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ABSTRACT

Post-traumatic stress disorder (PTSD) is a psychiatric disorder caused by

environmental and genetic factors resulting from alterations in genetic variation,

epigenetic changes and neuroimaging characteristics. There is a pressing need to

identify reliable molecular and physiological biomarkers for accurate diagnosis,

prognosis, and treatment, as well to deepen the understanding of PTSD

pathophysiology. Machine learning methods are widely used to infer patterns

from biological data, identify biomarkers, and make predictions. The objective of

this research is to apply machine learning methods for the accurate classification

of human diseases from genome-scale datasets, focusing primarily on PTSD.

The DoD-funded Systems Biology of PTSD Consortium has recruited

combat veterans with and without PTSD for measurement of molecular and

physiological data from blood or urine samples with the goal of identifying

accurate and specific PTSD biomarkers. As a member of the Consortium with

access to these PTSD multiple omics datasets, we first completed a project titled

“Clinical Subgroup-Specific PTSD Classification and Biomarker Discovery”. We

applied machine learning approaches to these data to build classification models

consisting of molecular and clinical features to predict PTSD status. We also

identified candidate biomarkers for diagnosis, which improves our understanding

of PTSD pathogenesis. In a second project, entitled “Multi-Omic PTSD

Subgroup Identification and Clinical Characterization”, we applied methods for

integrating multiple omics datasets to investigate the complex, multivariate

nature of the biological systems underlying PTSD. We identified an optimal 2

PTSD subgroups using two different machine learning approaches from 82 PTSD

positive samples, and we found that the subgroups exhibited different remitting

behavior as inferred from subjects recalled at a later time point. The results from

our association, differential expression, and classification analyses demonstrated

the distinct clinical and molecular features characterizing these subgroups.

Taken together, our work has advanced our understanding of PTSD
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biomarkers and subgroups through the use of machine learning approaches.

Results from our work should strongly contribute to the precise diagnosis and

eventual treatment of PTSD, as well as other diseases. Future work will involve

continuing to leverage these results to enable precision medicine for PTSD.
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Chapter 1

Introduction

1.1 Post-Traumatic Stress Disorder (PTSD)

1.1.1 PTSD Epidemiology

Post-Traumatic stress disorder (PTSD) is a mental disorder that can

develop after exposure to serious traumatic events, such as combat, violence,

warfare, traffic collisions, or other life-threatening threats. PTSD symptoms may

appear within a month or longer after the traumatic events. From the mayo

clinic website (“Post-Traumatic Stress Disorder (PTSD) - Symptoms and

Causes” 2018), the symptoms can be generally grouped into four types: intrusive

memories, avoidance, negative changes in thinking and mood, and changes in

physical and emotional reactions. Intrusive memories include recurrent,

unwanted distressing memories of the traumatic events. Avoidance means to

avoid thinking or talking about the traumatic event. Negative changes in

thinking and mood result in problems such as negative thoughts, hopelessness,

detachment from family and friends and emotional numbness. Changes in

physical and emotional reactions may include irritability, hypervigilance,

self-destructive behaviors and trouble sleeping and concentrating. These

symptoms cause serious problems in work and life, including significant problems

in social or work situations and in relationships. Their frequency interferes with

being able to perform normal daily tasks. PTSD severity is often associated with

co-occurring conditions such as anxiety disorders.

The current diagnosis of PTSD is from the Clinician Administered PTSD

Scale (CAPS - 5) from the Diagnostic and Statistical Manual of Mental Disorders

(DSM-V), published in 2013 by the American Psychiatric Association. CAPS - 5

queries PTSD symptoms using 7 criteria and scores are added up to the final

assessment. The detailed descriptions and the differences compared with the

previous version DSM-IV are shown in the Figure 1.1, as summarized [1].

One of the first large epidemiological analyses of PTSD was performed on
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Fig. 1.1: DSM-5 criteria for PTSD, referred from [1] and [2]

Vietnam War veterans in the United States. Results from this study show that

28% of veterans who had experienced combat developed PTSD, though 11% are

still experiencing PTSD 40 years after the combat [3]. Another longitudinal

epidemiological study on war fighters serving in Iraq or Afghanistan concluded a

13% PTSD occurrence rate in combat-exposed infantry units while 6% in the

general population [4]. According to NIMH statistics (“NIMH » Post-Traumatic

Stress Disorder (PTSD)” n.d.) for the whole prevalence, about 6.8% adults in

the US experience PTSD at some point in their lives while 3.5% have 12-month

prevalence as seen in Figure 1.2.

Across different populations and cultures, the prevalence of PTSD varies

significantly.

1.1.2 PTSD Pathophysiology

It has been widely recognized that PTSD is the result of genetic and

environmental interaction [5] [6]. In a study of PTSD etiology, Keane et al [7]
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Fig. 1.2: PTSD Prevalence and Demographics across US From NIMH

proposed the triggering model of PTSD and analyzed potential PTSD risk

factors divided into three major categories: (a) pre-existing factors specific to the

individual, (b) factors related to the traumatic event, including one’s immediate

response during the trauma, and (c) events that occur following the trauma.

Pre-existing Factors include familial psychology, demographic factors (gender,

age, race, marital status), prior trauma and life adversity and psychopathology

prior to the trauma. A conditional model of PTSD etiology illustrated the

processes of PTSD development in the consideration of the three category

factors (Figure 1.3).

Systems biology is an approach in biomedical research to integrate

information from different scales and gain the benefit of data integration to

understand complicated biological systems [8] [9]. These scales consist of

measurements in the “omics” level including molecular data–Genomic,

Transcriptomic, Epigenetic, Proteomic and Metabolic–and non-molecular

data–biological Images and Clinical and Physiological measurements. Given the

known pathogenesis spanning neural biology to genomics and genetics discovered
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Fig. 1.3: A conditioning model of the etiology of Post-Traumatic stress disorder
(PTSD), referred from [7]

in previous PTSD studies, systems biology has been applied to evaluate these

discoveries and obtain new biological insights.

PTSD is a psychiatric disorder caused by genetic and environmental

interactions, involving a series of biological changes from stress and fear to

PTSD [1] [10] [9]. Biological understanding of PTSD has progressed in

deciphering the interplay between environmental stimulation, stress

responses/reactions, and pathology in light of alterations in brain circuitry and

neurochemistry and cellular, immune, endocrine, metabolic, and genetic factors.

Characteristic changes in brain regions including hippocampus, amygdala and

prefrontal cortex (PFC) have been identified in patients with PTSD. These areas

relate to abnormal responses of fear, stress and cognitive deficits, which help to

explain the development of PTSD [11]. The hypothalamic-pituitary-adrenal

(HPA) axis constitutes the central coordinator of the mammalian

neuroendocrine stress response systems and exhibits low cortisol levels in PTSD

cases [12]. Molecular-level studies on glucocorticoid signalling confirmed

alterations of the HPA axis that reflect exaggerated responses. The increased
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secretion of corticotropin-releasing hormone from the hypothalamus results in

activated glucocorticoid receptors (GRs). The complex of GRs and cortisols,

bound by chaperone proteins including FK506-binding protein 5 (FKBP5),

translocates to the nucleus and binds to glucocorticoid response elements (GRE)

to ultimately affect transcription of a number of genes [13][1]. The

neurochemical features of PTSD found in brain circuits that regulate/integrate

stress and fear responses include catecholamine, serotonin, amino acids, peptides,

and opioid neurotransmitters. Neuropeptide Y (NPY), which encodes a

neuropeptide that is widely expressed in the central nervous system and

influences many physiological processes, has been shown to be protective against

the development of PTSD. Decreased NPY levels from combat veterans suggests

resilience to PTSD by contributing to noradrenergic hyperactivity [14] [15].

In PTSD candidate gene research, previously reported genes confirmed

the alterations in PTSD neurobiology, as well as expanded to other biological

systems [16] [17] [18]. FKBP5, an important regulator of the stress system by

altering GR sensitivity, was reported to have polymorphisms associated with

PTSD through interactions with child abuse severity [19] [20] and gene

expression modulation by DNA methylation [21]. Catechol-O-methyltransferase

(COMT), a critical enzyme involved in the breakdown of the catecholamine

neurotransmitters, was reported to play an important role in fear processing, and

a genotype change (SNP rs4680) led to impaired fear inhibition in PTSD [22].

Brain-derived neurotrophic factor (BDNF), involved in the neural plasticity

underlying the extinction of fear and stress, was identified in relation to anxiety

and PTSD [23].Using a hypothesis-free approach, genome-wide association

studies (GWAS) have discovered that genes such as retinoid-related orphan

receptor alpha (RORA), Cordon-Bleu WH2 Repeat Protein (COBL),

Phosphoribosyl Transferase Domain Containing 1 (PRTFDC1) and lincRNA

AC068718.1 are associated with PTSD ([24] [25] [26] [27]).

Beyond standard genetics analyses, DNA methylation studies have
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identified methylation levels changed due to PTSD in genes Solute Carrier

Family 6 Member 4 (SLC6A4), Solute Carrier Family 6 Member 3 (SLC6A3),

FKBP Prolyl Isomerase 5 (FKBP5), Nuclear Receptor Subfamily 3 Group C

Member 1 (NR3C1) [28]. Neuroimaging genetics studies have also helped

identify intermediate phenotypes of PTSD that clarify the functional link

between genes and disease phenotype by characterizing gene-specific

neurobiological traits associated with PTSD [29]. However, variations in sample

size and research methods in these studies have made conclusive identification of

PTSD candidate genes difficult. In particular, most of the identified candidate

genes lack validation in other independent studies.

Although survey-based PTSD diagnosis is well established using DSM-5

based on criteria from seven specific aspects of the disorder, the accuracy of such

diagnoses is influenced by many factors. For instance, some PTSD symptoms are

not easily uncovered via survey, which leads to potential cases going undetected.

Also, some cases may not wish to be identified and thus do not volunteer

information, making it difficult for clinicians to make a correct assessment. For a

more objective assessment of PTSD, researchers have worked to identify

molecular diagnostic biomarkers for clinical evaluation and treatment as well as

to elucidate pathophysiology from these biomarkers ([30] [31] ). Candidate

biomarkers can be derived from neurobiological, molecular, behavioral, and

clinical data and phenotypes associated with PTSD, including neuroendocrine

data, brain region changes, genetic and epigenetic molecules and

psychophysiological measurements. Comorbidities between PTSD, physical

illness and inflammation also directs biomarker investigation to inflammatory

systems, such as elevated expression of pro-inflammatory cytokines and

C-reactive protein (CRP) [31] [32]. A previous review provided schematic

overview of potential biomarkers of PTSD as seen in Figure 1.4.
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Fig. 1.4: Schematic Overview of PTSD Biomarkers from [30]

1.1.3 PTSD Subgroups

The heterogeneity in the triggering and development of PTSD poses

challenges in the diagnosis and treatment of the disorder, and patient diversity

makes it difficult for treatment to be equally beneficial to all individuals.

Therefore, identification of patient subgroups by inferring patterns underlying

groups is a step toward precision medicine and the development of responsive

treatment [33]. Multiple studies have worked to discover PTSD subgroups and

identify unique biological signatures for the groups. The discovery of subgroups

requires techniques from data mining, statistics, and machine learning to learn

interesting variables to represent and classify groups [34]. In a study uncovering

heterogeneities in the progression of early PTSD symptoms, three

trajectories–rapid remitting, slow remitting and non-remitting were proposed

based on longitudinal data from the Jerusalem Trauma Outreach and Prevention

Study [35]. Using the same cohort of 957 trauma survivors, Galatzer-Levy et al.

[36] later applied a support vector machine (SVM) approach to predict the

non-remitting PTSD group from information collected within 10 days of a

traumatic event. Using a number of psychophysiological features, the authors

obtained a mean Area Under Receiver Operating Characteristics Curve (AUC)
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of 0.78. They also found that the non-remitting phenotype was attributed to

features including nightmares, age, and pulse. In a subsequent study of the same

cohort, Galatzer-Levy et al. applied SVMs with feature engineering to build

prediction models for trajectories, reaching an AUC of 0.82 using combined

demographic, psychophysiological, neuroendocrine and clinical information

([37]). In a recent study, Maron-Katz et al. identified two PTSD subgroups

using resting-state functional MRI data from 87 veterans, and these subgroups

showed differences between visual and sensorimotor network connection ([16]).

Despite these findings, there is a lack of studies discovering PTSD subgroups

using multiple scales of biological systems and represented by unique biological

signatures.

1.1.4 PTSD Consortium and Data

In 2012, the Department of Defense initiated a multi-site “PTSD Systems

Biology Consortium” encompassing researchers from more than 10 institutions,

including New York University (NYU), Icahn School of Medicine at Mount Sinai

(ISMMS), University of California at San Francisco (UCSF) and at Santa

Barbara (UCSB), U.S. Army Center for Environmental Health Research

(USACEHR), Emory University, Institute for Systems Biology (ISB), and

Harvard University. The primary goals of the PTSD Systems Biology

Consortium included identifying a panel of sensitive and specific biomarkers from

molecular, physiological, and/or demographic data for PTSD diagnosis,

especially in warzone-related cases.

For subject recruitment, PTSD-positive and PTSD-negative participants

were selected using the following criteria: 1) male veteran between 20 and 60

years old, 2) deployment in Operation Enduring Freedom and/or Operation Iraqi

Freedom, 3) PTSD positive participants with at least 40 CAPS score, 4) PTSD

negative participants with less than 20 CAPS score. For consistency, all study

participants were evaluated using the DSM-IV PTSD assessment upon

recruitment.
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For research purposes, there are three sequential cohorts, a Training

cohort also called the discovery cohort (82 positive and 82 negative samples), a

Test cohort also called the validation cohort (28 positive and 39 negative

samples) and a Recall cohort (14 positive, 10 subthreshold positive and 29

negative samples). In the recall cohort, the samples were recalled from the

samples existing in the training cohort.

For each of the recruited subjects, blood and urine samples were taken

and used to isolate DNA, RNA, protein, metabolites, and endocrine markers for

downstream analyses. Physiological measures (e.g., pulse, blood pressure, body

mass index) were also collected. Molecular and physiological data from the

Training cohort were initially designated for hypothesis generation regarding

potential diagnostic biomarkers and underlying biological mechanisms of PTSD,

while data from the Test cohort were designated for hypothesis testing and

attempted replication of the training sample findings. These subject groups were

designed to be age- and ethnicity-matched to minimize biases within and

confounding covariates between case and control groups. In total, the

genome-wide “omics” measurements include DNA-level methylation of CpG sites,

single nucleotide polymorphisms, expression of miRNA-Plasma, miRNA-Deplete

and miRNA-Exosome fractions, metabolites, proteins and selected endocrine

markers. The miRNA-Plasma fraction measures total miRNA, while

miRNA-Exosome and miRNA-Deplete measure miRNA enriched and depleted in

exosomes, respectively. These rich omics data sets from the PTSD Systems

Biology Consortium were utilized for the following analyses.

1.2 Machine Learning Approaches

High-throughput technologies of molecular biology have advanced to

allow examination of associations between omics data—DNA, RNA, metabolites,

miRNAs, proteins—and biological conditions, particularly human diseases. Here,

omics data refers to the plethora of molecules associated with each “ome” (e.g.,

genome, transcriptome, proteome) such as DNA or RNA. Next-generation
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sequencing technologies have revolutionized the biological sciences by providing

an ultra-high throughput way to profile DNA and RNA and thus allow omics

data to be generated quickly and economically. Mass spectrometry [38] [39]

allows us to efficiently identify and quantify proteins, metabolites and lipids in

cells, capturing underlying cellular variations in response to physiological and

pathological changes. Although these powerful advances have enabled

examination of hundreds of thousands of molecules at the same time, the

large-scale nature of data from genomes, transcriptomes, and proteomes have

created challenges for data analysis. Machine learning approaches have been

developed and applied to elucidate complex biological systems, identify

molecular signatures and predict clinical outcomes from such large biomedical

datasets ([40] [41]).

Machine learning encompasses algorithms and statistical models applied

by computer systems to perform specific tasks based on patterns in data and

without using explicit instructions. With more computational resources and

elegant algorithms, machine learning has enhanced many real-life experiences

including human visual perception. Machine learning has also become an

integral part of an ever-growing number of healthcare systems and industries. It

has been applied to predict pharmaceutical properties of molecular compounds

and targets for drug discovery, perform pattern recognition and segmentation on

medical images to enable faster diagnoses and tracking of disease progression,

design generative algorithms for computational augmentation of existing clinical

and imaging data sets, and develop deep learning techniques for multimodal data

sources such as genomic and clinical data that can be combined to make new

predictive models [42]. Machine learning mainly uses two types of learning

algorithms, supervised and unsupervised learning (Figure 1.5).

In biomedical applications, high-dimensional sets of molecules (variables

or features) and small sample sizes are particularly challenging in integrative

analysis where multiple omics data are combined to identify unique signatures.
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Fig. 1.5: Machine Learning Introduction

This is called the ”curse of dimensionality,” where the number of features is

substantially higher than the number of samples, making most machine learning

algorithms vulnerable to overfitting [43]. Dimension reduction is the process of

reducing the number of variables under consideration by obtaining a set of

principal variables. Therefore, dimension reduction is quite useful in machine

learning applications for biomedical big data research.

Feature engineering is the process of transforming raw data into fewer

features that better represent the underlying problem for predictive models,

avoiding overfitting as well as resulting in improved model accuracy on unseen

data. Feature engineering generally consists of feature extraction and feature

selection approaches to reduce dimensions. Feature extraction is a process of

dimensionality reduction by which an initial set of raw data is reduced to more

manageable groups for processing. Principal component analysis (PCA) is a

widely-used feature extraction approach where principal components are

extracted to represent the raw data. Feature selection is the process where

features which contribute most to predictive performance or output of interest
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are automatically or manually selected. Feature selection techniques are widely

used to simplify models for interpretation, provide shorter training time, help

avoid the curse of dimensionality and enable enhanced generalization by

reducing overfitting. The removal of irrelevant features is also beneficial to

reduce noise and increase model accuracy. Unlike feature extraction methods

such as PCA, which creates new features from functions of the original features,

feature selection returns a subset of the features. Three main categories of

feature selection algorithms include filters, wrappers and embedded methods.

Both feature engineering and feature selection have been successfully used in

medical applications, where they can not only reduce dimensionality but also

help us understand the causes of a disease ([44]).

PCA is a statistical procedure that uses an orthogonal transformation to

convert a set of observations of possibly correlated variables into a set of values

of linearly uncorrelated variables called principal components. Principal

components summarize a large set of correlated variables with a smaller number

of variables explaining most of the variability in the data, providing a

low-dimensional representation that can be used to produce derived variables for

use in supervised learning problems and visualization of observations or variables.

1.2.1 Supervised Learning

Supervised learning algorithms build a mathematical model from a set of

data that contains both the inputs and the desired outputs. The data consists of

a set of training examples, and each example is a pair consisting of an input

object (typically a vector) and a desired output value. Through iterative

optimization, an algorithm learns patterns relating the input to the output and

improves the performance of predicting output from input. An optimal scenario

will allow for the algorithm to correctly determine the outputs for unseen

instances. Once the model is trained successfully, it can be applied for prediction

in new data (Figure 1.6). One example of supervised learning in biomedicine is
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Fig. 1.6: Supervised learning workflow

to train a model using demographic and anthropometric features such as gender,

height, education and career to predict a patient’s clinical outcome.

Based on the nature of outputs, supervised learning algorithms are

further categorized into tasks of regression, where outputs are continuous, and

classification, where outputs are binary or categorical. Classification is the task

of identifying to which class a new observation belongs, while regression

estimates the quantitative relationship between input features and outputs.

Examples of supervised classification include building a model to predict

whether or not a patient has liver cancer, or building a model to predict whether

a patient with liver cancer will get better or worse. Regression examples include

building a model to estimate gene expression using gene mutation and copy

number variation data. When applied to high-dimensional data such as gene

expression for diagnosis prediction, feature engineering is recommended to

reduce the problem dimension as well to avoid overfitting.

The procedure of efficient supervised learning consists of the following

steps: 1) Determine the type of training examples, 2) Gather a training set, 3)

Determine the input feature representation of the learning function, 4) Determine

the structure of the learned function and corresponding learning algorithm, 5)

Complete the design, 6) Evaluate the accuracy of the learned function.

Logistic Regression is a frequently used supervised classification

approach which models the probability of samples falling into a certain group or

class (Generalized Linear Models 1989). A binary logistic regression model
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estimates the probability of belonging to one or the other group for each sample.

Typically, a group probability above 0.5 is treated as a prediction for

membership in that group, while a probability below 0.5 predicts membership in

the other group. The regression coefficients are estimated for either univariate or

multivariate input features, and training can be optimized using gradient descent

which maximizes the log-likelihood. Evaluation metrics for logistic regression

include Accuracy, Receiver Operating Characteristic (ROC) curve, and area

under the ROC curve (AUC). Accuracy refers to the rate of correct group

predictions over all samples. ROC curves are created by plotting the true positive

rate (TPR, sensitivity) against the false positive rate (FPR, 1 - specificity) at

various group probability thresholds. AUC is interpreted as the probability that

the classifier will assign a higher group probability to a randomly chosen member

of that group than to a randomly chosen member of the other group. Logistic

regression has the advantages that it uses a probabilistic framework and can

predict binary outcome variables. However, this technique generally assumes

independence between input features and is suitable for predicting either discrete

(group membership) or continuous (group probability) outcomes.

Two regularization approaches–Lasso (least absolute shrinkage and

selection operator) and Ridge regression–can be applied to logistic regression to

avoid model overfitting. Lasso involves adding an L1 penalty which refers to an

absolute value of magnitude of coefficients to the loss function which represents

methods of evaluating model learning for the given data. and in the end can

perform both variable selection and regularization to enhance prediction

accuracy and model interpretability. Ridge adds an L2-form penalty which refers

to the squared magnitude of coefficients and can shrink the regression coefficients

toward zero to reduce model complexity and multi-collinearity of input features.

Support Vector Machines (SVMs) are supervised learning models

with associated learning algorithms used for classification and regression

analyses. SVM constructs a hyperplane or set of hyperplanes in a high- or
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infinite-dimensional space. Intuitively, a good separation is achieved by the

hyperplane that has the largest distance to the nearest training-data point of any

class. SVMs use hinge loss for optimization, and as mentioned above, Recursive

Feature Elimination is often applied to reduce the number of features. Besides

binary classification, SVM can also be applied to classification problems with

more than two classes.

An important feature of SVMs is the use of kernel functions that enable

operation in a high-dimensional, implicit feature space without requiring

computation of the coordinates of data in that space. Kernels provide a mapping

of the problem from the input space to this higher-dimensional space (called the

feature space) by performing a nonlinear transformation. SVMs then use a linear

model in this new high-dimensional feature space, which corresponds to a

nonlinear model in the input space.

SVMs have the following advantages: 1) SVM hyperplane is robust to

outliers, 2) use of a regularization parameter helps to prevent overfitting, 3) a

variety of kernel functions are supported, 4) classifier training is equivalent to

solving a convex optimization problem, which is algorithmically efficient.

Disadvantages include: 1) optimization of the regularisation and kernel

parameters and choice of kernel must be conducted separately from training, 2)

some kernel methods can be quite sensitive to overfitting, 4) the hinge loss used

in SVM optimization results in sparse sets of important features.

SVM has proven to be successful in classifying high-dimensional cancer

samples such as ovarian cancer tissues, normal ovarian tissues and other normal

tissues ([45]).

Cross Validation is a model validation technique for assessing how the

results of a statistical analysis will generalize to an independent data set. In the

case of supervised classification, all samples are randomly divided into training

and validation sets. The classification model is then fit using the training set,

and its performance is quantified by assessing errors made in predicting
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Fig. 1.7: Unsupervised learning workflow

responses for the validation set. In Leave-One-Out (LOO) Cross-Validation, all

data is split into n-1 sample training and 1 sample validation sets, followed by

model training and validation as described above. The process repeats n times

and the average performance of the model is computed over all splits. A more

general form of LOO, K-fold Cross-Validation, randomly splits all samples into k

folds with k-1 folds used for training and 1 fold for validation. The model is

trained and evaluated k times, and average performance is quantified over the k

splits. In supervised learning, cross-validation is commonly used to perform

model evaluation while avoiding overfitting.

1.2.2 Unsupervised Learning and Data Clustering

In contrast to supervised learning, unsupervised learning is the task of

inferring a function to describe a hidden structure in data that is missing output

values (e.g., classes or labels). Goals of unsupervised learning include

understanding relationships between observations, visualizing data in an

informative way and discovering subgroups among the variables or observations

(Figure 1.7). One downside to this approach is that, without label information,

evaluation of predicted structure in the data is not straightforward. Specific

applications of unsupervised learning include clustering, PCA, anomaly

detection, and latent variable identification. A number of studies have applied

unsupervised clustering in prostate cancer subtype identification [46], novel

breast cancer subgroups [47] [48], glioma subtype discovery [49].

Clustering is the task of grouping a set of objects in such a way that
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objects in the same group (called a cluster) are more similar to each other than

to those in other groups (clusters). Since the notion of a cluster is not precisely

defined, many different clustering algorithms have been developed to discover

clusters. Examples of clustering methods include: Connectivity models (e.g.,

hierarchical clustering), which builds clusters based on distance connectivity

where samples are more related to nearby samples than samples far away;

Centroid models (e.g., K-means), which represents each cluster by a single mean

vector; Graph models (e.g., clique-based), which represent a cluster by a subset of

nodes connected by edges; Biologically-inspired models (e.g., unsupervised neural

networks). Clustering can be categorized as either hard(each object belongs to a

single cluster) or soft (each object belongs to every cluster to a certain degree).

As mentioned above, one disadvantage of clustering is the difficulty in evaluating

predicted clusters, particularly in independent test data sets. Thus, these

methods are commonly performed as part of exploratory data analysis.

K-means clustering is a method of vector quantization, originally from

signal processing, that is popular for cluster analysis in data mining. For a given

value of K (number of clusters), the goal of K-means is to partition all training

data samples into K distinct, non-overlapping clusters by identifying clusters for

which within-cluster variation is as small as possible.

The K-means algorithm involves the steps below. Randomly assign a

number, from 1 to K, to each of the observations. These serve as initial cluster

assignments. 1. Iterate until the cluster assignments stop changing: 2. For each

of the clusters, compute the cluster centroid. This is a vector of the feature

means for the observations in the cluster. 3. Assign each observation to the

cluster whose centroid is closest in terms of Euclidean distance.

This algorithm is guaranteed to decrease the sum of within-cluster

variations at each step. However, it is not guaranteed to reach the global

minimum, because results depend on the initial, random cluster assignments of

each observation in Step 1 and individual runs may terminate at suboptimal
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local minima. In practice, the K-means algorithm is run multiple times from

different random initial configurations, and the best clustering result (smallest

sum of within-cluster variations) is selected.

The K-means algorithm involves repeatedly assigning points to the closest

cluster centroid. To do so, K-Means requires computing of pairwise Euclidean

distances between data points, because the sum of squared deviations from a

centroid is equal to the sum of pairwise squared Euclidean distances between

points divided by the number of points. The term "centroid", which derives from

Euclidean geometry, refers to a multivariate mean calculated in euclidean space.

A second clustering approach, spectral clustering ([50]), uses the

eigenvectors (spectrum) and eigenvalues of a matrix to define cluster

membership. These eigenvectors function as indicators of cluster membership.

Importantly, although small perturbations such as adding a few edges linking

clusters or removing edges from inside the clusters will increase eigenvalues and

change the corresponding eigenvectors, this does not generally cause the

underlying cluster structure to be lost. Like K-means, spectral clustering

technique requires the number of desired clusters to be specified ([51]).

As previously mentioned, it is particularly challenging to evaluate

unsupervised clustering results. Popular approaches consider both internal and

external evaluation. Internal evaluation is typically summarized by a quality

score, although it is not always clear which metric should be used to compute

this score. Examples of popular metrics include the following:

Silhouette coefficient: average distance within the cluster against average

distance outside the cluster. It is calculated using the mean intra-cluster

distance (a) and the mean nearest-cluster distance (b) for each sample with the

formula (b - a) / max(a, b) of each sample. The score ranges from -1 to 1, with a

negative value indicating that the average distance within the cluster is greater

than the distance outside the cluster.
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1.2.3 Deep Learning

Deep learning is a class of machine learning algorithms based on artificial

neural networks (ANNs) and representation learning. It utilizes a cascade of

multi-layered deep neural networks (DNNs) for feature extraction and data

transformation. Deep learning attempts to generate abstractions from large-scale

data including images and texts. Deep learning can be applied for supervised or

unsupervised tasks. An advantage of deep learning architectures is that they

automatically perform multiple levels of nonlinear data transformation and

supervised or unsupervised learning of feature representations. Deep learning

architectures such as autoencoders, recurrent neural networks and convolutional

neural networks have been applied to fields in computer vision, natural language

processing and biomedical data science ([52] [53]). A summary of deep learning

architectures is shown in the neural network zoo [54].

ANNs were originally inspired by the complex neurobiological systems in

the brain which learn to perform tasks by generating representations without

task-specific programming [55]. An ANN is based on a collection of connected

units called artificial neurons, analogous to biological neurons in a biological

brain. Each connection between neurons can transmit a signal in a manner

similar to a synapse. The receiving neuron can process incoming signals and

then signal downstream neurons connected to it. Neurons in ANNs may have a

state, generally represented by real numbers, typically between 0 and 1. Neurons

and synapses may also have weights that vary as learning proceeds, which can

increase or decrease the strength of signals that are sent downstream. Typically,

neurons are organized in layers, with each layer potentially performing different

transformations to their inputs. Signals travel from the first (input) to the last

(output) layer, possibly after traversing inner layers multiple times. The original

goal of the neural network approach was to solve problems in the same way that

a human brain would. However, attention has shifted over time to matching

specific cognitive tasks which led to deviations from biology such as the
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backpropagation optimization technique, in which information is passed from

output to input layers while adjusting the network weights to reflect that

information.

DNNs are ANNs with multiple internal layers between the input and

output layers. Like other ANNs, a DNN learns the correct mathematical

operations to transform the network input into the output. Although there

exists a variety of DNN architectures, most DNNs rely on similar techniques for

feature extraction and training, such as feedforward and backpropagation passes.

In the feedforward pass, the network is activated by an input to the first layer,

which then spreads the activation to the final layer along the weighted

connections and generates the prediction or reconstruction results. In the

backpropagation pass, the weights of connections are tuned by minimizing the

difference between the predicted output and the real output. By combining these

techniques with activation functions, optimization objectives and optimization

methods, deep learning models can be implemented and applied to specific tasks.

Activation functions make up the nonlinear layers in all deep learning

models, and their combination with other layers enable nonlinear

transformations from the input to the output. An optimization objective is

typically composed of a loss function and a regularization term, with the former

measuring the discrepancy between predicted and actual network output and the

latter used to reduce test set error and avoid overfitting. Optimization methods

are strategies used to achieve minima of the objective function by selecting

appropriate hyperparameters which means a number of parameters before the

training processes and their combination set can be optimized based on the

performance in the evaluation data. Stochastic gradient descent (SGD) [56] and

its variants are commonly-used optimization methods which update network

weights (parameters) by a step corresponding to the Jacobian matrix which as a

matrix calculates partial derivatives of a vector function for weight updates. For

example, the Adaptive Gradient Algorithm (AdaGrad) [57] technique updates
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weights according to the accumulation of squared gradients, which can converge

rapidly when applied to convex functions. RMSProp, an AdaGrad algorithm,

has been an effective and popular method for parameter optimization.

Tensorflow (TF) is a widely used end-to-end open source deep learning

platform implemented in the Python language. Keras is a highly wrapped deep

learning framework running on top of TF or other deep learning platforms.

These two deep learning frameworks have implementations on various deep

learning architectures.

An autoencoder (AE) is one class of deep learning architectures used to

learn input data representations in an unsupervised manner [58]. The purposes

of this representation include dimensionality reduction and reconstruction of the

input with the removal of noise. An AE is constituted by two main parts: an

encoder that maps the input into a code, and a decoder that maps the code to a

reconstruction of the original input. In terms of architecture, AEs are

feedforward, non-recurrent neural networks very similar to the multilayer

perceptron (MLP)–they have an input layer, an output layer and one or more

hidden layers connecting them, with the output layer having the same number of

nodes as the input layer. Additional applications of AEs include feature learning

and learning generative models which indicate the architectures can estimate

training data distribution and generate new samples from the same distribution.

Various AE variants exist to prevent autoencoders from simply learning the

identity function and to improve their ability to capture important information

and learn richer representations. Examples include denoising AE, sparse AE and

variational AE, as shown in Figure 1.8.

Variational autoencoder (VAE) models inherit the general autoencoder

architecture of both an encoder and a decoder and are trained to reduce the

reconstruction error between input and output. However, VAEs make strong

assumptions of the input distribution over the latent space which refers to the

middle hidden layer with the fewest neurons in AEs. In practice, encoded
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Fig. 1.8: Architectures for AE, VAE, DAE and SAE

distributions are chosen to be normal so the encoder can be trained to return the

mean and covariance matrix of a multivariate gaussian distribution. The

distributions returned by the encoder are then enforced to be close to a standard

normal distribution. The loss function of VAEs is composed of a reconstruction

loss and Kullback-Leibler divergence. The reconstruction loss measures the

distance between input and output, while the Kullback-Leibler divergence

measures the similarity between the distribution of the encoder and a standard

normal distribution. This loss function has a closed form that can be directly

expressed in terms of the means and covariance matrices of the encoded

distributions. The VAE model is trained in the following steps: 1) the input is

encoded as a distribution over the latent space, 2) a point from the latent space

is sampled from that distribution, 3) the sampled point is decoded and the

reconstruction error computed, 4) the reconstruction error is backpropagated

through the network. An important application of VAEs includes learning deep

generative models to generate new data using the learned distribution. One such

study in biomedical research trained a VAE on cancer gene expression data and

identified biological patterns in the encoded features [59].

1.3 Research Objectives

Given the great promise of machine learning approaches for biomarker

discovery and precision medicine, our research aims to apply these techniques for

subgroup discovery and classification of human diseases such as PTSD or cancer

using genome scale datasets. With multiple omics data sets from the PTSD

Systems Biology Consortium, the first of our projects involved implementing
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clinical subgroup-specific PTSD classification and biomarker discovery.

Specifically, we applied machine learning approaches to classify PTSD positive

patients in three molecular datasets–miRNA-Exosome, miRNA-Deplete and

Metabolomics–and select discriminative features as potential biomarkers. Our

second project aimed to identify PTSD subgroups through multiple omics data

integration via statistical and deep learning approaches. For biological

interpretation, we performed clinical characterization and differential expression

analysis based on the identified subgroups. We also utilized subgroup labels to

improve diagnostic classification. Finally, we worked on two supplementary

projects involving the development of a novel feature selection technique and

histopathological image feature extraction for classification using pre-trained

convolutional neural networks. Taken together, our research aims to explore

applications of machine learning in biomedicine and contribute to the precise

diagnosis and eventual treatment of PTSD, as well as other diseases.
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Chapter 2

Clinical Subgroup-Specific PTSD Classification and Biomarker

Discovery

2.1 Abstract

Post-Traumatic Stress Disorder (PTSD) is a psychiatric disorder caused

by environmental and genetic factors resulting from alterations in genetic

variation, epigenetic changes and neuroimaging characteristics. There is a

pressing need to identify reliable molecular and physiological biomarkers for

accurate diagnosis, prognosis, and treatment, as well to deep the underpinning of

pathophysiology.

Using a cohort of 234 samples with 166 in training and 68 in validation,

applied machine learning approaches to classify PTSD patients in three

molecular datasets miRNA-Exosome, miRNA-Deplete and Metabolomics. We

first divided patients into multiple sets of two subgroups based on the values of

112 clinical and endocrine measurements. We then performed supervised

classification across all samples and within each subgroup using two feature

selection strategies (Recursive Feature Elimination (RFE) and ANOVA), four

classifiers (logistic regression (LR), support vector machines (SVM), random

forests (RF), and extra trees (ET)), and 10-fold nested cross validation. We

evaluated each subgroup for significantly improved classification performance by

computing empirical false discovery rates (FDRs) based on accuracy and AUC

values. Finally, we combined those significant clinical features with molecular

measurements and constructed an overall PTSD classifier. We fit all data in the

best classification model in training and selected features as biomarkers.

In total, 85 clinical subgroups from 72/112 clinical and endocrine features

lead improved classification performance compared to the baseline from all

samples in training, with 38 yielding improved performance in more than one

method. Tree-based models yielded the greatest number of improved subgroups

in the metabolomics and miRNA from exosomes datasets, while Logistic
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Regression showed the greatest improvement in the miRNA depleted of exosomes

dataset. Using our overall PTSD classifier with molecular and clinical features,

we observed that the majority of classification models show improved accuracy

in both training and testing. In metabolomics, the overall model achieved the

best AUC 0.79 ± 0.13 and ACC 0.722 ± 0.078 at ANOVA-SVM, significantly

better than the baseline models at ACC with only molecular or clinical features.

In miRNA-Exosome, ANOVA-LR model reached the best AUC 0.758 ± 0.097

and ACC 0.701 ± 0.116 with ACC significance compared to the clinical model

baseline. In miRNA-Deplete, RFE-SVM model reached the best AUC 0.677 ±

0.134 and ACC 0.605 ± 0.128. These best models have fair performance in

validation as well. We also selected the features in these models and listed as

potential biomarkers consisting of molecular and clinical features.

We applied machine learning approaches in multiple types of PTSD data

and built classification models consisting of molecular and clinical features to

predict PTSD patients. We also provide candidate biomarkers for the

diagnostics, which improves the pathogenesis understanding of PTSD. Hopefully,

our work contribute to the precise diagnostics and treatment at PTSD.

2.2 Materials and Methods

2.2.1 Study Samples

The Department of Defense-funded Systems Biology of PTSD Consortium

has recruited over 200 male combat veterans with and without PTSD for the

purposes of identifying diagnostics biomarkers. Whole blood samples taken from

each subject have been used to isolate DNA, RNA, protein, metabolites, and

endocrine markers for subsequent study. In the first stage, two cohorts were

collected–a discovery cohort of 166 samples: 83 PTSD positive and 83 PTSD

negative, followed by a validation cohort of 68 samples: 29 PTSD positive and 39

PTSD negative. For this study, we analyzed three molecular datasets from these

two cohorts–two measuring miRNA derived from plasma either enriched

(miRNA-Exosome) or depleted (miRNA-Deplete) in exosomes, and one
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measuring metabolomics. We also included clinical characteristics from four

categories including PTSD scales, demographic information, biochemical and

anthropometric body measurements, and endocrine measurements from blood

and urine. After filtering these clinical characteristics for numeric measurements

with less than 10% missing values in the discovery cohort, we were left with 112

features, among which 24 are binary and 88 are continuous. The datasets used in

this study were collected and preprocessed in or before January 2017.

2.2.2 Clinical Feature Association Analysis

For the 112 clinical features, we first performed statistical association

analysis between those measurements and PTSD labels. In both training and

validation cohorts, we used Fisher’s Exact test for binary features and t-test for

continuous features. We obtained p-values and used the threshold 0.05 to

determine significant associations.

2.2.3 Clinical Subgroups

For each clinical feature, we split samples from the training cohort into

two subgroups based on their feature values. For binary features, subgroups were

created based on which of the two values each sample held. For continuous

features, subgroups were based on the median measurement: a higher expression

subgroup contains samples whose measurements were greater than or equal to

the median, with the remaining samples belonging to a lower expression

subgroup. We used the same criteria to split samples and obtain subgroups in the

validation cohort. After clinical subgroup creation, we split the corresponding

measurements from each of the three omics datasets–miRNA-Exosome,

miRNA-Depleted and metabolomics–accordingly. In the following analyses, we

only considered clinical subgroups with at least 10 samples each from the

training cohort and at least two samples each from the validation cohort.

2.2.4 Missing Value Imputation

Although we kept clinical features with less than 10% missing

measurements, any missing values still prohibited the direct use of many
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supervised machine learning methods. Thus, we first used the method Imputer

to generate missing values based on mean values of nearest neighbors [60]. We

then fed the input data to machine learning algorithms for classification.

2.2.5 Supervised Classification

Feature selection is a common preprocessing step in machine learning,

especially when applied to high-dimensional biological data, as it is effective in

reducing dimensionality, removing irrelevant information, decreasing model

variability and increasing learning accuracy [61]. We applied two types of feature

selection in supervised classification. The first is a filtering approach, which

selects the most relevant features manually or automatically before classification.

We chose Analysis of variance (ANOVA) as a commonly-used filtering feature

selection method. The second is an embedding approach, which considers feature

selection and classification simultaneously as part of an analysis pipeline. For

this approach, we chose recursive feature elimination (RFE), which has the

potential to yield better performance [62].

For performing supervised classification, we included four classifiers:

Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF)

and Extra Tree (ET). LR builds a linear boundary between classes and predicts

the maximum probability for being in one class. SVM builds a hyperplane

between classes and uses kernel tricks to perform linear or nonlinear

classification. Both RF and ET are tree-based classifiers differing in the setup of

randomized trees. For each classifier, we evaluated a series of hyperparameters

including the following: l1 and l2 regularization (LR), linear, polynomial, and

radial basis function kernels (SVM), cost penalty (10−4,4 and 2−4,4) and gamma

(10−4,−1) (SVM), tree numbers and max features (RF and ET).

When using ANOVA feature selection, we selected the best model for

each classifier using a grid search across a range of 10% to 100% top-scoring

features. When performing RFE-based feature selection and classification, the

lowest-scoring 10% of features were eliminated at each iteration and the best
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model selected across all iterations. To evaluate classification performance, we

computed metrics including AUC (Area under ROC curve) and accuracy (ACC).

To avoid overfitting, we applied 10-fold nested cross validation (NCV) to obtain

the average performance of each classifier. Specifically, we divided all samples

into 10 folds, in which nine folds were used for training with one left for external

testing. In those nine folds, 9/10 were used for tuning classifier hyperparameters,

followed by internal testing in the remaining fold. For both ANOVA- and

RFE-based classification, we computed average model performance based on

10-fold NCV.

2.2.6 Classification Performance Comparison

For the clinical subgroup comparison, we used a paired t-test to detect

mean differences in AUC and ACC between each subgroup and the baseline

where all samples were used for classification. We used a p-value threshold of

0.05 to select significant differences. When performing comparisons between

models composed of molecular data, clinical data and mixed data, we also

applied paired t-tests to detect significant differences in performance.

2.2.7 Biomarker Discovery

We first selected the best overall models from the three omics datasets,

considering both ANOVA- and RFE-based feature selection methods. We then

fit models of all molecular and clinical data together using the same

hyperparameter tuning strategy as above. All selected features were considered

to be candidate PTSD biomarkers. For the tree-based classifiers, the rankings of

these biomarkers were calculated using variable importance, while for LR or

SVM classifiers the rankings were computed from the feature coefficients.

2.3 Results

In this study, we applied machine learning approaches to multiple PTSD

omics datasets and built classification models to predict PTSD status as well as

identify candidate biomarkers. Using the clinical and molecular data described
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above, we built classification models composed of integrated clinical and

molecular features and identified diagnostic biomarkers from both data types.

2.3.1 Association Analysis of Clinical and Endocrine Features With

PTSD

We first applied statistical tests (t-tests for continuous features and

Fisher’s Exact test for binary features) to detect associations between PTSD

status and clinical and endocrine characteristics. Given the 112 clinical and

endocrine features (24 binary and 88 continuous) passing the filters described

above, we identified 29 (26%) that are significantly associated with PTSD

(Figure 2.1). Of these 29, three consist of physiological measurements (Figure

??-A), two of demographic information (Figure 2.1-B), 17 of biochemical

measurements (Figure 2.1-C), three of blood endocrine measurements (Figure

2.1-D), and four of PTSD scales. The majority of these features show significant

associations in the training cohort but not in the validation cohort. Only

three–pulse, glucose (fasting glucose) and rbc (red blood cell count)–are

significantly associated with PTSD in both cohorts, where PTSD patients have

higher levels of these features.

2.3.2 Clinical Subgroup Classification Performance

Despite the heterogeneity of PTSD pathology, there is currently no

staging approach for suggesting distinct therapeutic treatments depending on

the degree of biological progression of the disorder [63]. Inspired by findings that

subtypes of PTSD vary in time to recovery and disorder severity, we worked to

determine whether clinical subgroups within each omic dataset could enable

improved classification performance compared to a baseline considering all

samples. The analysis flow of such clinical subgroup classification is sketched in

Figure 2.2. For each of three omics datasets–miRNA-exosome, miRNA-deplete

and metabolomics–we split all samples to obtain two clinical subgroups for each

of 112 clinical measurements. We then built classification models for all

subgroups individually as well as for a baseline consisting of all samples for
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Fig. 2.1: Bar Plots of Clinical Characteristics Significantly Associated With
PTSD, x axis indicates clinical or endocrine features, y axis indicates the log
transform p values, red color indicates the significance in training dataset while
blue color indicates in validation dataset, A) in physiological measurements, B)
in clinical biological background, C) in biochemical measurements, D) in
endocrine from blood.

performance comparison. We evaluated two feature selection

approaches–ANOVA and Recursive Feature Elimination (RFE)–and four

classifiers–Logistic Regression (LR), Support Vector Machine (SVM), Random

Forest (RF) and Extra Tree (ET). We utilized 10-fold cross validation to

evaluate model performance using the criteria Area Under ROC Curve (AUC)

and Accuracy (ACC). Additional details about clinical subgroups and

classification models can be seen in the Materials and Methods section above.

Overall, 85 clinical subgroups from 72 clinical and endocrine features

show improved classification performance with significantly improved training

AUC or ACC compared to the baseline. We also listed a list of top clinical

subgroups which showed AUC improvement in the validation (Vad) data in

Table 2.1. Across the eight classification methods tested (two feature selection

approaches times four classifiers), we found that use of the tree-based classifiers
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Fig. 2.2: PTSD Clinical Subgroup Classification Workflow, A) In the analysis
flow from subgrouping to the biomarker discovery, each omic dataset is split
based on each clinical or endocrine measurement and ends up with two clinical
subgroups consisting of PTSD and control samples individually. For each
subgroup, a machine learning approach is used to build classification models and
compared to the baseline from all samples. A set of subgroups with improved
classification performance are selected for each omic dataset. With the combined
molecular and clinical features, machine learning is used to build classification
models. Then best models are selected for three datasets and biomarkers are
discovered from the selected features. B) A machine learning approach is used to
build classification models for datasets in A part. For each dataset with samples
and features, two types of feature selection methods ANOVA and Recursive
Feature Elimination (RFE) and 4 classifiers Logistic Regression, Support Vector
Machine, Random Forest and Extra tree are pipelined and implemented.

RF and ET led to the greatest number of subgroups with improved performance

in Metabolomics and miRNA-Exosome data, while use of LR resulted in the

most improvements in miRNA-Deplete data. In Metabolomics, use of the top

two models–ANOVA-RF and RFE-RF–led to 19 and 16 improved subgroups,

respectively, in training, and 17 and 13 improved subgroups, respectively, in

validation. In the miRNA-Exosome dataset, the top three methods–ANOVA-ET,

ANOVA-RF and RFE-ET–led to 13, 9 and 9 improved subgroups, respectively,
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Fig. 2.3: Heatmaps Showing Improved Performance in Three Datasets
miRNA-Exosome, miRNA-Deplete and Metabolomics, rows indicate different
methods from feature selections and classifiers while columns indicate the clinical
or endocrine subgroups, A) in Metabolomics, b) in miRNA-Deplete, C) in
miRNA-Exosome, red color indicates detected improvement while grey indicates
no improvement.

in training and 4, 9 and 4 improved subgroups, respectively, in validation.

Finally, in the miRNA-Deplete dataset, the top two methods–ANOVA-LR and

RFE-LR–led to 26 and 22 improved subgroups, respectively, in training and 9

and 17 improved subgroups, respectively, in validation. Overall, 38 subgroups

showed significant improvement for more than one classification method using

the same feature selection approach. Of these, 11 are from miRNA-Exosome

data, 12 from miRNA-Deplete data and 15 from Metabolomics data as seen in

Figure 2.3(A-C). We also found that 4 subgroups showed improvements in more

than one dataset: ALBDown (albumin), Army0 (Military Service),

elisa.cordifUP (cortisol1 - cortisol2) and ProTotDown (total serum

protein) as seen in Figure 2.4. Taken together, the improved classification

performance for particular subgroups suggests that inclusion of the

corresponding clinical measurements in classification would improve overall

PTSD status prediction.

2.3.3 Classification From Clinical and Molecular Features

The complex network of clinical and molecular interactions shows promise

for enabling our understanding of the biological dysregulation responsive to
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Table 2.1: Performance Improved Clinical Subgroups

Data Sets Methods Clinical Sub-
groups

Classi-
fier

AUC VadAUC AUC p
value

Metabolomics ANOVA monos.-
Down

ET 0.883 ± 0.172 0.762 0.0253

Metabolomics RFE monos.-
Down

RF 0.821 ± 0.148 0.721 0.034

Metabolomics RFE baso-Down LR 0.831 ± 0.145 0.685 0.0116
miRNA-
Exosome

ANOVA etof-Down SVM 0.907 ± 0.161 0.679 0.0278

Metabolomics RFE baso-Down RF 0.822 ± 0.114 0.658 0.0111
Metabolomics RFE BILITOT-

UP
RF 0.782 ± 0.087 0.653 0.0392

Metabolomics RFE monos.-
Down

LR 0.842 ± 0.217 0.646 0.04

Metabolomics ANOVA rdw-Down ET 0.858 ± 0.123 0.644 0.0157
Metabolomics ANOVA ldl-Down SVM 0.839 ± 0.08 0.634 0.0244
Metabolomics ANOVA rdw-Down RF 0.869 ± 0.14 0.633 0.0131
Metabolomics RFE rdw-Down RF 0.855 ± 0.14 0.631 0.007
miRNA-
Exosome

RFE ABM3B-UP LR 0.818 ± 0.129 0.631 0.0229

Metabolomics ANOVA ABM6-UP SVM 0.854 ± 0.114 0.63 0.0241
Metabolomics ANOVA BILITOT-

UP
LR 0.848 ± 0.094 0.627 0.0413

Metabolomics RFE alkphos-
Down

RF 0.795 ± 0.097 0.609 0.0254

Metabolomics RFE elisa.cordif-
UP

SVM 0.849 ± 0.156 0.604 0.0427

miRNA-Deplete RFE Army-0 RF 0.708 ± 0.186 0.604 0.359
Metabolomics RFE ic50-UP LR 0.772 ± 0.109 0.602 0.0483
Metabolomics RFE rdw-Down ET 0.84 ± 0.14 0.593 0.0203
Metabolomics RFE baso-Down ET 0.864 ± 0.115 0.59 0.0031
Metabolomics RFE bthftof-UP RF 0.842 ± 0.123 0.59 0.0061
Metabolomics ANOVA baso-Down RF 0.849 ± 0.145 0.59 0.0339
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PTSD triggers [64] [?]. After obtaining the clinical and endocrine features

contributing to improved subgroup classification, we combined the top 15 clinical

features with each molecular omics dataset to build overall classification models.

Our working hypothesis is that the complementary information provided by

molecular data and clinical features can contribute to better classification

performance. For comparison, we also built baseline classifiers using only

molecular or clinical data (with the same 15 clinical features). We applied a

one-sided paired t-test to compare training performance between the

mixed-feature model and two baselines. In total, we evaluated eight combined

classification models for each dataset and compared performance with eight

molecular baseline and eight clinical baseline models. From our results, the

majority of combined models outperformed the baselines with a higher AUC in

the validation data set; specifically, we saw improvement in 23/24 combined

model-dataset pairs compared to molecular data and 18/24 pairs compared to

clinical data. Of these improvements, 5 were statistically significantly different

from the molecular baseline and 10 were significantly different from the clinical

baseline.

In the metabolomics data, all of the combined models showed improved

performance relative to the two sets of baseline models (16/16 comparisons

total) in the training data, and 14/16 comparisons showed improvement in the

validation data. In particular, the ANOVA-based linear SVM model with clinical

and molecular features achieved AUC 0.79 ± 0.13 and ACC 0.722 ± 0.078,

which is significantly better than the performance of the clinical data-only model

(p-values: 0.04 and 0.002) or the molecular data-only model (p-values: 0.091 and

0.005). This suggests that the complementation between metabolites and clinical

features yields a better distinction between PTSD case and control. Using

RFE-based models, the best performance observed is from ET with AUC 0.769

± 0.081 and ACC 0.681 ± 0.088 (training data), along with improved

performance in the validation data.
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In the miRNA-Deplete dataset, the best ANOVA- and RFE-based models

both use ET, with AUC 0.725 ± 0.139 and ACC 0.72 ± 0.097 (ANOVA) and

AUC 0.724 ± 0.134 and ACC 0.64 ± 0.154 (RFE). In the miRNA-Exosome

dataset, the best models are ANOVA-LR and RFE-ET, with AUC 0.758 ± 0.097

and ACC 0.701 ± 0.116 for the former and AUC 0.766 ± 0.154 and ACC 0.705

± 0.139 for the latter. The results in the miRNA-Deplete and miRNA-Exosome

datasets suggest more consistent performance using ANOVA- rather than

RFE-based feature selection, which may be due to overfitting when using RFE

with a small sample size. Given these best-performing classification models, we

next selected subsets of features as candidate biomarkers for each dataset.

2.3.4 Biomarker Discovery

Given the best-performing combined clinical and molecular models for

each dataset (Figure B.5), we selected the most relevant features as candidate

biomarkers. To do so, we ranked features by coefficients (LR and SVM) or

variable importance (RF and ET). Our result obtained all of the candidate

biomarkers, while Table 2.2 shows the top 10 candidate biomarkers from each

dataset using ANOVA. We selected the best models from each dataset using each

of the two feature selection approaches in an attempt to identify general relevant

features rather than model-specific features. Interestingly, the top 10 features

from the ANOVA-SVM and RFE-ET combined clinical-metabolomics models

have 8 features in common, including the 2 clinical features ProTot and monos..

In the miRNA-Deplete dataset, the top 10 features (6 clinical and 4 molecular)

were selected from the ANOVA-ET and RFE-ET models, with 5 of the clinical

features (DemoChi, Pulse, ALB, elisa.npy and ProTot) in common between the

models. In the miRNA-Exosome data, the top 10 features for the ANOVA-LR

and RFE-ET models were molecular, with only one molecule (hsa-miR-200b-3p)

in common between the models. These results confirmed our hypothesis about

the complementary nature of the information contained in the clinical and

molecular data. Our results also suggest that the contribution from clinical
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features may be redundant in the miRNA-Exosome dataset (no clinical features

were in the top 10), while clinical features appear to play an important role in

accurate classification using the miRNA-Deplete dataset.

Table 2.2: Top10 Candidate Biomarkers of the ANOVA Approach

miRNA-Exosome
ANOVA

miRNA-Deplete
ANOVA

Metabolomics ANOVA

hsa-miR-7-1-5p (M) DemoChi (C) 5-oxoproline (M)
hsa-miR-200b-3p (M) ProTot (C) ProTot (C)
hsa-miR-3613-5p (M) ALB (C) lactate (M)
hsa-miR-376c-3p (M) ggt (C) monos. (C)
hsa-miR-29c-5p (M) hsa-miR-185-5p (M) hypoxanthine (M)
hsa-miR-486-2-5p (M) ABM10 (C) docosapentaenoate

(n3-DPA; 22:5n3) (M)
hsa-miR-941-1-3p (M) hsa-miR-3940-3p (M) tyrosine (M)
hsa-miR-590-5p (M) elisa.npy (C) 2-hydroxypalmitate

(M)
hsa-miR-4454-5p (M) hsa-miR-1304-5p (M) glutamine (M)
hsa-miR-502-3p (M) hsa-miR-574-3p (M) docosahexaenoate

(DHA; 22:6n3) (M)
*C: Clinical features, M: Molecular features

2.4 Discussion

In this study, we built classification models for clinical subgroups, then

combined the clinical features leading to significant improvement with molecular

features to build predictive models of PTSD status. We then selected important

features as candidate diagnostic biomarkers. Specifically, 72 clinical

measurements demonstrated improved classification performance through

subgroup splitting, among which 21 are significantly associated with PTSD. In

the top 10 clinical biomarkers, 8 are both significantly associated with PTSD

status in the training data and contribute significantly to subgroup-specific

classification improvements. The combination of association with PTSD as well

as improvement in PTSD prediction leads to more easily interpretable

biomarkers. Knowledge of these biomarkers may also suggest PTSD candidate

genes or biological pathways related to PTSD pathogenesis. We note that

inconsistencies in performance observed between training and validation datasets

may be due to population differences between the cohorts as well as the smaller

number of validation samples.
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PTSD has the characteristics of hyperarousal and exaggerated startle

responses. It was previously reported that PTSD patients have a high risk of

developing cardiovascular issues, such as increased heart rate and blood pressure

[65] and increased BMI and weight [66] as a result of traumas. Associations of

relationship status (being single) and having children with PTSD may suggest

that the symptoms lead to (or result from) issues with trust, closeness and

communication in relationships and/or with family. Three blood endocrine

biomarker–elisa.npy (plasma neuropeptide Y), elisa.cordif (plasma cortisol

dexamethasone suppression test 1 - plasma cortisol dexamethasone suppression

test 2), and ic50 (Peripheral Blood Mononuclear Cell (PBMC) Lysozyme

IC50-DEX)–showed association with PTSD, which demonstrates a consistency

with known neuroendocrine alterations resulting from PTSD. PTSD is also

associated with enhanced pro-inflammatory cytokines in PBMC [67]. Counts of

monocytes, which secrete chemokines during inflammation, are useful biomarkers

along with ProTot (total serum protein) in metabolomics data, although they do

not appear to be as informative when combined with miRNA data. The lactate,

one of our top metabolite biomarkers, has also been reported as a candidate

biomarker for PTSD diagnosis [68]. Although our discoveries may be limited by

the sample size, to our knowledge this study is the first to use clinical and

endocrine features to define PTSD subgroups for improved diagnostic

performance.

Data integration enables understanding of complex biological systems in

multiple dimensions [69][70]. In our work, we evaluated the classification

performance of models integrating clinical and molecular data in both training

and validation cohorts. For machine learning approaches, we applied two feature

selection techniques and four classifiers in order to find the most suitable model

for each PTSD dataset. In clinical subgroup classification, we found that

tree-based models yielded the largest number of improved groups in

miRNA-Exosome and metabolomics data, while LR yields the most in

37



miRNA-Deplete data. In an overall classification with clinical and molecular

features, we observed good performance using ET, LR or SVM. Despite our

success, our best classification performance observed (0.79 AUC) highlights the

ongoing challenges in accurately predicting PTSD status.

As survey-based PTSD diagnoses used to determine PTSD status have

several important limitations, use of molecular biomarkers have the potential to

more objectively predict PTSD status. In this study, we identified candidate

biomarkers for each omics dataset comprising both molecular and clinical

features. Importantly, the molecular candidate biomarkers enabled accurate

PTSD prediction and also provided novel insights for understanding the

pathophysiology of PTSD. Since the dataset used in this study is from combat

veterans, it is likely that our findings are most relevant for patients with a

similar background.

Several other limitations exist in the current study. First, the PTSD

Systems Biology Consortium continually improves sample collection and

experimental assays used to generate data. The work described here is based on

data collected in or before January 2017. A study of the most recent data from

the Consortium would require repeating all steps of our analysis on the latest

data. Second, the relatively small sample sizes of study cohorts pose challenges

in the application of machine learning approaches. The working sample sizes

become even smaller when splitting samples into clinical subgroups. We

presented our statistical test results using raw p-values. However, given the

number of clinical variables used for subgroup generation, a more robust analysis

would require controlling for multiple testing by adjusting the original p-values.

Future work using datasets with larger sample sizes will include this additional

step.

2.5 Conclusions

We applied machine learning approaches to multiple types of PTSD data

to explore the diagnostic potential of clinical subgroups and build classification
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models consisting of molecular and clinical features to predict PTSD status. We

also provided candidate diagnostic biomarkers, knowledge of which improves our

understanding of PTSD pathogenesis. We expect that our work will contribute

to more precise diagnosis and treatment of PTSD.
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Chapter 3

Multi-omic data integration to discover subgroups of PTSD

3.1 Abstract

Post-Traumatic Stress Disorder (PTSD) is a psychiatric disorder caused

by environmental and genetic factors resulting from alterations to gene

expression, DNA methylation, and neuroimaging characteristics. There is a

pressing need to identify reliable molecular and physiological biomarkers for

accurate diagnosis, prognosis, and treatment of PTSD, as well as to deepen our

understanding of its pathophysiology. Multiple omic data integration enables

investigation of the complex, multivariate nature of the biological systems

underlying PTSD and is essential for identifying molecular subgroups of the

disorder.

Given 284 total samples (124 PTSD positives) from four omics data sets

(miRNA enriched in exosomes, miRNA depleted for exosomes, total miRNA,

and Metabolomics) in cohorts of Training, Validation and Recall, we used two

methods–Similarity Network Fusion (SNF) and Variational Autoencoder

(VAE)–to integrate the data sets and identify subgroups. SNF performs

integration by efficiently fusing sample similarity matrices from each data set

into one network representing the full spectrum of underlying data. Spectral

clustering can then be used to identify subgroups from this network. The VAE

method uses a symmetric deep neural network to reconstruct multiple omics

input data sets by estimating data distributions and identifying representative

hidden variables. K-means clustering is then used to identify subgroups from the

lower dimensional hidden variables. In order to interpret the subgroups, we

tested the associations between identified subgroups and clinical characteristics.

We also calculated differentially expressed molecules between subgroups in each

omics dataset. We then built supervised classification models for PTSD

diagnosis with/without subgroups and compared the accuracy of predicting

PTSD status in the context of subgroups to the accuracy of predicting PTSD
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status without any knowledge of subgroups. Finally, we built a classification

model to predict subgroups in PTSD positive samples.

Our results suggest the presence of two PTSD subgroups in 82 training

PTSD positive samples, both SNF- and VAE-based methods. These subgroups

show significant differences in recalled sample PTSD status (p-value 0.0213). We

also found that a majority of samples associated with the same subgroups when

comparing results from the two methods. Upon statistical testing for association

of the subgroups with over 600 clinical features, we found a significant

association with features including heart rate and insulin. The two identified

subgroups also exhibit a number of differentially expressed molecules from each

omics data set. For diagnostic classification, we observed improved performance

for subgroup-aware PTSD status prediction in total miRNA and Metabolomics

data sets using SNF-based subgroups and in all four omics data sets using

VAE-based subgroups. Finally, using our classification model for subgroup

prediction, we found that identified subgroups in the validation cohort were

significantly associated with many of the same clinical features associated with

subgroups from the training cohort.

We integrated four omics datasets and discovered two clinically-plausible

PTSD subgroups. These subgroups showed significant association with clinical

features and a collection of differentially expressed molecules between them.

Supervised classification using a subgroup-aware classifier suggested improved

PTSD diagnostic potential. Future work will involve leveraging knowledge of

these subgroups to enable precision medicine for PTSD.

3.2 Introduction

Single “omics” data sets have helped explain diagnosis and progression for

complex disorders, but the information contained is limited to one modality. As

different layers of biological systems are often relevant and interdependent,

multiple omics data integration using mRNA expression, miRNA expression,

protein, DNA methylation and metabolomics can utilize complementary
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information and hidden coherent biological signatures to discover biomarkers for

diagnosis, progression and treatment in human diseases [71] [72]. Several studies

have summarized the variety of approaches, challenges and the potential benefits

of using data integration to understand biological systems [70] [73] [74] [75]. Of

these approaches, use of deep neural networks and deep learning is particularly

promising.

Deep learning, a class of machine learning techniques, utilizes a cascade of

multi-layered artificial neural networks for automatic feature extraction and

representation learning. Deep learning architectures such as autoencoders,

recurrent neural networks and convolutional neural networks have been applied

to fields in computer vision, natural language processing and biomedical data

science [52] [53]. Autoencoders (AEs), a type of deep learning model consisting

of an encoder and decoder, learns data reconstruction and efficient representative

features in an unsupervised manner. Specific variants of AEs include Denoising

Autoencoders [76], Adversarial Autoencoders [77], and Variational Autoencoders.

AEs have been successfully applied in biomedical research to solve tasks such as

subgroup discovery in liver cancer [78], neuroblastoma cancer subtype discovery

[79], unsupervised cancer detection using Adversarial AEs [80] and feature

construction and knowledge extraction using a Denoising AE [81]. A number of

studies have applied AEs for multiple omics data integration to enable

neuroblastoma clinical endpoint prediction [82], high-risk neuroblastoma subtype

prediction [79], risk stratification of bladder cancer [83], liver cancer survival

prediction [84] and evaluation of colorectal cancer subtypes and cell lines [85].

However, few studies have made use of multiple omics data integration to

discover subgroups of PTSD.

In this study, we integrated four omics data sets from 82 PTSD positive

samples using two different approaches–Similarity Network Fusion (SNF) and

Variational Autoencoder (VAE). Using these approaches, we identified subgroups

of PTSD which showed significant differences in recalled sample PTSD status. In
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order to interpret the subgroups biologically, we performed differential expression

and clinical characteristic association analyses. We also built a subgroup-aware

PTSD diagnostic model and a PTSD subgroup prediction model which showed

good performance in multiple sample cohorts. These models and our associated

findings regarding PTSD subgroups should contribute to a better understanding

of PTSD pathogenesis and improved clinical applications for PTSD patient

stratification.

3.3 Materials & Methods

3.3.1 Study Samples

The DoD-funded Systems Biology of PTSD Consortium has recruited

over 200 male combat veterans with and without PTSD for the purposes of

identifying diagnostic biomarkers. For subject recruitment, PTSD-positive and

PTSD-negative participants were selected using the following criteria: 1) male

veteran between 20 and 60 years old, 2) deployment in Operation Enduring

Freedom and/or Operation Iraqi Freedom, 3) PTSD positive participants with at

least 40 CAPS score, 4) PTSD negative participants with less than 20 CAPS

score. For consistency, all study participants were evaluated using the DSM-IV

PTSD assessment upon recruitment. For research purposes, there are three

cohorts: a Training cohort also called the discovery cohort (82 PTSD positive

cases and 82 PTSD negative controls), a Test cohort also called the validation

cohort (28 positive and 39 negative samples) and a Recall cohort (14 positive, 10

subthreshold positive and 29 negative samples). In the recall cohort, a subset of

samples from the training cohort were recalled and reassessed an average of three

years later.

For each of the recruited subjects, blood and urine samples were taken

and used to isolate DNA, RNA, protein, metabolites, and endocrine markers for

downstream analyses. Physiological measures (e.g., pulse, blood pressure, body

mass index) were also collected. Molecular and physiological data from the

Training cohort were initially designated for hypothesis generation regarding
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potential diagnostic biomarkers and underlying biological mechanisms of PTSD,

while data from the Test cohort were designated for hypothesis testing and

attempted replication of the training sample findings. For this study, we

analyzed four molecular datasets from these cohorts–three measuring miRNA

derived from either total plasma (miRNA-Plasma), plasma enriched in exosomes

(miRNA-Exosome), or plasma depleted in exosomes (miRNA-Deplete), and one

measuring metabolomics–with the goal of identifying and clinically

characterizing multi-omic PTSD subgroups.

In addition to molecular features, 613 clinical and physiological features

(hereafter referred to as clinical features) belonging to four categories including

demographic information, PTSD diagnostic assessment scores, biochemical and

anthropometric body measurements, and endocrine measurements from blood

and urine, were collected for each subject in the three cohorts. In our analysis,

we first removed clinical features with missing values in the training or validation

cohorts, which left 602 features remaining. We then assigned each clinical feature

to one of three categories based on which of the following criteria were satisfied

for both training and validation cohorts: 1) “Binary” if two unique values exist,

2) “Categorical” if at most five unique values exist, 3) “Continuous” if more than

five unique values exist. In total, we identified 101 binary, 427 categorical and 74

continuous features. To perform statistical association analyses, we used Fisher’s

Exact Test for binary and categorical features and t-test for continuous features.

We adjusted p-values for multiple testing using the Benjamini-Hochberg (BH)

[86] method and considered any feature with adjusted p ≤ 0.05 as significantly

associated.

3.3.2 Principal Component Analysis

Principal component analysis (PCA) is a statistical procedure that uses

an orthogonal transformation to convert a set of observations of possibly

correlated variables into a set of values of linearly uncorrelated variables called

principal components. We applied PCA on the concatenation of all four omics
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data sets from the 82 PTSD positive samples of the Training cohort and used

the maximum number (82) of extracted components to represent the input data.

We then used K-means clustering as described below to discover the optimal

PTSD subgroups.

3.3.3 Similarity Network Fusion Data Integration

Similarity Network Fusion (SNF) is a computational approach for

performing data integration of multiple omics data sets [87]. SNF first calculates

a sample similarity matrix individually for each data set, which may include

mRNA expression, DNA methylation and miRNA expression, among others.

Next, SNF iteratively integrates these similarity matrices into an overall sample

similarity matrix using graph fusion. This approach helps reduce data

set-specific noise and bias to capture complementary information from omics

datasets of different modalities. We used the R library “snftools” to integrate our

four study datasets–miRNA-Exosome, miRNA-Deplete, miRNA-Plasma and

metabolomics–from the PTSD positive samples in the Training cohort. We then

discovered optimal subgroups from the overall sample similarity matrix using the

spectral clustering approach implemented in the snftools library and described

below.

3.3.4 Variational Autoencoder Model

As described above, an Autoencoder (AE) is one class of deep learning

architectures used to learn input data representations in an unsupervised

manner. The purposes of this representation include dimensionality reduction

and reconstruction of the input with the removal of noise. An AE is constituted

by two main parts: an encoder that maps the input into a code, and a decoder

that maps the code to a reconstruction of the original input. The encoder and

decoder are symmetric in terms of layer structure. The simplest AE model is one

hidden layer which refers to the input layer, one hidden layer in the encoder, the

symmetric hidden layer in the decoder and the output layer. The output of the

last encoder hidden layer is also called latent space, which usually has reduced
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dimensions of features compared to the input and the features are also called

latent variables or latent vectors. The output of the decoder is the

reconstruction which is trained to be close to the input. A Variational

Autoencoder (VAE) is an AE variant which inherits the general autoencoder

architecture of both an encoder and a decoder and is trained to reduce the

reconstruction error between input and output. Moreover, VAEs learn the

distribution of samples by estimating a mean and standard deviation vectors

which are used to sample a latent space to be fed to the decoder. VAEs also add

a Kullback-Leibler divergence term to the reconstruction loss which measures the

difference between a standard Gaussian and the estimated distribution.

In our work, we implemented a one-hidden layer VAE to reconstruct the

input data, which in this case is the concatenation of four omics data sets from

the 82 PTSD positive samples of the Training cohort. For model training, we

tuned hyperparameters including learning rate (ranging from 0.0001 to 0.1) and

dropout rate (ranging from 0.1 to 0.5). For each hyperparameter combination,

we trained the corresponding VAE for 500 epochs, at which point the training

process has converged. We then selected nodes from the hidden layer as a

reduced dimensional representation of the input data. Using this representation,

we applied K-means clustering as described below to select the optimal PTSD

subgroups.

3.3.5 Unsupervised Clustering

Spectral clustering [50] [88] is a technique that uses the eigenvectors

(spectrum) and eigenvalues of a matrix to define cluster membership.

This approach is based on the fact that if a graph (network defined by

sample similarity matrix) is formed by k disjoint cliques (clusters), then the

samples are projected into a lower dimensional space to have more obvious

clusters where Graph Laplacian Matrix, a matrix representation of a graph, is

used to calculate eigenvalues and eigenvectors. The eigenvectors of the sample

similarity matrix function as indicators of cluster membership. The eigengap
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refers to the difference between consecutive eigenvalues. Importantly, although

small perturbations such as adding a few edges linking clusters or removing

edges from inside the clusters will increase eigenvalues and change the

corresponding eigenvectors, this does not generally cause the underlying

structure to be lost. This clustering technique requires the number of desired

clusters to be specified [51]. We applied spectral clustering to the integrated

sample similarity matrix from SNF and calculated the eigengaps for numbers of

clusters ranging from 2 to 10. We then selected the optimal number of subgroups

based on the maximum eigengap value.

K-means is another method of unsupervised clustering, originating from

signal processing, that is popular for cluster analysis in data mining. For a given

value of K (number of clusters), the goal of K-means is to partition all training

data samples into K distinct, non-overlapping clusters by identifying clusters for

which within-cluster variation is as small as possible. For our work, we used the

K-means implementation from the Python Scikit-learn library. As with spectral

clustering, we evaluated numbers of clusters ranging from 2 to 10 and calculated

the Silhouette score to determine the optimal number. The Silhouette score

indicates the separation distance between a given set of clusters, with a large

score (close to 1) corresponding to good separation and a small score (close to 0)

corresponding to poor separation. We thus chose the optimal number of

subgroups based on the maximum Silhouette score.

3.3.6 Subgroup Recall Status Test

Among 59 total samples in the recall cohort, the 29 PTSD cases were

recalled from PTSD positive samples in the training cohort. Upon reassessment

on average three years later, these 29 samples were diagnosed as either “Positive”,

“Negative” or “Positive Subthreshold.” For the identified PTSD subgroups, we

compared recalled PTSD status between the groups and used Fisher’s Exact test

to test for differences. We used a p-value threshold of 0.05 to determine if the

subgroups showed significantly different recall statuses.
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3.3.7 Differential Expression Analysis

For the PTSD subgroups, we also identified differentially expressed (DE)

molecules between groups in each of the four omics data sets. In addition, we

identified DE molecules between PTSD positive and PTSD negative samples in

the Training and Validation cohorts. We used the R package “Limma” for DE

analysis and applied a Benjamini-Hochberg adjusted p-value threshold of 0.05 to

determine significantly DE molecules. For the three group (Control vs Subgroup

1 vs Subgroup 2) test, we compared each pair, then selected intersected

significantly DE molecules.

3.3.8 Supervised Diagnosis Classification

Support Vector Machines (SVMs) are supervised learning models with

associated learning algorithms used for classification and regression analyses.

SVM constructs a hyperplane or set of hyperplanes in a high- or

infinite-dimensional space. An important feature of SVMs is the use of kernel

functions that enable operation in a high-dimensional, implicit feature space

without requiring computation of the coordinates of data in that space. Kernels

provide a mapping of the problem from the input space to this

higher-dimensional space (called the feature space) by performing a nonlinear

transformation. We first used SVM with a linear kernel to train diagnostic

classifiers based on PTSD positive and negative labels for each of the four omics

data sets in the Training cohort. We then validated these classifiers using data

from the Validation cohort. We then used SVM to train a PTSD subgroup-aware

classifier based on labels of the identified subgroups as well as PTSD negative

labels. To assess accuracy, we considered any sample classified into one of the

predicted subgroups as a PTSD positive sample and PTSD negative otherwise.

During classifier training, we applied recursive feature elimination and

cross-validation for feature selection and accuracy evaluation, respectively.

Specifically for the latter, we used 10-fold nested cross-validation to perform

training and testing as well as optimize classifier hyperparameters. For the linear
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SVM, we evaluated values for the cost hyperparameter (C) in a series of

10( − 4, 3) and 2( − 4, 4). We selected the optimal hyperparameter based on the

highest average accuracy achieved in the training data and used the

corresponding trained classifier for subsequent evaluation.

3.3.9 Subgroup Prediction

We also used a linear SVM to construct a PTSD subgroup prediction

model. Here, the training labels are the predicted subgroups from the Training

cohort, and we use the resulting classifier to predict subgroups for the Validation

cohort. We used AUC as the evaluation metric for predictions based on the

training data, and we applied the same hyperparameter tuning and

cross-validation schemes as above. The best-performing hyperparameter was

selected based on the average AUC from cross-validation, and the corresponding

trained classifier was used to predict subgroup labels in the validation data. If all

subgroup predictions for the testing data set happen to be the same, we instead

chose the trained classifier using the next-best hyperparameter value as

determined by average AUC.

3.4 Results

In this work, we aimed to integrate multiple omics data sets to discover

PTSD subgroups and their associated clinical characteristics. Specifically, we

integrated three miRNA data sets and 1 metabolomics data set, and we applied

three different approaches–SNF, VAE and PCA–to perform data integration and

unsupervised subgroup discovery. We used the criteria of cluster separation and

differences in recall sample PTSD status to guide hyperparameter tuning and

select the optimal PTSD subgroups. For the subgroups identified using SNF and

VAE, we performed the following downstream analyses: 1) Differential

expression analysis between subgroups, 2) Subgroup clinical association analysis,

3) Subgroup-aware diagnostic model creation and evaluation, 4) Subgroup

prediction model construction and evaluation. Figure 3.1 shows our overall

workflow.
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Fig. 3.1: Workflow for PTSD subgroup identification and associated clinical
characterization. From the left side, we utilized PTSD multiple omic data sets
and applied methods PCA, SNF and VAE to discover subgroups in parallel as
seen in the middle. For the identified PSTD subgroups, we analyzed the status
change for the recalled samples, followed by differential expression, clinical
association and diagnosis model. We also built classification models to predict
PTSD subgroups.

3.4.1 PTSD Subgroup Identification

As described above, we utilized four omics data sets for our

analyses–miRNA-Exosome, miRNA-Deplete, miRNA-Plasma and

metabolomics–from three patient cohorts–Training (discovery), Test (validation)

and Recall. Across all cohorts, miRNA-Exosome contains 209 molecular features,

miRNA-Deplete contains 310 features, miRNA-Plasma contains 284 features and

metabolomics contains 168 features. The counts of samples and features can be

seen in Table 3.1.

Table 3.1: PTSD Multiple Omic Data Sets and Cohorts

Data Sets Feature Counts Cohorts Samples
P:(SP):N

miRNA-Exosome 209 Training 82:82
miRNA-Deplete 310 Validation 28:39
miRNA-Plasma 284 Recall 14:10:29
Metabolomics 168 All 124:10:150
All 971
*P: PTSD positive; SP: Subthreshold PTSD positive; N: PTSD negative

We first removed a known batch effect for location of sample recruitment

from the four omics datasets using the function “removeBatchEffect” from the R

Limma package. We performed this batch correction on data from all cohorts.

We also removed one feature (EDTA) from the metabolomics data set, as
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changes in its levels were known to reflect this batch effect. The above

procedures left us with a concatenated training data set of 82 PTSD positive

samples measured for 971 total molecular features. We applied data integration

and unsupervised clustering to this dataset to discover PTSD subgroups.

As described above, Similarity Network Fusion (SNF) performs omics

data integration through the construction and fusion of sample similarity

matrices from each data set [87]. To begin, we computed normalized pairwise

squared euclidean distances for each data set and then applied SNF to integrate

the data sets and obtain an overall 82 x 82 sample similarity matrix. We next

used spectral clustering to determine the optimal number of clusters within the

matrix. We selected the optimal number of subgroups based on the maximum

value of the eigengap, which reflects the degree of separation between clusters.

We then tuned SNF hyperparameters and tested for significant associations

between candidate subgroups and recall PTSD status. We identified an optimal

2 subgroups, consisting of 48 and 34 samples, respectively, with an eigengap of

0.166 and recall status p-value of 0.0213. We visualized a lower-dimensional

representation of the subgroup assignments using the t-SNE approach. Figure

3.2 A-C displays the numbers of subgroups versus their eigengaps and recall

status p-values, the overall sample similarity matrix and the t-SNE visualization.

Variational autoencoders (VAEs) provide an alternative means for data

integration by performing reconstruction and dimensional reduction of input

data. We applied a VAE model to the four PTSD omics datasets as an 82

sample x 970 feature matrix, and we used the 28 sample x 970 matrix from the

validation cohort for model evaluation. We tuned a series of hyperparameters to

optimize the VAE model for our data set. We then applied K-means clustering

to the reduced-dimensional hidden variables of the VAE to discover subgroups.

Similarly as with SNF, we tested for significant associations of recall status with

candidate subgroups. We used four criteria to choose the optimal number of

clusters: 1) model convergence with a low validation loss, 2) >0.1 Silhouette
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Fig. 3.2: SNF and VAE Subgroup Identification, A) Eigen gaps in SNF and
spectral clustering, B) Patient-patient similarity matrix with subgroup blocks,
C) SNF-derived subgroup visualization in training PTSD+ samples, D) VAE
training process in 500 epochs, E) K-means clustering in VAE hidden variables,
F) VAE-derived subgroup visualization in training PTSD+ samples.

score from K-means clusters, 3) fewer than 5 subgroups, 4) an association test

between candidate subgroups and recall PTSD status. We then visualized the

subgroups as before using t-SNE. We again identified an optimal 2 subgroups,

consisting of 50 and 32 samples, respectively, with a Silhouette score of 0.12 and

recall status p-value of 0.0213. Figure 3.2 D-F) show the numbers of subgroups

versus their Silhouette scores and recall status p-values, the training and

validation losses as training progresses, and the t-SNE subgroup visualization.

We also evaluated PCA as a simpler data integration method for

comparison with SNF and VAE. We selected all 82 principal components for

data integration, which represent 100% of the variance in the input data. Similar

to the VAE approach above, we applied K-means clustering on the

reduced-dimensional set of principal components and selected optimal clusters

based on Silhouette score. We identified an optimal 2 subgroups, consisting of 38

and 44 samples, respectively, with a Silhouette score of 0.142 and recall status

p-value of 0.142. Unlike with the SNF and VAE subgroups, the PCA subgroups
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did not demonstrate a significant association with recall status, so we did not

perform downstream analyses of these groups. Table 3.2 summarizes results of

the three approaches used for subgroup identification.

Table 3.2: Subgroup Identification and Fisher’s Exact Test on Recall Status

Methods Subgroups Separation Batch Effect
Test p value

Recall Status Test
p value

SNF 48 – 34 0.166 0.2456 0.0213
PCA 38 – 44 0.142 0.8157 0.1423
VAE 50 – 32 0.12 0.8119 0.0213

Given the SNF and VAE subgroups, we next compared group

membership between the two methods to detect subgroup overlap. A majority of

the 82 samples were placed in the same subgroups by the two methods, with the

exception of 14 samples that had switched membership (Table 3.3). When

considering only the subset of recalled samples, we found that all 29 samples

were placed in the same subgroups by both methods. Furthermore, recalled

samples in subgroup 2 have lower CAPS scores upon recall than those in

subgroup 1(t-test p-value 0.02). Figure 3.3-A indicates the change in CAPS for

the recalled samples between Training and Recall cohorts, and Figure 3.3-B

summarizes the difference in recall CAPS scores for the two subgroups. We used

t test and found p value 0.028 for the CAPS score difference between the two

subgroups in the Recall status.

Table 3.3: Overlap of Subgroups Identified Using SNF and VAE

SNF VAE Counts
1 1 42
1 2 6
2 1 8
2 2 26

3.4.2 Clinical Characterization Of Subgroups

To enable biological interpretation of the PTSD subgroups, we performed

association analysis of 602 clinical characteristics, among which 101 are binary,

427 are categorical and 74 are continuous. We applied Fisher’s Exact tests on

binary or categorical features and t-tests on continuous features. We then
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Fig. 3.3: Subgroup Recall Status Change, A) CAPS score change in SNF-derived
training PTSD+ subgroups, B) CAPS score change in Recall samples using
SNF-derived subgroups, C) Confusion matrix between SNF-derived subgroups
and Recall status changes.

performed multiple test adjustment of the original p-values using the

Benjamini-Hochberg (BH) method. We performed this analysis separately for

the subgroups identified by the SNF and VAE methods. For comparison, we also

tested for clinical associations with case and control status in the Training and

Validation cohorts. In the latter comparison, 332 clinical features were

significantly associated with case-control in both cohorts. Among those features,

62 were significantly associated with SNF-based subgroups while 60 were

significantly associated with VAE-based subgroups. Taken together, 59 clinical

features from six categories were significantly associated with subgroups detected

by both methods. These 59 clinical features were from 5 categories and the

members from the same category look quite similar. For the further analyses, we

chose one member from each category, but two from the ABM category in the

total of six clinical features. Figure 4 summarizes the values of six clinical

features–ABM10 (Body Mass Index), ABM2 (Pulse), FASA_C, insulin, psai1a,

SAS23–from five categories between the subgroups and control samples. Figure

3.4A displays values for SNF-based subgroups, while Figure 3.4B illustrates

VAE-based subgroups. We note that ABM10 and ABM2 show significantly
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Fig. 3.4: Clinical Association with Predicted PTSD Subgroups in Training Data
Set. A) six selected clinical features expression in PTSD- and SNF-based
identified PTSD subgroups, B) six selected clinical features expression in PTSD-
and VAE-based identified PTSD subgroups.

higher values in cases than controls, while FASA_C exhibits the opposite trend.

Table 3.4 lists a detailed result of the association analysis for the top 30 clinical

features. The full names for clinical categories are provided in the Appendix C.

The FDR indicates the False Discovery Rate on the original p values.

3.4.3 Differential Expression Between Subgroups

To better understand differences in molecular expression between

subgroups, we applied differential expression (DE) analysis. We used the R

package “Limma” to test for expression differences across the four omics data sets

between (1) case and control samples, (2) SNF-based subgroups, (3) VAE-based

subgroups, and (4,5) three-way comparisons for both SNF and VAE (control vs

subgroup 1 vs subgroup 2). We considered significantly differentially expressed

molecules as those with BH-adjusted p-values ≤0.05. We detected the largest

numbers of DE molecules in the miRNA-Deplete and miRNA-Exosome data sets

from the SNF and VAE subgroup comparisons. In the miRNA-Plasma data set,

the highest overall number (247) of DE molecules were detected between cases

and controls, although DE molecules from the subgroup comparisons (206 from

SNF and 211 from VAE) were a close second. Figure 3.5A and Figure 3.5C

illustrate these findings. Figure 3.5B and Figure 3.5D summarize the

expression of the top five most significantly DE molecules (all miRNAs) from the

57



Table 3.4: Clinical Association Test With the Identified PTSD Subgroups

Features Categories SNF-
Subgroups
FDR

VAE-
Subgroups
FDR

Train Case-
Control FDR

Validation
Case-
Control
FDR

ABM9-Syst NYU-ABM 8.25E-83 8.20E-83 1.96E-169 2.28E-50
ABM9-Dias NYU-ABM 4.22E-76 4.17E-76 8.63E-154 2.78E-47
WVisWorkMemConf2 NYU-WAIS-

WMS
8.39E-69 8.28E-69 8.83E-144 6.56E-45

ABM10 NYU-ABM 1.65E-67 1.62E-67 9.90E-127 2.30E-41
WVisWorkMemConf1 NYU-WAIS-

WMS
5.30E-64 5.22E-64 4.48E-134 1.32E-41

WVisWorkIndex NYU-WAIS-
WMS

1.13E-63 1.11E-63 8.12E-134 9.46E-42

ABM2 NYU-ABM 2.20E-61 2.12E-61 4.01E-126 3.94E-32
WMemLetterRS NYU-WAIS-

WMS
2.60E-59 2.49E-59 8.30E-123 3.48E-43

ABM1 NYU-ABM 6.92E-59 6.86E-59 3.19E-119 9.36E-36
ABM6 NYU-ABM 1.28E-57 1.24E-57 1.41E-124 8.85E-47
WMemDigRS NYU-WAIS-

WMS
2.59E-57 2.49E-57 6.10E-115 8.66E-32

WLongestForwRS NYU-WAIS-
WMS

3.23E-54 2.55E-54 1.77E-128 7.88E-34

WLongDSSRS NYU-WAIS-
WMS

3.48E-54 2.34E-54 3.67E-112 9.01E-34

ABM4 NYU-ABM 2.21E-53 2.12E-53 6.79E-116 6.46E-40
WDigSpanForwardRS NYU-WAIS-

WMS
5.21E-51 4.60E-51 8.88E-109 3.82E-29

DemoAge NYU-
Background

9.60E-50 9.13E-50 1.42E-101 2.15E-36

WProcSpeedCodRS NYU-WAIS-
WMS

2.80E-48 2.72E-48 1.07E-104 8.49E-35

WMemLetterAgeSS NYU-WAIS-
WMS

3.75E-46 3.17E-46 9.74E-56 2.58E-30

WVisWorkMemSum NYU-WAIS-
WMS

1.75E-44 1.60E-44 2.22E-98 2.70E-30

WVocRS NYU-WAIS-
WMS

9.39E-44 8.94E-44 3.31E-96 4.96E-43

WDigSpanBackRS NYU-WAIS-
WMS

2.77E-42 2.22E-42 1.50E-94 7.20E-25

WMemDigAgeSS NYU-WAIS-
WMS

5.08E-42 4.22E-42 3.11E-90 1.24E-25

WSymbolSpan-RS NYU-WAIS-
WMS

3.82E-38 3.54E-38 4.36E-90 1.45E-26

FASF-C NYU-FAS 1.64E-37 1.42E-37 9.56E-85 7.67E-24
WProcSpeedCodAgeSSNYU-WAIS-

WMS
2.89E-37 2.33E-37 4.18E-88 1.31E-28

WSymbolSpan-SS NYU-WAIS-
WMS

3.44E-37 2.82E-37 1.62E-91 3.47E-28

FASS-C NYU-FAS 4.62E-36 4.08E-36 1.67E-85 3.09E-23
WSpatialAdd-SS NYU-WAIS-

WMS
5.13E-36 4.21E-36 1.07E-84 1.07E-27

WLongestBackRS NYU-WAIS-
WMS

1.17E-35 6.93E-36 1.05E-92 1.89E-25

WSpatialAdd-RS NYU-WAIS-
WMS

2.01E-35 1.76E-35 5.87E-81 1.30E-26

58



A B

C D

200 1223
55

3752
80

247

116

206

0

100

200

Metabolomics

miRNA−Deplete

miRNA−Exosome

miRNA−Plasma

D
En

um
be

r
Data

Subgroups
Three
Train

�

�10.0

12.5

15.0

17.5

20.0

hsa.miR.126.5p.2

hsa.miR.1260b.5p

hsa.miR.27a.3p.2

hsa.miR.27b.3p.2

hsa.miR.99b.5p.2

M
ol

ec
ul

ar
 E

xp
re

ss
io

n

Subgroups
Control
Subgroup1
Subgroup2

200 12
30

73
37

69

116

247

123

211

0

100

200

Metabolomics

miRNA−Deplete

miRNA−Exosome

miRNA−Plasma

D
En

um
be

r

Data
Subgroups
Three
Train

�

�

�

�

�

�

�

�9

12

15

18

21

hsa.miR.146b.5p.2

hsa.miR.199a.1.3p.2

hsa.miR.199a.2.3p

hsa.miR.199b.3p

hsa.miR.744.5p.2

M
ol

ec
ul

ar
 E

xp
re

ss
io

n

Subgroups
Control
Subgroup1
Subgroup2

Fig. 3.5: Molecular Differential Expression With Identified Subgroups, A)
Barplot of differentially expressed molecule numbers in SNF-based subgroups, B)
Top DE molecules in SNF-based subgroups, C) Barplot of differentially
expressed molecule numbers in VAE-based subgroups, D) Top DE molecules in
VAE-based subgroups.

three-way comparison for SNF and VAE subgroups, respectively. More detailed

lists of DE molecules show in Table 3.5 of SNF and Table 3.6 of VAE.

3.4.4 Supervised Classification Using Subgroup Labels

In order to detect whether knowledge of the discovered subgroups was

relevant to PTSD diagnosis, we next constructed a supervised classification

model to discriminate between case and control samples within each PTSD omic

data set. Our working hypothesis is that a subgroup-aware classifier can glean

additional information from data that will be useful for diagnosis. We trained an

SVM classifier to distinguish between three classes (control, subgroup 1 and

subgroup 2) in the Training cohort, and we evaluated classification performance

using prediction accuracy in the Validation cohort. Given that subgroups were

not yet defined in the latter cohort, we considered predictions for subgroups 1 or

2 equivalent to PTSD positive predictions when calculating Validation accuracy.

For comparison, we also trained a baseline two-class classifier (case versus
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Table 3.5: Top DE Molecules Between SNF-based Subgroups

Molecules DataSets Train FDR Subgroup
FDR

Three FDR

hsa.miR.1260b.5p miRNA-Plasma 0.00023 2.81E-09 8.19E -14
hsa.miR.27b.3p.2 miRNA-Plasma 0.002 2.81E-09 1.58E -12
hsa.miR.27a.3p.2 miRNA-Plasma 0.003 2.81E-09 2.69E -12
hsa.miR.99b.5p.2 miRNA-Plasma 1.83E-05 4.09E-09 2.44E -13
hsa.miR.126.5p.2 miRNA-Plasma 0.0003 4.09E-09 1.25E -12
hsa.miR.126.3p.2 miRNA-Plasma 4.36E-06 7.46E-09 6.14E -15
hsa.miR.125a.5p.2 miRNA-Plasma 1.82E-05 7.46E-09 8.87E -13
hsa.miR.223.3p.2 miRNA-Plasma 2.75E-05 7.46E-09 1.64E -13
hsa.miR.335.5p.2 miRNA-Plasma 0.00048 8.13E-09 4.45E -12
hsa.miR.223.3p.1 miRNA-Exosome 0.0026 1.10E-08 9.01E -13
hsa.miR.199a.1.3p.2 miRNA-Plasma 1.15E-05 1.10E-08 2.55E -14
hsa.miR.199a.2.3p miRNA-Plasma 1.15E-05 1.10E-08 2.54E -14
hsa.miR.199b.3p miRNA-Plasma 1.15E-05 1.10E-08 2.55E -14
hsa.miR.146b.5p.2 miRNA-Plasma 1.43E-05 1.10E-08 3.65E -13
hsa.miR.494.3p.2 miRNA-Plasma 1.07E-05 1.65E-08 6.69E -14
hsa.miR.361.5p.2 miRNA-Plasma 0.00039 1.65E-08 2.87E -11
hsa.miR.376c.3p.2 miRNA-Plasma 2.30E-05 1.68E-08 5.92E -14
hsa.let.7d.3p.2 miRNA-Plasma 0.0016 1.82E-08 3.42E -10
hsa.miR.24.1.3p.2 miRNA-Plasma 1.39E-05 1.96E-08 4.61E -13
hsa.miR.24.2.3p miRNA-Plasma 1.39E-05 1.96E-08 4.61E -13
hsa.miR.425.3p miRNA-Plasma 6.02E-05 2.34E-08 6.86E -12
hsa.miR.10a.5p.2 miRNA-Plasma 0.059 2.34E-08 2.28E-08
hsa.miR.199a.1.3p.1 miRNA-Exosome 0.007 2.37E-08 2.43E -11
hsa.miR.376a.1.3p.2 miRNA-Plasma 4.07E-05 3.18E-08 1.41E -12
hsa.miR.376a.2.3p miRNA-Plasma 4.07E-05 3.18E-08 1.41E -12
hsa.miR.340.5p.2 miRNA-Plasma 0.00021 3.18E-08 5.27E -12
hsa.miR.130a.3p.2 miRNA-Plasma 0.000299 3.18E-08 2.96E -11
hsa.miR.744.5p.2 miRNA-Plasma 3.52E-06 3.32E-08 1.01E -13
hsa.miR.628.3p.2 miRNA-Plasma 7.92E-05 3.51E-08 6.36E -12
hsa.miR.146a.5p.2 miRNA-Plasma 1.39E-05 3.56E-08 1.93E -12
hsa.miR.382.5p.2 miRNA-Plasma 4.86E-05 3.65E-08 8.15E -12
hsa.miR.409.3p.2 miRNA-Plasma 9.28E-06 4.41E-08 1.09E -12
hsa.miR.23a.3p.2 miRNA-Plasma 2.65E-05 4.41E-08 3.29E -12
hsa.miR.23b.3p.2 miRNA-Plasma 2.77E-05 4.41E-08 4.21E -12
hsa.miR.433.3p.2 miRNA-Plasma 0.00048 4.41E-08 1.63E -10
hsa.miR.130b.5p.2 miRNA-Plasma 0.0005 4.41E-08 2.29E -11
hsa.miR.197.3p.2 miRNA-Plasma 3.17E-05 4.79E-08 1.30E -11
hsa.miR.326.3p miRNA-Plasma 7.20E-05 4.79E-08 5.15E -12
hsa.miR.28.3p.2 miRNA-Plasma 7.97E-06 5.76E-08 1.15E -12
hsa.miR.584.5p.2 miRNA-Plasma 0.00078 5.76E-08 6.31E -11
hsa.miR.151a.3p.2 miRNA-Plasma 1.15E-05 6.54E-08 9.58E -13
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Table 3.6: Top DE Molecules Between VAE-based Subgroups

Molecules DataSets Train FDR Subgroup
FDR

Three FDR

hsa.miR.326.3p miRNA-Plasma 7.20E-05 3.08E-09 1.27E-13
hsa.miR.146a.5p.2 miRNA-Plasma 1.39E-05 3.45E-09 1.61E-13
hsa.miR.126.3p.2 miRNA-Plasma 4.36E-06 3.70E-09 7.77E-15
hsa.miR.199a.1.5p.2 miRNA-Plasma 4.36E-06 3.70E-09 2.55E-14
hsa.miR.199a.2.5p miRNA-Plasma 4.36E-06 3.70E-09 2.55E-14
hsa.miR.23a.3p.2 miRNA-Plasma 2.65E-05 3.70E-09 2.61E-13
hsa.miR.23b.3p.2 miRNA-Plasma 2.77E-05 3.70E-09 3.47E-13
hsa.miR.1260b.5p miRNA-Plasma 0.0002 3.70E-09 7.87E-13
hsa.miR.27a.3p.2 miRNA-Plasma 0.003 3.70E-09 1.85E-11
hsa.miR.330.3p.2 miRNA-Plasma 3.28E-06 3.76E-09 5.10E-15
hsa.miR.423.3p.2 miRNA-Plasma 4.36E-06 3.76E-09 3.39E-13
hsa.miR.28.3p.2 miRNA-Plasma 7.97E-06 3.76E-09 9.21E-14
hsa.miR.221.3p.2 miRNA-Plasma 2.99E-05 3.76E-09 9.72E-13
hsa.miR.130b.3p.2 miRNA-Plasma 4.07E-05 3.76E-09 3.00E-12
hsa.miR.27b.3p.2 miRNA-Plasma 0.002 3.80E-09 1.27E-11
hsa.miR.584.5p.2 miRNA-Plasma 0.00078 4.04E-09 4.09E-12
hsa.miR.128.2.3p miRNA-Plasma 9.46E-05 4.77E-09 4.90E-12
hsa.miR.128.1.3p.2 miRNA-Plasma 7.00E-05 4.80E-09 3.55E-12
hsa.miR.181d.5p.1 miRNA-Plasma 1.39E-05 5.40E-09 1.78E-12
hsa.miR.151a.3p.2 miRNA-Plasma 1.15E-05 5.69E-09 9.45E-14
hsa.miR.99b.5p.2 miRNA-Plasma 1.83E-05 5.69E-09 1.25E-12
hsa.miR.425.3p miRNA-Plasma 6.02E-05 5.69E-09 3.02E-12
hsa.miR.197.3p.2 miRNA-Plasma 3.17E-05 5.77E-09 2.38E-12
hsa.miR.339.5p.2 miRNA-Plasma 7.25E-05 5.77E-09 2.60E-12
hsa.miR.21.3p.2 miRNA-Plasma 9.28E-06 6.69E-09 6.42E-14
hsa.miR.181b.2.5p miRNA-Plasma 1.39E-05 6.69E-09 4.69E-12
hsa.miR.130a.3p.2 miRNA-Plasma 0.0003 7.58E-09 1.32E-11
hsa.miR.361.5p.2 miRNA-Plasma 0.00039 8.15E-09 3.52E-11
hsa.miR.151a.5p.2 miRNA-Plasma 1.33E-05 8.45E-09 4.74E-13
hsa.miR.125a.5p.2 miRNA-Plasma 1.82E-05 8.45E-09 3.24E-12
hsa.miR.181b.1.5p.2 miRNA-Plasma 1.59E-05 8.54E-09 8.02E-12
hsa.miR.1307.5p.2 miRNA-Plasma 2.65E-05 9.52E-09 1.26E-12
hsa.miR.652.3p.2 miRNA-Plasma 1.68E-05 1.06E-08 8.77E-12
hsa.miR.4286.5p.2 miRNA-Plasma 0.0004 1.13E-08 3.54E-11
hsa.miR.130b.5p.2 miRNA-Plasma 0.0005 1.33E-08 9.84E-12
hsa.miR.191.5p.2 miRNA-Plasma 5.47E-07 1.39E-08 3.37E-14
hsa.miR.22.5p.2 miRNA-Plasma 0.00017 1.45E-08 3.04E-12
hsa.miR.1307.3p.2 miRNA-Plasma 2.22E-06 1.95E-08 8.74E-13
hsa.miR.331.3p.1 miRNA-Plasma 2.22E-06 1.95E-08 7.51E-14
hsa.miR.142.3p.2 miRNA-Plasma 1.07E-05 1.95E-08 4.76E-13
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control) using the Training cohort and evaluated using the Validation cohort.

We built and evaluated classifiers using SNF-based and VAE-based subgroups

separately. In the evaluation, we mainly compared the prediction accuracy in the

validation data after the model finished training. To note, the training accuracy

refers to accuracy in three groups in three-class models but it refers to accuracy

in two groups in two-class models.

Our results showed that classification using the miRNA-Plasma and

metabolomics data sets was improved by SNF-based subgroup-aware classifiers,

with Validation accuracies increasing over baseline from 0.567 to 0.582 and 0.552

to 0.582, respectively (Table 3.7). For the VAE-based subgroups, all four omics

data sets showed Validation accuracy improvement with subgroup aware

classifiers (Table 3.8). The classifier for the miRNA-Deplete data set showed the

best diagnostic performance overall, with Validation accuracy of 0.612 compared

to a 0.582 baseline. The improvements observed as a result of subgroup-aware

classification suggest the value of including multi-omic subgroup identification in

a diagnostic for PTSD.

Table 3.7: Supervised Classification Performance Using SNF-based Subgroups

Data Two Class Model Three Class Model
Discovery ACCValidation ACCDiscovery ACCValidation ACC

miRNA-Plasma 0.594 ± 0.113 0.567 0.573 ± 0.112 0.582
miRNA-Exosome 0.547 ± 0.103 0.552 0.5 ± 0.092 0.448
miRNA-Deplete 0.623 ± 0.07 0.582 0.5 ± 0.019 0.582
Metabolomics 0.629 ± 0.108 0.552 0.531 ± 0.046 0.582

Table 3.8: Supervised Classification Performance Using VAE-based Subgroups

Data Two Class Model Three Class Model
Discovery ACCValidation ACCDiscovery ACCValidation ACC

miRNA-Plasma 0.594 ± 0.113 0.567 0.545 ± 0.087 0.582
miRNA-Exosome 0.547 ± 0.103 0.552 0.5 ± 0.034 0.582
miRNA-Deplete 0.623 ± 0.07 0.582 0.554 ± 0.08 0.612
Metabolomics 0.629 ± 0.108 0.552 0.507 ± 0.084 0.582

3.4.5 PTSD Subgroup Prediction

Stratification of PTSD samples is an important first step in the practice

of precision medicine for PTSD. To facilitate this step, we also constructed a
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PTSD subgroup binary classifier. Given the two subgroups identified in the 82

PTSD positive Training samples, we trained a multi-omic binary SVM classifier

using all four data sets. Since subgroup assignments do not exist a priori in the

Validation cohort, we used 10-fold cross validation to tune the SVM

hyperparameter C based on AUC, as described in the Materials and Methods

section. We trained a classifier using the optimal hyperparameter, determined by

the largest mean AUC, on Training cohort data, followed by application of this

classifier to predict subgroups in PTSD cases from the Validation cohort. In

cases where all Validation predictions were for a single subgroup, we instead

selected the second-best performing hyperparameter for model training and

validation. Figure 3.6A and Figure 3.6C show Receiver Operating

Characteristic (ROC) curves for SNF and VAE subgroup classifiers, respectively.

The training AUC for SNF-based subgroups was 0.93, while the AUC for

VAE-based subgroups reached higher to 0.98. Validation predictions based on

the two subgroup definitions were similar, with the difference being that five

additional samples were predicted to be from subgroup 2 using the SNF-based

classifier. Figures 6B and 6D show t-SNE visualizations of the predicted

Validation subgroups derived from SNF- and VAE-based classifiers, respectively.

In addition, we performed clinical feature association analysis given our

predicted subgroups for the Validation cohort. We used t-tests for continuous

features and Fisher’s Exact Tests for binary or categorical features. As before, we

adjusted raw p-values for multiple testing using the BH method. We found that

the same six clinical features that were significantly DE between subgroups from

the Training cohort were also significantly DE in the Validation cohort. Figure

3.7A and Figure 3.7B summarize the values of these features between the SNF-

and VAE-based Validation subgroups, respectively. The consistency observed in

the clinical characterization of Training and Validation subgroups supports the

biological plausibility and robustness of the identified PTSD subgroups.
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Fig. 3.6: PTSD Subgroup Classification AUC Plot and Subgroup Visualization,
A) SNF identified subgroups AUC plot using all omic data sets, B) Visualization
of SNF-based subgroups in validation data set, C) VAE identified subgroups
AUC plot using all omic data sets, D) Visualization of VAE-based subgroups in
validation data set.
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Data Set. A) six selected clinical features expression in PTSD- and SNF-based
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and VAE-based predicted PTSD subgroups.
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3.5 Discussion

In this study, we applied three methods–SNF, VAE and PCA–to integrate

and discover subgroups from four PTSD omics datasets. The subgroups

identified by SNF and VAE show good separation and significant association

with recall sample PTSD status. Moreover, the SNF and VAE subgroups largely

overlapped, and the subgroup assignment of the recalled sample subset is the

same between the two methods. These subgroups also exhibited considerable

numbers of DE molecules in each omic dataset. To clinically characterize the

subgroups, we identified 59 significantly associated clinical features associated

with the subgroups identified by both methods as well as with case-control

status. In a diagnostic model, knowledge of these subgroups improved the

performance of classifying PTSD positive and negative samples. We also

observed excellent classification performance for subgroup prediction models

constructed based on SNF and VAE subgroups.

The complexity and heterogeneity of biological systems have made data

integration crucial in the advancement of understanding in support of precision

medicine [89]. SNF and VAE have been applied to subgroup discovery in cancers

[78] [79] [80]; however, our work represents the first time these two approaches

have been applied to PTSD. VAEs have been successfully applied in image

generation [90]. In our study, VAEs learn the distribution of latent variables and

reconstruct input data that are likely to be generative models for PTSD

subgroup/biomarker analysis.

PTSD symptoms often exhibit the characteristics of hyperarousal and

exaggerated startle responses. It was previously reported that PTSD patients

have a high risk of developing cardiovascular issues, such as increased heart

rate/pulse rate and blood pressure [65] and increased BMI and weight [66] as a

result of traumas. PTSD re-experiencing symptoms were inversely associated

with high-frequency pulse rate variability [91]. It was reported that the cortisol

and Glucocorticoid Receptor (GR) alterations in the dysregulation of the
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hypothalamic-pituitary-adrenal axis (HPA) -axis are associated with insulin

resistance [92] [93]. A recent study discovered both heart rate and insulin levels

as potential biomarkers for PTSD [68]. MicroRNAs (miRNAs) are involved in

critical aspects of PTSD pathophysiology and are also potential biomarkers [94].

The expression changes of miRNAs could decrease vulnerability to stress or

promote resilience, as evidenced by a decreased expression of miR-99b-5p and

miR-27a-3p in rats leading to an increased vulnerability to stress [95]. The

miRNAs miR-199b and miR-24 were also reported to be correlatively implicated

in fear- and trauma-related disorders [96]. MicroRNAs miR-99b-5p and

miR-27a-3p were two of the most significant molecules we found to be

differentially expressed between subgroups.

Several limitations exist in the current study. First, the subjects analyzed

in our study were restricted to a pool of men deployed to Iraq and/or

Afghanistan with moderate to severe cases of combat-related PTSD compared to

a pool of similarly combat-exposed asymptomatic controls. Moreover, the

subjects were diagnosed using DSM-IV, which is an older version of the now

current DSM-5. This may complicate efforts to reconcile findings from our study

with newer datasets collected using DSM-5. Second, the relatively small sample

sizes of our study cohorts pose challenges to the application of machine learning

approaches, especially deep learning methods such as VAE. We used 82 PTSD

positive samples measured for 971 features from the Training cohort for data

integration and subgroup discovery, while we validated the discovered subgroups

using 28 samples from the Validation cohort. Although our training of the VAE

model showed converged minimum losses for both cohorts, this small sample size

may cause model overfitting and decreased generalization. Moreover, the

assumption of a Gaussian distribution in VAE formulation may exhibit a

potential limitation for our study. Finally, there are no other independent

datasets that can be used to validate our results. Future work will involve using

datasets with larger sample sizes and including additional test datasets to

66



further improve our understanding of PTSD stratification the unique signatures

underlying PTSD subgroups.

3.6 Conclusions

We integrated four omics datasets and discovered two clinically-plausible

PTSD subgroups. These subgroups showed significant association with clinical

characterization and molecular differential expression. Supervised classification

with a subgroup-aware classifier showed improved accuracy for PTSD diagnosis.

Future work will involve leveraging knowledge of these subgroups to enable

precision medicine for PTSD.
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Chapter 4

Conclusions

The objective for this research was to apply machine learning approaches

for disease subgroup discovery and classification, applied in particular to PTSD

and, secondarily, cancer. Overall, we completed two applications on PTSD and

two supplementary applications on various forms of cancer.

In chapter 2, we presented the project “Clinical Subgroup-Specific PTSD

Classification and Biomarker Discovery.” Using a cohort of 234 samples with 166

for training and 68 for validation, we applied machine learning approaches to

classify PTSD patients based on three molecular datasets (miRNA-Exosome:

miRNAs enriched in exosomes, miRNA-Deplete: miRNAs in plasma depleted for

exosomes, and Metabolomics). We first divided patients into multiple sets of two

subgroups based on values of 112 clinical and endocrine measurements. We then

performed supervised classification across all samples and within each subgroup

using two feature selection strategies (Recursive Feature Elimination [RFE] and

ANOVA), four classifiers (logistic regression [LR], support vector machine

[SVM], random forest, and extra trees), and 10-fold nested cross validation. We

evaluated each subgroup for significantly improved classification performance by

statistical tests based on accuracy and AUC values. Finally, we combined those

significant clinical features with molecular measurements and constructed an

overall PTSD classifier. We fit all data using the best classification model from

training and selected features as biomarkers. In total, 85 clinical subgroups from

72 clinical and endocrine features led to improved classification performance

compared to the baseline, among which 38 yielded improved performance using

more than one method. Tree-based models yielded the greatest number of

improved subgroups in the Metabolomics and miRNA-Exosome datasets, while

Logistic Regression showed the greatest improvement in the miRNA-Deplete

dataset. Using an overall PTSD classifier including both molecular and clinical

features, we observed that the majority of classification models show improved
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accuracy in both training and testing. Applied to Metabolomics data, the overall

classifier achieved the best AUC = 0.79 ± 0.13 and accuracy (ACC) = 0.722 ±

0.078 using ANOVA-SVM, which was a significantly better ACC than the

baseline models composed of only molecular or clinical features. Using

miRNA-Exosome data, the ANOVA-LR classifier reached the best AUC = 0.758

± 0.097 and ACC = 0.701 ± 0.116, with a significantly higher ACC than the

baseline model with clinical features. In the miRNA-Deplete data set, the

RFE-SVM classifier reached the best AUC = 0.677 ± 0.134 and ACC = 0.605 ±

0.128. These best-performing models showed fair performance in the validation

samples as well. Finally, we selected the resulting molecular and clinical features

from these models and listed them as potential biomarkers for PTSD.

In chapter 3, we described the project “Multi-Omic PTSD Subgroup

Identification and Clinical Characterization.” Given 284 total samples (124

PTSD positives) from four omics data sets (miRNA-Exosome: miRNAs enriched

in exosomes, miRNA-Deplete: miRNAs in plasma depleted for exosomes,

miRNA-Plasma: total miRNAs in plasma, and Metabolomics) in cohorts of

Training, Validation and Recall, we applied two methods–Similarity Network

Fusion (SNF) and Variational Autoencoder (VAE)–to integrate the data sets.

SNF performs integration by efficiently fusing sample similarities matrices from

each data set into one network representing the full spectrum of underlying data.

Next, spectral clustering is used to identify subgroups from this network. The

VAE method uses a symmetric deep neural network to reconstruct multiple

omics input data sets by estimating data distributions and identifying

representative hidden variables. K-means clustering is then used to identify

subgroups from the lower-dimensional hidden variables. In order to interpret the

subgroups, we tested the associations between identified subgroups and clinical

characteristics. We also calculated differentially expressed molecules between

subgroups in each omics dataset. We then built supervised classification models

for PTSD diagnosis with/without subgroups and compared the accuracy of
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predicting PTSD status in the context of subgroups to the accuracy of predicting

PTSD status without any knowledge of subgroups. Finally, we built a

classification model to predict subgroups in PTSD positive samples. Our results

suggest the presence of 2 PTSD subgroups in 82 training PTSD positive samples,

using both SNF- and VAE-based methods. These subgroups show a significant

association with recalled sample PTSD status change (p-value 0.0213). We also

found that a majority of samples associated with the same subgroups when

comparing results from the two methods. Upon statistical testing for association

of the subgroups with over 600 clinical features, we found a significant

association with features including heart rate and insulin. The two identified

subgroups also exhibit a number of differentially expressed molecules from each

omics data set. For diagnostic classification, we observed improved performance

for subgroup-aware PTSD status prediction in miRNA-Plasma and

Metabolomics data sets using SNF-based subgroups and in all four omics data

sets using VAE-based subgroups. Finally, using our classification model for

subgroup prediction, we found that identified subgroups in the validation cohort

were significantly associated with many of the same clinical features associated

with subgroups from the training cohort.

In two supplementary chapters, we discussed the projects “GEOlimma:

Differential Expression Analysis and Feature Selection Using Pre-Existing

Microarray Data” and “Prognostic Analysis of Histopathological Images Using

Pre-Trained Convolutional Neural Networks: Application to Hepatocellular

Carcinoma (HCC)”. In the former, we first quantified differential gene expression

across 2481 pairwise comparisons from 602 curated Gene Expression Omnibus

(GEO) Datasets, and we converted differential expression frequencies to DE

prior probabilities. Genes with high DE prior probabilities show enrichment in

cell growth and death, signal transduction, and cancer-related biological

pathways, while genes with low prior probabilities were enriched in sensory

system pathways. We then applied GEOlimma to four differential expression
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comparisons within two human disease datasets and performed differential

expression, feature selection, and supervised classification analyses. Our results

suggest that use of GEOlimma provides greater experimental power to detect

DE genes compared to the popular Limma technique, due to its increased

effective sample size. Furthermore, in a supervised classification analysis using

GEOlimma as a feature selection method, we observed similar or better

classification performance than Limma given small, noisy subsets of an asthma

dataset. Due to its focus on gene-level differential expression, GEOlimma also

has the potential to be applied to other high-throughput biological datasets.

In the latter supplementary project, we applied three pre-trained CNN

models–VGG 16, Inception V3, and ResNet 50–to extract features from HCC

histopathological images. Sample visualization and classification analyses based

on these features showed a very clear separation between cancer and normal

samples. In a univariate Cox regression analysis, 21.4% and 16% of image

features on average were significantly associated with overall survival and

disease-free survival, respectively. We also observed significant correlations

between these features and integrated biological pathways derived from gene

expression and copy number variation. Using an elastic net regularized CoxPH

model of overall survival constructed from Inception image features, we obtained

a concordance index (C-index) of 0.789 and a significant log-rank test (p =

7.6E18). We also performed unsupervised classification to identify HCC

subgroups from image features. The optimal two subgroups discovered using

Inception model image features showed significant differences in both overall

(C-index = 0.628 and p = 7.39E-07) and disease-free survival (C-index = 0.558

and p = 0.012). Our work demonstrates the utility of extracting image features

using pre-trained models by using them to build accurate prognostic models of

HCC as well as highlight significant correlations between these features, clinical

survival, and relevant biological pathways. Image features extracted from HCC

histopathological images using the pre-trained CNN models VGG 16, Inception
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V3 and ResNet 50 can accurately distinguish normal and cancer samples.

Furthermore, these image features are significantly correlated with survival and

relevant biological pathways.

Despite the progress we have made applying machine learning to disease

subgroup discovery and classification, we note several potential limitations in our

studies. First, we note that the initial study cohorts for PTSD were restricted to

a pool of men deployed to Iraq and/or Afghanistan with moderate to severe

cases of combat-related PTSD compared to a pool of similarly combat-exposed

asymptomatic controls. During data collection, PTSD diagnosis was formalized

using DSM-IV criteria for consistency across all cohorts. However, the more

recently released DSM-5 details three additional categories of symptoms, which

complicates efforts to reconcile newer datasets with those collected using

DSM-IV. As a result, our discoveries of biomarkers and subgroups may require

further validation in samples using updated collection criteria. Second, the

sample sizes of our PTSD cohorts are relatively small for machine learning given

the high dimensionality of the data. Taking all study cohorts together, there are

a total of 234 samples. To protect against overfitting, we have applied

cross-validation to train classification models, which enables internal evaluation

of these models before validating in a test data set. However, a more robust

strategy will involve validating and expanding our proposed biomarkers using

additional independently collected data sets. Along these lines, the PTSD

Systems Biology Consortium has recently collected a new cohort of nearly 1,800

active duty soldiers from Fort Campbell, KY assayed at some combination of

time points before and after deployment. As before, blood samples and clinical

measurements were collected from these individuals, and the same molecular

markers were isolated and extracted from the blood samples. These data offer

the potential to independently verify our previously discovered biomarkers as

well as improve the identification of both diagnostic and prognostic biomarkers.

Furthermore, such longitudinal data also allow the calculation of “delta
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measurements”–differences in clinical and molecular features pre- and

post-deployment, which enables assessment of effects from the combat events.

Delta measurements redefine features in terms of their differences between two

time points, allowing patient-specific, PTSD-nonspecific variability to be

subtracted away. The data from these “Fort Campbell cohort” samples thus

provide a unique opportunity to identify robust diagnostic and prognostic

biomarkers for PTSD. At last, we found limitations in visualizing features of

pre-trained CNNs for the HCC project.

In order to further improve understanding of our discoveries related to

PTSD, several future directions of research are needed. First, we plan to include

larger collections of PTSD data sets and better remove noise from input data.

Specifically, methods for missing value imputation and batch effect removal

could potentially improve downstream data analysis. In addition, public cancer

data bases and recent applications in cancer studies may provide opportunities

for transfer learning to PTSD. Second, we plan to develop and apply customized

machine learning methods for particular data sources. The success of deep

learning applications in computer vision and natural language processing may

suggest possible transferable applications to biomedical research. However, more

work is required to build customized approaches and benchmarks that are

particularly beneficial for biomedical applications such as precision medicine.

Furthermore, validation from additional clinical studies could help confirm the

biological relevance of our discovered biomarkers. At last, for the GEOlimma

project, future work will involve the application of GEOlimma to RNA-seq data

and develop disease such as asthma specialized GEOlimma approaches.

In conclusion, my dissertation research has involved working

collaboratively to improve our knowledge and understanding of PTSD

biomarkers and subgroups. We have also explored a range of applications of

machine learning to cancer research using public data sets. Future work will
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continue leveraging knowledge of machine learning and deep learning to

ultimately enable precision medicine for human diseases.
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Appendix A

GEOlimma: Differential Expression Analysis and Feature Selection

Using Pre-Existing Microarray Data

A.1 Abstract

Differential expression and feature selection analyses are essential steps

for the development of accurate diagnostic/prognostic classifiers of complicated

human diseases using transcriptomics data. These steps are particularly

challenging due to the curse of dimensionality and the presence of technical and

biological noise. A promising strategy for overcoming these challenges is the

incorporation of pre-existing transcriptomics data in the identification of

differentially expressed (DE) genes. This approach has the potential to improve

the quality of selected genes, increase classification performance, and enhance

biological interpretability. While a number of methods have been developed that

use pre-existing data for differential expression analysis, existing methods do not

leverage the identities of experimental conditions to create a robust metric for

identifying DE genes.

In this study, we propose a novel differential expression and feature

selection method—GEOlimma—which combines pre-existing microarray data

from the Gene Expression Omnibus (GEO) with the widely-applied Limma

method for differential expression analysis. We first quantify differential gene

expression across 2481 pairwise comparisons from 602 curated GEO Datasets,

and we convert differential expression frequencies to DE prior probabilities.

Genes with high DE prior probabilities show enrichment in cell growth and

death, signal transduction, and cancer-related biological pathways, while genes

with low prior probabilities were enriched in sensory system pathways. We then

applied GEOlimma to four differential expression comparisons within two human

disease datasets and performed differential expression, feature selection, and

supervised classification analyses. Our results suggest that use of GEOlimma

provides greater experimental power to detect DE genes compared to Limma,
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due to its increased effective sample size. Furthermore, in a supervised

classification analysis using GEOlimma as a feature selection method, we

observed similar or better classification performance than Limma given small,

noisy subsets of an asthma dataset.

Our results demonstrate that GEOlimma is a more effective method for

differential gene expression and feature selection analyses compared to the

standard Limma method. Due to its focus on gene-level differential expression,

GEOlimma also has the potential to be applied to other high-throughput

biological datasets.

A.2 Introduction

DNA microarrays and RNA sequencing (RNA-Seq) have become

indispensable experimental tools for characterizing the effects of biological

interventions on genome-wide gene expression (“transcriptomics”) [97] [98].

Applications of these tools have been transformative in many areas of biological

research, including cancer biology, biomarker discovery, and drug target

identification [99] [100] [101]. These applications often involve differential

expression analysis: the isolation of differentially expressed (DE) genes between

healthy and disease conditions. Knowledge of DE genes facilitates the discovery

of causative genes and gene pathways for a disease of interest. For example,

many studies of carcinogenesis focus on identifying the genes directly responsible

for promoting cancer occurrence (“driver genes”) out of all DE genes [102] .

Furthermore, DE gene identification is an important first step for disease

biomarker discovery. The discovery of biomarkers from transcriptomics data

typically involves selecting the most discriminative genes between a healthy and

diseased state or between different disease states [103] . A comprehensive list of

DE genes provides a biologically plausible set of candidates for these

discriminative genes and can greatly streamline the search [104]. Common

applications of transcriptomics-derived biomarkers include predicting diagnosis,

prognosis, and therapeutic response for a disease of interest through a process
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known as supervised classification [105]. In this context, DE gene identification

can be viewed as a means of performing feature selection for classification. In

general, feature selection is a process for dimensionality reduction that removes

redundant or irrelevant features (genes), reduces classification model complexity,

and improves classification performance [106].

Despite their widespread use for DE gene identification, transcriptomics

data are notorious for their inclusion of technical and biological noise [107]. This

noise complicates differential expression analysis by reducing the accuracy of DE

gene identification relative to other assays (e.g., real-time or quantitative PCR

[108] ), lowering the reproducibility of experiments conducted on different

platforms [109], and reducing the statistical power associated with the detection

of DE genes at a particular fold change [110]. A straightforward strategy for

mitigating the effects of noise is to increase the number of replicates assayed

(“sample size”) for each condition of interest. However, this practice can be cost

prohibitive or even impossible for conditions with limited sample availability.

Furthermore, even with larger sample sizes, transcriptomics data pose a

considerable challenge to feature selection methods due to the curse of

dimensionality. Specifically, it is well known that optimal fitting of classification

models (including the selection of features) breaks down when the feature

dimensionality is substantially larger than the sample size [43].

One promising solution for the above challenges is to incorporate prior

biological knowledge into differential expression and feature selection analyses

[111]. This Bayesian approach can mitigate problems associated with a small

sample size [112], while also improving biological interpretability of the resulting

DE genes/features [106]. Prior biological knowledge for transcriptomics data can

take several forms, including pre-existing transcriptomics data from other

studies, data from complementary high-throughput assays (e.g., chromatin

immunoprecipitation or protein-protein interactions), and gene functional

annotation (e.g., Gene Ontology [113] [114] or KEGG [115] [116] ). For the
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purposes of this study, we will focus on the first type of knowledge, although we

note that analytical methods are available to incorporate the other types as well

[117] [118]. Thanks to functional genomics repositories like the Gene Expression

Omnibus (GEO)[119] [120] and ArrayExpress [121], transcriptomics data from

over 2.5 million samples are publicly available. Furthermore, the size of this

resource is growing exponentially, with numbers of samples in GEO doubling

every 3-4 years.

Over the last 15 years, a number of methods have been developed that

use prior knowledge in the form of transcriptomics data to inform differential

expression analyses [122] [123] [124] [125] [126]. However, these methods

typically either ignore the identities of the many experimental conditions in the

pre-existing data, or they do not leverage these identities to create a rigorous

statistical metric for identifying DE genes. For example, the SVD Augmented

Gene expression Analysis Tool (SAGAT) uses singular value decomposition

(SVD) to extract transcriptional modules from pre-existing DNA microarray

data [122]. These modules, which contain no information regarding assayed

conditions, are then incorporated into a statistical analog of the two-sample

t-test to improve the accuracy of DE gene identification. In contrast, a very

recent study made direct use of the experimental conditions in pre-existing data

to characterize empirical prior probabilities of differential expression [126].

However, although these prior probabilities were predictive of differential

expression patterns, they were not explicitly utilized in a Bayesian statistical

framework for identifying DE genes. Relatedly, although there have been many

studies contributing novel or adapted feature selection methodologies for

classification of biomedical data [127] [128] [129] [61] [130], to our knowledge no

method combines an experimental condition-aware analysis of pre-existing data

with a statistically principled means of feature selection.

To address these shortcomings, we propose a novel differential expression

and feature selection approach—GEOlimma—that leverages pre-existing
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GEO-derived transcriptomics data. As described below, our proposed method

modifies the popular Linear Models for Microarray and RNA-Seq Data

(“Limma”) method [131][132] . Specifically, GEOlimma incorporates empirical

prior probabilities of differential expression (DE prior probabilities) in a

Bayesian statistical test for DE genes. We first describe the computation and

biological characterization of DE prior probabilities from a large collection of

pre-existing DNA microarray experiments from GEO. Next, we apply

GEOlimma and Limma to four benchmark differential expression comparisons

from two validation datasets. Our results demonstrate a substantial increase in

experimental power for identifying DE genes due to use of GEOlimma. Finally,

we explore GEOlimma’s ability to improve feature selection for classification

across the four benchmark comparisons.

A.3 Materials & Methods

A.3.1 GEOlimma Method Formulation

We developed the GEOlimma method by combining the widely-used

differential expression (DE) analysis method Limma, which is typically used to

analyze gene expression microarray and RNA-seq data and assess differential

expression between biological conditions. Limma uses empirical Bayesian

methods to provide stable DE predictions, which is particularly useful when the

number of sample replicates is small. However, one simplifying assumption made

by Limma is that the DE prior probabilities for each gene are identical (set 0.01

by default). GEOlimma combines the Bayesian nature of Limma with gene-level

DE prior probabilities calculated from large-scale microarray datasets to better

select genes that are biologically relevant to a comparison of interest.

The Gene Expression Omnibus (GEO) is a public data repository for

high-throughput gene expression data including microarray and RNA-seq data

[120]. GEO DataSets (GDS) are a subset of the repository that store curated

gene expression datasets, along with the original data (GEO Series) and

experimental platform information. GPL570, also known as the HG-U133_Plus_2
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Affymetrix Human Genome U133 Plus 2.0 Array, is one of the best-represented

human genome microarray platforms in GEO, with 149,049 samples available (as

of June 7, 2019). GPL570 measures over 47,000 human transcripts, which consist

of the Human Genome U133 Set plus 6,500 additional genes. In this study, we

downloaded all 602 GPL570 GEO DataSets (GDS) (current as of June 7, 2019).

Specifically, for each dataset we obtained normalized, log-transformed expression

values at the probeset level. We then mapped these probesets to the

non-redundant Entrez Gene IDs (provided by the Bioconductor R package

hgu133plus2.db) and obtained gene-level expression values by computing

medians across any probe sets mapping to the same gene. With the minimum

requirement of 5 samples in each group, we performed pairwise DE analysis

among the largest possible collection of non-overlapping sample groups from each

GDS experiment. Specifically, for each DE comparison, we applied the Limma

moderated t-test [133] (using the “lmFit” and “eBayes” functions) to calculate

differential expression p-values for each gene. Given a list of p-values for a

particular comparison, we adjusted for multiple hypothesis testing using the

Benjamini-Hochberg (BH) procedure [86]. Genes with adjusted p-values (false

discovery rates or FDRs) ≤0.05 for a given pairwise comparison were considered

DE for that comparison. We calculated the DE frequencies across all

comparisons for each gene and converted these frequencies to DE prior

probabilities (P(DE)) as follows:

P (DEi) =

∑
j I(Adj.Pij ≤ 0.05)

M
(A.1)

where i ∈ {1, . . . , N} indexes each gene, j ∈ {1, . . . ,M} indexes each

comparison, Adj.Pij represents the FDR for the i-th gene in the j-th comparison,

and I(·) is the indicator function.

We chose human asthma and cancer validation datasets present as GEO

Series (GSE) but not as GEO DataSets (GDS), in order to avoid double

counting data. The asthma dataset [134] consists of 404 total samples
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(transformed lymphoblastoid cell lines) taken from 268 children afflicted with

asthma and 136 healthy children. The cancer dataset [135] consists of 870 total

bone marrow samples, of which 202, 164, and 69 are from individuals with acute

myeloid leukemia (AML), myelodysplastic syndrome (MDS), and neither AML

nor MDS, respectively. We considered the three possible comparisons between

these three groups. In total, we evaluated four comparisons: Asthma vs

Non-asthma, Nonleukemia vs AML, Nonleukemia vs MDS, and AML vs MDS.

For a given comparison, we compute GEOlimma DE posterior

probabilities using Bayes’ theorem:

P (DEi | Data) =
P (Data | DEi)P (DEi)

P (Data)
(A.2)

where Data represents the samples making up the given comparison,

P (Data | DEi) denotes the likelihood of the Data, as calculated by limma [131],

P (DEi) is the previously calculated DE prior probability, and P (Data) is a

normalization constant [131]. Given these posterior probabilities, we then

calculate B scores (log odds of DE) for each gene as follows:

Bi = log
[ P (DEi | Data)
1− P (DEi | Data)

]
(A.3)

We implemented GEOlimma as modified R functions based on code from

the Limma package.

A.3.2 Enrichment Analysis for Gene Sets

To explore the DE prior probabilities biologically, we conducted KEGG

Enrichment Analysis using the R package ClusterProfiler [136]. Specifically, we

identified enriched KEGG pathways using the hypergeometric test in both the

top and bottom 500 most/least frequently DE genes, separately. Pathways with

BH-adjusted p-values less than 0.05 were considered significantly enriched. We

used the Pathview R package [137] to visualize the location of DE genes in

particular KEGG pathways.
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A.3.3 Differential Expression Analysis

Evaluation datasets As described above, we downloaded the GSEs for

two evaluation datasets from GEO. As with the GDS data, we mapped

normalized, log-transformed expression values at the probeset level to

non-redundant Entrez Gene IDs and consolidated expression values by

computing medians across probe sets mapping to the same gene. We included all

genes with unique probe mappings (20283 total) for subsequent analyses. For

each of the four evaluation comparisons, we performed DE analysis on all

samples using both GEOlimma and Limma. Genes were considered DE if their

BH-adjusted p-value ≤0.05 (Limma) or their B score exceeded the smallest

Limma B score for genes with adjusted p-value ≤0.05 (GEOlimma).

Sample Visualization To visualize samples, we first used Principal

Component Analysis (PCA) to reduce the dimensionality of genes as features.

We visualized the first two components of PCA. We further applied the

t-Distributed Stochastic Neighbor Embedding (t-SNE) method to visualize the

first 10 PCA components in 2 dimensions. t-SNE can reduce the dimensionality

of data based on conditional probabilities that preserve local similarity. We used

a t-SNE implementation that makes Barnes-Hut approximations, allowing it to

be applied on large real-world datasets [138]. We set the perplexity to 15, and

sample points were colored using the group information.

Experimental power To quantify the performance improvement

achieved by GEOlimma vs Limma, we performed DE analysis on small sample

size subsets for each comparison. As detailed below, we started with the

minimum subset size at which the group proportions for a given comparison

could be maintained and generated all non-overlapping sample subsets of this

size. We then increased this subset size by the smallest possible sample increment

and repeated the generation of subsets. For each sample subset, we first applied

both GEOlimma and Limma and ranked genes by their corresponding B scores.

Next, using the Limma DE genes previously identified from all samples as the
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ground truth (see Results section for specific numbers), we applied the R

package ROCR [139] to calculate Area under the ROC curves (AUCs) for the B

score-ranked genes of each subset. We calculated the performance improvement

of GEOlimma over Limma for each subset as the difference in AUC between the

two methods. In addition, we converted these AUC improvements into gains in

effective sample size by constructing and interpolating from a “standard curve” of

mean Limma AUC values calculated across the full range of possible sample

sizes. As an example, if GEOlimma delivered an AUC improvement of 0.1 over

Limma for a subset of size 10, the GEOlimma effective sample size is simply the

sample size of the standard curve corresponding to an AUC value 0.1 higher

than the mean Limma AUC value for 10-sample subsets.

A.3.4 Supervised Classification

We performed supervised classification for each comparison in the

evaluation datasets using both GEOlimma and Limma as feature selection

methods. Scikit-learn (sklearn) [140] is a Python module implementing machine

learning algorithms. It enables various tasks such as dimensionality reduction,

classification, regression and model selection. The sklearn classification pipeline

involves sequentially applying feature selection, classification, parameter

optimization and model selection to yield final classification results. We first

used the Python rpy2 module to build a connection between sklearn and the R

language, followed by creating customized feature selection methods for Limma

and GEOlimma which we compiled into the sklearn pipeline function. For

classification training, we first sampled 10 subsets of 40 samples (20 from each of

the two groups) at random and selected the 1000 genes with largest variance

across these samples. Next, we fed data from each subset to the sklearn pipeline

function and performed either Limma or GEOlimma-based feature selection by

selecting subsets of 100-1000 genes (in increments of 100) with the highest B

scores. We selected the Logistic Regression [141] classifier for classification. We

also included L1 and L2 penalties as hyperparameters and applied 10-fold cross
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validation to train the model and optimize the hyperparameters. We used

classification AUC as the criterion to evaluate classification performance. A high

AUC represents both high recall and high precision, which translate to low false

positive and false negative rates. For classification testing, we sampled an

additional 40 samples to evaluate the training models. We used a Wilcoxon

signed-rank test to identify significant AUC differences between performing

feature selection using Limma or GEOlimma.

A.4 Results

In this study, we developed a gene expression feature selection method,

GEOlimma, in which gene-level differential expression (DE) prior probabilities

were derived from large-scale microarray data freely available from the Gene

Expression Omnibus (GEO). We first explored enriched biological pathways in

genes with either high or low DE prior probabilities. We then applied

GEOlimma to DE analysis and supervised classification tasks on a collection of

four validation datasets.

A.4.1 Biological Analysis of DE Prior Probabilities

The goal of differential expression analysis is to identify differences in

gene expression across biological conditions in order to discover functional genes

and pathways involved in a biological process of interest. The Limma method

[133] is an empirical Bayesian approach for identifying DE genes that has been

widely applied. However, an important limitation of this method is that the

prior probabilities for differential expression are set to be constant for all genes.

This implies that all genes have the same chance of being expressed differently,

which is not biologically realistic [126]. Therefore, we developed and applied

GEOlimma, which uses a large collection of GEO datasets to compute gene level

DE prior probabilities (see Methods section). We first downloaded the 602 GEO

DataSets (GDS) currently available from the GPL570 platform (Affymetrix

Human Genome U133 Plus 2.0 Array), followed by performing pairwise DE

analysis among the largest possible collection of non-overlapping sample groups
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(number of samples 5) from each GDS experiment. We identified DE genes

using a Benjamini-Hochberg false discovery rate (FDR) threshold of 0.05. By

repeating this procedure for every GDS, we calculated DE frequencies for 21025

distinct Entrez genes (20283 genes with unique gene mappings) across all

experiments (2481 pairwise comparisons total) and converted these to prior

probabilities of DE. Given gene-level DE prior probabilities, we can then

compute posterior probabilities of DE for a given biological experiment using

Bayes’ theorem. Figure B.1 shows the distribution of DE prior probabilities,

which ranged between 0.0048 and 0.1769 and appeared to have two modes. The

median probability is 0.069, which we note is roughly seven times higher than

the default constant prior probability used by Limma (0.01). Figure SFigure1

lists the top most frequently DE genes, including TUBA1A (tubulin alpha 1a),

CD24, and SERPINB1 (serpin family B member 1), with DE prior probabilities

of 0.1769, 0.1761, and 0.1693, respectively. The three least frequently DE genes

were LOC102725116, TMCO5A (transmembrane and coiled-coil domains 5A),

and LINC01492 (long intergenic non-protein coding RNA 1492), with DE prior

probabilities of 0.0048, 0.0056, and 0.0060, respectively. Generally speaking, we

hypothesize that genes with high prior probabilities of DE are more likely to be

implicated in human disease and thus could function as biomarkers, while those

with low DE prior probabilities represent constitutively expressed genes that are

required for the maintenance of basic cellular functions (i.e., housekeeping genes).

In order to improve our biological understanding of the calculated DE

prior probabilities, we performed gene set enrichment analysis (GSEA) based on

KEGG pathways with the top 500 most and least frequently DE genes,

respectively. Table B.1 lists significantly enriched pathways (BH-adjusted

p-value ≤0.05), which include 19 pathways from the most frequently DE genes

and 4 from the least frequently DE genes. The most significant pathway in the

former category is hsa04110: Cell cycle (adjusted p = 7.83E-08); Figure B.2

illustrates the frequently DE genes mapped in this pathway. Two additional
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Fig. A.1: Distribution of DE prior probabilities for 20283 genes, calculated from
2481 pairwise comparisons made within 602 curated GEO Datasets.

pathways in this category directly related to cell growth and death include

hsa04115: p53 signaling pathway and hsa04210: Apoptosis. We also identified

six cancer-specific frequently DE pathways: hsa05222: Small cell lung cancer,

hsa05206: MicroRNAs in cancer, hsa05218: Melanoma, hsa05202:

Transcriptional misregulation in cancer, hsa05205: Proteoglycans in cancer, and

hsa05220: Chronic myeloid leukemia. Finally, the two frequently DE pathways

hsa04068: FoxO signaling pathway and hsa04668: TNF signaling pathway

function in Signal transduction. We note that signal transduction pathways are

involved in cell death mechanisms that function in colorectal carcinogenesis

progression [142].

The 4 least frequently DE pathways include two sensory system pathways:

hsa04740: Olfactory transduction and hsa04742: Taste transduction, Signaling

molecules and interaction pathway. The other two significant pathways in this

category were hsa04080: Neuroactive ligand-receptor interaction and hsa05320:

Autoimmune thyroid disease. Our results suggest that genes belonging to these

pathways show relatively stable expression across different biological conditions.
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Table A.1: KEGG Enrichment Analysis of top 500 genes with high and low DE
prior probabilities.

Pathway
IDs

Description GeneRatio BgRatio Pvalue P value Ad-
justment

Source

hsa04110 Cell cycle 21/242 124/7528 2.94E-10 7.83E-08 HighPrior
hsa05222 Small cell lung can-

cer
13/242 93/7528 7.47E-06 9.94E-04 HighPrior

hsa04115 p53 signaling path-
way

11/242 72/7528 1.61E-05 1.43E-03 HighPrior

hsa05169 Epstein-Barr virus
infection

18/242 201/7528 7.63E-05 3.57E-03 HighPrior

hsa05206 MicroRNAs in can-
cer

23/242 299/7528 8.53E-05 3.57E-03 HighPrior

hsa05218 Melanoma 10/242 72/7528 9.09E-05 3.57E-03 10
HighPrior
hsa05202 Transcriptional

misregulation in
cancer

17/242 186/7528 9.40E-05 3.57E-03 HighPrior

hsa04210 Apoptosis 14/242 136/7528 1.12E-04 3.71E-03 HighPrior
hsa05205 Proteoglycans in

cancer
17/242 201/7528 2.42E-04 7.15E-03 HighPrior

hsa04068 FoxO signaling
pathway

13/242 132/7528 3.05E-04 8.11E-03 HighPrior

hsa05418 Fluid shear stress
and atherosclerosis

13/242 139/7528 5.05E-04 1.22E-02 HighPrior

hsa05220 Chronic myeloid
leukemia

9/242 76/7528 6.87E-04 1.52E-02 HighPrior

hsa03030 DNA replication 6/242 36/7528 8.98E-04 1.84E-02 HighPrior
hsa05130 Pathogenic Es-

cherichia coli
infection

7/242 55/7528 1.77E-03 3.36E-02 HighPrior

hsa04540 Gap junction 9/242 88/7528 1.97E-03 3.50E-02 HighPrior
hsa01524 Platinum drug re-

sistance
8/242 73/7528 2.25E-03 3.74E-02 HighPrior

hsa05167 Kaposi sarcoma-
associated her-
pesvirus infection

14/242 186/7528 2.60E-03 3.83E-02 HighPrior

hsa04380 Osteoclast differen-
tiation

11/242 128/7528 2.67E-03 3.83E-02 HighPrior

hsa04668 TNF signaling
pathway

10/242 110/7528 2.74E-03 3.83E-02 HighPrior

hsa04740 Olfactory transduc-
tion

17/68 448/7528 2.91E-07 3.08E-05 LowPrior

hsa04742 Taste transduction 8/68 83/7528 6.70E-07 3.55E-05 LowPrior
hsa04080 Neuroactive ligand-

receptor interaction
14/68 338/7528 1.40E-06 4.96E-05 LowPrior

hsa05320 Autoimmune thy-
roid disease

4/68 53/7528 1.28E-03 3.39E-02 LowPrior
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Fig. A.2: Significantly enriched Cell Cycle pathway from genes with high DE
prior probabilities. The red shaded blocks indicate genes with high prior
probabilities.

A.4.2 GEOLimma method application on four validation datasets

We investigated the utility of gene-specific DE prior probabilities by

performing DE analysis with GEOlimma in four evaluation datasets.

Specifically, we selected two GEO series—GSE8052 and GSE15061— from

platform GPL570 that enabled four DE comparisons to be made. Importantly,

neither of these datasets was represented by a GEO GDS, meaning that none of

the resulting comparisons were involved in DE prior probability computation.

The four comparisons include Asthma vs Non-asthma (GSE8052) and three

comparisons from GSE15061: Nonleukemia (Nonleuk) vs Myelodysplastic

syndrome (MDS), Nonleuk vs acute myeloid leukemia (AML), and AML vs

MDS. The probes for each of the datasets are represented by 20283 genes with

unique mappings. Any genes without available DE prior probabilities were

assigned the median value of all prior probabilities. We first identified DE genes
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using GEOlimma as well as the standard Limma method. This allowed us to

compare the two methods, as well as characterize the extent of differential

expression present in each comparison. For Limma, we considered genes to be

DE if their BH-adjusted p-value ≤ 0.05. In contrast, as GEOlimma enables the

calculation of a modified B score only (see Methods), we selected a B score

threshold for GEOlimma significance based on the smallest Limma B score for

which the Limma adjusted p-value ≤ 0.05. Using these criteria, we identified DE

genes based on all relevant samples for each of the four comparisons described

above. To assess the effect of small sample sizes on GEOlimma/Limma

performance, we also randomly sampled 10 subsets of 40 samples (20 in each

class) for each comparison and calculated the mean and standard deviation of

the number of DE genes across these subsets using both methods. Table B.2 lists

details of each DE comparison along with summaries of our analysis results using

both Limma and GEOlimma. We note that for the Asthma comparison, there

are no significant DE genes based on all samples (as well as in subsets) using the

Limma method. Therefore, we were not able to quantify the number of DE genes

for this comparison using GEOlimma. In the remaining three comparisons, our

results demonstrate that GEOlimma identifies more DE genes than Limma when

applied to either all samples or 40-sample subsets. Figure B.3 A helps illustrate

why this is, by examining the distributions of Limma and GEOlimma B scores

for the Asthma comparison. Despite the lack of significant DE genes in this

comparison, use of GEOlimma results in a wider B score distribution with a

marked shift to higher values compared to Limma. This difference is due to the

diverse set of gene-specific DE prior probabilities used by GEOlimma, the

median value of which is substantially higher than the constant value used by

Limma. The potential increase in numbers of DE genes identified by GEOlimma

also suggests that use of a small constant DE prior probability may result in

overly conservative DE gene identification. In our PCA and t-SNE visualizations

of all samples (Figures B.3 B and C), we note the lack of clear separation
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Fig. A.3: B score change and sample visualizations of asthma dataset. The top
figures are generated from all samples; the bottom figures are drawn using a
random subset with 40 samples. (A) and (D) depict Limma and GEOlimma B
score distributions of all genes, (B) and (E) show PCA visualizations of samples,
and (C) and (F) show t-SNE sample visualizations.

between the Asthma and Non-asthma groups, which helps explain why no

significant DE genes were detected. Figures B.3 D, E, and F show the same

information for a randomly selected subset of 40 samples. We note that the B

scores have a similar distribution as that of all samples.

Table A.2: Differential expression comparison details Limma and GEOlimma DE
gene counts for all samples and 10 subsets of 40 samples of each comparison.

Datasets Samples Limma
DEGs

GEOlimma
DEGs

Limma DEGs* GEOlimma
DEGs*

Asthma vs non-
asthma [134]

268:136 0 – 0 –

Nonleuk vs MDS
[135]

164:69 2619 5823 98.5±161.4 404.3±600.9

Nonleuk vs AML
[135]

202:69 8610 13379 2788.9±901.5 5879.3±1415.2

AML vs MDS [135] 164:202 10975 15337 2881.5±1068.7 6017±1666.7
* indicates DE tests of subset samples

When looking at the top 20 most significantly DE genes for each

comparison, we noted that use of GEOlimma changes the order of these genes

compared to Limma, with an overall higher average B score (Figures SFigure2 ).
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To further explore this phenomenon, we counted the genes in common for the

top 100 to 1000 most significantly DE genes between GEOlimma and Limma

across 10 randomly selected 40-sample subsets for each comparison. The average

overlap percentages were 67.3% for the Asthma comparison, 87% for Nonleuk vs

MDS, while over 95% for both AML vs MDS (95.2%) and Nonleuk vs AML

(95.5%)(Figure SFigure3). These results suggest that GEOlimma DE prior

probabilities have a larger effect on the resulting DE gene list for datasets

showing a more modest overall degree of differential expression (e.g., Asthma

and Nonleuk vs MDS comparisons).

In order to explore the practical benefits of using GEOlimma, we

compared the accuracy of DE gene identification between GEOlimma and

Limma for each of the four DE comparisons. For each comparison, we first

performed DE analysis on all samples using Limma, with the resulting significant

DE genes (n = 1241 [FDR ≤ 0.4], 2619 [FDR ≤ 0.05], 8610 [FDR ≤ 0.05], and

10975 [FDR ≤ 0.05] for the Asthma, Nonleuk vs MDS, Nonleuk vs AML, and

AML vs MDS comparisons) being treated as the ground truth. We note that we

relaxed the significance thresholds for the Asthma comparison in order to include

a sufficient number of DE genes for subsequent evaluation. Next, we randomly

generated non-overlapping sample subsets for each comparison based on the

minimum sample size at which the group proportions of the dataset could be

maintained. For example, as GSE8052 contains 66% Asthma and 34%

Non-asthma samples, the smallest sample size considered was 6 (4 Asthma, 2

Non-asthma) in order to ensure 2 samples per group. We then increased this

sample size in increments of 3 to also consider subsets of 9, 12, and 15 samples.

We then applied both GEOlimma and Limma on each of the sample subsets to

determine which method best recovered the ground truth. Specifically, we used

the R package ROCR [139] to compute areas under the receiver operating

characteristic curve (AUCs) given the GEOlimma/Limma B scores and the

ground truth. Figure B.4 depicts the AUC improvement of GEOlimma over

108



Limma for all four comparisons. Notably, GEOlimma consistently increases the

average AUC for each of the subset sizes, with an overall average AUC

improvement of 0.04. Furthermore, in the three comparisons made within

GSE15061, GEOlimma increases AUC for every subset tested. Interestingly, the

AUC improvement is largest for the smallest sample sizes evaluated and

decreases slightly as sample size increases. This further supports the assertion

that GEOlimma has a bigger impact on datasets with more modest expression

differences (as would result from a small sample size). To confirm that these

improvements result specifically from the DE prior probabilities learned using

publicly available GPL570 data, we randomly shuffled the prior probabilities and

repeated the above analysis. As seen in Figure SFfigure4, GEOlimma using

randomized prior probabilities consistently decreases AUC compared to Limma.

To quantify the experimental power gained by using GEOlimma, we

converted AUC values into effective sample size. Specifically, for each of the

evaluation datasets, we first calculated AUCs resulting from applying Limma to

all non-overlapping sample subsets ranging in size from the minimum number

needed to maintain group proportions (described above) to the total number of

replicates. For example, in the Asthma comparison we considered all subsets of

size 6 to 402 in increments of 3. These AUCs enabled us to fit a “standard curve”

for each comparison, from which we could interpolate the mean number of

samples gained by using GEOlimma given initial numbers of 6, 9, 12, and 15

(Asthma) samples. Figure SFigure5 presents the AUC standard curves and

Table B.3 summarizes the distribution of GEOlimma effective sample sizes for

each comparison. Overall, GEOlimma leads to a substantial increase in mean

effective sample sizes, particularly when applied to smaller subsets, where we

observed gains of 157-288% for the smallest sample sizes evaluated for each

comparison. The Asthma comparison shows the largest relative increases across

all subsets, with the mean GEOlimma effective sample size more than doubling

that of Limma even for the largest subset tested (m = 15). These results
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Fig. A.4: Area under the ROC curve (AUC) improvement of GEOlimma over
Limma for identifying DE genes from a range of data subset sizes: A) Asthma vs
Non-asthma comparison, B) Nonleukemia vs AML comparison, C) Nonleukemia
vs MDS comparison, D) AML vs MDS comparison.

demonstrate the gains in experimental power for DE gene discovery that are

possible with the use of GEOlimma.

A.4.3 Classification performance using GEOLimma feature selection

method

Feature selection is a critical step in supervised classification for

diagnosis, prognosis and treatment. Here we compare the abilities of GEOlimma

and Limma as feature selection methods to perform accurate classification on the

four evaluation datasets. To focus on the most challenging classification tasks for

each comparison, we randomly sampled subsets of size 20 from each of the two

groups. Specifically, we generated 10 pairs of subsets for training, with each pair

containing 40 total samples (20 per group). In the same manner, we also

110



generated an additional 10 pairs of samples for testing. During training, we

performed 10-fold cross-validation to estimate model performance. Given the

large numbers of genes present in these datasets, we focused on the 1000 genes

with the highest variance across all samples within each comparison. Within

these 1000 genes, we selected the top 100-1000, in increments of 100, using either

Limma or GEOlimma and performed classification using a logistic regression

(LR) classifier. For each sampled subset, we applied a one-sided (hypothesis:

GEOlimma AUC > Limma AUC) paired Wilcoxon test to compare the AUC

differences between GEOlimma and Limma at each feature size (10 total).

Because of the near perfect AUC observed for subsets of the AML vs MDS and

Nonleuk vs AML comparisons, we only evaluated AUC differences for the

Asthma and Nonleuk vs MDS comparisons using the Wilcoxon test. Table A.3

shows the mean AUC differences of Asthma for each of the 10 pairs of

subsets.Although many of the subsets do not show a significantly higher

GEOlimma AUC, we note that the average GEOlimma - Limma AUC difference

for both training and testing subsets is positive. Furthermore, subset pairs 7 and

9 show a significant GEOlimma AUC improvement in both training and testing

subsets, while none of the negative AUC differences observed were significantly

less than 0 (hypothesis: Limma AUC > GEOlimma AUC) in training sets.

Figure B.5 shows the GEOlimma and Limma AUC values at each number of

features for subset pairs 7 (A) and 9 (B). For the Nonleuk vs MDS comparison,

we find no significant differences between GEOlimma and Limma AUCs in

training or testing subset pairs. Figure B.5(C) shows one example of a training

pair for this comparison. Overall, our results suggest that use of GEOlimma for

feature selection can provide moderate improvements in classification

performance for datasets with a modest overall degree of differential expression

(e.g., Asthma comparison). For datasets with more pronounced degrees of

differential expression, use of GEOlimma resulted in very similar classification

performance compared to Limma.
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Fig. A.5: Classification performance of data subsets using a logistic regression
classifier with GEOlimma and Limma feature selection methods. The x-axis
indicates the number of selected features; y-axis indicates classification AUC.
The top three plots display training AUC values; the bottom three plots depict
validation AUCs. A) Asthma vs Non-asthma subset 7 AUCs, B) Asthma vs
Non-asthma subset 9 AUCs, C) Nonleukemia vs MDS subset 9 AUCs.

Table A.3: Differences in classification performance (GEOlimma AUC - Limma
AUC) for 10 data subsets of the Asthma comparison. Bold p-values (Wilcoxon
signed-rank test) denote statistically significant AUC improvements of
GEOlimma over Limma.

Sample Order AUCdiff Wilcox p Value VadAUCdiff Wilcox p Value
1 0.0075 2.36E-01 -0.01425 9.78E-01
2 -0.0275 8.53E-01 0.01375 1.43E-01
3 -0.0075 6.07E-01 -0.025 9.97E-01
4 -0.0075 7.79E-01 0.00525 2.39E-01
5 -0.0175 9.31E-01 0.0105 3.12E-01
6 -0.03 8.97E-01 -0.0085 7.23E-01
7 0.0675 3.98E-02 0.06025 9.77E-04
8 0.025 1.04E-01 -0.007 7.54E-01
9 0.0525 1.23E-02 0.0385 1.95E-03
10 -0.0075 7.36E-01 -0.001 7.93E-01
*asthma dataset on LR classification

A.5 Discussion

In this study, we developed a differential expression feature selection

method, GEOlimma, in which we calculated gene-level differential expression

(DE) prior probabilities from large-scale GEO transcriptomics data and

incorporated them into a Bayesian framework. In a DE analysis, GEOlimma

detected a larger number of DE genes in four comparisons within two evaluation

datasets, compared to Limma. By analyzing small sample subsets of each

dataset, we showed that knowledge-driven GEOlimma substantially improved
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experimental power in terms of effective sample size. Furthermore, in a

supervised classification analysis, GEOlimma used as a feature selection

technique led to similar or better classification performance than standard

Limma given noisy, small sample subsets from the Asthma comparison.

We also biologically characterized genes with especially high or low DE

prior probabilities using KEGG pathway enrichment analysis. The strongest

signal came from genes with high DE prior probabilities, where we detected

enrichment in cell growth and death, signal transduction and cancer-related

pathways. Cell growth and death are fundamental biological processes; however,

deregulation of these processes is often involved in carcinosis. Specifically,

resisting cell death and sustaining proliferative signaling were reported to be

hallmarks of cancer [143]. This prevalence of enriched cancer-specific pathways

may be indicative of an over-representation of cancer-related studies in data

repositories such as GEO, which has been previously reported [144] [123].

However, while we saw excellent improvements in experimental power in

differential expression analysis of three cancer-related comparisons, we note that

the largest relative increases in effective sample size were observed in the Asthma

comparison. This suggests that GEOlimma can also provide a substantial benefit

to datasets that are unrelated to cancer.

We closely modeled GEOlimma after the widely-used differential

expression analysis method Limma. Since its first publication nearly 15 years

ago, papers describing the Limma method [145] [133] [132] have been cited over

10,000 times for applications in differential expression analysis of DNA

microarray or RNA-Seq transcriptomics data. For the latter application, the

more recently-developed voom method [145] adapts the Limma empirical

Bayesian framework to read count data, which enables computation of posterior

DE probabilities for RNA-Seq experiments. Although we only applied

GEOlimma to DNA microarray data in this study, our approach is readily

transferable to RNA-Seq data through the use of the voom methodology.
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In this study, we made use of all available GPL570 GEO datasets (GDS),

which we acknowledge represent a relatively small subset of all available GPL570

data at GEO. We made this selection in large part due to the high-quality

curation of GDS datasets compared to the more abundant GSEs, which allowed

us to easily perform multiple differential expression comparisons within each

dataset. Given recent advances in natural language processing and the

extraction of experimental metadata (e.g., [146] ), an exciting future direction is

the automatic annotation and inclusion of the larger number of GSEs (5154 for

GPL570 as of June 2019) in the DE prior probability calculations. Such an

expansion of a pre-existing data collection would enable subdivision and

calculation of condition-specific DE prior probabilities (e.g., stem cell-related or

viral infection-related), which could further improve GEOlimma performance

when applied to the analysis of related datasets. One final future direction is the

generalization of GEOlimma DE prior probabilities from individual values to

probability distributions. In this case, DE hyperprior parameters could be

calculated from pre-existing data rather than explicit prior probabilities. This

modification would enable a more nuanced adjustment of DE posterior

probabilities by GEOlimma given the biological characteristics of the dataset of

interest.

A.6 Conclusions

Overall, our results demonstrate that GEOlimma effectively utilized

pre-existing transcriptomics data for improved differential expression and feature

selection analyses. Due to its focus on gene-level differential expression,

GEOlimma also has the potential to be applied to other high-throughput

biological datasets.
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Appendix B

Prognostic Analysis of Histopathological Images Using Pre-Trained

Convolutional Neural Networks: Application to Hepatocellular

Carcinoma

B.1 Abstract

Histopathological images contain rich phenotypic descriptions of the

molecular processes underlying disease progression. Convolutional neural

networks (CNNs), state-of-the-art image analysis techniques in computer vision,

automatically learn representative features from such images which can be useful

for disease diagnosis, prognosis, and subtyping. Hepatocellular carcinoma (HCC)

is the sixth most common type of primary liver malignancy. Despite the high

mortality rate of HCC, little previous work has made use of CNN models to

explore the use of histopathological images for prognosis and clinical survival

prediction of HCC.

We applied three pre-trained CNN models – VGG 16, Inception V3, and

ResNet 50 – to extract features from HCC histopathological images. Sample

visualization and classification analyses based on these features showed a very

clear separation between cancer and normal samples. In a univariate Cox

regression analysis, 21.4% and 16% of image features on average were

significantly associated with overall survival and disease-free survival,

respectively. We also observed significant correlations between these features and

integrated biological pathways derived from gene expression and copy number

variation. Using an elastic net regularized CoxPH model of overall survival

constructed from Inception image features, we obtained a concordance index

(C-index) of 0.789 and a significant log-rank test (p = 7.6E18). We also

performed unsupervised classification to identify HCC subgroups from image

features. The optimal two subgroups discovered using Inception model image

features showed significant differences in both overall (C-index = 0.628 and p =

7.39E-07) and disease-free survival (C-index = 0.558 and p = 0.012). Our work
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demonstrates the utility of extracting image features using pre-trained models by

using them to build accurate prognostic models of HCC as well as highlight

significant correlations between these features, clinical survival, and relevant

biological pathways.

Image features extracted from HCC histopathological images using the

pre-trained CNN models VGG 16, Inception V3 and ResNet 50 can accurately

distinguish normal and cancer samples. Furthermore, these image features are

significantly correlated with survival and relevant biological pathways.

B.2 Introduction

Histopathological images contain rich phenotypic descriptions of the

molecular processes underlying disease progression and have been used for

diagnosis, prognosis, and subtype discovery [147]. These images contain visual

features such as nuclear atypia, mitotic activity, cellular density, tissue

architecture and higher-order patterns, which are typically examined by

pathologists to diagnose and grade lesions. The recent accumulation of scanned

and digitized whole slide images (WSI) has enabled wide application of machine

learning algorithms to extract useful information and assist in lesion detection,

classification, segmentation, and image reconstruction [148].

Deep learning is a machine learning method based on deep neural

networks that has been widely applied in recent computer vision and natural

language processing tasks [149]. A convolutional neural network (CNN), a class

of deep learning architecture commonly used in computer vision, automatically

learns representative features from images. CNNs have been dominant since

their astonishing results at the ImageNet Large Scale Visual Recognition

Competition (ILSVRC) [150]. In various studies, CNNs have shown good

performance when applied to medical images, including those from radiology

[151] [152] [153]. Additional applications of CNNs in the areas of diabetic

retinopathy screening [154], skin lesion classification [155], age-related macular

degeneration diagnosis [156] and lymph node metastasis detection [157] have
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demonstrated expert-level performance in these tasks. In addition, a recent

study applied CNN models to develop a content-based histopathological image

retrieval tool for improving search efficiency of large histopathological image has

archived [158]. Compared with traditional machine learning techniques, CNNs

have achieved significantly improved performance in the areas of image

registration for localization, detection of anatomical and cellular structures,

tissue segmentation, and computer-aided disease prognosis and diagnosis [159].

One disadvantage of CNNs is their need for massive amounts of data,

which can be a challenge for biomedical image analysis studies. Furthermore,

deep feature learning depends on the size and degree of annotation of images,

which are often not standardized across different datasets. One possible solution

for analyzing image datasets with a small sample size is transfer learning, in

which pre-trained CNN models from large-scale natural image datasets are

applied to solve biomedical image tasks. In a previous study of CNN models

applied to both thoraco-abdominal lymph node detection and interstitial lung

disease classification, transfer-learning from large scale annotated image datasets

(ImageNet) was consistently beneficial in both tasks [160]. Furthermore, in a

breast cancer study [161], CNNs used for feature extraction followed by

supervised classification achieved 99.86% accuracy for the positive class.

The overarching goal of this work is to evaluate the potential of transfer

learning for histopathological image analysis of hepatocellular carcinoma (HCC).

Primary liver cancer is the sixth most common liver malignancy, with a high

mortality and morbidity rate. HCC is the representative type, resulting from the

malignant transformation of hepatocytes in a cirrhotic, non-fibrotic, or minimally

fibrotic liver [162]. With the development of high-throughput technologies, a

number of “omics” research studies have helped elucidate the mechanisms of

HCC molecular pathogenesis, which in turn have significantly contributed to our

understanding of cancer genomics, diagnostics, prognostics, and therapeutics

[163] [164] [165] [166]. In particular, the most frequent mutations and
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chromosome alterations leading to HCC were identified in the TERT promoter as

well as the CTNNB1, TP53, AXIN1, ARID1A, NFE2L2, ARID2 and RPS6KA3

genes [166]. The biological pathways Wnt/β-catenin signaling, oxidative stress

metabolism, and Ras/mitogen-activated protein kinase (MAPK) were reported

to be involved in liver carcinogenesis [163]. Frequent TP53-inactivating

mutations, higher expression of stemness markers (KRT19, EPCAM) and the

tumor marker BIRC5, and activated Wnt and Akt signaling pathways were also

reported to associate with stratification of HCC samples ([166]). The histological

subtypes of HCC have been shown relate to particular gene mutations and

molecular tumour classification [167]. Two recent studies have demonstrated

strong connections between molecular changes and disease phenotypes. In a

meta-analysis of 1494 HCC samples, consensus driver genes were identified that

showed strong impacts on cancer phenotypes [168]. In addition, a deep

learning-based multi-omics data integration study produced a model capable of

robust survival prediction [169]. These and other recent findings may help to

translate our knowledge of HCC biology into clinical practice [167].

At the pathological level, HCC exhibits as a morphologically

heterogeneous tumour. Although HCC neoplastic cells often grow in cords of

variable thickness lined by endothelial cells mimicking the trabeculae and

sinusoids of normal liver, other architectural patterns are frequently observed

and numerous cytological variants recognized. Though histopathologic criteria

for diagnosing classical, progressed HCC are well established and known, it is

challenging to detect increasingly small lesions in core needle biopsies during

routine screenings. Such lesions can be far more difficult to distinguish from one

another than progressed HCC, which is usually diagnosed in a straightforward

manner using hematoxylin and eosin staining [170] [171]. Although

prognostication increasingly relies on genomic biomarkers that measure genetic

alterations, gene expression changes, and epigenetic modifications, histology

remains an important tool in predicting the future course of a patient’s disease.
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Previous studies [172] [173] indicated the complementary nature of information

provided by histopathological and genomic data. Quantitative analysis of

histopathological images and their integration with genomics data require

innovations in integrative genomics and bioimage informatics.

In this study, we applied pre-trained CNN models on HCC

histopathological images to extract image features and characterize the

relationships between images, clinical survival and biological pathways. We first

downloaded Hematoxylin and Eosin (H&E) stained whole slide images from

HCC subjects (421 tumor samples and 105 normal tissue adjacent to tumor

samples) from the National Cancer Institute Genomic Data Commons Data

Portal. After image normalization, we then applied three pre-trained CNN

models–VGG 16, Inception V3, and ResNet 50–to extract representative image

features. Using these features, we (1) performed classification between cancer

and normal samples, (2) constructed models associating image features with

clinical survival, (3) discovered potential HCC subgroups and characterized

subgroup survival differences, and (4) calculated correlations between image

features and integrated biological pathways. To the best of our knowledge, this is

the first study to extract HCC image features using pre-trained CNN models and

assess correlations between image features and integrated pathways. Our results

indicate the feasibility of applying CNN models to histopathological images to

better understand disease diagnosis, prognosis, and pathophysiology.

B.3 Materials & Methods

B.3.1 HCC Datasets

We downloaded HCC histopathological images of diagnostic slides (access

by TCGA-LIHC Diagnostic Slide Images) from the National Cancer Institute

Genomic Data Commons Data Portal on January 23, 2019. In addition to

images, this Portal also provides multiple molecular datasets (e.g.,

Transcriptomics, DNA Methylation, Copy Number Variation) and clinical

information for the same cohort. In total, we obtained 966 H&E stained whole
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slide images from 421 scanned HCC subjects (421 tumor samples and 105

normal tissue samples adjacent to tumors). The images were digitized and stored

in .svs files, which contain pyramids of tiled images with differing levels of

magnification and resolution. We used the Python modules OpenSlide and

DeepZoomGenerator to read those image files. Most of the files contained three

or four levels of sizes and resolutions, with level 4 corresponding to the highest

resolution (median pixels: 89640 x 35870) and level 3 comprising 1/16th the size

of level 4 (median pixels: 5601 x 2249.5). To reduce memory usage and

processing time, we extracted either level 3 images or downsampled level 4

images (if available) by a factor of 16 to the level 3 equivalent. We removed two

files which were either corrupted or did not contain level 3 or 4 information. In

total, we used 964 files in our analysis.

We downloaded clinical files containing overall survival (OS) and disease

free survival (DFS) information on January 23, 2019 from the cBioPortal for

Cancer Genomics website (https://www.cbioportal.org/). The cBioPortal

provides visualization, analysis and downloading of large-scale cancer genomics

data sets. Importantly, cBioPortal includes data for the same patient cohort

from which the HCC images were taken. When performing OS analysis, the

event of interest is death (event = 1), while the censored event is being alive

(event = 0). Thus, the number of days for event 1 and event 0 are the number of

days until death and number of days until last contact, respectively. In DFS

analysis, the event of interest is new tumor occurrence (event = 1), while the

censored event is the lack of detection of a new tumor (event = 0). In this case,

the number of days for event 1 and event 0 are the number of days until

detection of a new tumor and number of days until last contact, respectively.

We downloaded molecular pathway information, including integrated gene

expression and copy number variation data, on January 28, 2019 from the Broad

GDAC Firehose (https://gdac.broadinstitute.org/). This resource provides an

open access web portal for exploring analysis-ready, standardized TCGA data
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including the cohort from which the TCGA-Liver Hepatocellular Carcinoma

image files were collected. Using this pathway information, we applied the

PAthway Representation and Analysis by Direct Inference on Graphical Models

(PARADIGM) algorithm [174] to infer Integrated Pathway Levels (IPLs).

Briefly, PARADIGM predicts the activities of molecular concepts including

genes, complexes, and processes and measures using a belief propagation

strategy within the pathway context. Given the copy numbers and gene

expression measurements of all genes, this belief propagation iteratively updates

hidden states reflecting the activities of all of the genes in a pathway so as to

maximize the likelihood of the observed data given the interactions within the

pathway. In the end, the IPLs reflect both the data observed for that pathway as

well as the neighborhood of activity surrounding the pathway. We used the

analysis-ready file of IPLs generated by PARADIGM for correlation analyses

between image features and biological pathways.

B.3.2 Image Pre-Processing and Feature Extraction

For each of the 964 image files from 421 tumor and 105 normal samples,

we performed stain-color normalization as described in previous image studies

[175] [176] [177]. After color normalization, we performed 50 random color

augmentations. We followed a previous study [178] and first deconvolved the

original RGB color into H&E color density space. We then estimated a specific

stain matrix for a given input image and multiplied the pixels with a random

value from the range [0.7, 1.3] to obtain the color augmented image. We

repeated the process to generate 50 augmentations. Next, we randomly selected

20 crops of size 256 x 256 and 512 x 512 pixels from each augmented image. We

separately input each crop to the three pre-trained CNN models (VGG 16,

Inception V3, and ResNet 50), each of which generated a total of 20 sets of

features. Within each model, we combined all sets of features associated with an

image into a single set by computing median values of features across all crops of

all augmented images.
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Deep CNN models such as VGG 16, Inception V3 and ResNet 50 contain

millions of parameters that require extensive training on large datasets. When

properly trained, these models have reached state-of-the-art performance in tasks

such as image recognition and classification. To avoid the challenges of training

an entire CNN from scratch, we used pre-trained versions of these models to

extract histopathological image features in an unsupervised manner. This

transfer learning approach was essential given the relatively small sample size of

the HCC cohort. For the Inception and ResNet models, we used nodes in the

second-to-last convolutional layer as image features. For the VGG model, we

concatenated nodes from the last 4 convolutional layers

(block2_conv2,block3_conv3, block4_conv3, block5_conv3) as image

features. In each case, the CNN network weights had been pre-trained using

ImageNet data [179]. We implemented the above steps using Keras, a popular

Python framework for deep learning.

B.3.3 Sample Visualization

To visualize samples, we first used Principal Component Analysis (PCA)

to reduce the dimensionality of image features. We then applied the

t-Distributed Stochastic Neighbor Embedding (t-SNE) method to visualize the

first 10 components in 2 dimensions. The t-SNE method reduces data

dimensionality based on conditional probabilities that preserve local similarity.

We applied a t-SNE implementation that uses Barnes-Hut approximations,

allowing it to be applied on large real-world datasets [138]. We set the perplexity

to 15, and colored the sample points using the group information.

B.3.4 Supervised Classification from Image Features

We applied a linear Support Vector Machine (SVM) classifier [180] to

discriminate between cancer and normal samples using the extracted image

features (derived as described above). We used stratified 6-fold cross validation

to train the model. To evaluate classifier performance, we visualized the Receiver

Operating Characteristic (ROC) curve generated using cross-validation, with
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false positive rate on the X axis and true positive rate on the Y axis. We

calculated the Area under the ROC curve (AUC) for each cross-validation fold,

as well as the overall mean value. We also plotted the 2-class precision-recall

curve to visualize the tradeoff between precision and recall for different

prediction thresholds. A high AUC represents both high recall and high

precision, which translates to low false positive and negative rates. Using average

precision (AP), we summarized the mean precision achieved at each prediction

threshold. We used the Python module Scikit-learn to perform classification

with a linear SVM, setting the parameter C to its default value of 1.0.

B.3.5 Survival Analysis

To perform univariate survival analysis for each image feature

individually, we applied Cox Proportional Hazards (CoxPH) regression models

using the R package ‘survival’ for both overall (OS) and disease-free survival

(DFS). We used a log-rank test to select significant image features with p-value

≤ 0.05.

For multivariate survival analysis, we used the R package ‘glmnet’ to

build separate CoxPH OS models based on image features from each of the three

pre-trained CNN models. We applied elastic net regularization with fixed alpha

= 0.5, which corresponds to equal parts lasso and ridge regularization. In order

to learn the optimal penalty coefficient lambda, we applied 10-fold cross

validation. We evaluated models with the Concordance index (C-index) and a

log-rank test. The C-index quantifies the quality of rankings and can be

interpreted as the fraction of all pairs of individuals whose predicted survival

times are correctly ordered [181] [182]. A C-index of 0.5 indicates that

predictions are no better than random.

B.3.6 Subgroup Discovery

Using the Scikit-learn Python module, we applied K-means clustering

across all cancer samples to discover HCC subgroups. Specifically, we clustered

all image features which were significantly associated with both overall and
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disease-free survival. The K-means algorithm [183] clusters samples by

minimizing within-cluster sum-of-squares distances for a given number of groups

(K), which we varied between 2-12. To identify the optimal number of

subgroups, we applied two metrics: the mean Silhouette coefficient and the

Davies-Bouldin index. The Silhouette coefficient [184] takes values between -1

and 1, and it is calculated based on the mean intra-cluster distance and the

mean nearest-cluster distance for each sample. Higher positive Silhouette values

correspond to good cluster separation, values near 0 indicate overlapping

clusters, and negative values indicate assignment of samples to the wrong cluster.

The Davies-Bouldin index [185] is calculated based on the average similarity

between each cluster and its most similar one, where an index close to 0

indicates a good partition. Given the optimal number of subgroups, we

constructed CoxPH models to detect survival differences between the subgroups,

again using C-index and log-rank test for evaluation. We fit Kaplan–Meier

curves to visualize the survival probabilities for each subgroup.

B.3.7 Correlation Between Image Features and Pathways

We calculated the Pearson correlation between image features and

Integrated Pathway Levels (IPLs) using the scipy Python module. Pearson

correlation coefficients range between -1 and 1, with 0 implying no correlation.

Each correlation coefficient is accompanied by a p-value, which indicates the

significance of the coefficient in either the positive or negative direction. To

correct for multiple hypothesis testing, we adjusted p-values using the Benjamini

& Hochberg (BH) method [86]. We selected significant correlations between

image features and IPLs as those whose adjusted p-values were ≤ 0.05.

B.3.8 Differential Expression Analysis

To identify differentially expressed (DE) pathways between two HCC

subgroups, we applied the widely-used "Limma" R package [186]. We selected

significantly DE pathways as those whose Benjamini & Hochberg (BH)-adjusted

p-values were ≤ 0.1.
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B.4 Results

In this study, we made use of pre-trained CNN models VGG 16, Inception

V3 and ResNet 50 to extract features from HCC histopathological whole slide

images. We first downsampled the whole slide images, normalized the color, and

generated augmented images. We then aggregated the features extracted from

randomly selected crops using pre-trained CNN models. Using these image

features, we performed survival analysis and subgroup discovery. We also

performed correlation analysis between image features and integrated biological

pathways. The workflow of these analysis steps can be seen in Figure B.1.

B.4.1 Image Feature Extraction and Survival Analysis

Histopathology assessment is mandatory in HCC diagnosis [187], and the

characteristics such as tumor number, size, cell differentiation and grade, and

presence of satellite nodules were reported to be prognostic biomarkers [188].

Given a histopathological image, CNNs enable efficient feature extraction and

representation using convolutional, pooling, and fully connected network layers.

To examine image features relevant to HCC, we first downloaded HCC

histopathological images from the National Cancer Institute Genomic Data

Commons Data Portal. In addition to images, this Portal also provides multiple

molecular datasets and clinical information for the same cohort of samples. We

downloaded a total of 966 .svs image files from 421 cancer tissues and 105

tumor-adjacent normal tissues, of which 964 had sufficient information for the

following analysis. For all image files, we used the equivalent of level 3

magnification (median 5601 x 2249.5 pixels) as described in the Materials &

Methods section. We performed staining color normalization, followed by image

augmentation to improve sample variety. We randomly selected 20 crops of sizes

512 x 512 pixels or 256 x 256 pixels from each augmented image. The 20 512 x

512 crops represent 41.6% of the input image pixels on average, while the 20 256

x 256 crops represent 10.4% on average.

The deep CNN models VGG 16, Inception V3 and ResNet 50 contain
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Fig. B.1: HCC image analysis flow. A-1) For whole slide .svs files, downsampled
images were generated, B-2) color normalization was performed, C-3) 50
augmented images were made for each original image and 20 crops were selected
at random from each augmented image, D-4) three CNN models, VGG 16,
Inception 3 and ResNet 50 were applied to extract features from each crop, E-5)
features from all crops were aggregated and 50 sets of image features were
obtained from each CNN model, F-6) image features were used for classification,
G-7) image features were fit for survival analysis, H-8) image features were used
for subgroup discovery, I-9) correlation between image features and biological
pathways.

millions of parameters, and extensive training of these models has led to

state-of-the-art performance in image recognition and detection [189]. Given the

small sample size in our cohort, we extracted features from each image crop by

applying pre-trained versions of these models. This approach, which is a form of
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transfer learning, allows us to avoid the challenges of CNN model training from

scratch. For the Inception and ResNet models, we chose all nodes in the

second-to-last network layer as features after excluding the final fully-connected

layers. For the VGG model, we chose all nodes from the last four convolutional

layers as features. For each full image, we combined features from the 20 random

crops into a single set of features representing that image.

In total, we obtained 1408, 2408, and 2408 features for each image using

the VGG 16, Inception V3, and ResNet 50 models, respectively. To aggregate

these features across all augmented images, we computed median values for each

feature. We then visualized cancer and normal samples in the context of these

features by using PCA to reduce the feature dimensionality followed by applying

t-SNE to the first 10 principal components. We also performed supervised

classification of the samples using a linear Support Vector Machine applied to

each set of image features. Figure B.2 shows these results using features derived

from 256 x 256 crop sizes, with classification performance displayed as receiver

operating characteristic (ROC) and two-class precision-recall curves. The

average AUC achieved by all three models is between 0.99 and 1, illustrating the

clear separation achieved between tumor and normal samples using the extracted

image features. Similarly, the AUCs achieved for features derived from 512 x 512

crop sizes were very close to 1. To compare this performance with that of an

alternate method, we also applied PCA (randomized SVD) and SVD (full SVD)

on the downsampled images without augmentation. Specifically, we extracted

the first 100 principal components (PCA) or singular vectors (SVD) as features

and performed supervised classification. Figure S1 shows that performance using

PCA- and SVD-derived features is very poor. Finally, we performed classification

on features derived without using image augmentation. Here, performance is

only slightly worse, with AUCs ranging between 0.98 and 0.99 (Figure S2).

We next compared the performance of a simpler network to that of the

three CNNs evaluated in this study. Specifically, we applied a MobileNet v1
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Fig. B.2: Visualization of extracted image features and classification between
cancer and normal samples. A), D) and G) indicate t-SNE visualization, B), E)
and H) indicate ROC curves from linear SVM and C), F) and I) indicate Recall
and Precision curves measured using VGG image features, Inception features
and ResNet features, respectively.
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pre-trained network, which has many fewer tunable parameters (4.2x106) than

VGG 16 (1.4x108), Inception v3 (2.4x107), and ResNet 50 (2.3x107). As with the

other networks, we removed the final layer of MobileNet v1 and used the network

to extract features for each image. We aggregated these features as before,

followed by performing SVM classification. We found that the classification

performance using MobileNet v1 was indistinguishable from those achieved by

the larger networks. This result suggests that the pre-trained networks used in

our study contain many more tunable parameters than are strictly necessary to

yield very good classification performance.

We also explored reduction of model complexity by selecting smaller and

smaller subsets of pre-trained CNN image features for classification. Figure S3

displays performance using randomly-selected image feature subsets of size 10,

25, 50 and 100 in each of the three pre-trained CNNs using 256 x 256 pixel

crops. Our results show that when using smaller and smaller sets of features,

classification AUC reached as low as 0.84, which was substantially worse than

our original results. However, using random sets of 100 features led to

performance that was nearly as good as that achieved using all features. Overall,

our results show that use of CNN-derived image features is extremely effective

for distinguishing HCC tumor from normal samples, which suggests that

pre-trained CNN models capture the most relevant characteristics from HCC

histopathological images.

To aid in interpreting CNN-derived image features of HCC, we visualized

feature mappings of VGG model convolutional layer blocks when applied to 256

x 256 pixel crops of histopathological images (Figure B.3 and Figure S4). We

note that the first convolutional layers tend to resemble the original image, but

subsequent layers seem to intensify partial objects. In order to study whether

the CNN-derived image features are associated with clinical survival, we next

performed univariate CoxPH regression survival analysis on each feature. We

obtained clinical information for each sample from the cBioPortal for Cancer
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Fig. B.3: Example of feature mapping visualization in VGG 16 model in one
cancer sample. A) shows an image patch with 256 x 256 pixels. B-P) indicates
the corresponding feature mapping from convolutional block 1 (B-D) to
convolutional block 5 (N-P)

Genomics, as described in the Materials & Methods section. For the subjects

with multiple histopathological images, we computed median feature values

across the images for the following survival analysis. For each image feature, we

applied CoxPH regression models for both overall survival (OS) and disease-free

survival (DFS) and selected significantly associated features (p-value ≤ 0.05)

based on a Score (log-rank) test. We also validated the predictive ability of the

survival models using Concordance index (C-index). Table B.1 shows the

number of significant features for each model and survival type. 21.4% and 16%

of image features on average were significantly associated with OS and DFS,

respectively. Each model had a slightly different number of significant features,

with more features associated with OS than DFS.
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Table B.1: Significant Image Feature Number from Univariate CoxPH
Regression Models

Model Feature Num-
ber

Crop Size Significant
Features of
OS

Significant
Features of
DFS

VGG 1408 256 272 (19.3%) 219 (15.6%)
Inception 2048 256 574 (28.0%) 294 (14.4%)
ResNet 2048 256 522 (25.5%) 385 (18.8%)
VGG 1408 512 300 (21.3%) 201 (14.3%)
Inception 2048 512 356 (17.4%) 290 (14.2%)
ResNet 2048 512 347 (17.0%) 390 (19.0%)

Finally, we performed multivariate CoxPH regression analyses for each

survival type on all image features from each model. We employed elastic net

regularization using equally weighted lasso and ridge regularization during model

training. Optimal hyperparameters were selected using 10-fold cross-validation

and subsequently used for model prediction. Overall, we identified three

multivariate OS models with the following log-rank p-values and C-indices:

1.2E-23 and 0.788 (VGG), 7.6E-18 and 0.789 (Inception), and 1.2E-12 and 0.739

(ResNet) from the 256 x 256 crop sizes. Table B.2 displays the C-indices and

p-values achieved for each pre-trained network, image crop size and survival

type. The Inception-derived model achieved the highest indices of 0.789 at OS

and 0.744 at DFS. Overall, our results show that CNN-derived image features

are significantly associated with clinical survival and can be used to build

accurate survival models.

Table B.2: Multivariate CoxPH Regression Model in Three Models

Model Crop Survival C-index P value
VGG 256 OS 0.788 ± 0.022 1.2E-23

Inception 256 OS 0.789 ± 0.021 7.6E-18
ResNet 256 OS 0.739 ± 0.025 1.2E-12
VGG 256 DFS 0.655 ± 0.019 1.5E-08

Inception 256 DFS 0.744 ± 0.018 3.2E-13
ResNet 256 DFS 0.7 ± 0.019 4.1E-11
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B.4.2 Subgroup Discovery from Image Features

To investigate whether our CNN-derived image features relate to HCC

prognosis, we next used these features to discover subgroups within tumor

samples. We considered all image features which were significantly associated

with both OS and DFS. Using these features, we clustered the tumor samples

using K-means (K = 2-12) and used both Silhouette coefficients and

Davies-Bouldin values to choose the optimal number of subgroups. As shown in

Figure B.4, two subgroups were determined to be optimal for all three models.

We visualized these subgroups using t-SNE to reduce dimensionality.

We then examined survival differences between the subgroups. For each

model and survival type, we generated Kaplan-Meier survival curves stratified by

subgroup. Our results (Figure B.5) note that the subgroups discovered using the

Inception and ResNet models show a significant difference in both OS and DFS

using a log-rank test. The two subgroups from Inception have the most

significant OS difference, with p-value 7.39E-07 and C-index 0.628, followed by

the two subgroups from ResNet with p-value 0.001 and C-index 0.582. We also

observed significant differences in DFS between subgroups in both models, with

p-values and C-indices of 0.012 and 0.558 (Inception) and 0.014 and 0.56

(ResNet), respectively. For the VGG model, we only detected a significant

difference for DFS (p-value 0.007 and C-index 0.536). In all models, we note that

the second subgroup (“group 2”) has consistently better OS and DFS survival

than the first subgroup (“group 1”). Table B.3 shows the subgroup overlap

between the three models. Overall, 176 samples from the Inception group 1 were

also labeled group 1 in VGG and ResNet models. In contrast, 109 samples from

the Inception group 2 were identified as group 2 in ResNet but group 1 in VGG.

Taken together, the significant survival differences detected between sample

subgroups demonstrate the feasibility of discovering clinically-relevant HCC

subgroups using CNN-derived image features.
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Fig. B.4: Subgroup discovery from image features using 256 x 256 pixel crop size.
A), C) and E) display two different metrics for selecting the optimal number of
clusters, and B), D) and F) indicate the t-SNE visualization of best clusters
using VGG image features, Inception image features and ResNet image features,
respectively.

B.4.3 Correlation Between Image Features and Biological Pathways

Previous studies examined the molecular mechanisms underlying HCC

[163] [164] [165] [166]. To relate our CNN-derived image features to such
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Fig. B.5: Survival analysis from discovered subgroups. A), C) and E) correspond
to the CoxPH model applied to OS, B), D) and F) correspond to DFS. The two
groups are indicated in red and green, using VGG image features, Inception
image features and ResNet image features, respectively.

mechanisms, we identified correlations between features and a collection of

molecular pathways. Specifically, we first obtained integrated pathway levels

(IPLs) using the Firehose Genome Browser, which provides analysis-ready files

inferred from both gene expression and DNA copy number variation using the

PARADIGM algorithm [174]. IPLs indicate the predicted activities of biological

concepts using both copy number and gene expression data (described in

Materials & Methods). The IPL matrix contains a total of 7202 entities derived
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Table B.3: Overlaps of Subgroup (1/2) Frequency Counts Between Three
Pre-trained CNNs

Inception VGG 16 ResNet Sample Count
1 1 1 176
1 1 2 18
1 2 1 20
1 2 2 4
2 1 1 48
2 1 2 109
2 2 1 16
2 2 2 30

from 3656 concepts in 135 merged pathways. Each entity is annotated with the

concept (gene) and pathway index as shown by the example 19_EPHB3. Here, the

EPHB3 gene participates in EPHB forward signaling whose pathway index is 19.

We first computed Pearson correlation coefficients between these IPLs and each

feature significantly associated with both OS and DFS. We then selected

significantly correlated IPL-feature pairs based on Benjamini & Hochberg (BH)

[86] -adjusted p-values ≤ 0.05. With 256 x 256 crop sizes, 90 (out of 97), 199 (out

of 203) and 192 (out of 203) survival-associated image features from the VGG,

Inception and ResNet models, respectively, were significantly correlated with

IPLs. On average, 90.2% of the image features showed a significant correlation,

with Pearson correlation coefficients ranging between -0.536 and 0.385.

Finally, we performed differential expression analysis to identify IPL

differences between each pair of sample subgroups. For each model, we selected

pathways with BH-adjusted p-values 0.05. Surprisingly, we found no significant

pathways at this threshold for all three models and both crop sizes. After

relaxing the p-value threshold to 0.1, we detected five significant entities from

two pathways: 19: EPHB forward signaling (EPHB3, ROCK1, Ephrin

B1/EPHB3) and 66: Glucocorticoid receptor regulatory network (IL8, ICAM1).

The two entities at pathway 66 were calculated between two subgroups from

Inception model with 256 x 256 crops while the three entities at pathway 19 were

from VGG model with 512 x 512 crops. Figure B.6 shows a network
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visualization of these pathways with significantly-correlated image features. The

nodes represent image features and pathways, while the thickness of the edges

denote the observed Pearson correlation coefficients. The numbers on the image

feature nodes were assigned according to the order from the initial feature

extraction. We note that some image features showed correlation with more than

one entity from the same pathway, while others seemed to be related to only one

entity. Overall, 31 out of 49 image features with significant correlations were

found using the Inception model, of which three features (324, 1859, and 1292)

were correlated with pathway 19: EPHB forward signaling. The VGG model

identified a total of four significantly-associated features (two each of 870 and

871) from 256 x 256 and 512 x 512 crops. Feature 870 showed correlation with

only 19: EPHB forward signaling, while feature 871 was correlated with both 19:

EPHB forward signaling and 66: Glucocorticoid receptor regulatory network.

The observation that consecutive features from the VGG model were correlated

with similar pathways suggests that these features represent related attributes of

the original images. In addition, it is noteworthy that the model with the largest

proportion of significantly-associated features (Inception) also showed the most

significant survival analysis results.

B.5 Discussion

In this study, we applied the pre-trained CNN models VGG 16, Inception

V3, and ResNet 50 to extract features from HCC histopathological whole slide

images. Using these image features, we observed clear separation between cancer

and normal samples both visually (t-SNE) and through supervised classification.

By performing univariate CoxPH regression, we identified averages of 21.4% and

16.0% of image features significantly associated with overall (OS) and

disease-free survival (DFS), respectively. Many of these image features were also

significantly associated with OS in a multivariate CoxPH regression model. We

utilized the CNN-derived image features to discover HCC subgroups, with the
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Fig. B.6: Correlation network between image features and example pathways.
Colors of nodes indicate CNN models VGG, Inception and ResNet, as well as
pathways. The labeled names of image features consist of the model name, crop
size and feature order number. The thickness of each edge corresponds to the
magnitude of correlation coefficients ranging between -0.536 and 0.385 that were
statistically significant with the range.

optimal two subgroups showing a significant difference in both OS and DFS in

the Inception model.

Notably, we found that 90.2% of the image features significantly

associated with both OS and DFS were also significantly correlated with

measures of integrated pathway levels (IPLs). The five most significant IPL

entities were found in two pathways–EPHB forward signaling and Glucocorticoid

receptor (GR) regulatory network–implying a potential role for these pathways

in the prognosis of HCC. Previous studies of EPHB forward signaling have

shown that it induces cell repulsion and controls actin cell adhesion and

migration [190]. It has also been reported that EPHB receptors and ephrin

ligands are involved in carcinogenesis and cancer progression [191]. Finally, the

EPHB3 receptor also inhibits the Wnt signaling pathway [192], which was

reported to be useful for HCC stratification [166]. In addition, previous studies

have reported that the glucocorticoid receptor binds promoters, interacts with

other transcription factors [193], and causes hepatocellular carcinoma [194] in

137



mice when receptor signaling is impaired. GR regulatory network member

Interleukin-8 (IL8), a proinflammatory CXC chemokine, was reported to promote

malignant cancer progression [195], while member Intercellular cell adhesion

molecule-1 (ICAM-1) has functions in immune and inflammatory responses and

was reported to play a role in liver metastasis [196]. We note that a previous

study performed integration of genomic data and cellular morphological features

of histopathological images for clear cell renal cell carcinoma, finding that an

integrated risk index from genomics and histopathological images correlated well

with survival [172]. In addition, a second study [173] developed a CNN model

using both histopathological and genomic data from brain tumors, which

surpassed the current state of the art in predicting overall survival.

Stratification of patients is an important step to better understand

disease mechanisms and ultimately enable personalized medicine. Previous

studies of HCC have suggested molecular-level subgroups [197] [198] [169]. In the

recent study, the authors applied deep learning to integrate three omic datasets

from 360 HCC patients (the same cohort used in our study), discovering two

subgroups with survival differences. In our work, we identified subgroups using

all three CNN models, with the subgroups from both Inception (C-index =

0.628; P value = 7.39E-07) and ResNet (C-index = 0.582; P value = 0.001)

models showing significant differences in OS. We note that this significance of

the Inception model is lower than that achieved using subgroups identified using

multiple omic data integration (C-index = 0.68 and P value = 7.13E-6) [169],

although the C-index is also slightly lower. We also detected significant survival

differences in DFS using all three models, which to our knowledge has not been

previously investigated. Interestingly, the subgroups from Inception model were

most significantly different in OS.

In the analysis of histopathological images, the large image size and

different levels of resolution from whole slide images (WSIs) pose challenges to

accurate and efficient feature selection [148]. To avoid information loss, WSIs are
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often divided into small patches (e.g., 256 x 256 pixels) and each patch is

analyzed individually as a Region of interest (ROI). These ROIs are first labeled

using active learning [199] or by professionally trained pathologists [200].

Subsequently, averaged regions of patches representing WSIs are studied for

specific tasks [148]. In our work, we randomly selected 20 patches of 256 x 256

and 512 x 512 pixels from each WSI and extracted features from the last layers

of CNN models to represent each image for visualization and classification. To

robustly deal with color variation and image artifact issues, we conducted color

normalization and augmentation before applying CNN models. Color

normalization adjusts pixel-level image values [201], and color augmentation

generates more data by altering hue and contrast in the raw images [202]. We

achieved very good classification performance, with AUCs between 0.99 and 1 for

distinguishing between normal and tumor samples. To illustrate the power of a

transfer learning approach using pre-trained CNNs, we also applied a simple (not

pre-trained) CNN model (Figure S5) for classifying tumor and normal samples.

This approach achieved a best validation accuracy of 87.8% (Figure S6), which

was substantially worse than the transfer learning performance.

Comparing our performance to previous work, we note that in one study

of histopathological images [203], classification performance reached 81.14%

accuracy using the extracted features from a pre-trained VGG 19 (similar to

VGG 16) network. In a similar study of histopathological images of breast

cancer [204], classification performance on 400 H&E-stained images of 2048 1536

pixels each reached an AUC of 0.963 for distinguishing between non-carcinomas

vs carcinomas samples. We note that our study uses higher resolution

histopathological images (median 5601 x 2249.5 pixels), which may explain the

better performance.

Recent related work in histopathological image analysis include a

deep-learning-based reverse image search tool for images called SMILY (Similar

Medical Images Like Yours) [158]. By building an embedding database using a
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specialized CNN architecture called a deep ranking network, SMILY enables

search for similar histopathological images based on a query image. SMILY’s

deep ranking network utilizes an embedding-computing module that compresses

input image patches into a fixed-length vector. This module contains layers of

convolutional, pooling, and concatenation operations. SMILY retrieves image

search results with similar histological features, organ sites, and cancer grades,

based on both large-scale quantitative analysis of annotated tissue regions and

prospective studies with pathologists blinded to the source of the search results.

SMILY’s creators comprehensively assessed its ability to retrieve search results in

two ways: using pathologist-provided annotations, and via prospective studies

where pathologists evaluated the quality of SMILY search results.

Additional related work has made use of deep learning generative models

to help delineate fundamental characteristics of histopathological images.

Generative Adversarial Networks (GANs) have enjoyed wide success in image

generation. GANs involve training a generator to fool a discriminator, while a

discriminator is trained to distinguish the generated samples from real samples.

This approach eventually produces high-quality images [205]. The creators of

Pathology GAN recently demonstrated its abilities to create artificial histological

images and learn biological representations of cancer tissues [206]. A second type

of generative model known as a variational autoencoder (VAE) learns the

distribution of latent variables and reconstructs images. VAEs have been

successfully applied in image generation [90], and a specialized version known as

a conditional VAE can be suitable for pathology detection in medical images

[207].

We note that our study has several limitations, including limited

interpretability of the most discriminative HCC image features and a lack of

external validation datasets. We also did not address multiclass grading on the

HCC samples, instead focusing on a binary classification. Despite using

pre-trained CNN models for feature selection, our results may still be limited by
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the somewhat small and unbalanced sample sizes of our dataset. Additional

studies on other independent data sets should be evaluated to further explore the

correlation between deep learning-based extracted images, clinical survival and

biological pathways. Future work will involve experimenting with other CNN

models, as well as improving the biological interpretation of features from

pre-trained models.

B.6 Conclusions

The image features extracted from HCC histopathological images using

pre-trained CNN models VGG 16, Inception V3 and ResNet 50 can accurately

distinguish normal and cancer samples. Furthermore, these image features are

significantly correlated with clinical survival and biological pathways.
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Appendix C

Abbreviations of Clinical Features

ABM1: 1. Body Weight

ABM2: 2. BMI

ABM3A: 3. Standing Height

ABM3B: 3. Standing Height

ABM4: 4. Waist Circumference

ABM5: 5. Waist Circumference

ABM6: 6. Hip Circumference

ABM7: 7. Hip Circumference

ABM8: 8. Waist to Hip Ratio

ABM9-Syst: 9. Systolic Blood Pressure

ABM9-Dias: 9. Diastolic Blood Pressure

ABM10: 10. Pulse

DemoRel: Relationship Status

DemoRel-Married: Relationship Status

DemoRel-Living: Relationship Status

DemoRel-SteadyRel: Relationship Status

DemoRel-Divorced: Relationship Status

DemoRel-Widow: Relationship Status

DemoRel-Single: Relationship Status

DemoChi: Children Status

baso: Basophils

eosino: Eosinophils

hct: hematocrit

lymph: Lymphocytes

monos: Monocytes

neut: Neutrophils

rdw: Red cell distribution width
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utox: ny urine tox

mcv: mean corpuscular volume

mpv: Mean platelet volume

ALB: albumin

hgb: hemoglobin

mchc: mean corpuscular hemoglobin concentration

ProTot: total serum protein

baso .: Basophils .

eosino.: Eosinophils .

lymph.: Lymphocytes .

monos.: Monocytes .

Neut.: Neutrophils .

plt: Platelet count

wbc: white blood cells

efgraa: Estimated Glomerular Filtration Rate African American

efgrnaa: Estimated Glomerular Filtration Rate Non-African American

rbc: red blood cells

Cl: chloride

CO2: bicarbonate

K: potassium

Na: sodium

BILITOT: bilirubin

bun: blood urea nitrotgen

Ca: calcium

cholest: total cholesterol

creatinine: creatinine

glucose: fasting glucose

hbA1c: glycosylated hemoglobin

hdl: HDL cholesterol
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ldl: LDL cholesterol

triglyc: triglycerides

hscrp: C reactive protein

dotclinlabs: date of clinical labs

mch: mean corpuscular hemoglobin

alkphos: Alkaline phosphatase

alt: Alanine Aminotransferase

ast: Aspartate transaminase

ggt: Gamma-glutamyltransferase

bmkrid: subject ID

acth1: ACTH DST 1

acth2: ACTH DST 2

acthdif: acth1-acth2

acthsup: (acth1-acth2)/acth1

athf: 5a-tetrahydrocortisol

athftobthf: aTHF/bTHF

athftof: 5-reductase (aTHF/F)

bthf: 5b-tetrahydrocortisol

bthftof: 5-reductase (bTHF/F)

cor1: plasma cortisol DST 1

cor2: plasma cortisol DST 2

cordif: cor1-cor2

corsup: (cor1-cor2)/cor1

dex: Dexamethasone

dhea: DHEA

dheas: DHEA-S

dheatodheas: dhea/dheas

dotdsta: date of blood collection DST 1

dotdstb: Date of blood collection DST 2
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doturn: urine collection date

e: cortisone

estrogen: estrogen

f: free cortisol

ic50: Lysosyme IC50

npy: Neuropeptide Y

the: tetrahydrocortisone

thetoe: the/e

totgluc: f+e+athf+bthf+the

urncatot: ne,da,epi total

urncor: Urine Cortisol

urncr: Urine Creatinine

urnda: Urine Dopamine

urnepi: Urine Epinephrine

urnne: Urine Norepinephrine

urnnetocor: urnne/urncor

urnvol: urine volume

psqi1a: 1. During the past month,when have you usually gone to bed at

night?

psqi1b: 1. During the past month,when have you usually gone to bed at

night?

psqi1c: 1. During the past month,when have you usually gone to bed at

night?

psqi2: "2. During the past month, how long (in minutes) has it usually

taken you to fall asleep each night?

" psqi3a: 3. During the past month, when have you usually gotten up in

the morning?

psqi3b: 3. During the past month, when have you usually gotten up in

the morning?
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psqi3c: 3. During the past month, when have you usually gotten up in

the morning?

psqi4a: 4. During the past month, how many hours of actual sleep did

you get at night? (This may be different from the number of hours you spent in

bed.)

psqi4b: 4. During the past month, how many hours of actual sleep did

you get at night? (This may be different from the number of hours you spent in

bed.)

psqi5a: "5. During the past month, how often have you had trouble

sleeping because you . . .A. Cannot get to sleep within 30 minutes

" psqi5b: B. Wake up in the middle of the night or early morning

psqi5c: C. Have to get up to use the bathroom

psqi5d: D. Cannot breathe comfortably

psqi5e: E. Cough or snore loudly

psqi5f: F. Feel too cold

psqi5g: G. Feel too hot

psqi5h: H. Had bad dreams

psqi5i: I. Have pain

psqi5j: J. How often during the past month have you had trouble

sleeping because of one or more problems NOT listed above?

psqi6: 6. During the past month, how would you rate your sleep quality

overall?

psqi7: 7. During the past month, how often have you taken medicine

(prescribed or "over counter") to help you sleep?

psqi8: 8. During the past month, how often have you had trouble staying

awake while driving, eating meals, or engaging in social activities?

psqi9: 9. During the past week, how much of a problem has it been for

you to keep up enough enthusiasm to get things done?

psqi10: 10. Do you have a bed partner or roommate?
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:

WVocRS: Vocabulary:Raw score

WVocAS: Vocabulary:age scaked score

WVocPR: Vocabulary:percentile range

WEstimateIntelligence: Standard Score (Estimate of Intelligence)

WMemDigRS: Digit Span:Raw Score

WMemDigAgeSS: Digit Span:Age scaled score

WMemDigPR: Digit Span:Percentile Range

WMemLetterRS: Letter number:Raw Score

WMemLetterAgeSS: Letter number:Age Scaled Score

WMemLetterPR: Letter number:percentile Range

WProcSpeedCodRS: Coding:Raw Score

WProcSpeedCodAgeSS: Coding:Age Scaled Score

WProcSpeedCodPR: Coding: Percentile Range

WDigSpanForwardRS: Digit Span Forward: Raw Score

WDigSpanBackRS: Digit Span Backwards: Raw Score

WLongestForwRS: Longest Digit Span Forward: Raw Score

WLongestBackRS: Longest Digit Span Backwards:Raw Score

WForwardPercent: Longest Digit Span Forward:cumulative percentage

WBackPercent: Longest Digit Span Backwards:Cumulative percentage

WAuditMemSum: Auditory Memory Sum of Scaled Scores

WAuditMemIndex: Auditory Memory Index Score

WAuditMemPR: Auditory Memory PR

WAuditMemConf1: Auditory Memory Index 95% Confidence Interval

WAuditMemConf2: Auditory Memory Index 95% Confidence Interval

WAuditMemoryDesc: Auditory Memory Qualitative Description

WVisWorkMemSum: Visual Working Memory Sum of Scaled Scores

WVisWorkIndex: Visual Working Memory Index

WVisWorkMemPR: Visual Working Memory PR
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WVisWorkMemConf1: Visual Working Memory Index 95%

Confidence Interval

WVisWorkMemConf2: Visual Working Memory Index 95%

Confidence Interval

WVisWorkMemQual: "Visual Working Memory Qualitative

Description

" WVisReprod-1-RS: Visual Reproduction I:raw score

WVisReprod-1-SS: Visual Reproduction I:scaled score

WVisReprod-1-PR: Visual Reproduction I:percentile range

WVisReprod-2-RS: Visual Reproduction II: raw score

WVisReprod-2-SS: Visual Reproduction II:scaled score

WVisReprod-2-PR: Visual Reproduction II:percentile range

WLogicalMem-1-RS: Logical Memory I:Raw Score

WLogicalMem-1-SS: Logical Memory I:Scaled Score

WLogicalMem-1-PR: Logical Memory I:Percentile Range

WLogicalMem-2-RS: Logical Memory 2:Raw Score

WLogicalMem-2-SS: Logical Memory 2:Scaled Score

WLogicalMem-2-PR: Logical Memory 2:Percentile Range

WVerbalPairedAss-1-RS: Verbal Paired Associates I: Raw Score

WVerbalPairedAss-1-SS: Verbal Paired Associates I:scaled score

WVerbalPairedAss-1-PR: Verbal Paired Associates I:percentile range

WVerbalPairedAss-2-RS: Verbal Paired Associates 2: Raw Score

WVerbalPairedAss-2-SS: Verbal Paired Associates 2:scaled score

WVerbalPairedAss-2-PR: Verbal Paired Associates 2:percentile range

WSpatialAdd-RS: Spatial Addition:Raw Score

WSpatialAdd-SS: Spatial Addition:Scaled score

WSpatialAdd-PR: Spatial Addition:Perecntile Range

WSymbolSpan-RS: Symbol Span:Raw Score

WSymbolSpan-SS: Symbol Span:Scaled Score
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WSymbolSpan-PR: Symbol Span:Percentile Range

WLongDSSRS: Longest Digit Span Sequence:Raw Score

WLongDSSPercent: Longest Digit Span Sequence:percentile

Age-A: A. Did you ever suffer a serious personal injury or illness?

(occured once)

Age-B: B. Were you involved in a serious accident? (occured twice)

Age-C: C. Did your parents or primary caretaker have a problem with

alcohol? (ongoing)

Army: Military Service

Navy: Military Service

AirForce: Military Service

Marine: Military Service

NatGuard: Military Service

Reserve: Military Service

DemoMilServiceTours: Number of Military Tours

DemoMilService-Iraq: Military Service

DemoMilServiceIraqFrom-1: Military Service

DemoMilServiceIraqTo-1: Military Service

DemoMilServiceIraqMOS-1: Military Service

DemoMilServiceIraqFrom-2: Military Service

DemoMilServiceIraqTo-2: Military Service

DemoMilServiceIraqMOS-2: Military Service

DemoMilServiceIraqFrom-3: Military Service

DemoMilServiceIraqTo-3: Military Service

DemoMilServiceIraqMOS-3: Military Service

DemoMilService-Afgh: Military Service

DemoMilServiceAfghFrom-1: Military Service

DemoMilServiceAfghTo-1: Military Service

DemoMilServiceAfghMOS-1: Military Service
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DemoMilServiceAfghFrom-2: Military Service

DemoMilServiceAfghTo-2: Military Service

DemoMilServiceAfghMOS-2: Military Service

DemoMilServiceAfghFrom-3: Military Service

DemoMilServiceAfghTo-3: Military Service

DemoMilServiceAfghMOS-3: Military Service

DemoMilService-Other: Military Service

DemoLocationOtherSpecify: Military Service

DemoMilServiceOtherFrom-1: Military Service

DemoMilServiceOtherTo-1: Military Service

DemoMilServiceOtherMOS-1: Military Service

DemoMilServiceOtherFrom-2: Military Service

DemoMilServiceOtherTo-2: Military Service

DemoMilServiceOtherMOS-2: Military Service

DemoMilServiceOtherFrom-3: Military Service

DemoMilServiceOtherTo-3: Military Service

DemoMilServiceOtherMOS-3: Military Service

PCS-1-Dizzy: Feeling dizzy:

PCS-2-Balance: Loss of balance:

PCS-3-Coordination: Poor coordination, clumsy:

PCS-4-Vision: Vision problems, blurring, trouble seeing:

PCS-5-Light: Sensitivity to light:

PCS-6-Taste: Change in taste and/or smell:

PCS-Score1-Dizzy: Score for "Feeling dizzy"

PCS-Score2-Balance: Score for "Loss of balance"

PCS-Score3-Coordination: Score for "Poor coordination, clumsy"

PCS-Score4-Vision: Score for "Vision problems, blurring, trouble

seeing"

PCS-Score5-Light: Score for "Sensitivity to light"
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PCS-Score6-Taste: Score for "Change in taste and/or smell"

PCS-ScoreTotal: Total Score

151


	MACHINE LEARNING APPROACHES FOR BIOMARKER IDENTIFICATION AND SUBGROUP DISCOVERY FOR POST-TRAUMATIC STRESS DISORDER
	Recommended Citation

	tmp.1665434523.pdf.wvxu6

