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Preface 

 This dissertation provides an account of efforts to develop computational tools and 

corresponding experimental methods to inform and prioritize ligand discovery efforts for future 

researchers within this lab group and beyond. These tools focus on properties of common orally 

bioavailable drugs, namely absorption and distribution, which comprise a portion of the critical 

ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties.  

 Once ingested, oral drugs are first absorbed across the intestinal barrier before they are 

transported to the liver, the site of potential phase I-III metabolism, and then are distributed 

throughout the body in the circulation, where most drugs bind to serum proteins. Absorption is 

typically measured and reported as human intestinal absorption (HIA), but these measurements 

can be problematic for many reasons, so most researchers use experiments in model cell lines to 

predict HIA. One of the more common model cell lines is Caco-2, a colonic cell line that forms 

monolayers where permeability across this monolayer can be measured as a prediction of this 

absorption. One of the most abundant blood serum proteins that drugs bind to for distribution is 

human serum albumin (HSA), however, a cheaper alternative that scientists typically use in 

experiments is bovine serum albumin (BSA), which is used in this work. 

 In chapter 1, we provide an overview of the drug development process, the importance of 

ADMET properties in drug/ligand discovery efforts, as well as examples of projects our 

extended research group is focused on for ligand discovery efforts. Chapter 2 discusses the 

process used to develop computational models to predict HIA, Caco-2 permeability, and protein 

binding of small molecule drugs, as well as analysis of compounds predicted incorrectly in these 

models. Chapter 3 discusses method development efforts for experimental validation of 

computational predictions to determine protein binding of multiple small molecule drugs. 
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Chapter 4 summarizes results discussed in chapters 2 and 3, as well as highlighting potential 

future directions of this project and proposing initial targets to be used in the models and 

experiments outlined therein. The appendix at the end of this work includes supplementary 

information excluded from chapter 2 for brevity. 
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Abstract 

 The drug development process in the United States is an expensive and lengthy process, 

usually taking a decade or more to gain approval for a drug candidate. The majority of proposed, 

early stage therapeutics fail, even though the typical process narrows from hundreds or thousands 

of small molecules down to one late stage candidate. One reason for failure is due to the drug’s 

poor or unexpected absorption, distribution, metabolism, excretion, and toxicity (ADMET) 

properties. Researchers attempt to predict ADMET properties as a way to help prioritize 

compounds for lead development to minimize expense and time. It was the overall goal of this 

project to further the prediction of two ADMET properties (absorption and distribution) through 

the development and application of quantitative structure-activity (QSAR) relationship 

computational models predicting human intestinal absorption (HIA), Caco-2 permeability (in 

vivo & in vitro measurements of absorption), and protein binding (measurement of distribution). 

These combined models would then be paired with additional experimental methods to help 

prioritize compounds for future ligand discovery efforts in our lab group and for our 

collaborators.  

Five computational QSAR models for each of these three properties were created using 

different molecular descriptor types and solvation models in an effort to examine which 

approach resulted in optimal performance. The model development process and validation stages 

of these QSAR models is outlined herein, along with analysis and discussion of commonly 

mispredicted compounds. Performance was similar across all models (independent of the 

molecular descriptor used and the solvation models applied. Future efforts at model development 

will depend on the size of the dataset to be analyzed. If the dataset is small, the i3D-Born 

solvation models will be used because these models better represent physiological conditions and 
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performed slightly better than the other models. However, if the dataset is large, the 2D 

descriptor models will be used as these models do not require that a time and resource-intensive 

conformational search be performed and because it performed nearly as well as the i3D-Born 

solvation models. There were no common structural features consistently found associated with 

mispredicted structures. As such we are unable, at this time to pinpoint classes of compounds to 

avoid in future efforts 

The experimental methods outlined in this work focused on developing methods to 

determine protein binding, specifically determining a fast, inexpensive workflow to classify the 

difference between high and low protein binding small molecules. Two techniques were used to 

determine protein binding of small molecules to bovine serum albumin (BSA): fluorescence 

polarization (FP) competition, and Nano Differential Scanning Fluorimetry (NanoDSF). FP 

assays quantifies the change in polarization of a target fluorophore between its protein bound and 

free states, an equilibrium that can be impacted by the presence of small molecule competitors. 

This method can be performed in a quantitative manner, but it also requires more time and more 

expensive and specialized instrumentation. In contrast, NanoDSF determines the melting 

temperature of BSA in the presence (higher) or in the absence (lower) small molecules by 

determining the intrinsic fluorescence of tryptophan and tyrosine residues while applying a 

temperature gradient. This method is qualitative, at least in our approach, but is very fast and 

requires much less expensive instrumentation. In our hands both techniques were successful in 

distinguishing differences between small molecules exhibiting low and high BSA binding.  

In summary, this project was successful in that we 1) developed computational tools 

capable of correctly predicting ADMET properties including HIA, Caco-2 permeability, and 

protein binding and 2) developed experimental workflows to quantitatively and qualitatively 
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separate small molecules into low and high affinity BSA binders. With these in silico models and 

in vitro methods established, future research in our group and with our collaborators can make 

use of these tools to help prioritize compounds in ligand/ inhibitor discovery efforts.  
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Chapter 1 

Current Challenges in the Drug Development Process 

Introduction 

 The process of developing a Food and Drug Administration (FDA) approved drug is long 

and extremely expensive. This process is composed of five main steps and can take more than a 

decade in most cases.1 Figure 1 shows the general steps required for a typical drug development 

process. Recently, it was found that it costs, on average, 2.6 billion US dollars to develop a new 

therapeutic.2, 3 The attrition rate for drug candidates is estimated to be up to 96%. As such only 

4% of initially identified drug candidates will ultimately be approved as therapeutics.1 This 

significantly over estimates the attrition associated with very early small molecules identified as 

receptor ligands or enzyme inhibitors. Thus, strategies need to be implemented as early as 

possible in workflows to eliminate small molecules likely to fail in subsequent drug development 

efforts. One such approach is to predict, measure, and understand the absorption, distribution, 

metabolism, excretion, and toxicity (ADMET)4 properties of potential drugs. 
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Figure 1. The drug development process used by the U.S. FDA.1 In step 1, a potential drug 
is identified, and experiments are performed by the developer to potentially determine 
ADMET properties and dosages. Step 2 includes in vitro and in vivo studies on the drug 
before testing occurs in humans. If the drug passes these steps, the clinical trials of step 3 
occur. The clinical trials show increasing attrition in each phase, with ~70%, 33%, and 25-
30% proceeding from phase I, II, and III, respectively. Once phase III has been 
successfully passed, a new drug application can occur, after which the drug is reviewed by 
the FDA for approval. After drug approval occurs, monitoring by the FDA continues in 
step 5. 

Step 1: Discovery & Development

ID Potential Drug
Experiments on ADMET, Dosage, etc.

Step 2: Preclinical Research

In Vitro Studies
In Vivo Studies (animal studies; at least 2 species)

Step 3: Clinical Research

Phase I: Safety & Dosage (~70% proceed)
Phase II: Efficacy & Side Effects (~33% pass)
Phase III: Efficacy & Monitoring Adverse Reactions (~25-30% pass)

Step 4: FDA Drug Review

New Drug Application (NDA)
FDA Review
FDA Approval
FDA Advisory Committees

Step 5: FDA Post-Market Drug Safety Monitoring

Phase IV Clinical Research: Safety & Efficacy
Supplemental Applications
Manufacturer Inspections
Drug Advertising
Generic Drugs
Reporting Problems
Active Surveillance
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Attrition Rates of Potential Therapeutics 

 The high attrition rate of potential therapeutics (96%) has led several researchers to 

investigate the reason(s) for failure. In 2015, Waring et al., examined the attrition rate associated 

with the efforts of four major pharmaceutical companies (AstraZeneca, Eli Lilly and Company, 

GlaxoSmithKline, and Pfizer) from 2000-2010.5 Of the 808 compounds listed from all four 

companies with the highest phase of development provided, a breakdown of progression from 

nomination to each phase was then examined.5 This summary consistent of 422 total compounds 

in the nomination stage (356 failed at this stage, 60 moved into phase I, & 6 were not specified), 

phase I included 231 compounds (157 failed, 71 moved into phase II, & 3 were not specified), 

phase II was comprised of 145 compounds (89 failed, 54 moved into phase III, & 2 were not 

specified), phase III included 8 compounds (2 failed, & 6 moved into phase IV), and finally 

phase IV consisted of 2 compounds, both of which passed.5 This summary, across all stages has 

an overall failure rate of 76%, with 615 overall of the 808 compounds not progressing if you 

assume that all unspecified compounds failed.  

 In 2010, DiMasi et al. examined the success rate of investigational drugs from the 50 

largest pharmaceutical firms during the period 1993-2004.6 This study examined a total of 1,738 

compounds and calculated the success rate to be 7.9% (based on approved compounds (138) at 

the time of publication). In addition, this work calculated a maximum possible success rate of 

32.2% (assuming all proposed compounds (422) did not fail).6  

 In 2018, Takebe et al., investigated the success rate of 798 academic projects in the drug 

development industry from 1991-2010.7 In this work 31.8% of candidates passed from pre-

clinical-phase I, 75.1% passed from phase I-phase II, 50% passed from phase II-phase III, 58.6% 
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passed from phase III-BLA/NDA review, and 87.5% passed from BLA/NDA review-approval; 

with an overall likelihood of approval rate of 19.3%.7 

 These high attrition rates give medicinal chemists reason to try to predict ADMET 

properties and to identify additional reasons to remove small molecules from drug discovery 

pipelines before investing significant time and resources. Ways to correctly predict undesirable 

properties or uncover potential side effects would have the potential to save time and resources 

in the development of novel small molecules as drug candidates, which is the overall goal of the 

work described herein.  

 

Importance of ADMET Properties in Drug Actions 

Unfavorable ADMET properties are widely recognized as reasons that many potential 

candidates fail in the early stages of the drug development process.8, 9 Understanding and 

accurately predicting ADMET properties is an important goal, however, it is often difficult to 

evaluate compounds identified in high throughput screening (HTS) due to a scarcity of measured 

ADMET data.4, 10 Medicinal chemists turn to predictions of ADMET properties to help estimate 

how a candidate will be absorbed across cell membranes, how it will be distributed in the 

bloodstream, what the effects of Phase I-III metabolism will be, how it will be excreted from the 

body, and whether it will be toxic to a patient. These ADMET properties all depend on complex 

processes, which often are interconnected. Typically, medicinal chemists predict these properties 

using in silico methods, usually through linear regression models, neural networks, regression 

trees, or support vector machines (SVM).11     
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Absorption 

Absorption is typically discussed in terms of orally bioavailable drugs, however, it can 

also mean other administration routes including nasal, intravenous, intramuscular, oral 

inhalation, rectal, vaginal, or subcutaneous.12 Oral drugs must be absorbed across the stomach or 

the intestinal barrier, and this absorption can be affected by conditions at the site of absorption, 

drug concentrations, the pH of the intestinal contents, the circulation at the site of absorption, and 

the area of the surface the drug absorbs through.13 Small lipophilic compounds absorb more 

easily than large compounds, and unionized compounds absorb into the body more easily than 

ionized compounds.14  

Measurements to determine physicochemical properties that contribute to absorption, like 

solubility and passive intestinal absorption, have been performed previously using solubility 

assays, immobilized artificial membranes (IAMs), and parallel artificial membrane permeability 

assays (PAMPA).15-17 Unidirectional cell permeability assays have used several cell lines, such 

as Caco-2 (human colorectal adenocarcinoma cells), Madin-Darby canine kidney (MDCK), and 

HT29 (human colorectal adenocarcinoma cells), to determine a model system that reflects human 

intestinal absorption (HIA).15-17 Models predicting absorption typically predict Caco-2 

permeability and HIA based on regression techniques, and are often called quantitative structure-

activity relationship (QSAR) or quantitative structure-property (QSPR) models.18-20 The 

introduction to chapter 2 explains why these already developed models were not used in this 

project to predict absorption. 
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Distribution 

Distribution of drugs occurs through the bloodstream, which is impacted by the amount 

of blood flow in certain areas (well supplied areas receive the drug more quickly), as well as how 

much of the drug is bound to plasma proteins (acidic drugs bind to albumin, basic drugs bind to 

α1-acid glycoprotein).13 Physical properties of the drug, such as aqueous solubility and partition 

coefficients, impact how they are distributed throughout the body.12 The amount of drug bound 

to serum proteins is determined by drug concentration, the number of binding sites on the 

protein, and the drug’s affinity for the binding site.13 Drugs bound to serum proteins typically do 

not reach their receptors in a timely manner and are usually retained in the body longer due to 

urine being protein-free (decreased excretion); however, most drugs are not highly plasma 

protein bound and reach their receptors quickly to elicit the desired interactions.14   

Distribution measurements to determine blood-brain barrier (BBB) penetration can be 

performed using PAMPA assays similar to those determining absorption, but using BBB specific 

lipids, efflux assays examining calcium uptake, p-glycoprotein-ATPase assays, and protein 

binding assays examining human serum albumin (HSA) binding have all been performed.16, 17 

Distribution models have been developed to predict steady-state volumes of distribution, using 

Bayesian neural networks (BNN), classification and regression trees (CART) and partial least 

squares (PLS).19 The introduction to chapter 2 explains why models previously developed were 

not used to predict distribution in this project. 

 

Metabolism 

Metabolism is interrelated to both excretion and toxicity; metabolism often helps the 

body rid itself of the drug by promoting excretion through metabolite formation, and some of the 
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resulting metabolites can be toxic (extremely undesirable).12 Metabolism biotransformations 

usually involve phase I and phase II reactions in the liver with phase I involving oxidation, 

reduction, or hydrolysis, and phase II involving conjugation reactions.13 Metabolism creates 

more polar metabolites that are more readily excreted in the urine and bile; when phase I 

reactions do not produce a molecule with sufficient polarity, phase II reactions such as 

glucuronidation or sulfation can occur.14   

Metabolism measurements characteristically examine metabolic stability using human or 

rat liver microsomes or hepatocytes.17, 21 Drug-drug interactions can be examined through 

cytochrome (CYP) P450 inhibition screens (as certain drugs are known to impact the metabolic 

stability of other drugs), or IC50 determinations.15, 17, 21 QSAR models have been developed to 

predict CYP metabolism and UDP-Glucuronosyltransferase (UGT) metabolism.19, 22 Models 

have also been developed to predict the site of metabolism.   

 

Excretion 

Given sufficient time, the remainder of an administered drug and/ or its metabolites are 

excreted from the body, predominantly through the renal system (urine), but can also occur 

through fecal matter (bile), sweat, saliva, and tears (though these last three routes are rare).13 

Most drugs or metabolites that are excreted via the bile enter the small intestine, where they are 

excreted in the feces, however, entero-hepatic cycling can occur due to bile salt recycling. This 

process occurs when additional intestinal metabolism results or when the drug or its 

metabolite(s) are reabsorbed and enter the liver once again.14 Models predicting clearance have 

been developed; some have predicted the log D-dependency of renal clearance, hepatic uptake, 
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and biliary clearance have been predicted through SAR by others, and renal clearance has also 

been modeled, though in this instance it was reported as a percentage of total clearance.19    

 

Toxicity 

Some parent drugs are toxic or biotransformation reactions can create toxic metabolites.13 

Several mechanisms of toxicity can occur: on-target (mechanism-based) toxicity, 

hypersensitivity/immune response toxicity, off-target toxicity, bioactivation, and idiosyncratic 

reactions.23 On-target, or metabolism-based, toxicity occurs when the interaction between the 

drug and the target produces both an efficacious response and a toxic response.23 

Hypersensitivity, or immune response toxicity, is caused when a drug or its metabolite interacts 

with proteins and cause antibodies to be induced.23 Off-target toxicity occurs when the drug 

interacts with several targets, one with the intended response, and the other with a toxic 

response.23 Bioactivation describes the generation of toxic metabolites that can form covalent 

adducts with macromolecules and cause a rare immune response called idiosyncratic adverse 

drug reactions (IADR), which only occur in 1/103 or 1/104 individuals.12, 23 Due to toxicity being 

hard to control, researchers typically try to avoid certain functional groups known to common 

causes such as thioureas, aromatic nitro groups, furan rings, and electrophilic functional groups 

when designing a new drug.14   

Toxicity typically is measured using basic cytotoxicity assessments such as mitochondrial 

inhibition assays or genotoxicity measurements in the form of AMES assays.17, 21 The toxic 

effects of metabolites have been predicted, though this is the more difficult ADMET property to 

correctly anticipate.22  
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Ligand/Inhibitor Discovery Efforts 

 Many researchers in both academic and industrial labs examine ligand- and receptor-

mediated activation of cellular signaling pathways thought to be involved in various diseases and 

disorders as a way to develop tools for additional analysis of pathways and or diseases and in 

some cases to help prioritize compounds for assessment as potential therapeutics. Some of the 

ligands of interest to our lab and to our collaborators include autotaxin inhibitors, 

lysophosphatidic acid receptor ligands, sphingosine kinase inhibitors, sphingosine-1-phosphate 

receptor ligands, and ligands (agonists and antagonists) of G protein-coupled receptors, 

specifically orphan GPCR. 

 

G Protein-Coupled Receptors 

 G protein-coupled receptors comprise a large family of membrane proteins involved in 

transmitting an extracellular signal into cells.24 Of all currently available drugs, it is estimated 

that 30-60% act on this large family of GPCR.25 GPCR involvement has been demonstrated in 

many biological processes including cardiovascular functions, cognitive responses, and cancer 

cell growth.26-28 Figure 2 shows the general structure of GPCR.  Orphan GPCR are G protein-

coupled receptors that have an unknown endogenous ligand. Of the ~400 non-sensory GPCR 

identified from human genome sequencing data,29 approximately 100 are orphan GPCR and their 

ligands have yet to be identified (deorphaned).30, 31  
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Figure 2. General structure of a G Protein-Coupled Receptor (GPCR) embedded in a lipid 
bilayer. Seven transmembrane spanning domains (TM1-7) make up the GPCR, with an 
extracellular N-terminus on TM1 and an intracellular C-terminus on TM-7. There are 
three extracellular loops (EL1-3) and three intracellular loops (IL1-3), with an interacting 
domain on IL-3 that has selectivity for a specific G protein and a segment of IL-2 that helps 
with efficiency of activation.  
 

 

Autotaxin Inhibitors and Lysophosphatidic Acid Ligands 

 Autotaxin (ATX) is an ectoenzyme that catalyzes the hydrolysis of 

lysophosphatidylcholine (LPC) to form the bioactive lipid lysophosphatidic acid (LPA)32 as 

shown in Figure 3. LPA is a ligand for a series of GPCR known as LPA1-6, 33 which transduce 

signals resulting in a variety of cellular responses including cell proliferation, migration, and 

prevention of apoptosis. These cellular responses have linked LPA and ATX to the pathogenesis 

of several human diseases including cancer, fibrotic disorders, neuropathic pain, reproductive 

disorders, and arthritis.34 Several ATX inhibitors have been developed, including the first 

inhibitor in clinical trials for idiopathic pulmonary fibrosis (GLPG1690),35  PAT-352,36 Merck 

17,37 GRI 182135,38, 39 and HA 155.40       
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Figure 3. Autotaxin (ATX) catalyzed hydrolysis of lysophosphatidylcholine (LPC) into 
lysophosphatidic acid (LPA) and choline. R is a hydrocarbon chain of varying lengths. 
 

 

Sphingosine Kinase Inhibitors and Sphingosine-1-Phosphate Ligands 

 Sphingosine kinases (SK) are enzymes that catalyze the transfer of the γ-phosphate from 

adenosine triphosphate (ATP) to sphingosine (SPH) to form the bioactive lipid sphingosine-1-

phosphate (S1P) as shown in Figure 4. S1P is a ligand for a series of GPCR known as S1P1-5 and 

GPR6.41, 42 S1P regulates several biological processes including cell motility, apoptosis, ion 

mobilization, cell survival, and cell proliferation.42-51 Overexpression of the SK isoform 

sphingosine kinase 1 (SK1) has been linked to several cancers; in human breast cancer cells, SK1 

activity regulates cancer cell proliferation and resistance to chemotherapy treatments, which has 

led researchers to target this signaling mechanism as a therapeutic pathway.52 Several SK 

inhibitors have been developed with this goal in mind, such as SKi,53  FTY720,54 and (S)-

FTY720.54       

 

Figure 4. Sphingosine kinase (SK) catalyzed transfer of the γ-phosphate from ATP to 
sphingosine (SPH) to form sphingosine-1-phosphate and ADP.  
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Organization of this Dissertation 

 Chapter 2 details the development and evaluation of the performance of computational 

models predicting ADMET properties of drugs (absorption and distribution), specifically human 

intestinal absorption (HIA), Caco-2 permeability, and percent protein binding. The models 

outlined in chapter 2 were quantitative structure-activity relationship (QSAR) models, which 

have been used previously to predict ADMET properties. However, these models are typically 

not readily available to the public or require a significant investment to purchase them. The 

model development process, as well as internal and external validation procedures and results are 

presented in this chapter in efforts to evaluate model performance.  

 Chapter 3 describes the development of protein binding assays using fluorescence 

polarization and nano differential scanning fluorimetry to experimentally determine protein 

binding between bovine serum albumin (BSA) and compounds of interest. Fluorescence 

polarization assays have been previously used to determine protein binding; the earliest example 

was in 1952.55 The fluorescence polarization methods outlined in this chapter are a semi-

quantitative way to determine percent protein binding, however, these methods are costly in both 

time and money, as a fluorophore and specialized instrumentation are both required. Nano 

differential scanning fluorimetry has been used to determine protein binding using thermal shift 

analysis,56 but to the best of our knowledge has not been used to determine a difference in high 

or low protein binding drugs, as was the case in this dissertation. In our hands, nano differential 

scanning fluorimetry was able to differentiate low from high protein binders in a label free, 

qualitative manner, using instrumentation that is significantly less expensive than that required 

for fluorescence polarization. 
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 Chapter 4 provides a summary of the results presented in chapters 2 and 3 along with 

suggested future directions of the project. This chapter presents ways that the methods described 

herein can be used to help prioritize potential therapeutics.  

The appendix contains supplementary information for chapter 2, including relevant tables 

and figures.      
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Chapter 2 

Computational Prediction of ADMET Properties: Absorption and Distribution 

Introduction 

Reliable in silico methods that are capable of accurately predicting ADMET properties 

can aid in the drug development process. These predictions can be used to help eliminate 

compounds early in the process by identifying those targets that have undesirable ADMET 

properties. This ability would reduce the time and resources spent testing compounds that would 

likely fail at later points in the process. At the time this research project was initiated, there was a 

lack of availability of free or low cost ADMET prediction models. While several sources 

claimed free availability for downloadable software, however, I found that the websites either 

did not work or required computer systems that were not supported in our lab.  

Examples are described herein. FAF-Drugs2, a software predicting the A, D, M, & T of 

ADMET, was published in 2008, and is available for download, but a Linux system is required 

to run it, which is a system our lab does not support, preferring either Windows or Mac 

software.57 In 2012, admetSAR, which predicts all ADMET properties, was published but the 

website did not work when the project was initiated in 2017.58 The developers of this software 

have since created a new website, but it was not available until 2019, when our models had 

already been developed.59  PaDEL-DDPredictor, predicting pharmacodynamics (PD), 

pharmacokinetics (PK), and the T of ADMET properties, also published also in 2012, had a 

nonfunctional website that did not work when this project began.60  ChemoPY, predicting 

structure and physicochemical properties, published in 2013, once again had a nonfunctional 

website at the time of this project.61   



 15 

Currently, several free sources are available for use (namely the vNN webserver,62 and 

ADMETlab, that both predict all ADMET properties,63   and CypReact, that predicts CYP 450 

enzyme reactants64), but they were only made available to the public after this research project 

began and our models were already developed. There are other software packages available, but 

they require licensing, like ADMET Predictor from Simulations Plus, which predicts all ADMET 

properties.65  

Due to the lack of availability of easily accessible tools and a desire to generate a 

workflow that would be more tractable to a wider group of investigators, we endeavored to 

generate our own models that could predict ADMET properties. The specific ADMET properties 

examined in this work were absorption and distribution, as they are two of the first ADMET 

properties that influence in vivo drug fate after ingestion. The in silico method chosen within this 

work is quantitative structure-activity relationship (QSAR) modeling.66 Models used to predict 

these particular ADMET properties can later be used as targeted filters for known compounds of 

interest to our lab or to our collaborators and others, as well as filters for large compound 

databases to target searches toward compounds with desirable properties. These filters will help 

prioritize compounds of interest to be examined experimentally as potential orally bioavailable 

drugs. 

 

ADMET Property: Absorption 

Models for absorption prediction were constructed using training examples characterized 

by two types of data: human intestinal absorption and Caco-2 permeability, examples of good 

absorption for both HIA and Caco-2 permeability are shown in the activity categorization section 

of this chapter. Human intestinal absorption (HIA) is an important consideration for orally 
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ingested drugs due to the requirement that they be stable in the gastrointestinal tract and be able 

to cross the intestinal wall.67 This absorption measurement is challenging and in many cases 

unethical to perform using investigational compounds, thus Caco-2 permeability was also 

modeled. Caco-2 is a cell line commonly used to model the intestinal barrier.68  These cells form 

monolayers in culture to resemble the epithelial cells of the intestinal wall and were originally 

derived from human colon adenocarcinoma cells.69 The in vivo data (HIA) and the in vitro data 

(Caco-2 permeability) were correlated before models were developed to ensure the suitability of 

the Caco-2 model system as a surrogate for predictions of HIA (details provided below).  

 

ADMET Property: Distribution 

One aspect of distribution was modeled on the basis of percent protein binding data. 

Protein binding measurements can help determine how much of a drug is bound to blood serum 

proteins and how much of the unbound drug is available to interact with target cells throughout 

the body, examples of protein binding values showing good distribution are shown later in the 

activity categorization section of this chapter.70  Models predicting this ADMET property were 

developed in conjunction with the absorption models’ data to narrow down compounds of 

interest assessment of experimental biological activity.  

 

Quantitative Structure-Activity Relationships 

The field of quantitative structure-activity relationship (QSAR) modeling was founded in 

1962 by Corwin Hansch.71 This seminal paper ended a 15-year period where researchers 

attempted to understand structure-activity relationships (SARs) of plant growth regulators, where 

most researchers attempted to find a suitable Hammett relationship.66 The Hammett relationship 
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is based on an equation relating reaction rates and equilibrium constants, developed by Louis P. 

Hammett in 1935.72 The Hammett equation can be seen below, where Kx is the equilibrium 

constant of a reaction with substituent x, KH is the equilibrium constant of a reaction when 

substituent x is a hydrogen, σx is the substituent constant, and ρ is the reaction constant (Equation 

1). 

 

!"#$! = &'! + !"#$"                                                        [Eq. 1] 

 

Hansch and his colleagues later published other works utilizing a successful 

computational approach to quantitatively model effects of substituents on biological activity.73, 74 

Later, Hansch developed a new equation relating logP (log of octanol/water partition coefficient) 

and biological activity; this equation integrates the substituent constants from the Hammett 

equation (the '	values) along with constants obtained via regression analysis performed on an 

early version of a computer.75 Predicting logP allowed researchers to theorize if a compound 

could pass through the cell membranes (the activity) by applying the equation to compounds not 

prepared yet in the lab.76 Fitting this equation using a computer changed the idea that performing 

this math on a calculator was the only way to accomplish these predictions and paved the way 

for other scientists to expand their datasets by decreasing the time it would take to physically 

calculate the numbers by hand.77 This groundbreaking new equation can be seen in Equation 2, 

where C is concentration, P is octanol/water partition coefficient, σ is the substituent constant, 

and k1, k2, k3, and k4 are reaction rates.  

 

log(1/C) = -k1(logP)2+ k2(logP)+ k3s + k4.                               [Eq. 2] 
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These works showed scientists at the time that using a computer to accomplish these 

tasks was possible and paved the way for the field. Over the past fifty-seven years, the field of 

QSAR has expanded to become one of the most common approaches for correlating the chemical 

and physical properties of chemicals to the biological properties so essential to the field of 

medicinal chemistry.  

A QSAR model is a function developed that relates some activity to molecular 

descriptors that reflect physical and chemical properties. Typically, such models have the general 

formula Y = f(X), where Y is the activity being predicted and X are the descriptors.78 Molecular 

descriptors commonly used in modern QSAR models are usually calculated using chemical 

structures as input and represent that structure at various levels.79 Two-dimensional (2D) 

descriptors are derived from the structural formula and are conformationally independent—these 

descriptors are sometimes described as topological descriptors. Three-dimensional (3D) 

descriptors are derived from molecular geometry and are conformationally and stereochemically 

dependent—these descriptors are sometimes described as geometric descriptors. Some geometric 

descriptors are additionally dependent on molecular orientation within the coordinate space.  

A common method of linear regression used in constructing QSAR models is known as 

partial least squares (PLS), which is designed so that the variables explain both the variation in 

the independent variables, X, and in the dependent variable, Y.80 If the data resulting from high-

throughput screening (HTS) gives binary activity results (active/inactive), then a binary QSAR 

model can be made.81 In a binary QSAR model, the activity of training compounds is represented 

as a binary value (either an active (1) or inactive (0)). Models constructed using binary activity 

data predict the probability of membership in the active group.81, 82 Both PLS and binary 

methodology were used in this work.  
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Methods 

Database Compilation 

Due to the abundance of known experimental data for therapeutics, information on the 

ADMET properties of interest (HIA, Caco-2 permeability, and percent protein binding) was 

compiled into a database. This database serves as the source for the training and validation 

compounds used in the computational models described herein. Compounds with published HIA 

data were obtained from a dataset compiled by Hou et al.83 Caco-2 permeability data was 

obtained through two sources: DrugBank84  and a dataset created by O’Hagan and Kell.85 Percent 

Protein Binding was obtained through two sources: DrugBank84 and TOXNET Hazardous 

Substances Data Bank.86 A total of 562 compounds with known ADMET properties of interest 

were compiled into the database, but only those with reported values of all the properties of 

interest (HIA, Caco-2 permeability, and % protein binding) were utilized in model development. 

For cases where Caco-2 permeability had multiple values reported from different sources, the 

data was averaged, and standard deviations were calculated. For cases where percent protein 

binding was listed as a range of percentages, the median value was calculated and used. 

 

Activity Categorization 

Experimental data were categorized based on reported activity for each compound, i.e. a 

compound that did not move across the intestinal barrier readily was considered poorly or 

moderately absorbed, or a compound that is bound abundantly to plasma albumin was not 

considered to be distributed through the body well as it is difficult to dissociate from the protein. 

For HIA and Caco-2 permeability, compound activity is separated into three absorption 

categories. The in vivo absorption categories used herein are based on values outlined by 
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Radchenko et al., where compounds with HIA greater than or equal to 70% are classified as well 

absorbed, between 70% and 30% classified as moderately absorbed, and less than or equal to 

30% classified as poorly absorbed.87 The Caco-2 permeability absorption cutoffs outlined by Yee 

in 1997 were used herein, where compounds with Papp values less than 1 x 10-6 cm/sec (log value 

less than -6.00 or 0-20%) were categorized as poorly absorbed, those with Papp between 1-10 x 

10-6 cm/sec (log value between -6.00 & -5.00 or 20-70%) were categorized as moderately 

absorbed, and those with Papp greater than 10 x 10-6 cm/sec (log value greater than -5.00 or 70-

100%) were categorized as well absorbed. 88It was noted that the cutoffs outlined for Caco-2 

permeability vary from the cutoffs for HIA by 10%, making the moderately absorbed range 

slightly larger for Caco-2 permeability. The percent protein binding cutoffs were based on 

information collected by Scheife in 1989, where low protein binding was defined as being less 

than or equal to 80%, the clinically relevant moderate protein binding range was 80-85%, and 

above 85% was considered high binding where the drug’s distribution is negatively impacted.89 

For the purpose of our models, we used two categories for protein binding, low and high binding, 

with the cutoff at 85%. These two categories were selected, rather than three categories, due to 

an insufficient amount of compounds within the middle category in the compiled database, and 

therefore, in our training and test set selection procedures.   

 

Training and Test Set Selection 

Compounds with ultimately desirable features were selected, i.e. representatives in all 

three absorption categories (poor, moderate, and well) for HIA and Caco-2 permeability and both 

low and high percent binding categories for protein binding, with no strong bias for the well 

absorbed compounds. We wanted to directly compare HIA and Caco-2 permeability, so 
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compounds having reported values in both systems were selected first. From that subset, we 

determined how many entries also had percent protein binding data. When selecting compounds 

for the test set, approximately 10% of the total number of training set compounds representative 

of each absorption category is typically chosen,90 thus 10% of compounds selected were used as 

the test set.   

 

HIA and Caco-2 Permeability Training and Test Sets 

Of the 562 compiled compounds, only 114 had both HIA and Caco-2 permeability 

reported values. When examined in terms of absorption categories for HIA, 5 of the 114 

compounds were poorly absorbed, 17 of the 114 compounds were moderately absorbed, and 92 

of the compounds were well absorbed. As such, the number of compounds selected for both the 

training and test set was limited by the number of poorly absorbed compounds (a total of 5). It is 

preferable within the QSAR/QSPR field to use approximately one tenth (or 10%) as many 

compounds in the test set as there are in the training set, specifically compounds that are 

representative both in structure and activity.90 Keeping with this convention, and with the 

limitations of the number of poorly absorbed compounds, 2 compounds from each absorption 

category were selected randomly to comprise the test set, with a total of 6 compounds 

comprising test set 1. Removing 2 of the 17 moderately absorbed compounds for the test set left 

15 compounds in the training set in this category. To help limit the severity of the bias toward 

well absorbed compounds in the training set and to help fit the 10% convention, only 42 

compounds of the 92 well absorbed were selected randomly, making the total number of 

compounds in the training set 60. This left 3 poorly absorbed compounds, 15 moderately 

absorbed compounds, and 42 well absorbed compounds in training set 1 based on the HIA 
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cutoffs. Training set 1 for the models, along with their HIA, Caco-2 permeability, and percent 

protein binding data can be found in Table 1. Compounds composing test set 1 compounds can 

be seen in Table 2. 
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C
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L
og C

aco-2 
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values) 

C
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A
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C
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%
 Protein 

B
inding 

B
inding 

C
ategory 

Felodipine 
94 

W
ell 

-4.97 ± 0.47 (2) 
W

ell 
99 

H
igh 

Clonidine 
95 

W
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-4.56 ± 0.09 (4) 
W

ell 
30 

Low
 

M
etoprolol 

96 
W

ell 
-4.51 ± 0.33 (23) 

W
ell 

12 
Low

 
Ibuprofen 

98 
W

ell 
-4.32 ± 0.07 (3) 

W
ell 

95 
H

igh 
Caffeine 

99 
W

ell 
-4.40 ± 0.08 (8) 

W
ell 

31 
Low

 
Fluvastatin 

100 
W

ell 
-5.31 ± 0.64 (8) 

M
oderately 

98 
H

igh 
N

icotine 
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W
ell 

-4.65 ± 0.09 (2) 
W

ell 
5 

Low
 

Tam
oxifen 
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W
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-5.35 ± 0.92 (2) 

M
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99 
H

igh 
Testosterone 
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W
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-4.34 

W
ell 

98 
H

igh 
A

lprenolol 
93 

W
ell 

-4.58 ± 0.27 (5) 
W

ell 
85 

Low
 

Ethinyl estradiol 
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W
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-3.42 
W
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97 

H
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N
itrendipine 

88 
W
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W
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99 
H

igh 
Progesterone 

96 
W

ell 
-4.37 

W
ell 

98 
H

igh 
A

cebutolol 
85 

W
ell 

-5.67 ± 0.27 (9) 
M

oderately 
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Low
 

Chlorprom
azine 

98 
W

ell 
-4.51 ± 0.32 (3) 

W
ell 

94 
H

igh 
Brom

azepam
 

84 
W

ell 
-4.40 

W
ell 

70 
Low

 
Bupropion 

87 
W
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-4.09 

W
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84 
Low

 
Trovafloxacin 

88 
W
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-4.52 

W
ell 

76 
Low

 
A

m
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W
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-4.39 
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ell 
28 
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M
eloxicam

 
90 

W
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-4.71 
W
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99 

H
igh 

Phenytoin 
90 

W
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-4.49 ± 0.07 (4) 
W
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90 

H
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Sulindac 
90 

W
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-5.29 ± 0.44 (6) 
M

oderately 
93 

H
igh 

N
aloxone 

91 
W

ell 
-4.62 ± 0.07 (3) 

W
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N
o P.B. 

- 
A

m
rinone 

93 
W
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-5.06 ± 0.11 (5) 

M
oderately 

30 
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able 1 C

ontinued. T
raining set 1 com

pounds and corresponding H
IA

, C
aco-2 perm

eability, and protein binding data. 
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A
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94 
W
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W
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18 
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Clozapine 

94 
W
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-4.80 

W
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97 
H
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H

aloperidol 
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W
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-5.09 ± 0.42 (3) 
M
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92 

H
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H
ydralazine 
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W

ell 
-4.84 ± 0.02 (3) 

W
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H

igh 
Indom

ethacin 
100 

W
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-4.39 ± 0.38 (3) 
W
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H
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O
ndansetron 
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W
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-3.96 

W
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73 
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D
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W
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-4.27 
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99 
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97 

W
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-4.42 ± 0.41 (5) 
W

ell 
55 
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N
aproxen 

99 
W
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-4.31 ± 0.18 (9) 

W
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H
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O

m
eprazole 
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W
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W
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H
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W

ell 
-5.74 

M
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H
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D
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peridone 
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-5.27 ± 0.02 (5) 

M
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able 2. T

est set 1 com
pounds and the corresponding H

IA
, C

aco-2 perm
eability, and percent protein binding data. Som

e 
com

pounds lacked protein binding data and are herein designated as N
o P.B

. Som
e C

aco-2 perm
eability values are presented 

as m
eans and standard deviations of m

ultiple reported values. A
bsorption categories and binding categories listed are based 

on each set of cutoffs as described in the A
ctivity C

ategorization section of this chapter. Structures are show
n in T

able 7. 
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M
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5 
Poorly 

-5.04 ± 0.64 (3) 
M
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78 
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Lactulose 
1 
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-6.52 
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N

o P.B. 
- 

Fenoterol 
60 

M
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N
o P.B. 

- 
Tranexam

ic acid 
55 

M
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Poorly 

3 
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Tim

olol 
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-4.92 ± 0.31 (6) 
W
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10 
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G
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78 
W
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-4.66 ± 0.44 (5) 

W
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90 
H

igh 
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A preference to have representatives of the test set well-spaced from boundaries between 

the HIA and Caco-2 absorption categories led to selection of training set 2 and test set 2. The 

distribution for training set 2 and test set 2 within the boundaries for absorption categories is 

shown in the Appendix, Figures A1 & A2. Training set 2 compounds for HIA and Caco-2 

permeability can be seen in Table 3, along with the standard deviation for Caco-2 permeability 

(due to some of these values being the mean value recorded within the database). Test set 2 

compounds for HIA and Caco-2 permeability can be seen in Table 4. Actual values used in the 

Caco-2 permeability QSAR models were the means, since multiple values for each compound 

could not be used.  With the final rearrangement, 9 compounds were categorized as poorly 

absorbed with the Caco-2 permeability cutoffs, 16 compounds were moderately absorbed, and 35 

compounds were defined as well absorbed.  
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Table 3. Training set 2 and the corresponding HIA and Caco-2 permeability data. Some 
Caco-2 permeability values are presented as means and standard deviations of multiple 
reported values. Absorption categories listed based on each set of cutoffs as described in 
the Activity Categorization section of this chapter. Structures are shown in Table 7. 
 

Compound % HIA 
HIA 

Absorption 
Category 

Log Caco-2 
Permeability (# 

averaged values) 

Caco-2 
Permeability 
Absorption 
Category 

Aztreonam 1 Poorly -6.19  Poorly 
Mitoxantrone 5 Poorly -5.04 ± 0.64 (3) Moderately 
Ceftriaxone 1 Poorly -6.89  Poorly 

Tranexamic Acid 55 Moderately -6.04  Poorly 
Atenolol 50 Moderately -5.79 ± 0.69 (21) Moderately 

Metformin 54 Moderately -5.10 ± 0.83 (3) Moderately 
Valsartan 55 Moderately -6.28 ± 0.13 (5) Poorly 

Dipyridamole 58 Moderately -5.21 ± 0.23 (5) Moderately 
Ziprasidone 60 Moderately -4.91 Well 
Furosemide 61 Moderately -6.06 ± 0.52 (15) Poorly 

Sulfasalazine 62 Moderately -6.21 ± 0.4 (13) Poorly 
Sumatriptan 67 Moderately -5.68 ± 0.14 (4) Moderately 
Mibefradil 69 Moderately -4.87 Well 

Erythromycin 35 Moderately -6.03 ± 0.46 (10) Poorly 
Fenoterol 60 Moderately -6.11  Poorly 

Terbutaline 63 Moderately -5.73 ± 0.6 (8) Moderately 
Sulpiride 40 Moderately -6.29 ± 0.12 (3) Poorly 

Hydrochlorothiazide 68 Moderately -5.85 ± 0.43 (6) Moderately 
Ketoconazole 75 Well -4.84 ± 0.14 (6) Well 

Acetaminophen 85 Well -4.52 ± 0.46 (3) Well 
Betaxolol 90 Well -4.81  Well 
Morphine 90 Well -5.00  Moderately 

Hydrocortisone 91 Well -4.66  Well 
Felodipine 94 Well -4.97 ± 0.47 (2) Well 
Clonidine 95 Well -4.56 ± 0.09 (4) Well 

Metoprolol 96 Well -4.51 ± 0.33 (23) Well 
Ibuprofen 98 Well -4.32 ± 0.07 (3) Well 
Caffeine 99 Well -4.40 ± 0.08 (8) Well 

Fluvastatin 100 Well -5.31 ± 0.64 (8) Moderately 
Nicotine 100 Well -4.65 ± 0.09 (2) Well 

Tamoxifen 100 Well -5.35 ± 0.92 (2) Moderately 
Testosterone 100 Well -4.34  Well 
Alprenolol 93 Well -4.58 ± 0.27 (5) Well 

Ethinyl Estradiol 100 Well -3.42  Well 
Nitrendipine 88 Well -4.77  Well 
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Table 3 Continued. Training set 2 and the corresponding HIA and Caco-2 permeability 
data. 
 

Compound % HIA 
HIA 

Absorption 
Category 

Log Caco-2 
Permeability (# 

averaged 
values) 

Caco-2 
Permeability 
Absorption 
Category 

Progesterone 96 Well -4.37  Well 
Acebutolol 85 Well -5.67 ± 0.27 (9) Moderately 

Chlorpromazine 98 Well -4.51 ± 0.32 (3) Well 
Bromazepam 84 Well -4.4 Well 

Timolol 95 Well -4.92 ± 0.31 (6) Well 
Trovafloxacin 88 Well -4.52 Well 
Amphetamine 90 Well -4.39 Well 

Meloxicam 90 Well -4.71 Well 
Phenytoin 90 Well -4.49 ± 0.07 (4) Well 
Sulindac 90 Well -5.29 ± 0.44 (6) Moderately 
Naloxone 91 Well -4.62 ± 0.07 (3) Well 
Amrinone 93 Well -5.06 ± 0.11 (5) Moderately 
Atropine 94 Well -4.71 Well 
Clozapine 94 Well -4.80 Well 

Haloperidol 100 Well -5.09 ± 0.42 (3) Moderately 
Hydralazine 100 Well -4.84 ± 0.02 (3) Well 

Indomethacin 100 Well -4.39 ± 0.38 (3) Well 
Ondansetron 100 Well -3.96 Well 
Diclofenac 97 Well -4.27 Well 

Trimethoprim 97 Well -4.42 ± 0.41 (5) Well 
Naproxen 99 Well -4.31 ± 0.18 (9) Well 

Omeprazole 80 Well -4.30 Well 
Terbinafine 80 Well -5.74 Moderately 

Domperidone 95 Well -5.27 ± 0.02 (5) Moderately 
Flumazenil 95 Well -4.53 Well 
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Table 4. Test set 2 compounds and the corresponding HIA and Caco-2 permeability data. 
Some Caco-2 permeability values are presented as means and standard deviations of 
multiple reported values. Absorption categories listed based on each set of cutoffs as 
described in the Activity Categorization section of this chapter. Structures are shown in 
Table 7. 
 

Compound 
 

% HIA 
 

HIA 
Absorption 
Category 

Log Caco-2 
Permeability (# 

averaged values) 

Caco-2 
Permeability 
Absorption 
Category 

Lactulose 1 Poorly -6.52  Poorly 
Amphotericin B 3 Poorly -6.92  Poorly 

Metolazone 64 Moderately -5.46 ± 0.28 (8) Moderately 
Nadolol 32 Moderately -5.56 ± 0.41 (10) Moderately 

Guanabenz 78 Well -4.66 ± 0.44 (5) Well 
Bupropion 87 Well -4.09  Well 

 

 

Percent Protein Binding Training and Test Set 

In terms of compiled percent protein binding data, 61 of the 66 compounds selected for 

training and test set 1 had reported values, with 57 in the training set and 4 in the test set 

(training and test set 1 shown in Tables 1 & 2). Training set 1 contained 25 low binding 

compounds and 32 high binding compounds. Test set 1 had 3 low binding compounds and 1 high 

binding compound. A few compounds in the test set were exchanged with training set 

compounds to better represent the training set, making training set 3 and test set 3 for protein 

binding, which differ in compounds from training set and test set 2 for HIA and Caco-2 

permeability. Training set 3 had 27 low binding compounds and 30 high binding compounds. 

Test set 3 comprised 1 low binding compound and 3 high binding compounds. A final list of 

compounds used in the training and test sets 3 for protein binding QSAR models can be seen in 

Tables 5 and 6 respectively. Structures for all compounds within training and test sets 1-3 are 

shown in Table 7. 



 31 

Table 5. Training set 3 compounds selected for % protein binding QSAR models. Protein 
binding category based on cutoffs are also shown as described in the Activity 
Categorization section of this chapter. Structures are shown in Table 7. 
 

Compound % Protein Binding 
 

Binding Category 
 

Metformin 0 Low 
Tranexamic Acid 3 Low 

Nicotine 5 Low 
Timolol 10 Low 
Atenolol 11 Low 

Metoprolol 12 Low 
Sumatriptan 18 Low 

Atropine 18 Low 
Acetaminophen 25 Low 

Acebutolol 26 Low 
Amphetamine 28 Low 

Nadolol 30 Low 
Clonidine 30 Low 
Amrinone 30 Low 
Caffeine 31 Low 

Metolazone 33 Low 
Morphine 35 Low 
Betaxolol 50 Low 

Trimethoprim 55 Low 
Aztreonam 56 Low 

Hydrochlorothiazide 63 Low 
Bromazepam 70 Low 
Ondansetron 73 Low 

Trovafloxacin 76 Low 
Bupropion 84 Low 

Erythromycin 85 Low 
Alprenolol 85 Low 

Amphotericin B 90 High 
Phenytoin 90 High 

Terbinafine 90 High 
Haloperidol 92 High 

Domperidone 92 High 
Chlorpromazine 94 High 

Ceftriaxone 95 High 
Furosemide 95 High 

Hydrocortisone 95 High 
Ibuprofen 95 High 
Valsartan 96 High 
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Table 5 Continued. Training set 3 compounds selected for % protein binding QSAR 
models. 
 

Compound % Protein Binding 
 

Binding Category 
 

Omeprazole 96 High 
Ethinyl Estradiol 97 High 

Clozapine 97 High 
Fluvastatin 98 High 

Testosterone 98 High 
Progesterone 98 High 
Indomethacin 98 High 

Naproxen 98 High 
Dipyridamole 99 High 
Ziprasidone 99 High 

Sulfasalazine 99 High 
Mibefradil 99 High 

Ketoconazole 99 High 
Felodipine 99 High 
Tamoxifen 99 High 

Nitrendipine 99 High 
Meloxicam 99 High 
Diclofenac 99 High 
Flumazenil 99 High 

 
 
Table 6. Test set 3 compounds selected for % protein binding QSAR models. Protein 
binding category based on cutoffs are also shown as described in the Activity 
Categorization section of this chapter. Structures are shown in Table 7. 
 

Compound % Protein Binding 
 

Binding Category 
 

Mitoxantrone 78 Low 
Hydralazine 87 High 
Guanabenz 90 High 
Sulindac 93 High 
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Table 7. Structures of all compounds selected to build QSAR models. All structures are 
shown ionized at physiological pH 7.4. * symbol indicates set 1, ** symbol indicates set 2, 
*** symbol indicates set 3, highlighted symbol means the compound was in the test set for 
that dataset. A + symbol indicates compounds for which stereochemistry was used in the 
modeling process or model assessment, but no stereochemistry was reported to accompany 
the experimental data. 
 

# Compound 
 

Structure (pH 7.4) 
 

1 Aztreonam  
(*/**/***) 

 

2 Mitoxantrone  
(*/**/***) 

 

3 Ceftriaxone 
(*/**/***) 
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Table 7 Continued. Structures of all compounds selected to build QSAR models. 
 

# Compound 
 

Structure (pH 7.4) 
 

6 Metformin 
(*/**/***) 

 

7 Valsartan 
(*/**/***) 

 

8 Dipyridamole 
(*/**/***) 

 

9 Ziprasidone 
(*/**/***) 

 

10 Furosemide 
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Table 7 Continued. Structures of all compounds selected to build QSAR models. 
 

# Compound 
 

Structure (pH 7.4) 
 

11 Sulfasalazine 
(*/**/***) 

 

12 Sumatriptan 
(*/**/***) 

 

13 Mibefradil 
(*/**/***) 
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Table 7 Continued. Structures of all compounds selected to build QSAR models. 
 

# Compound 
 

Structure (pH 7.4) 
 

17 Sulpiride+ 
(*/**) 

 

18 Hydrochlorothiazide 
(*/**/***) 

 

19 Ketoconazole 
(*/**/***) 

 

20 Acetaminophen 
(*/**/***) 
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Table 7 Continued. Structures of all compounds selected to build QSAR models. 
 

# Compound 
 

Structure (pH 7.4) 
 

24 Felodipine+ 
(*/**/***) 

 

25 Clonidine 
(*/**/***) 

 

26 Metoprolol+ 
(*/**/***) 

 

27 Ibuprofen+ 
(*/**/***) 

 

28 Caffeine 
(*/**/***) 

 

29 Fluvastatin 
(*/**/***) 

 

30 Nicotine 
(*/**/***) 

 

31 Tamoxifen 
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Table 7 Continued. Structures of all compounds selected to build QSAR models. 
 

     # Compound 
 

Structure (pH 7.4) 
 

32 Testosterone 
(*/**/***) 

 

33 Alprenolol 
(*/**/***) 

 

34 Ethinyl Estradiol 
(*/**/***) 
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Table 7 Continued. Structures of all compounds selected to build QSAR models. 
 

# Compound 
 

Structure (pH 7.4) 
 

39 Bromazepam 
(*/**/***) 

 

40 Timolol 
(*/**/***) 

 

41 Trovafloxacin 
(*/**/***) 

 

42 Amphetamine+ 
(*/**/***)  

43 Meloxicam+ 
(*/**/***) 

 

44 Phenytoin 
(*/**/***) 

 

45 Sulindac 
(*/**/***) 

 
 

Br

N

N

O
H
N

O
(S)

OH

N+
H2

N

O

N

S

N

F

NNN(S)

H3+N (R)

F

O O

O-

F

N+H3

(R)

O

H
N S

N

(S)

N
S

OO

O

O

H
N O

NH

S

O

O

O-
F



 40 

Table 7 Continued. Structures of all compounds selected to build QSAR models. 
 

# Compound 
 

Structure (pH 7.4) 
 

46 Naloxone 
(*/**) 

 

47 Amrinone 
(*/**/***) 
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(*/**/***) 
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Table 7 Continued. Structures of all compounds selected to build QSAR models.  
 

# Compound 
 

Structure (pH 7.4) 
 

52 Indomethacin 
(*/**/***) 

 

53 Ondansetron+ 
(*/**/***) 
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Table 7 Continued. Structures of all compounds selected to build QSAR models. 
 

# Compound 
 

Structure (pH 7.4) 
 

59 Domperidone 
(*/**/***) 
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(*/**/***) 
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Table 7 Continued. Structures of all compounds selected to build QSAR models. 
 

# Compound 
 

Structure (pH 7.4) 
 

63 Metolazone+ 
(*/**/***) 

 

64 Nadolol+ 
(*/**/***) 

 

65 Guanabenz 
(*/**/***) 

 

66 Bupropion+ 
(*/**/***) 

 
 

 

Chemical Diversity Measures 

The diversity of the dataset of compounds selected for the training and test sets was 

determined to ensure that a broad chemical space was represented in an effort to ensure that the 

models were suitable for a variety of chemical structures. Diversity was assessed based on 

methods suggested by Gonzalez-Medina et al.91 Molecular ACCess System (MACCS) keys 

provided a numerical fingerprint of the structures, and a Tanimoto coefficient comparison 

between sets of MACCS keys was computed using the MOE 2016 software package.92 Each 

MACCS key contains a series of 166 bits, used to indicate the presence (bit value = 1) or absence 

(bit value = 0) of small substructures of 1-10 non-hydrogen atoms.93 The Tanimoto coefficient is 

a similarity measurement comparing two fingerprints, in this case MACCS keys, which varies 
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between a minimum of 0 and a maximum of 1, with higher values indicating higher similarity.91, 

94 The formula for the Tanimoto coefficient can be seen in Equation 3, where S is similarity, a is 

the number of bits on molecule A, b is the number of bits on molecule B, and c is the number of 

bits on both molecules A & B.  

 

!!/# = $
[&'()$]                                                               [Eq. 3] 

 

A similarity matrix of Tanimoto coefficients was calculated using the 

pH4_SimilarityMatrix function in the MOE SVL command window. Using this function, 

similarity matrices were calculated for the following compound sets: training and test sets 1-3 

both internally and against each other, along with each absorption category and each binding 

category internally and against each other. From these similarity matrices, histograms were 

plotted and utilized to visualize dataset diversity. 

 

QSAR Model Development, Internal Validation, and External Validation 

Figure 5 shows the workflow for QSAR model development, validation, and application. 

This shows the overall process utilized in these methods, along with the overall goal of the 

models. The models were constructed using compounds with known ADMET properties. The 

constructed models were then applied to the test set compounds (also with known ADMET 

properties) to compare the predicted ADMET property to the actual ADMET property reported 

through the validation process. The goal was to develop validated models that can be used to 

make predictions on compounds of interest to help guide future ligand/inhibitor discovery 

efforts. 
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Figure 5. Workflow of the development, validation, and application of ADMET QSAR 
models. First, a training set was defined containing compounds with known ADMET 
properties, and molecular descriptors were selected to help build the model. The QSAR 
model was used to predict the ADMET properties for the training set using the molecular 
descriptors calculated and the predicted ADMET properties were compared to the known 
ADMET values of the training set to assess fit of the model to the training data. Second, the 
QSAR model was evaluated using the test set descriptors, where the predicted ADMET 
properties were compared to the measured ADMET properties of the test set to externally 
validate the QSAR model.  

 
 All compounds were modeled in the ionization state expected at physiological pH (7.4) 

using the wash function in MOE, followed by visual inspection/validation of all processed 

structures. There are different molecular descriptors relevant to this work, 2D descriptors and 

i3D descriptors. Two-dimensional (2D) molecular descriptors are calculated based on a 

compound’s 2 dimensional structural formula, while i3D molecular descriptors are calculated 

from the 3 dimensional geometry of the molecule independent of position in the x,y,z coordinate 

system.79 If 3D molecular descriptors were used in a model, they were calculated using the 

lowest energy conformation of the compounds, which were determined through a full 

conformational search. Conformational searches were performed using the Merck Molecular 

Force Field 94x (MMFF94x) as implemented in MOE on the University of Memphis High-

Performance Computing (HPC) system using two solvation treatments, gas phase and the Born 

solvation model. The MMFF94x forcefield is a modification of the MMFF94s95 forcefield with 

planar conjugated nitrogen atoms. The lowest energy conformation from each conformational 
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search was then used in each model that included descriptors dependent upon conformation (i3D 

and 2D/i3D combined). In this particular work 5 different models were made for each ADMET 

property examined using varying combinations of molecular descriptors (2D, i3D from two 

solvation models, and 2D/i3D combined from two solvation models) to determine which 

combination produced the most accurate predictions. All descriptors possible for each descriptor-

type model were calculated (206 2D descriptors, 117 i3D descriptors, and a total of 323 2D/i3D 

descriptors), except semi-empirical i3D descriptors. Generally, only utilizing 1/5 as many 

descriptors as training set compounds is preferable to avoid overfitting the data when performing 

linear regression models, which is often referred to as the “Topliss-Costello rule”.66, 96 Following 

this trend, no more than 12 descriptors were used in each model described herein.  

Contingency analysis was used to prune the molecular descriptors so only those most 

correlated to the activity field in question (HIA, Caco-2 permeability, or % protein binding), but 

those significantly correlated to each other were not used. Contingency analysis correlates the 

molecular descriptors to the activity field using a series of statistical measurements—

contingency coefficient (C field), Cramer’s V (V field), entropic uncertainty (U field), and the 

correlation coefficient (R field).97-101 For HIA and % protein binding, the descriptors were pruned 

by eliminating those showing values below 0.9 in the C field. For Caco-2 permeability, the 

descriptors were pruned by eliminating those giving values below 0.8 in the C field. To ensure 

the descriptors were not too correlated to each other, a correlation matrix was generated using 

MOE. Only descriptors with 80% correlation and below were kept. If two descriptors were more 

than 80% correlated, the descriptor least correlated to the other descriptors was kept.  

QSAR models were generated based on the selected descriptors using the QuaSAR-

Model mode in MOE. Linear models, using the partial least squares method, were made for both 
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HIA and Caco-2 permeability, while binary models were made for % protein binding. The model 

files were internally validated on the training set compounds through a cross-validation method 

called leave-one-out (LOO). LOO derives a model with the remaining data after each data value 

is left out in turn.76, 102 This means one compound is left out at a time and the remaining 

compounds were used as the training set to derive the model. The one compound left out was 

used as a single compound test set to validate the model. This process was repeated with all 

compounds in the training set to help validate the model by calculating the log of the sum of all 

the predicted values.102 The model files were then used to make predictions on the test set 

compounds through the Model Evaluate method in MOE. The model predictions were then 

compared to the experimental data based on the category corresponding to the predicted values 

to determine the accuracy of all 5 model types for HIA, Caco-2 permeability, and % protein 

binding.  

 

Examination of Commonly Mispredicted Compounds 

Within each model and for each activity (HIA, Caco-2 permeability, and % protein 

binding), mispredicted compounds were examined to see if any common features of poorly 

predicted compounds could be identified and used to define an appropriate scope of chemical 

structures for which the models were best suited. Similarities of mispredicted compounds were 

determined as described previously in the Chemical Diversity Measures section of this chapter.  
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Results and Discussion 

Dataset Diversity 

A histogram representing the diversity of all compounds in the compiled compound 

database is shown below in Figure 6. Histograms representing chemical diversity in individual 

training and test sets can be seen in the Appendix, Figures A3-A21. In all cases, the majority of 

similarities fall within the 0-50% range of similarity, thus all subsets represented diverse 

datasets. 

 

  
 

Figure 6. Representative histogram of all compound chemical diversity calculated from 
MACCS keys using Tanimoto coefficients. Number of pairwise comparisons within each 
10% bin are on top of the bar along with the total of pairwise similarities to the right of the 
figure.   
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Comparison of 5 Descriptor Model Types 

To determine the accuracy of the models constructed with different descriptor types used 

or solvation models, the number of compounds correctly predicted within each category 

(absorption category for HIA or Caco-2 permeability and high/low binding for protein binding) 

was calculated and plotted against the reported experimental value for each descriptor model 

type at each stage of modeling. Figure 7 shows the model comparison for human intestinal 

absorption at the model development stage and internal validation stage. Figure 8 shows the 

model comparison for human intestinal absorption at the external validation stage.  

 

 
 
Figure 7. Model comparisons at the model development stage (panel A) and internal 
validation stage (panel B) for human intestinal absorption data. Experimental values are in 
black, 2D descriptor model values in open bars, i3D descriptor models in gas phase values 
in brick, 2D3D descriptor combination in gas phase in diagonal lines, i3D descriptor 
models in Born solvation values in horizontal lines, and 2D3D descriptor combination in 
Born solvation values in squares. 

 
Based on the results shown in Figure 7 compounds in the well absorbed and poorly 

absorbed categories were more accurately predicted than those compounds in the moderately 

absorbed category during the model development stage. The well absorbed and poorly absorbed 

0

5

10

15

20

25

30

35

40

45

Poorly Moderately Well

N
um

be
r

Compounds Correct in Absorption Category

Experimental

2D

i3D-Gas

2Di3D-Gas

i3D-Born

2Di3D-Born

0

5

10

15

20

25

30

35

40

45

Poorly Moderately Well

N
um

be
r

Compounds Correct in Absorption Category

A B



 50 

compounds all closely match the experimental data (with at most only 6 of the 42 well absorbed 

compounds and 1 of 3 poorly absorbed compounds incorrectly categorized). Compounds in the 

poorly and moderately absorbed categories were poorly predicted in the internal validation stage, 

(at most all 3 poorly absorbed incorrectly categorized and 12 of 15 moderately absorbed were 

incorrectly categorized). Of the descriptor types used to create the models, the i3D Born solvated 

model performed slightly better than the other models for model development. In the internal 

validation stage, the i3D gas phase model performed slightly better than the other models. 

 

 
 

Figure 8. Model comparison at the external validation stage for human intestinal 
absorption data. Experimental values shown in black, 2D descriptor model values shown in 
open bars, i3D descriptor model values in the gas phase shown in bricks, 2D3D descriptor 
combination model values shown in diagonal bars, i3D descriptor model values in the Born 
solvation shown in horizontal lines, and 2D3D descriptor combination model values shown 
in squares. 
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The results shown in Figure 8 indicate compounds in the well absorbed category were 

most accurately predicted. Compounds in the moderately absorbed category were most poorly 

predicted, with two of five models failing to correctly predict either test compound in this 

absorption category. Of the descriptor types used to create the models, the i3D gas phase and i3D 

born solvated models performed equally.  

Based on the results shown in all three comparisons for the models predicting HIA, there 

is little difference between each set of models. Figure 9 shows the model comparison for Caco-2 

permeability at the model development stage and internal validation stage. Figure 10 shows the 

model comparison for Caco-2 permeability at the external validation stage.  

 

 
 
Figure 9. Model comparisons at the model development stage (panel A) and internal 
validation stage (panel B) for Caco-2 permeability data. Experimental values are in black, 
2D descriptor model values in open bars, i3D descriptor models in gas phase values in 
brick, 2D3D descriptor combination in gas phase in diagonal lines, i3D descriptor models 
in Born solvation values in horizontal lines, and 2D3D descriptor combination in Born 
solvation values in squares. 

 
Figure 9 indicates compounds in the well absorbed and moderately absorbed categories 

were more accurately predicted than those compounds in the poorly absorbed category during 
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the model development stage. Compounds in the poorly absorbed category performed the worst 

in both the model development and internal validation stage. Of the descriptor types used to 

create the models, the i3D-Born solvated model performed slightly better at the model 

development stage, but the 2D descriptor model performed slightly better at the internal 

validation stage. 

 
 

Figure 10. Model comparison at the external validation stage for Caco-2 permeability data. 
Experimental values shown in black bars, 2D descriptor model values shown in open bars, 
i3D descriptor model values for the gas phase are shown in brick bars, 2D3D descriptor 
combination values for gas phase shown in diagonal bars, i3D descriptor values for the 
Born solvation shown in horizontal bars, and 2D3D descriptor values for the Born 
solvation shown in square bars. 

 
Based on the results shown in Figure 10 compounds in the well absorbed category were 

the most accurately predicted, with four out of five models correctly predicting all of the well-

absorbed compounds. Compounds in the poorly absorbed category were similarly predicted, with 

three out of five models predicting all of the poorly absorbed compounds. Compounds in the 
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moderately absorbed category were predicted the worst, with no model correctly predicting both 

compounds and one model failing to correctly predict either compound in this category. This 

could be due to the large standard deviation some of the compounds had for Caco-2 permeability 

when they were means of multiple reported values.  

The results shown in all three comparisons for the models predicting Caco-2 

permeability, there is once again little difference between each set of models. Figure 11 shows 

the model comparison for protein binding at the model development stage and internal validation 

stage. Figure 12 shows the model comparison for protein binding at the external validation stage. 

 

 
 
Figure 11. Model comparisons at the model development stage and internal validation 
stage for protein binding data. Experimental values shown in black bars, 2D descriptor 
model values shown in open bars, i3D descriptor model values in gas phase shown in brick 
bars, 2D3D descriptor model values in gas phase shown in diagonal bars, i3D descriptor 
model values in Born solvation shown in horizontal line bars, and 2D3D descriptor model 
values in Born solvation shown in square bars. 

 
The results shown in Figure 11, indicate the majority of models performed similarly 

during both the model development stage and internal validation stage. Compounds in the high 

binding category performed slightly worse in the internal validation stage when compared to the 
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model development. Due to similar model performance similarly, it is difficult to select the best 

model to use based on these two stages of model development.   

 
 
Figure 12. Model comparison at the external validation stage for protein binding data. 
Experimental values shown in black bars, 2D descriptor model values shown in open bars, 
i3D descriptor model values in gas phase shown in brick bars, 2D3D descriptor 
combination model values in gas phase shown in diagonal bars, i3D descriptor model 
values in Born solvation shown in horizontal line bars, and 2D3D descriptor combination 
model values in Born solvation shown in square bars. 

 
Figure 12 illustrates model performance during the external validation stage. The model 

that performed the best overall at this stage was the i3D Born model, with 3 of 4 test compounds 

correctly categorized. However, the 2D/i3D models using both solvation conditions correctly 

categorized 2 out of 4 compounds. Based on the protein binding predictions results shown in all 

three comparisons, there is little difference between the models. Tables 8-10 give a more 

quantitative representation of the accuracy of each model comparison for HIA, Caco-2 

permeability, and protein binding respectively.  
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Table 8. Comparison of all five models made with different descriptor types and solvation 
methods to predict HIA. Bold box indicates the model with the best predictions overall. 
Compounds in each absorption category in the training set (model development & internal 
validation): 3 poorly absorbed, 15 moderately absorbed, 42 well absorbed. Compounds in 
each absorption category in the test set (external validation): 2 poorly absorbed, 2 
moderately absorbed, 2 well absorbed. 
 

  Gas Phase Born Solvated 
 2D i3D 2D/3D i3D 2D/3D 
 Correct Incorrect Correct Incorrect Correct Incorrect Correct  Incorrect Correct Incorrect 

Model 
Development 

Poorly 2 1 1 2 2 1 2 1 2 1 
Moderately 8 7 9 6 8 7 7 8 10 5 

Well 38 4 39 3 39 3 40 2 36 6 
Internal 

Validation 
Poorly 1 2 1 2 0 3 0 3 1 2 

Moderately 3 12 8 7 4 11 6 9 8 7 
Well 35 7 38 4 36 6 37 5 36 6 

External 
Validation 

Poorly 0 2 1 1 1 1 1 1 1 1 
Moderately 0 2 1 1 0 2 1 1 1 1 

Well 2 0 2 0 2 0 2 0 1 1 
 

 
Table 9. Comparison of all five models made with different descriptor types and solvation 
methods for Caco-2 permeability. Bold box indicates the model with the best predictions 
overall. Compounds in each absorption category in the training set (model development & 
internal validation): 9 poorly absorbed, 16 moderately absorbed, 35 well absorbed. 
Compounds in each absorption category in the test set (external validation): 2 poorly 
absorbed, 2 moderately absorbed, 2 well absorbed. * means 1 compound 2 absorption 
categories away. + means 1 compound previous category (for moderately absorbed 
compounds). 
 

  Gas Phase Born Solvated 
 2D i3D 2D/3D i3D 2D/3D 
 Correct Incorrect Correct Incorrect Correct Incorrect Correct  Incorrect Correct Incorrect 

Model 
Development 

Poorly 2 *7 2 *7 2 7 2 7 2 *7 
Moderately 10 6 7 9 10 6 10 6 10 6 

Well 25 10 29 6 28 7 28 7 25 10 
Internal 

Validation 
Poorly 1 *8 2 **7 1 *8 2 **7 1 *8 

Moderately 10 +6 7 9 9 +7 5 +11 8 +8 
Well 25 10 23 12 27 8 25 *10 24 11 

External 
Validation 

Poorly 2 0 1 1 2 0 1 1 2 0 
Moderately 1 1 0 2 1 1 1 1 1 1 

Well 2 0 2 0 1 1 2 0 2 0 
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Table 10. Comparison of all five models made with different descriptor types and solvation 
methods for protein binding. Bold box indicates the model with the best predictions overall. 
Compounds in each absorption category in the training set (model development & internal 
validation): 27 low binding and 30 high binding. Compounds in each absorption category 
in the test set (external validation): 1 low binding and 3 high binding.  
 

  Gas Phase Born Solvated 
 2D i3D 2D/3D i3D 2D/3D 
 Correct Incorrect Correct Incorrect Correct Incorrect Correct  Incorrect Correct Incorrect 

Model 
Development 

Low 27 0 25 2 26 1 25 2 27 0 
High 27 3 23 7 28 2 27 3 29 1 

Internal 
Validation 

Low 25 2 25 2 25 2 24 3 27 0 
High 26 4 20 10 26 4 22 8 24 6 

External 
Validation 

Low 1 0 0 1 1 0 1 0 1 0 
High 1 2 1 2 1 2 2 1 1 2 

 

When examining all the comparisons in Tables 8-10 of HIA, Caco-2 permeability, and 

protein binding together, there are subtle differences in accuracy of the models. Looking at the 

results in terms of quantitative data is the only way to determine how well the models performed. 

The models built using the 2D descriptors are very similar to the models built using the i3D 

descriptors computed for conformations modeled using Born solvation (with on average only 1 

or 2 more compounds predicted in the incorrect category at each stage for the 2D descriptor 

model), although the i3D models all give slightly better results and mimic physiological 

conditions better. Using the i3D descriptor model with Born solvation requires a significantly 

greater amount of computational time and data storage capacity due to the necessity of the 

conformational search. If the goal of a specific project was to explore a small database of 

potential compounds, the i3D Born model may prove to be the best to use. However, if the goal 

of a specific project was to explore a large database of compounds, the 2D model may be the 

best approach to save the computational time and effort of finding the lowest energy 

conformations. The 2D descriptor model does not require a conformational search since the 

descriptors are not dependent upon the 3-dimensional structure of the molecule. 
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Model performance could also be impacted by compound stereochemistry, as 

conformational searches required input of a specific stereoisomer, although experimental data 

used to compile the database was not always attributed to a specific stereoisomer. 

Stereochemistry can affect the biological activity of a drug. It is possible for a drug that is chiral 

to be stereoselective for certain receptors, with this stereoselectivity varying for different 

receptors. Isomers can have a variety of effects—one isomer can be more potent than the other 

(called the eutomer and distomer respectively), both can be biologically active but only one leads 

to adverse effects (like toxicity), or one enantiomer may nullify out the effect of the other by 

antagonizing it.103 Diastereomers are configured in three-dimensional space differently, being 

different compounds, which means their interactions with receptors will be different as well, 

leading to different biological effects. If a chiral drug has two enantiomers, they may differ in 

their bioavailability (which is a factor related to absorption), rate of metabolism, excretion, their 

selectivity for transporters (which affects the drug distribution), as well as toxicity.104 The results 

of the models generated herein may be impacted by the assigned stereochemistry for some 

compounds, when a racemic mixture or different isomer may have been tested, due to these 

various stereochemical effects related to drug-receptor interaction, which can affect the 

absorption or distribution of a drug.   

 

Commonly Mispredicted Compounds 

In this work there was only one commonly mispredicted compound within all five 

models developed for protein binding. This compound was hydralazine (structure shown in 

Figure 13). A single compound does not allow determination of structural types that may not be 

accurately predicted when the models are applied to additional compounds.  
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Figure 13. Structure of hydralazine. Only commonly mispredicted compound in the five 
protein binding models. Structure shown at physiological pH 7.4. 

 
There were a total of seven commonly mispredicted compounds for the 5 HIA models, 

and the histogram of compound similarities can be seen in Figure 14. A table of all the 

mispredicted compounds within the HIA models is shown in the Appendix, Table A1.  

 

 
 

Figure 14. Histogram of the commonly mispredicted compounds within the HIA QSAR 
models. Seven total compounds were mispredicted. MACCS keys were calculated along 
with the Tanimoto coefficient to determine any compound chemical similarity. The 
majority of the pairwise similarities fall within the 20-40% bins. 
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The majority of the pairwise similarities in this group fell within the 20-40% range, 

suggesting limited structural similarity and providing no specific mechanism to identify, in 

advance, compounds that might be mispredicted when the model is applied to predict absorption 

properties of unknowns. The 5 Caco-2 permeability models had fifteen commonly mispredicted 

compounds and the resulting histogram can be seen in Figure 15. A table of all the mispredicted 

compounds within the Caco-2 permeability models is shown in the Appendix, Table A2. 

 

 
 

Figure 15. Histogram of the commonly mispredicted compounds within the Caco-2 
permeability QSAR models. There was a total of fifteen commonly mispredicted 
compounds within the five descriptor model types. MACCS keys and Tanimoto coefficients 
were calculated to determine any compound chemical similarity. The majority of the 
pairwise similarities fall within the 20-50% range.   

 
The majority of the pairwise similarities fell within the 20-50% range, once again 

showing they were structurally dissimilar. There was only one compound commonly 

0

5

10

15

20

25

30

35

40

≥90 ≥80 to 
<90

≥70 to 
<80

≥60 to 
<70

≥50 to 
<60

≥40 to 
<50

≥30 to 
<40

≥20 to 
<30

≥10 to 
<20

 <10

Pe
rc

en
ta

ge
 o

f P
ai

rw
ise

 C
om

pa
ris

on
s

Similarity Range

4

9

24

36

27

5

Total Pairwise 
Similarities:

105



 60 

mispredicted between the five HIA models and the five Caco-2 models: tranexamic acid, which 

can be seen in Figure 16.  

  

Figure 16. Structure of tranexamic acid. The only compound commonly mispredicted in all 
the HIA and Caco-2 permeability QSAR models. Structure shown at physiological pH 7.4. 

 
Due to the low pairwise similarities for mispredictions made by the HIA and Caco-2 

permeability models, the dataset was too structurally diverse to determine any potential ‘trouble’ 

compound structures to avoid in the future. This was indicated initially by the histograms created 

to determine the structural diversity of the dataset selected to be used in the models, but this 

exploration seemed imperative to determine whether any similarities occurred to help determine 

appropriate compounds on which to apply the models.  

 

Conclusions 

Overall, the models generated herein using different molecular descriptor types and 

solvation methods, all performed similarly for each descriptor type for HIA, Caco-2 

permeability, and % protein binding. However, when examining the empirical breakdown for 

each, the i3D Born descriptor model types performed slightly better than the others. Descriptors 

in these models are computed for compounds under solvation conditions that mimic the 

environment of the human body. The HIA i3D Born model predicted 49 of 60 compounds 

correct in the model development stage, 43 of 60 correct in the internal validation stage & 4 of 6 
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correct in the external validation stage, with both well absorbed compounds correct and 1 

moderate and poorly absorbed each correct. The Caco-2 permeability i3D Born model predicted 

40 of 60 correct at the model development stage, 32 of 60 correct in the internal validation, and 4 

of 6 correct in the external validation stage, with both well absorbed correct and 1 moderate and 

poorly absorbed each correct. The Caco-2 permeability models performed slightly worse than 

models for the other two activity types, at each stage of model development and validation, due 

to the large standard deviations on experimental data for some compounds in the reported 

datasets. The protein binding i3D Born model predicted 52 of 57 compounds correct at the model 

development stage, 46 of 57 correct at the internal validation, and 3 of 4 correct in the external 

validation stage, with the low binding compound correct and 2 of the high binding compounds 

correct.  

Due to the similar behavior of all descriptor-type and solvation models, the application of 

these models in the future may be dependent upon the size of the datasets. Smaller datasets (less 

than 100 compounds) should use the i3D Born models, due to the slightly better predictions as 

discussed above and the mimicry of the body’s natural environment. However, these descriptor-

type models utilized a conformational search performed on the HPC, which requires 

computational time and is not ideal for larger datasets. Due to this, and the similar performance 

of the 2D descriptor type models, larger datasets (over 100 compounds) should use the 2D 

descriptor models. Unfortunately, we were unable to determine specific classes of compounds to 

be used to filter out ‘troubling’ compounds for future predictions, because our datasets were too 

structurally diverse. However, these models developed within this work can still be used to filter 

potential compounds for screening efforts.   
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Chapter 3 

Method Development of Protein Binding Assays 

Introduction 

Protein binding (PB) measurements have previously been used to help determine the 

distribution of potential drugs in the human body. Proteins in blood plasma (albumin and α1-acid 

glycoprotein) bind drugs and effect distribution.105 Some of the main methods previously utilized 

to investigate PB are equilibrium dialysis, ultracentrifugation, ultrafiltration, as well as gel 

filtration.105 We chose not to use these specific approaches due to known disadvantages for each. 

Some disadvantages of equilibrium dialysis (the most widely used technique in this regard) are 

that it requires costly equipment (rapid equilibrium dialysis, RED), as well as it suffers from 

membrane binding and nonspecific binding.105, 106The main disadvantages of ultracentrifugation 

are that there is a large amount of unbound drug in the sedimentation that results, along with the 

cost of the ultracentrifuge instrumentation. In addition, only a small number of samples can be 

analyzed at a time, and careful control of temperature and pH are needed.105 Ultrafiltration is a 

relatively faster and easier technique than equilibrium dialysis, as well as providing accurate and 

quantitative data. However, there are issues with nonspecific binding and temperature and pH 

control are required.105 Gel filtration does not have any membrane-related issues, however 

binding to the gel can occur, as well as being time consuming.105  

Herein we chose two spectroscopic techniques, namely, fluorescence polarization and 

nano differential scanning fluorimetry. Fluorescence polarization assays have also been used 

previously to determine protein binding.55 Since its first application in 1952, this technique has 

been modified and its application expanded to be used in high-throughput screening (HTS) 

approaches. An advantage of FP in this analysis is the inclusion of internal quality control 
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parameters (ratio of emission intensities of bound and free probes) inherent in the technique.107 

Nano differential scanning fluorimetry is a technique typically used to determine protein stability 

via the spectrofluorometric determination of proteins.108 However, it has also been used 

previously to determine yes/no protein binding checks.56 These methods were selected for use 

herein, in part because of these strengths, their relative lack of weakness inherent in the other 

approaches, and also because instrumentation capable of performing these assays were readily 

available to us. 

 

 Fluorescence Polarization 

 Fluorescence polarization and fluorescence polarization anisotropy are assays used to 

determine binding between proteins (or other targets) and ligands, typically set up as competition 

assays where polarization of a fluorophore reporter should decrease as a small molecule 

competitor binds and displaces the reporter from its protein binding site.109 Fluorescence 

polarization assays measure the change in polarized light of a fluorescent molecule as binding 

occurs by monitoring the emitted fluorescence light parallel and perpendicular to the excitation 

plane; as binding of the fluorescent reporter occurs, polarization increases due to a slower 

rotation of the reporter when complexed than when free in solution. Small molecules, like the 

fluorophore alone, rotate quickly in solution and so have low polarization as the ratio of the 

parallel and perpendicular fluorescence emitted is equal. Large molecules, like a protein, rotate 

more slowly in solution and thus induce high polarization upon binding due to the parallel 

fluorescence emitted being larger than the perpendicular fluorescence. Figure 17 shows an 

example of these changes in polarization caused by different molecule rotations.  



 64 

 
 
Figure 17. Schematic representation of fluorescence polarization. Smaller molecules 
(fluorophore) rotate rapidly in solution and produce low polarization values due to the 
parallel & perpendicular fluorescence emitted being equal (de-polarized). Larger molecules 
(protein) rotate slowly in solution and produce high polarization values due to the parallel 
fluorescence emitted being larger than the parallel fluorescence emitted (polarized). When 
a small molecule binds to a large molecule, the complex rotates slowly in solution and 
polarized light is emitted. Measuring this change from low polarization to high polarization 
determines protein binding. 
 

 The ratio of parallel and perpendicular fluorescent light emitted is used to determine the 

polarization (P) of molecules; most instruments output results as milliPolarization (mP) (P*1000) 

readouts along with the raw parallel (FII) and perpendicular (F^) light emitted.110  Equation 4 

shows the formula used to calculate milliPolarization by most instruments.  

 

#$	 = 	1000	 ∗ 	+∥)	+"+∥'	+"
                                               [Eq. 4] 

 

 The instrument used for these experiments was the FlexStation 3 from Molecular 

Devices. This is an automated multi-mode microplate reader capable of obtaining absorbance, 

fluorescence, luminescence, and fluorescence polarization measurements.111 This is a fully 
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automated microplate reader, which is capable of quantitatively transferring solutions from one 

plate (reagent plate) into the assay plate with pipetter tips integral to the instrument, depending 

on how the protocol is set up in the SoftMax Pro software. The fluorescence polarization 

experiments described herein were implemented only after absorbance and emission experiments 

of the fluorophore in question were first analyzed to determine the parameters (excitation and 

emission wavelengths) to be used in subsequent polarization experiments. Two fluorophores 

were used in these fluorescence polarization experiments, fluorescein sodium salt and 

TopFluorÒ LysoPA (a BODIPY-labeled lysophosphatidic acid (LPA)). Fluorescein sodium salt 

is known to bind to BSA112 as can be seen in Figure 18. Lysophosphatidic Acid (LPA) is also 

known to be associated with serum albumin.113 TopFluor LPA has been previously used to 

determine binding to the enzyme autotaxin (ATX) through the use of fluorescence anisotropy.114 

The structure of TopFluor LPA, referred to as BODIPY-LPA throughout the rest of this 

dissertation, can be seen in Figure 19. These two fluorophores were selected for several reasons. 

The main reason being that they were both readily available. Fluorescein has been used for many 

years to determine binding to BSA,115, 116 it is relatively cheap,117 and has a relatively short 

fluorescence lifetime (~4 ns), which means fluorescence polarization is sufficiently high because 

fluorescence polarization decreases as excited state lifetimes increase.118 BODIPY-LPA has not 

been used in many previous fluorescence polarization experiments,114, 119 however LPA is known 

to bind to BSA, which is one of the main reasons we selected this fluorophore. BODIPY-LPA is 

also relatively expensive,120 which is a downside to using this fluorescent-labeled lipid. 

BODIPY-LPA has a longer fluorescent lifetime than fluorescein (~6 ns), which means the 

fluorescence polarization is slightly lower than of fluorescein,118 which is another drawback to 

using this lipid.   
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Figure 18. Structure of fluorescein sodium salt used in these experiments. 

 

Figure 19. Structure of TopFluor LPA (BODIPY-LPA) used in these experiments. 

 

Nano Differential Scanning Fluorimetry 

 Nano differential scanning fluorimetry (NanoDSF) was performed using the Tycho NT.6 

(NanoTemper Technologies, Munich). This instrument can be used for rapid analysis of protein 

binding.56 Nano differential scanning fluorimetry (NanoDSF) determines changes in the ratio of 

intrinsic fluorescence of tryptophan and tyrosine residues in a target protein to determine when 

unfolding of the protein occurs as temperature increases.56, 121 As the protein unfolds the intrinsic 

fluorescence ratio of tryptophan and tyrosine residues changes due to a change in environment 

associated with protein conformation as it unfolds. Figure 20 shows a general representation of 

how NanoDSF can be used to determine binding. 
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Figure 20. Schematic representation of Nano Differential Scanning Fluorimetry used to 
determine protein binding. As temperature increases, the ratio of intrinsic fluorescence of 
tryptophan (350nm) and tyrosine (330nm) residues changes, causing a melting profile, as 
seen in panel A. The first derivative of the melting profile is taken to determine the melting 
temperature of the protein, as seen in panel B. Black line is protein alone, pink is protein 
and ligand bound; melting temperature change is typically observed when binding occurs. 
 
 
 

The idea was that as binding occurred between BSA and the drug, the melting 

temperature (Tm) or inflection temperature (Ti) would change depending on if the drug was a 

high (increase) or low binder (no change, or less change). Compounds were selected for 

validation experiments because they fit the absorption categories well (they were within the 

boundary cutoffs mentioned in Chapter 2 and they would all ionize well for analysis on the mass 

spectrometer in future work). Caco-2 permeability assays require quantitation of compounds that 

permeate the monolayer through mass spectrometry measurements or other suitable methods. All 

compounds selected to be used in protein binding experiments along with their protein binding 

value, HIA, and Caco-2 data can be seen in Table 11. 
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Table 11. Drugs selected to be examined using the FlexStation 3 and Tycho NT.6. Protein 
binding, HIA, Caco-2 permeability, & structures shown. 
 

Drug Name 

% Protein 

Binding122-

126  

% HIA83  

Caco-2 

Permeability 

(log scale)85, 

127  

Structure 

Atenolol 5-16%  50% -5.79 
 

Hydrochlorothiazide 40-68%  68% -5.85 

 

Ibuprofen 90-99%  98% -4.32 
 

Naproxen 98-99%  99% -4.31 
 

 

 

Methods 

Fluorescence Polarization  

 Fluorescence polarization (FP) experiments were performed using the FlexStation 3 

(Molecular Devices LLC, San Jose) to investigate protein binding of various drugs to BSA using 

two different fluorophores, fluorescein sodium salt (Fluka Analytical, Sigma Aldrich, St. Louis), 

and TopFluorÒ LysoPA (BODIPY-LPA, Avanti Polar Lipids, Alabaster). Proper conditions for 

fluorescence polarization experiments were determined from absorbance and emission 
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experiments of each fluorophore in buffer (1X PBS). Specifically, the excitation and emission 

wavelengths, as well as the cutoff wavelength were determined from these experiments. 

 

Fluorescein Fluorescence Polarization Experiments 

Absorbance and Emission Measurements of Fluorescein 

A 10.0 mM stock solution of fluorescein was initially prepared in distilled water. This 

stock solution was then diluted for preliminary absorbance experiments. An intermediate stock 

of 50.0 µM fluorescein was first prepared by adding 5 µL of the 10.0 mM stock to 995 µL 1X 

PBS (non-sterile, prepared in house). This 50.0 µM intermediate stock was then used to prepare 

a 10.0 µM working solution of fluorescein through the addition of 40 µL (of the 50.0 µM stock) 

into 160 µL 1X PBS. This solution was prepared in the assay plate (Corning Costar tissue culture 

treated black, glass-bottom 96-well plate). An absorbance protocol for the FlexStation 3 was 

developed using the onboard SoftMax Pro software, where wavelengths read, how often the 

instrument read those wavelengths, what columns in the assay plate were read, and if any 

compound transfers occurred from the reagent plate were controlled. Table 12 shows the 

protocol used to obtain the absorbance spectrum of fluorescein.  
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Table 12. FlexStation 3 protocol created in the SoftMax Pro software used for absorbance 
measurements of fluorescein.  
 

Absorbance Spectrum Scan Read 

Wavelengths Read 400-525 nm 

Read Every 10 nm 

Reading Column 3 

Compound Transfer None 

Temperature 37 ºC 

 

Fluorescence emission determination experiments for fluorescein were performed after 

determining the excitation wavelength of to be used (490nm) from the absorbance 

measurements. The 50 µM intermediate stock of fluorescein was used to prepare a 1.5 µM 

solution of fluorescein, diluted to a final concentration of 0.3 µM in the emission experiments. 

The 10.0 µM solution of fluorescein used in the absorbance experiments was too concentrated 

and gave saturated data. This 1.5 µM solution of fluorescein was prepared by adding 6 µL of the 

50.0 µM intermediate stock to 194 µL of 1X PBS (non-sterile, prepared in house). The 1.5 µM 

solution was diluted to a 0.3 µM concentration when the instrument transferred 25 µL from the 

reagent plate (Corning Costar v-bottom, 300 µL 96-well microplate) into the 100 µL of buffer 

(1X PBS, pH 7.4, non-sterile, prepared in house) already in the read plate, so the dilution 

occurred in the instrument, eliminating human error. Table 13 shows the protocol used to obtain 

the fluorescence emission spectrum of fluorescein. 
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Table 13. FlexStation 3 protocol created in the SoftMax Pro software used for emission 
measurements of fluorescein. 
 

Fluorescence Emission Scan Read 

Excitation Wavelength 490 nm 

Emission Wavelengths Read 450-550 nm 

Read Every 10 nm 

Cutoff 515 nm 

PMT Gain Medium 

Flashes per Read 6 

Reading Column 6 

Compound Transfer 1 

Reagent Column 6 

Volume Transferred 25 µL 

Volume in Read Plate 100 µL 

Tip Used 6 

Temperature 37 ºC 

  

 

Fluorescence Polarization Measurements of Fluorescein  

 Fluorescence polarization measurements of varying concentrations of fluorescein were 

performed to determine an optimal concentration range to use in later competition assays. A 

100.0 µM intermediate stock of fluorescein was prepared from the 10.0 mM stock in distilled 

water by adding 10 µL of 10.0 mM to 990 µL 1X PBS (non-sterile). This 100.0 µM intermediate 

was then used to prepare the highest dose response concentration of 5.0 µM by adding 75 µL of 
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100.0 µM to 1425 µL 1X PBS (non-sterile). Serial dilutions were performed from this 5.0 µM 

solution to prepare the other dose response concentrations (2.5, 1.0, 0.5, 0.1, 0.05, and 0.01 µM). 

These solutions (200 µL each well) were then pipetted into columns 9-11 of the assay plate 

(Corning Costar tissue culture-treated black, glass-bottom 96-well plate). The fluorescence 

polarization protocol for the FlexStation 3 was constructed using the onboard SoftMax Pro 

software, where the excitation and emission wavelengths, along with the cutoff wavelength, 

PMT gain (how much light is emitted through the sample, to ensure saturation of signal does not 

occur), how many flashes of light per read occur, what columns on the assay plate are read, and 

if any solution is transferred from the reagent plate are all controlled. Table 14 shows the 

protocol used to obtain these measurements. 

 
Table 14. FlexStation 3 protocol created in the SoftMax Pro software used for fluorescence 
polarization measurements of fluorescein. 
 

Fluorescence Polarization Endpoint Read 

Excitation Wavelength 490 nm 

Emission Wavelength 525 nm 

Cutoff 515 nm 

PMT Gain Low 

Flashes per Read 100 

Reading Columns 9-11 

Compound Transfer None 

Temperature 37 ºC 
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Fluorescein Binding to Varying Concentrations of BSA 

Binding of varying concentrations BSA and 2.5 µM fluorescein was examined in terms 

of fluorescence polarization. A 100.0 µM intermediate stock of fluorescein was prepared from 

the 10.0 mM stock in distilled water by adding 35 µL of 10.0 mM to 3465 µL Gibco Dulbecco’s 

1X PBS (DPBS, ThermoFisher Scientific, Waltham). This intermediate stock was then used to 

prepare the working solution of 50.0 µM fluorescein by adding 50.0 µL of the 100.0 µM to 50.0 

µL DPBS. This working solution was prepared in the reagent plate (Corning Costar V-bottom, 

300 µL 96-well microplate). This solution was 20X concentrated to dilute to 2.5 µM in the read 

(assay) plate when 10 µL was added by the instrument. A 111.0 µM BSA solution was prepared 

by dissolving 40.96 mg BSA into 5555 µL DPBS and two serial dilutions occurred to prepare the 

other two concentrations of BSA (11.1 and 1.11 µM). These solutions were 1.11X concentrated 

to dilute to 100.0, 10.0, and 1.0 µM BSA when the fluorescein was added by the instrument. 

These solutions were pipetted into the read plate (Corning Costar non-tissue culture-treated, 

black flat-bottom 96-well), so there were 3 replicates of each concentration, and the FlexStation 

protocol was constructed in the onboard SoftMax Pro software. The solutions were read every 59 

seconds for 30 minutes to ensure that equilibrium binding had occurred. These experiments were 

done to determine the best concentration of BSA to use with 2.5 µM fluorescein in the 

competition assays.   

 

Competition Assays of BSA Binding (Fluorescein and Drugs) 

 Competition binding assays between fluorescein and varying drug concentrations were 

based on methods outlined by Mathias & Jung in 2007.128 These studies used human serum 

albumin (HSA) at 10.0 µM with a fluorophore and a naproxen dose response ranging from 0.01 
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µM to 10 mM. Our competition assays were designed similarly with 10.0 µM BSA, 2.5 µM 

fluorescein, and a drug dose response of 0, 1, 10, 100, 1000, & 10000 µM. The drugs used in 

these competition assays were atenolol, hydrochlorothiazide, naproxen, and ibuprofen (a low 

binder, mid-binder, and two high binders, respectively). A 50.0 µM working solution of 

fluorescein was prepared from the 10.0 mM stock in distilled water by adding 10 µL into 1990 

µL DPBS. This working solution was pipetted into a column of the reagent plate, a Corning 

Costar V-bottom 300 µL 96-well plate (150 µL each well). This solution was 20X concentrated 

so a concentration of 2.5 µM fluorescein was in the final assay. A 13.3 µM BSA solution was 

prepared by dissolving 3.53 mg BSA into 4 mL DPBS. This solution was pipetted into 3 columns 

of the read plate, rows A-G, so 150 µL were in each well. Row H had 150 µL DPBS pipetted 

into 3 columns, so a fluorescein blank could be measured to normalize data. The read plate was a 

Corning Costar black, non-tissue culture-treated flat-bottom 96-well microplate. Drug solutions 

5X concentrated were prepared in DMSO by dissolving each drug in 1 mL of DMSO to prepare 

a 50,000 µM solution. From this solution, serial dilutions were used to prepare the other dose 

response concentrations. These solutions were pipetted into a column on the reagent plate (200 

µL rows A-F, 200 µL DMSO in rows G & H). The FlexStation protocol was set up in the 

SoftMax Pro software so 10 µL of the fluorescein was pipetted by the instrument into 180 µL 

BSA first and read for 30 minutes. Then, 40 µL of the drug solutions were pipetted by the 

instrument into the 190 µL BSA/fluorescein and read for a total of 4 hours. This means each well 

had a total of 20% final DMSO concentration. Triplicate experiments of each drug were 

performed, means & standard deviations calculated, and the fluorescence polarization data was 

normalized and scaled from 0-100 as shown in Equation 5, where x is the original mP value, min 
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is the mP of 2.5 µM fluorescein in DPBS, and max is the mP of 10.0 µM BSA & 2.5 µM 

fluorescein. 

 

 % mP = (.)/01)
	(/&.)/01) ∗ 100                                                           [Eq. 5] 

 

 Calculations of % protein binding are based on an equation outlined by Zhang, Nordeen, 

and Shapiro in 2013, who applied a fluorescence anisotropy method to determine binding 

between a steroid receptor activator and steroid receptors.129 The equation used in our methods is 

is modified from this paper and is shown in Equation 6, where the % protein binding is 

determined at a specific concentration, the mP change is calculated from the difference between 

mP when no fluorophore is present and the mP in the presence of the competitor (drug), and the 

max. mP change is calculated from the largest change in mP independent of which concentration 

is being examined, following the same guidelines as the mP change in the numerator.  

 

%	*+,-./0	1/02/03 = 	 /3	$4&156
/&..		/3	$4&156 ∗ 100                                       [Eq.6] 

 

However, one thing to note is that Equation 5 scales all mP graphs in these competition 

assays to 100%, so this Equation 5 is inherently calculating these changes in mP used for 

Equation 6. Our graphs also show the % protein binding of the fluorophore, so the opposite value 

is used for the competitor (drug). For example, if 90% mP is shown on the graph, then 10% mP 

is used for the competitor, and therefore, 10% of the drug is bound.  
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BODIPY-LPA Fluorescence Polarization Experiments 

Absorbance and Emission Measurements of BODIPY-LPA 

 A stock solution of 1 mg/mL BODIPY-LPA was prepared by dissolving 1 mg BODIPY-

LPA in 1 mL chloroform. This stock solution was aliquoted into 70 µL volumes and dried with 

air in a fume hood. This 70 µL aliquot was then resuspended in 1 mL DMSO to prepare a 100.0 

µM intermediate stock of BODIPY-LPA. From this 100.0 µM intermediate stock, a 5.0 µM 

solution was prepared by adding 75 µL of 100.0 µM to 1425 µL 1X PBS (non-sterile). This 5.0 

µM solution (200 µL each well) was pipetted into the assay plate (Corning Costar tissue culture-

treated black, glass-bottom 96-well plate). The absorbance protocol for the FlexStation 3 was 

compiled using the onboard SoftMax Pro software, where wavelengths read, how often those 

wavelengths were read, what columns of the assay plate were read, and if any solution was 

transferred from the reagent plate was controlled. Table 15 shows the protocol used to obtain the 

absorbance spectrum of BODIPY-LPA. 

 
Table 15. FlexStation 3 protocol created in the SoftMax Pro software used for absorbance 
measurements of BODIPY-LPA. 
 

Absorbance Spectrum Scan Read 

Wavelengths Read 400-600 nm 

Read Every 10 nm 

Reading Column 1 

Compound Transfer None 

Temperature 37 ºC 
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 Emission experiments for BODIPY-LPA were performed after determining the excitation 

wavelength (500nm) to be used from the absorbance measurements. The same 5.0 µM BODIPY-

LPA solution prepared for the absorbance measurements was pipetted into different columns on 

the same assay plate and the fluorescence emission was measured using the SoftMax Pro 

protocol shown in Table 16, where excitation wavelength, what wavelengths were being read 

and how often they were read, what cutoff wavelength was set, as well as PMT gain, and how 

many flashes of light occurred per read, what column of the assay plate was read, and if any 

solution was transferred from the reagent plate were all controlled. 

 

Table 16. FlexStation 3 protocol created in the SoftMax Pro software used for emission 
measurements of BODIPY-LPA. 
 

Fluorescence Emission Scan Read 

Excitation Wavelength 500 nm 

Emission Wavelengths Read 400-700 nm 

Read Every 10 nm 

Cutoff 530 nm 

PMT Gain Medium 

Flashes per Read 6 

Reading Column 2 

Compound Transfer None 

Temperature 37 ºC 
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Fluorescence Polarization Measurements of BODIPY-LPA 

Fluorescence polarization measurements of varying concentrations of BODIPY-LPA 

were performed to determine the optimal concentration to use in later competition assays. A 

100.0 µM intermediate stock was prepared by resuspending a frozen, dried, 70 µL aliquot (1 

mg/ml) in 1 mL DMSO. This intermediate stock was used to prepare a 5.0 µM solution by 

adding 75 µL of 100.0 µM to 1425 µL 1X PBS (non-sterile). Serial dilutions were then 

performed to prepare the other dose response concentrations (2.5, 1.0, 0.5, 0.1, 0.05, and 0.01 

µM). These solutions (200 µL each well) were pipetted into columns 6-8 of the assay plate 

(Corning Costar tissue culture-treated, black glass-bottom 96-well microplate). The fluorescence 

polarization protocol for the FlexStation 3 was compiled using the onboard SoftMax Pro 

software, where excitation, emission, and cutoff wavelengths were set, PMT gain and how many 

flashes of light occurred per read were set, and what columns were read on the assay play, along 

with if any solution transferred from the reagent plate were all controlled. Table 17 shows the 

protocol used to obtain these measurements. 
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Table 17. FlexStation 3 protocol created in the SoftMax Pro software used for fluorescence 
polarization measurements of BODIPY-LPA. 
 

Fluorescence Polarization Endpoint Read 

Excitation Wavelength 500 nm 

Emission Wavelength 540 nm 

Cutoff 530 nm 

PMT Gain Medium 

Flashes per Read 100 

Reading Columns 6-8 

Compound Transfer None 

Temperature 37 ºC 

 

 

BODIPY-LPA Binding to Varying Concentrations of BSA 

 Binding of varying concentrations BSA and 1.0 µM BODIPY-LPA was examined in 

terms of fluorescence polarization. A 100.0 µM intermediate stock of BODIPY-LPA was 

prepared by resuspending a 70 µL aliquot of 1 mg/mL (dried down, frozen) in 1 mL DMSO. 

From this intermediate stock, the working solution of 20.0 µM was prepared by adding 20.0 µL 

100.0 uM to 80.0 µL DPBS. This solution was prepared in the reagent plate (Corning Costar V-

bottom 300 µL 96-well plate). This solution was 20X concentrated to dilute to 2.5 µM in the 

read (assay) plate when 10 µL aliquots were added by the instrument. A 111.0 µM BSA solution 

was prepared by dissolving 40.96 mg BSA into 5555 µL DPBS and two serial dilutions occurred 

to prepare the other two concentrations of BSA (11.1 and 1.11 µM). These solutions were 1.11X 

concentrated to dilute down to 100.0, 10.0, and 1.0 µM BSA when the BODIPY-LPA was added 



 80 

by the instrument. These solutions were pipetted into the read plate (Corning Costar non-tissue 

culture-treated, black flat-bottom 96-well), so there were 3 replicates of each concentration, and 

the FlexStation protocol was set up in the SoftMax Pro software. The solutions were read for 30 

minutes to ensure binding occurred. These experiments were done to determine the best 

concentration of BSA to use with 1.0 µM BODIPY-LPA in the competition assays.   

 

Competition Assays of BSA Binding (BODIPY-LPA and Drugs) 

 Competition binding assays between BODIPY-LPA and varying competing drug 

concentrations were based on methods outlined by Mathias & Jung in 2007.128 Our competition 

assays were designed similarly with 10.0 µM BSA, 1.0 µM BODIPY-LPA, and a drug dose 

response of 0, 1, 10, 100, 1000, & 10000 µM. The drugs used in these competition assays were 

atenolol, hydrochlorothiazide, naproxen, and ibuprofen (the same low, mid-, and high binders as 

used in the fluorescein experiments). A 20.0 µM working solution of BODIPY-LPA was 

prepared from the 100.0 µM intermediate stock prepared from a 70 µL aliquot of 1 mg/mL by 

adding 400 µL of 100.0 µM to 1600 µL DPBS. This working solution was pipetted into a 

column of the reagent plate, a Corning Costar V-bottom 300 µL 96-well plate (150 µL each 

well). This solution was 20X concentrated so a concentration of 1.0 µM BODIPY-LPA was in 

the final assay. A 13.3 µM BSA solution was prepared by dissolving 3.53 mg BSA into 4 mL 

DPBS. This solution was pipetted into 3 columns of the read plate, rows A-G, so 150 µL were in 

each well. Row H had 150 µL DPBS pipetted into 3 columns, so a BODIPY-LPA blank could be 

measured to normalize data. The read plate was a Corning Costar black, non-tissue culture-

treated flat-bottom 96-well microplate. Drug solutions 5X concentrated were prepared in DMSO 

by dissolving each drug in 1 mL of DMSO to prepare a 50,000 µM solution. From this solution, 
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serial dilutions were used to prepare the other dose response concentrations. These solutions 

were pipetted into a column on the reagent plate (200 µL rows A-F, 200 µL DMSO in rows G & 

H). The FlexStation protocol was compiled using the onboard SoftMax Pro software so 10 µL of 

the BODIPY-LPA was pipetted by the instrument into 180 µL BSA first and read for 30 minutes. 

Then, 40 µL of the drug solutions were pipetted by the instrument into the 190 µL 

BSA/BODIPY-LPA and read for a total of 4 hours. This means each well had a total of 21% 

final DMSO concentration. Triplicate experiments of each drug were performed, means & 

standard deviations calculated, and the fluorescence polarization data was normalized and scaled 

from 0-100 as shown in Equation 5, where x is the original mP value, min is the mP of 1.0 µM 

BODIPY-LPA in DPBS, and max is the mP of 10.0 µM BSA & 1.0 µM BODIPY-LPA. 

Calculations of % protein binding are based on Equation 6 and described in the competition 

assay of fluorescein section of this dissertation.   

 

Nano Differential Scanning Fluorimetry 

Nano differential scanning fluorimetry (NanoDSF) was performed using the Tycho NT.6 

(NanoTemper Technologies, Munich) to investigate an alternative, fast, and inexpensive assay to 

assess protein binding of various drugs to bovine serum albumin (BSA, Sigma Aldrich, St. 

Louis). In each experiment, the fluorescence ratio of the emission wavelengths 350 nm and 330 

nm was monitored as a function of temperature in the range of 35 °C to 95 °C. Protein 

fluorescence is typically measured at absorbance maximums near 280 nm (used as an excitation 

wavelength).130 This wavelength is used because the aromatic residues in proteins (tryptophan, 

tyrosine, and phenylalanine) have absorbance maximums at or near 280nm.131  
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Control Assays 

Control experiments were conducted using 100 µM concentrations of each drug target in 

buffer to ensure no interference in the fluorescent signal. Samples for control experiments were 

prepared by adding 10 µL of the 5.0 mM drug stock in DMSO to 490 µL of buffer (1 X PBS, 

nonsterile) to make a 100 µM solution, with 2% DMSO. Samples were performed in 1.5 

microfuge tubes. Duplicate experiments (3 replicates each) were performed. All drugs were 

purchased from Sigma Aldrich, St. Louis and were used without purification.  

 

Binding Assays 

 Binding experiments were performed to determine if a change in melting temperature of 

10.0 µM BSA occurred with a dose response (0, 100, 1000, and 10000 µM) of each drug 

(atenolol, hydrochlorothiazide, and ibuprofen). Samples for binding experiments were prepared 

by adding 200 µL of each intermediate stock of drug in DMSO (500, 5000, and 50000 µM) or 

DMSO vehicle to 800 µL 12.5 µM BSA in Gibco Dulbecco’s 1X PBS (DPBS, ThermoFisher 

Scientific, Waltham), with 20% DMSO. The 12.5 µM BSA solution was prepared by dissolving 

9.96 mg BSA (lyophilized powder, ³ 96%, Sigma Aldrich, St. Louis) in 12 mL DPBS. This BSA 

solution was then split into 800 µL in each of the twelve 1.5 mL microfuge tubes (3 replicates 

triplicate experiments). After 200 µL each intermediate stock of drug was added to the BSA 

solution, the samples were incubated at 37 °C for 4 hours to ensure equilibrium binding was 

reached. After incubation, triplicate experiments were performed on the Tycho NT.6. The change 

in melting temperature was then determined using the first derivative of the protein profile 

(change in ratio as temperature increased).  
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Results and Discussion 

Fluorescence Polarization 

Fluorescein Experiments 

Absorbance and Emission Spectra for Fluorescein  

 The absorbance and emission spectra of fluorescein in buffer (1X PBS, pH 7.4) was 

determined using the FlexStation 3. A 10 µM solution of fluorescein under these conditions had 

an absorption maximum at 490 nm. This maximum was then used to excite a 0.3 µM fluorescein 

solution to determine the emission spectrum. A fluorescence maximum of 525 nm was observed 

under these conditions, and a cutoff of 515 nm was found to yield the best results (eliminating 

the absorbance spectra, so only the emission maximum was observed). The absorbance and 

emission scans for fluorescein under these conditions can be seen in Figure 21. These excitation 

and emission wavelengths were used in all further experiments with fluorescein as fluorophore. 

 

 
 
Figure 21. Absorbance and Emission spectra of fluorescein sodium salt and buffer (1X 
PBS, pH 7.4). Panel A is the absorbance of 10.0 µM fluorescein in buffer (1X PBS, pH 7.4). 
The absorbance maximum under these conditions was determined to be 490 nm.  Panel B is 
the emission of 0.3 µM fluorescein in the same buffer using 490 nm as excitation. For all 
subsequent experimental work with fluorescein, these conditions were utilized (excitation 
490 nm, emission 525 nm with a cutoff of 515 nm). 
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Fluorescence Polarization of Fluorescein  

 A dose response of fluorescein in buffer (1X PBS, pH 7.4) was examined to determine 

the best concentration to use for future BSA competition binding experiments. In buffered 

solutions containing only fluorescein, emissions show an even distribution between parallel 

fluorescence and perpendicular fluorescence, indicating the molecule is freely and rapidly 

rotating in solution rapidly (Figure 20). As the concentration of fluorescein increases, the 

fluorescence polarization (milliPolarization, mP) decreases. This is due to the fluorescence 

emitted increasing, which causes the ratio used to calculate mP to decrease. These data can be 

seen in Figure 22. These data also indicate that fluorescein at 2.5 µM produces a relatively high 

signal (RFU and measurable mP) near the top of the linear portion of the dose response curve, 

while maintaining requiring a modest amount of reporter. This concentration was used in all 

further experiments. 
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Figure 22. Perpendicular (panel A) and parallel (panel B) emission spectrum of dose 
response of fluorescein in buffer (1X PBS, pH 7.4). Fluorescence polarization of dose 
response of fluorescein in buffer (1X PBS, pH 7.4) (panel C). Concentrations of fluorescein 
are 0.01, 0.05, 0.1, 0.5, 1.0, 2.5, and 5.0 µM. Excitation 490nm, Emission 525nm, cutoff 
515nm.  
 

 

Fluorescein Binding to Varying Concentrations of BSA 
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were performed to determine a baseline of binding between the fluorophore and BSA in terms of 

mP. The results of this experiment can be seen in Figure 23. The measured mP increases as 

concentration of BSA increases (with a fixed concentration of fluorescein), due to the molecules 

(BSA and fluorescein bound together) slowly rotating in solution causing the polarized light to 
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be emitted more from the parallel plane than the perpendicular plane. The binding was examined 

at varying timepoints to examine the time course of the effect (Figure 23). There was not a 

significant difference in mP between the 15-minute and 30-minute timepoints.  

 

 
 

Figure 23. Fluorescence polarization (milliPolarization) of varying BSA concentrations (0, 
1.0, 10.0, & 100.0 µM) in the presence of 2.5 µM fluorescein. Varying timepoints shown to 
determine binding occurred between fluorescein & BSA.  
 

 

Competition Binding Assays of BSA, Fluorescein, and Drugs 

 Competition assays examining the binding of fluorescein (2.5 µM) and multiple drugs to 

BSA (10.0 µM) were performed. Figure 24 shows the competition between fluorescein (2.5 µM) 

and a dose response of atenolol, a low binder to blood proteins reported to be 5-16%.122 The 

observed decrease in mP is slight, which indicates that the fluorescein reporter was not competed 

off its BSA binding site by added drug. In short, atenolol did not displace the fluorescein reporter 
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from BSA. The decrease in mP indicates that only ~20% of atenolol is bound at the highest 

concentration (10 mM); this is based on the 80% mP shown on the graph, meaning 80% of the 

fluorescein is bound to BSA, and 20% of atenolol is bound (based on equations 5 & 6). This 

corresponds with atenolol being a low binder to BSA. 

 

 
 

Figure 24. Average milliPolarization of atenolol dose response to 10.0 µM BSA and 2.5 µM 
fluorescein. Atenolol is a low binder with % protein binding 5-16%. Averages of triplicate 
experiments. Standard deviations shown as error bars. Values were normalized by 
subtracting fluorescein alone and scaled from 0-100 by dividing by BSA and fluorescein 
alone minus fluorescein alone and multiplying by 100 to get percent. 
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fluorescein bound (80% mP), which means 20% of hydrochlorothiazide is bound (based on 

equations 5 & 6). This does not match the 40-68% found in the literature, but it does indicate that 

low or mid-binders can still be distinguished by a slight decrease in mP, rather than a large 

decrease in mP. 

 

 
 

Figure 25. Average milliPolarization of hydrochlorothiazide dose response to 10.0 µM BSA 
and 2.5 µM fluorescein. Hydrochlorothiazide is a mid-binder with % protein binding 40-
68% bound. Averages of triplicate experiments. Standard deviations shown as error bars. 
Values were normalized by subtracting fluorescein alone and scaled from 0-100 by dividing 
by BSA and fluorescein alone minus fluorescein alone and multiplying by 100 to get 
percent.  
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decrease in mP indicates that 80% of naproxen is bound at the highest concentration (10 mM); 

this is based on the 20% mP shown on the graph, which means 80% naproxen is bound (based on 

equations 5 & 6). This is less than the literature reports, but it does indicate that a difference can 

be seen between low and high binders using this method.  

 

 
 

Figure 26. Average milliPolarization of naproxen dose response to 10.0 µM BSA and 2.5 
µM fluorescein. Naproxen is a high binder with % protein binding 98-99% bound. 
Averages of triplicate experiments. Standard deviations shown as error bars. Values were 
normalized by subtracting fluorescein alone and scaled from 0-100 by dividing by BSA and 
fluorescein alone minus fluorescein alone and multiplying by 100 to get percent.  
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highest concentration (10 mM); this is based on the 55% mP shown in the graph, meaning 45% 

ibuprofen is bound (based on equations 5 & 6). However, at the 2-, 3-, and 4-hour timepoints, the 

resulting mP increases due to a significant decrease in the fluorescence. This is thought to be 

caused by aggregation over time which would decrease the fluorescence when the aggregates 

form enough to block the light. This was confirmed in nanoDSF experiments shown later, where 

a cloudy solution was noted after a 4-hour incubation of the highest ibuprofen concentration in a 

BSA solution.  

 

 
 

Figure 27. Average milliPolarization of ibuprofen dose response to 10.0 µM BSA and 2.5 
µM fluorescein. Ibuprofen is a high binder with % protein binding 90-99% bound. 
Averages of triplicate experiments. Standard deviations shown as error bars. Values were 
normalized by subtracting fluorescein alone and scaled from 0-100 by dividing by BSA and 
fluorescein alone minus fluorescein alone and multiplying by 100 to get percent. At the 
highest concentration ibuprofen, an increase in mP is seen at 2 hours due to aggregation.  
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BODIPY-LPA Experiments 

Absorbance and Emission Spectra for BODIPY-LPA 

 The absorbance and emission spectra of BODIPY-LPA in buffer (1X PBS, pH 7.4) was 

determined using the FlexStation 3. A 5.0 µM solution of BODIPY-LPA was found to have an 

absorbance maximum at 500 nm. This maximum was then used to excite a 5.0 µM BODIPY-

LPA solution to determine the emission spectrum. A fluorescence maximum was seen at 540 nm 

under these conditions and a cutoff of 530 nm was found to yield the best results showing this 

maximum. Figure 28 shows the absorbance and emission spectrums of 5.0 µM BODIPY-LPA. 

These conditions were used in all further fluorescence polarization experiments of BODIPY-

LPA.  

 

 
 

Figure 28. Absorbance and Emission spectra of BODIPY-LPA and buffer (1X PBS, pH 
7.4). Panel A is the absorbance of 5.0 µM BODIPY-LPA in buffer (1X PBS, pH 7.4). The 
absorbance maximum under these conditions was determined to be 500 nm.  Panel B is the 
emission of 5.0 µM BODIPY-LPA in the same buffer using 500 nm as excitation. For all 
subsequent experimental work with BODIPY-LPA, these conditions were utilized 
(excitation 500 nm, emission at 540 nm with a cutoff of 530 nm). 
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Fluorescence Polarization of BODIPY-LPA 

 A dose response of BODIPY-LPA in buffer (1X PBS, pH 7.4) was examined to 

determine the best concentration to use for future experiments in BSA completion assays. The 

parallel and perpendicular fluorescence showed an even distribution, indicating the molecule was 

rotating rapidly in solutions containing only reporter fluorophore (figure 29). The fluorescence 

increased as concentration of BODIPY-LPA increased, which is why the calculated mP 

decreased as concentration increased (the ratio of used to calculate mP is dependent upon 

fluorescence values from parallel and perpendicular light). This data is shown in Figure 29. The 

data shown here indicates that the concentration of BODIPY-LPA that produces a relatively high 

signal (RFU and measurable mP) and consistent mP is that for 1.0 µM BODIPY-LPA. This 

concentration was used in all further experiments.  
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Figure 29. Perpendicular (panel A) and parallel (panel B) emission spectrum of dose 
response of BODIPY-LPA in buffer (1X PBS). Fluorescence polarization of dose response 
of BODIPY-LPA in buffer (1XPBS) (panel C). Concentrations of BODIPY-LPA are 0.01, 
0.05, 0.1, 0.5, 1.0, 2.5, and 5.0 µM. Excitation 500nm, Emission 540nm, cutoff 530nm. 
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perpendicular plane. Binding of the reporter fluorophore to BSA was examined at varying 

timepoints to examine the timecourse of change in mP. Figure 30 shows only a slight difference 

in mP between the 15-minute and 30-minute timepoints, indicating that binding likely maximizes 

within 15 minutes. This is similar to the binding seen between BSA & fluorescein, but the 

difference between the 0- and 15-minute timepoints is larger than was observed with the 

fluorescein (see Figure 23). The calculated mP resulting from binding between BODIPY-LPA 

and BSA is also higher than that for fluorescein and BSA This is due to the raw fluorescence for 

BODIPY-LPA being lower than that of fluorescein.  

 

 
 

Figure 30. Fluorescence polarization of varying BSA concentrations (0, 1.0, 10.0, & 100.0 
µM) in the presence of 1.0 µM BODIPY-LPA. Varying timepoints shown to determine 
binding occurred between BODIPY-LPA & BSA.  
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Competition Binding Assays of BSA, BODIPY-LPA, & Drugs 

 Competition assays between BODIPY-LPA (1.0 µM) and multiple drugs binding to BSA 

(10.0 µM) were performed. Figure 31 shows the competition between BODIPY-LPA (1.0 µM) 

and a dose response of atenolol, a low binder to blood proteins reported to be 5-16%. A slight 

increase in mP is seen as the concentration atenolol increases, opposite of what is observed with 

fluorescein. This could be because BODIPY-LPA is a tighter binder to BSA than fluorescein and 

is therefore more difficult to compete off. However, this still implies that this method can be 

used to distinguish between a low and high protein binder because a large decrease was not seen. 

  

 
 

Figure 31. Average milliPolarization of atenolol dose response to 10.0 µM BSA and 1.0 µM 
BODIPY-LPA. Atenolol is a low binder with % protein binding 5-16%. Averages of 
triplicate experiments. Standard deviations shown as error bars. Values were normalized 
by subtracting BODIPY-LPA alone and scaled from 0-100 by dividing by BSA and 
BODIPY-LPA alone minus BODIPY-LPA alone and multiplying by 100 to get percent.  
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Figure 32 shows the competition between BODIPY-LPA (1.0 µM) and a dose response 

of hydrochlorothiazide, a mid-binder to blood proteins reported to be 40-68%. A slight decrease 

in mP is seen as the concentration of hydrochlorothiazide increases. This implies that ~15% of 

hydrochlorothiazide is bound at the highest concentration (10 mM); this is based on the 85% mP 

shown in the graph, indicating 15% hydrochlorothiazide is bound (based on equations 5 & 6), 

which is definitely lower than the literature reports. However, it still indicates that the method 

distinguishes between a low and high protein binder. 

 

 
 

Figure 32. Average milliPolarization of hydrochlorothiazide dose response to 10.0 µM BSA 
and 1.0 µM BODIPY-LPA. Hydrochlorothiazide is a mid-binder with % protein binding 
40-68% bound. Averages of triplicate experiments. Standard deviations shown as error 
bars. Values were normalized by subtracting BODIPY-LPA alone and scaled from 0-100 
by dividing by BSA and BODIPY-LPA alone minus BODIPY-LPA alone and multiplying 
by 100 to get percent. 
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 Figure 33 shows the competition between BODIPY-LPA (1.0 µM) and a dose response 

of naproxen, a high binder to blood proteins reported to be 98-99%. A large decrease in mP is 

seen as the concentration of naproxen increases. This implies that ~65% of naproxen is bound to 

BSA at the highest concentration (10 mM); this is based on the 35% mP shown on the graph, 

indicating 65% naproxen is bound (based on equations 5 & 6). This is a lower than reported in 

the literature, but it is still a significant change when compared to the low & mid-binders 

examined. The BODIPY-LPA is not competed from its BSA binding site by naproxen as much 

as fluorescein was, which further agrees with the idea that BODIPY-LPA is a tighter binder to 

BSA than fluorescein. However, these results further again show that this method can be used to 

distinguish between high and low protein binders. 
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Figure 33. Average milliPolarization of naproxen dose response to 10.0 µM BSA and 1.0 
µM BODIPY-LPA. Naproxen is a high binder with % protein binding 98-99% bound. 
Averages of triplicate experiments. Standard deviations shown as error bars. Values were 
normalized by subtracting BODIPY-LPA alone and scaled from 0-100 by dividing by BSA 
and BODIPY-LPA alone minus BODIPY-LPA alone and multiplying by 100 to get percent. 
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hour timepoint; this is based on 50% mP seen on the graph, indicating that the other 50% of BSA 

is occupied by ibuprofen (based on equations 5 & 6). Even though aggregation occurs, the 

change in mP is still a larger decrease than observed with the low and mid-binder, which 

indicates that this method can be used to determine a difference between low and high protein 

binders in the future.  

 

 
 

Figure 34. Average milliPolarization of ibuprofen dose response to 10.0 µM BSA and 1.0 
µM BODIPY-LPA. Ibuprofen is a high binder with % protein binding 90-99% bound. 
Averages of triplicate experiments. Standard deviations shown as error bars. Values were 
normalized by subtracting BODIPY-LPA alone and scaled from 0-100 by dividing by BSA 
and BODIPY-LPA alone minus BODIPY-LPA alone and multiplying by 100 to get percent. 
At the highest concentration ibuprofen, an increase in mP is seen at 1 hour due to 
aggregation. The highest concentration ibuprofen data at 2, 3, & 4 hours removed due to a 
large increase in mP (up to 204 % mP); removed to keep scale consistent. 
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Nano Differential Scanning Fluorimetry 

Control Assays 

 Control experiments for the NanoDSF methodology were performed to ensure that no 

interference occurred at the fluorescence signals measured (350nm/330nm). Figure 35 shows the 

results of these control experiments. The change in ratio (350nm/330nm) as a function of 

temperature was examined for 100.0 µM of each drug (atenolol, hydrochlorothiazide, naproxen, 

and ibuprofen). Most of the compounds do not have interference at those wavelengths, with a 

ratio around 1.0 (atenolol, hydrochlorothiazide, and ibuprofen). Naproxen, however, was found 

to have a ratio around 7.0 as temperature increased, which implies it would cause interference in 

the binding measurements performed with BSA. As such, naproxen was not used in subsequent 

binding experiments. 
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Figure 35. Average change in ratio (350nm/330nm) as a function of temperature for each 
compound. Most compounds have no change in fluorescence ratio as a function of 
temperature and low 350nm/330nm ratios around 1.0. Naproxen has an increase in 
fluorescence ratio as a function of temperature and a ratio around 7.0. Averages are of 
duplicate experiments. 
 

 

Binding Assays 

 Binding experiments examined by NanoDSF were performed to determine whether the 

melting temperature (Tm) of BSA changes as different protein binders are introduced (low, mid, 

high). Figure 36 shows the melting temperature of 10.0 µM BSA in the presence of multiple 

concentrations of atenolol. The Tm of BSA did not change in the presence of different 

concentrations atenolol. A slight decrease in Tm is seen as concentration atenolol increases to 10 

mM, from 58 ºC (BSA alone) to 56 ºC (10 mM atenolol). This decrease is small (only 2 degrees), 

as compared to tighter binders (see below). 
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Figure 36. Average Tm of 10.0 µM BSA in the presence of varying concentrations of the 
drug atenolol. Atenolol is a low binder, with % protein binding around 5-16% bound. 
Averages of triplicate experiments. Standard deviations shown as error bars. 
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55

60

65

70

75

80

85

0 100 1000 10000

M
el

tin
g 

Te
m

pe
ra

tu
re

 (T
m

) (
°C

)

Concentration Atenolol (µM)



 103 

 
 

Figure 37. Average Tm of 10.0 µM BSA in the presence of varying concentrations of the 
drug hydrochlorothiazide. Hydrochlorothiazide is a mid-binder, with % protein binding 
around 40-68% bound. Averages of triplicate experiments. Standard deviations shown as 
error bars. 
 

 Figure 38 shows the melting temperature of 10.0 µM BSA in the presence of multiple 

concentrations of ibuprofen. The Tm of BSA increases as concentration of ibuprofen increases. 

The Tm of BSA increases from 58 ºC (BSA alone) to 73 ºC (10 mM ibuprofen). However, when 

performing these experiments, it was noted that the solution containing the 10 mM ibuprofen 

was cloudy, likely due to aggregation occurring in solution over time. With this being the case, 

when examining the change in Tm of BSA from 58 ºC (BSA alone) to 70 ºC (1 mM ibuprofen), 

the Tm still increases as concentration of ibuprofen increases. This data suggests that this method 

may be used to determine the difference between high and low binders by examining an increase 

in Tm in the presence of high binders.    
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Figure 38. Average Tm of 10.0 µM BSA in the presence of varying concentrations of the 
drug ibuprofen. Ibuprofen is a high binder, with % protein binding around 90-99% bound. 
Averages of triplicate experiments. Standard deviations shown as error bars. 
 

 

Conclusions 

 Based on the data presented here, we have initiated benchmarking of two methods that 

are likely to be effectively used to determine the difference between low and high protein 

binders. The fluorescence polarization (FP) method outlined above provides a more quantitative 

platform to do this, by using a competition assay between either fluorescein (the cheaper option, 

$32.50 for 10 grams from Sigma Aldrich117) or BODIPY-LPA (a more expensive choice, 

$203.41 for 1 milligram from Avanti Polar Lipids120). If a significant decrease in mP is seen in 

competition with the report fluorophore, then the competitor is a higher binder to the protein. If a 

slight decrease or increase in mP is seen, then the competitor is a lower binder to the protein. The 
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normalization and scaling used in this method allow us to estimate % binding. This method also 

requires the purchase of a fluorophore, in addition to the BSA and compounds, which the 

NanoDSF method does not require. This method is also more time consuming than the NanoDSF 

method, as this technique requires parametrization for each fluorophore to be determined before 

the competition assays occur. Each assay takes more time than the NanoDSF method as well. 

The FP method requires 4.5 hours for each set of triplicate experiments, with a total of 13.5 

hours for all three triplicate experiments required per compound. This method also requires more 

volumes of reagents be used per assay (14.4 mL used in the assay plate for all three triplicate 

experiments, plus the amount required to prepare all the solutions). 

 The NanoDSF method outlined above is a more qualitative way to determine a difference 

between high and low protein binders. If the Tm does not change as concentration of the 

compound increases, then the compound can be considered a low binder. If the Tm increases as 

concentration of the compound increases, then the compound can be considered a high binder. 

This method cannot determine how much of the compound is bound, however, which could be a 

drawback if that is the goal of the experiment. This method also does not require any additional 

costs other than those to purchase the BSA and compounds being tested. This method is quick 

(all three triplicate experiments can be performed in 4.5 hours, as the measurements themselves 

only take approximately 4 minutes) and easy to do, which is a benefit when examining many 

compounds at once. This method also only uses very little volume per assay (each capillary used 

in the Tycho uses only ~10 µL, so less than 1 mL is required for all three triplicate assays). To 

the best of our knowledge, this method has not been used to determine protein binding in this 

way before.   
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Chapter 4 

Conclusions and Future Approaches 

Summary of Major Points from Computational Approaches 

 In chapter 2, a discussion of the development of QSAR models predicting HIA, Caco-2 

permeability, and protein binding was provided. These models were developed to help us make 

informed decisions about the suitability of potential compounds for subsequent ligand/inhibitor 

discovery efforts using ADMET properties (specifically absorption and distribution). These two 

ADMET properties were chosen because they are two of the initial processes an oral drug must 

progress through after ingestion.  

 Five models using different descriptor types for each HIA, Caco-2 permeability, and 

protein binding were developed with the goal to determine which descriptor type produced the 

predictions closest to reported experimental data. The development and analysis of these models 

was examined throughout chapter 2, along with a detailed examination of compounds commonly 

mispredicted within all 5 models for HIA, Caco-2 permeability, and protein binding. Although 

these models were successfully developed, they have not yet been used to make predictions on 

pipeline compounds with unknown ADMET properties. Such application awaits future students 

and or collaborative efforts. Instead of diverting effort to this endeavor, a decision was made to 

focus on experimental efforts that could be used to help validate these computational tools. 

 

Model Selection and Future Application 

The results of the computational work discussed in chapter 2 show that there was not a 

clear difference in model performance when comparing the models generated with different 

descriptor types and solvation approaches. The recommendation from this work is that future 



 107 

models should be selected for future datasets depending on the size of the dataset to be 

examined. If the target dataset is smaller in size (less than 100 compounds), the i3D-Born 

descriptor model should be used. These models performed slightly better than all the other 

descriptor model types and better mimic physiological conditions, due to the use of Born 

solvation. However, these models require a conformational search to identify the lowest energy 

conformation of each structure. These searches take computational time, which is why if the 

dataset is larger in size (more than 100 compounds), the 2D descriptor model will be used. These 

models performed similarly to the i3D-Born descriptor type models, but do not require a 

conformational search because these descriptors do not depend on the three-dimensional space.  

 

Examination of Mispredicted Compounds 

 Only one compound was commonly mispredicted within all 5 models for protein binding, 

so a histogram representing chemical diversity was not appropriate in this case. However, 

histograms comparing the mispredicted compounds in the HIA and Caco-2 models showed that 

the datasets were too diverse to uncover a trend in the structures of those compounds predicted to 

be in the incorrect category. The HIA mispredicted compounds histogram in Figure 14 had the 

majority of the pairwise similarities within the 20-40% bins, with all of the pairwise similarities 

falling between 20-70%. Only 2 of the 21 pairwise similarities fell within the 60-70% bin. This is 

not enough of a similarity to discern a common sub-structure within these mispredicted 

compounds to identify “bad actors”. The Caco-2 mispredicted compounds histogram in Figure 

15 had the majority of the pairwise similarities within the 20-50% bins, with all of the pairwise 

similarities falling between 10-70%. Only 4 of the 104 pairwise similarities fell within the 60-

70% bin. Again, this was too small of a number to discern a common sub-structure within these 
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mispredicted compounds. These data indicate that the dataset was too diverse to obtain an 

estimate of a commonality between the mispredicted compounds to find a way to filter out 

potentially troubling compounds in the future.    

 

Summary of Major Points from Experimental Approaches 

 In chapter 3, a discussion of method development for protein binding experiments was 

presented. Protein binding experiments were conducted to help validate the protein binding 

models, described in chapter 2, and to make predictions of drug distribution as the overall goal to 

help prioritize ligand discovery efforts. Protein binding (PB) was the focus of these experimental 

methods, specifically binding to serum albumin. These protein binding experiments were 

conducted using both fluorescence polarization (FP) and nano differential scanning fluorimetry 

(NanoDSF) techniques. Both methods of protein binding assays were successfully developed and 

allowed determination of low and high serum albumin binding small molecules.    

 

Fluorescence Polarization Experiments  

 The results of the fluorescence polarization experiments, detailed in chapter 3, indicate 

that a working method to determine protein binding was developed. Competition assays using 

either fluorescein or BODIPY-LPA as the fluorophore were both explored. This method can 

distinguish a difference between high and low protein binders in a more quantitative manner by 

examining the decrease in mP of the fluorophore. As the fluorophore is competed off the BSA 

through the dose-dependent increase in small molecule addition, the mP decreases. Because all 

of our data is on the same scale and normalized to that of the fluorophore alone, the decrease in 

mP can determine % protein binding. A large decrease in mP indicates a high protein binder and 



 109 

a small decrease (or increase depending on the fluorophore being used) in mP indicates a low 

protein binder. In our hands, the use of fluorescein as the reporter fluorophore was more easily 

competed off due to its lower binding affinity to BSA as compared to BODIPY-LPA.  

 

NanoDSF Experiments 

 The results of the NanoDSF experiments indicate that a functional, fast, low cost assay to 

examined small molecule binding to serum albumin was developed. Herein we have described a 

working method to distinguish between high and low protein binders based on a change in Tm of 

BSA in the presence of varying concentrations of compounds. This method is a qualitative way 

to determine protein binding, as there is no empirical way to determine how much of the small 

molecule is bound to BSA; there is only either no observable change in Tm for low binders or a 

change in Tm is observed for high binders. This qualitative method is fast, using only compound 

of interest in a label-free way, and therefore inexpensive. This method can be used in the future 

as a quick-pass way to determine compounds as high or low protein binders, as a way to filter 

out if a compound is worth pursuing in the fluorescence polarization experiments to determine a 

more quantitative number of protein binding. This approach, using the Tycho NT.6, is novel.  

 

Recommendations for Future Experiments  

 It is recommended for future researchers to first use the quick-pass, inexpensive 

NanoDSF methodology to determine high vs. low protein binders. The compounds that are 

identified as low binders, based on no observed change in Tm, are then proposed to be examined 

in the fluorescence polarization experiments. This recommendation is based on the protein 

binding cutoffs outlined in chapter 2, where anything above 85% (high binding) negatively 
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impacts the drug’s distribution. The optimal range for protein binding is 80-85%, so using the FP 

methods to quantitatively determine the protein binding of compounds suggested to be low 

binders in the NanoDSF methods will determine whether the compound is a true low binder (less 

than 80%) or if the compound fits within that 80-85% clinically relevant range. It is suggested 

that these FP experiments be performed using fluorescein as the fluorophore to be competed off 

the BSA. 

 

Future Approaches 

Additional Computational Work to Expand Established Methods 

 The next step, now that the models are built and the experimental methods are 

established, is to use the computational models to make predictions on compounds of interest. 

Compounds of interest to our research group include autotaxin (ATX) and SK inhibitors, LPA 

and S1P GPCR antagonists/agonists, as well as potential ligands for orphan GPCR, for example 

GPR88 and GPR52.  

 In particular, a major thrust in our research group has begun to focus on the 

deorphanization of several GPCRs, specifically GPR88 and GPR52, which are both thought to 

be associated with psychiatric disorders. GPR88 has been associated with susceptibility to both 

bipolar disorder and schizophrenia.132 GPR52 knockout mice showed psychosis-related behavior, 

which suggested that GPR52 may prove to be a therapeutic target for psychiatric disorders.133  

 The initial compounds proposed for analysis via predictions of HIA, Caco-2 

permeability, and protein binding using the QSAR models described in chapter 2 are shown in 

Figure 39. The ATX inhibitors proposed have no known pharmacokinetic (PK) data, namely 

Ragle 74134  (a potent ATX inhibitor synthesized in our lab) and Banerjee 3b135 (a potent ATX 
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inhibitor synthesized by collaborators at UTHSC). The LPA GPCR antagonists and agonists 

proposed were identified either by our lab or collaborators at UTHSC, namely H2L5186303136, 

137  (LPA2 antagonist identified by our lab), NSC161613136  (LPA3 antagonist identified by our 

lab), and GRI977143138, 139  (LPA2 agonist identified by collaborators at UTHSC). The orphan 

GPCR potential ligands suggested are 2OMPP140-142  (a synthetic GPR88 agonist) and 4u143  (a 

synthetic GPR52 agonist). 

 

 
 
Figure 39. Structures of seven initial targets. Top two are ATX inhibitors, middle three are 
LPA GPCR ligands, and bottom two are orphan GPCR ligands.  
 

 Predictions of all three ADMET properties described herein will be completed using 

workflows described for these 7 initial potential therapeutics. Once complete experimental 

evaluation of protein binding will be verified using workflows described. Ideally, these 
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candidates would be predicted to be well absorbed for the HIA and Caco-2 permeability values 

and low protein binders. If these compounds fall within these categories, or if they fall within the 

moderately absorbed categories and low protein binding, then they will pass through to the 

experimental stage for analysis.  

 

Additional Computational Methods to be Applied 

Predicting Cytochrome P450 Interactions to Determine Potential Metabolism Reactions 

 Future computational efforts to help bolster the absorbance and distribution predictions 

described include analysis of potential metabolism by cytochrome (CYP) P450 enzymes. These 

enzymes are involved in phase I metabolism reactions in the liver and as such would bolster the 

initial phases of orally administered drug interactions.13 These enzymes have previously been 

targeted to determine substrate specificity, to examine inhibitors of these enzymes, and to 

determine ligand promiscuity for these enzymes.144-147 There are currently 212 protein data bank 

(PDB) entries in the RCSB protein data bank for human cytochrome P450 enzymes.148 There are 

57 isoforms of CYP450 enzymes found in humans,149 but only 9 are responsible for common 

phase I metabolism reactions (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, 

CYP2D6, CYP2E1, and CYP3A4).150 There is a free tool available for download, developed in 

2018, that predicts whether certain compounds interact with these CYP isoforms to produce 

metabolism reactants, called CypReact.64 This tool can be used by future researchers to predict 

potentially dangerous metabolites of target compounds. 
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Additional Experimental Work Utilizing Established Methods 

Experimental Determination of Protein Binding 

 Compounds that are successfully passed through the computational filters, will first be 

examined utilizing the qualitative NanoDSF methods outlined in chapter 3. This quick-pass 

experiment will be used to confirm whether the protein binding model predictions were correct 

(a high or low binder). If the NanoDSF experiments confirm that the model predictions were 

accurate, then fluorescence polarization experiments will be performed to quantify protein 

binding and further validate computational predictions and initial qualitative experimental 

results. If the NanoDSF control experiments show that there is some interference at those 

wavelengths (350nm/330nm), then fluorescence polarization experiments will be conducted 

directly to confirm computational predictions. As additional projects mature in the lab and with 

collaborators, additional compounds resulting from these efforts will be analyzed through the 

combined computational and experimental procedures outlined. 

 

Additional Experimental Work 

Method Development & Experimental Determination of Caco-2 Permeability 

 Further experiments to help filter potential therapeutics to be synthesized in the lab are 

Caco-2 permeability assays. These assays can help validate additional model predictions and 

narrow down compounds to be synthesized or to be further analyzed. Caco-2 permeability assays 

have been used previously to model the intestinal barrier, since the discovery that the cell-line 

exhibited similar characteristics to the human intestinal barrier151 and the first methods were 

optimized in the 1980s.152 This cell line can be easily purchased from the American Type Culture 

Collection (ATCC).153 Typically, these cell lines are cultured for 21 days after seeding as a 
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monolayer on membrane inserts to reach confluence, after which the cell culture medium is 

removed from the apical (top) & basolateral (bottom) chambers of the apparatus.154 This medium 

is replaced with the Permeability Assay Buffer (PAB) and the compounds evaluated are added to 

the apical side of the chamber, where the concentrations of each are assayed at varying 

timepoints to determine how much compound has permeated the membrane.154 Such experiments 

require analytical methodology to be optimized for the quantitative analysis of each target 

compound. As such they would only be done for compounds passing all previous computational 

and experimental milestones. These methods will allow future efforts to help prioritize 

compounds for synthesis and further analysis as potential therapeutics. 

 

Method Development and Experimental Determination of Metabolism 

 Significant amounts of phase I and II metabolism reactions occur in the liver, which is 

why researchers usually attempt to make determinations using liver microsomes. Human liver 

microsomes from 50 pooled donors are available from ThermoFisher Scientific and can used for 

this purpose.155 Methods outlined below utilizing liver microsomes to determine metabolites are 

based on methods outlined by Jeong, et al. in 2017.156 Compounds would be incubated with liver 

microsomes (0.5 mg/mL for human microsomes) as well as reduced nicotinamide adenine 

dinucleotide phosphate (NADP-) generation cocktail consisting of: nicotinamide adenine 

dinucleotide phosphate (NADP+) at 1 mM, glucose-6-phosphate at 5 mM, glucose-6-phosphate 

dehydrogenase at 1 unit/mL, and magnesium chloride (MgCl2) at 5 mM in sodium phosphate 

buffer (0.2 M, pH 7.4) so a total of 1 mL is reached. This mixture can be incubated in a shaking 

water bath & the enzymatic reaction is begun by the addition of NADP+. At varying timepoints, 

aliquots can be removed, prepped for analysis by mass spectrometry, or other methods as 



 115 

appropriate to determine loss of parent compound as a first pass. The hepatic intrinsic clearance 

would then be calculated and compared to known reagents using tools developed in 1997 by 

Iwatsubo et al.157  
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Appendix  

Chapter 2 supplementary information. Boundary comparison figures for training and test set 

compounds used to determine the compounds within each dataset were ideal, the 19 remaining 

compound similarity histograms generated from similarity matrices used to ensure a broad 

chemical space was represented in the models (mentioned with Figure 6), and mispredicted 

compounds for each descriptor model type for both HIA and Caco-2 permeability models used to 

generate similarity histograms in Figures 10 & 11.  

 

 

Figure A1. Boundary comparisons for training set compounds that determine absorption 
categories. The majority of compounds examined fall within the ideal diagonal. 
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Figure A2. Boundary comparisons for test set compounds that determine absorption 
categories. All compounds fall within the ideal diagonal. 
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Figure A3. Similarity histogram for training set 1 compounds. Generated from similarity 
matrices of Tanimoto coefficients calculated from MACCS keys of compounds. The 
majority of pairwise comparisons fall within the 10-50% similarity range. 
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Figure A4. Similarity histogram for test set 1 compounds. Generated from similarity 
matrices of Tanimoto coefficients calculated from MACCS keys of compounds. All of the 
pairwise comparisons fall within the 0-70% similarity range. 
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Figure A5. Similarity histogram for test set 1 vs. training set 1 compounds. Generated from 
similarity matrices of Tanimoto coefficients calculated from MACCS keys of compounds. 
The majority of the pairwise comparisons fall within the 10-50% similarity range. 
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Figure A6. Similarity histogram for training set 2 compounds. Generated from similarity 
matrices of Tanimoto coefficients calculated from MACCS keys of compounds. The 
majority of pairwise comparisons fall within the 10-50% similarity range. 
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Figure A7. Similarity histogram for test set 2 compounds. Generated from similarity 
matrices of Tanimoto coefficients calculated from MACCS keys of compounds. All of the 
pairwise comparisons fall within the 0-60% similarity range. 
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Figure A8. Similarity histogram for poorly absorbed compounds (both training and test set 
1 & 2). Generated from similarity matrices of Tanimoto coefficients calculated from 
MACCS keys of compounds. All the pairwise comparisons fall within the 20-70% 
similarity range. 
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Figure A9. Similarity histogram for moderately absorbed compounds (both training and 
test set 1 & 2). Generated from similarity matrices of Tanimoto coefficients calculated from 
MACCS keys of compounds. The majority of the pairwise comparisons fall within the 20-
50% similarity range. 
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Figure A10. Similarity histogram for well absorbed compounds (both training and test set 1 
& 2). Generated from similarity matrices of Tanimoto coefficients calculated from MACCS 
keys of compounds. The majority of the pairwise comparisons fall within the 10-50% 
similarity range. 
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Figure A11. Similarity histogram for test set 2 vs. training set 2 compounds. Generated 
from similarity matrices of Tanimoto coefficients calculated from MACCS keys of 
compounds. The majority of the pairwise comparisons fall within the 10-50% similarity 
range. 
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Figure A12. Similarity histogram for poorly vs. moderately absorbed categories (both 
training and test set 2). Generated from similarity matrices of Tanimoto coefficients 
calculated from MACCS keys of compounds. All the pairwise comparisons fall within the 
0-70% similarity range. 
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Figure A13. Similarity histogram for poorly vs. well absorbed categories (both training and 
test set 1 & 2). Generated from similarity matrices of Tanimoto coefficients calculated from 
MACCS keys of compounds. All the pairwise comparisons fall within the 0-70% similarity 
range. 
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Figure A14. Similarity histogram for moderately vs. well absorbed categories (both 
training and test set 2). Generated from similarity matrices of Tanimoto coefficients 
calculated from MACCS keys of compounds. The majority of the pairwise comparisons fall 
within the 10-50% similarity range. 
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Figure A15. Similarity histogram of all compounds in training and test set 3. Generated 
from similarity matrices of Tanimoto coefficients calculated from MACCS keys of 
compounds. The majority of pairwise comparisons fall within the 10-50% range. 
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Figure A16. Similarity histogram of training set 3 compounds. Generated from similarity 
matrices of Tanimoto coefficients calculated from MACCS keys of compounds. The 
majority of pairwise comparisons fall within the 10-50% similarity range. 
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Figure A17. Similarity histogram of test set 3 compounds. Generated from similarity 
matrices of Tanimoto coefficients calculated from MACCS keys of compounds. All 
pairwise comparisons fall within the 10-40% range. 
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Figure A18. Similarity histogram of test set 3 vs. training set 3 compounds. Generated from 
similarity matrices of Tanimoto coefficients calculated from MACCS keys of compounds. 
The majority of pairwise comparisons fall within the 10-50% range. 
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Figure A19. Similarity histogram of low protein binders (both training and test set 3). 
Generated from similarity matrices of Tanimoto coefficients calculated from MACCS keys 
of compounds. The majority of pairwise comparisons fall within the 10-50% similarity 
range. 
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Figure A20. Similarity histogram of high protein binders (both training and test set 3). 
Generated from similarity matrices of Tanimoto coefficients calculated from MACCS keys 
of compounds. The majority of pairwise comparisons fall within the 10-50% similarity 
range. 
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Figure A21. Similarity histogram of low vs. high protein binders (training and test set 3). 
Generated from similarity matrices of Tanimoto coefficients calculated from MACCS keys 
of compounds. The majority of pairwise comparisons fall within the 10-50% range. 
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Table A1. Mispredicted compounds within all 5 HIA models at each stage of model 
development & validation. Commonly mispredicted compounds indicated in bold. 
 

 Model 10  
  (2D) 

Model 11  
(i3D-gas) 

Model 12  
(2D3D-gas) 

Model 13  
(i3D-born) 

Model 14 
(2D3D-born) 

Model 
Development 

mitoxantrone aztreonam mitoxantrone mitoxantrone mitoxantrone 
tranexamic acid mitoxantrone tranexamic acid tranexamic 

acid 
tranexamic 

acid 
ziprasidone tranexamic 

acid 
ziprasidone atenolol ziprasidone 

sumatriptan atenolol sumatriptan valsartan mibefradil 
mibefradil ziprasidone mibefradil dipyridamole fenoterol 
fenoterol mibefradil fenoterol ziprasidone terbutaline 

terbutaline fenoterol terbutaline mibefradil nitrendipine 
hydrochlorothiazide terbutaline hydrochlorothiazide erythromycin acebutolol 

nitrendipine timolol nitrendipine terbutaline timolol 
acebutolol trovafloxacin acebutolol ketoconazole trovafloxacin 

timolol trimethoprim timolol trovafloxacin trimethoprim 
trimethoprim     

Internal 
Validation 

aztreonam aztreonam aztreonam aztreonam aztreonam 

mitoxantrone mitoxantrone mitoxantrone mitoxantrone mitoxantrone 
tranexamic acid tranexamic 

acid 
ceftriaxone ceftriaxone tranexamic 

acid 
atenolol atenolol tranexamic acid tranexamic 

acid 
atenolol 

metformin ziprasidone atenolol atenolol valsartan 
dipyridamole mibefradil dipyridamole valsartan ziprasidone 
ziprasidone erythromycin ziprasidone dipyridamole mibefradil 
furosemide fenoterol furosemide ziprasidone fenoterol 
sumatriptan terbutaline sumatriptan sumatriptan terbutaline 
mibefradil timolol mibefradil mibefradil nitendipine 

erythromycin trovafloxacin erythromycin erythromycin acebutolol 
fenoterol trimethoprim fenoterol terbutaline timololo 

terbutaline domperidone terbutaline ketoconazole trovafloxacin 
hydrochlorothiazide  hydrochlorothiazide nitrendipine trimethoprim 

caffeine  caffeine trovafloxacin domperidone 
nitrendipine  nitrendipine trimethoprim  
acebutolol  acebutolol domperidone  

timolol  timolol   
meloxicam  trimethoprim   

trimethoprim  domperidone   
domperidone     

External 
Validation 

lactulose lactulose lactulose lactulose lactulose 
amphotericin b nadolol metolazone nadolol nadolol 

metolazone  nadolol  guanabenz 
nadolol     
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Table A2. Mispredicted compounds within all 5 Caco-2 permeability models at each stage 
of model development & validation. Commonly mispredicted compounds indicated in bold. 
 

 Model 6  
  (2D) 

Model 7  
(i3D-gas) 

Model 8  
(2D3D-gas) 

Model 9  (i3D-
born) 

Model 10 (2D3D-
born) 

Model 
Development 

sulpiride sulpiride sulpiride sulpiride sulpiride 
valsartan valsartan valsartan valsartan valsartan 

sulfasalazine sulfasalazine sulfasalazine sulfasalazine sulfasalazine 
fenoterol fenoterol fenoterol fenoterol fenoterol 

furosemide furosemide furosemide furosemide furosemide 
tranexamic acid tranexamic 

acid 
tranexamic acid tranexamic acid tranexamic acid 

erythromycin erythromycin erythromycin erythromycin erythromycin 
terbinafine atenolol terbinafine terbinafine terbinafine 
tamoxifen terbinafine tamoxifen terbutaline tamoxifen 
sulindac terbutaline domperidone acebutolol sulindac 

haloperidol sumatriptan haloperidol tamoxifen haloperidol 
amrinone acebutolol amrinone sulindac amrinone 
morphine sulindac morphine haloperidol morphine 

timolol haloperidol timolol amrinone timolol 
mibefradil amrinone ketoconazole morphine mibefradil 

ketoconazole morphine betaxolol timolol ketoconazole 
betaxolol timolol nitrendipine ziprasidone betaxolol 

nitrendipine mibefradil trovafloxacin mibefradil nitrendipine 
alprenolol ketoconazole metoprolol ketoconazole alprenolol 

trovafloxacin betaxolol trimethoprim betaxolol trovafloxacin 
metoprolol trimethoprim  naloxone metoprolol 

trimethoprim omeprazole  trovafloxacin trimethoprim 
omeprazole   trimethoprim omeprazole 

   indomethacin  

Internal 
Validation 

ceftriaxone sulpiride ceftriaxone sulpiride ceftriaxone 

sulpiride valsartan sulpiride valsartan sulpiride 
valsartan sulfasalazine valsartan sulfasalazine valsartan 

sulfasalazine fenoterol sulfasalazine fenoterol sulfasalazine 
fenoterol furosemide fenoterol furosemide fenoterol 

furosemide tranexamic 
acid 

furosemide tranexamic acid furosemide 

tranexamic acid erythromycin tranexamic acid erythromycin tranexamic acid 
erythromycin atenolol erythromycin hydrochlorothiazide erythromycin 

tamoxifen terbinafine terbinafine terbinafine hydrochlorothiazide 
sulindac terbutaline tamoxifen terbutaline terbinafine 

dipyridamole sumatriptan domperidone acebutolol tamoxifen 
haloperidol acebutolol dipyridamole tamoxifen sulindac 
amrinone tamoxifen haloperidol sulindac dipyridamole 
morphine sulindac amrinone dipyridamole haloperidol 

timolol haloperidol morphine haloperidol amrinone 
mibefradil amrinone timolol amrinone morphine 

ketoconazole morphine ketoconazole mitoxantrone timolol 
betaxolol timolol betaxolol morphine mibefradil 

nitrendipine ziprasidone nitrendipine timolol ketoconazole 
alprenolol mibefradil trovafloxacin ziprasidone betaxolol 

trovafloxacin ketoconazole metoprolol mibefradil nitrendipine 
metoprolol betaxolol trimethoprim ketoconazole alprenolol 

trimethoprim meloxicam omeprazole betaxolol trovafloxacin 
omeprazole trovafloxacin  naloxone metoprolol 

 trimethoprim  trovafloxacin trimethoprim 
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Table A2 Continued. Mispredicted compounds within all 5 Caco-2 permeability models at 
each stage of model development & validation.  
 

 Model 6  
  (2D) 

Model 7  
(i3D-gas) 

Model 8  
(2D3D-gas) 

Model 9  (i3D-
born) 

Model 10 (2D3D-
born) 

Internal 
Validation 

 caffeine  trimethoprim indomethacin 
 indomethacin  indomethacin omperazole 
 omeprazole  ondansetron  
 diclofenac    

External 
Validation 

metolazone lactulose metolazone lactulose metolazone 
 metolazone guanabenz metolazone  
 nadolol    

 

 


	Computational Prediction and Experimental Validation of ADMET Properties for Potential Therapeutics
	Recommended Citation

	Hannie_K_Dissertation_Final_edited

