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ABSTRACT

Herrman, Rebekah Ph.D. The University of Memphis, May 2020. Walks and Games

on Graphs. Major Professor: Béla Bollobás, Ph.D.

Chapter 1 is joint work with Dr. Travis Humble and appears in the journal Physical

Review A. In this work, we consider continuous-time quantum walks on dynamic

graphs. Continuous-time quantum walks have been well studied on graphs that do

not change as a function of time. We offer a mathematical formulation for how to

express continuous-time quantum walks on graphs that can change in time, find a

universal set of walks that can perform any operation, and use them to simulate

basic quantum circuits. This work was supported in part by the Department of

Energy Student Undergraduate Laboratory Internship and the National Science

Foundation Mathematical Sciences Graduate Internship programs.

The (t, r) broadcast domination number of a graph G, γt,r(G), is a generalization of

the domination number of a graph. In Chapter 2, we consider the (t, r) broadcast

domination number on graphs, specifically powers of cycles, powers of paths, and

infinite grids. This work is joint with Peter van Hintum and has been submitted to

the journal Discrete Applied Mathematics.

Bridge-burning cops and robbers is a variant of the cops and robbers game on

graphs in which the robber removes an edge from the graph once it is traversed. In

Chapter 3, we study the maximum time it takes the cops to capture the robber in

this variant. This is joint with Peter van Hintum and Dr. Stephen Smith.

In Chapter 4, we study a variant of the chip-firing game called the diffusion game.

In the diffusion game, we begin with some integer labelling of the vertices of a

graph, interpreted as a number of chips on each vertex, and for each subsequent

step every vertex simultaneously fires a chip to each neighbour with fewer chips. In

general, this could result in negative vertex labels. Long and Narayanan asked
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whether there exists an f(n) for each n, such that whenever we have a graph on n

vertices and an initial allocation with at least f(n) chips on each vertex, then the

number of chips on each vertex will remain non-negative. We answer their question

in the affirmative, showing further that f(n) = n− 2 is the best possible bound. We

also consider the existence of a similar bound g(d) for each d, where d is the

maximum degree of the graph. This work is joint with Andrew Carlotti and has

been submitted to the journal Discrete Mathematics.

In Chapter 5, we consider the eternal game chromatic number of random graphs.

The eternal graph colouring problem, recently introduced by Klostermeyer and

Mendoza [45], is a version of the graph colouring game, where two players take turns

properly colouring a graph. In this chapter, we show that with high probability

χ∞g (Gn,p) = (p2 + o(1))n for odd n, and also for even n when p = 1
k

for some k ∈ N.

This work is joint with Vojtĕch Dvor̆ák and Peter van Hintum, and has been

submitted to the European Journal of Combinatorics.
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CHAPTER 1

CONTINUOUS-TIME QUANTUM WALKS ON DYNAMIC GRAPHS

1.1 Introduction

Quantum walks offer a unique paradigm for using quantum mechanics to perform

computation [2], where a walk may represent either the discrete or continuous-time

propagation of a quantum state over a graph [41, 60]. In a continuous-time

quantum walk (CTQW), free evolution of an N -dimensional quantum state under a

Hamiltonian is represented by probability amplitudes assigned to each vertex in a

graph on N vertices. The CTQW was originally envisioned as a method for

sampling decision trees [30] and later applied to a variety of search and sampling

problems on d−dimensional lattices, searches on balanced trees, as well as quantum

navigation of networks [1, 17, 33, 53, 49, 46]. Moreover, Childs has shown that

CTQWs on time-independent graphs offer a novel model for universal quantum

computation [16, 18], while Qiang et al. have described how efficient

implementations of CTQWs may be useful for comparing the broader computational

power of quantum computing to conventional computing models [51].

In a typical CTQW, the Hamiltonian is interpreted as the connectivity of the

underlying graph on which the quantum state evolves. The graph connectivity

determines the evolution of the quantum state and specific graphs have been found

to demonstrate well-defined quantum walk behaviors. For example, perfect state

transfer occurs in a quantum walk when the amplitude assigned to a subset of

vertices transfers with unit probability to a distinct vertex set within a well-defined

period of evolution [40]. Kendon and Tamon have surveyed perfect state transfer for

a number of several specific graphs including the singleton graph, K1, the complete

graph on two vertices, K2, the path graph on three vertices, and the cycle on four

vertices, C4 [42]. Perfect state transfer has also been shown to exist for graphs on
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more vertices, including certain graph products, weighted join graphs, and quotient

graphs [22, 4, 5].

The versatility of CTQWs across many known types of graphs motivates our

consideration for how quantum walks may behave on dynamic graphs. We define a

dynamic graph as a well-defined sequence of static graphs in which the CTQW

evolution changes at specific transition times. In the dynamic graphs discussed

below, we use perfect state transfer under the component static graphs to

demonstrate how more complex unitary processes can be realized. We provide

explicit realizations of quantum walks on dynamic graphs for realizing a complete

set of computational gates, and we then illustrate how compositions of multiple

walks correspond to examples of quantum circuits. This formalism establishes a

connection between CTQWs on dynamic graphs and the gates found in the

conventional quantum circuit model. We also provide a connection between this

model of computation and the development of tunable optical waveguides for

performing continuous-time quantum walks.

Our approach to quantum walks on dynamic graphs shares similarities with Childs’

model for universal quantum computation [16, 18]. Both approaches draw on the

use of unweighted and relatively sparse graphs to formalize state transfer as well as

the composition of such graphs to describe more complex operations. However, the

models differ in the types of underlying graphs as Childs relies on strictly static

graphs while we employ dynamic graphs. Another closely related model is the

hybrid quantum walk proposed by Underwood and Feder, which combines concepts

from both continuous and discrete walk models [58]. In that work, a series of

weighted adjacency matrices corresponding to distinct graphs are used to propagate

a quantum state. They refer to this model as a discontinuous quantum walk, where

free evolution is again based on widgets that control propagation dynamics.

Underwood and Feder emphasize the use of a dual-railing encoding to represent
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individual qubits and the interleaving of continuous and discrete quantum walks to

perform computation. By comparison, we design quantum walks on dynamic graphs

to implement a sequence of continuous-time evolutions that perform quantum logic

using perfect state transfer in the native vertex space. Du et al. considered the task

of designing a quantum walk to implement a single-qubit X gate by walking on a

single static, weighted graph [27], whereas our work develops implementations for a

complete gate set using dynamics graphs. Chakraborty et al. have explored spatial

search using CTQW on time-ordered sequences of random graphs, for which they

demonstrated a threshold for the optimal run time using Grover’s algorithm [14],

while our work uses deterministic, time-ordered sequences to carry out discrete logic

gates.

The paper is organized as follows. Following a review of CTQWs on static graphs in

Sec. 1.2, we describe quantum walks on disconnected graphs in Sec. 1.3 and

dynamic graphs in Sec. 1.4. Using this formalism, we design a series of quantum

walks that implement elementary logic gates in Sec. 1.5, and we demonstrate how

the sparsely connected dynamic graphs on may be composed to correspond with

gate-based circuits in Sec. 1.6. We offer a discussion on these results in Sec. 1.7,

where we establish a connection between dynamic quantum walks and current

approaches to designing quantum computing hardware based on optical waveguides

and ion trap technologies.

1.2 Continuous-time Quantum Walks

Consider an undirected graph G = (V,E) with a canonically labeled vertex set

V = {0, 1, . . . , N − 1} of N vertices and an edge set E = {(i, j) : i ∼ j}. We allow

no multi-edges in the graph, i.e., there can be at most one edge incident with any

pair of vertices. However, we do allow for a self loop on a vertex v ∈ V if and only if

there does not exist u ∈ V such that u 6= v and u ∼ v. Additionally, the edges of G
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are undirected. Let BG = {|j〉 : ∀j ∈ V } be a linearly independent basis for the

complex vector space CN with the inner product 〈j|k〉 = δjk. Graphs G and

G′ = (V ′, E ′) have the same basis if V = V ′. The Hamiltonian for the graph G is

denoted as HG and is defined as the adjacency matrix of the graph as given by the

edge set E. The adjacency matrix A of G is a 0-1 valued N ×N matrix such that

for u, v ∈ V (G), if u ∼ v, Au,v = Av,u = 1, and 0 otherwise. We will use the

convention that if a vertex v is not adjacent to any other vertices then Av,v = 1, a

convention also used in studies of classical random walks. The resulting real-valued

adjacency matrix A is symmetric about the main diagonal.

We define the quantum state of a graph G, or graph state for short, as a normalized

vector |ψG〉 ∈ BG such that

|ψG〉 =
∑
j∈V

cj|j〉 (1.2.1)

with cj ∈ C and

〈ψG|ψG〉 =
∑
j∈V
|cj|2 = 1 (1.2.2)

For a continuous-time quantum walk, the graph state transforms with respect to

time τ under the Schrödinger equation

i~
∂|ψG(τ)〉

∂τ
= HG|ψG(τ)〉 (1.2.3)

where ~ is Planck’s constant divided by 2π. When the Hamiltonian is constant over

the interval [t0, t], the formal solution to Eq. (1.2.3) is given by the propagation

operator

UG(t, t0) = e−iHG(t−t0)/~ (1.2.4)

such that

|ψG(t)〉 = UG(t, t0)|ψG(t0)〉 (1.2.5)

where the boundary condition |ψG(t0)〉 is the state at time t0. The propagation
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|0〉 |1〉
K2

Figure 1.1: The K2 graph supports perfect state transfer between the two vertices
labeled by the single-qubit computational basis states |0〉 and |1〉.

operator UG is unitary since HG is Hermitian. We say that a graph G admits

perfect state transfer between unique vertices u, v ∈ V (G) at time t if

UG(t, 0)|u〉 = a|v〉 (1.2.6)

where a ∈ C such that |a| = 1.

There are several well-known examples that illustrate perfect state transfer using

CTQW on static graphs. The singleton graph K1 has vertex set V = {0} and an

empty edge set E = ∅. As the lone vertex |0〉 is adjacent to no other vertices during

the CTQW, we represent the unitary dynamics by a self-loop. The K1 Hamiltonian

is then represented in its eigenbasis as

HK1 = λ1|0〉〈0|, (1.2.7)

where λ1 is the real-valued energy eigenvalue, and the normalized state

|ψK1(t0)〉 = c0(t0)|0〉 (1.2.8)

has |c0| = 1 for all time such that

|ψK1(t)〉 = e−iν1t|0〉 (1.2.9)

where ν1 = λ1/~ is the frequency.

As a second example, the complete graph on two vertices K2 shown in Fig. 1.1 has
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vertex set V = {0, 1} and edge set E = {(0, 1)}. We specify the Hamiltonian for K2

as 〈0|HK2|0〉 = 〈1|HK2|1〉, which offers a natural representation of a qubit in a

degenerate eigenbasis. Setting this eigenenergy to zero, the Hamiltonian is

represented as

HK2 = λ2 (|0〉〈1|+ |1〉〈0|) (1.2.10)

where the eigenvalue λ2 defines the energy scale and the characteristic frequency

ν2 = λ2/~. The time propagator for K2 may be decomposed by series expansion

as

UK2(t, t0) = cos[ν2(t− t0)]I2 − i sin[ν2(t− t0)]HK2 (1.2.11)

where IN is the N -dimensional identity matrix. The K2-graph state evolves as

|ψK2(t)〉 = (c0 cos[ν2(t− t0)]− ic1 sin[ν2(t− t0)]) |0〉

+ (c1 cos[ν2(t− t0)]− ic0 sin[ν2(t− t0)]) |1〉
(1.2.12)

which is capable of perfect state transfer up to a trivial phase factor for propagation

time t = π
2ν2

[42].

As a final example, the cycle graph C4 shown in Fig. 1.2 has a vertex set

V = {0, 1, 2, 3}, edge set E = {(0, 1), (0, 2), (1, 3), (2, 3)} and Hamiltonian

HC4 = λ4 (|0〉〈1|+ |1〉〈2|+ |2〉〈3|+ |3〉〈0|+ H.C.) (1.2.13)

where H.C. denotes the Hermitian conjugate, λ4 is the energy scale, and ν4 = λ4/~

defines the characteristic frequency. The propagation operator may be decomposed

as

UC4(t, t0) = I4 + 1
2 cos(2ν4(t− t0))H2

C4 −
i
2 sin(2ν4(t− t0))HC4

(1.2.14)
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to yield the state |ψC4(t)〉 with coefficients in the nodal basis as

c0(t) = 1
2 [c0 (1 + cos (2t))− i sin (2t) (c1 + c2) + c3 (−1 + cos (2t))] (1.2.15)

c1(t) = 1
2 [−i sin (2t) (c0 + c3) + c1 (1 + cos (2t)) + c2 (−1 + cos (2t))] (1.2.16)

c2(t) = 1
2 [−i sin (2t) (c0 + c3) + c1 (−1 + cos (2t)) + c2 (1 + cos (2t))] (1.2.17)

and

c3(t) = 1
2 [c0 (−1 + cos (2t))− i sin (2t) (c1 + c2) + c3 (1 + cos (2t))] (1.2.18)

Perfect state transfer in C4 is a special instance of the case of an N -dimensional

hypercube [42], which has been shown by Christandl et al. to be capable of perfect

state transfer for all N at time t = π
2νN [20, 19]. For the remainder of our

presentation, we will simplify the analysis to the case that νN = 1 for N = 1, 2, 4

and we will set ~ = 1 for convenience.

|00〉 |01〉

|10〉 |11〉

C4

Figure 1.2: The C4 graph supports perfect state transfer between vertices labeled by
the two-qubit computational states.

1.3 Quantum walks on Disconnected Graphs

We now consider quantum walks on disjoint graphs G1 and G2 with Gj = (Vj, Ej),

where the disjoint union G = G1 +G2 has vertex set V = V1 ∪ V2 and edge set

E = E1 ∪E2. We require that G1 and G2 are connected graphs, termed components

7



of the graph G, and that V1 ∩ V2 = ∅. The basis for the disjoint union G is

BG = BG1 ⊕BG2 and a composite quantum state for G takes the form

|ψG〉 = |ψG1〉 ⊗ |ψG2〉 (1.3.1)

with ⊕ the direct sum and ⊗ the Kronecker product. The corresponding

Hamiltonian is defined as H(G) = HG1 ⊕HG2 , which yields decoupled equations of

motion

i
∂
∣∣∣ψGj(t)〉
∂t

= HGj

∣∣∣ψGj(t)〉 j = 1, 2 (1.3.2)

and a composite time propagator

UG1+G2(t, t0) = e−iHG1 (t−t0) ⊗ e−iHG2 (t−t0) (1.3.3)

The graph state of G is modeled by two disconnected states |ψG1〉 ∈ BG1 and

|ψG2〉 ∈ BG2 and

|ψG(t)〉 = UG1(t, t0)|ψG1(t0)〉 ⊗ UG2(t, t0)|ψG2(t0)〉 (1.3.4)

As an example, consider the empty graph on N vertices K̄N , which is the

complement of the complete graph KN and expressed as the union

K̄n =
N−1⋃
j=0

K
(j)
1 (1.3.5)

where K(j)
1 is the singleton graph with vertex label j. The composite Hamiltonian is

the direct sum of N singleton Hamiltonians,

HK̄n =
N−1⊕
j=0

H
K

(j)
1
, (1.3.6)
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and the quantum state is defined as the Kronecker product of the individual

states. ∣∣∣ψK̄N〉 =
N−1⊗
j=0

∣∣∣ψK1(j)

〉
(1.3.7)

in the basis formed from the union of these graphs

BK̄N
=

N−1⋃
j=0

B
K

(j)
1

(1.3.8)

The graph state for the j-th singleton graph is now given as

U
K

(j)
1

(t, t0)|j〉 = e−iν
(j)
1 t|j〉, (1.3.9)

with ν
(j)
1 the energy eigenvalue of the j-th vertex. We will assume that the vertices

are indistinguishable and therefore ν(j)
1 = ν1 for all j. Thus, the Hamiltonian of

these N disjoint identical vertices

HK̄N
=

N−1⊕
j=0

λ1|j〉〈j| = λ1IN (1.3.10)

is proportional to the N -dimensional identity operator IN over the basis BK̄N
. This

yields an N -fold Kronecker sum of K1 states with the form of Eq. (1.2.9).

As a second example, consider the disjoint union K2 +K1 with Hamiltonian

HK2+K1 = HK2 ⊕HK1 (1.3.11)

represented as

HK2+K1 =


0 λ2 0

λ2 0 0

0 0 λ1

 (1.3.12)
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The composite state of this disjoint graph propagates as

UK2+K1(t, t0)|ψK2+K1〉 = UK2(t, t0)|ψK2(t0)〉 ⊕ UK1(t, t0)|ψK1(t0)〉 (1.3.13)

and may be recast as

UK2+K1(t, t0)|ψK2+K1〉 = [c1 cos(ν2(t− t0))− ic1 sin(ν2(t− t0))] |0〉

+ [c1 cos(ν2(t− t0))− ic0 sin(ν2(t− t0))] |1〉

+c2e
−iν1t|2〉

(1.3.14)

1.4 Quantum Walks on Dynamic Graphs

We next consider quantum walks on dynamic graphs, in which a dynamic graph

G = {(G`, t`)} is a set of graphs G` = (V`, E`) with associated propagation times

t` < t`+1 for ` ∈ Z. In subsequent discussion, we will consider the case that only the

edge sets change while the vertex sets stay constant, i.e., V` = V , such that the

bases for all G` are the same. However, the case of changing vertex sets is equally

valid as this represents the growth and reduction of the underlying Hilbert space,

for example, through the addition or removal of ancillary vertices.

The Hamiltonian of a dynamic graph G is expressed as the weighted sum

HG =
L−1∑
`=0

HG`Π`(t), (1.4.1)

where transitions between graphs are modulated by the functions Π`(t). We

consider the explicit case that the `-th transition function takes the form of the `-th
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rectangle function:

Π`(t) =


1 t` < t < t`+1

0 otherwise
(1.4.2)

with [t0, tL] the interval over which the entire walk is defined. The dynamics is then

expressed as a sequence of propagations through the series of Schrödinger

equations

i
∂|ψG`(τ)〉

∂τ
= HG`|ψG`(τ)〉, t` < τ < t`+1. (1.4.3)

As the set of discontinuities is countable, the function is still Riemann integrable,

and this system of equations yields the composite propagation operator

UG(tL, t0) =
L−1∏
`=0

e−iHG` (t`+1−t`) (1.4.4)

which is understood to be a product ordered from right to left with increasing

index. The quantum state of the dynamic graph G is then defined under this

operator transform as

|ψG(t)〉 = UG`(tL, t0)|ψG(t0)〉 (1.4.5)

with initial condition |ψG(t0)〉 ∈ BG and 〈ψG(t0)|ψG(t0)〉 = 1.

As a simple example of a quantum walk on a dynamic graph, consider the case of

two disjoint K1 graphs switched to a bipartite K2. The dynamic graph is expressed

as G = {(K1 +K1, t0), (K2, t1)}, where t0 and t1 denote the transition times. Taking

the initial quantum state as a superposition over the nodal basis, Fig. 1.3 plots the

time-dependent probability for each basis state with respect to the propagation

time. Initially under the K1 +K1, the probability remains constant until the

transition time t1, after which the Hamiltonian switches to K2 and creates an edge

between vertices. This leads to the oscillations in probability as expected by

Eq. (1.2.11). Figure 1.4 is an example of two K2 graphs allowed to propagate on
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Figure 1.3: The time-dependent probability densities of two vertices, 0 and 1, as
the state propagates under K1 + K1 for t = π

2 units of time before switching to K2
and propagating for an additional time t = 3π

2 . In this example, the initial state√
1
3 |0〉+

√
2
3 |1〉.

their own and then connected as a C4 and allowed to propagate again.

1.5 Quantum Walks for Elementary Gates

The formalism of quantum walks on dynamic graphs may be used to realize one-

and two-qubit gates within the quantum circuit model by identifying the quantum

walk on a graph of |V | = N = 2n vertices with a corresponding n-qubit circuit. Let

the vertex label v ∈ V map to the computational basis state |v1, v2, . . . , vn〉 with vi

the i-th coefficient in the binary expansion of the n-bit, non-negative integer v. We

demonstrate several explicit examples of how few-qubit quantum gates can be

realized using perfect state transfer limited to K1, K2, and C4 graphs. We limit our

CTQWs to those on K1, K2, and C4 because the periods are all multiples of π and

achieve perfect state transfer at times kπ
2 for k ∈ N. In fact, we use the K(i)

1 graph

exclusively to add a phase factor to the ith qubit. We add the phase factors for sake

12



Figure 1.4: The time-dependent probability density of four vertices, 0, 1, 2, and 3, as
the state propagates under K2 + K2 for time t = π

2 followed by C4 for time t = 3π
2 .

In this example, the initial state is
√

1
3 |00〉+

√
2
3 |10〉.

of completeness in some of the CTQWs, but for implementation purposes, the phase

factor may be omitted if desired by removing the appropriate CTQWs. We show

that in some instances, such as the Z gate, the realization of gate logic within the

quantum walk model requires additional vertices whereas other gates, such as

CNOT and CCNOT, are straightforward to realize.

The realization of elementary gates from the circuit model provides a constructive

approach to demonstrate the completeness of quantum walks on dynamics graphs.

While the quantum walk formalism can naturally represent any unitary of the form

exp(iAt), we have imposed the restriction that the Hermitian matrix A must

represent the connectivity of the dynamic graph and that these graphs should be

limited to a small number of vertices. By demonstrating that a complete basis of

elementary gates can be constructed under these restrictions, we can then invoke

the Solovay-Kitaev theorem to establish universality. The Solovay-Kitaev theorem
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establishes the feasibility of approximating an arbitrary unitary transformation

when only a limited subset of such transformation may be accessed [24]. We

demonstrate an explicit realization for a universal set of gates, including the Pauli,

H, T and CNOT gates described below, from which it follows that sequences of

these gates of length O(logc(1/ε)) may approximate an arbitrary unitary within

precision ε for constant c ≈ 3.97 [24].

1.5.1 Single-qubit Gates

The Pauli gates provide a set of single-qubit operations represented in the

computational basis as

X =

 0 1

1 0

 , Y =

 0 −i

i 0

 , Z =

 1 0

0 −1

 . (1.5.1)

We can implement these gates exactly using perfect state transfer within a dynamic

graph. For example, the X gate may be implemented on two graph vertices using a

quantum walk on K2. For simplicity, we assuming the vertices are labeled 0 and 1

and that the graph state is initially prepared as c0|0〉+ c1|1〉. The walk under K(0,1)
2

for a period of 3π
2 prepares the state i (c1|0〉+ c0|1〉). The resulting global phase

factor of i may be removed by evolving under K(0)
1 +K

(1)
1 for a second period of π

2 ,

and we include these dynamics in our definition of the X gate. The dynamic graph

for the X gate is defined as

GX =
{(
G

(0,1)
K2 ,

3π
2

)
,
(
G

(0)
K1 +G

(1)
K1 ,

π

2

)}
, (1.5.2)

and Fig. 1.5 provides a graphical representation. When the target pair of vertices is

embedded in a larger graph state, it is understood that all other nodes evolve

disjointly from the above dynamic graph.
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|0〉 |1〉

0 ≤ t < 3π/2

|0〉 |1〉

3π/2 ≤ t ≤ 2π

Figure 1.5: A dynamic graph representation of the X gate consists of two graphs and
the associated propagation times. This sequence of CTQW executes the logical bit
flip operation on the graph state.

The Z gate may be implemented using a K1 and C4 defined on five vertices. Notice

that |001〉 must propagate as a singleton for π units of time to flip the sign of the

coefficient, however, |000〉 needs to propagate as a C4 in the same time frame in

order to keep its original sign. We maintain a clear correspondence with the circuit

model by using a graph on eight vertices which represent the full Hilbert space for

three qubits. Three of these vertices will propagate as singletons for the entirety of

the walk. For example, given the initial state c0|0〉+ c1|1〉 for a graph of |V | = 8

vertices, the dynamic graph representing the Z gate is defined as

GZ = {(G(0,2,4,6)
C4 +G

(1)
K1 +G

(3)
K1 +G

(5)
K1 +G

(7)
K1 , π)} (1.5.3)

A graphical representation of the walk for the Z gate is shown in Fig. 1.6. Note

these dynamic flips the signs of |011〉, |101〉, and |111〉 in addition to |001〉
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|000〉 |001〉

|010〉 |011〉

|100〉 |101〉

|110〉 |111〉

0 ≤ t < π

Figure 1.6: A graphical representation of the Z gate using CTQW on GZ .

A Y gate may be derived from the commutation relations for the Pauli operators

and implemented by performing the X and Z gates in series. An additional phase

shift of i is required and this may be recovered by evolving all vertices under

disjoint singletons for t = 3π/2. Of course, reversing the order in which the X and

Z gates are performed would change the necessary phase shift, −iY . Alternatively,

the Y transformation may be implemented by propagating vertices |000〉 and |001〉

under K2 for π/2 units of time, then allowing vertex |001〉 to propagate as a

singleton for π units while simultaneously allowing |000〉 to propagate as a C4 to

three new vertices. The dynamic graph for the latter Y operation is given as

GY = {
(
G

(0,1)
K2 +G

(2)
K1 +G

(3)
K1 +G

(4)
K1 ,

π

2

)
, {
(
G

(1)
K1 +G

(0,2,3,4)
C4 , π

)
}, (1.5.4)

Completing the Pauli group, we note that the identity gate may be implemented

using a number of different dynamic graphs. This includes assigning every vertex to

propagate under the singleton graph for t = 2π, connecting pairs of vertices as K2

graphs for t = 2π, or connecting four vertices as a C4 and propagating for t = π.
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|000〉 |001〉

|010〉 |011〉

|100〉 |101〉

0 ≤ t < π
2

|000〉 |001〉

|010〉 |011〉

|100〉 |101〉

π
2 ≤ t < 3π

2

Figure 1.7: A graphical representation of the Y gate using CTQW on GY .

The best choice for implementation is likely to be determined by other scheduling

concerns.

The single-qubit Hadamard gate is defined in the computational basis as

H = 1√
2

 1 1

1 −1

 (1.5.5)

and may be implemented using a series of C4 and K2 graphs. The Hadamard gate

may be performed with only five vertices, but we again use eight vertices to

establish a clear correspondence with three qubits in the circuit model. Consider the

initial state c0|0〉+ c1|1〉 embedded in a Hilbert space represented by |V | = 8 nodes.

Figure 1.8 illustrates the dynamic graph for the H gate, defined as

GH ={(G(0,2,4,6)
C4 +G

(1)
K1 +G

(3)
K1 +G

(5)
K1 +G

(7)
K1 , 3π/2),

(G(0,7)
K2 +G

(1,6)
K2 +G

(2,5)
K2 +G

(3,4)
K2 , π/4),

(G(0,2,4,6)
C4 +G

(1)
K1 +G

(3)
K1 +G

(5)
K1 +G

(7)
K1 , 3π/2),

(G(0,1)
K2 +G

(2,3)
K2 +G

(4,5)
K2 +G

(6,7)
K2 , π/2),

(G(0)
K1 +G

(1)
K1 +G

(2)
K1 +G

(3)
K1 +G

(4)
K1 +G

(5)
K1 +G

(6)
K1 +G

(7)
K1 , 3π/2)}

(1.5.6)
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|000〉
|010〉
|100〉
|110〉

|001〉
|011〉
|101〉
|111〉

|000〉
|010〉
|100〉
|110〉

|001〉
|011〉
|101〉
|111〉

|000〉
|010〉
|100〉
|110〉

|001〉
|011〉
|101〉
|111〉

|000〉
|010〉
|100〉
|110〉

|001〉
|011〉
|101〉
|111〉

|000〉
|010〉
|100〉
|110〉

|001〉
|011〉
|101〉
|111〉

0 ≤ t ≤ 3π/2 3π/2 ≤ t ≤ 7π/4

7π/4 ≤ t ≤ 13π/4 13π/4 ≤ t ≤ 15π/4 15π/4 ≤ t ≤ 21π/4

Figure 1.8: A graphical representation of the H gate using CTQW on GH .

We show in the Appendix that the CTQW defined by Eq. (1.5.6) implements the

logical transformation for the Hadamard gate.

The T gate is defined as

T =

 1 0

0 e
iπ
4

 (1.5.7)

and may be implemented using K1, K2, and C4 graphs, along with the star graph

on five vertices. A star graph is a connected graph G on n vertices such that exactly

one vertex has degree n− 1 and all other vertices have degree one. Figure 1.9

illustrates the dynamic graph used for the T gate, which is written as

GT ={(G(0,2)
K2 +G

(1)
K1 +G

(3)
K1 +G

(4)
K1 +G

(5)
K1 +G

(6)
K1 +G

(7)
K1 ,

π

4 ),

(G(0,3,4,5)
C4 +G

(1)
K1 +G

(2)
K1 +G

(6)
K1 +G

(7)
K1 ,

π

2 ),

(G(2,4)
K2 +G

(3,5)
K2 +G

(0)
K1 +G

(0)
K1 +G

(1)
K1 +G

(6)
K1 +G

(7)
K1 ,

π

4 ),

(G(2,5,6,7)
C4 +G

(0)
K1 +G

(1)
K1 +G

(3)
K1 +G

(4)
K1 ,

π

2 ),

(G(0,2,3,4,5)
S5 +G

(1)
K1 +G

(6)
K1 +G

(7)
K1 ,

7π
4 ),

(G(0)
K1 +G

(1)
K1 +G

(2)
K1 +G

(3)
K1 +G

(4)
K1 +G

(5)
K1 +G

(6)
K1 +G

(7)
K1 ,

π

4 )}.

(1.5.8)

18



|000〉
|010〉
|100〉
|110〉

|001〉
|011〉
|101〉
|111〉

|000〉
|010〉
|100〉
|110〉

|001〉
|011〉
|101〉
|111〉

|000〉
|010〉
|100〉
|110〉

|001〉
|011〉
|101〉
|111〉

|000〉
|010〉
|100〉
|110〉

|001〉
|011〉
|101〉
|111〉

|000〉
|010〉
|100〉
|110〉

|001〉
|011〉
|101〉
|111〉

|000〉
|010〉
|100〉
|110〉

|001〉
|011〉
|101〉
|111〉

0 ≤ t ≤ π
4

π
4 ≤ t ≤ 3π

4
3π
4 ≤ t ≤ π

π ≤ t ≤ 3π
2

3π
2 ≤ t ≤ 13π

4
13π
4 ≤ t ≤ 15π

4

Figure 1.9: A graphical representation of the T gate using GT .

We show in the Appendix that the CTQW defined by Eq. (1.5.8) implements the

logical transformation for the T gate.

1.5.2 Multi-qubit gates

Quantum walks on dynamics graphs may also be used to construct multi-qubits

gates. For example, the two-qubit CNOT gate,

CNOT =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


(1.5.9)

can be realized using a quantum walk on 4 vertices that span the space of the

control and target qubits. Let vertices 0 and 1 propagate as singletons for time 2π

while allowing vertices 2 and 3 to propagate under K2 as shown in Fig. 1.10.

GCNOT = {(G(0)
K1 +G

(1)
K1 +G

(2)
K1 +G

(3)
K1 ,

3π
2 ), (G(0)

K1 +G
(1)
K1 +G

(2,3)
K2 ,

π

2 )} (1.5.10)
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|00〉 |01〉

|10〉 |11〉

0 ≤ t < 3π/2

|00〉 |01〉

|10〉 |11〉

3π/2 ≤ t < 2π

Figure 1.10: A graphical representation of the CNOT gate using CTQW on Gcnot.

The three-qubit CCNOT, or Toffoli, gate

CNOT =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0



(1.5.11)

is constructed similarly but now using |V | = 8 vertices that represent the two

control qubits and one target qubit. The implementation of the Toffoli gate is

identical to the CNOT gate but with four additional vertices allowed to propagate

as singletons for 2π units of time. It is used in both the carry and sum subcircuits

in the quantum adder circuit. It is also reversible, meaning the its effects may be

reversed using other operations. Figure 1.11 illustrates the dynamic graph for the

Toffoli gate.
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|000〉 |001〉

|010〉 |011〉

|100〉 |101〉

|110〉 |111〉

0 ≤ t < 3π/2

|000〉 |001〉

|010〉 |011〉

|100〉 |101〉

|110〉 |111〉

3π/2 ≤ t < 2π

Figure 1.11: A graphical representation of the CCNOT (Toffoli) gate using CTQW
on GCCNOT.

1.5.3 Measurement and Initialization

We model measurement of the quantum state on a graph G as a projection onto a

subspace of the basis BG. In establishing a correspondence with the qubit-encoded

circuit model, we decompose the labels of the basis according to a binary

expansion

|j〉 =
m∑
i=1

ji2m−i (1.5.12)

with ji ∈ {0, 1} and m = log2 |V |. In this binary representation, a quantum state

|ψG〉 ∈ BG can be expressed as

|ψG〉 =
∑
j∈V

cj|j1, . . . , jm〉, (1.5.13)
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and measuring the i-th qubit to have a fixed value j̄i ∈ {0, 1} corresponds to

projecting the state onto a subset of nodes in the graph, i.e.,

∣∣∣j̄i〉 〈j̄i|ψG〉 =
∑
j∈V

cj
∣∣∣j1, . . . , j̄i, . . . , jm

〉
(1.5.14)

The probability to observe node the ith qubit as j̄i is given as

Prob(j) = |
〈
j̄i|ψG

〉
|2 =

∑
j∈V,ji=j̄

|cj|2 ≤ 1 (1.5.15)

We may use measurement as part of a deterministic initialization method, in which

the projective outcome is transformed into the desired initial state. This requires

conditional operations based on the decoded output from the measurement, from

which the necessary series of single-qubit gates are applied to graph. For projections

into the label basis, these feed-forward operations consist of products of the Pauli

operators flip the label state to a fiducial starting label, e.g., the vertex 0.

1.6 Quantum Walks For Quantum Circuits

We complete our analysis by providing explicit examples of how quantum walks on

dynamic graphs realize circuits within gate-model computing. These examples

highlight the differences in the representation of the logic as well as the resources

required to achieve the desired unitary transformations. In our examples, CTQWs

are performed in series and the number of vertices needed to implement each circuit

is equal to the largest of the number of vertices needed to perform the CTQW

equivalent for each logic gate. For the sake of completeness, we also explicitly

indicate singleton vertices that add global phase evolution to select vertices in order

to clearly demonstrate where each gate is used in the implementation. Future

optimizations may remove such singleton CTQWs that sum to 2π from actual
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implementations.

1.6.1 Quantum Teleportation Circuit

In quantum teleportation, a qubit of information is transferred from one logical

element to another as shown in Fig. 1.12. In the circuit model description, three

qubits are initially prepared in the state |000〉. The first element is prepared in the

state |ψ1〉 by applying the necessary single-qubit transformation. The remaining

elements are prepared in a two-qubit entangled state by applying the Hadamard

gate to the second element followed by the CNOT gate acting on the second and

third elements. A second CNOT gate entangles the first and second qubits. A final

Hadamard gate is applied to the first, after which measurements performed on

elements 1 and 2 generate binary values b1 and b2, respectively. The effect of these

measurements is to project element 3 into the state Xb1
3 Z

b2
3 |ψ3〉, which may be

transformed to the original state of element 1 with knowledge of (b1, b2).

|ψ1〉 • H •

|02〉 H • •

|03〉 X Z |ψ3〉

Figure 1.12: The circuit model representation of quantum teleportation uses three
qubits and a series of elementary gates.

The implementation of quantum teleportation using CTQW on a dynamic graph is

shown in Fig. 1.13, and it begins with a graph on eight vertices. Initialization of

these vertices is realized through a projective measurement and, depending on the

measurement outcome, a sequence of X operations to populate the 0 vertex. We

then approximate an arbitrary unitary operation to prepare the input superposition

state |ψ〉 =
√

1− a|0〉+
√
a|1〉 for a ∈ C where |a| = 1. The number of vertices

needed to represent an arbitrary |ψ〉 depends on the desired state, but this

single-qubit unitary can be constructed using the universal basis described above. A
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Hadamard transform is then applied to vertices 0 and 7 using Eq. (1.5.6) followed

by a pair of CNOT transforms using Eq. (1.5.10) acting on vertices {2, 3, 6, 7} and

{0, 1, 2, 3}, respectively. The output from this series of CTQWs prepares the graph

state

|ψ〉 = 1
2
(
−
√

1− a|0〉+
√

1− a|1〉+
√

1− a|2〉 −
√

1− a|3〉 −
√
a|4〉 −

√
a|5〉+

√
a|6〉+

√
a|7〉

)
(1.6.1)

and a partial projective measurements on the first two bits of the label

representation generates the four possible teleported states.
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|100〉
|110〉
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|011〉
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|111〉
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|111〉
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|100〉
|110〉
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|010〉
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|110〉

|001〉
|011〉
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|111〉

(G1, f(a)) (G2, π/2) (G3, π/2) (G4, π/2) (G5, 3π/2) (G6, π/4) (G7, 3π/2)

(G8, π/2) (G9, 3π/2) (G10, 3π/2) (G11, π/2) (G12, 3π/2) (G13, π/2) (G14, 3π/2)

(G15, π/4) (G16, 3π/2) (G17, π/2) (G18, 3π/2) (G19, 3π/2) (G20, π/2) (G21, π)

Figure 1.13: In this graphical representation of quantum teleportation, each graph is
labeled as (G`, τ`) with τ` the propagation time in the `-th graph. The time f(a) =
arcsin(

√
a) is the state specific time required to rotate |000〉 to

√
1− a|000〉+

√
a|001〉.

From left to right, the first four graphs rotate the state while the next five graphs
correspond to the H gate on the second qubit. The following four graphs represent
a pair of CNOT gates. The next five graphs correspond with an H gate on the first
qubit. Assuming a measurement outcome (b1 = 1, b2 = 1), the remaining graphs
implement the X and Z gates needed to complete teleportation.
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Figure 1.14: The population dynamics for state preparation and quantum telepor-
tation using CTQW on the dynamic graph shown in Fig. 1.13.This examples corre-
sponds to the case of measurement outcomes b1 = 1 and b2 = 1 for qubits 1 and 2,
respectively, and completes the protocol by applying the necessary recovery opera-
tions, X and Z.

c0

C
Sa0 •

b0

b1

Figure 1.15: A quantum circuit for addition of two 1-bit numbers, where the carry
circuit C and the sum circuit S are defined in Figs. 1.16 and 1.17. Note that since
we only have one carry operation, it is our last carry, and thus is not reversed.

1.6.2 Quantum Adder

As a second example, we consider a quantum addition circuit for summing two

positive integers such that the input |a, b〉 → |a, a⊕ b〉 [59]. This variant of in-place

addition takes two inputs encoded in registers a and b with the binary

representations a = an−1an−2...a1a0 and b = bn−1bn−2...b1b0. An additional bit

bn+1 = 0 is added to register b to give a size n+ 1. A third workspace register c of

size n− 1 is used in this implementation to store carry values with initialization
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ci = 0 ∀ i, while the final carry value is stored in the bit bn+1. The circuit is

composed from two subcircuits for carry and sum operations denoted as C and S,

respectively, and the subcircuits for C and S are specified in Figs. 1.16 and 1.17,

respectively. The carry operation uses a Toffoli gate with the second and third qubit

as controls and the fourth qubit as the target. This is followed by a CNOT gate on

the second and third qubits before another Toffoli gate on the first, second, and

fourth qubits. The reverse carry RC circuit undoes the carry computation by

applying the gates in the reverse order. The last carry bit in the computation is not

reversed but stored as bn+1. The sum subcircuit denoted as S in Fig. 1.17 takes

three qubits as input, in which a CNOT is applied to the second and third qubits

followed by a Toffoli gate performed with the first two qubits being the controls and

the third qubit as the target. In Fig. 1.15, we show the demonstrated instance of

one-bit inputs, i.e., n = 1, for which the reverse carry subcircuit is unnecessary. For

this example, carry bits are also unnecessary but we include the single carry bit c0

to confirm generality.

•
• •
• •

Figure 1.16: The carry subcircuit C used in Fig. 1.15

•
•

Figure 1.17: The sum subcircuit S used in Fig. 1.15

We reduce the gate sequences in the quantum addition circuit into the dynamic

graph shown in Fig. 1.18. Our reduction uses the CTQWs for CNOT and CCNOT

gates described in Sec. 1.5 and sequentially orders them according to the gate

specification in Figs. 1.15, 1.16, and 1.17. In order to verify the correctness of the
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reduction, we have used numerical simulation to determine the quantum state

generated by the CTQW on the dynamic graph shown in Fig. 1.18. Numerical

simulation of the CTQW requires a memory space that is exponential in the

number of qubits, i.e, 23n+1. Implementing the quantum adder circuit for n = 1

requires a dynamic graph on sixteen vertices.

We show results from a specific simulation with |a0〉 = |1〉 and |b0〉 = 1√
2 (|0〉+ |1〉)

in Fig. 1.19. We plot the time-dependent population of the vertices that represent

the joint state of the computational registers. The carry register is initialized to

|c0〉 = |0〉 and the resulting computational output is

|b1, b0, a0, c0〉 = 1√
2 (|0, 0, 1, 0〉+ |1, 1, 1, 0〉), where the a0 and c0 registers remain in

their initial states, and the sum a0 + b0 is stored in the b0 and b1. As shown in

Fig. 1.19, our CTQW simulations verify that the dynamic graph yields the expected

output states, which corresponds to a uniform superposition of the vertex labels 6

and 10.
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Figure 1.18: In this graphical representation of a one-bit quantum adder circuit, each
graph is labeled as (G`, τ`) with τ` the propagation time in the `-th graph.
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Figure 1.19: The population dynamics of the CTQW for quantum addition of inputs
|a〉 = |1〉 and |b〉 = 1√

2 |0, 0〉 + 1√
2 |0, 1〉. Numerical simulations of the CTQW on the

dynamic graph shown in Fig. 1.18 calculates exactly the amplitudes of each vertex
and the final state is |b1, b0, a0, c0〉 = 1√

2(|0, 1, 1, 0〉+ |1, 0, 1, 0〉), which corresponds to
a uniform superposition of the vertices 6 and 10.

1.7 Discussion

Continuous-time quantum walks offer a versatile paradigm for quantum computing,

in which the edges between vertices in a graph serve to model the connectivity

between basis states. We have defined a dynamic graph as a time-ordered sequence

of changing connectivity through which a the state of a continuous quantum walk

can be tailored to perform computation and, in particular, we have provided

constructions of continuous-time quantum walks on dynamic graphs that implement

a diverse set of gates taken from the quantum circuit computational model. Our

realizations of the single-qubit Pauli, Hadamard, and T gates, and the CNOT and

Toffoli gates, as well as measurement and initialization, form a complete set of

primitive operations that can be composed to approximate an arbitrary unitary

operator. We were able to implement these gates with a complete basis set of at
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most eight sparsely connected nodes, allowing the small graph motif to extend

across any algorithm. We have presented implementations of the the bit-wise

addition operation and quantum teleportation to demonstrate composition of

quantum walks and shown how some reduction in the composite dynamic graph can

be realized by eliminating redundancies.

An important distinction in our formulation of continuous-time quantum walks is

the condition that the Hamiltonian represent the connectivity of the underlying

basis states. Although we permit variations in this Hamiltonian, the restriction has

several side-effects on the computational model. For example, our design for some

single-qubit gates taken from the circuit model require graphs with more than two

vertices. These additional vertices are effectively ancilla used to store temporarily

intermediate states of the walk. This unique representation may afford opportunities

for optimizing quantum logic by better understanding the transformation of an

input state to its output form. Similarly, multi-qubit gates such as CNOT and

Toffoli are trivial to implement by using the starkly different periods for perfect

state transfer. Algorithmic methods that take advantage of these otherwise idle

vertices may provide more compact representations of logical transformations.

We have restricted designs of the current quantum walks to small and relatively

simple graphs, e.g, K2 and C4. These designs are appealing because they require

less complex interactions between the physical elements, but the ability to realize

these designs will depend on technological constraints as well as algorithmic

requirements. In particular, perfect state transfer has been implemented recently in

a photonic processor [15]. Chapman et al. used a linear array of evanescently

coupled waveguides to realize nearest-neighbor coupling and transfer the polarized

state of one photon to another. The underlying tight-binding Hamiltonian provides

an approximation to the connectivity graph underlying a continuous-time quantum

walk defined within the space of the single-photon Fock states. The approximation
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is controlled by the spectra of the coupled waveguides, which must be non-uniform

in their geometry for (almost) perfect state transfer using a linear coupled chain

[20, 19]. The geometrical constraints imposed by linear chains have been overcome

by a recent demonstration of continuous-time quantum walks in two-dimensional

waveguide arrays [57]. Tang et al. demonstrated control of the coupling between

waveguide in a two-dimensional array by fabricating specific distance between the

channels. We anticipate that these capabilities may be applied to vary the coupling

along the waveguide length and, consequently, develop a physical realization of a

dynamic graph. These adaptations may require relaxations of our model, including

modifying the sharp transitions induced by the rectangle function with more

gradual transitions. As a second possible implementation, we note that the

Mølmer-Sørensen gate commonly used in ion trap technology enables highly tunable

connectivity between multiple qubits for a specific Hamiltonian [48, 55], and it

would be interesting to apply our principles of continuous-time quantum walks on

dynamics graphs to these systems as well.
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1.8 Appendix

We demonstrate that the dynamic graph representing Eq. (1.5.6) implements the

Hadamard transform by showing explicitly the graph state prepared under the
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sequence of CTQWs. We first note that the CTQW on each element G` in a

dynamic graph can be evaluated numerically for the designated propagation time t`.

For GH , we have

UG0 =



0 0 0 0 0 0 −1 0

0 i 0 0 0 0 0 0

0 0 0 0 −1 0 0 0

0 0 0 i 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 0 0 i 0 0

−1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 i



UG1 =



1√
2 0 0 0 0 0 0 −i√

2

0 1√
2 0 0 0 0 −i√

2 0

0 0 1√
2 0 0 −i√

2 0 0

0 0 0 1√
2

−i√
2 0 0 0

0 0 0 −i√
2

1√
2 0 0 0

0 0 −i√
2 0 0 1√

2 0 0

0 −i√
2 0 0 0 0 1√

2 0
−i√

2 0 0 0 0 0 0 1√
2


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UG2 =



0 0 0 0 0 0 −1 0

0 −i 0 0 0 0 0 0

0 0 0 0 −1 0 0 0

0 0 0 −i 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 0 0 −i 0 0

0 0 0 0 0 0 0 −1

−i 0 0 0 0 0 0 0



UG3 =



0 −i 0 0 0 0 0 0

−i 0 0 0 0 0 0 0

0 0 0 −i 0 0 0 0

0 0 −i 0 0 0 0 0

0 0 0 0 0 −i 0 0

0 0 0 0 −i 0 0 0

0 0 0 0 0 0 0 −i

0 0 0 0 0 0 −i 0


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UG4 =



i 0 0 0 0 0 0 0

0 i 0 0 0 0 0 0

0 0 i 0 0 0 0 0

0 0 0 i 0 0 0 0

0 0 0 0 i 0 0 0

0 0 0 0 0 i 0 0

0 0 0 0 0 0 i 0

0 0 0 0 0 0 0 i



By multiplying the resulting matrices in order, we construct an explicit numerical

representation for the CTQW under the dynamic graph GH as

UGH =



1√
2

1√
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1√
2
−1√

2 0 0 0 0 0 0

0 0 1√
2

1√
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0 0 1√
2
−1√

2 0 0 0 0

0 0 0 0 1√
2

1√
2 0 0

0 0 0 0 1√
2
−1√

2 0 0

0 0 0 0 0 0 1√
2

1√
2

0 0 0 0 0 0 1√
2
−1√

2



It is then apparent from this numerical representation that the CTQW for GH is

equivalent to applying the circuit-model operator H1 ⊗H2 ⊗H3 on the three-qubit

Hilbert space.

We provide a similar proof that the dynamic graph representing Eq. (1.5.8)

implements the T gate by showing explicitly the graph state prepared under the
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sequence of CTQWs. We first note that

UG0 =



1√
2 0 −i√
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0 e
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
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UG2 =


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−iπ

4



UG3 =



−i 0 0 0 0 0 0 0

0 −i 0 0 0 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 −i 0 0 0 0

0 0 0 0 −i 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 −1

0 0 0 0 0 0 −1 0


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UG4 =



0 0 i
2

i
2

i
2

i
2 0 0

0 e
iπ
4 0 0 0 0 0 0

i
2 0 3

4
−1
4

−1
4

−1
4 0 0

i
2 0 −1

4
3
4

−1
4

−1
4 0 0

i
2 0 −1

4
−1
4

3
4

−1
4 0 0

i
2 0 −1

4
−1
4

−1
4

3
4 0 0

0 0 0 0 0 0 e
iπ
4 0

0 0 0 0 0 0 0 e
iπ
4



UG5 =



−i 0 0 0 0 0 0 0

0 −i 0 0 0 0 0 0

0 0 −i 0 0 0 0 0

0 0 0 −i 0 0 0 0

0 0 0 0 −i 0 0 0

0 0 0 0 0 −i 0 0

0 0 0 0 0 0 −i 0

0 0 0 0 0 0 0 −i



Thus, as GT is the product of the above matrices, we have that

36



UGT =



1 0 0 0 0 0 0 0

0 e
iπ
4 0 0 0 0 0 0

0 0 −1
2 0 −e

−iπ
4√
2

1
2 0 0

0 0 −1
2 0 e

−iπ
4√
2

1
2 0 0

0 0 1
2

e
−iπ

4√
2 0 1

2 0 0

0 0 1
2

−e
−iπ

4√
2 0 1

2 0 0

0 0 0 0 0 0 0 e−
iπ
4

0 0 0 0 0 0 e−
iπ
4 0


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CHAPTER 2

BROADCAST DOMINATION NUMBER OF SOME REGULAR

GRAPHS

2.1 Introduction

Let G = (V (G), E(G)) be a graph with vertices V (G) and edges E(G). The

domination number of a graph G is the cardinality of the smallest dominating set of

the graph, which is the smallest set S such that every vertex in V (G) \ S is adjacent

to a vertex of S.

In 2014, Blessing, Insko, Johnson, and Mauretour generalized this notion to (t, r)

broadcast domination [9]. In broadcast domination, there is a collection of vertices

called towers, T , that transmit a signal t ∈ N in the following manner. If u ∈ T ,

and v ∈ G, then the signal at v from u is denoted fu(v) and is

fu(v) = max{0, t− d(u, v)}, where d(u, v) is the distance between u and v. The set

T is said to be (t, r) broadcast dominating if each tower transmits a signal t and for

all v ∈ G, Σu∈T fu(v) ≥ r. The (t, r) broadcast domination number of G, γt,r(G), is

the minimum cardinality of a (t, r) broadcasting set T .

The (t, r) broadcasting domination number has been studied for two-dimensional

grids, paths, triangular grids, matchstick graphs, and n-dimensional grids

[9, 23, 26, 38, 54]. Asymptotic bounds of the (t, 2) broadcast domination number on

finite grids has been studied [52], as well.

To describe the (t, r) broadcast domination number of Z2, we consider the density of

a set T ⊂ Z2 defined as lim supn→∞
|T ∩[−n,n]2|

(2n+1)2 . Accordingly, δt,r(Z2) is the minimal

density of a (t, r) broadcasting set in Z2. In 2019, Drews, Harris, and Randolph [26]

showed that δt,3(Z2) ≤ δt−1,1(Z2) = 1
2t2−6t+5 for grid graphs Z2 and conjectured

δt,3(Z2) = δt−1,1(Z2) for t > 2. We prove this conjecture for t > 17.

Theorem 1. For t > 17, δt,3(Z2) = δt−1,1(Z2)
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Following the proof of Theorem 1, in Section 2.3, we explore other statements in

this direction and suggest some conjectures.

Additionally, we extend the previous result on the (t, r)-broadcast domination

number of paths [23] to powers of paths:

Theorem 2. Let n ≥ 1 and t ≥ r ≥ 1. Then γt,r(P (k)
n ) = d n+k(r−1)

2kt−k(r+1)+1e.

Crepeau et. al. found γt,r(Cn) ≤ dn+r−1
2t−r e and asked if this bound could be improved

[23]. We answer their question by giving the exact value for the (t, r) broadcast

domination number for all powers of cycles:

Theorem 3. Let n ≥ 1 and t ≥ r ≥ 1. Then

γt,r(C(k)
n ) =



1 if n ≤ 2(t− r)k + 1

2 if 2(t− r)k + 1 < n ≤ (2t− r − 1)k + 1⌈
n

(2t−r−1)k+1

⌉
if n > (2t− r − 1)k + 1

2.2 Proof of Theorem 1

First consider the following (t, 1) broadcasting set of vertices with minimal density

T0 = {ma+ nb : m,n ∈ Z} where a = (t− 1, t− 2) and b = (t− 2, 1− t). Part of

this configuration is shown in Figure 2.1.

We consider for every tower the usable transmission which is the sum over the

amount transmitted to all the vertices, not exceeding r. For a tower at vertex v that

is signal(v) := ∑
u:d(u,v)≤t−1 min{r, t− d(u, v)}.

Note that the previously described T0 is also a configuration that provides a

(t+ 1, 3) broadcast. We find that four vertices within distance t− 2 of any tower

receive signal 4 rather than the required 3. In Figure 2.1, the bold vertices are the

one with extra signal. To formalise the notion of extra signal, let

excess(v) := signal(v)− r be the excess signal received by a vertex v in a given
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T3

T4

T2

T1

Figure 2.1: An example of a (5, 1) broadcasting set. When considered as a (6, 3)
broadcasting set, the four large vertices in the middle receive excess signal.

(t, r)-broadcasting set of towers. We would like to attribute the amount of excess to

a given tower T . Note that the average attributable excess exactly determines the

broadcast domination number on vertex transitive graphs.

Our goal is to show δt,3(Z2) ≥ δt−1,1(Z2). In the starting configuration, we have

exactly 4 excess attributed to each tower. We want to show that the excess

attributed to each tower must be at least 4 in any (t+ 1, 3) broadcasting

configuration, so that the configuration T0 minimises the excess.

Henceforth fix some (t, 3) broadcasting set of towers. We will prove the following

lemma.

Lemma 2.2.1. For any tower at (x, y), there is at least four excess within the

vertices (x, y) + [t− 4, t+ 2]× [−4, 4].

Proof. Without loss of generality consider a tower T , that will be fixed throughout

the argument, at (−t+ 2, 0). We shall consider the following three main cases, along
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4∗

4

2

2

2

4

4

3

3 4

4

2

2

1

1

1

3

3

2

1

2

21

1

Figure 2.2: The signal received from T and T ′ in Subcase 2.2.1.2, where second tower
T ′ is located at (t − 3, 1). The line (dashed line resp.) denote the boundary of
those vertices receiving at least 2 signal from T (T ′′ resp.). For a minimal (t − 1, 1)
broadcasting set, these regions partition the plane. The ∗ marks the origin.

with their subcases. Figures that help visualize the cases are found below.

Case 2.2.1.1. There is another tower T ′ with |T ′|1 ≤ t− 2.

Subcase 2.2.1.2. T ′ is not on the x-axis.

Without loss of generality assume T ′ is above the x-axis, then T ′ is closer to (0, 1)

than to (0, 0), so t− |T ′ − (0, 1)|1 ≥ 3 and similarly t− |T ′ − (−1, 1)|1 ≥ 2 and

t− |T ′ − (−1, 0)|1 ≥ 1. Hence, we find that the excess on (0, 0), (0, 1), (−1, 0) and

(−1, 1) alone is already more than four, as seen in Figure 2.2.

Subcase 2.2.1.3. T ′ is at (x, 0) for x ≤ t− 3.

If T ′ is at (x, 0) for x ≤ t− 3, the vertices (−1, 0) and (0, 0) both have excess at

least 2, as seen in Figure 2.3.

Subcase 2.2.1.4. T ′ is at (t− 2, 0).
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Figure 2.3: The signal received from T and T ′ in Subcase 2.2.1.3, where second tower
T ′ = (t− 3, 0).
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Figure 2.4: The signal received from T and T ′ in Subcase 2.2.1.4, where the second
tower is at T ′ = (t− 2, 0).
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11

Figure 2.5: The signal received from T and T ′ in Case 2.2.1.5 for the specific example
t = 5 where second tower T ′ = (2, 4).

Note that (−1, 0), (0, 0) and (1, 0) all receive at least one excess from T and T ′

combined. (−1, 1), (0, 1) and (1, 1) receive 2 signal from T and T ′ combined, so they

need another tower to supply at least one signal. If this is the same tower for two of

these, one must must get excess signal. On the other hand consider they receive one

signal from three different towers. Either (−2, 1), (2, 1) or (0, 0) must receive excess

signal from these towers, or (0, 2) receives at least signal 4 from the three towers

combined, as seen in Figure 2.4

This concludes Case 2.2.1.1.

We now distinguish two possible configurations for the tower T ′ giving additional

signal to vertex (0, 0). Note that this tower has distance exactly t− 1 to the origin.

Consider whether T ′ ∈ {(0, t− 1), (1, t− 2), (0, 1− t), (1, 2− t)} or not. Note that

up to reflection, if T ′ /∈ {(0, t− 1), (1, t− 2), (0, 1− t), (1, 2− t)}, we are in the realm

of Figure 2.5.

Case 2.2.1.5. T ′ 6∈ {(0, t− 1), (1, t− 2), (0, 1− t), (1, 2− t)}

Reflecting if necessary, assume T ′ is somewhere on y = x− (t− 1).

Note that in this case both (0, 1) and (1, 1) receive 1 signal from T and T ′

43



3

3

3

2

2

3

3∗4

3

3

3

3

3 2

23 4 3

1

1

1

1

1

1

Figure 2.6: The signal received from T and T ′ in Case 4.3, where second tower
T ′ = (1, t− 2).

combined. Hence, they both need signal from an additional tower.

Subcase 2.2.1.6. One additional tower covers both (0, 1) and (1, 1).

This tower will transmit at least a combined signal of three to (0, 0) and (1, 0),

causing a total excess of at least 4 on these four vertices combined.

Subcase 2.2.1.7. (0, 1) and (1, 1) receive additional signal from two distinct towers.

Consider the tower T ′′ giving additional signal to (−1, 1). If that tower gives signal

at least 2 to (−2, 1) or (−1, 0), we immediately find the excess. As we additionally

know there is no tower at (0, t− 1), we find that it must be at (−1, t).

Note that more specifically we know that (0, 1) must receive signal from two

additional towers. A tower that gives signal 1 to (0, 1) must give at least 1 signal to

one of (−1, 2) and (1, 0) and to one of (−2, 3) and (2,−1). All of those points

already receive 3 signal, so the two additional towers for (0, 1) give rise to at least 4

excess on these vertices.

Case 2.2.1.8. T ′ ∈ {(0, t− 1), (1, t− 2), (0, 1− t), (1, 2− t)}
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Without loss of generality T ′ = (1, 2− t). Note that (−1, 1) receives only signal 2

from T and T ′, so receives additional signal from another tower T ′′. By Case 2.2.1.1,

we only need to consider towers at distance t− 1 from (−1, 1). There are only two

significant cases. If T ′′ has x-coordinate at least 1, then the excess signal on

(0, 0), (1, 0) and (1,−1) is at least 4 already. Hence, T ′′ is either (0, t− 1) or

T (−1, t).

Subcase 2.2.1.9. T ′′ = (0, t− 1)

Note that (1, 1) and (1, 2) only receive 2 signal from towers T, T ′ and T ′′. If these

two were reached by the same tower say T ′′′, then one of the two must receive signal

2 from T ′′′. If that is (1, 1), note that (0, 0), (0, 1), (1, 0) and (1, 1) all receive excess

at least 1. If it is (1, 2), note that (0, 0), (0, 2), (1, 2) and (1, 3) all receive excess at

least 1, as seen in Figure 2.6.

Subcase 2.2.1.10. T ′′ = (−1, t)

This case is completely analogous to Subcase 2.2.1.7.

On the other hand, suppose the points (1, 1) and (1, 2) receive signal 1 from two

distinct towers. If either of these towers transmits 2 signal to (0, 1), (0, 2), (1, 3) or

(1, 0), the excess is immediately more than 4. The towers transmit 2 to (1, 1) and

(1, 2) respectively, then (2, 2) receives 1 excess signal and (3, 1) receives 2 excess

signal.

The next goal is to show that for large t, we have excess at least four times the

number of towers.

Lemma 2.2.2. Let t > 17. For any (t, 3) broadcasting set T there is at least 4|T |

excess.

Proof. We devise a way to attribute excess to towers. First to all towers T with no

other towers within T + [−6, 6]× [−8, 8], assign 4 excess from the rectangle
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T + [t− 4, t+ 2]× [−4, 4]. Note that this excess exists by Lemma 2.2.1 and that

these rectangles are disjoint.

Let Ri be a [−6, 6]× [−8, 8] rectangle around a tower Ti. If a tower Tj lies in Ri,

place an edge between Ti and Tj. Suppose T ′ lies in the rectangle around T , so the

edge TT ′ exists. We find that all the vertices in R′ = T+T ′
2 + [−4, 2]× [−4, 4] receive

at least 3 excess from T and T ′. Moreover, R′ intersects at most four regions of the

form T ′′ + [t− 4, t+ 2]× [−4, 4] with T ′′ ∈ T as considered in Lemma 2.2.1.

Therefore, at least 6 · 8− 4 · 4 = 32 excess remains available in R′. This is

cumulative in the sense that if regions of the form R′ overlap for different edges in

the graph, then still at least 32 excess is available per edge. As the number of edges

is at least half the number of vertices in any nontrivial component, we find that for

every vertex, at least 16 excess can be assigned to that vertex. Hence, we find at

least 4|T | excess.

We are now ready to prove Theorem 1.

Proof. Let G2n+1,2n+1 be the 2n+ 1 by 2n+ 1 grid. We then need at least 3(2n+ 1)2

signal to be transmitted. By Lemma 2.2.2, a (t, 3)-broadcasting set T of towers can

transmit at most |T |3(t− 1)2 signal effectively. Therefore |T | ≥ 3(2n+1)2

3(t−1)2 , so we find

δt,3(Z2) ≥ lim
n→∞

(
3(2n+1)2

3(t−1)2

)
(2n+ 1)2

= 1
(t− 1)2

= δt−1,1(Z2)
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2.3 Generalizations of the (t, r) broadcast number for grids

The proof of Theorem 1 suggests that the result may be extended to any odd value

of r. Note first the following simple, though seemingly unobserved fact;

Proposition 4. For all t, k ≥ 1;

δt,1(Z2) ≥ δt+k,1+2k(Z2)

Proof. It suffices to show a (t, 1) broadcasting set of towers T is also (t+ k, 1 + 2k)

broadcasting. Consider a vertex v ∈ Z2. As T is (t, 1)-broadcasting, ∃T ∈ T with

d(T, v) < t. Find a vertex u ∈ Z2 with d(T, u) = d(T, v) + d(u, v) = t, which is

possible in the plane. Again, as T is (t, 1) broadcasting, there is a T ′ ∈ T with

d(T ′, u) < t. Now note that if all towers transmitted t+ k of signal, then v receives

t+ k − d(T, v) = k + d(u, v) signal from tower T and

t+ k − d(T ′, v) ≥ t+ k − d(u, v)− d(T ′, u) ≥ k + 1− d(u, v) from tower T ′. In total

v thus receives signal at least k + d(u, v) + k + 1− d(u, v) = 2k + 1. Hence, T is also

(t+ k, 1 + 2k) broadcasting.

Similarly we have

Proposition 5. For all t, k ≥ 1;

δt,2(Z2) ≥ δt+k,2+2k(Z2)

Proof. As before, consider T ⊂ Z2 to be (t, 2)-broadcasting and v ∈ Z2. We will

show that if the towers in T transmitted t+ k signal, then all vertices would receive

at least 2 + 2k signal. If there is a T ∈ T with d(T, v) ≤ t− 2 the proof of the

previous lemma suffices completely analogously. If there is no such T , there must be

T, T ′ ∈ T with d(T, v) = d(T ′, v) = t− 1. That implies that v receives signal k + 1

from both towers and thus 2k + 2 in total.
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In [9], Blessing et al. conjectured that in general this inequality is sharp, i.e. that

δt+1,r+2(Z2) = δt,r(Z2). However, Drews, Harris, and Randolph in [26], showed by

computing these quantities that, in fact, δt+1,r+2(Z2) < δt,r(Z2) for several values of

t and r. Consequently, they formulated a stronger conjecture on the value of δt,r(Z2)

for r ≤ 10. We believe the improved bounds suggested in [26] are an artifact of the

small values of t used in the simulation run by Drews, Harris, and Randolph, as

results for t ≤ 15 were reported in the paper. We propose the following weakening

of the conjecture proposed by Blessing, et al.

Conjecture 2.3.1. For all r ≥ 2, there exists t0 such that for all t ≥ t0;

δt+1,r+2(Z2) = δt,r(Z2).

In the hopes of proving this result along the line of the proof of Theorem 1, we

compute the average amount of excess per tower in an optimally (t, 1) broadcasting

configuration when viewed as a (t+ k, 2k + 1) broadcasting configuration. The task

of showing that one cannot achieve a configuration with a smaller average amount

of excess per tower remains open, but a proof along the same lines as Lemma 2.2.1

seems reasonable. Our attempts have resulted in impenetrable casework, and more

ideas to improve elegance would be needed.

Lemma 2.3.2. Let t > k. The average excess per tower in an optimally (t, 1)

broadcasting configuration when viewed as a (t+ k, 2k + 1) broadcasting

configuration is 1
6k(k + 1)(2k + 1).

Proof. Consider four towers around the origin at

T1 = (t− 1, 0), T2 = (−1,−(t− 1)), T3 = (−t, 1) and T4 = (0, t) and call the square

formed by these towers S. This configuration provides a (t, 1)- broadcast. To

complete the proof, it suffices to show that the starting configuration also provides a

(t+ k, 1 + 2k)-broadcast.

48



We shall divide S into two regions. Let S ′ be the square with corner vertices

(k− 1,−(k− 1)), (−k,−(k− 1)), (−k, k), and (k− 1, k), along with all points on the

boundary, and in the interior of this region. As t > k, S ′ is contained inside S, since

k < t, −(k − 1) > −(t− 1), k − 1 < t− 1 and −k > −t.

Claim 2.3.3. The vertices inside S that have signal at least r and no excess are the

vertices that do not lie in S ′ and are in S.

Proof. Consider the regions defined by the lines x+ y = k, x+ y = −k − 1,

x− y = k and x− y = −k − 1. Note that by symmetry we need only check that

there is no excess above the line x+ y = k. Above the line x+ y = k, no vertex

receives any signal from T2 and T3. Consider a vertex (x, y) in this region. If this

vertex is above x− y = k or below x− y = −k − 1, it will receive signal from only

one tower. This will be signal at least 2k + 1 but will have no excess as it lies in the

broadcast zone of exactly one tower. Otherwise, this vertex will receive signal

t+ k − (t− 1− x+ y) from T1 and t+ k − (x+ t− y) from T4, which amounts to a

total signal of 2k + 1.

In the proof of the next claim, we find that each vertex in S ′ has excess and calculate

how much. This process shows that each vertex in S ′ has signal greater than r.

Claim 2.3.4. The excess of S ′ is 1
6k(k + 1)(2k + 1).

Proof. In fact we note that for every 0 ≤ i ≤ k − 1, a vertex on the intersection

between x+ y = i and S ′ receives an excess of 2k − 2i− 1. We proceed by induction

on i. For i = 0, note that (0, 0) receives

(t− (t′ − 1)) + (t− t′) + (t− (t′ + 1)) + (t− t′) = 4k signal, which corresponds to

2k − 1 excess. For a vertex v with i ≥ 1, note that at least one of v − e1 and v − e2

was in the intersection between S ′ and x+ y = i− 1. Fix one of these to be v′. Now

the distances to three towers increases, while to one tower it decreases.
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In particular, if v = v′ + e1, then d(v, T2) = d(v′, T2)− 1, d(v, T3) = d(v′, T3)− 1,

d(v, T4) = d(v′, T4)− 1, and d(v, T1) = d(v′, T1)− 1. On the other hand, if

v = v′ + e2, then d(v, T1) = d(v′, T1)− 1, d(v, T3) = d(v′, T3)− 1,

d(v, T4) = d(v′, T4)− 1, and d(v, T2) = d(v′, T2)− 1.

Either way the signal received by v is 2 less than by v′ finishing the induction.

The number of vertices on the intersection between S ′ and x+ y = i is i+ 1, so we

find total excess: ∑k−1
i=0 (i+ 1)(2k − 2i− 1) = 1

6k(k + 1)(2k + 1)

Thus, each vertex on the infinite grid with a tiling of this pattern has signal at least

r. This concludes the proof of Theorem 2.3.2.

2.4 Proof of Theorem 2

Proof. We will consider the power of a path, G = P (k)
n on vertex set {0, . . . , n− 1}

with vivj an edge if and only if |i− j| ≤ k. For the lower bound we consider the

potentially useful amount of signal transmitted by a tower. Note that from the

signal submitted to a vertex at distance at most t− r from a tower, only r can be

used to exceed the signal threshold. Hence, the total amount of potentially useful

signal transmitted by a tower is at most

(2k(t− r) + 1)r+ 2k((r− 1) + (r− 2) + · · ·+ 1) = ((2t− r− 1)k+ 1)r. Moreover, as

the vertex v0 receives signal at least r, there must be a tower at vi for some

i ≤ (t− r)k. This tower wastes k((r − 1) + (r − 2) + · · ·+ 1) = kr(r − 1)/2 of its

potentially useful amount of transmitted signal. Similarly, vn receives signal at least

r. We may conclude that the total amount of transmitted signal needed is at least

nr + kr(r − 1). This gives the lower bound
⌈

n+k(r−1)
(2t−r−1)k+1

⌉
.

For the upper bound consider T = {vi : 0 ≤ i ≤ n− 1, i ≡ (t− r)k

mod (2t− r − 1)k + 1} if (n− 1) mod (2t− r − 1)k + 1 is between (t− r)k and

2(t− r)k + 1. Otherwise, let T = {vi : 0 ≤ i ≤ n− 1, i ≡ (t− r)k

50



mod (2t− r − 1)k + 1} ∪ {vn−1}.

Note that vertices vi with i ≤ (t− r)k all receive enough signal from the tower at

v(t−r)k. By construction, the last tower is at distance at most (t− r) away from the

vertex vn−1, so all the vertices not between two towers receive enough signal.

Now consider a vertex vi between two towers, say

i = l((2t− r − 1)k + 1) + (t− r)k + p where 0 ≤ p < (2t− r − 1)k + 1 and both

vl((2t−r−1)k+1)+(t−r)k and vmin{n,(l+1)((2t−r−1)k+1)+(t−r)k} are in T . Then

d(vi, vl((2t−r−1)k+1)+(t−r)k) + d(vi, vmin{(l+1)((2t−r−1)k+1)+(t−r)k,n})

≤
⌈
p

k

⌉
+
⌈

(2t− r − 1)k + 1− p
k

⌉

= (2t− r − 1) +
⌈
p

k

⌉
+
⌈1− p

k

⌉
≤ (2t− r − 1) + 1

= 2t− r

Thus, the broadcast received by vertex vi is

max{t−d(vi, vl((2t−r−1)k+1)+(t−r)k), 0}+ max{t− d(vi, vmin{(l+1)((2t−r−1)k+1)+(t−r)k,n}), 0}

≥ 2t− (d(vi, vl((2t−r−1)k+1)+(t−r)k + d(vi, vmin{(l+1)((2t−r−1)k+1)+(t−r)k,n}))

≥ 2t− (2t− r) = r

Thence, all vertices receive sufficient signal.

When k = 1, we are left with a path, and obtain γt,r(Pn) =
⌈
n+r−1
2t−r

⌉
, agreeing with

the result by Crepeau, et al.
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2.5 Proof of Theorem 3

Proof. If n ≤ 2(t− r)k + 1, then any vertex is at most distance (t− r) from any

other vertex, so a tower at any vertex is (t, r)-broadcasting. If, on the other hand,

n > 2(t− r)k + 1 we find that for all 0 ≤ i < n, d(vi, vi+(t−r)k+1) = (t− r) + 1.

Hence, no one tower can be (t, r)-broadcasting. For n ≤ (2t− r − 1)k + 1,

T = {0,
⌊
n
2

⌋
} is (t, r)-broadcasting.

First we will show the upper bound. When 2(t− r)k + 1 < n, consider the set

T = {vi : i ≡ 0 mod (2t− r− 1)k+ 1}∩{v0, . . . , vn}. Evidently, |T | =
⌈

n
(2t−r−1)k+1

⌉
.

Moreover, we will show that these towers are (t, r)-broadcasting. Consider vertex vi.

Choose l and p such that p ∈ {0, . . . , (2t− r − 1)k} and i = l((2t− r − 1)k + 1) + p.

Note that the two towers closest to vi are vl((2t−r−1)k+1) and vmin{(l+1)((2t−r−1)k+1),n}.

We find that the sum of the distance between each tower and vi is

d(vi, vl((2t−r−1)k+1)) + d(vi, vmin{(l+1)((2t−r−1)k+1),n}) ≤
⌈
p

k

⌉
+
⌈

(2t− r − 1)k + 1− p
k

⌉

= (2t− r − 1) +
⌈
p

k

⌉
+
⌈1− p

k

⌉
≤ (2t− r − 1) + 1

= 2t− r

Thus, the broadcast received by vertex vi is

max{t−d(vi, vl((2t−r−1)k+1)), 0}+ max{t− d(vi, vmin{(l+1)((2t−r−1)k+1),n}), 0}

≥ 2t− (d(vi, vl((2t−r−1)k+1) + d(vi, vmin{(l+1)((2t−r−1)k+1),n}))

≥ 2t− (2t− r) = r

Note that from the signal submitted to a vertex at distance at most t− r from a

tower, only r is used to exceed the signal threshold. Hence, the total amount of
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potentially useful signal submitted by a tower is at most

(2k(t− r) + 1)r + 2k((r − 1) + (r − 2) + · · ·+ 1) = ((2t− r − 1)k + 1)r. The total

signal needed to saturate all the vertices is at least nr. Hence,

γt,r(C(k)
n ) ≥

⌈
nr

r((2t−r−1)k+1)

⌉
=
⌈

n
(2t−r−1)k+1

⌉
.

2.6 Concluding Remarks

A natural next direction would be to consider n-dimensional generalizations.

Analogously to the 2 dimensional definitions, let the density of a set T ⊂ Zn be

defined to be lim supm→∞
|T ∩[−m,m]n|

(2m+1)n and let δt,r(Zn) be the minimal density of a

(t, r) broadcasting set T ⊂ Zn.

Question 2.6.1. Is there a relationship between δt,r(Zn) and δt−1,r−2(Zn) for some

t, and r?

In complete parallel to Propositions 4 and 5, we have that δt+k,1+2k(Zn) ≤ δt,1(Zn)

and δt+k,2+2k(Zn) ≤ δt,2(Zn) by an analogous proof. Note that in dimensions n > 2,

unlike in dimensions one and two, l1-balls of constant radius do not partition Zn, so

even the exact value of δt,1(Zn) can be hard to obtain. In 3 dimensions this amounts

to efficiently covering space with octahedrons.

In another direction, the continuous generalization of Conjecture 2.3.1 might

provide a lot of insight. We say a set of towers T ⊂ R2 is (t, r) broadcasting if all

points in points v ∈ R2 satisfy that

∑
T∈T

max{t− d(T, v), 0} ≥ r

where d is some metric on R2. It is natural to look for the minimal density

lim supx→∞
card(T ∩[−x,x]2)

4x2 of a (t, r)-broadcasting set. For d the Euclidean `2

distance, this problem is intimately related to efficient sphere packing. To stay as

close to the discrete context as possible, let d be the `1 distance. Let δ′t,r(R2) be the
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smallest density of a (t, r) broadcasting set in R2. Note that in this definition being

(t, r) broadcasting and being (1, r
t
) broadcasting are equivalent. In fact for α > 0,

δ′t,r(R2) = δ′αt,αr(R2). Analogously to Conjecture 2.3.1, we believe

Conjecture 2.6.2. There exists γ0 > 0 such that for all γ ≤ γ0,

δ′1,γ(R2) = lim
ε→0

δ′1−γ/2,ε(R2) = 1
4(1− γ

2 )2

The right equality follows from the fact that the set Tε = {ma+ nb : m,n ∈ Z} with

a = (1− γ
2 − ε, 1−

γ
2 − ε) and b = (1− γ

2 − ε,
γ
2 + ε− 1) is (1− γ/2, ε) broadcasting

and has asymptotic density 1
4(1− γ2−ε)2 , which tends to 1

4(1− γ2 )2 as ε→ 0. Moreover,

the set T0 immediately shows δ′1,γ ≤ 1
4(1− γ2 )2 .

When viewing the discrete setting as an approximation of the continuous setting,

Conjecture 2.6.2 would indicate that the minimal t0 as a function of r in Conjecture

2.3.1 would be at most linear, i.e. t0 = O(r).
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CHAPTER 3

CAPTURE TIMES IN BRIDGE-BURNING COPS AND ROBBERS

3.1 Introduction

Cops and Robbers is a well-studied game on a graph G in which there are two

players. One player controls the cops, and the other controls the robber. Each cop

and robber occupies a vertex of G and takes turns moving between vertices of the

graph, with the cop choosing its initial positions first. The goal of the cops is to

capture the robber, which occurs when a cop occupies the same vertex as a robber,

and the robber’s goal is to continually evade the cop. The game is played in rounds,

where a round consists of the cops moving, or choosing not to move, and the robber

moving, or choosing not to move.

Several variants of the game have been introduced over the years, including where

the robbers can move more quickly than the cops [6, 32], with imperfect information

[21], and where there is more than one cop [3]. Recently, Kinnersley and Peterson

[44] introduced the variant bridge-burning cops and robbers. In the bridge-burning

version, the cops and robber may only move to vertices adjacent to the one they

currently occupy, however each time the robber moves from vertex u to vertex v, the

edge uv is erased from the graph. Using the notation introduced in [44], let cb(G) be

the bridge burning cop number, which is the minimum number of cops required to

catch the robber on the graph G in the bridge-burning game. Kinnersley and

Peterson studied the game on numerous graphs including paths Pn, cycles Cn,

complete bipartite graphs Km,n, hypercubes Qn, and two dimensional finite grids

Gm,n [44].

A related notion to cb(G) is the capture time of G, denoted captb(G). The

bridge-burning capture time is the minimum number of rounds it takes for the cop

to capture the robber. The capture time of cops and robbers was introduced in 2009
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by Bonato, Golovach, Hahn, and Kratochv́ıl [13] and has been studied on trees [61]

and planar graphs [50]. Kinnersley and Peterson [44] showed that if one cop can

capture the robber on a graph G, then captb(G) = O(n3) and conjectured that there

exists a graph G such that cb(G) = 1 and captb(G) = Ω(n3). We generalise their

result by showing that captb(G) = O(ncb(G)+2) and prove the matching lower bound

analogous to the one in their conjecture for cb(G) ≥ 3.

Theorem 6. There exists a universal constant C > 0 such that the following holds.

For every k ≥ 3 and n sufficiently large, there exists a graph Gn such that

v(Gn) = n, cb(Gn) = k, and

C
nk+2

kk+2 ≤ captb(Gn).

In fact, in Proposition 10 we show that for all G on n vertices captb(G) ≤ ncb(G)+2

2cb(G)! ,

which shows that even the asymptotics in cb(G) are fairly tight.

In Section 3.2, we present some preliminary and additional results and in Section

3.3 we proof Theorem 6.

3.2 Capture times

In this paper, we will show that the graph G on n vertices with cop number k ≥ 3

which maximizes the capture time satisfies

C
nk+2

kk+2 ≤ max{captb(G) : cb(G) = k} ≤ C ′
nk+2

k!

for some universal constants C and C ′.

First, we show that the capture time of Kn,n is Θ(n2). Our proof significantly

simplifies the proof given in [44, Theorem 5.2]. In order to prove this, we need the

following slight strengthening of a theorem from Kinnersley and Peterson [44,
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Theorem 2.2].

Lemma 7. If ∃ X ⊂ V (G), such that G[X] is a clique and X ∪ Γ(X) = V (G), then

cb(G) = 1 and captb(G) = O(n2), where Γ(X) is the neighbourhood of X.

Proof. Place the cop on any vertex in X. Subsequently, always move the cop to a

vertex in X adjacent to the position of the robber. Note that the robber can never

move onto a vertex in X and, moreover, can never remove an edge incident to X.

Hence, X ∪ Γ(X) = V (G) remains constant throughout the game. After each round,

the cop is adjacent to the robber, so the robber must move in every round. Given

that the robber removes one edge in every round, eventually he must move into X,

as all the other possible edges have been removed. As there are O(n2) edges, this

must happen within O(n2) moves.

This lemma provides the cop number and an upper bound in the following

proposition.

Proposition 8. Kn,n has capture time Θ(n2)

Proof. As any two adjacent vertices in Kn,n satisfy the conditions in Lemma 7, we

find that cb(Kn,n) = 1 and captb(G) = O(n2).

On the other hand, we consider the following strategy for the robber to delay

capture. First, we find an Euler cycle of Kbn2 c,bn2 c (or Kbn2 c−1,bn2 c−1 if bn2 c is odd).

Next, we traverse the following route through Kn,n; to each vertex in Kbn2 c,b
n
2 c,

assign a distinct pair of vertices in Kn,n such that the pairs of vertices from the

same part of Kbn2 c,bn2 c are in the same part of Kn,n. Now, the robber follows the

Euler cycle through Kn,n in the sense that every time he is forced to move, he goes

to an element in the corresponding pair which is available. As the cop is only able

to occupy one vertex of a given pair, there is no way for the cop to obstruct the

robber’s path. This route has length Ω(n2).
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In fact Lemma 7 implies the following result for random graphs G(n, p).

Corollary 9. Let G ∈ G(n, p). Then w.h.p. cb(G) = 1 and captb(G) = O(n2).

Proof. By Lemma 7 it suffices to show that G contains a dominating clique w.h.p.

This follows from a second moment argument included in Lemma 12 in the

Appendix.

For general graphs, we find the following generalization of a result from [44] which

showed this proposition in the case cb(G) = 1.

Proposition 10. Let G be a graph on n vertices, then captb(G) ≤ ncb(G)+2

2cb(G)! .

Proof. Note that as the robber removes an edge with every move, the robber can

make at most e(G) ≤
(
n
2

)
moves before getting caught. Between two moves of the

robber, the cops move around. Without the robber moving, there is no point in the

cops returning twice to the exact same configuration. As there are at most(
n

cb(G)

)
≤ ncb(G)

cb(G)! configurations of the cops on the vertices, it can take at most ncb(G)+2

2cb(G)!

moves before the robber is caught.

The remainder of the paper is dedicated to proving Theorem 6.

3.3 Proof of Theorem 6

We first prove the result for k = 3 and then extend the construction to larger k. We

claim the following graph G has cb(G) = 3 and captb(G) = Θ(n5).
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V (G) = {pi,qi : i ∈ [3n]} ∪ {x1, x2} ∪ {dx, hx}

∪X ∪ Y

∪ {dX,1, dX,2, dY,1, dY,2, hX,1, hX,2, hY,1, hY,2}

∪ {ai : i ∈ [3n]} ∪ {da, ha}

∪ {da,v,1, da,2, ha,1, ha,2}

∪ {bi : i ∈ [3n]}

∪ {db,1, db,2, hb,1, hb,2}

∪ {da,i,1, da,i,2, ha,i,1, ha,i,2 : i ∈ [3]}

∪ {db,i,1, db,i,2, hb,i,1, hb,i,2 : i ∈ [3]}

with |X| = |Y | = 3n.
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E(G) = {pipi+1, qiqi+1 : i ∈ [3n− 1]} ∪ {p1x1, q1x1, pnx2, qnx2}

∪ {pidx, qidx, x1dx, x2dx : i ∈ [3n]}

∪ {x1v : v ∈ X} ∪ {x2v : v ∈ Y } ∪ {uv : u ∈ X, v ∈ Y }

∪ {pid, qid, x1d, x2d : i ∈ [3n], d ∈ {dX,1, dX,2, dY,1, dY,2}}

∪ {vdX,1, vdX,2 : v ∈ X} ∪ {vdY,1, vdY,3 : v ∈ Y }

∪ {aiai+1 : i ∈ [3n]}

∪ {aida : i ∈ [3n]}

∪ {aida,1, aida,2 : i ∈ [3n]}

∪ {vda,1, vda,2 : v ∈ X ∪ Y }

∪ {aix1 : i ∈ [3n]}

∪ {bibi+1 : i ∈ [3n]}

∪ {bidb : i ∈ [3n]}

∪ {bidb,1, bidb,2 : i ∈ [3n]}

∪ {vdb,1, vdb,2 : v ∈ X ∪ Y }

∪ {bix2 : i ∈ [3n]}

∪ {vda,i,1, vda,i,2 : v ∈ X ∪ Y, i ∈ [3]}

∪ {x1da,i,1, x1da,i,2, x2da,i,1, x2da,i,2 : i ∈ [3]}

∪ {pjda,i,1, pjda,i,2, qjda,i,1, qjda,i,2 : j 6≡ i mod 3}

∪ {a(i−1)n+jda,i,1, a(i−1)n+jda,i,2 : j ∈ [n], i ∈ [3]}

∪ {vdb,i,1, vdb,i,2 : v ∈ X ∪ Y, i ∈ [3]}

∪ {ajdb,i,1, ajdb,i,2 : j 6≡ i mod 3}

∪ {b(i−1)n+jdb,i,1, b(i−1)n+jdb,i,2 : j ∈ [n], i ∈ [3]}

∪ {hidi : all i, such that di ∈ V (G)}
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ai’s bi’s

pi’s

qi’s

x1 x2

dX,1 dX,2 dY,1dY,2

hX,1 hX,2 hY,1hY,2

X Y

Figure 3.1: The graph G described in the proof of Theorem 6. Most of the doors and
holes are omitted though all the other vertices and edges are displayed.

For an illustration of G, see Figure 3.1.

This graph G consists of three cycles, {ai}i, {bi}i and {xi, pi, qi}i, a complete

bipartite graph on the sets X and Y and a great number of doors, di’s, and holes,

hi’s, which are degree one vertices with their neighbours. There are two special

vertices, x1 and x2, in one of the cycles each of which is complete to one of the parts

of the bipartite graph and to one of the cycles. Those are the only edges between

non-door and hole vertices in the graph. The doors and holes restrict the freedom of

the cops; if the robber manages to move to an unguarded door, he will move to the

corresponding hole in the next move, isolating himself from the rest of the graph

and thus winning the game.

Clearly, G has O(n) vertices. We first aim to establish that cb(G) = 3, starting with

the lower bound.
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Lemma 3.3.1. cb(G) ≥ 3. Moreover, if cb(G) = 3, then one cop starts in {ai}i, one

cop starts in {bi}i and one cop starts in {xi, pi, qi}i.

Proof. To see that cb(G) ≥ 3, note that we initially need a cop next to, or on, every

door. In particular, doors da, db and dx. Since Γ(da) = {ai}i, Γ(db) = {bi}i and

Γ(dx) = {xi, pi, qi}i, there is no vertex next to or on more than one of these, so we

need at least three cops.

To see that three cops suffice to catch the robber, consider the following strategy for

the cops. Start one cop on a1, say Alex, one on b1, say Blake, and one on x1, say

Charlie. We will refer to this starting position as the standard position. Note that

these three vertices cover all the doors. Each of the cops will stay on their

respective cycles unless the robber moves onto a vertex adjacent to them, in which

case they catch him.

Lemma 3.3.2. If the cops start in the standard position, then every cop can reach

any vertex in their cycle, while guarding all doors at each of the intermediate steps.

Moreover, if the robber starts and remains in X ∪ Y and the cops start in standard

position and remain in their cycles always guarding all the doors, then it takes

Charlie Ω(n3) moves to get from x1 to x2 and from x2 to x1.

Proof. We will show that every cop can move to a neighbouring vertex in at most

O(n2) steps. Recall that each cycle has diameter O(n).

We first consider Blake’s moves. Blake can move freely between the vertices in

{bkn+j : j ∈ [n]} for any fixed k ∈ {0, 1, 2}, as each of these vertices has the same

neighbourhood outside {bi}i. When changing k, Blake’s neighbourhood in {db,i,j}i,j

changes, so in order to keep guarding all the doors, Alex must move in parallel to

cover Blake’s old neighbourhood. This, in turn, affects Alex’s neighbourhood in

{da,i,j}i,j, which would then have to be compensated by Charlie. Thus, Blake can

move anywhere in {bi}i in O(n) steps.
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a1

an

an+1

a2n

a2n+1

a3n

da,1,1

da,1,2

da,2,1

da,2,2

da,3,1

da,3,2

p3i+1

p3i+2

p3i+3

Figure 3.2: The graph described in the proof of Lemma 3.3.2. The central vertices
are doors, and the other vertices form cycles {ai}i and {pi, qi, xi} patrolled by Alex
and Charlie respectively which watch the doors.
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For Alex, the concerns are very similar. Two adjacent vertices in {ai}i have different

neighbourhoods in {db,i,j}i,j, so for every consecutive step Alex takes, Blake has to

take n steps. Hence, Alex can move anywhere in O(n2) steps. Moreover, to move to

a vertex at distance Ω(n) in the cycle {ai} takes Ω(n2) moves.

Finally, every move by Charlie requires O(n) steps of Alex, which in turn requires

O(n2) steps by Blake. Hence, Charlie can move anywhere in O(n3). Moreover, to

move from x1 to x2 and back takes Ω(n3) moves.

We need to exclude the case that the robber doesn’t start in X ∪ Y .

Lemma 3.3.3. If the cops start in the standard position and the robber starts on

any vertex that is not in X ∪ Y , then the robber is caught in O(n3) moves.

Proof. If the robber starts on a door or hole or x1 or x2, then the cops can

immediately catch or corner him.

Alternatively, suppose the robber starts in one of the cycles. If the cops stay in their

cycles, they can move along the cycles while guarding all the doors as shown in the

previous lemmas. This implies that the robber cannot leave the cycle he starts in. It

is easy to catch a robber on a cycle in O(n) moves. Every step by the cop can

require up to O(n2) moves by the other cops, so the cops need O(n3) moves to catch

the robber.

Now that we may assume the robber starts in X ∪ Y , we are ready to show that

Alex, Blake and Charlie will succeed in catching the robber.

Lemma 3.3.4. cb(G) = 3

Proof. Lemma 3.3.1 shows we need at least three cops, so we only need provide a

bound from above.

Consider the cops starting in the standard position. If the robber starts outside

X ∪ Y , then the cops can catch the robber according to Lemma 3.3.3. Hence, we
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ha da ai

aj

da,v,1

da,v,2

ha,v,1

ha,v,2

v

Figure 3.3: The graph described in Lemma 3.3.5, where v is a vertex in X ∪ Y .

may assume the robber starts in X ∪ Y .

The cops will move in such a way that all doors are guarded at all times. Moreover,

Alex and Blake will stay on {ai}i and {bi}i respectively at all times. Hence, if at

any point the robber leaves the set X ∪ Y , either to a door or to one of x1, x2, then

the cops can immediately seize him. Hence, the robber has to stay inside X ∪ Y .

Finally, to show that the cops can actually capture the robber, it suffices to show

that they can force the robber to keep moving, as he can make at most |X| · |Y |

moves staying on the vertices of X ∪ Y . To this end, Charlie will move between x1

and x2, which by Lemma 3.3.2 is possible while ensuring the cops guard all the

doors at every intermediate step. As x1 is complete to X and x2 is complete to Y ,

this forces the robber to keep moving. Hence, the cops will eventually capture the

robber.

To find the lower bound on the capture time, we need to be sure that the cops do

not have a better strategy.
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Lemma 3.3.5. If the cops start in the standard position and the robber starts in

X ∪ Y , then the cops need to stay on their respective cycles for as long as the robber

stays in X ∪ Y , unless they can capture the robber directly.

Proof. For Charlie, let the robber be on v ∈ X, without loss of generality. If Charlie

leaves the cycle still guarding dX,1 and dX,2, then Charlie must have moved into X.

However, that would imply the cop was previously on x1, so Charlie could have

caught the robber immediately. Hence, Charlie cannot leave the cycle without

allowing the robber to escape.

For Alex (resp. Blake), note that if the robber is on v ∈ X ∪ Y , then leaving their

cycles would mean leaving either da,v,1 or da,v,2 (resp. db,v,1 or db,v,2) unguarded,

providing an escape route for the robber, as seen in Figure 3.3.

Lemma 3.3.6. captb(G) = Ω(n5)

Proof. By Lemma 3.3.1, the cops must start in standard position or equivalent.

The robber will follow the following strategy. He will fix a walk of length Ω(n2)

through the induced complete bipartite graph on vertex set X ∪ Y , which he can

trivially do. He will proceed to follow this walk as slowly as possible, i.e. only

proceeding to the next vertex when a cop is adjacent to him.

The robber will only move through X ∪ Y , so by Lemma 3.3.5 the cops are confined

to their cycles. Only Charlie can be adjacent to X ∪ Y without leaving his cycle, so

it is up to Charlie to walk up and down between x1 and x2 to force the robber to

move. By Lemma 3.3.2, it thus takes the cops Ω(n3) moves to make the robber move

once. Hence, the robber manages to stay out of the cops hands for Ω(n5) moves.

The construction slowing down Charlie can be extended in a natural way to higher

cop numbers. Consider the following construction for cop number k. For k ≥ 3, let
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Gk be the graph constructed as follows.

V (Gk) = V (G) ∪ {uji : i ∈ [3n], j ∈ [k − 3]} ∪ {duj , huj : j ∈ [k − 3]}

∪ {duj ,i,l, huj ,i,l : i ∈ [3], l ∈ [2], j ∈ [k − 3]}

E(Gk) = E(G) ∪ {ujiu
j
i+1 : i ∈ [3n], j ∈ [k − 3]}

∪ {ujiduj : i ∈ [3n], j ∈ [k − 3]}

∪ {vduj ,i,l : v ∈ X ∪ Y, i ∈ [3], l ∈ [2], j ∈ [k − 3]}

∪ {uj−1
l duj ,i,k : l 6≡ i mod 3, k ∈ [2], j ∈ [k − 3]}

∪ {uj(i−1)n+lduj ,i,k : l ∈ [n], i ∈ [3], k ∈ [2], j ∈ [k − 3]}

where u0
i = bi. The {uji}i form cycles, which are similar to cycles {ai}i and {bi}i.

The doors {duj ,i,l}i,l are connected to respective cycles in the same fashion {ai}i and

{bi}i are connected to the doors {db,i,l}i,l.

Proposition 11. cb(Gk) = k and captb(Gk) ≥ Cv(Gk)k+2k−(k+2) for some universal

constant C.

Sketch of proof. As in Lemma 3.3.1, each of the doors dx, da, db and duj (with

j ∈ [k − 3]) must be guarded initially, so cb(Gk) ≥ k. Moreover, if cb(Gk) = k, then

one cop must start in each of the cycles; {pi, qi, xi}i, {ai}i, {bi}i = {u0
i }i and {uji}i

for j ∈ [k− 3]. As in lemma 3.3.3, if the robber starts in one of the cycles, he will be

captured quickly. If the robber starts in the bipartite graph X ∪ Y , the cops can

prevent him from leaving it. Moreover, by Charlie moving between x1 and x2 the

robber can be forced to use up all the edges between X and Y and thus be forced

out of the bipartite graph, leading to his immediate capture. Hence, cb(Gk) ≤ k.

The robber will follow the same strategy as before; assuming for convenience that n

is even, he plans an Eulerian walk through complete bipartite graph X ∪ Y and only

proceeds with the walk when Charlie is directly adjacent to him. Note that this
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walk has length (3n)2. As in Lemma 3.3.5, the cops are restricted to their cycles as

long as the robber stays in X ∪ Y . As in Lemma 3.3.2, for Charlie to move once

from x1 to x2 and back, the cops must make 2(3n)k + o(n) moves. Thus, the robber

can avoid the cops for at least (3n)k+2 rounds.

Note that the graph has (k + 2)3n+ 18k vertices. Hence,

captb(Gk) ≥ (3n)k+2

=
(
v(Gk)− 18k

k + 2

)k+2

≥
(
v(Gk)
k

)k+2 ( 1− 6
n

1 + 2/k

)k+2

≥ C

(
v(Gk)
k

)k+2

for some constant C.

This completes the sketch of the proof of Theorem 6.

3.4 Appendix

By Lemma 7, it suffices to show that whp G ∈ G(n, p) contains a dominating clique.

We shall abbreviate log 1
1−p

(x) to log(x).

Lemma 12. Let G ∈ G(n, p) with p ∈ (0, 1] constant, then with high probability,

∃X ⊂ V (G) such that G[X] is a complete graph and X ∪ Γ(X) = V (G).

Proof. We use a second moment argument to show the result. Fix some small

ε ∈ (0, 1
2) and let k = (1 + ε) log(n).

Let S be the number of sets X ⊂ V (G) such that |X| = k, X induces a clique and

X ∪ Γ(X) = V (G). Note that the events that X is a clique and that
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X ∪ Γ(X) = V (G) are dependent on disjoint edges.

E[S] =
(
n

k

)
p(

k
2)
(
1− (1− p)k

)n−k

To compute the second moment of S, let A and B be two k-sets of vertices. We will

use the law of total expectation to condition on the size of A ∩B. Note that the

probability that A and B both satisfy the conditions is at most the probability that

they are both independent sets.

E[S2] ≤
k∑
i=0

(
n

k − i, i, k − i

)
p2(k2)−(i2)

≤
((

n

k

)
p(

k
2)
)2
1 +

k∑
i=1

(
n

k−i,i,k−i

)
(
n
k

)2 p−(i2)


Each of these last terms is bounded as:

(
n

k−i,i,k−i

)
(
n
k

)2 p−(i2) ≤ k2ip−(i2)
ni

,

so for the entire sum we find

k∑
i=1

(
n

k−i,i,k−i

)
(
n
k

)2 p−(i2) ≤ max
i∈[k]

k2i+1p−(i2)
ni

 = o(1),

and thus

E[S2] ≤
((

n

k

)
p(

k
2)
)2

(1 + o(1)).

Now we find by Chebyshev’s inequality:

P(S > 0) ≥

[(
n
k

)
p(

k
2)
(
1− (1− p)k

)n−k]2

((
n
k

)
p(

k
2)
)2

(1 + o(1))
→ 1
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Hence, the probability that there is a dominating clique tends to one.
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CHAPTER 4

UNIFORM BOUNDS FOR NON-NEGATIVITY OF THE DIFFUSION

GAME

4.1 Introduction

In 1986, J. Spencer [56] proposed the following solitaire game. Let N chips be

arranged in a pile. At each time step, bN2 c chips are moved one unit to the right of

the pile, and bN2 c chips are moved one unit to the left, with one chip remaining in

the original pile if N is odd. In subsequent steps, we repeat this process

simultaneously on each of the resulting piles.

This solitaire game inspired the chip-firing game, introduced by Björner, Lovász and

Shor [8]. The chip-firing game is played on a simple, connected graph G on the

vertex set [n] = {1, 2, . . . , n} . In the game, each vertex v ∈ [n] is assigned an

amount of chips, wv. The vertex v is allowed to fire if wv ≥ dv, where dv denotes the

degree of vertex v. When vertex v is fired, we remove dv chips from it, and add one

chip to each neighboring vertex. Only one vertex may be fired at a time, but

Björner et al. found that the order of firings does not affect the length of the game.

The game ends when all vertices have fewer chips than neighbors. The chip-firing

game has several applications in computer science, mathematics, and physics

[7, 35, 37, 39].

The diffusion game was first introduced by Duffy, Lidbetter, Messinger and

Nowakowski [28] and is a variant of the chip-firing game. In the diffusion game, let

G be a graph on the vertex set [n]. At time t = 0 each vertex v ∈ [n] is assigned an

initial integer label wv(0). We then update all labels at discrete integer time steps

according to the rule

wv(t+ 1) = wv(t) + |u ∈ Γ(v) : wu(t) > wv(t)| − |u ∈ Γ(v) : wu(t) < wv(t)|.
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Intuitively, this corresponds to moving one chip along each edge whose vertices have

differing numbers of chips, with the vertex with more chips giving a chip to the

vertex with fewer.

For each t ≥ 0, let wG(t) denote the vector (w1(t), w2(t), . . . , wn(t)). We say that

wG(t) ≥ k if wv(t) ≥ k ∀v ∈ [n], and similarly for wG(t) ≤ k.

Long and Narayanan [47] proved that the diffusion game is eventually periodic with

period one or two. That is, there exists T ∈ N and k ∈ {1, 2} such that for all

t ≥ T , wG(t) = wG(t+ k).

Our main result answers one of the questions posed by Long and Narayanan in their

paper:

Theorem 4.1.1. Let n ≥ 2. If wG(0) ≥ f(n) = n− 2, then at all times t ≥ 0 we

have wG(t) ≥ 0.

Indeed, this is the best possible such result, as for each n ≥ 2, the star on n vertices

with n− 3 chips on each leaf and n− 2 chips on the central vertex will, after one

time step, have −1 chips on the central vertex.

We also consider similar bounds based upon the maximum degree d of the graph.

We show the following:

Theorem 4.1.2. Let g(d) be the least possible bound on the minimum number of

chips on a vertex such that non-negativity of the labels is guaranteed.

i If d ≤ 1, then g(d) = 0

ii If d = 2, then g(d) = 1

iii If d = 3, then g(d) ≥ 3

iv If d ≥ 4, then g(d) =∞

For d = 3, we know only that g(3) ≥ 3; it may be that this inequality is tight.
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4.2 Order-based Bounds

We will proceed by defining the weak diffusion game, a more general,

non-deterministic variant of the original diffusion game. We then reduce the

problem to considering a specific initial state, and show that subsequent states can

be represented by a digraph encoding, which need not be unique.

The following weaker result can be obtained by a conceptually simpler version of

our main proof. This version differs from the one presented in two ways: the

digraph encoding used does not require edge weights, and we need only reduce to

the initial state (n− 1, n− 1, . . . , n− 1). One may wish to consider this variation as

a stepping stone to understanding the full proof of Theorem 4.1.1.

Theorem 4.2.1. Let G be a graph with n vertices. If wG(0) ≥ n− 1, then at all

times t ≥ 0 we have wG(t) ≥ 0.

4.2.1 The Weak Diffusion Game

We begin by making two modifications to the diffusion process.

First, rather than transferring chips along edges of a predetermined constant graph,

we instead may choose at each time step whether or not to allow a chip to transfer

between each pair of vertices. That is, at each time step, for each pair of vertices u

and v with wu(t) > wv(t), we are allowed to choose whether or not a chip is

transferred from vertex u to vertex v (with these transfers being the only transfers

allowed). So the original diffusion process is now one of many possible evolutions of

the labels wG.

Second, we permit also the transfer of chips between vertices having equal numbers

of chips.

These modifications give us a process we shall call the weak diffusion game. We can

represent our choices of when to move chips by the values duv(t) (u, v ∈ [n], u 6= v,
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t ∈ N), which satisfy:

duv(t) ∈ {−1, 0, 1}

duv(t) = −dvu(t)

duv(t)(wu(t− 1)− wv(t− 1)) ≥ 0

The labels then evolve according to:

wv(t) = wv(t− 1) +
∑
u6=v

duv(t)

We can now state the following theorem

Theorem 4.2.2. Let G be a graph with n vertices. Suppose that wG is a possible

evolution of the weak diffusion game. Then, given any initial state w′G(0) ≤ wG(0),

there exists an evolution of the weak diffusion game w′G with this initial state, and a

sequence of permutations Pt, such that for each t ≥ 0 and u ∈ [n], we have

w′Pt(u)(t) ≤ wu(t). That is, if we remove some chips from the initial state of some

evolution then, up to a permutation of the vertex labels at each time step, we can

then remove chips from later states to obtain another valid evolution without ever

needing to add chips to a vertex.

Proof. It will suffice to prove this for a removal of one chip from the initial state;

the full result then follows by induction on the number of chips removed.

Furthermore, it will suffice to show this for one time step; the result will then follow

by induction on t.

Without loss of generality, we may assume that the graph of the weak diffusion

game represented by duv(1) is acyclic (since transfers forming a cycle have no net

effect on the distribution of chips). We may then assume that the vertices are

labeled such that if 1 ≤ u < v ≤ n, then wu(0) ≥ wv(0) and duv(1) 6= −1. Now
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suppose w′G(0) is obtained from wG(0) by removing one chip from vertex k. Let

k′ = max{i ∈ [n]|wi(0) = wk(0)}, set the permutation P1 = P = (kk′), and set

d′P (u)P (v)(1) = duv(1). Applying the transfers represented by d′(1) gives us w′G(1)

satisfying w′P1(u)(1) ≤ wu(1), as required.

4.2.2 Proof of Theorem 4.1.1

We begin by providing a link between bounds in the weak diffusion game and

bounds in the original diffusion game, reducing the problem to establishing

non-negativity of the weak diffusion game with specific initial conditions. We then

produce an encoding of the game in a sequence of weighted directed graphs, leading

to non-negativity as an immediate consequence.

Lemma 4.2.3. Let G be a graph with n vertices, let k ≥ 0 and let wG be an

evolution of the original diffusion process with wG(0) ≥ k. Suppose that, for some

t ≥ 0, we have wG(t) � 0. Then there exists an evolution w′G of the weak diffusion

game with w′G(0) = (k + 1, k, k, . . . , k) up to relabeling, and w′G(t) � 0.

Proof. Note that wG is automatically a valid evolution of the weak diffusion game.

Furthermore, we cannot have wv(0) = k ∀v, as otherwise wG would be constant,

contradicting wu(t) < 0. The lemma then follows from Theorem 4.2.2 with an initial

relabeling of the vertices.

It now suffices to show that the weak diffusion game with initial state

wG(0) = (n− 1, n− 2, . . . , n− 2) must remain non-negative.

Definition 4.2.4. Let G be an n-vertex graph, and let wG be an evolution of the

weak diffusion game on G with mean label µ = ∑
v wv(0)/n. A digraph encoding of

a state wG(t) is a weighted directed graph with edge weights λuv(t) for each
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u, v ∈ [n], satisfying:

λuv(t) ∈ [−1, 1] ∩ Z/n

λuv(t) = −λvu(t)

wv(t) = µ+
∑
u

λuv(t)

Some digraph encodings lead more naturally to a representation of the subsequent

state. This property is captured in the following definition:

Definition 4.2.5. Let wG be as above. We say that an encoding of the state wG(t)

is good if λuv(t) ≤ 0 whenever wu(t) ≥ wv(t). Otherwise, we say that the encoding

is bad.

Note that the existence of a digraph encoding for a state wG(t) bounds the number

of chips on each vertex between µ− (n− 1) and µ+ (n− 1). We aim to show that a

digraph encoding exists for every state of our evolution wG. The following lemma

will facilitate this:

Lemma 4.2.6. Let wG be as above. If wG(t) has a digraph encoding, then it has a

good digraph encoding.

Proof. Of the many possible digraph encodings for wG(t), consider an encoding of

least absolute sum—that is, an encoding λuv(t) in which ∑u<v |λuv(t)| is minimized.

We show that this is necessarily a good encoding.

For a contradiction, suppose instead that this encoding is bad. Then there exist u, v

such that wu(t) ≥ wv(t), but λuv(t) > 0. We then have:

∑
w 6=u,v

(λwu(t)− λwv(t)) + λvu(t)− λuv(t) = wu(t)− wv(t)

∑
w 6=u,v

(λwu(t)− λwv(t)) > 0
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So there exists w such that:

λwu(t)− λwv(t) > 0

Now let a = λuv(t), b = λvw(t) and c = λwu(t). We have that a > 0 and b+ c > 0.

Note that we can add a constant k to each of these terms without affecting the

encoded vertex labels. Since this was an encoding that minimized the absolute sum,

we have that |a+ k|+ |b+ k|+ |c+ k| is minimized at k = 0 (subject to

a+ k, b+ k, c+ k ∈ [−1, 1]). Since at least two out of a, b and c are positive, and

none of them are equal to −1, it is clear that taking k = −1/n reduces the sum of

the absolute values without breaking any of the constraints. Thus there is a digraph

encoding with smaller absolute sum, contradicting the minimality of the original

encoding.

It follows that the original encoding was good, as desired.

We can now show the existence of encodings at all time steps:

Lemma 4.2.7. Let wG be as above. Whenever wG(t) has a digraph encoding, then

wG(t+ 1) has a digraph encoding.

Proof. By the previous lemma, we may take a good encoding λuv(t) of wG(t). Then

λuv(t+ 1) = λuv(t) + duv(t+ 1) gives an encoding of wG(t+ 1). In particular,

λuv(t+ 1) ∈ [−1, 1], since duv(t+ 1) > 0 implies wu(t) ≥ wv(t), which in turn implies

λuv(t) ≤ 0.

Corollary 4.2.8. Whenever wG(0) has a digraph encoding, then wG(t) has a

digraph encoding for all t ≥ 0.

We can now complete our proof of Theorem 4.1.1. First, observe that

wG(0) = (n− 1, n− 2, . . . , n− 2) has a digraph encoding where µ = n− 2 + (1/n),

λu,1(0) = 1/n and λuv(0) = 0 for u, v 6= 1. Thus by Corollary 4.2.8, wG(t) has a
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digraph encoding for all t ≥ 0.

This means that for any v, t, we have

wv(t) = µ−
∑
u6=v

λuv(t) ≥ µ− (n− 1) = −1 + (1/n)

Since wv(t) is an integer, this implies wv(t) ≥ 0, as required.

4.2.3 Remarks

The proof of Theorem 4.1.1 applies also to directed graphs and to graphs which

vary over time. We can further extend it to multigraphs; in this case, if m is the

maximum number of edges between two vertices, and our initial state has at least

m(d− 1)− 1 chips on each vertex, then no vertex ever attains a negative number of

chips.

The idea of digraph encodings can also be used to give an alternative proof of Long

and Narayanan’s result that the diffusion game is eventually periodic (although this

method does not bound the eventual period as strongly). Indeed, we extend the

definition of a digraph encoding to allow edges weights to take any value in R. Then

we encode a state using the digraph whose edge-weight sequence, ordered from

largest to smallest, is lexicographically smallest. These edge-weight sequences form

a sequence over time, which is decreasing (in the above order) until all the weights

have magnitude less than 1. This happens in finite time since every edge weight is

in Z/k for some k = k(n), after which an ordinary digraph encoding exists for every

state.

4.3 Bounds using the Maximum Degree

We now prove the bounds given in Theorem 4.1.2. Note that we may restrict our

attention to infinite d-regular trees. Indeed, for any graph G with maximum degree
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d, take a disjoint union of two copies of G, and add edges between corresponding

vertices in the two copies to make the graph d-regular. Then consider the universal

cover H of G – this is the d-regular infinite tree. We may assign labels to H

according to the labels of the corresponding vertices of G; these labels evolve in the

same manner as the corresponding labels on G. Conversely, if any vertex v of a

d-regular tree can attain a negative label in finite time T , then this will be achieved

also with the same initial conditions restricted to the finite graph consisting of all

vertices at distance at most T from v.

Proof of Theorem 4.1.2 1. We consider each case in turn:

i d ≤ 1

The graph G is either a point or a single edge; in either case the result is trivial.

ii d = 2

First, note that g(2) > 0, as a path on three vertices starting with a single chip

on the central vertex attains a negative chip value on the second diffusion step.

Next, consider diffusion on the infinite path with vertex set V = Z, and assume

that all labels are initially at least 1. Suppose for contradiction that some label

subsequently becomes negative, and let T0 be the earliest time at which any vertex

has a negative label. We will us the following lemma:

Lemma 4.3.1. Before time T0, no vertex can have label 0 on two consecutive

time steps.

Proof. Suppose for a contradiction that wv(T − 1) = wv(T ) = 0 for some v ∈ V

and 0 < T < T0. Take the least such T .

Then T > 1 since wv(0) > 0 ∀ v, and wv−1(T − 1), wv+1(T − 1) ≥ 0, as

T − 1 < T0.

It follows that wv−1(T − 1) = wv+1(T − 1) = 0, else the diffusion process would

yield wv(T ) > 0.
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Finally, wv(T − 2) = 0, otherwise wv−1(T − 1), wv(T − 1) and wv+1(T − 1) could

not all be 0.

This contradicts the minimality of T , yielding the desired result.

Now let T1 be the least time such that there exists a vertex v1 with:

(wv1−1(T1), wv1(T1), wv1+1(T1)) = (0, 1, 1) or (1, 1, 0)

If the patterns (0, 1, 1) and (1, 1, 0) do not exist, then we say that T1 =∞. We

have the following lemma about the labels that precede a zero:

Lemma 4.3.2. Let T ≤ T0, T1, and wv(T ) = 0. Then wv(T − 1) = 2.

Proof. By the definition of T0, we have wv(T − 1) ≥ 0. Lemma 4.3.1 tells us that

wv(T − 1) 6= 0. We also have wv(T − 1) 6= 1, else, by the definition of T0, we

would need wv−1(T − 1) and wv+1(T − 1) to equal 0 and 1 in some order,

contradicting the definition of T1. Since wv can change by at most 2 at each step

of the diffusion process, it follows that wv(T − 1) = 2.

We now show that the pattern (0, 1, 1) or (1, 1, 0) exists before time T0.

Lemma 4.3.3. T1 < T0.

Proof. Suppose for a contradiction that the pattern (0, 1, 1) or (1, 1, 0) does not

exist before time T0. We work backwards from time T0. By the definition of T0

and v0, it follows that wv0−1(T0 − 1) = wv0+1(T0 − 1) = 0 and wv0(T0 − 1) = 1.

Now consider time T0 − 2. By Lemma 4.3.2, we have that

wv0−1(T0 − 2) = wv0+1(T0 − 2) = 2. But then the diffusion process cannot attain

wv0(T1) = 1.

Hence the pattern (0, 1, 1) or (1, 1, 0) does exist before time T0.

We shall finish by working backwards from time T1 until we reach another
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Figure 4.1: An example of an infinite 3 regular tree. This figure shows d(3) ≥ 3.

contradiction. We assume that (wv1−1(T1), wv1(T1), wv1+1(T1)) = (0, 1, 1). Then

by Lemma 4.3.2 we have that wv1−1(T1 − 1) = 2. In order that the diffusion

process gives us the stated values at time T1, we require that

(wv1(T1 − 1), wv1+1(T1 − 1), wv1+2(T1 − 1)) = (1, 0, 0) or (0, 0, w), for some

w ∈ N. In either case we have two adjacent 0’s, which by Lemma 4.3.2 must

each be preceded by a 2. However, adjacent 2’s cannot become adjacent 0’s under

one step of the diffusion process.

Having derived a contradiction from our original assumption, we conclude that

no vertex label can ever become negative.

iii d = 3

Figure 4.1 demonstrates that f(3) ≥ 3. Note that the initial state uses only two

different labels: 2 and 3.

iv d = 4

Consider the infinite d-regular tree, and fix some vertex v0. We assign labels to
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each vertex according to its distance from v0; in particular, at time t, we assign

the label wi(t) to all vertices at distance i from v0.

Working backwards from a time T at which wi(T ) = −1, we can construct the

following evolution:

t T T − 1 T − 2 . . . 0

w0(t) −1 d− 1 2d− 1 . . . Td− 1

w1(t) d− 2 2d− 4 . . . Td− 2T

w2(t) 2d− 5 . . . Td− 2T − 1
... . . . ...

wT (t) Td− 3T + 1

Thus g(d) > Td− 3T + 1 for all T > 0, so g(d) =∞, as required.

4.4 Concluding Remarks

Our results on maximum degree bounds are incomplete; specifically, we leave the

following unanswered:

Question 4.4.1. What is g(3)? In particular, is it finite?

More generally, when g(d) was found to be infinite, we needed to use arbitrarily

large ranges of initial labels in order to attain negative labels for a given minimum

initial label.

This raises the following question, originally asked by Long and Narayanan in the

equivalent context of infinite graphs of bounded degree:

Question 4.4.2. Does there exist g(d, k) <∞ such that for any graph G of

maximum degree d, if the vertices of G are given initial labels in [g(d, k), g(d, k) + k],

then all vertex labels in this diffusion game remain non-negative?
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CHAPTER 5

ETERNAL GAME CHROMATIC NUMBER

5.1 Introduction

The vertex colouring game was introduced by Brams [34] in 1981; it was later

rediscovered by Bodlaender [10]. In this game, two players, Alice and Bob, take

turns choosing uncoloured vertices from a graph, G, and assigning a colour from a

predefined set {1, . . . , k}, such that the resulting partial colouring of G is proper.

Bob wins, if at some stage, he or Alice chooses a vertex that cannot be properly

coloured. Alice wins if each chosen vertex can be properly coloured. The game

chromatic number χg(G) is the smallest integer k such that if there are k colours,

Alice has a winning strategy in the vertex colouring game. This number is well

defined, as Alice can win if the number of colours is at least the number of vertices.

The vertex colouring game has been well studied [25, 29, 36, 62]. In particular,

Bohman, Frieze and Sudakov [11] studied the game chromatic number of random

graphs Gn,p and found that with high probability,

(1− ε) n
log(pn) ≤ χg(Gn,p) ≤ (2 + ε) n

log(pn) , where all logarithms have base 1
1−p . Keusch

and Steger [43] improved the result to χg(Gn,p) = (1 + o(1)) n
log(pn) with high

probability, implying χg(Gn,p) = (2 + o(1))χ(Gn,p) with high probability by a classic

result of Bollobás [12]. Both of the results require lower bounds on p decaying with

n slowly. Frieze, Haber and Lavrov [31] studied the game on sparse random graphs,

finding that for p = d/n, χ(Gn,p) = Θ( d
ln(d)), where d ≤ n−1/4 is at least a large

constant.

This vertex colouring game requires Alice and Bob to colour the vertices once,

attaching no value to the colouring that is produced at the end of the round. In a

variant of the game called the eternal vertex colouring game recently introduced by

Klostermeyer and Mendoza [45], the focus is shifted by continuing the game after a
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colouring is produced.

In the eternal vertex colouring game, there is a fixed set of colours {1, . . . , k}. The

game consists of rounds, such that in each round, every vertex is coloured exactly

once. The first round proceeds precisely the same as the vertex colouring game,

with Alice taking the first turn. During all further rounds, players keep choosing

vertices alternately. After choosing a vertex, the player assigns a colour to the

vertex which is distinct from its current colour such that the resulting colouring is

proper. Each vertex retains its colour between rounds until it is recoloured. Bob

wins if at any point the chosen vertex does not have a legal recolouring, while Alice

wins if the game is continued indefinitely. The eternal game chromatic number

χ∞g (G) is the smallest number k such that Alice has a winning strategy. Note that if

k ≥ ∆(G) + 2, there will always be a colour available for every vertex, so χ∞g (G) is

well-defined.

As Alice and Bob alternate their turns, the parity of the order of the graph

determines whose turn it is at the beginning of the second round. For even order,

Alice always has the first move, while for odd order Bob gets to play first in all even

rounds.

This game has not been well studied, but Klostermeyer and Mendoza [45] obtained

some basic results pertaining to paths, cycles, and balanced bipartite graphs.

In this paper, we determine χ∞g (Gn,p) for n odd by putting together the following

two results.

Theorem 13. For all p ∈ (0, 1) constant, for odd n, with high probability,

χ∞g (Gn,p) = (1 + o(1))pn2 .
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Theorem 14. For all p ∈ (0, 1) constant, for even n, with high probability,

χ∞g (Gn,p) ≤ (1 + o(1))pn2 .

Moreover, when p = 1
l

for some l ∈ N,

χ∞g (Gn,p) = (1 + o(1))pn2 .

The difference in the even and odd cases is because when n is odd, Bob moves first

in the second round. Also, note that we made no efforts to optimize o(n) terms. For

the unresolved case when n is even and p 6∈ {1
2 ,

1
3 , . . . }, we conjecture the

following.

Conjecture 5.1.1. ∀p ∈ (0, 1) \ {1
2 ,

1
3 , . . . },∃ε > 0 such that with high probability,

χ∞g (Gn,p) ≤ (1− ε)pn2 .

The structure of the paper is as follows. In Section 5.2, we prove the upper bound

for χ∞g (Gn,p). In this proof, we make no distinction between odd and even values of

n. In Section 5.3, we prove the corresponding lower bound for odd n. In Section 5.4,

we prove a generalization of the result in Section 5.3, which we then use in Section

5.5 to get the lower bound for the case p = 1/l for some l ∈ N. Along the way, we

use various structural results about the random graph Gn,p. As the proofs of these

are usually quite easy but technical, we collect all of them in Section 5.7. Finally in

Section 5.6, we provide answer to one of the questions posed in the paper of

Klostermeyer and Mendoza.

Throughout the paper we will use the following conventions. We say that a result

holds in Gn,p with high probability (whp) if the probability that it holds tends to 1

as n→∞. The neighbourhood of a vertex v in a graph, G, denoted Γ(v), will be
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the vertices of G that v is connected to, as well as v itself. The partition of a set X

will refer to a collection of disjoint non-empty subsets whose union is X.

5.2 Upper bound

In this section, we show the following proposition.

Proposition 15. For any fixed p, ε ∈ (0, 1), whp χ∞g (Gn,p) ≤ (p2 + ε)n.

To prove this, we formulate a deterministic strategy for Alice and prove that whp

this strategy enables her to prevent Bob from winning when the game is played with

(p2 + ε)n colours.

The biggest danger facing Alice is that at the end of some round, Bob would

manage to introduce all the colours in the neighbourhood of at least one vertex. He

could then win by choosing one of those vertices at the beginning of the next round.

Thus, her strategy should be to ensure that at any point of each round, she has

coloured roughly as many vertices in the neighbourhood of any single vertex as Bob

has, and she should use few colours on them. If, at some point during a round, a

vertex has many colours in its neighbourhood compared to other vertices, Alice

might be forced to colour it so Bob cannot win by choosing it later that same round.

Fortunately for Alice, the number of times she is forced to colour a vertex with many

different coloured neighbours is so few that she can still follow her strategy.

Consider the following four properties of a graph Gn,p.

1. Every vertex of Gn,p has degree at most (p+ ε
100)n

2. There exists a constant K = K(ε, p) such that Gn,p does not contain sets

A,B, S ⊂ V (G), with |A ∩B| = 0, |A| = |B| ≥ ε
200n, |S| = K, such that every

v ∈ S is connected to at least ε
200n more vertices in B than in A.

3. There exist constants β = β(ε, p), ε
100 > β > 0 and C = C(ε, p) such that the

following holds: for any colouring of Gn,p by (p2 + ε)n colours, the number of
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vertices that have all but at most 2βn colours in their neighbourhood is at

most C log n.

4. There exist constants γ = γ(ε, p) > 0 and D = D(ε, p) such that, in any

colouring of Gn,p by (p2 + ε)n colours, the number of vertices that have all but

at most γn of the colours 1, 2, ..., ε
200n in their neighbourhood is at most

D log n.

We prove in the appendix that each of these holds whp in Gn,p. For the remainder

of this paragraph, we will assume 1 through 4 hold for the graph Gn,p. Note that as

we are assuming finitely many properties, each of which holds whp, then whp all of

them hold simultaneously.

For a particular round of the game, let Ai and Bi denote the sets of vertices played

by Alice and Bob respectively in the first i moves of that round. We shall define the

vertices that threaten Alice’s chance of winning as dangerous.

Definition 5.2.1. For a fixed round of play, let Di denote the set of dangerous

vertices at i moves, denoted Di. A vertex v belongs to Di if for some number of

moves j ≤ i, Bob has played at least ε
100n times more in the neighbourhood of v than

Alice has, i.e. |N(v) ∩Bj| ≥ |N(v) ∩ Aj|+ ε
100n.

We additionally define vertices that Alice can colour to maintain some symmetry in

the game as follows.

Definition 5.2.2. Let S be a finite subset of vertices of a graph, G. For a vertex

v 6∈ S, we say that a vertex w mirrors v with respect to S if w 6∈ S and for any

t ∈ S, G contains an edge vt if and only if it contains an edge wt.

Let C = {1, 2, ..., (p2 + ε)n} be the set of colours used in the game. We call a colour

large if it is at least ε
200n, and small otherwise.

Alice will use the following strategy at the ith move of a round: from the list below,

she chooses the first point that applies, and colours the corresponding vertex with
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smallest colour available to that vertex. If there are multiple vertices for the same

point on the list, she chooses one of these arbitrarily.

1. If there is a vertex v that misses less than βn colours in its neighborhood and

such that v has not yet been coloured in the current round, she chooses v.

2. If Bob played a vertex w for his previous move, w is not dangerous, and there

is a vertex v which mirrors w with respect to Di, she chooses v.

3. She chooses an arbitrary vertex.

We shall prove that because 1, 2, 3, and 4 hold, selecting vertices in order of priority

will ensure that Bob can never win the eternal vertex colouring game for sufficiently

large n. To show Bob cannot win, we prove the following lemma.

Lemma 5.2.3. For n sufficiently large, at the beginning of the kth round of play for

k ≥ 2, the following two conditions hold:

• During the (k − 1)st round, there was no vertex v such that number of times Bob

played in neighbourhood of v was more than ε
50n greater than number of times Alice

played in neighbourhood of v.

• Alice used no more than ε
100n colours in (k − 1)st round.

Then, by playing according to the above described strategy, Alice ensures the

following:

• Bob does not win during kth round

• During kth round, there is no vertex v such that number of times Bob played in

neighbourhood of v is more than ε
50n greater than number of times Alice played in

neighbourhood of v.

• Alice uses no more than ε
100n colours in the kth round.

Note that Lemma 5.2.3 implies that, if Alice plays according to the strategy

described above, Bob can never win the eternal graph colouring game.

88



Proof. The first step is to establish that at beginning of the round, each vertex

misses more than 2β(ε, p)n colours in its neighbourhood, so that there is no

immediate threat to Alice. In the first round, this is immediate, as no colour is used

yet. When k ≥ 2, Alice uses at most ε
100n colours in the neighbourhood of any vertex

v. Bob played at most ε
50n more moves in the neighbourhood of v than Alice did, so

by property 1, Bob played at most (p2 + ε
200 + ε

100)n colours in the neighborhood of

v. Hence, at least 39ε
40 n > 2β(ε, p)n colours are missing from the neighbourhood of v.

Now, if some vertex misses at most βn colours at any point during the round, then

in particular at least one of the times βn, 2βn, ..., bβ−1cβn, this vertex missed at

most 2βn colours. By property 3, we conclude there are at most Cβ−1 log n = o(n)

vertices that, at some point in this round, have missed at most βn colours. Recall

that colouring vertices that miss at most βn colours is of the highest priority in

Alice’ strategy. If Bob were to create a vertex seeing all colours that was not yet

played in this round, Alice must have spend the previous βn moves playing in other

vertices missing at most βn colours in their neighbourhoods. However, this

contradicts the fact that there were at most Cβ−1 log n < βn such vertices. Hence,

Alice can colour all such vertices in time.

Next, note that Alice uses o(n) (and in fact only constantly many) moves that are

arbitrary. If Alice colours an arbitrary vertex, then either Bob played a dangerous

vertex for his previous move or she cannot mirror Bob on the current set of

dangerous vertices. By property 2, there are at most K vertices declared dangerous

during the round, so Bob can play in a dangerous vertex no more than K times. On

the other hand, consider if Bob did not play dangerous vertex and Alice cannot

mirror his move on D, the set of dangerous vertices. If we partition the rest of the

graph into 2|D| ≤ 2K classes according to which vertices of D they are connected to,

Bob must have just played last vertex from one of these classes. Hence, Alice must

have played at most K + 2K = O(1) arbitrary moves in any particular round.
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Following this strategy, Alice also ensures that Bob will play in the neighbourhood

of any vertex at most ε
50n more than Alice does. Indeed, once Bob has played ε

100n

more colours in the neighbourhood of any vertex, v, it is declared dangerous. She

then plays in neighbourhood of v whenever Bob does, except o(n) times when she

plays a move of type 1 or an arbitrary vertex.

Finally, note that Alice uses large colours only if the vertex she wants to colour is

connected to all the small colours. If at any point during the round a vertex is

connected to all the small colours, then at least one of the times γn, 2γn, .., bγ−1cγn,

this vertex must have been missing at most γn colours. By property 4, there could

have only been at most Dγ−1 log n = o(n) vertices that were connected to all small

colours at some point in this round. Hence, as she can colour all other vertices with

small colours, Alice uses at most ε
200n+Dγ−1 log n < ε

100n colours during the

round.

5.3 Lower bound for odd n

In this section, we prove the lower bound for the eternal game chromatic number on

a graph with an odd number of vertices.

Proposition 16. For any p, ε ∈ (0, 1) fixed, whp χ∞g (G2m+1,p) ≥ (p2 − ε)(2m+ 1).

For convenience, we shall let n = 2m+ 1. Fix any vertex v of the graph Gn,p.

We will show that whp, Bob can ensure that in the first round, all (p2 − ε)n colours

are in the closed neighbourhood of v in Gn,p. Bob then wins in the first move of the

second round, by choosing v.

Bob can introduce all colours in N(v) by playing in N(v) whenever Alice does, thus

ensuring he plays in at least roughly half of the vertices in N(v) while introducing a

new colour every time. Some set of vertices X outside N(v) might at some point be

adjacent to all unplayed vertices of N(v). If Alice were to play some colour not
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appearing in N(v) in all these vertices, this colour could no longer be introduced to

N(v). Fortunately for Bob, the number of such sets will be very limited, and thus

Bob can take care of them in time.

Consider following two properties of a random graph.

1. Whp, every vertex of Gn,p has degree at least (p− ε
100)n.

2. For all ε > 0, and p ∈ (0, 1), there exist positive constants

δ = δ(ε, p), K = K(ε, p), such that in Gn,p

• Whp, there exist no 3 vertices u, v, w such that the number of vertices in

the neighbourhood of u, but not in the neighbourhood of v or w is at

most δn

• Whp, for any set S of size ε
100n in the graph, there exist at most K

mutually disjoint pairs of vertices {ai, bi} such that at most δn vertices of

S are not in N(ai) ∪N(bi)

Henceforth, we assume our graph has both properties, and fix δ = δ(ε, p) and

K = K(ε, p). In the appendix, we show that indeed whp Gn,p has these

properties.

Note that if at some stage there exists a colour c that does not appear in N(v) and

all vertices not yet played in N(v) are adjacent to a vertex of colour c, then c will

not appear in N(v), which is contrary to Bob’s goal.

We introduce the ideas of a double block and being α away from becoming a double

block in order to describe a strategy Bob should take to achieve his goal of filling the

neighbourhood of a vertex with several colours.

Definition 5.3.1. A pair of vertices a and b is called a double block if at some

stage in the round, all uncoloured vertices in N(v) are in the neighbourhood of either

a or b and neither a or b (if coloured) is coloured with a colour appearing in N(v).

Definition 5.3.2. A pair of vertices a and b is said to be α away from becoming a
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double block, if all but at most α of the uncoloured vertices in N(v) are in the

neighbourhood of either a or b and neither a or b (if coloured) is coloured with a

colour appearing in N(v).

Bob will play according to the following strategy. From the list below, he picks the

highest point that applies.

1. If there exists a colour that appears at least twice outside of N(v) but not in

N(v), then Bob plays it in N(v) if it is a valid colouring.

2. If at least 10K colours appear nowhere in the graph and there are at least ε
100n

uncoloured vertices in the neighbourhood of v, then Bob does the blocking

moves in the chronological order they were called for, if legally possible.

Blocking moves are called for if a pair {a, b} of unplayed vertices is δn away

from becoming a double block. Blocking moves consist of the following steps.

First colour vertex a a colour not yet appearing in the graph, say ca. Second,

unless Alice plays in vertex b or introduces ca in N(v), play ca in N(v) and

repeat for vertex b. If Alice plays in vertex b with a colour cb not appearing in

N(v), play cb in N(v), and finish by playing ca in N(v) on the next move.

3. If legally possible, Bob introduces colours appearing once outside of N(v) into

N(v), in the order in which they were introduced to the game.

4. If legally possible, Bob introduces new colours to N(v).

5. Otherwise Bob does anything.

Note that (2) might involve up to four moves for any pair close to becoming a

double block. If in between these four moves a situation as in (1) arises, situation

(1) takes priority.

Claim 5.3.3. There are no more than 4K moves of type (2) used in the first round.

Proof. Let U denote the set of vertices that are uncoloured in N(v) when the last

blocking moves were played. By the definition of type (2) moves, |U | ≥ ε
100n, so
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property 2 gives the result.

Let T be the first move after which precisely 10K − 1 colours are missing in Gn,p

during the first round. We collect the following observations about T :

• T exists and at T , at least εn vertices in N(v) are uncoloured

We shall show that T ≤ (p− 2ε)n. After Bob’s first (p2 − ε)n moves, Alice has also

played (p2 − ε)n moves. As |N(v)| ≥ (p− ε
100)n, at this stage at least 199

100εn vertices

in N(v) are uncoloured. Bob spent at most 4K moves playing according to (2), and

when he did not, he always introduced a new colour in N(v), if he legally could.

Note that if there were still colours missing from Gn,p and there were uncoloured

vertices in N(v), moves of type (4) were always legal. Hence, unless all colours

appear in the graph, Bob played at least (p2 − ε)n− 4K colours in N(v) and hence

in Gn,p.

• At T , at most 18K colours are missing in N(v)

Between two consecutive moves of Bob before T, the number of colours appearing

outside of N(v) but not in N(v) can increase by at most 2. In fact it only increases

if Bob makes a move of type (2). Hence, there are at most 8K such colours at time

T , and result follows.

• At T , Bob has played at most 8K (1) moves.

Let c be the number of colours appearing outside N(v) and not in N(v). Note that

between two consecutive moves of Bob up to time T , c increases only if Bob plays a

(2) move, in which case it increases by at most 2. On the other hand, note that Bob

only plays (1) moves directly after Alice plays a colour already appearing outside

N(v). Hence, c decreases whenever Bob plays a (1) move. By 5.3.3, there were at

most 4K (2) moves, so there were at most 8K (1) moves.

• No pair of vertices is closer than δ
2n to becoming a double-block at any point up

to T
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We know from 2 that at the beginning of the game, no pair is closer than δn to

becoming a double block. Up to time T , whenever a pair gets closer than δn to

becoming a double block, no (3)-(5) moves are played until this pair is eliminated.

However, there are at most 12K (1) and (2) moves played until T . Hence, no pair

can be closer than δn− 12K ≥ δ
2n to becoming a double-block up to T .

• Every colour that does not appear in N(v) at T appears at most once in Gn,p

Note that the only time before T that there is a colour appearing twice outside

N(v), but not inside, is directly after Alice has played this colour. In response, Bob

immediately plays that same colour in N(v), which is possible as no pair of vertices

is a double block. Hence, if Bob made the last move before T , the statement follows.

If the last move before T was by Alice, she must have introduced a new colour into

the graph by the definition of T , which again implies the statement.

Next we claim:

Claim 5.3.4. In the 18K moves of Bob following T , he will introduce all colours in

N(v).

Proof. Moves of type (2) are no longer played after T by their definition. In the

next 36K moves, 18K of which are made by Bob and the 18K by Alice, no

complete double-block can be created, as all are at least δ
2n > 36K moves away.

Since at T at least εn vertices of N(v) are still uncoloured, during the next

36K < εn moves, there are ample uncoloured vertices in N(v). Hence, Bob can and

will introduce a new colour to N(v) every move until all colours appear there, as he

ceases the (2) moves.

Thus we see that Bob will ensure that all colours appear in N(v) during the first

round and he will win in the first move of the second round by picking v.
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5.4 Generalization of the lower bound for odd n

Proposition 16 doesn’t trivially extend to even n, as it is not enough for Bob to let

all colours appear in the neighbourhood of a fixed vertex because Alice could use

her first move in the second round to remove one of the colours from this

neighbourhood.

If Bob can manage to play all colours in the neighbourhood of two vertices, with no

colour appearing uniquely in the intersection of the neighbourhoods, then Alice can

not. This limits how Bob can colour the intersection of two neighbourhoods of

vertices. By increasing the number of vertices that simultaneously see all colours,

the size of this intersection can be reduced. Our aim is to show that if p = 1/k for

some k ∈ N, then for any fixed l, Bob can choose l vertices and play all of

(p/2− pl/2− ε)n colours in the neighbourhoods of these vertices. The pl/2n

correction term comes from the intersection of the neighbourhoods of these l

vertices. As l can be taken arbitrarily large, this shows χ∞g (Gn, p) for even n and

p = 1/k.

In this section, we prove a generalization of Proposition 16, showing that if V (G) is

partitioned into constantly many parts and each of the parts is assigned a set of

colours of size roughly half the size of the part, Bob can guarantee all these colours

to appear in the parts by the end of the first round. This generalizes the notion that

Bob could achieve this in the single set N(v). In the next section, we will fix some

set of vertices X of constant size and induce partition {AI : I ⊂ [l]}, where

AI = {v ∈ V : N(v) ∩X = I}. We show in Lemma 19, that for the special case

p = 1
k
, there exists an appropriate way of assigning colours to the AI ’s such that

each vertex in X will see all colours after the first round.

Proposition 17. ∀ε, η, γ > 0, l ∈ N, and p ∈ (0, 1), if Xi ⊂ V (i ∈ [l]) are disjointly

chosen independent sets of vertices of the graph Gn,p with |Xi| ≥ γn and
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Yi ⊂ [(p/2− ε)n] with |Yi| ≤ (1−η)|Xi|
2 , then whp Bob can guarantee that at the the

end of round all of the colours in Yi appear in Xi.

To prove Proposition 17 we will use the following generalization of the structural

result in 2.

Lemma 5.4.1. For all m ∈ N, α > 0 and p ∈ (0, 1), there exist positive constants

δ = δ(α, p,m), K = K(α, p,m), such that

• For any set S of size at least αn in the graph, whp there exist no m-sets of

vertices {a1, . . . am} such that at most δn vertices of S are not in ⋃
j N(aj)

• Whp, for any set S of size at least αn in the graph, there exist at most K

mutually disjoint m-sets of vertices {ai,1, ai,2, . . . ai,m} such that at most δn

vertices of S are not in ⋃
j N(ai,j)

In order to prove Propositon 17, we will define the concepts of an end stage, m-block

and α away from becoming an m-block.

Definition 5.4.2. Let Ti be the first move after which at most 10K of the colours

in Yi are missing from Xi, if this exists. After Ti, say Xi is in its end stage.

Definition 5.4.3. Given disjoint sets Xi ⊂ V , at some stage of the round we say a

set {a1, . . . , am} is an m-block if for some i, Xi is not in its end stage, every

uncoloured vertex in Xi is in the neighbourhood of some aj, and no aj is coloured in

some colour also appearing in Xi.

Definition 5.4.4. Given disjoint sets Xi ⊂ V , at some stage of the round we say a

set {a1, . . . , am} is α away from becoming a m-block if for some i, Xi is not in its

end stage, all but α of the uncoloured vertices in Xi is in the neighbourhood of some

aj, and no aj is coloured in some colour also appearing in Xi.

Proof of Proposition 17. Let Cl = 12l
ηγ

+ 4 and let δ = δ(η/4, p, 100Cll) and

K = K(η/4, p, 100Cll) as in Lemma 5.4.1. Bob will play the move of the highest

priority that he legally can according to the following list:
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1. If for some q ∈ [l], some colour c appears Clq times in the graph, but it is

missing from more than l − q of the Xi’s for which c ∈ Yi, Bob plays it in any

of Xi’s where it does not yet appear.

2. If for some i, Xi is in its end stage, Bob plays the missing colours into it,

copying the colour Alice played if it was missing.

3. If there is 100Cll block closer than δn moves away from becoming an m-block

and at least η/4n vertices in the corresponding Xi are uncoloured, Bob kills it.

By killing it, we mean the following sequence of moves. Colour the first vertex

of our 100Cll-set by some colour that appears less than Clq times in the graph

and is missing from at most l − q of the relevant Xi’s. Then make sure in the

next moves that this colour also appears in all of its designated Xi’s. Repeat

this procedure for all vertices of our 100Cll-set.

4. If for some q ∈ [l], some colour appears Clq times in the graph, but it is still

missing from more than l − q + 1 of Xi’s, Bob plays it in any of Xi’s where it

does not yet appear.

5. Bob plays any colour in Yi not yet used in Xi to that Xi, if possible in the

same Xi as Alice played in the previous move.

6. Bob plays anything anywhere.

Note that (3) might involve up to 100Cll(l + 1) moves. If in between these moves a

situation as in (1) or (2) arises, those are resolved first.

Claim 5.4.5. Let C = 100Cll2(l + 1). There were no more than CK (3) moves

called for.

Proof. Let U ⊂ Xi denote the set of vertices that are still uncoloured in Xi when

the last blocking moves were called for, for this Xi. Lemma 5.4.1 says Xi called for

at most 100Cll(l + 1)K (3) moves. Hence, in total at most 100Cll2(l + 1)K = CK

(3) moves are called for.
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Claim 5.4.6. There were no more than 2l
Cl
n moves of types (1),(2),(3) and (4)

during the first round of the game.

Proof. Note that at most n
Cl

colours appear at least Cl times in the graph.

Moreover, these colours prompt a (1) or (4) move at most l times. Finally, there are

at most 10Kl (2) moves. Hence, there are at most l
Cl
n+ 10Kl + CK ≤ 2l

Cl
n, given

n ≥ ClK
l

(10l + C).

We collect the following observations about Ti:

• Ti exists and, at Ti, at least η
4n vertices in Xi are still uncoloured

At the end of round one there were |Xi| moves in Xi. Moreover, by Claim 5.4.6 there

were at most 2l
Cl
n (1)-(4) moves. After Bob’s first |Yi|+ 2l

Cl
n in Xi, he has played at

most 2l
Cl
n (1)-(4) moves. He also played in Xi after every move of Alice in that set,

except the times when he played (1)-(4) moves. Thus, at least η|Xi| − 6l
Cl
n ≥ ηγ

2 n of

the vertices in Xi are uncoloured. As Cl ≥ 12l
ηγ

, this gives the result.

• Let C ′ = C + 10l. At Ti, Bob has played at most C ′K (1) moves.

For a colour j, let qj be the number such that colour j is missing from l − qj of its

designated sets. Let rj be the number of times j appears in the graph. If

rj − qjCl > 0, then Bob is forced to play a (1) move. If rj − (qj − 1)Cl > 0, then this

induces a (4) move. Let D = ∑
j max{rj − (qj − 1)Cl, 0}. Note that if D > 0, then

Bob must play a (1),(2),(3) or (4) move. If D increases between consecutive moves

of Bob, he must have played a (2) or (3) move. Moreover, D increases by at most 2

in that case. On the other hand, if Bob is prompted to play a (1) move, D decreases

by at least Cl − 1 > 2. Hence, there are at most as many (1) moves as there are (2)

and (3) moves, i.e. at most CK + 10Kl (1) moves.

• No pair of vertices is closer than δ
2n to becoming a 100Cll block at any point up to

Ti

By Lemma 5.4.1, at the beginning of the game no 100Cll-set of vertices is closer
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than δn to becoming a 100Cll block. Whenever, up to time Ti, a 100Cll-set gets

closer than δn to becoming a 100Cll block, no (4)-(6) moves are played until this

pair is eliminated. However, there are at most (2C + 10l)K (1) and (3) moves

played until Ti. Hence, no 100Cll-set gets closer than δn− (2C + 10l)K ≥ δ
2n to

becoming a 100Cll block up to Ti.

• Every designated colour that does not appear in Xi at Ti appears at most Cll + 2

times in our graph

By the definition of (1) moves, some colour c can never appear Cll + 2 times in our

graph, yet not appear in some of Xi’s with c ∈ Yi.

Next we claim:

Claim 5.4.7. In the 10Kl + C ′K moves of Bob following Ti, he will introduce all

colours in Xi.

Proof. Note that while there are still colours missing from Xi in its end stage, Bob

only plays (1) and (2) moves, both of which copy the colour Alice played. Hence,

the colours missing from Xi can be played at most 2l times before being played into

Xi. At that stage, the colour is played at most Cll + 2 + 2l < 100Cll times and no

100Cll-set is closer than δ
2n to becoming a 100Cll block, so no 100Cll block will be

formed in the endstage of Xi. Hence, we can still play this colour in Xi. As we can

introduce all the missing colours and we play at most C ′K (1) moves, we need at

most 10Kl + C ′K moves to introduce them all.

Thus, since Bob can introduce all colours into Xi during the end game, the proof of

Proposition 17 is complete.

Having proven Proposition 17, we are ready to look at even n.
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5.5 Even n

In this section, we shall prove that for particular values of p, we can achieve the

same lower bound for even n as for odd n.

Proposition 18. Let p = 1/k for some k ∈ N, and ε > 0. Then whp

χ∞g (G2m,p) ≥ (p/2− ε)2m.

For convenience write n = 2m. For given p, ε > 0, fix l ∈ N, such that

pl < ε/100.

Lemma 19. Let X ⊂ V (G) be a set of l vertices and p = 1/k for some k ∈ N.

There exists η > 0, and a function f : P(X) 7→ P((p/2− pl/2− ε)n), assigning to

every subset X ′ ⊂ X, p|X′|(1− p)l−|X′|(1− η)n2 colours, such that⋃
X′:x∈X′⊂X f(X ′) = [(p/2− pl/2− ε)n] for every x ∈ X.

To prove this lemma we will use the following auxiliary lemma.

Let B(X) be the set of all partitions of the set X.

Lemma 20. Consider any k ∈ N. Let p = 1/k and |X| = l, then there exists

g : B(X)→ [0, 1], such that for all A ⊂ X;

∑
T :A∈T∈B(X)

g(T ) = p|A|(1− p)l−|A|

Proof. Define g as

g(T ) =


k−l (k−1)!

(|T |−1)! if |T | ≤ l

0 else

Fix A ⊂ X and evaluate ∑T :A∈T∈B(X) g(T ). Consider ordered partitions of X \ A

into k − 1 potentially empty sets. Each of these contributes exactly k−l to this sum.

To see this, consider a particular ordered partition of X \ A into k − 1 potentially

empty sets, with m non-empty sets. This corresponds to a partition T of X \A into

m parts, which has weight g(T ) = k−l (k−1)!
(m−1)! . Note that to find ordered partitions
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into k − 1 potentially empty sets corresponding to T , we need to pick the locations

of the m sets among the k − 1 options. There are (k−1)!
(m−1)! ways to do this. Hence,

every ordered partition of X \A into k− 1 potentially empty sets contributes weight

exactly k−l to the sum.

Noting that there are exactly (k − 1)l−|A| ordered partitions of X \ A into k − 1

potentially empty sets, we can evaluate the sum as

∑
T :A∈T∈B(X)

g(T ) = (k − 1)l−|A|k−l =
(1
k

)|A| (k − 1
k

)l−|A|
= p|A|(1− p)l−|A|

Proof of Lemma 19. Let g : B(X)→ [0, 1] as in Lemma 20 and set

B′(X) = B(X) \ {X}. Note that ∑T∈B′(X) g(T ) = p(1− pl−1). Consider any linear

order on B′(X) and let

f ′ : B′(X)→ P((p/2−pl/2−ε)n), T 7→


 ∑
T ′<T

g(T ′)

 (1− η)n
2 + 1, . . . ,

 ∑
T ′≤T

g(T ′)

 (1− η)n
2


where η is such that

⌊∑
T∈B′(X) g(T )

⌋
(1−η)n

2 = (p/2− pl/2− ε)n. Let

f : P(X)→ P((p/2− pl/2− ε)n);X ′ 7→
⋃

T⊃X′
f ′(T )

Hence;

⋃
X′:x∈X′⊂X

f(X ′) =
⋃

X′:x∈X′⊂X

⋃
T :T⊃X′

f ′(T )

=
⋃

T∈B(X)
f ′(T )

Proof of Proposition 18. Fix X ⊂ V with |X| = l. Sample all edges incident to X.
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For I ⊂ X, let XI = {v ∈ V \X : N(v) ∩X = I}. Note that whp

|XI | ≥ p|I|(1− p)l−|I|(1− η/10)n for any ξ > 0. Use Lemma 19 to find YI = f(I),

such that |YI | ≤ (1−η/10)|XI |
2 . Now sample all the other edges in the graph. By

Lemma 17, whp Bob can guarantee that at the end of round one the colours in YI

appears in XI . By construction of YI , all vertices in X will see all colours and,

moreover, there is no single vertex whose recolouring changes that. Regardless of

Alice’ first move in the second round, Bob can choose a vertex that sees all colours

in his first move in the second round. Thus, the proposition follows.

Note that the condition p = 1/k is essential. In fact, if p 6∈ {1
2 ,

1
3 , . . . }, then whp for

any three vertices v1, v2 and v3, it is impossible to assign colours YI to

XI = {v : N(v) ∩ {v1, v2, v3} = I}, such that |YI | ≤ (1/2 + η)|XI | and⋃
I:i∈I⊂[3] YI = [(p/2− ε)n] for every i ∈ [3]. Crucially, Lemma 20 fails to hold.

Hence, given that Alice can play in roughly half the vertices in N(v) for all v ∈ V ,

at most two vertices at the end of every round can see all colours. Some must

appear uniquely in the intersection, so Alice can recolour one of these in the first

move of the second round. Hence, we cannot expect Bob to win at the beginning of

round two. However, it is not immediately clear whether Bob cannot reintroduce

the colour successfully. We believe this cannot be done, so we conjecture that for all

p ∈ (0, 1) \ {1
2 ,

1
3 , . . . },∃ε > 0 such that whp χ∞g (Gn,p) ≤ (1− ε)pn2 , as stated in

Conjecture 5.1.1.

5.6 Answer to a question of Klostermeyer and Mendoza

We conclude the paper by answering a question posed by Klostermeyer and

Mendoza in their original paper.

They define other variants of the eternal chromatic game on graph. One of them is

greedy colouring game, where Bob must colour whatever vertex he chooses with the
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smallest colour possible. Let χ∞2
g (G) be the smallest number k such that when this

game is played with k colours on G, Alice is guaranteed to win. Further, they

consider the variant of game when not only Bob, but also Alice, must use the

smallest colour available for each vertex she chooses, and define χ∞3
g (G) to be eternal

number of the game played with these rules. Note that clearly χ∞2
g (G) ≤ χ∞3

g (G)

since Alice can, if she wishes so, choose the smallest colour for each vertex she

chooses in any variant of the game and analogously χ∞2
g (G) ≤ χ∞g (G).

Klostermeyer and Mendoza pose the following question about these new variants of

the game.

Question 5.6.1. Let G be a graph with subgraph or induced subgraph H. Is it

necessarily true that χ∞2
g (G) ≥ χ∞2

g (H) ? Is it necessarily true that

χ∞3
g (G) ≥ χ∞3

g (H)?

Indeed, it is not true. Consider the following example.

Proposition 21. For n ≥ 2, χ∞3
g (K1,2n+1) = 3 and χ∞2

g (K1,2n) ≥ 4.

Proof. For χ∞3
g (K1,2n+1) = 3 note that Alice starts every round as the number of

vertices is even. Every round she will first play in the central vertex which will

become the unique element from [3] not yet appearing in the graph. All the other

vertices will now become the former colour of the central vertex.

For χ∞3
g (K1,2n) ≥ 4. assume for a contradiction 3 colours suffice and note that Bob

begins the second round. Let x for the central vertex. Then x is either adjacent to

two different colours or N(x) is monochromatic. In the former case, Bob plays in x

and finds that there is no colour available, a contradiction.

In the latter case, Bob plays in N(x), bringing the number of colours in N(x) to

two. Hence, Alice cannot play in x. She can also not bring down the number of

colours in N(x) as it contains at least three vertices. Thence, when Bob gets to play

his second move in the second round, and plays x, he finds no colours available,
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again a contradiction.

Note that H = K1,2n is an (induced) subgraph of G = K1,2n+1, and

χ∞2
g (G) ≤ χ∞3

g (G) ≤ χ∞2
g (H) ≤ χ∞3

g (H)

This answers all the subquestions in the negative.

Finally, note that while there is no clear relationship between χ∞3
g (G) and χ∞g (G)

for general graphs G, in our definition of strategy of Alice in Section 2, we let her

always play the smallest colour available, and so in particular we show

χ∞3
g (Gn,p) ≤ (p2 + o(1))n whp.

5.7 Appendix

In this appendix, we provide proofs of various structural results about Gn,p that were

used in earlier proofs. Some of them will be shown in a more general form. One of

our main tools will be the following well-known form of Hoeffding’s Inequality.

Lemma 5.7.1. For any ε > 0, n ∈ N, and p ∈ (0, 1),

P(Bin(n, p) ≥ (p+ ε)n) ≤ exp(−2ε2n) and P(Bin(n, p) ≤ (p− ε)n) ≤ exp(−2ε2n).

Note that Hoeffding’s inequality implies property 1 from Section 5.2 and property 1

from Section 5.3.

To prove 3 and 4 from Section 2, we first prove the following result.

Lemma 5.7.2. For all α > 0, p ∈ (0, 1), there exist constants

K = K(α, p), β = β(α, p) > 0 such that whp the following holds. For any colouring

of Gn,p with αn colours, the number of vertices that have all but at most βn colours

in their neighbourhood is at most K log n.

Proof. Let q = 1− (1− p)2/α, β = α(1−q)
8 , and K = 4

(1−q)2 . Without loss of

generality, let 2
α
∈ Z.
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Note that in any colouring of Gn,p by αn colours, we have α
2n colours appearing at

most 2
α

times each.

Assume there exists a set S of K log n vertices missing at most βn colours each. For

n satisfying K log n < α
4n, there exists a set C of α

4n colours appearing at most 2
α

times each such that no vertex in S has any colour from C. In particular, there

must be mutually disjoint sets of vertices S, T1, ..., Tα
4 n

, such that |Ti| ≤ 2
α

for each i,

|S| = K log n and each vertex in S is joined to at least (α4 − β)n sets Ti in our graph.

Now, we consider the probability that such structure exists in Gn,p. For n

sufficiently large, we find there are ∑2/α
i=1

(
n
i

)
≤ 2

(
n

2/α

)
ways of choosing each of the

sets Ti. So for such large n, we have at most

(
n

K log n

)(
2
(
n

2/α

))αn
4

≤ nK logn2αn
4

(
eαn

2

)αn
4

= exp
(
K(log n)2 + αn

4 log n+ α

4n log (eα)
)

ways to choose sets S, T1, ..., Tαn/4. Now for any such fixed choice, the probability

that these sets satisfy the conditions is at most

P
(

Bin
(
αn

4 , q
)
≥
(
q + 1− q

2

)
αn

4

)K logn
≤ exp

−2
(

(1− q)
2

)2
αn

4 K log n


The union bound then gives that the probability of finding appropriate
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S, T1, . . . , Tαn/4 is at most

exp
K(log n)2+αn4 log n+ α

4n log (eα)− 2
(

(1− q)
2

)2
αn

4 K log n


= exp
(
K(log n)2 + α

4n log (eα) +
(

1−K (1− q)2

2

)
αn

4 log n
)

= exp
(
K(log n)2 + α

4n log (eα)− αn

4 log n
)

= o(1)

The result follows.

To conclude property 3, simply plug in α = (p2 + ε), and note that if some value of

β > 0 works, then any smaller one does too, so we can insist on β being not too

large.

To conclude 4, plug in α = ε
200 and note that presence of other colours only helps us,

as the result would still hold even if all the other vertices were also coloured in ε
200n

small colours.

The following implies property 2 from Section 5.2.

Lemma 5.7.3. Fix any ε, and δ greater than 0. Assume K ∈ N is fixed, such that

K > 6ε
δ2 . Whp, if A,B ⊂ V (G) are disjoint subsets with |A| = |B| ≥ εn, then there

are less than K vertices connected to at least δn more vertices in B than in A.

Proof. Assume for a contradiction n ≥ 2K
ε

and there exist A,B, as stated in the

lemma such that there are at least K vertices connected to at least δn more vertices

in B than in A. Let S be a collection of K such vertices. Let A′ = A \ S and

B′ = B \ S. Note that e(A′, S) ≤ e(A, S) and e(B′, S) ≥ e(B, S)−K2, so that

e(B′, S)− e(A′, S) ≥ e(B, S)− e(A, S)−K2 ≥ Kδn−K2 ≥ Kδn/2.

Hence, either e(B′, S) ≥ (|B′| · |S|p) + δKn/8 or

e(A′, S) ≤ (|B′| · |S|p)− 3δKn/8 ≤ (|A′| · |S|p)− δKn/8. The probability of the
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former (the latter follows analogously) is given by;

P (Bin(|B′| · |S|, p) ≥ (|B′|Kp) + δKn/8) ≤ exp
−2

(
δn

8|B′|

)2

|B′|K


≤ exp

(
−δ

2nK

2ε

)

We can choose sets A,B, and S in at most

(
n

|A|

)2(
n

K

)
≤ 23n

ways. Thus, the probability that any such sets A,B and S exist is at most

2 exp
(
−δ

2

2εnK + 3n log 2
)
→ 0

provided K > 6ε
δ2 >

6ε
δ2 log 2.

The proof of property 2 from section 5.3 follows from the fact that for δ(p)

sufficiently small and positive, whp there exists no three vertices u, v, w such that

the number of vertices in the neighbourhood of u, but not in the neighbourhood of v

or w is at most δn by Hoeffding’s Inequality. Property 2 follows directly from the

following lemma, setting m = 2.

Lemma 5.4.1 follows in the same manner, this time using the particular m we

need.

Lemma 5.7.4. Fix m ∈ N, γ > 0, p ∈ (0, 1). Then for any K > 4
γ(1−p)2m , whp Gn,p

does not contain any collection of sets S, T1, ..., TK such that T1, ..., TK are all

mutually disjoint, |S| ≥ γn, |T1| = ... = |TK | = m and for every Ti, all but at most
(1−p)m

4 γn vertices of S are connected to at least one vertex in Ti.
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Proof. Provided n > 2Km
γ

, we can find S ′ ⊂ S such that |S ′| = γn
2 and S ′ is disjoint

from all of T1, ..., TK . For any such fixed S ′, T1, ..., TK , by Hoeffding’s Inequality, the

probability that for each Ti, all but at most (1−p)m
4 γn vertices of S ′ are connected to

at least one vertex in Ti is at most

P
(

Bin
(
γ

2n, (1− p)
m
)
≤ (1− p)m

2 γn− (1− p)m
4 γn

)K
≤ exp

(
−2(1− p)2m

4
γ

2nK
)

= exp
(
−(1− p)2mγKn

4 .

)

There are at most

(
n

m

)K(
n

γn/2

)
≤ nmK2n

= exp (mK log n+ n log(2))

ways to choose such sets S ′, T1, ..., TK . So, as long as K > 4
γ(1−p)2m > 4

γ(1−p)2m log(2),

the result follows.
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