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Abstract 

Categorical perception (CP) of audio is critical to understand how the human brain 

perceives speech sounds despite widespread variability in acoustic properties. Most studies 

that examine cognitive speech processing have applied methodological approaches that focus 

on specific or a set of brain regions. Departing from hypothesis-driven approaches, in this 

dissertation, we proposed multivariate data-driven approaches to identify the spatiotemporal 

(i.e., when in time and where in the brain) and spectral (i.e., frequency-band power levels) 

characteristics of auditory neural activity that reflects CP for speech (i.e., differentiates 

phonetic prototypes from ambiguous speech sounds). We recorded 64-channel EEG as 

listeners rapidly classified vowel sounds along an acoustic-phonetic continuum. We used 

parameter optimized support vector machine (SVM), k-nearest neighbors (KNN) classifiers, 

and stability selection to determine spatiotemporal and spectral characteristics of neural 

activity that decode CP best via source-level neural activity. Using event-related potentials 

(ERPs), we found that early (120 ms) whole-brain data decoded speech categories (i.e., 

prototypical vs. ambiguous speech tokens) with 95.16% accuracy [area under the curve 

(AUC) 95.14%; F1-score 95.00%]. Separate analyses on the left hemisphere (LH) and right 

hemisphere (RH) responses showed that LH decoding was more accurate and earlier than RH 

(89.03% vs. 86.45% accuracy; 140 ms vs. 200 ms). Stability (feature) selection identified 13 

regions of interest (ROIs) out of 68 brain regions (including auditory cortex, supramarginal 

gyrus, and inferior frontal gyrus (IFG)) that showed categorical representation during 

stimulus encoding (0-260 ms). In contrast, 15 ROIs (including fronto-parietal regions, IFG, 

motor cortex) were necessary to describe later decision stages (later 300 to 800 ms) of 

categorization but these areas were highly associated with the strength of listeners’ 

categorical hearing (i.e., slope of behavioral identification functions).  
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Moreover, our induced vs. evoked mode analysis shows that whole-brain evoked β-band 

activity decoded prototypical from ambiguous speech sounds with ~70% accuracy. However, 

induced γ-band oscillations showed better decoding of speech categories with ~95% accuracy 

compared to evoked β-band activity (~70% accuracy). Induced high frequency (γ-band) 

oscillations dominated CP decoding in the LH, whereas lower frequency (θ-band) dominated 

decoding in the RH. In addition, feature selection identified 14 brain regions carrying 

induced activity and 22 regions of evoked activity that were most salient in describing 

category-level speech representations. Among the areas and neural regimes explored, we 

found that induced γ-band modulations were most strongly associated with listeners’ 

behavioral CP. 

In sum, our data-driven multivariate models demonstrate that abstract categories emerge 

surprisingly early (~120 ms) in the time course of speech processing and are dominated by 

engagement of a relatively compact fronto-temporal-parietal brain network.  In addition, the 

category-level organization of speech is dominated by relatively high frequency induced 

brain rhythms.  

 

 

 

 

 

 

 

 



 

 vii 

Table of Contents 

Chapter 1 - Introduction.................................................................................................... 1 

1.1 Research aims ........................................................................................................ 2 

1.2 Main results ............................................................................................................ 4 

1.3 Broader impacts and novelty ................................................................................. 5 

Chapter 2 - Research Context ........................................................................................... 6 

2.1 Spatiotemporal characteristics of speech categorization ....................................... 6 

2.2 Evoked vs. induced analysis for speech categorization ......................................... 9 

Chapter 3 - Methods and Materials ................................................................................ 12 

3.1 Participants ........................................................................................................... 12 

3.2 Stimulus & task .................................................................................................... 12 

3.3 EEG recordings and data pre-procedures ............................................................ 13 

3.4 EEG source localization ....................................................................................... 14 

3.5 SVM classification to identify temporal dynamics and spectral bands of CP ..... 15 

3.6 Stability selection to identify spatial dynamics of CP ......................................... 16 

Chapter 4 - Spatiotemporal analysis of speech categorization ....................................... 18 

4.1 Feature extraction................................................................................................. 18 

4.2 Results .................................................................................................................... 3 

4.2.1 Behavioral results............................................................................................... 3 

4.2.2 Decoding the time-course of speech categorization from ERPs ........................ 3 

4.2.3 Decoding the spatial regions underlying categorization: stimulus encoding vs. 

decision 5 



 

 viii 

4.2.4 Brain-behavior correspondences ...................................................................... 10 

4.3 Discussion ............................................................................................................ 12 

4.3.1 Speech categories are decoded early (<150 ms) in the time course of 

perception 12 

4.3.2 Differential brain-networks involved in encoding and decision processing .... 13 

Chapter 5 - Speech categorization from evoked versus induced responses .................... 16 

5.1 Evoked activity and induced features extraction ................................................. 16 

5.2.1 Time-Frequency analysis ................................................................................. 16 

5.2 Results .................................................................................................................. 18 

5.2.1 Decoding categorical neural responses using band frequency features and 

SVM 18 

5.2.2 Decoding categorical neural responses using band frequency features and 

KNN 21 

5.2.3 Decoding brain regions associated with CP (evoked vs. induced) .................. 22 

5.2.4 Brain-behavior relationships ............................................................................ 29 

5.3 Discussion ............................................................................................................ 29 

5.3.1 Speech categorization from evoked and induced activity ................................ 29 

5.3.2 Brain networks involved in speech categorization .......................................... 30 

Chapter 6 - Conclusion ................................................................................................... 33 

6.1 Summary of Contributions ................................................................................... 33 

6.2 Limitation of this work ........................................................................................ 33 

Relationship to published works ........................................................................................ 34 



 

 ix 

References 35 

 

 

 

List of Tables 

TABLE 1: PERFORMANCE METRICS OF THE SVM CLASSIFIER CORRESPONDING TO MAXIMAL 

DECODING OF PROTOTYPICAL VS. AMBIGUOUS VOWELS FROM ERPS. ................................. 5 

TABLE 2: MOST IMPORTANT BRAIN REGIONS DESCRIBING SPEECH CATEGORIZATION DURING 

STIMULUS ENCODING (13 ROIS) AND RESPONSE DECISION (15 ROIS) AT A STABILITY 

THRESHOLD ≥ 0.5. ............................................................................................................... 9 

TABLE 3:  WLS REGRESSION RESULTS DESCRIBING HOW INDIVIDUAL BRAIN ROIS PREDICT 

BEHAVIORAL CP. .............................................................................................................. 11 

TABLE 4: PERFORMANCE METRICS OF THE SVM CLASSIFIER CORRESPONDING TO MAXIMAL 

DECODING OF PROTOTYPICAL VS. AMBIGUOUS VOWELS FROM ERPS. ............................... 19 

TABLE 5: BRAIN-BEHAVIOR RELATIONS OF 14 BRAIN ROIS IN DIFFERENT FREQUENCY BANDS 

AND BEHAVIORAL PREDICTION FROM THE INDUCED ACTIVITY AT A STABILITY THRESHOLD 

≥ 0.6 THAT YIELDED ACCURACY 86.5%. ........................................................................... 26 

TABLE 6: BRAIN-BEHAVIOR RELATIONS OF 22 BRAIN ROIS IN DIFFERENT FREQUENCY BANDS 

AND BEHAVIORAL SLOPE PREDICTION FROM THE EVOKED ACTIVITY AT A STABILITY 

THRESHOLD ≥ 0.6 THAT YIELDED ACCURACY 71.4%. ........................................................ 27 

 

 

 

 

 

 



 

 x 

List of Figures 

FIGURE 1:  SPEECH STIMULI AND BEHAVIORAL RESULTS. A) ACOUSTIC SPECTROGRAMS OF THE 

SPEECH CONTINUUM FROM /U/ AND /A/ ; ARROWS: FIRST FORMANT FREQUENCY.  B) 

BEHAVIORAL SLOPE. C) PSYCHOMETRIC FUNCTIONS SHOWING % “A” IDENTIFICATION OF 

EACH TOKEN. LISTENERS’ PERCEPTION ABRUPTLY SHIFTS NEAR THE CONTINUUM 

MIDPOINT, REFLECTING A FLIP IN PERCEIVED PHONETIC CATEGORY (I.E., “U” TO “A”). D) 

REACTION TIME (RT) FOR IDENTIFYING EACH TOKEN. RTS ARE FASTEST FOR CATEGORY 

PROTOTYPES (I.E., TK1/5) AND SLOW WHEN CLASSIFYING AMBIGUOUS TOKENS AT THE 

CONTINUUM MIDPOINT (I.E., TK3). ERRORBARS = ±1 S.E.M. ............................................. 13 

FIGURE 2: GRAND AVERAGED BUTTERFLY PLOTS OF SCALP ERPS (64 CHANNELS) TO 

PROTOTYPICAL (A; TK1/5) VS. CATEGORY-AMBIGUOUS (B; TK3) VOWELS. VERTICAL 

LINES DEMARCATE SEGMENTS FOR THE STIMULUS ENCODING (0-260 MS) AND DECISION 

PERIOD (300 MS-800 MS) ANALYSIS WINDOWS. T=0 MARKS STIMULUS ONSET. C) 

TOPOGRAPHIC MAPS FOR ENCODING (LEFT) AND DECISION PROCESS (RIGHT). .................... 2 

FIGURE 3: SVM CLASSIFIER ACCURACY DECODING SPEECH CATEGORIES FROM SOURCE ERPS. 

A) DECODING USING WHOLE-BRAIN VS. HEMISPHERES-SPECIFIC DATA (LH AND RH) 

ACROSS THE EPOCH WINDOW. MAXIMUM CLASSIFICATION ACCURACIES ARE MARKED BY 

CIRCLES.  MAXIMUM CLASSIFIER ACCURACY WAS OBSERVED AT ~120 MS SUGGESTING 

CATEGORY REPRESENTATIONS EMERGE EARLY, ~200 MS BEFORE LISTENERS’ BEHAVIORAL 

CATEGORIZATION DECISIONS (CF. FIGURE 1C). ................................................................... 4 

FIGURE 4: EFFECT OF STABILITY SCORE THRESHOLD ON MODEL PERFORMANCE DURING (A) 

ENCODING AND (B) DECISION PERIOD OF THE CP TASK. THE BOTTOM OF THE X-AXIS HAS 

FOUR LABELS; STABILITY SCORE REPRESENTS THE STABILITY SCORE RANGE OF EACH BIN 

(SCORES: 0~1); NUMBER OF FEATURES, NUMBER OF FEATURES UNDER EACH BIN; % 

FEATURES, THE CORRESPONDING PERCENTAGE OF SELECTED FEATURES; ROIS, NUMBER OF 

CUMULATIVE UNIQUE BRAIN REGIONS UP TO THE LOWER BOUNDARY OF THE BIN. .............. 7 



 

 xi 

FIGURE 5: STABLE (MOST CONSISTENT) NEURAL NETWORK DURING THE ENCODING PERIOD OF 

CP. VISUALIZATION OF BRAIN ROIS CORRESPONDING TO ≥ 0.50 STABILITY THRESHOLD 

(13 TOP SELECTED ROIS WHICH SHOW CATEGORICAL ORGANIZATION (E.G., TK1/5 ≠ TK3) 

AT 82.6%. (A) LH (B) RH (C) POSTERIOR VIEW (D) ANTERIOR VIEW. COLOR LEGEND 

DEMARCATIONS SHOW HIGH (PINK), MODERATE (BLUE), AND LOW (WHITE) STABILITY 

SCORES. L/R = LEFT/RIGHT; SUPRA, SUPRAMARGINAL; CAC, CAUDAL ANTERIOR 

CINGULATE; IP, INFERIOR PARIETAL; POB, PARS ORBITALIS; TRANS, TRANSVERSE 

TEMPORAL; SF, SUPERIOR FRONTAL; POP, PARS OPERCULARIS; LOF, LATERAL 

ORBITOFRONTAL; PT, PARS TRIANGULARIS; SP, SUPERIOR PARIETAL; CMF, CAUDAL 

MIDDLE FRONTAL; FUS, FUSIFORM. .................................................................................... 8 

FIGURE 6: STABLE (MOST CONSISTENT) NEURAL NETWORK DURING THE DECISION PERIOD OF 

CP. VISUALIZATION OF BRAIN ROIS CORRESPONDING TO ≥ 0.50 STABILITY THRESHOLD 

(15 TOP SELECTED ROIS WHICH DECODE TK1/5 FROM TK3 AT 83.2%. OTHERWISE AS IN 

FIGURE 5. SP, SUPERIOR PARIETAL; INS, INSULA; POP, PARS OPERCULARIS ; SF, SUPERIOR 

FRONTAL; CMF, CAUDAL MIDDLE FRONTAL; IST, ISTHMUS CINGULATE; PT, PARS 

TRIANGULARIS; CMF, CAUDAL MIDDLE FRONTAL; ENT, ENTORHINAL;  PARAC,  

PARACENTRAL; IP, INFERIOR PARIETAL; PHIP, PARA HIPPOCAMPAL ;POC, POSTCENTRAL. 9 

FIGURE 7: GRAND AVERAGE NEURAL OSCILLATORY RESPONSES TO PROTOTYPICAL VOWEL (E.G., 

TK1/5 AND AMBIGUOUS SPEECH TOKEN (TK3) A,C) EVOKED ACTIVITY FOR PROTOTYPICAL 

VS. AMBIGUOUS TOKENS. B, D) INDUCED ACTIVITY FOR PROTOTYPICAL VS. AMBIGUOUS 

TOKENS. PRIMARY AUDITORY CORTEX (PAC) [LTRANS, LEFT TRANSVERSE TEMPORAL 

GYRUS]. ............................................................................................................................ 18 

FIGURE 8: DECODING CATEGORICAL NEURAL ENCODING USING DIFFERENT FREQUENCY BAND 

FEATURES OF SOURCE-LEVEL EEG. SVM RESULTS CLASSIFYING PROTOTYPICAL (TK1/5) 

VS. AMBIGUOUS (TK 3) SPEECH SOUNDS. A) WHOLE-BRAIN DATA (E.G., 68 ROIS), B) LH 

(E.G., 34 ROIS) C) RH (E.G., 34 ROIS). CHANCE LEVEL =50%. ........................................ 19 



 

 xii 

FIGURE 9: DECODING CATEGORICAL NEURAL ENCODING USING DIFFERENT FREQUENCY BAND 

FEATURES OF SOURCE-LEVEL EEG. MEAN ACCURACY OF SVM FIVE-FOLD CROSS-

VALIDATION RESULTS CLASSIFYING PROTOTYPICAL (TK1/5) VS. AMBIGUOUS (TK 3) 

SPEECH SOUNDS. A) WHOLE-BRAIN DATA (E.G. 68 ROIS), B) LH (E.G., 34 ROIS) C) RH 

(E.G., 34 ROIS). CHANCE LEVEL =50%. ERRORBARS = ±1 S.E.M. ..................................... 20 

FIGURE 10: GRAND DECODING CATEGORICAL NEURAL ENCODING USING DIFFERENT 

FREQUENCY BAND FEATURES OF SOURCE-LEVEL EEG. KNN RESULTS CLASSIFYING 

PROTOTYPICAL (TK1/5) VS. AMBIGUOUS (TK 3) SPEECH SOUNDS. A) WHOLE-BRAIN DATA 

(E.G., 68 ROIS), B) LH (E.G., 34 ROIS) C) RH (E.G., 34 ROIS). CHANCE LEVEL =50%. ... 22 

FIGURE 11: EFFECT OF STABILITY SCORE THRESHOLD ON MODEL PERFORMANCE DURING (A) 

EVOKED ACTIVITY AND (B) INDUCED ACTIVITY DURING CP TASK. THE BOTTOM OF THE X-

AXIS HAS FOUR LABELS; STABILITY SCORE REPRESENTS THE STABILITY SCORE RANGE OF 

EACH BIN (SCORES RANGE: 0~1); NUMBER OF FEATURES, NUMBER OF SELECTED FEATURES 

UNDER EACH BIN; % FEATURES, THE CORRESPONDING PERCENTAGE OF SELECTED 

FEATURES; ROIS, NUMBER OF CUMULATIVE UNIQUE BRAIN REGIONS UP TO THE LOWER 

BOUNDARY OF THE BIN...................................................................................................... 24 

FIGURE 12: STABLE (MOST CONSISTENT) NEURAL NETWORK DECODING USING INDUCED 

ACTIVITY. VISUALIZATION OF BRAIN ROIS CORRESPONDING TO ≥ 0.60 STABILITY 

THRESHOLD (14 TOP SELECTED ROIS WHICH SHOW CATEGORICAL ORGANIZATION (E.G., 

TK1/5 ≠ TK3) AT 86.5%. (A) LH VIEW (B) RH VIEW (C) POSTERIOR VIEW (D) ANTERIOR 

VIEW. COLOR LEGEND DEMARCATIONS SHOW HIGH (PINK), MODERATE (BLUE), AND LOW 

(WHITE) STABILITY SCORES. L/R = LEFT/RIGHT; BKS, BANKSSTS; LO, LATERAL OCCIPITAL; 

POP, PARS OPERCULARIS; PCG, POSTERIOR CINGULATE; LOF, LATERAL ORBITOFRONTAL; 

SP, SUPERIOR PARIETAL; CMF, CAUDAL MIDDLE FRONTAL;  IP, INFERIOR PARIETAL; CAC, 

CAUDAL ANTERIOR CINGULATE; CUN, CUNEUS; PRC, PRECENTRAL; TRANS, 

TRANSVERSE TEMPORAL; RAC, ROSTRAL ANTERIOR CINGULATE. .................................... 25 



 

 xiii 

FIGURE 13: STABLE (MOST CONSISTENT) NEURAL NETWORK DECODED USING EVOKED 

ACTIVITY. VISUALIZATION OF BRAIN ROIS CORRESPONDING TO ≥ 0.60 STABILITY 

THRESHOLD (22 TOP SELECTED ROIS WHICH DECODE TK1/5 FROM TK3 AT 71.4%. 

OTHERWISE AS IN FIGURE 12. BKS, BANKSSTS; CMF, CAUDAL MIDDLE FRONTAL; POP, 

PARS OPERCULARIS; SP, SUPERIOR PARIETAL; TRANS, TRANSVERSE TEMPORAL; IST, 

ISTHMUS CINGULATE; LO, LATERAL OCCIPITAL; IP, INFERIOR PARIETAL; CUN, CUNEUS; 

PRC, PRECENTRAL; PT, PARS TRIANGULARIS; POC, POSTCENTRAL; PERI, 

PERICALCARINE; SUPRA, SUPRA MARGINAL. .................................................................. 26 

 



1 

Chapter 1 -  Introduction 

The human brain can map an incredibly large number of stimulus features into a smaller 

set of groups (Chang et al., 2010; Holt & Lotto, 2010), a process known as categorical 

perception (CP). CP provides information about how speech sounds are perceived by humans 

despite the wide variability of acoustics properties. It plays a critical role in speech perception 

and language processing. For understanding speech processing, it is crucial to know the 

spatiotemporal (e.g., where in the brain, when in time) and spectral (e.g., which mode of 

brain oscillations and frequency bands) characteristics of the neural activities. 

Electroencephalography (EEG) and magnetoencephalography (MEG) are commonly used 

non-invasive modalities for recording neural activities. EEG has high temporal resolution and 

low cost. EEG activity can be divided into “evoked” and “induced” responses.  

In this dissertation, our main goal was to develop data-driven multivariate frameworks for 

understanding the neural mechanism underlying speech categorization. Particularly, we 

examined the spatiotemporal and spectral characteristics of neural activity while younger-

adult categorized pure vowels (true phonetic categories) vs. ambiguous speech sounds 

(lacking a clear phonetic identity). Machine learning (ML) is a branch of artificial 

intelligence that “learns a model” from the past data to predict future data (Cruz & Wishart, 

2006). Moreover, data mining approaches in ML identify important properties in neural 

activity with high accuracy without intervention from human observers. Furthermore, ML 

can predict and identify subtle changes in neural activity very accurately and quickly, without 

intervention from human observers. It would be meaningful if speech categorization could be 

decoded from neural data without or with minimal a priori assumptions. By extending prior 

hypothesis-driven work on the speech categorization, here, we have conducted an entirely 

different, comprehensive data-driven approach to test whether prototypical vowel vs. 

ambiguous speech can be decoded from full-brain activity (e.g., event-related potentials 

(ERPs) and spectral features). We aimed to identify the most probable global set of brain 
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regions that are associated with speech categorization using ML. To our knowledge, this is 

the first study to apply decoding and ML techniques to map spatiotemporal and spectral 

analysis in speech categorization in younger-adults listeners at the full-brain level. 

1.1 Research aims 

Aim 1: Decoding categorical speech perception (CP) in spatiotemporal neural processing 

from evoked brain responses (e.g., ERPs) 

We have endeavored to explore the spatiotemporal analysis of CP inspired by our 

previous spatiotemporal analysis on aging data (Mahmud et al., 2020). We have hypothesized 

that speech-evoked responses (e.g., ERPs) would differ with regards to time and spatial 

regions that are recruited during the categorization of speech stimuli (e.g., pure vowels vs. 

ambiguous speech). We have investigated how well when in time and where in the brain ERP 

features could decode prototypical vowels from ambiguous speech sounds of an acoustic-

phonetic continuum. In addition, we explored which brain hemisphere (e.g., left hemisphere 

(LH) or right hemisphere (RH)) is dominant in speech categorization. For instance, how 

speech categorization varies in latency using hemisphere data. We have proposed the 

development of a robust framework to decode prototypical vowel speech versus ambiguous 

speech sounds from source-level neural data (e.g., ERPs). 

 We further hypothesized that the core speech network for “encoding” and “decoding” 

via ML vary as a function of speech processing. We have aimed to explore what are the brain 

ROIs that engage in CP [e.g., prototypical vowel speech (Tk1/Tk5) vs. ambiguous speech 

(Tk3)]. Here we have used a similar approach in our previous study (Mahmud et al., 2020) on 

normal hearing vs. mild hearing-impaired older adults’ brain network associated with age-

related hearing loss but delved  deeper into the analysis. We have explored brain networks 

that involve early sensory (i.e., speech encoding ~250 ms) and post perceptual (i.e., decision-

process > 300 ms) time windows.  
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Aim 2: Speech categorization from induced and evoked neural oscillations. 

Evoked activity is time and phase-locked and more related to stimuli. On the other hand, 

induced oscillations reflect important information about cognitive processing (David et al., 

2006). Some researchers use induced activity for brain function and dysfunction studies.  For 

instance, magnetoencephalography (MEG) studies demonstrated that oscillatory brain activity 

differs while perceived language vs. non-language stimuli (Eulitz et al., 1996); the 

segmentation and coding of continuous speech processing rely on cortical oscillations (Gross 

et al., 2013). Certain frequency bands of EEGs have been linked with specific neurocognitive 

and language processing (Giraud & Poeppel, 2012; Von Stein & Sarnthein, 2000). For 

example, studies (Youssofzadeh et al., 2020) showed that beta power decrement within the 

language processing areas and dominance in LH during auditory task processing. Our recent 

study (Mahmud et al., 2021) demonstrated that different brain regions are associated with the 

encoding vs. decision stages of processing while categorizing speech. These studies 

demonstrate that temporal dynamics of evoked activity provide a neural correlate of the 

different processes underlying speech categorization. However, ERP studies do not reveal 

how induced brain activity (so-called neural oscillations) might contribute to this process. 

 Here, we were interested in exploring how does “induced” or “evoked” oscillation 

relate to CP during the categorization of speech sounds [e.g., prototype vowel (Tk1 /u/ or Tk 5 

/a/) vs. ambiguous speech (e.g., Tk3)] by using spectral features (e.g., evoked vs. induced 

activity’s power spectral density (PSD) of different frequency bands). The following 

questions we have aimed to examine from evoked vs. induced neural activities analysis: 

• How does the categorization of speech affect on “evoked” or “induced” modes of brain 

processing during prototypical vowels vs. ambiguous speech sound perception?  

• Which spectral profiles are associated with CP and correlate with behavioral measures 

(e.g., behavioral slope) from whole-brain data?  
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• How does the individual frequency bands of each hemisphere (i.e., LH or RH) dominate 

during the categorization of speech sounds? 

1.2 Main results  

Our spatiotemporal temporal analysis shows that early (120 ms) ERPs of whole-brain 

data decoded speech categories (i.e., prototypical vs. ambiguous speech tokens) with 95.16% 

accuracy [area under the curve (AUC) 95.14%; F1-score 95.00%].  We also found the 

following results. 

1. The whole-brain ERPs data showed better speech categorization than single 

hemisphere data.  

2. Individual hemispheres (e.g., LH and RH) analysis using ERP feature showed that LH 

data yielded more accurate and earlier decoding than RH (89.03% vs. 86.45% 

accuracy: 140 ms vs. 200 ms). 

3. A smaller brain network is involved during encoding as compared to the decision 

process. 

4. Brain areas associated with the decision process are highly linked with the strength of 

listeners’ categorical hearing (i.e., slope of behavioral identification functions). 

Our spectral analysis using “induced” vs. “evoked” responses demonstrates that induced 

brain oscillation could categorize the speech sound better than evoked activity. Particularly, 

the induced gamma frequency band is the best decoding ability of CP among all other 

frequency bands. Our results corroborate previous theoretical studies by supporting that 

induced activity can better predict speech categorization. Additionally, we also inferred the 

following. 

1. Induced gamma activity could categorize speech best among all other frequency 

bands.  
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2. The evoked activity of the beta frequency band could categorize the speech sound the 

best among all evoked frequency bands.  

3. Six brain regions’ gamma activity predict the strength of listeners’ categorical hearing 

91.1%. 

1.3 Broader impacts and novelty 

The studies reported here reflect an interdisciplinary blend of engineering and 

neuroscience. The outcomes of this study identify the spatiotemporal and spectral 

characteristics of neural data in speech categorization ability (i.e., behavioral slope). In 

spatiotemporal analysis, we developed a comprehensive data-driven computational 

framework for decoding speech categorization using ERPs. In particular, we developed 

network descriptions of speech encoding and the decision process.  

Furthermore, the spectral analysis showed that the induced mode of brain oscillation 

decodes speech categorization better than the evoked activity. Particularly, the induced 

gamma activity predicts the behavioral slope 91.1%. Apart from clinical implications, better 

speech categorization (i.e., classification) of pure vowels vs. ambiguous speech is likely to 

provide a breakthrough in the understanding of neural mechanisms that underlie speech 

categorization. 
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Chapter 2 -  Research Context 

Most of the studies on cognitive speech processing have applied methodological 

approaches that focus on specific or selected sets of brain regions. However, some complex 

cognitive processing emerges in a large-scale brain-network that supports multiple functions, 

including cognitive/language, attention, and motor control. How can this large-scale brain–

network be identified from whole-brain data rather than specific hypothesis-driven. We 

proposed comprehensive data drive approaches to identify spatiotemporal and spectral 

characteristics of neural data while younger adults categorize the speech sounds (i.e., 

prototypical vowel vs. ambiguous vowel). 

2.1 Spatiotemporal characteristics of speech categorization 

Categories allow listeners to extract, manipulate,  and precisely respond to sounds (C. 

T. Miller & Cohen, 2010; E. K. Miller et al., 2002, 2003; Russ et al., 2007; Tsunada & 

Cohen, 2014) despite wide variability in their acoustic properties. CP emerges in early life 

(Eimas et al., 1971) but is further modified by native language experience (Bidelman & Lee, 

2015; Kuhl et al., 1992; Xu et al., 2006). As such, CP plays an important role in 

understanding receptive communication and the building blocks of speech perception and 

language processing across the lifespan.   

ERPs are particularly useful for examining the brain mechanisms of phoneme and 

speech perception (Celsis et al., 1999; Molfese et al., 2005) given their excellent temporal 

resolution and the rapid time course required to process speech signals. Indeed, several 

neuroimaging studies have documented neural correlates to CP via ERPs (Bidelman, 2015; 

Chang et al., 2010; Shen & Froud, 2019). In particular, several studies have shown that the 

efficiency of listeners’ speech categorization varies in accordance with their underlying brain 

activity (Bidelman et al., 2013; Bidelman & Alain, 2015b; Bidelman & Lee, 2015; Perlovsky, 

2011). For example, Bidelman et al. demonstrated that brain responses in the time frame of 

180-320 ms were more robust for phonetic prototypes vs. ambiguous speech tokens, thereby 
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reflecting category-level processing (Bidelman et al., 2020). Other studies have shown links 

between N1-P2 amplitudes of the auditory cortical ERPs and the strength of listeners’ speech 

identification (Bidelman & Walker, 2017) and labeling speeds (Al-Fahad et al., 2020) in 

speech categorization tasks (Bidelman et al., 2014; Bidelman & Alain, 2015b). These 

findings are consistent with the notion that the early N1 and P2 waves of the ERPs are highly 

sensitive to speech processing and auditory object formation that is necessary to map sounds 

to meaning (Alain, 2007; Bidelman et al., 2013; Wood et al., 1971).   

The neural organization of speech categories also varies spatially, recruiting a widely 

distributed system across a number of brain regions. Neural responses are elicited by 

prototypical speech sounds (i.e., those heard with a strong phonetic category) differentially 

engage Heschl’s gyrus (HG) and inferior frontal gyrus (IFG) compared to ambiguous speech 

depending on a listeners perceptual skill level (Bidelman et al., 2013; Bidelman & Lee, 2015; 

Bidelman & Walker, 2017; Mankel et al., 2020). This suggests emergent categorical 

representations within the early auditory-linguistic pathways. Similarly, Alho et al. found that 

category-specific representations were activated in left IFG (Alho et al., 2016) at an early-

latency (115-140 ms). Collectively, in terms of the time course of processing, M/EEG studies 

agree that the neural underpinnings of speech categories emerge within the first few hundred 

milliseconds after stimulus onset and reflect abstract “category level-effects” (Toscano et al., 

2018) and “phonemic categorization” (Liebenthal et al., 2010). 

Beyond conventional auditory-linguistic brain regions, neuroimaging also 

demonstrates a variety of additional areas important to speech perception and language 

processing (Hickok et al., 2011; Lee et al., 2012; Novick et al., 2010). Among them, the 

superior parietal lobe is associated with writing (Menon & Desmond, 2001) and 

supramarginal gyrus with phonological processing (Deschamps et al., 2014; Oberhuber et al., 

2016) during speech and verbal working memory tasks. Relevant to CP, several studies have 

found that the left inferior parietal lobe is more activated during auditory phoneme sound 
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categorization (Desai et al., 2008; Dufor et al., 2007; Husain et al., 2006). Indeed, auditory 

categorical processing has been shown to recruit superior temporal gyrus/sulcus, middle 

temporal gyrus, premotor cortex, inferior parietal cortex, planum temporal, and inferior 

frontal gyrus (Bidelman & Walker, 2019; Guenther et al., 2004).  Some other neuroimaging 

and electrocorticography studies have however shown that rostral anterior cingulate cortex is 

associated with speech control (Paus et al., 1993; Sahin et al., 2009; Tankus et al., 2012) and 

the orbitofrontal cortex in speech comprehension (Sabri et al., 2008). Under some 

circumstances (e.g., highly skilled listeners), speech categories can emerge as early as 

auditory cortex (Bidelman & Lee, 2015; Bidelman & Walker, 2019; Chang et al., 2010).   

While category representations seem to emerge early in the time course of speech 

perception, the task of categorizing sounds can be further separated into pre- and post-

perceptual stages of processing (i.e., stimulus encoding vs. decision mechanisms). “Early” vs. 

“late” stage models of category formation have long been discussed in the literature (Fox, 

1984; McClelland & Elman, 1986; Noe & Fischer-Baum, 2020; Norris et al., 2000). 

However, few empirical studies have actually separately examined the encoding and decision 

stages of CP. The human brain encodes speech stimuli within ~250 ms after stimulus onset 

(Masmoudi et al., 2012) and decodes ~300 ms after stimulus onset (Domenech & Dreher, 

2010; Mostert et al., 2015). Previous studies have largely focused on these specific time 

windows (e.g., ERP waves) and brain regions when attempting to describe the neural basis of 

CP. While informative, such hypothesis-based testing can be restrictive and potentially may 

miss the broader and distributed networks associated with speech-language processing that 

unfold on different time scales (Du et al., 2016; Rauschecker & Scott, 2009).  

In this regard, ML techniques are increasingly used to “decode” high-dimensional 

neuroimaging data and better understand different states of brain functionality as measured 

via EEG. It would be meaningful if brain functioning that has been linked with speech 

processing (e.g., CP) could be decoded from neural data (e.g., ERPs) without, or at least with 
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minimal, a priori assumptions on when and where those representations emerge. Indeed, 

laying the groundwork for the present work, we have recently shown that the speed of 

listeners’ identification in speech categorization tasks can be directly decoded from their full-

brain EEGs using an entirely data-drive approach (Al-Fahad et al., 2020). We have also 

shown that ML can decode age-related changes in speech processing that occur in older 

adults (Mahmud et al., 2020). 

Departing from previous hypothesis-driven studies (Bidelman & Alain, 2015b; 

Bidelman & Walker, 2019, 2017), the current work used a comprehensive, data-driven 

approach to examine the neural mechanisms of speech categorization during encoding and 

decision stages of processing using whole-brain, electrophysiological data. We analyzed 

cortical speech-evoked ERPs from 64-channel scalp EEG recorded during a rapid speech 

categorization task in young, normal hearing listeners. Our approach applied state-of-the-art 

ML techniques including neural classifiers and feature selection methods (i.e., stability 

selection) to source-level ERPs to investigate the spatiotemporal dynamics of speech 

categorization. We aimed to determine when (i.e., in time) and where (i.e., brain ROIs) neural 

activity from full-brain EEGs differentiated phonetic from phonetically ambiguous speech 

sounds, and thus showed the strongest evidence of categorical processing using an entirely 

data-driven, machine learning approach.   

2.2 Evoked vs. induced analysis for speech categorization 

The electroencephalogram (EEG) can be divided into evoked (i.e., phase-locked) and 

induced (i.e., non-phase locked) responses that vary in a frequency-specific manner (Shahin 

et al., 2009). Evoked responses are largely related to the stimulus, whereas induced responses 

are additionally linked to different perceptual and cognitive processes that emerge during task 

engagement. These later brain oscillations (neural rhythms) play an important role in 

perceptual and cognitive processes and reflect different aspects of speech perception. For 

example, low frequency [e.g., θ (4-8 Hz) ] bands are associated with syllable segmentation 
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(Luo & Poeppel, 2012) whereas α (9-13 Hz) band has been linked with attention (Klimesch, 

2012) and speech intelligibility (Dimitrijevic et al., 2017). Several studies report listeners’ 

speech categorization efficiency varies in accordance with their underlying induced and 

evoked neural activity (Bidelman et al., 2013; Bidelman & Alain, 2015a; Bidelman & Lee, 

2015).  For instance,  Bidelman assessed correlations between ongoing neural activity (e.g., 

induced activity) and the slopes of listeners’ identification functions, reflecting the strength of 

their CP (Bidelman, 2017). Listeners were slower and varied in their classification of more 

category-ambiguous speech sounds, which covaried with increases in induced γ activity 

(Bidelman, 2017) in memory (Bashivan et al., 2014), whereas the higher γ frequency range 

(>30 Hz) is associated with auditory object construction (Tallon-Baudry & Bertrand, 1999) 

and local network synchronization (Giraud & Poeppel, 2012; Haenschel et al., 2000; Si et al., 

2017). 

Studies also demonstrate hemispheric asymmetries in neural oscillations. During 

syllable processing, there is a dominance of γ frequency activity in LH and θ frequency 

activity in RH (Giraud et al., 2007; Morillon et al., 2012). Other studies show that during 

speech perception and production, lower frequency bands (3-6 Hz) better correlate with 

behavioral reaction times than higher frequencies (20-50 Hz) (Yellamsetty & Bidelman, 

2018). Moreover, induced γ-band correlates with speech discrimination and perceptual 

computations during acoustic encoding (Ou & Law, 2018), further suggesting it reflects a 

neural representation of speech above and beyond evoked activity alone.   

Still, given the high dimensionality of EEG data, it remains unclear which frequency 

bands, brain regions, and “modes” of neural function (i.e., evoked vs. induced signaling) are 

most conducive to describing the neurobiology of speech categorization. To this end, the 

recent application of ML to neuroscience data might prove useful in identifying the most 

salient spectral features of brain activity that predict human behaviors.  
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Our goals were to evaluate which neural regime [i.e., evoked (phase-synchronized 

ERP) vs. induced oscillations], frequency bands, and brain regions are most associated with 

CP using whole-brain activity via a data-driven approach (i.e., SVM, KNN classifiers, and 

stability selection). Based on prior work, we hypothesized that evoked and induced brain 

responses would both differentiate the degree to which speech sounds carry category-level 

information (i.e., prototypical vs. ambiguous sounds from an acoustic-phonetic continuum). 

However, we predicted induced activity would best distinguish category-level speech 

representations, suggesting a dominance of endogenous brain rhythms in describing the 

neural underpinnings of CP. 
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Chapter 3 -  Methods and Materials 

In this chapter, we discuss data collection, methods, and materials that are used in this 

dissertation. Our multivariate data-driven frameworks robustly decode speech sounds (e.g., 

prototypical vowel vs. ambiguous) from the neural data. This study demonstrates that how 

the neural mechanism underlying speech categorization. 

3.1 Participants 

Forty-nine young adults (15 male, 34 female; aged 18 to 33 years) were recruited as 

participants from the University of Memphis student body to participate into our ongoing 

studies on the neural basis of speech perception and auditory categorization (Bidelman et al., 

2020; Bidelman & Walker, 2017; Mankel et al., 2020). All participants had normal hearing 

sensitivity (i.e., <25 dB HL between 500-8000 Hz). Listeners were-right handed, native 

English speakers, and had achieved a collegiate level of education (Oldfield, 1971). None 

reported any history of neurological disease. All participants were paid for their time and 

gave informed written consent in accordance with the declaration of Helsinki and a protocol 

approved by the Institutional Review Board at the University of Memphis. 

3.2 Stimulus & task 

We used a synthetic five-step vowel token continuum to assess the most discriminating 

spatiotemporal features while categorizing prototypical vowel speech from ambiguous speech 

(Bidelman et al., 2013, 2014). Speech spectrograms are represented in Figure 1A. Each token 

of the continuum was separated by equidistant steps acoustically based on the first formant 

frequency (F1) and perceived categorically from /u/ to /a/. Each speech token was 100 ms, 

including 10 ms rise/fall to minimize the spectral splatter in the stimuli. Each speech token 

contained an identical voice fundamental frequency (F0), second (F2), and third formant (F3) 

frequencies (F0:150 Hz, F2: 1090 Hz, and F3:2350 Hz). To create a phonetic continuum that 

varied in percept from /u/ to /a/, F1 frequency was parameterized over five equal steps from 

430 Hz to 730 Hz (Bidelman et al., 2013). 
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Stimuli were presented binaurally at an intensity of 83 dB SPL through earphones (ER 2; 

Etymotic Research). Participants heard each token 150-200 times presented in random order. 

They were asked to label each sound in a binary identification task (“/u/” or “/a/”) as fast and 

accurately as possible. Their response and reaction time were logged and reported in Figure 

1C and D. The interstimulus interval (ISI) was jittered randomly between 400 and 600 ms (20 

ms step and rectangular distribution) following listeners' behavioral responses to avoid 

anticipating the next trial (Luck, 2005). 

3.3 EEG recordings and data pre-procedures 

During the behavioral task, EEG was recorded from 64 channels at standard 10-10 

electrode locations on the scalp (Oostenveld and Praamstra 2001). Continuous EEGs were 

 

Figure 1:  Speech stimuli and behavioral results. A) Acoustic spectrograms of the speech 

continuum from /u/ and /a/ ; Arrows: first formant frequency.  B) Behavioral slope. C) 

Psychometric functions showing % “a” identification of each token. Listeners’ perception 

abruptly shifts near the continuum midpoint, reflecting a flip in perceived phonetic 

category (i.e., “u” to “a”). D) Reaction time (RT) for identifying each token. RTs are fastest 

for category prototypes (i.e., Tk1/5) and slow when classifying ambiguous tokens at the 

continuum midpoint (i.e., Tk3). Errorbars = ±1 s.e.m. 
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digitized using Neuroscan SynAmps RT amplifiers at a sampling rate of 500 Hz. Subsequent 

preprocessing was conducted in the Curry 7 neuroimaging software suite, and customized 

routines coded in MATLAB. Ocular artifacts (e.g., eye-blinks) were corrected in the 

continuous EEG using principal component analysis (PCA) (Picton et al., 2000) and then 

filtered (1-100 Hz bandpass; notched filtered 60 Hz). Trials with voltage ≥125 µV were 

discarded.  Cleaned EEGs were then epoched into single trials (-200 to 800 ms, where t = 0 

was stimulus onset). For details see in (Bidelman et al., 2020; Bidelman & Walker, 2017). 

3.4 EEG source localization 

To disentangle the sources of CP-related EEG activity, we reconstructed the scalp-

recorded responses by performing a distributed source analysis in the Brainstorm software 

package (Tadel et al., 2011). All analyses were performed on single-trial data. We used a 

realistic boundary element head model (BEM) volume conductor and standard low-resolution 

brain electromagnetic tomography (sLORETA) as the inverse solution within Brainstorm 

(Tadel et al., 2011). A BEM model has less spatial errors than other existing head models 

(e.g., concentric spherical head model). We used Brainstorm’s default parameter settings 

(SNR=3.00, regularization noise covariance = 0.1). From each single-trial sLORETA volume, 

we extracted the time-courses within 68 functional regions of interest (ROIs) across the left 

and right hemispheres defined by the Desikan-Killiany (DK) atlas (Desikan et al., 2006) (LH: 

34 ROIs and RH: 34 ROIs). Single-trial data were then baseline corrected to the epoch’s pre-

stimulus interval (-200-0 ms).  

Since we were interested to decode prototypical (Tk1/5) from ambiguous speech 

(Tk3)—a marker of categorical processing (Bidelman, 2015; Bidelman & Walker, 2019; 

Liebenthal et al., 2010)—we merged Tk1 and Tk5 responses since they reflect prototypical 

vowel categories (“u” vs. “a’). In contrast, Tk3 reflects a bistable percept—an category-

ambiguous sound listeners sometimes label as “u” or “a” (Bidelman et al., 2020; Bidelman & 
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Walker, 2017; Mankel et al., 2020).  To ensure an equal number of trials and signal to noise 

ratio (SNR) for prototypical and ambiguous stimuli, we considered only 50% of the data from 

the merged (Tk1/5) samples.   

3.5 SVM classification to identify temporal dynamics and spectral bands of CP 

Parameter optimized Support Vector Machine (SVM) classifiers provide better 

performance with small sample sizes data which is common in human neuroimaging studies. 

Classifier performance is greatly affected by tunable parameters in the SVM model (e.g., 

kernel, C, γ)1 (Hsu et al., 2003). To lessen bias in parameter selection, we used a grid search 

approach during the training phase to find optimal kernel, C, and γ values. We randomly split 

the data into training (80%) and test (20%) sets (Park et al., 2011). During the training phase 

(e.g., using 80% data), we fine-tuned the C and γ parameters using grid search to find the 

optimal values such that the resulting classifier accurately distinguished prototypical vs. 

ambiguous speech in the test data (the remaining 20%) that models never seen. The grid 

search process was conducted with five-fold cross validation, kernels = ‘RBF’, fine-tune 20 

different values of (C and γ) in the following range C = [1e-2 to 1e3], and γ = [1e-4 to 1e2] 

(Mahmud et al., 2020). The SVM learned the support vectors from the training data that 

comprised the attributes (e.g., ERP/frequency bands features) and class labels (e.g., Tk1/5 vs. 

Tk3). Then we selected the best model that has maximum margin with the optimal value of C 

and γ for predicting the unseen test data (only by providing the attributes but no class labels). 

 

1 Parameters γ and C in the SVM used in this study give  measures of the influence of training data points on decision 

boundary and a measure of miss-classification tolerance. The first parameter γ comes from the radial basis function 

kernel (e.g., 𝐾(𝑥, 𝑥′) = exp (−
||𝑥−𝑥′||2

2𝜎2
) or equivalently 𝐾(𝑥, 𝑥′) = exp(−𝛾||𝑥 − 𝑥′||2) with a parameter γ) where 

𝛾 =
1

2𝜎2 . In this study, the radial basis kernel is used as a transformation function. A larger value of γ implies smaller 

σ, which means that the classifier takes into account the effect of samples closer to the decision boundary. On the other 

hand, smaller γ means that the classifier considers the effect of samples farther from the decision boundary. The C is a 

parameter of SVM that acts as regularization. It provides the classifier a trade-off between the margin of decision 

boundary and miss- classification. A larger value of C produces a narrower (smaller-margin) hyperplane if that obtains 

less or no miss-classification. Whereas the smaller value of C allows drawing a wider (bigger-margin) hyperplane even if 

there are some miss-classifications. The optimal values of γ and C depend on data, which is why we used a grid search 

to tune these parameters in our classification model. 
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The classification performance metrics (accuracy, F1-score, precision, and recall) are 

calculated from standard formulas (Saito & Rehmsmeier, 2015). 

3.6  Stability selection to identify spatial dynamics of CP 

Our data included a large number of ERP/PSD of different frequency bands 

measurements for each stimulus condition of interest (e.g., Tk1/5 vs. Tk3). Larger numbers of 

variable/features can lead to overfitting and weak generalization in classification problems 

since the majority of features from brain activity (i.e., different ROIs, time segments) do not 

provide discriminative power for decoding CP.  Consequently, we aimed to select a limited 

set of the most salient discriminating features. Stability selection is a state-of-the art feature 

selection method that works well in high dimensional or sparse data based on the Lasso (least 

absolute shrinkage and selection operator) (Meinshausen & Bühlmann, 2010; Yin et al., 

2017). Stability selection can identify the most stable (relevant) features out of a large 

number of features over a range of model parameters, even if the necessary conditions 

required for the original Lasso method are violated (Meinshausen & Bühlmann, 2010).   

In stability selection, a feature is considered to be more stable if it is more frequently 

selected over repeated subsampling of the data (Nogueira et al., 2017). Basically, the 

Randomized Lasso randomly subsamples the training data and fits a L1 penalized logistic 

regression model to optimize the error.  Over many iterations, feature scores are 

(re)calculated. The features are shrunk to zero by multiplying the features’ co-efficient by 

zero while the stability score is lower. Surviving non-zero features are considered important 

variables for classification. Detailed interpretation and mathematical equations of stability 

selection are explained in (Meinshausen & Bühlmann, 2010).  The stability selection solution 

is less affected by the choice of the initial regularization parameters. Consequently, it is 

extremely general and widely used in high dimensional data even when the noise level is 

unknown (Meinshausen & Bühlmann, 2010). 
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     In our implementation of stability selection, we used a sample fraction = 0.75, number 

of resamples = 1000, and tolerance = 0.01 (Meinshausen & Bühlmann, 2010). In the Lasso 

algorithm, the feature scores were scaled between 0 to 1, where 0 is the lowest score (i.e., 

irrelevant feature) and 1 is the highest score (i.e., most salient or stable feature). We 

estimated the regularization parameter from the data using the least angle regression (LARs) 

algorithm (Efron et al., 2004; Friedman et al., 2010).  Over 1000 iterations, Randomized 

Lasso provided the overall feature scores (0~1) based on the number of times a variable was 

selected. We ranked stability scores to identify the most important, consistent, stable, and 

invariant features that could decode speech categories via the EEG (i.e., correctly classify 

Tk1/5 vs. Tk3). We submitted these ranked features and corresponding class labels to an 

SVM classifier with different stability thresholds and observed the model performance.  
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Chapter 4 -  Spatiotemporal analysis of speech categorization 

In this chapter, we demonstrate the spatio-temporal analysis to identify when in time and 

where in the brain CP could be decoded best from neural data (e.g., ERPs). We observed the 

classifier accuracy, as a sliding window decoder basis over the epoch to investigate the 

temporal characteristics of the neural signal that could categorize the speech sound best. In 

addition, we applied the stability selection to the whole epoch data for identifying the 

stable/invariant features or brain ROIs that associate with speech categorization. 

4.1 Feature extraction 

Previous computational studies have found that ERPs averaged over 100 trials provided 

the best classification of data while maintaining reasonable signal SNR and computational 

efficiency (Al-Fahad et al., 2020; Mahmud et al., 2020). We quantified source-level ERPs 

with a mean bootstrapping approach (James et al., 2013) by randomly averaging over 100 

trials (with replacement) 30 times (Al-Fahad et al., 2020) for each stimulus condition per 

participant. For each resample and ROI time course, we measured the mean amplitude within 

a 20 ms sliding window (without overlapping) in the post-stimulus interval (i.e., 0 to 800 ms). 

In post hoc analysis, we parsed the epoch into “encoding” (0-260 ms) and “decoding/decision 

process” intervals

1 (>300 ms) to investigate neural decoding related to pre- and post-perceptual processing, 

respectively.  The sliding window resulted in 40 (800ms/20ms) ERP features (i.e., mean 

amplitude per window) for each ROI waveform, yielding a total of 68*40=2720 features per 

token (e.g., Tk1/5 vs. Tk3) from each listeners’ data. Thus, the encoding and decision 

 

1There is no clear division between “encoding” and “decision/post-processing” stages of perceptual chronometry. The choice 

of the ~300 ms mark was motivated by our previous demonstrating categorical coding within the time-frame of the N1-P2 

waves of the ERP (< 250 ms) (Bidelman et al., 2013). We chose to include a subsequent time buffer between the two 

intervals so as to minimize overlap and therefore what was being decoded in each segment. 
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windows contained 13*68=884 (encoding) and 25*68=1700 (decision) ERP features. ERPs 

features were then used as input to an SVM classifier to access the temporal dynamics of the 

data and determine when in time CP was decodable from brain activity. State-of-the art 

variable selection (stability selection; see Section 3.6) (Meinshausen & Bühlmann, 2010) was 

then applied for identifying where in the brain (e.g., which ROIs) were involved in encoding 

and decision processes with regard to the categorization of speech. Before submitting to the 

SVM classifier, the data were z-score normalized to ensure all features were on a common 

scale range (Casale et al., 2008). 

 

 

Figure 2: Grand averaged butterfly plots of scalp ERPs (64 channels) to prototypical (A; 

Tk1/5) vs. category-ambiguous (B; Tk3) vowels. Vertical lines demarcate segments for the 

stimulus encoding (0-260 ms) and decision period (300 ms-800 ms) analysis windows. t=0 

marks stimulus onset. C) Topographic maps for encoding (left) and decision process 

(right). 
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4.2 Results 

4.2.1 Behavioral results 

Behavioral identification (%) functions and reaction time (ms) for speech categorization 

are depicted in Figure 1C and Figure 1D, respectively. Listeners’ responses abruptly shifted in 

speech identity (/u/ vs. /a/) near the midpoint of the continuum, reflecting a change in 

perceived category. The behavioral speed of speech labeling (e.g., reaction time (RT)) were 

computed listeners’ median response latency for a given condition across the all trials. RTs 

outside of 250-2500 ms were deemed outliers and excluded from further analysis (Bidelman 

et al., 2013; Bidelman & Walker, 2017). Listeners spent more time classifying the ambiguous 

(Tk3) than prototypical speech tokens (e.g., Tk1/5), further confirming categorical hearing 

(Pisoni & Tash, 1974). For each continuum, the identification scores were fit with a two 

parameters sigmoid function; 𝑃 =
1

[1+𝑒−𝛽1(𝑥−𝛽0)]
 , where P is the proportion of the trial 

identification as a function of a given vowel, x is the step number along the stimulus 

continuum, and β0 and β1 the location and slope of the logistic fit estimated using the 

nonlinear least-squares regression (Bidelman et al., 2014; Bidelman & Walker, 2017). The 

slopes of listeners’ sigmoidal psychometric function, reflecting the strength of their CP, is 

presented in Figure 1B. 

4.2.2 Decoding the time-course of speech categorization from ERPs 

We first examined how well categorical speech information could be decoded from 

whole-brain and individual hemisphere (e.g., LH and RH) ERPs data. During pilot modeling, 

we carried out a grid search approach (mentioned in Chapter 3 - 3.5) to develop parameters 

used for work shown here. The optimal values of C and γ parameters corresponding to the 

maximum speech decoding reported in Table 1 were: [C=10, γ=0.05 for whole-brain data; 

C=20, γ=0.01 for LH data; C=20, γ=0.01 for RH data].  We then selected the best model and 
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predicted the class labels (e.g., Tk1/5 vs. Tk3) by feeding the feature vectors only from the 

unseen test data. The performance metrics were calculated from predicted class labels and 

true class labels. Time-varying accuracy of the SVM classifier (i.e., distinguishing Tk1/5 vs. 

Tk3 responses) is shown in Figure 3.   

Decoding was generally at chance level (54%) at stimulus onset (i.e., t = 0) but increased 

rapidly to a maximum accuracy of 95.16% by 120 ms (marked as circles in Figure 3). The 

individual hemispheres alone were less accurate and decoded speech categories later in time 

compared to whole-brain data (LH: 89.03% at 140 ms; RH: 86.45% at 200 ms) (marked as 

circles in Figure 3). Other important performance metrics of the SVMs at maximum decoding 

are reported in Table 1. Collectively, the earlier and improved ability of LH compared to RH 

in decoding phonetic categories is consistent with a LH bias in speech and language 

processing (Hickok & Poeppel, 2000). More critically, the early time course of decoding 

(120-150 ms) confirms that category level information, an abstract code, emerges very early 

in the neural chronometry of speech processing and well before listeners’ execute their 

behavioral decision (cf. reaction times in Figure 1D) (Alho et al., 2016; Bidelman et al., 

2013; de Taillez et al., 2020).  

 

Figure 3: SVM classifier accuracy decoding speech categories from source ERPs. A) 

Decoding using whole-brain vs. hemispheres-specific data (LH and RH) across the epoch 

window. Maximum classification accuracies are marked by circles.  Maximum classifier 

accuracy was observed at ~120 ms suggesting category representations emerge early, ~200 

ms before listeners’ behavioral categorization decisions (cf. Figure 1C). 
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4.2.3 Decoding the spatial regions underlying categorization: stimulus encoding 

vs. decision 

We used stability selection to find the most critical brain ROIs that were associated 

with categorical organization in the encoding (pre-perceptual) vs. decision (post-perceptual) 

periods of the task structure (see Figure 2). ERP features were considered stable (relevant) if 

they yielded a decoding accuracy performance >80%. The effect of stability threshold 

selection in the encoding and decision windows is illustrated in Figure 4. Each bin of 

histogram demonstrates the number of features in a range of stability threshold. The x-axis 

has four labels. The first line represents the stability score (0 to 1); the second and third line 

show the number of features and percentage of the selected features in the corresponding bin; 

line four represents the cumulative unique ROIs up to the lower boundary of the bin. The 

solid black and dotted red semi bell-shaped curves of Figure 4 represent classification 

Table 1: Performance metrics of the SVM classifier corresponding to maximal decoding of 

prototypical vs. ambiguous vowels from ERPs. 

Metric (%) 

Whole-

brain  

features 

LH  

features 

RH 

features 

Accuracy 95.16 89.03 86.45 

AUC 95.14 89.18 86.45 

F1-score 95.00 89.00 86.00 

Precision 95.00 89.00 87.00 

Recall 95.00 89.00 86.00 
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accuracy and AUC, respectively for the different stability thresholds. In this analysis, the 

number of unique brain ROIs represents distinct functional brain ROIs of the DK atlas and 

the number of features represents different time windows extracted from source ERPs. 

Features selected at each stability threshold were then submitted to an SVM classifier 

separately for the stimulus encoding and response decision periods.  

During stimulus encoding (0-260 ms), 75% of features yielded stability scores 0 to 

0.1. Thus, the majority of spatiotemporal ERP features were selected less than 10% out of 

1000 model iterations and therefore carry weak importance in terms of describing categorical 

speech processing during stimulus encoding. In contrast, at a more conservative stability 

score of 0.3, 102 (11%) out of 884 ERP features selected from 52 ROIs were able to encode 

prototypical from ambiguous speech at near-ceiling accuracy (95.8%). Accuracy decreased 

precipitously with higher (more conservative) stability thresholds resulting in fewer (though 

more informative) brain ROIs describing category processing. For example, a stability score 

of 0.6—selecting only the most behaviorally-relevant features—still encoded speech 

categories well above chance (66.8%) with only 5 features from 5 ROIs. At stability score 

0.5, speech encoding accuracy 82.6% only using 15 features from 13 unique ROIs. A BrainO 

visualization (Moinuddin et al., 2019) of relevant ROIs for the encoding period (threshold 

stability score ≥  0.5) is shown in Figure 5 with additional details in Table 2.  

During the decision period following stimulus encoding (> 300 ms), corresponding to 

the stability score 0.4, only 92 (5%) out of 1700 ERP features were selected, and the 

classifier showed decoding accuracy of 93.5% (AUC 93.6%). At a stability score 0.5 

(corresponding to 83.2% accuracy), only 21 (1%) out 1700 ERP features from 15 unique 

ROIs were needed to describe categorical processing.   
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Figure 4: Effect of stability score threshold on model performance during (A) encoding and 

(B) decision period of the CP task. The bottom of the x-axis has four labels; Stability score 

represents the stability score range of each bin (scores: 0~1); Number of features, number 

of features under each bin; % features, the corresponding percentage of selected features; 

ROIs, number of cumulative unique brain regions up to the lower boundary of the bin. 
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Figure 5: Stable (most consistent) neural network during the encoding period of CP. 

Visualization of brain ROIs corresponding to ≥ 0.50 stability threshold (13 top selected 

ROIs which show categorical organization (e.g., Tk1/5 ≠ Tk3) at 82.6%. (A) LH (B) RH 

(C) Posterior view (D) Anterior view. Color legend demarcations show high (pink), 

moderate (blue), and low (white) stability scores. l/r = left/right; SUPRA, supramarginal; 

CAC, caudal anterior cingulate; IP, inferior parietal; POB, pars orbitalis; TRANS, 

transverse temporal; SF, superior frontal; POP, pars opercularis; LOF, lateral orbitofrontal; 

PT, pars triangularis; SP, superior parietal; CMF, caudal middle frontal; FUS, fusiform. 
. 
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Figure 6: Stable (most consistent) neural network during the decision period of CP. 

Visualization of brain ROIs corresponding to ≥ 0.50 stability threshold (15 top selected 

ROIs which decode Tk1/5 from Tk3 at 83.2%. Otherwise as in Figure 5. SP, superior 

parietal; INS, Insula; POP, pars opercularis ; SF, superior frontal; CMF, caudal middle 

frontal; IST, isthmus cingulate; PT, pars triangularis; CMF, caudal middle frontal; ENT, 

entorhinal;  PARAC,  paracentral; IP, inferior parietal; PHIP, para hippocampal ;POC, 

postcentral. 

 

Table 2: Most important brain regions describing speech categorization during stimulus 

encoding (13 ROIs) and response decision (15 ROIs) at a stability threshold ≥ 0.5. 

Rank Encoding (82.6% total 

accuracy) 

Decision (83.2% total accuracy) 

ROI name 

ROI 

abbrev. 

Stabili

ty score 

ROI 

name 

ROI 

abbrev. 

Stabili

ty score 

1 

Supramarg

inal L lSUPRA 0.73a 

Superior 

parietal L lSP 0.63 

2 

Caudal 

anterior 

cingulate R rCAC 0.66 Insula L lINS 0.60 

3 

Inferior 

parietal L lIP 0.65 

Isthmus 

cingulate R rIST 0.58 



 

 10 

 

4 

Pars 

orbitalis R rPOB 0.61 

Pars 

opercularis R rPOP 0.58 

5 

Transverse 

temporal L lTRANS 0.61 

Superior 

frontal L lSF 0.57 

6 

Superior 

frontal R rSF 0.58 

Caudal 

middle frontal 

R rCMF 0.57 

7 

Pars 

opercularis 

L lPOP 0.57 

Isthmus 

cingulate L lIST 0.56 

8 

Lateral 

orbitofront

al L lLOF 0.57 

Pars 

triangularis R rPT 0.54 

9 

Superior 

frontal L lSF 0.55 

Caudal 

middle frontal 

L lCMF 0.54 

10 

Pars 

triangularis 

R rPT 0.54 Entorhinal L lENT 0.53 

11 

Superior 

parietal R rSP 0.53 

Pars 

opercularis L lPOP 0.53 

12 

Caudal 

middle 

frontal R rCMF 0.53 Paracentral R rPARAC 0.52 

13 fusiform L lFUS 0.52 

Inferior 

parietal L lIP 0.51 

14    

Parahippocam

pal R rPHIP 0.51 

15    Postcentral L lPOC 0.51 

 

a A score of 0.73, for example, means that out of 1000 iterations, the ERP feature of this ROI was selected 730 

times by stability selection. 
4.2.4 Brain-behavior correspondences 

Multivariate regression analysis is widely used to investigate when more than one 

predictor simultaneously influences an outcome variable (Hanley, 1983; Royston & 
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Sauerbrei, 2008).  To evaluate the behavioral relevance of the brain regions identified via 

stability selection, we conducted multivariate regression using weighted least squares (WLS) 

regression (Ruppert & Wand, 1994). Regressions were computed between the 15 ROI ERPs 

identified in the decision interval and listeners’ behavioral slopes (Figure 1B), which indexes 

their degree of categorical hearing. We computed the mean neural response (i.e., ERP) within 

each selected region across the stimuli [mean ERP of (Tk1/5 & Tk3)] and then regressed the 

15 ROI responses simultaneously against listeners’ behavioral slope. The inverse of the 

absolute error values of the ordinary least squares were used as weights in the WLS to reduce 

the effect of heteroscedasticity (Seabold & Perktold, 2010; Weighted Regression in SAS, R, 

and Python, n.d.). The multivariate model robustly predicted listeners’ behavioral CP from 

neural data (R2 = 0.85, p<0.00001; Table 3), demonstrating the selected 15 ROIs identified 

via ML (i.e., stability selection) carried behaviorally relevant information regarding CP.  

 

Table 3:  WLS regression results describing how individual brain ROIs predict behavioral 

CP. 

Rank ROI name 

ROI 

abbrev. 

Coefficie

nt 

t-value p-value 

1 Superior parietal L lSP -0.2163 -3.008 0.004920 

2 insula L lINS 0.1808 5.188 0.000010 

3 Isthmus cingulate R rIST -0.2679 -3.764 0.000633 

4 Pars opercularis R rPOP 0.1231 4.429 0.000093 

5 Superior frontal L ISF -0.1726 -3.190 0.003055 

6 

Caudal middle 

frontal R rCMF 

0.1544 2.367 
0.023774 

7 Isthmus cingulate L lIST 0.2259 2.792 0.008545 

8 Pars triangularis R rPT -0.0214 -0.679 0.501925 

9 

Caudal middle 

frontal L ICMF 

0.0153 0.345 
0.732223 

10 entorhinal L lENT 0.1170 5.009 0.000013 
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4.3 Discussion 

We conducted machine learning analyses on EEG to examine the spatiotemporal 

dynamics of speech processing during rapid speech sound categorization. We found that 

speech categories are best decoded via patterned neural activity occurring within 120 ms and 

no later than 200 ms. We also identified the most relevant brain regions that are involved in 

encoding and decision stages of the categorization process. Our findings show a small set of 

brain areas (15 ROIs) robustly predicts listeners’ categorical decisions, accounting for 85.0% 

of the variance in behavior. 

4.3.1 Speech categories are decoded early (<150 ms) in the time course of 

perception  

We have replicated and extended previous work by using whole-brain EEG and SVM 

neural classifiers to examine the time-course and hemispheric asymmetry as the brain 

decodes the identity of speech sounds. We found optimal speech decoding in the time frame 

of the N1 wave (120 ms) of the auditory ERPs using full-brain data. Analysis by hemisphere 

further showed that LH yielded better and earlier decoding than the RH, where optimal 

decoding occurred 20-80 ms later (LH: 140 ms; RH: 200 ms). These latencies are compatible 

with the N1-P2 waves of the auditory ERPs and suggest a rapid speed to phonetic 

categorization (Alho et al., 2016; Bidelman et al., 2013; de Taillez et al., 2020). Our results 

are consistent with previous neuroimaging studies that have shown the N1 and P2 ERPs are 

sensitive to auditory perceptual object identification (Alain, 2007; Bidelman et al., 2013; 

Wood et al., 1971). The better decoding by LH as compared to RH activity is consistent with 

11 Pars opercularis L lPOP 0.1475 3.892 0.000441 

12  paracentral R rPARAC 0.2223 3.308 0.002226 

13 Inferior parietal L lIP -0.1017 -1.364 0.181508 

14 Parahippocampal R rPHIP -0.0422 -2.097 0.043540 

15 Postcentral L lPOC 0.1809 2.749 0.009512 
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the dominance of LH in phoneme discrimination and speech sound processing (Bidelman & 

Howell, 2016; Bidelman & Walker, 2019; Frost et al., 1999; Tervaniemi & Hugdahl, 2003; 

Zatorre et al., 1992). Our neural decoding results also corroborate previous hypothesis-driven 

work (Bidelman et al., 2013, 2014; Chang et al., 2010) by confirming speech sounds are 

converted to an abstract, categorical representation within the first few hundred milliseconds 

after stimulus onset.  

4.3.2 Differential brain-networks involved in encoding and decision processing  

Our results help identify the most stable, relevant, and invariant functional brain ROIs 

that support the brain-networks involved in encoding and decision processes of speech 

categorization using an entirely data-driven approach (stability selection coupled with SVM). 

During stimulus encoding, stability selection have identified 13 consistent ROIs that 

differentiate speech categories (82.6% accuracy; 0.5 stability threshold). Out of these 13 

regions, eight of the ROIs are critically involved in the dorsal-ventral pathway for speech-

language processing (Hickok & Poeppel, 2004). These included areas in frontal lobe 

including inferior frontal gyrus [BA 44, (i.e., pars opercularis L, pars triangularis R), i.e., 

“Broca’s area”], three regions from parietal and two regions from temporal lobe including 

primary auditory cortex (i.e., transverse temporal L). For later decision stages of the task, the 

same criterion of decoding performance (83.2% @ 0.5 stability threshold) has identified 15 

ROIs that showed categorical neural organization. Out of these 15 regions, eight areas are 

from inferior frontal areas including BA 44 (i.e., pars opercularis L, pars opercularis R) and 

BA 45 (i.e., pars triangularis R), four regions from parietal lobe, and three regions from 

temporal lobe. Our data reveal two, relatively sparse, and partially overlapping neural 

networks that support different stages of speech categorization process.  

Among the encoding and decision networks identified from our EEG data, five regions 

were common between the two topologies. Notably were the inclusion of BA44/45 that are 
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heavily involved in speech-language processing (Hickok et al., 2011; Lee et al., 2012; Novick 

et al., 2010). Early activation of IFG (during encoding) could be due to higher order speech 

centers exerting an inhibitory influence on auditory representations in order to prevent 

interference from nonlinguistic cues (Dehaene-Lambertz et al., 2005; Liberman et al., 1981) 

and optimize categorization, particularly under states of uncertainty  (Carter & Bidelman, 

2020). The left inferior parietal lobe also appears as a common hub among the two networks. 

Superior parietal areas have been linked with auditory, phoneme, sound categorization, 

particularly when listeners are asked to resolve context or ambiguity (Dufor et al., 2007; Feng 

et al., 2018; Myers & Blumstein, 2008).  Involvement of superior frontal lobe in both 

networks is perhaps consistent with its role in higher cognitive functions and working 

memory (Klingberg et al., 2002; Nyberg et al., 2003). The fact that these extra-sensory 

regions can decode category structure even during stimulus encoding (< 150 ms) suggests 

that the formation of speech categories might operate nearly in parallel within lower-order 

(sensory) and higher-order (cognitive-control) brain structures (Toscano et al., 2018). 

However, these category representations need not be isomorphic across the brain. For 

example, category formation might reflect a cascade of events where speech units are 

reinforced and further discretized by a recontact of acoustic-phonetic with lexical 

representation of the speech category (Myers & Blumstein, 2008).    

Notable among the non-overlapping regions between stages were left primary auditory 

cortex (transverse temporal) and supramarginal gyrus, both of which were exclusive to the 

stimulus encoding period.  Both regions have been implicated in the early acoustic analysis of 

the speech signal and related phonological processing (Deschamps et al., 2014; Geiser et al., 

2008; Hickok et al., 2000; Oberhuber et al., 2016; Whitwell et al., 2013; Zatorre et al., 1992). 

Intuitively, their absence during the decision stage further suggests the categorical 

representation of speech, while present early in time (< 150 ms), might take different forms in 

auditory-sensory cortex before being broadcast to decision mechanisms downstream.  
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Left postcentral gyrus is also exclusive during decision. Activation of this area proximal 

to the behavioral response execution most probably reflects motor planning and/or speech 

reconstruction (Martin et al., 2014). Additional non-overlapping ROIs included pars 

opercularis in the RH. Right IFG has been implicated in attentional control and response 

imbibition (Hampshire et al., 2010), which is consistent with its exclusive involvement in the 

decision stage of our task. Presumably, the other non-overlapping regions identified via 

stability selection (superior parietal L, insula L, Isthmus cingulate (l/rIST), caudal middle 

frontal L, entorhinal L, paracentral R, parahippocampal R) are also involved in decision 

processes, though as of yet, in an unknown way. Minimally, the involvement 

parahippocampal regions implies putative memory and retrieval processes. Still, more 

detailed localization studies (e.g., using fMRI) are needed to validate our EEG data, which 

offers a much coarser spatial resolution.   

It is noticeable that during encoding, 7 out of 13 ROIs are from LH; for decoding, 9 out of 

15 ROIs. The left hemisphere bias in our decoding data is perhaps expected given the LH 

dominance in auditory language processing (Caplan, 1994; Hull & Vaid, 2006; Tzourio et al., 

1998). Moreover, our results support previous studies by confirming a bilateral fronto-

parietal network involved in auditory attentional, working memory (Belin et al., 2002; 

Schneiders et al., 2012), sound discrimination tasks (Hickok & Poeppel, 2000), and phoneme 

categorization (Bidelman & Walker, 2019; Lee et al., 2012; Loui, 2015). Interestingly, our 

study shows that only 15 brain regions (during decision) are needed to predict listeners’ 

behavior CP with 85.0% accuracy. 

 

 

 

 



 

 16 

Chapter 5 -  Speech categorization from evoked versus induced responses 

In this chapter, we discuss evoked vs. induced analysis to assess which mode of brain 

oscillations and frequency bands could categorize speech sound well. Our analysis shows that 

induced brain activity could categorize the speech sound better than the evoked activity. 

Particularly, we found that induced gamma frequency is the strongest predictable ability 

among all other frequency bands. Remarkably, induced high frequency (γ-band) oscillations 

dominate CP decoding in the left hemisphere, whereas lower frequency (θ-band) dominate 

decoding in the right hemisphere. 

5.1 Evoked activity and induced features extraction 

Here we have discussed time-frequency analysis for evoked and induced analysis. To 

separate the induced and evoked activity, we used the wavelet transform. We applied wavelet 

transform on each trial of each ROIs then took their absolute values and averaged them up. 

This averaged signal contains the evoked and induced activity. For evoked activity, we 

averaged over a number of trials that yielded evoked activity. Then we applied wavelet on 

each brain ROIs. To extract the induced activity, we subtracted the evoked activity from the 

total activity. We discuss detail in the following section. 

5.2.1 Time-Frequency analysis 

Time-frequency analysis was conducted via wavelet transform (Herrmann et al., 2014). 

First, we computed the ERP using bootstrapping by randomly averaged over 100 trials with 

the replacement 30 times (Al-Fahad et al., 2020) for each stimulus condition (e.g., Tk1/5 and 

Tk3) per subject and source ROI (e.g., 68 ROIs).  We then applied the Morlet wavelet 

transform to each ROI average data (i.e., ERP) with time steps of 2 ms and an increment step 

frequency 1 Hz from low to high frequency (e.g., 1 to 100 Hz) across the epoch, which 

provided only evoked frequency-specific activity (i.e., time- and phase-locked to stimulus 

onset). For computing induced activity, we performed a similar Morlet wavelet transform on 

a single-trial basis for each ROI, and then computed the absolute value of each trial 
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spectrogram. We then averaged the resulting time-frequency decompositions (Herrmann et 

al., 2014), resulting in a spectral representation that contains total activity. To isolate induced 

responses, we subtracted the evoked activity from the total activity (Herrmann et al., 2014). 

We then extracted the different frequency band signals from evoked and induced activity 

time-frequency maps for each brain region (e.g., 68 ROIs). Examplary data showing evoked 

and induced time-frequency maps from the primary auditory cortex [i.e., transverse temporal 

(TRANs)] are shown in Figure 7.  We did not separate early vs. late windows in this study as 

we have previously shown induced activity during speech categorization tasks is largely 

independent of motor responses (Bidelman, 2015). 

Spectral features of different bands (θ, α, β, and γ) were quantified as the mean power 

over the full epoch. We concatenated four frequency bands that resulted in 4*68=272 features 

for each response type (e.g., evoked vs. induced) per speech condition (Tk1/5 vs. Tk3).  We 

conducted a paired t-test between evoked and induced feature vectors [e.g., concatenating all 

frequency band features of each ROI and stimulus type (Tk1/5 vs. Tk3)] and found statistical 

significance [t (783359) = 1212.53, p<0.001] between the two brain modes. We also 

conducted one-way ANOVA tests  to identify a possible band effects (θ, α, β, and γ band 

activity) within each brain-regime. Band modulations were evident in both induced [F (4, 

2876) = 247499.16, p<0.001] and evoked [F (4, 2876) = 108336.47, p<0.001] activities. To 

assess which regime (evoked vs. induced) and oscillatory band (θ, α, β, and γ) is more 

important to speech categorization, we then used machine learning classifiers to decode the 

data.  We separately (i.e., evoked and induced) submitted the individual frequency bands to 

the support vector machine (SVM) classifier and all concatenated features (e.g., θ, α, β, and γ 

bands) to stability selection to investigate which frequency bands and brain regions decode 

prototypical (e.g., Tk1/5) from ambiguous (Tk3) vowels. Features were z-scored prior to 

SVM to normalize them to a common range. 
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Figure 7: Grand average neural oscillatory responses to prototypical vowel (e.g., Tk1/5 and 

ambiguous speech token (Tk3) A,C) Evoked activity for prototypical vs. ambiguous 

tokens. B, D) Induced activity for prototypical vs. ambiguous tokens. Primary auditory 

cortex (PAC) [lTRANS, left transverse temporal gyrus]. 

 

5.2 Results 

5.2.1 Decoding categorical neural responses using band frequency features and 

SVM 

We investigated the decoding of prototypical from ambiguous vowels (i.e., category-

level representations) using SVM neural classifier on whole-brain (all 68 ROIs) and 

individual hemisphere (LH and RH) data separately for induced vs. evoked activity. The best 

model performance on test-dataset is reported in Figure 8 and Table 4.  

Using whole-brain evoked θ, α, β, and γ frequency responses, speech stimuli (e.g., 

Tk1/5 vs. Tk 3) were correctly distinguished at 66-69% accuracy. Among all evoked 

frequency bands, β-band was optimal to decode speech categories (69.61% accuracy). LH 

data revealed that θ, α, β, and γ bands decoded speech stimuli at accuracies between ~63-65% 

whereas decoding from RH was slightly poorer 57-62%.  
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Using whole-brain induced θ, α, β, and γ frequency responses speech stimuli were 

decodable at accuracies 89-95%. Among all induced frequency bands, γ band showed the 

best speech segregation (94.9% accuracy). Hemisphere specific data again showed lower 

accuracy. LH oscillations decoded speech categories at 76-87% accuracy whereas RH yielded 

80-84%. 

 

Figure 8: Decoding categorical neural encoding using different frequency band features 

of source-level EEG. SVM results classifying prototypical (Tk1/5) vs. ambiguous (Tk 3) 

speech sounds. A) Whole-brain data (e.g., 68 ROIs), B) LH (e.g., 34 ROIs) C) RH (e.g., 34 

ROIs). Chance level =50%. 

Table 4: Performance metrics of the SVM classifier corresponding to maximal decoding of 

prototypical vs. ambiguous vowels from ERPs. 

Neural 

activity 

Frequency 

band 

Accuracy 

(%) 

AUC 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

 

 

Evoked 

θ 67.53      67.59 68.00 68.00 67.00 

α 67.88 67.92 68.00 68.00 67.00 

β 69.61 69.64 68.00 68.00 68.00 

γ 66.66 66.65 67.00 67.00 67.00 

 θ 90.97 90.98 91.00 91.00 91.00 
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We also reported the mean accuracy and error variance of five-fold cross-validation 

accuracy in the Figure 9. 

 

Figure 9: Decoding categorical neural encoding using different frequency band features 

of source-level EEG. Mean accuracy of SVM five-fold cross-validation results classifying 

prototypical (Tk1/5) vs. ambiguous (Tk 3) speech sounds. A) Whole-brain data (e.g. 68 

ROIs), B) LH (e.g., 34 ROIs) C) RH (e.g., 34 ROIs). Chance level =50%. Errorbars = ±1 

s.e.m. 

 

Using whole-brain evoked θ, α, β, and γ frequency responses, speech stimuli (e.g., Tk1/5 

vs. Tk 3) were correctly distinguished at a mean accuracy of 61-64% accuracy. LH data 

revealed that θ, α, β, and ɣ bands decoded speech stimuli at mean accuracies between ~57-

63% whereas decoding from RH was slightly poorer 57-61%. The mean accuracy is ~5% less 

than the best model using the evoked activity.   

Using whole-brain induced θ, α, β, and γ frequency responses speech stimuli were 

decodable at mean accuracies 87-93%. Still, among all induced frequency bands, ɣ band 

Induced α 89.06 89.05 89.00 89.00 89.00 

β 93.23 93.20 93.00 93.00 93.00 

γ 94.96 94.96 95.00 95.00 95.00 
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showed the best speech segregation (93% mean accuracy). LH oscillations decoded speech 

categories at 75-85% mean accuracy whereas RH yielded 80-82%. The maximum deviation 

of accuracy ~2% from the best model using induced activity.  

5.2.2 Decoding categorical neural responses using band frequency features and 

KNN 

We used a KNN classifier to corroborate the main SVM findings with a different 

algorithm. We split the data into training and test sets of 80% and 20%, respectively. During 

the training phase, we tuned the value of k parameters from 1 to 10 to achieve maximum 

accuracy. Classification results of KNN on the test dataset is reported in the Figure 10. The 

KNN classifier exhibited similar though slightly inferior results than the SVM classifier, 

justifying our choice of the SVM model. 

  Using whole-brain evoked θ, α, β, and ɣ band frequency responses, speech stimuli 

(e.g., Tk1/5 vs. Tk 3) were correctly distinguished at 64-68% accuracy. Among all evoked 

frequency bands, β-band was optimal to decode speech categories (67.70% accuracy). LH 

data revealed that θ, α, β, and ɣ bands decoded speech stimuli at accuracies between ~58-63% 

whereas decoding from RH was slightly poorer 57-62%. 

Using whole-brain induced θ, α, β, and ɣ frequency responses speech stimuli were 

decodable at accuracies 88-94%. Among all induced frequency bands, ɣ band showed the 

best speech segregation (94.42% accuracy). Hemisphere specific data again showed lower 

accuracy. LH oscillations decoded speech categories at 76-86% accuracy whereas RH yielded 

79-84%. 
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Figure 10: Grand Decoding categorical neural encoding using different frequency band 

features of source-level EEG. KNN results classifying prototypical (Tk1/5) vs. ambiguous 

(Tk 3) speech sounds. A) Whole-brain data (e.g., 68 ROIs), B) LH (e.g., 34 ROIs) C) RH 

(e.g., 34 ROIs). Chance level =50%. 

 

5.2.3 Decoding brain regions associated with CP (evoked vs. induced) 

We separately applied the stability selection (Meinshausen & Bühlmann, 2010) to 

induced and evoked activity features to identify the most critical brain areas (e.g., ROIs) that 

have been linked with speech categorization. Spectral features of brain ROIs were considered 

stable if the speech decoding accuracy was >70%.  The effects of stability scores on speech 

sound classification is represented in Figure 11. Each bin of the histogram illustrates the 

number of features in a range of stability scores. In this work, the number of features (labeled 

in Figure 11) represents the neural activity of different frequency bands and the unique brain 

regions (labeled as ROIs in Figure 11) represent the distinct functional brain regions of the 

DK atlas. The semi bell-shaped solid black and dotted red lines demonstrate classifier 

accuracy and AUC, respectively. We submitted the neural features identified at different 

stability thresholds to SVMs. This allowed us to determine whether the collection of neural 
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measures identified via machine learning were relevant to classifying speech sound 

categorization. 

For induced responses, most features (60%) yielded stability scores 0 to 0.1, meaning 

163/272 (60%) were selected less than 10% out of 1000 iterations from 68 ROIs. A stability 

score of 0.2 selected 47/86 (32%) of the features from 47 ROIs that could decode speech 

categories at 96.9% accuracy. Decoding performance decreased with increasing the stability 

score (i.e., more conservative variable/brain ROIs selection) resulting in a reduced feature set 

that retained only the most meaningful features distinguishing speech categories from a few 

ROIs.  For instance, corresponding to the stability threshold 0.5, 25 (10%) features were 

selected from 21 brain ROIs that yielded the speech categorization 92.7 % accurately.  

However, corresponding to the stability threshold 0.8 only 2 features were selected from 2 

brain ROIs that decoded CP at 60.6%, still greater than chance level (i.e., 50%). Performance 

improved by ~10% (86.5%) when the stability score was changed from 0.7 (selected brain 

ROIs 9) to 0.6 (selected brain ROIs 14). A BrainO visualization (Moinuddin et al., 2019) of 

these brain ROIs is delineated in Figure 12.  

Using evoked activity, maximum decoding accuracy was 78.0% at a 0.1 stability 

threshold. Here, 43 % of features produced a stability score between 0.0 to 0.1. These 118 

(43%) features are not informative because they decreased the model’s accuracy to properly 

categorize speech. Corresponding to the stability scores 0.9, only 8 features were selected 

from the 6 brain ROIs, which decoded speech at 65.8% accuracy.  At stability score 0.6, 29 

(1%) features were selected from 22 brain ROIs corresponding to 71.4 % accuracy 

performance.  

Our goal is to build an interpretable model that can describe speech categorization 

with reasonable accuracy using the smallest number of brain ROIs/features. Usually, the 

knee-point is a location along the stability curve which balances model complexity (i.e., 

feature count) and decoding accuracy. Thus, 0.6 might be considered an optimal stability 
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score (i.e., knee point of a function in Figure 11) as it decoded speech well above change 

(>70%) with a minimal (and therefore more interpretable) feature set for both induced and 

evoked activity. Brain ROIs corresponding to the optimal stability score (0.6) are depicted in 

Figure 13 and Table 5 for both evoked and induced activities.  

 

Figure 11: Effect of stability score threshold on model performance during (A) evoked 

activity and (B) induced activity during CP task. The bottom of the x-axis has four labels; 

Stability score represents the stability score range of each bin (scores range: 0~1); Number 

of features, number of selected features under each bin; % features, the corresponding 

percentage of selected features; ROIs, number of cumulative unique brain regions up to the 

lower boundary of the bin. 
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Figure 12: Stable (most consistent) neural network decoding using induced activity. 

Visualization of brain ROIs corresponding to ≥ 0.60 stability threshold (14 top selected 

ROIs which show categorical organization (e.g., Tk1/5 ≠ Tk3) at 86.5%. (A) LH view (B) 

RH view (C) Posterior view (D) Anterior view. Color legend demarcations show high 

(pink), moderate (blue), and low (white) stability scores. l/r = left/right; BKS, bankssts; 

LO, lateral occipital; POP, pars opercularis; PCG, posterior cingulate; LOF, lateral 

orbitofrontal; SP, superior parietal; CMF, caudal middle frontal;  IP, inferior parietal; CAC, 

caudal anterior cingulate; CUN, cuneus; PRC, precentral; TRANS, transverse temporal; 

RAC, rostral anterior cingulate. 
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Figure 13: Stable (most consistent) neural network decoded using evoked activity. 

Visualization of brain ROIs corresponding to ≥ 0.60 stability threshold (22 top selected 

ROIs which decode Tk1/5 from Tk3 at 71.4%. Otherwise as in Figure 12. BKS, bankssts; 

CMF, caudal middle frontal; POP, pars opercularis; SP, superior parietal; TRANS, 

transverse temporal; IST, isthmus cingulate; LO, lateral occipital; IP, inferior parietal; 

CUN, cuneus; PRC, precentral; PT, pars triangularis; POC, postcentral; PERI, 

Pericalcarine; SUPRA, supra marginal. 
 

Table 5: Brain-behavior relations of 14 brain ROIs in different frequency bands and 

behavioral prediction from the induced activity at a stability threshold ≥ 0.6 that yielded 

accuracy 86.5%. 

Frequency 

Band and 

combined R2 ROI name 

ROI 

abbrev. 

Coeffi

cient 

p-

value   

Stabilit

y score 

θ, R2 =0.807, 

p<0.00001 

Pars opercularis L lPOP 0.974 0.013 0.785 

Posterior cingulate L lPCG -1.759 0.001 0.760 

Caudal anterior 

cingulate R rCAC 

3.163 0.001 0.740 
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α, R2 =0.746, 

p<0.00001 

Bankssts L lBKS 0.645 0.249 0.865 

Inferior parietal L lIP 1.594 0.035 0.730 

Precentral L lPRC 1.006 0.117 0.640 

β, R2 =0.876, 

p<0.00001 

Transverse temporal R rTRANS 0.267 0.584 0.620 

Rostral anterior 

cingulate L lRAC 

3.004 0.001 0.605 

γ, R2 =0.915, 

p<0.00001 

Lateral occipital R rLO 0.768 0.804 0.805 

Lateral orbitofrontal R rLOF 5.092 0.001 0.755 

Superior parietal R rSP 16.472 0.004 0.740 

Caudal middle frontal R rCMF -3.243 0.188 0.740 

cuneus R rCUN -1.743 0.701 0.675 

Lateral orbitofrontal L lLOF 0.709 0.553 0.625 

 

Table 6: Brain-behavior relations of 22 brain ROIs in different frequency bands and 

behavioral slope prediction from the evoked activity at a stability threshold ≥ 0.6 that 

yielded accuracy 71.4%. 

Frequency 

Band and 

combined R2 ROI name 

ROI 

abbrev

. 

Coeffici

ent 

p-

value 

Stabili

ty 

score 

θ, R2 =0.349, 

p<0.0184 

Caudal middle 

frontal L lCMF 

-93.646 0.575 1 

Superior parietal R rSP -89.350 0.603 0.915 

Isthmus cingulate 

L lIST 

-46.527 0.671 0.905 

Lateral occipital L lLO 

-

190.348 

0.149 0.850 
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Pars triangularis R rPT 137.923 0.160 0.710 

Post central R rPOC 180.073 0.015 0.690 

Rostral middle 

frontal L lRMF 

-69.220 0.326 0.605 

Post central L lPOC 152.979 0.238 0.600 

α, R2 =0.863, 

p<0.00001 

Bankssts R rBKS -64.139 0.775 1 

Transverse 

temporal L 

lTRAN

S 

62.583 0.729 0.905 

Inferior parietal L lIP 986.399 0.027 0.840 

Caudal middle 

frontal R rCMF 

-

254.140 

0.338 0.800 

Inferior parietal R rIP 

-

707.049 

0.053 0.690 

Pericalcarine L lPERI 

-

278.456 

0.319 0.670 

Precentral L lPRC 163.234 0.368 0.640 

Bankssts L lBKS 947.797 0.0001 0.635 

Supra marginal R 

rSUPR

A 

-

466.985 

0.107 0.600 

β, R2 =0.198, 

p<0.0184 

Pars opercularis L lPOP 475.923 0.240 0.970 

Lateral occipital R rLO 

-

1119.99

1 

0.157 0.795 

Precentral R rPRC 

1485.60

0 

0.008 0.725 
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γ, R2 =0.604, 

p< 0.00001 

Cuneus L lCUN 

-

3730.10

7 

0.160 0.775 

Transverse 

temporal R 

rTRAN

S 

262.544 0.0001 0.685 

 

  

 

5.2.4 Brain-behavior relationships 

To examine the behavioral relevance of the brain ROIs identified in stability 

selection, we conducted the multivariate WLS regression (Ruppert & Wand, 1994). We 

conducted WLS between the individual frequency band features (i.e., evoked and induced) 

and the slopes of the behavioral identification functions (i.e., Figure 1B) which indexes the 

strength of listeners’ CP. WLS regression for induced activity is shown in Table 5 and for 

evoked activity in Table 6. From the induced data, we found that γ frequency activity from 6 

ROIs predicted behavior best among all other frequency R2 = 0.915, p< 0.0001. Remarkably, 

only two brain regions (including PAC and Rostral anterior cingulate L) of β-band frequency 

could predict behavioral slopes (R2 =0.876, p<0.00001). Except in the α frequency band, 

evoked activity was poorer at predicting behavioral CP.  

5.3 Discussion 

5.3.1 Speech categorization from evoked and induced activity 

  The present study aimed to examine which modes of brain activity and frequency 

bands of the EEG best decode speech categories and the process of categorization. Our 

results demonstrate that at the whole-brain level, evoked β-band oscillations robustly code 

(~70% accuracy) category structure of speech sounds. However, induced ɣ-band showed 

better performance, classifying speech categories at ~95% accuracy, better than all other 

induced frequency bands. Our data are consistent with notions that higher frequency bands 
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are associated with speech identification accuracy and carry information related to acoustic 

features and quality of speech representation (Yellamsetty & Bidelman, 2018). Our results 

also corroborate previous studies that suggest higher frequency channels of the EEG (β, γ) 

reflect auditory perceptual object construction (Tallon-Baudry & Bertrand, 1999) and how 

well listeners map vowel sounds to category labels (Bidelman, 2015, 2017). 

 Analysis by hemispheres showed that induced γ activity was dominant in LH whereas 

lower frequency band (e.g., θ) were more dominant in RH. These findings support the 

asymmetric engagement of frequency bands during syllable processing (Giraud et al., 2007; 

Morillon et al., 2012) and lower frequency band in RH dominance in inhibitory and 

attentional control (top-down processing during complex tasks) (Garavan et al., 1999; Price et 

al., 2019). Our results are consistent with the idea that cortical theta and gamma frequency 

bands play a key role in speech encoding (Hyafil et al., 2015). They also show that the 

machine learning model was able to decode acoustic-phonetic information (i.e., speech 

categories) in LH (using induced high frequency) and (using low frequencies) in RH. 

5.3.2 Brain networks involved in speech categorization 

Machine learning (stability selection coupled with SVM) further identified the most 

stable, relevant, and invariant brain regions that associate with speech categorization. 

Stability selection identified 22 and 14 critical brain ROIs using evoked and induced activity, 

respectively. Our results show that induced activity better characterizes speech categorization 

using less neural resources (i.e., fewer brain regions) as compared to evoked activity. Eight 

brain ROIs (e.g., bankssts L, lateral occipital R, pars opercularis L, superior parietal R, caudal 

middle frontal R, inferior parietal L, precentral L, transverse temporal R) are common in 

evoked and induced regimes. These eight areas included the primary auditory cortex 

(Transverse temporal R), Brocas’s area (Pars opercularis L), and motor area (Precentral L) 

which are critical to speech-language processing. Superior parietal and inferior parietal areas 
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have been associated with auditory, phoneme, and sound categorization in particularly 

ambiguous contexts (Dufor et al., 2007; Feng et al., 2018). The non-overlapping areas in 

induced activity; orbitofrontal is associated with speech comprehension and rostral anterior 

cingulate with speech control (Sabri et al., 2008). Surprisingly, out of the identified 14 brain 

ROIs; three ROIs are in θ, three in α, two in β, and six in γ band.  

Noticeably, we found that a greater number of brain regions were recruited in the γ-

frequency band. This result is consistent with the notion that high-frequency oscillations play 

a role in network synchronization and widespread construction of perceptual objects related 

to abstract speech categories (Giraud & Poeppel, 2012; Haenschel et al., 2000; Si et al., 2017; 

Tallon-Baudry & Bertrand, 1999).  Indeed, γ-band activity in only six ROIs were the best 

predictor of listeners’ behavioral speech categorization. Interestingly, nine ROIs of evoked α-

band activity were able to predict behavioral slopes better than induced α-band activity. This 

result supports notions that the α frequency band is associated with attention (Klimesch, 

2012) and speech intelligibility (Dimitrijevic et al., 2017). 

A main advantage of our data-driven approach is that it identifies the frequency bands and 

brain regions that are best linked to speech categorization behaviors from among the many 

thousands of features measurable from whole-brain EEG. It is a complement to conventional 

hypothesis-driven approaches (Bidelman, 2015; Bidelman & Alain, 2015a; Bidelman & 

Walker, 2019) but is perhaps more hands-off in that it requires fewer assumptions about the 

underlying brain mechanisms supporting speech perception. Additionally, our finding 

supports theoretical oscillatory models and empirical data (Doelling et al., 2019) that suggest 

induced activity can predict auditory-perceptual processing better than evoked activity. 

Nonetheless, our data suggest that induced neural activity plays a more prominent role in 

describing the perceptual-cognitive process of speech categorization than evoked modes of 

brain activity (Doelling et al., 2019).  In particular, we demonstrate that among these two 
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prominent functional modes and frequency channels characterizing the EEG, induced γ-

frequency oscillations best decode the category structure of speech and the strength of 

listeners’ behavioral identification. In contrast, the evoked activity provides a reliable though 

weaker correspondence with behavior in all but the α frequency band.   
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Chapter 6 -  Conclusion 

In this chapter, we summarize the main findings and limitations of our works. 

6.1 Summary of Contributions 

We built data-driven frameworks for understanding the neural mechanisms underlying 

cognitive speech processing. Our spatiotemporal analysis demonstrates that early auditory 

ERPs could decode the speech sound over 95% accuracy. A smaller set of brain ROIs 

associate during encoding as compared to decision processing networks. Hemisphere-based 

analyses show that LH is dominating with earlier decoding ability. The selected 15 brain 

regions engage in the decision process that could robustly predict listeners’ behavioral CP 

(i.e., the strength of listeners’ categorical hearing) from neural data (e.g., ERPs). Moreover, 

the evoked vs. induced analysis demonstrates that higher induced frequency bands decode the 

speech sound best among all other frequency bands. Induced higher frequency band (gamma 

band) dominate in LH and lower frequency band (theta band) dominate in RH during speech 

categorization. Remarkably, only six brain ROIs’ induced gamma-band activities were 

strongly associated with listeners’ behavioral CP. 

6.2 Limitation of this work 

A disadvantage of this data-driven approach is that it is computationally expensive. In 

addition, our study only included vowel stimuli. Additional studies are required to examine if 

our findings generalize to other speech sounds (e.g., consonants) which elicit stronger/weaker 

categorical percepts or those which are more/less familiar to a listener (e.g., native vs. 

nonnative speech).  
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