey of conventional phenomics theory and practice today can be

found in [48], [51], [47]. They require large samples with representative genetic variants of

the actual population. The major goal of these analyses is to either identify causal

relationships between genes and phenotype (for e.g., relationship between certain genes and

eyes color in a human) or to reveal correlations between seemingly unrelated phenotypic

features (e.g., symmetry in the wings of a butterfly.)

Data

For phenotype encoding of Simulium, 20 larva specimens collected and curated for the

work in [1] were used as sample data. The specimens belong to two closely related species,

Simulium ignescens and S. tunja. A critical subsequence of the mitochondrial marker COI

of these specimens (of length about 1,500 bps) were amplified and sequenced by the

authors of [1], using the primer suggested by [52]. These segments from the 5’ terminal

markers region (length about 658 bps) was selected to compute their genomic signatures

because they have proven to be very suitable for distinguishing closely related species of

animals [53], [54], [55] despite their high evolutionary rate. Since these two species also

exhibit high geographical dispersal, they were collected from several separate geographical

regions in the Colombian Andes mountains [1] and offer an appropriate dataset to address

the target question. Two morphological structures in blackfly larvae (the cephalic apotome
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and the postgenal cleft) were used as phenotypic features, as shown in Fig 5. These

features were precisely coded as follows:

Cephalic Apotome (CA) Area

Area of a trapezoid (made of a rectangle and two adjacent triangles);

Spot Pattern (CA Spots)

A vector containing the lengths of the arms of the latin cross determined by opposing

points (in white diamonds), plus the rotation angle of the cross with respect to the

symmetry axis of the apotome;

Postgenal Cleft (PG) Area

Area of the region under the mandible of the fly;

Body Color

One of four colors for a specimen’s thorax and abdomen, as curated in [1] (I: Yellowish

with green in the middle; II: Blue pigmentation, III: Intensive yellow and green bodies; and

IV: Pale yellowish bodies.)

For A. thaliana, data from the 1001 Genome project [56] were obtained from their

Supplementary materials [46], available online. Sequences and corresponding phenotypic

measurements were selected from 120 specimens, as follows:

Life Span (LS)

Estimate of the days between the first day of growth (d0) and plant maturity (end of

reproduction) at which each specimen was harvested [46].

Rosette Dry Mass (RDM)

The weight of the replicate’s “harvest at maturity, at the end of reproduction when the

first fruits have started to senesce.” Rosettes were dried for at least 3 days at 65◦C and

then weighed with a microbalance [46].

In order to develop a scalable machine learning (ML) model, sufficient data

representative of the variability of the features in the population are required. However, in

the preparation of the original data in [1], the morphology of between 20–35 of specimens
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Figure 5: Top: Ten morphoforms of the cephalic apotome in [1] were coded as approximate
areas or lengths of the appropriate regions for the phenotypic feature (s): Top: cephalic
apotome area; Middle: spot pattern; Bottom: postgenal cleft. (Figures reprinted with
permission from [1].)

34



per morphoform were analyzed to establish its typical intra- and inter-specific shape, but

unfortunately, the full set of data set of specific morphoforms for each corresponding

specimens was not captured. (The few precious data points of the 20 specimens for which

sequences and corresponding paired measurements in the same specimens were utterly

insufficient.) To address the problem, a group of data for each of the 20 specimens from [1]

and each feature was obtained by generating 32 different values under a normal

distribution with mean µ equal to the actual measurement of the specimen’s feature and

common standard deviation equal to that of the data set (σ = 0.08 for blackfly.) The size

of the data set is thus 20 ∗ 32 = 640 points. Furthermore, each of the corresponding COI

sequences in a group were mutated 32 times according to a biological model, namely with a

probability of 0.0067 for nucleotides for the second codon position and 0.0333 for the third

position, so that the overall rate of mutation of the sequence was about 4%, which is the

estimated mutation rate for these species [1]. A point in the data corpus thus consisted of a

genomic signature on a basis (obtained from the original COIs as predictors) plus one (five

for spot patterns) feature(s) coding for the phenotypic feature for the dependent

variable(s), as described above.

Likewise, for 29 A. thaliana specimens, relevant genes for the target phenotypic

features were extracted from the data in the 1001 Genome Project [56] and the

corresponding phenotypic features from their Supplementary data [46], available online.

Again, a distribution of 29 ∗ 32 = 928 was generated based on a normal distribution with

the same mean of the actual measurements and standard deviation σ of the sample and the

same mutation rates. In order to gauge the effect of the randomization, a second sample of

120 points was extracted from the Supplementary data, available online, in [46] so that the

dataset was big enough and no randomization was deemed necessary for this data set.
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Results

We used NNs described in Section 2 above as solution models. The networks were trained

using genomic signatures on nxh bases described in Section 2 on 70% of the data corpus.

These networks were then tested and validated using the remaining 30% of the data points,

held out from the networks during training. The performance of these networks was

assessed using accuracy in the prediction, as measured by their relative error (RE) to the

actual observed values in the specimens, on both training and testing datasets, i.e.,

RE = |Observed− Predicted|/|Observed|

The results are shown in Figs. 6 and 7 for blackfly. In other words, for a given

feature, a model was considered to be good enough if the average RE made by the model is

at most 16% (2 ∗ σ(= 0.08) = 0.16) on the testing set. We used this threshold to assess the

quality of our models because there is no prior work predicting phenotypic features

quantitatively based on DNA sequence alone, to the best of our knowledge. As shown in

Fig. 6: Top, the performance of deep neural networks for predicting the size of the cephalic

apotome in blackfly larvae on the bases 3mE4b-2 and 4mP3-3 gave relative errors below

15% on both training and testing dataset, on the average (only results on the first basis are

shown throughout.) These values are less than 2σ for all features, so that the models on

these bases can be considered acceptable. Similarly, the performance of the deep neural

networks for predicting the spot pattern in cephalic apotomes for the blackfly larvae on

both bases gave the relative errors around 0.11, i.e., 11% on both training and testing

datasets, as shown in Fig. 6: Bottom. Since these values are less than 2σ for all features,

the models on these bases are also good enough to be considered of acceptable quality.

However, these models exhibit higher values than 2σ for some groups (3b, 9, 8a) so the

models tend to make an unreliable prediction if exact values are required specimenwise for

a given sequence based on this partial COI alone.
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Figure 6: The performance assessment of two deep neural networks for predicting various
phenotypic features of blackfly larvae on nxh DNA chip 3mE4b-2. Top: a NN [4 32 100 32
16 1] for cephalic apotome area; Bottom: NN[4 4 1] for CA spot pattern.)

Moreover, the performance of the neural networks for predicting the area of the

postgenal cleft on both bases led to an RE below 11% for both training and testing

datasets, as shown in Fig. 7: Top, although the value was not below 2σ for three groups of

data (4b, 4c, 8a). Thus, the models based on this data are considered to be of acceptable

quality for the entire dataset. Similarly, the performance of the neural networks on both

bases provided 65% accuracy for predicting body colors of the blackfly larvae, as shown in

Fig. 7: Bottom. This implies that the models are not good enough to be considered

acceptable for color prediction of the corresponding morphoforms, as they produced results

only slightly better than the predictions that could be achieved with just coin flips, despite

the fact that the predictions are perfect for most of the groups.
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Figure 7: The performance assessment of two more deep neural networks for predicting
various phenotypic features of blackfly larvae on nxh DNA chip 3mE4b-2. Top: a NN [4
32 100 32 16 1] for postgenal cleft area; Bottom: a NN[4 6 1] for body color. It may seem
strange that this neural network performs better for some groups in the testing phase than
in training. This is likely to be since a single network is being trained to predict phenotypic
features across all groups of specimens, where clearly they may be more predictable for one
group than for another.)
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Figure 8: The performance assessment of four neural networks for predicting two phenotypic
features of A. thaliana on nxh DNA chip 4mP3-3. Top: for rosette dry mass (RDM); Bottom:
for life span (LS) on nxh DNA chip 3mE4b-2.

A similar procedure was followed for A. thaliana and the results are shown in Figs.

8 and 9. The choice of threshold for acceptance of model was selected to be 2 ∗ 0.17 = 0.34

for LS and 11.25 for RDM. As shown in Fig. 8: Bottom, the performance of deep neural

networks for predicting life span (LS) on randomized data are of nearly acceptable quality

with relative errors below 37% barely missing the threshold (34%). Nevertheless, for RDM

on randomized data, the models show REs below 3.82, well within the threshold of

2 ∗ σ = 11.25, as shown in Fig. 8: Top. On the other hand, on nonsynthetic data, the

models for both features LS and RDM are of acceptable quality, with even better scores, as

shown in Fig. 9.
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Figure 9: The performance assessment of four neural networks for predicting two phenotypic
features of A. thaliana on nxh DNA chip 4mP3-3. Top: for rosette dry mass (RDM); Bottom:
for life span (LS) on nxh DNA chip 3mE4b-2.
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We were able to obtain these results using DNA sequences alone, without providing our

GenISs any other information. Therefore, these results establish that a substantial

component of these phenotypic features (over 75%) are at least logically inferable, if not

causally determined, by genomic fragments alone, despite the fact that these phenotypic

features are not 100% determined entirely by genetic traits. They suggest that it is possible

to infer the genetic contribution in the determination of specific phenotypic features of a

biological organism, without recourse to the causal chain of metabolomics and proteomic

events leading to them from genomic sequences.

We demonstrated that that it is possible to make quantitative predictions about

phenotypic features of two fairly distant model organisms from their genomic sequences

using machine learning (deep neural network) models, for two closely related species of

animal blackfly larvae (Simulium ignescens and S. tunja) and a number of strains of plant

A. thaliana. The question arises whether predictions with these margins of error can be

considered accurate enough to be significant. The fact that, environmental conditions have

some influence on the phenotypic features of organisms, puts an upper bound on how

accurately any model could possibly predict the features based on sequence alone. Under

the assumption that the environment can affect at least 20% of the outcome, the results

herein would show that the model’s prediction can be as good as actually allowed by the

imponderable influence of environmental factors.

Further, there are several other factors affecting the performance of the proposed

models as pointed in [11]. The sequences used in this research were not the full COIs or

genomes. Moreover, the nxh bases used in this research have very short probe lengths.

Hence, it is possible that with longer sequences such as coding sequences in Open Reading

Frames (ORFs) or whole genomes or mitochondrial genomes, and/or on bases containing

longer probes, better results could be obtained. Nevertheless, for each phenotypic feature

considered, a single universal neural net model was constructed to predict each phenotype

for all data groups in all samples for each phenotypic feature. Hence, a model might also

41



perform better if it is constructed for predicting a phenotype feature for an individual

species.

Habitat Prediction

Another problem in biology is to determine to what extent do genomic sequences

determine environmental features present in the natural habitat of an organism. We

demonstrated that some phenotypic features can be predicted using DNA sequences alone

in the previous section. However, for environmental conditions, the conventional

assumption is that they are too random and ephemeral to be encoded in the DNA of an

organism. This section provides evidence to the contrary, that DNA does encode sufficient

information about certain environmental features of an organism’s habitat for a machine

learning model to reveal them.

For this purpose, we define the problem precisely as follows. We are given a DNA

sequence of an organism s in a certain taxonomic group (taxon) and a definition of an

environmental feature in the natural habitat of s to predict quantitatively.

HABITAT PREDICTION(T,F)

INSTANCE: A DNA sequence x from an organism s in taxon T

QUESTION: Where was x grown (F = latitude and longitude)?

To show an example of how GenISs enable us to solve this problem, we use the same

model organisms as in Section 3 (i.e., blackfly and A. thaliana.) The environmental

conditions, namely latitude, longitude and temperature were selected for both organisms.

Prior Work

A solution to this problem appears to be somewhat impossible since, according to the

Darwinian theory of evolution, life on earth appears to be essentially determined by the

occurrence of random phenomena, such as mutations and their consequent changes given
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by phenotype and environmental conditions. However, as the blueprint of life, it plays a

major role in determining the phenotypic features (as demonstrated in Section 3) and

metabolic behaviors [57] an organism. The relative contributions of environmental

conditions in determining these behaviors of a given organism have remained a matter of

debate since the discovery of DNA [10], but one cannot deny the fact that interaction

between any given organism and its environment might be the outcome of rapid evolution

(punctuated equilibrium) or the result of long-time evolution (gradualism) [58], [59], [60] as

restricted by biological, chemical and physical conditions [61]. All these processes point

towards the exceptional capacity of DNA as a memory structure of past and even present

events witnessed by any given organism. Even more surprisingly, DNA molecules might be

used to predict (at least with reasonable probability) the location of a species using Species

Distribution Models (SDM) (hypothesizing the occurrence of species at unexplored areas

on top of previously sampled areas.) This is an important advance given that field work is

expensive [62], [63], not to mention that such models can become a powerful tool to predict

migrations and new habitats of species in a dynamic planet, where global warming is a

major new player to reckon with [64]. Thus, it is at least conceivable that DNA might also

keep temporal and spatial information like a “living storage device”.

Data

Three data samples were selected to assess the quality of the models, as shown in Table 7.

The first sample was designed targeting A. thaliana. We extracted partial genomes of 83

specimens from the 1001 genome project [56] and the respective information about their

habitat from the supplementary materials provided in [46]. The second sample was

designed by mutating the genomic sequences from the first sample and generating synthetic

observations using the same mutation rates and the similar probability distribution as

discussed in Section 3. Similarly, the third sample contained mutated sequences and

synthetic datapoints from 46 larvae specimens in blackfly (that were curated for [1], along
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Table 7: Description of data samples for predicting environmental features consisting of
DNA for A. thaliana and blackfly in Simuliidae. The field observations about environmental
conditions for Simuliidae were recorded by the authors for the research reported in the source.

ID Organism No of Specimens Sequences Source
A83 A. thaliana 83 Partial genomes [56]
A2656 A. thaliana 2656 Partial genomes [56]
S46 Simuliidae (blackfly) 46 Partial COIs [1]
S1216 Simuliidae (blackfly) 1216 Partial COIs [1]

Table 8: Description of environmental features defining the habitat of the specimens along
with the working definition used in their collection.

Features Sample Feature Description
Latitudes (degrees)

(Standard deviation (std) on
A83 = 5.58, S46 = 1.36)

A83,
A2656,
S1216

the angular distance of the location
(where a specimen grew) north

of the earth’s equator
Longitudes (degrees)

(Std on
A83 = 16.63,
S46 = 0.83)

the angular distance of the location
(where a specimen grew) west

of the prime meridian
Annual Mean

temperature (°C)
(std= 3.19)

A83,
A2656

annual mean temperature of
the location where a specimen grew

Temperature (°C)
(std = 1.52) S1216

temperature of the location at the time and day
where a specimen of blackfly was found

Isothermal
(std = 0.42)

A83,
A2656

a derived feature obtained using
the equation given below.

Annual Precipitation
(AnPn) (mm)
(std = 253.46)

annual precipitation of the
location where a specimen grew

with their respective habitat information.) The sequences we used in this sample were

partial Cytochrome c oxidase subunit I (COI). Table 8 shows the corresponding features of

the habitat where these specimens were grown.
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100%∗ (Monthly Mean(maximum temperature – minimum temperature))

(maximum temperature warmest month – minimum temperature coldest month)

Results

For a predictive model, we trained several neural networks using both genomic and pmeric

signatures on 70% of the data corpus and remaining data corpus was used for the

validation of the networks. These networks gave comparable predictions on the testing

dataset, so we are reporting the results for the networks trained using genomic signatures

only in this dissertation. The performance of these networks was assessed using their RE.

A predictive model was considered to be of an acceptable quality if its average RE is less

than the standard deviation of the observations about an environmental condition (i.e.,

latitude or longitude or temperature.) Again, we used these thresholds to assess the quality

of our models because there is no prior work predicting environmental features of the

natural habitat of living organisms quantitatively based on DNA sequence alone, to the

best of our knowledge.

The results on A. thaliana are shown in Figs 10, 11, 13 and 14 and those on blackfly

is shown in Fig 12.

We found that these models predicted the latitudes with average relative error

about 0.09 (9%) on the training dataset and about 0.10 (10%) on the testing dataset for

sample A83. These scores are below the standard deviation in the actual observations,

which is about 5.58, as shown in Fig. 10 (left side.) Similar kinds of results were obtained

for the networks predicting the features longitudes and annual mean temperatures, as

shown in Fig. 10 (middle) and (right). In this sample, there were only 83 specimens in the

sample, so it was still possible that these networks may not be robust enough, i.e. they

might lack generalization ability. However, the scores shown in 11 to address this issue to

an extent. The standard deviation of the predictions in longitude on both bases decreased
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Figure 10: The performance assessment of two best performing deep networks for predicting
latitudes (left), longitudes (middle) and annual mean temperature (right) of A. thaliana
from sample A83 on two GenISs based on nxh bases. (The standard deviations between all
relative errors are so small that they are hardly visible.)

Figure 11: The performance assessment of two best performing deep networks for predict-
ing latitudes (left), longitudes (middle) and annual mean temperature (right) of A. thaliana
from sample A2656 in two GenISs based on nxh bases. The standard deviations between all
relative errors while making predictions for latitude are so small that they are not distin-
guishable.
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Figure 12: The performance assessment of two best performing deep networks for predicting
latitude (left), longitude (middle) and annual mean temperature (right) of blackfly in sample
S1216 on two nxh bases. The standard deviations between all relative errors while making
predictions for longitude and temperature are so small that they are not distinguishable.

substantially on both the training and testing datasets (roughly, from 23 to 9 and from 15

to 7) while maintaining the quality of the predictions for latitude. On the other hand, the

standard deviation of the predictions for temperature increased in the training phase for

basis 3mE4b-2 and in the testing phase for basis 4mP3-3, although they remained about

the same for the other phases.

We were also interested in trying our approach on an entirely different type of

organism to gauge the scalability of our models. So, we trained the same type of model

using the genomic signatures of specimens in sample S1216. The trained models were able

to predict these features within an acceptable margin of relative error, as shown in Fig. 12.

The same method produces results of comparable quality for feature Isothermal, the

mean of the monthly range of temperatures compared to the annual range of temperature

during growth for samples A83 and A2656. Interestingly, despite efforts, we were unable to

train a model to make a prediction for feature Annual Precipitation of high enough quality.

Therefore, only information about certain environmental factors seems to be encoded into

DNA. Nevertheless, they are somewhat informative when used as features for better

predictions of other features such as longitude, as can be observed by Figs 3 and 6 (roughly

47



Figure 13: The performance assessment of two best performing deep networks calibrated
with Isothermal and Annual Precipitation for predicting latitudes (left), longitudes (middle)
and annual mean temperature (right) of A. thaliana from sample A83 on two GenISs based
on nxh bases.

from 22 to 4 in statistically significant units) and Figs 4 and 7 (roughly from 9 to 4 in

statistically significant units), where the model used Isothermal and Annual Precipitation

as predictors along with genomic signatures. The corresponding improvement for latitude

was not as significant, however.

We have demonstrated that, contrary to conventional wisdom that the influence of

environmental conditions is too random to actually be encoded in genomic DNA, it

contains enough information to make possible some determination of the environmental

conditions of the habitat where an organism grows, such as location (latitude and

longitude) and average temperature. Again, we were able to obtain these results using

DNA sequences alone, without providing our GenISs any other information. Regardless of

our effort, some features (like Annual Precipitation) could not be predicted, unless our

methods miss that information. Nevertheless, we show that these features can be used to

train better models to make better predictions of other environmental factors. Further,

these results are consistent with the results in [65] demonstrating that DNA sequences can

act as means to estimate the spatial distributions for specimens implying that there are

some features that describe the environment of the specimens but are not encoded by DNA.
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Figure 14: The performance assessment of two best performing deep networks calibrated
with Isothermal and Annual Precipitation for predicting latitudes (left), longitudes (middle)
and annual mean temperature (right) of A. thaliana from sample A2656 on two GenISs based
on nxh bases.

According to Darwin’s theory of natural selection, only organisms capable of

adapting themselves to their environment can survive. Much later, Maturana and Varela

went one step further and introduced the concept of autopoietic systems to characterize the

kind of interactions that living organisms’ effect internally and possibly with their

environment in order to maintain themselves and reproduce (survive)[66]. Our results seem

to be well aligned with this principle of autopoiesis. If so, DNA may be accumulating

information regarding ecological changes somehow similar to the way the layers of soil and

ice record certain environmental conditions and geological time on earth, including fossil

records. Therefore, DNA may actually be, in addition to its genetic role, a living repository

of information about the environment where its lineage has developed over evolutionary

history.

Species Delimitation

Another classical problem in biology is the problem of defining the concept of species

precisely, i.e., “What exactly is a biological species?” A solution to this problem is very

important in cataloging biodiversity for wildlife preservation and new species identification.
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The standard procedure relies on integrative studies focusing on geographic distribution,

geological calibration, molecular characterization, ecological behavior and so on (as

discussed in Section 3.) In this work, we use GenISs to provide a more objective and

systematic solution to the problem based on DNA sequences alone.

For this purpose, we define the problem precisely as follows. We are given a DNA

sequence of an organism s in a certain taxonomic group (taxon) T consisting of several

species, and ask to identify the species in T that s belongs to.

SPECIES DELIMITATION(T)

INSTANCE: a DNA sequence x from organism s in T

QUESTION: Which species in T does s belong to?

To show an example of how GenISs enable us to solve this problem, we use three

samples. For the first sample, we chose two closely related species in blackfly. For the

second and third, we chose three species in Arabidopsis and bacteria responsible for

hospital acquired infections [67] respectively. For the last sample, we chose a wide variety

of organisms spread almost uniformly across three domains of life [31].

Prior Work

Ever since [68] initial proposal to standardize, organize, and rank the biome (all living

organisms on earth) into a universal system (known as a taxonomy) to catalog all the

biodiversity of life, biologists have discovered that delimiting species boundaries is quite a

difficult task that demands years of research to get a meaningful comprehension even of a

relatively small group of organisms [55]. A general definition of the concept of species is

currently a challenge in theoretical biology because it is the most relevant taxonomic

category in areas such as conservation, genetics, evolution and phylogenetics. More than 25

definitions have been proposed in the last century ([69]; [2]; [70]; [71]; [72]. Figure 15

illustrates the range of criteria that could be used.) As a result, some taxonomists have

reached the conclusion that the ideal of establishing a single species definition applicable to
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Figure 15: A summary in [2] alternative criteria for contemporary species concepts, extracted
from a summary according to.

all (present and extinct) species that inhabit(ed) planet earth, as desirable as it may be,

might be practically unattainable [73].

Conventional methods classify different organisms by grouping them into a different

taxa to illustrate the degree of difference between living organisms, i.e. “species”, “genus”,

“family”, “orders”, “class”, “phylum”, “kingdom” or “domain”, as in [74] or [75]. In this

work, our major aim is to present evidence that it is indeed possible to create a new atlas

of the biome that would encompass the vastness of biological diversity in a geometric

representation that groups together biological organisms by their molecular characteristics,

as follows.

Data

In order to test the soundness of this definition, we selected genomic sequences representing

a number of species (as shown in Table 9), constituting four samples (first containing only
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Table 9: Sample data for estimating the taxon definition of several species.

ID Taxa ( Specimens)/Taxa Type Source
S20 Simuliidae 20/2 species Partial COIs [1]
A17 Arabidopsis 17/3 species rRNA, mt COIs [56]
B80 Bacteria 80/16 species Whole Genome [67]

BT249 Entire three domains 249/21 species
cytochrome Oxidase genes

COI, COII, COIII and CytB [31]

blackfly, second containing Arabidopsis [12], the third containing 16 species of bacteria and

the last containing 21 species from [31]).

Results

We used kMeans clustering algorithm along with Voronoi diagrams to compute and

visualize 2D species map as described in Section 2. An assessment of the quality of the

OTU was done using the standard biological taxonomy as ground truth. The standard

quantitative metrics namely, accuracy, precision, recall and f1-score were used to quantify

the quality of these maps. The maps at the species level with accuracy above 92.6% were

considered to be of acceptable quality because this is the average score for different

methods solving similar problems [76].

The results for these samples are shown in Table 10 using standard measures of

accuracy, precision, recall and F1-score. The quality appears relatively low for S20,

probably because the COIs were probably too small to contain enough information about

the specimens. The same procedure was applied to sample A17 consisting of 17 specimens

of Arabidopsis distributed across three species A. lyrate, A. helleri and A. thaliana. Table

10 also shows the quality of the species definitions. They appear to be much better, with

perfect accuracy on 3-pmers but above 0.9 overall for all metrics considered, including the

F1-score. The similar type of results was obtained for samples B80 and BT249.
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Table 10: Quality assessment of the maps for the OTUs of the two species in S20, three
species in A17, 16 species in B80 and 21 species in BT249

n Sample Accuracy Precision Recall F1-score
3-pmers S20 0.700 0.531 0.531 0.531

A17 1.000 1.000 1.000 1.000
B80 1.000 1.000 1.000 1.000
BT249 0.949 0.938 0.950 0.928

4-pmers S20 0.500 0.438 0.406 0.405
A17 0.941 0.952 0.933 0.937
B80 1.000 1.000 1.000 1.000
BT249 0.918 0.913 0.922 0.893

These results lead to an interesting question – what are the precise locations of

these organisms with respect to their centroids in an Euclidean space? Unfortunately, these

spaces are 4D spaces and it is very difficult for a human eye to capture the sense of their

locations graphically. So, we used the basis 4mP3-3 as introduced in [3] to get their

locations in 3D Euclidean space. Then, we rotated these signatures to fall onto a 2D plane.

Fig. 16 shows the graphical representation of the genomic signatures of these organisms

and their arrangement with respect to their centroids defining species for sample B80.

We also performed an experimental control to address a critical question - whether

the choice of the full set of h-centroids is better than any other set of pmers chosen

randomly? We randomly selected 32 different batches of k-pmers for each case of 3- and

4-pmers and repeated exactly the same procedure for kMeans clustering. Then, we

averaged the scores for each batch consisting of 32 batches of pmers for each of the three

samples. The averages for S20 and A17 are reported in Table 11. There was a huge

difference with corresponding scores for the full set of h-centroids. To test the statistical

significance of the difference, we ran a hypothesis z-test for each sample. In all cases, the
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Table 11: Comparison of quality scores for OTUs obtained from the pmeric signatures on
the full set of h-centroids and those from random sets of k-mers of the same size. The choice
of h-centroids is significantly better since the p-values obtained from hypothesis tests, with
the rejected null hypotheses being equality between the pairs of scores (here C = e10 and
E = e16.)

n S20 A17
A P R F A P R F

3pmeric 0.700 0.531 0.531 0.531 1.000 1.000 1.000 1.000
3pm-rand 0.502 0.267 0.209 0.227 0.415 0.400 0.300 0.271
p-value 1.51C < 2.2E < 2.2E < 2.2E < 2.2E < 2.2E < 2.2E < 2.2E
4pmeric 0.500 0.438 0.406 0.405 0.941 0.952 0.933 0.937

4pm-rand 0.325 0.248 0.135 0.168 0.638 0.496 0.492 0.493
p-value 1.71C < 2.2E < 2.2E < 2.2E < 2.2E < 2.2E < 2.2E < 2.2E

Figure 16: 2D map for species definition from sample B80 containing specimens from the
domain of bacteria across 16 different genera prevalent in hospital acquired infections on the
nxh basis 4mP3-3 using genomic signatures.
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results of the tests confirmed that the null hypothesis (equality between the average score

and to the score for full h-centroids) should be rejected. We have only reported p-values for

samples S20 and A17 but p-values on all performance scores for the remaining samples on

both 3 and 4-pmers were less than 2.2e16.

We have presented an alternative coordinate system, pmeric coordinates, to a known GenIS

in [3] based on genomic signatures (obtained using DNA sequences alone), again exploiting

other structural properties of DNA spaces. Further steps to bring this program to fruition

include at least two important choices. First, the specific selection of a common choice of

genomic sequence for all organisms. Second,

Finally, regardless of the choices, it is truly remarkable that such as simple-minded

definition of a species, purely based on geometric distance of the feature vectors from the

centroids afforded by pmeric coordinates, could capture so much of the complexity of the

taxon, as given by the standard biological classification. In the final analysis, this fact

illustrates the power of the deep structure in our selection of nxh bases upon which

features these predictions are based.

A Computational Approach to Pathogenicity

Another classical problem in biology is presented by the concept of a pathogen, usually

meant to humans. The problem is of high significance in the fields of medical pathology

and immunology. The global COVID-19 pandemic has raised the urgency for

methodologies to predict new strains for potential pathogenicity in short time to control or

mitigate the spread of a disease in its early phases [77]. The standard procedure involves

the decisions about the pathogenicity of microbes are currently made from harm they have

caused in hosts (e.g. sickness or death [78, 79].)

A recent important development in the evolution of the concept is that an absolute
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notion of pathogen is not really meaningful, it is rather about a relationship to another

organism (a host), where the former is responsible for causing disturbances in the

homeostasis of the latter [79].) Thus, the problem really becomes to provide a general,

objective and operational definition of the concept. Hence, we rather define the problem

precisely as follows.

PATHOGENICITY

INSTANCE: Two DNA sequences representing a host (H) and a microbe (P )

QUESTION: Is P pathogenic to H?

An example of how GenISs enable us to solve this problem can be given with

bacteria and fungi if we obtain proxies for microbes and homo sapiens for a host. We chose

bacteria because they are abundant and are well researched in the pathogen literature, and

also fungi, because the structure of their cells is much more complex than bacteria and

hence require a more rigorous analysis to decide about their

pathogenicity [80, 81, 77, 82, 83].

Further, the problem of PATHOGENICITY does not really make sense unless we

characterize the concept of a ’pathogenic relationship’. There is little in the literature

about such a definition. To get started, we can characterize it as follows. A specimen P has

a pathogenic relationship with a species H over a given period of time if and only if

• P interacts with any specimen in H and begins to reproduce;

• H produces a defense in response to counteract the resulting colony of Ps;

• Ps may push back, and H may counteract, until H reaches a stable condition that

may be different from the condition prior to interaction with P;

• All three conditions remain true with at least 32 other specimens in H, in the absence

of any other such P*.

There are situations where two pathogens can attack the host simultaneously and may be

successful jointly, but not individually. Therefore, a general definition should allow for
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multi-way pathogenic relationships. However, in this first attempt towards a general

definition of pathogenic relationship, we will simply assume the relationship to be binary.

Prior Work

The term pathogen (borrowed from Greek; pathos meaning disease and genos meaning

kind, race, family, birth or origin) has been in use since the 1880s to refer to infectious

microorganisms including virus, bacterium, protozoan, prion, viroid and fungus [78], [79].

The study of diseases caused by these organisms, pathogens, does not have a distinctive

root but could be traced back to the documentation of disease with Egyptian medicine, for

instance, Edwin Smith Papyrus (17th century BC) and Papyrus Ebers (about 1550 BC.)

Since then, a number of characterizations have been proposed to give a general overview of

what pathogens are. Earlier views were primarily based on microorganisms and their

intrinsic properties only, although it was also known that pathogenicity was neither

invariant nor absolute [84]. In early 20th century, Bail proposed aggressins and Rosenow

proposed virulins as microbial products ushering pathogens themselves into the host [85].

[86] pointed out that pathogens were deemed to have “offensive” and “defensive” functions

separating themselves from nonpathogenic microbes and determining the type and outcome

of the host-pathogen interaction. Later, in 1914, Zinsser grouped microorganisms into

three different categories i.e., a) saprophytes that were unable to establish themselves in

living tissue; b) pure parasites that were able to establish themselves easily in normal

hosts; and c) half parasites having low invasive power and causing infection only in certain

circumstances [85]. Similarly, Watson and Brandly noted that the term pathogenicity was

used for defining the degree of involvement for microbes that did not cause rapidly fatal

infections [87]. Later, in 1990s, the definition of pathogens had solely focused on the ability

to cause disease. The chemistry of the microbial surface is an critical ingredient in the

ability of a microorganism to cause disease. Similarly, Falkwo proposed “Molecular Koch’s

Postulates” as a conceptual framework to identify the genes causing diseases [88] and also
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noted that a pathogen has an intrinsic ability to breach cell barriers of a host [89]. These

several definitions were reviewed in [79] and are summarized next.

• A microbe capable of causing disease [82], [90]

• A microorganism that can increase in living tissue and produce disease [91]

• Any microorganism whose survival is dependent upon its capacity to replicate and

persist on or within another species by actively breaching or destroying a cellular or

humoral host barrier that ordinarily restricts or inhibits other microorganisms [89]

• A parasite capable of causing or producing some disturbance in the host [92]

These characterizations cannot really be regarded as logically satisfactory general

definitions because they still rely on “someone dying/getting sick” to prove that some

microbe is pathogenic. In addition, all these approaches place the ability to cause diseases

solely on a microorganism, regardless of the affected host. On the other hand, it is evident

that the ability of some microorganisms to cause disease depends on a specific host. For

example, an influenza or covid-19 virus may cause death in some hosts but no effect

whatsoever in others. For this reason, recent studies are shifting their focus on two-way

relationship between host and microorganisms in the form of pathogenicity to ditch the

term “pathogens” [84]. Furthermore, all these research point towards a single conclusion,

that although there are several approaches to make a distinction between pathogens and

nonpathogens, there is no general and operational and acceptable definition of pathogens.

Data

Two samples were collected to obtain datasets for the assessment of the proposed definition

below. The first sample was designed to contain 107 pathogenic and 109 nonpathogenic

bacteria for Homo sapiens in general. A similar selection was made for the second sample

for fungi (25 pathogens and 25 nonpathogens.) Once these datasets were designed, we
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downloaded coding sequences of whole genome for bacteria and coding sequences of

mitochondrial genome for fungi. We also downloaded four mitochondrial genes (COI, COII,

COIII, CytB) for homo sapiens. We computed genomic and pmeric signatures of these

sequences, but are reporting the scores for genomic GenISs only because they yield the

better scores.

Results

The results for the quantitative assessments of the ML models are shown in Fig. 17. A

solution model is being deemed acceptable only if its specificity is at least 80% and its

sensitivity 70%, which are in the order of the average scores for similar problems in the

literature [80], [93], [94], [95].)

We trained all machine learning models discussed in Section 2 using DNA sequences

alone. We report the performance scores of four models trained on the features obtained

using optimal combination of nxh bases. For bacteria, kNN, RBF and MLP models

produced perfect scores for all performance metrics on the basis 3mE4b-2. All scores were

above 80%, but ML models DT and AB yielded the best scores. We assessed the

performance of our GenISs combining the two datasets of bacteria and fungi. We were able

to obtain the machine learning models, namely RBF, DR and AB with 100% sensitivity (as

shown in Fig. 17), which is very good for diagnostic methods in pathology and

immunology. However, only GenIS using AB was able to yield all scores above 80%. Thus,

some models are capable of leveraging patterns from the information extracted by genomic

signatures in our GenISs to provide a general and uniform definition of pathogenicity

(regardless of the choice of the taxonomic group of a microorganism) based on molecular

data only. These definitions could be used as alternative hypotheses estimating the degree

of pathogenicity between microbes (e.g., bacteria and fungi) and a host (e.g., humans.)
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Figure 17: The performance assessment of the definition of pathogenicity of bacteria (top),
fungi (middle) and both (bottom) obtained using machine learning models trained on ge-
nomic signatures. Interestingly, when both bacteria and fungi are combined, DT gave the
best scores (accuracy = 0.95, sensitivity = 0.9, specificity = 1 and precision = 1.)
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Early genetic studies made obvious [57] that DNA is responsible for the preservation

of phenotypes from parents (specifying their structure and function) onto their offspring.

Further studies have probed into the role of epigenetics in disease [96] and various life

processes for the prediction of psychological disorders (e.g., depression, schizophrenia and

so on [97].) A common denominator in these studies is a deeper analysis of the causal chain

of events that leads from the sequences to the metabolomics and proteomics that

constitute the phenotype. By contrast, our GenISs only require DNA inputs and bypass

the entire metabolomic and proteomic analyses of the events leading to the predictions and

results. To our knowledge, no approach has been proposed to predict quantitative

phenotypic or environmental features concerning a living organism, let alone a versatile

and universal platform to obtain such results.
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CHAPTER 4

Abiotic Applications of GenISs

This chapter shows how the same GenISs used in the previous chapter may just as

effectively be used to solve problems with abiotic data with some fairly straightforward

encodings of the ordinary data inputs into DNA. We illustrate with two important

problems in computer science, namely Malware Classification (MC) and Image

Segmentation (IS).

Malware Classification

A classical problem in computer science is to identify the type of a malware, i.e., a

Malware Classification problem. A solution to this problem is very critical in cyber

security, where new malware is emerging at an alarming rate (for instance, more than 4.62

million new instances of malicious code were detected from June 2019 to July 2019 [98].)

The problem is defined precisely as follows. It assumes a partition of all malwares

into a finite number of distinct categories (or classes) C is given in advance.

MALWARE CLASSIFICATION(C)

INSTANCE: A piece of malware x of classes available in M

QUESTION: Which type/category in C does x belong to?

To show an example of how GenISs enable a solution this problem, we use dataset

provided by Microsoft for the Malware Challenge [99].

Prior Work

Most real-life data, such as text and images, are unstructured in the sense that they are

not generated by a well-defined model or even organized in tabular format. Advances in

modern internet technologies have enabled us to generate and/or store huge amounts of
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data (in the scale of exabytes per day) but we still lack methods to analyze them in the

same scale at speed. A major roadblock is this lack of structure to select or extract useful

critical information to solve problems at humanly meaningful (semantic) scale. Deep

learning methods have handled these difficulties to an extent, but it is very difficult to

explain how these methods learn significant features for such data analytics.

The emergence of malwares at an alarming rate has created a serious threat in

cyber security. A rigorous analysis to this problem is critical to study the evolution of the

malware and tracing cybercrime. Such an analysis can be either static or dynamic. A

dynamic analysis depends on the execution of malwares in a controlled

environment [100], [101] and is costly effortwise [102]. On the other hand, a static analysis

relies on decompilation tools (like IDA Pro) and is more effective and efficient [103, 104].

However, static analysis suffers from a major information retrieval issue since information

in the source code could be lost in the compilation process. Furthermore, encryption and

obfuscation techniques can easily forfeit solutions to these issues [98].

Many works have been proposed to avoid these drawbacks. For instance, [105]

proposed a method based on byte n-grams as features to train gradient-boosting decision

tree classifiers for malicious code. This approach is widely used to solve the problem, but it

ignores the fact that not all static and dynamic attributes are related to each other [106].

There have been many more attempts to solve this problem with the advent of machine

and deep learning methods. For example, [107] proposed four kinds of LSTM-based deep

networks based on input opcode sequences as features for training and testing. Later on,

[108] combined these opcode sequences with grayscale images of malware binary files and

used CNN and LSTM networks to learn features. Similarly, [109] proposed a new

image-based malware classification using a CNN architecture that showed higher accuracy

when compared with traditional ML models. These findings suggest that some kind of

encoding of these malwares by an automated process might lead to better performance in

feature extraction rather than using a manual process.
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Table 12: Summary of the dataset for Microsoft’s Malware Classification Challenge

Malware Class Original size Size used Type of Malware

Ramnit 1,541 66 Worm
Lollipop 2,478 127 Adware
Kelihos ver3 2,942 164 Backdoor
Vundo 475 5 Trojan
Simda 42 1 Backdoor
Tracur 751 33 TrojanDownloader
Kelihos ver1 398 8 Backdoor
Obfuscator.ACY 1,228 62 Any kind of obfuscated malware
Gatak 1,013 45 Backdoor

Data and DNA encodings

We first encode a piece of malware into a DNA sequence. A malware program can be

regarded as an ordered set of hexcodes representing a string of hexadecimal characters.

Thus, a DNA encoding can be simply obtained by converting each hexadecimal character

to its binary equivalent, and then concatenating these binaries into a sequence in DNA

form. Two bits encode four possible strings that can be regarded as a,c,g, or t, i.e.,

00→ a; 01→ c; 10→ g; 11→ t.

We used the Microsoft Malware Classification Challenge [99] dataset that was

released in 2015 and is publicly available through Kaggle. The dataset is summarized in

Table 12.

Results

We computed the genomic and pmeric signatures of these straightforward malware

encodings and trained and tested some conventional ML models. We assessed the quality

of these models using the standard metrics, namely accuracy, precision, recall and F1-score

but are reporting the performance of the models giving top two scores. A model was
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Table 13: Comparing performance of our GenISs with Common Machine learning Models
and similar work as the state-of-the-art methods.

Group Method
Precision

(%)
Recall
(%)

F1-Score
(%)

GenIS-8pmc RF 95.83 95.75 96.62
KNN 95.41 95.24 96.38

GenIS-3pmc RF 94.46 94.17 95.62
KNN 93.97 93.33 95.24

GenIS-8mP10 RF 73.22 74.79 73.34
KNN 71.08 70.85 69.86

GenIS-3mE4b RF 99.33 99.05 99.13
KNN 94.42 95.19 94.11

Related
Work

Kaggle Winner [110] 99.63 99.07 99.35
SNNMAC [98] 99.21 99.18 99.19
MalNet [108] 99.14 97.96 98.55
Hanqi Zhang [111] 92.13 90.64 91.38

Common
Machine
Learning

Models[98]

Random Forest 84.46 82.34 83.38
Xgboost 85.13 72.02 78.02
Naive Bayes 70.21 70.06 70.13
Logistic Regression 71.42 67.38 69.34
Support Vector Machine 54.84 28.75 37.72

considered to be of an acceptable quality if its performance (accuracy / F1-) score is within

1 standard deviation from Kaggle Winner (the standard deviation was computed among

each set of performance scores for other methods in literature in Table 13.) A comparison

of our solutions to other solutions available in the literature is shown in Table 13.

From 13, the performance scores of GenIS based on genomic signature using 3mE4b

are almost equal to the ones of Kaggle Winner. All performance scores (except for the

GenIS based on genomic signature using 8mP10) are greater than the difference between

the corresponding performance score of the Kaggle Winner and the standard deviation of

the scores from the literature (i.e., the threshold for precision = 83.93, recall = 76.42 and

F1− score = 79.27.) Therefore, these models are of more than acceptable quality. In fact,

65



the results for MC are competitive with the performance of Kaggle winner of the Microsoft

MC challenge.

We have presented two Genomic Information Systems (GenISs) leveraging structural

properties of DNA spaces as an alternative solution to the malware classification problem.

Most of our GenISs produced comparable results with the benchmark models for malware

classification problem with the scores of greater than 95% for precision, recall and F1-score.

Most of these deep networks require at least a few hours for training. However, our GenISs

can produce these results in the order of minutes. Moreover, these results provide strong

evidence that DNA can be very helpful in text analysis of malware at a deep level, with

very low dimensional vectors and performance when other methods require at least

hundreds of features to do.

Image Segmentation

Another classical problem in computer science is to find a partition of an image into

multiple segments identifying semantically meaningful whole objects present in the image.

A solution to this problem is very critical in applications for autonomous driving, medical

image analysis, health care and so on. The standard procedure relies on the annotation of

images and the use of deep learning models (the majority of the solutions are obtained by

supervised learning approach.) In this work, we use GenISs based on unsupervised learning

approaches to produce explainable results.

For this purpose, we define the problem precisely as follows. We are given an image.

IMAGE SEGMENTATION(x)

INSTANCE: A 2D image x

QUESTION: What is a partition of x into recognizable objects?
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To show an example of how GenISs enable us to solve this problem, we use two

benchmark datasets, i.e., CamVid and KITTI datasets.

Prior Work

Recent deep learning solutions solve this problem by learning significant patterns from the

annotations of large amounts of pixels in images, made possible by the introduction of

Convolutional Neural Networks for feature learning and large dataset annotation. Recent

literature [112] argues that the performance of these trained models are highly sensitive to

the quality of the annotation, which is taxing time and effortwise, not to mention

subjective. For instance, it takes an average of 1.5 hours to annotate all pixels in an image

of size 1024 ∗ 2048 in the Cityscapes dataset [113]. Further, some datasets are solely based

on images captured from continuous video frame sequences at regular time intervals.

Therefore, several works [114, 115, 116, 117, 118] have leveraged temporal constraints to

propagate ground truth labels from labeled to unlabeled frame using two major approaches,

namely optical flow [114, 115] and patch matching [116, 117, 118]. Patch matching methods

are generally sensitive to patch size and threshold values and occasionally assume a priori

knowledge of class statistics. On the other hand, optical flow methods rely on very accurate

optical flow estimation. More recent works (e.g., [112]) use motion vectors from video

prediction models to obtain such propagation and the learned vectors to handle occlusion.

Another approach to image (semantic) segmentation is to incorporate edge cues as

constraints to handle boundary pixels [119, 120]. However, these methods might propagate

error from edge estimation or lead to over-fitting due to extremely hard boundary cases. In

order to resolve these issues, other methods have been attempted, such as affinity

field [121], random walk [122], relaxation labelling [123]. The problem with these

alternatives is that, instead of handling boundary pixels directly, they attempt to emulate

the interactions between segments and object boundaries [112]. Another issue with all
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these models is that they impose an additional burden to annotate images for training and

testing purposes. Worse yet, that entails a human in the loop.

A common denominator among all these models is supervised learning algorithms.

This suggests that the use of unsupervised learning algorithms like Self Organizing Maps

(SOMs) may avoid these burdens. The approach has been explored with several variants.

For instance, [124] proposed a network called a Local Adaptive Receptive Field Self

Organizing Map (LARFSOM) for color image segmentation. Later, [125] integrated SOM

with kMeans and saliency map to perform image segmentation via clustering. Most of

these algorithms are solely based on SOM derived prototype parameters [126, 127, 128].

Much later, [129] integrated SOMs with extended fuzzy clustering. On average, a

performance of 84.5% of sensitivity and 88.1% of accuracy was reported. Furthermore,

qualitative evaluation also indicated improvement in the performance.

Data and pmeric encodings

We first calculate the pmeric coordinates of the full set of centroids plus one point in the

north casket (we use aaat.) Second, we compute the convex hull of these numerical vectors

in the corresponding Euclidean spaces to produce an encoding region for arbitrary images.

Each digital image can now be represented by a set of pixels. Each pixel constitutes a 3D

vector containing values for a Red, Green and Blue colors (R, G, B) combination (each

value ranging between 0 and 255.) We used a 4D vector containing these color values and

the average of these values (i.e. (R, G, B, avg(R, G, B)) to represent such a pixel. Then

the pixel vectors are mapped by an affine transformation to points inside the convex hull of

the encoding region. As shown in Fig 18, these points can then be represented by their

barycentric coordinates. Each vector contains the pmeric coordinates of the original image.

They are then used as feature vectors to a SOM that will segment the image with pmeric

encodings.
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Figure 18: Workflow to compute pmeric coordinates encoding an image in a DNA space of
4-pmers. A pixel in an image can be represented by a 4D vector containing RGB values
and an average of these three values. Then, the 4D vector can be mapped to a point in the
convex hull spanned by the pmeric coordinates of the four h-centroids and aaat as corners.
The raw pixel vectors are then the mapped point to the convex hull. The process is repeated
for all pixels in the image to obtain an encoding into 4D feature vectors using frequencies as
weights

Table 14: Description of data samples for image segmentation problem.

Name Resolution of the images Size (training, testing and validation) Source
CamVid 720 ∗ 960 701 (367, 101, 233) [130]
KITTI 375 ∗ 1242 400 (200, 200, 0) [131]

We used CamVid and KITTI datasets as samples to assess the quality of our

solution (the datasets are described in Table 14 below.)

Results

We used SOMs (as described in Section 2) as solution models for this problem. Both

quantitative and qualitative analyses were done to assess the quality of the proposed

solutions. The qualitative analysis for two instances on CamVid and KITTI datasets is

shown in Figs. 19, 20. We used mean Intersection Over Union ( IOU) for quantitative

analysis. We also performed an experimental control on the CamVid dataset an alternative

assessment of the performance of the proposed solutions. The comparison of our solutions

to the others in the literature based on mean IOU are shown in Tables 15 and 16.

69



Figure 19: Typical qualitative performance of two datapoints (rows) in the CamVid dataset
of three solutions, without (third column) and with pmeric (fourth column) and random
(fifth column) encodings. Compared to the ground truth (second column), the quality of
clustering by plain SOMs is poor (too many clusters), while that on the pmeric encodings
is evidently better (semantically more meaningful fewer clusters.) On the other hand, the
clustering based on random encodings is evidently not semantically meaningful (too fewer
clusters to identify objects in the original image)

Figure 20: Typical qualitative performance of two datapoints (rows) in the KITTI dataset
of two solutions, without (third column) and with pmeric (fourth column) encodings. The
results are similar to those in the CamVid dataset (see Fig. 19), although the quality of
segmentation on the pmeric encoding is not as good as for the CamVid dataset compared
to the ground truth (second column)
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Table 15: Performance of solutions to image segmentation on the CamVid dataset

Method Encoder mean IOU (%)

GenIS (4pmc) - 90.4
SOM - 85.5
VPred+LP [112] WideResNet38 82.9
VideoGCRF [132] ResNet101 75.2
BiSeNet [133] ResNet18 68.7
Dilate8 [134] Dilate 65.3
RTA [119] VGG16 62.5
SegNet [135] VGG16 60.1
Control - 3.3E-04

Table 16: Performance of solutions to image segmentation on the KITTI dataset

Method mean IOU (%)

GenIS (4pmc) 84.90
SOM 83.67
VPred+LP [112] 72.83
LDN2 [136] 63.51
AHiSS [137] 61.24
MapilaryAI [138] 69.56
SegStereo [139] 59.10
APMoEseg [140] 47.96

As shown in Tables 15 and 16, the average IOU scores show a huge improvement on

results given by our GenISs when compared with the state-of-the-art methods. In order to

test the statistical significance of this difference in performance, we ran a z test on both

datasets with the null hypothesis being, “There is no significant difference in average IOU

scores given by SOM trained on raw pixels with that trained on encoded pixels”. The test

was performed on all 101 images from CamVid dataset. We computed z-value to be 3.804

which is greater than the critical z-value (1.96). Therefore, the null hypothesis was rejected

and there is enough evidence in the dataset to prove that the difference is statistically

significant. But the data did not have sufficient evidence to support our claim of this

difference being significant as we computed z-value to be 0.5804 (which is lesser than 1.96)

on KITTI dataset.
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Similarly, as shown in Figs. 19 and 20, with the same architecture, SOMs trained on

raw pixels tend to group these pixels in too many clusters producing noise in the

segmentation for both datasets. However, mapping to a DNA space helps reducing the

number of unwanted clusters and the resulting segmented images are more refined.

Therefore, although we could not find statistical evidence, these differences have some

impact semantically on real images for the KITTI dataset.

At last, an experimental control on CamVid dataset demonstrates that pmeric

coordinates make a significant contribution in construing the semantics in images, as

illustrated in Fig. 19. The segmented images do not contain enough clusters to properly

distinguish objects/semantics. This was also reflected in average IOU as shown in Table 15.

We have presented pmeric GenISs leveraging the structural properties of DNA spaces for

ordinary image processing. Current solutions rely on pixels to segment different regions in

images. In reality, pixel intensities of objects in an image do not contain full information to

do so. For example, an object/segment in an image might interfere with another (e.g. a

building might cast a shadow on the road causing a difference in the pixel intensities of the

different parts of the road) and lead to misclustering. The performance of our proposed

GenIS for image segmentation is comparable (if not better) than the state-of-the-art deep

learning models and SOM with the average IOU score of about 90% on CamVid and about

84% on KITTI dataset. Our methods seem to be able to address these issue with the

semantic segmentation problem (SIS) since a control run with random encodings produce

results of significantly lower quality.
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CHAPTER 5

Conclusion and Future Work

This dissertation presents a novel approach to designing Genomic Information

Systems (GenISs) aimed at solving some challenging problems in biology and in computer

science at large. They are based on novel coordinate systems for DNA sequences (genomic

and pmeric) that leverage fundamental research on the deep metric structure of DNA

oligomers up to 12-pmers. These GenISs offer multiple advantages over the current tools

and techniques used in data science to handle large biodata sets. First, these GenISs allow

extraction of few very informative features from long DNA sequences anchored in biological

reality that could be used to train machine learning models on large data sets (e.g., whole

genomes of humans.) Second, recent advancements in data science, especially

Convolutional and Deep networks, have produced remarkable results in analyzing DNA

sequences (for example in predicting EC number on enzyme function prediction, motif

recognition in Polydentilation in RNA maturation and promoter recognition of DNA

fragments in the human genome), but these networks require a lot of computational and

processing time to get better results. Further, they provide black-box answers lacking

explanations that would allow a human to rationalize decisions or answers. By contrast, we

have demonstrated that GenISs can process biotic data efficiently and furthermore, they

can be extended to process abiotic data just as effectively and efficiently. Third, in a

nutshell, all these findings reveal that DNA molecules are capable of encoding a great

variety of information beyond what is currently known (e.g., of the habitat where a living

organisms grew or lived), not only for living organisms, but also for ordinary abiotic data,

and that this information has a structure that can be decoded through well-known methods

in data science and machine learning.

This line of research opens up several possibilities for the further exploration. First,

these GenISs offer a transformation of DNA sequences of higher dimensions (e.g., up to
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millions of base pairs as in the case of whole genome, mitochondrial genome and malware

features) into exponentially lower and very few dimensions, essentially preserving most

significant information. Upon reflection, these reductions appear hard to believe.

Therefore, these GenISs could be further explored as new dimensionality reduction in other

domains. How scalable are these methods to other domains? Are they close to a theoretical

limit?

Further, a second possibility involves domain knowledge. Recent trends in machine

and deep learning methods are beginning to explore the role of domain knowledge

integration in the quality of a solution model. The traditional view of domain knowledge

integration requires an expert to provide knowledge of the field to select or extract features

to produce or improve good solution models. This process is thus manual and subjective,

e.g., they are subject to biases. These biases could be avoided to an extent by integrating

the knowledge of several experts. However, such an integration does not guarantee to

removal of such biases 100%. On the other hand, GenISs are based on hybridization

affinity, an objective property of DNA. Therefore, GenISs provide a means to meaningfully

compare the inherent difficulty of problems and the performance of their solutions across

domains, currently a challenge in data science and machine learning.

Finally, this research also points to the possibility of that DNA has a built-in

capability for unsupervised learning, e.g. in the choice of a convex hull for pmeric

coordinate to encode images for semantic clustering. A further exploration of deeper

geometric properties (using h-distance or more accurate refinements) might lead to deeper

connections to the structure of ordinary Euclidean spaces built into DNA. Such

connections might lead to a next generation of machine learning methods.
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