
University of Memphis University of Memphis

University of Memphis Digital Commons University of Memphis Digital Commons

Electronic Theses and Dissertations

2021

Explanation Techniques using Markov Logic Networks Explanation Techniques using Markov Logic Networks

Khan Mohammad Al Farabi

Follow this and additional works at: https://digitalcommons.memphis.edu/etd

Recommended Citation Recommended Citation
Farabi, Khan Mohammad Al, "Explanation Techniques using Markov Logic Networks" (2021). Electronic
Theses and Dissertations. 2531.
https://digitalcommons.memphis.edu/etd/2531

This Dissertation is brought to you for free and open access by University of Memphis Digital Commons. It has
been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of University of
Memphis Digital Commons. For more information, please contact khggerty@memphis.edu.

https://digitalcommons.memphis.edu/
https://digitalcommons.memphis.edu/etd
https://digitalcommons.memphis.edu/etd?utm_source=digitalcommons.memphis.edu%2Fetd%2F2531&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.memphis.edu/etd/2531?utm_source=digitalcommons.memphis.edu%2Fetd%2F2531&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:khggerty@memphis.edu

Explanation Techniques using Markov Logic Networks

by

Khan Mohammad Al Farabi

A Dissertation

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Science

Major: Computer Science

The University of Memphis

October 2021

Acknowledgements

First of all, I would like to thank my advisor, Dr. Deepak Venugopal, for his support and intellectual

guidance throughout the path towards the successful completion of the Ph.D. It is my privilege to

exchange intuitive ideas and receive productive feedback from him during my Ph.D. His advice on

research, as well as in my career, has been invaluable. In addition, my special thanks to my Ph.D.

Committee members Dr. Vasile Rus, Dr. Amy Cook, and Dr. Xiaofei Zhang who sacrificed their

scarce time.

I also want to acknowledge NSF (IIS Grant #2008812) for supporting me during my Ph.D.

I would also like to thank Dr. Sanorita Dey and Dr. Somdeb Sarkhel for their valuable suggestions

and time in this dissertation research. Finally, I want to recognize my parents’ sacrifice. I want to

dedicate this dissertation to all of them who sacrificed their valuable time and effort to help me to

complete my Ph.D. successfully.

ii

Abstract

Explaining the results of Artificial Intelligence (AI) or Machine Learning (ML) algorithms is cru-

cial given the rapid growth and potential applicability of these methods in critical domains includ-

ing healthcare, defense, autonomous driving, etc. While AI/ML approaches yield highly accurate

results in many challenging tasks such as natural language understanding, visual recognition, game

playing, etc., the underlying principles behind such results are not easily understood. Thus, the

trust in AI/ML methods for critical application domains is significantly lacking. While there has

been progress in explaining classifiers, there are two significant drawbacks. First, current expla-

nation approaches assume independence in the data instances which is problematic when the data

is relational in nature, which is the case in several real-world problems. Second, explanations that

only rely on individual instances are less interpretable since they do not utilize relational informa-

tion which may be more intuitive to understand for a human user. In this dissertation, we have

developed explanations using Markov Logic Networks (MLNs) which are highly expressive sta-

tistical relational models that combine first-order logic with probabilistic graphical models. Since

MLNs are symbolic models, it is possible to extract explanations that are human-interpretable.

However, doing this is computationally hard for large MLNs since we need to perform probabilis-

tic inference to attribute the influence of symbolic formulas to the predictions. In this dissertation,

we have developed a suite of fundamental techniques that help us in i) explaining probabilistic

inference in MLNs and also ii) utilize MLNs as a symbolic model for specifying relational de-

pendencies that can be used in other explanation methods. Thus, this dissertation significantly

advances the state-of-the-art in explanations for relational models, and helps improve transparency

and trust in these models.

iii

Table of Contents

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 Contributions 4
1.2 Dissertation Work 4

2 Background 7
2.1 Markov Logic Networks 7

2.1.1 Propositional Logic 7
2.1.2 First-Order Logic 7
2.1.3 Markov Logic Network 8

2.2 Inference 11
2.2.1 Propositional Inference 12
2.2.2 Lifted Inference 12

2.3 Gibbs Sampling 14
2.4 Learning 14

2.4.1 Weight Learning 15
2.5 LIME Explanations 16
2.6 SHAP Explanations 17

3 Efficient Weight Learning in High-Dimensional Untied MLNs 18
3.1 Related Work 19
3.2 Weight Learning for Untied MLNs 20

3.2.1 Encoding Untied Formulas 20
3.2.2 Clustering 23
3.2.3 Tying Related Formulas 25
3.2.4 Semi-Formal Analysis 26

3.3 Experiments 29
3.3.1 Setup 29
3.3.2 Results 30

iv

3.4 Summary 32

4 Fine-Grained Explanations using Markov Logic 34
4.1 Related Work 36
4.2 Query Explanation 36

4.2.1 Sampling 38
4.3 Experiments 43

4.3.1 User Study Setup 44
4.3.2 Application 1: Review Spam Filter 44
4.3.3 Application 2: Review Sentiment Prediction 46
4.3.4 T-Test 48

4.4 Summary 49

5 Interpretable Explanations for Probabilistic Inference in Markov Logic 51
5.1 Related Work 53
5.2 Interpretable Explanations 53

5.2.1 Explanation Framework 54
5.2.2 Sampling-based Importance Estimation 57
5.2.3 Influence of Domain-Size 57
5.2.4 Relational Coalitions 59
5.2.5 Integrating Multiple Explanations 61

Coalition Weighting 62
Unified Explanation Ranking 64

5.3 Experiments 65
5.3.1 Data and Tasks 66
5.3.2 Implementation 67
5.3.3 Explanation Accuracy 67
5.3.4 Explanation Information Content 69
5.3.5 Usability 69

5.4 Summary 71

6 Improving Explanations using Feedback 72
6.1 Related Work 74

6.1.1 Feedback-based Models 75
6.2 Relational Explanations 76

6.2.1 Representing Relational Knowledge 77
6.2.2 Embeddings 79
6.2.3 Explanations 81

LIME Explanation 81
SHAP 82

6.3 Explanation Feedback 83
6.4 Experiments 86

6.4.1 Datasets 86
6.4.2 Relational Knowledge 86
6.4.3 Implementation 87

v

6.4.4 Annotated Explanations 88
6.4.5 Accuracy of Explanations 88
6.4.6 Information in Explanations 90
6.4.7 Comparing Explanations and Attention 91
6.4.8 User Study 92

6.5 Summary 95

7 Future Work 96
7.0.1 Model Explanations for Relational Data 96
7.0.2 Fairness in AI 97
7.0.3 Interactive Explanations 98

8 Conclusion 99

References 101

vi

List of Tables

3.1 F1-Score comparison for WebKB. 30
3.2 F1-Score comparison for ER. 31
3.3 F1-Score comparison for IE. 31
3.4 Running time (in minutes) comparison. 32

5.1 Prediction Accuracy (F1-score) using only the explanation (Top-Exp-Acc) and the peak
accuracy obtained when we add the formulas (or features) in ranked order according to
explanation importance (Peak-Acc). The values shown are mean values for 10 runs and
Std-Dev is the average Std-Dev of the Top-Exp-Acc and Peak-Acc. 68

6.1 Average F1-scores for classification as we add only the explanations incremen-
tally in ranked order. The Peak score shows the best score obtained, and the aver-
age and standard deviation are also shown for the scores. 91

6.2 Comparing the accuracy of attention and explanation methods. 92

vii

List of Figures

1.1 Schematic illustration of the our research. 4

2.1 Ground Markov Network of formula Smokes(John) ∧ Friends(John,Keli)⇒
Smokes(Keli). Each node in the graph is ground atom and the formula represents
a factor in the Markov network. 10

3.1 Clustering a + variable formula. The first clustering is inconsistent since the
atoms of a specific predicate will be clustered with distinct atoms of that predi-
cate for two different clusters. The second clustering is consistent. The θ values
specify the initialization weights for the formulas. in the clustered formula, the
weight is the average over all weights in that cluster. e.g. θ1 = θ11+θ12+θ21+θ22

4
. 23

3.2 Performance of our approach as we vary number of clusters 32

4.1 Illustrating the influence of a formula w.r.t a query atom for varying evidences. 36
4.2 Explanations generated by our approach. (a) shows the explanations for the spam

prediction application and (b) shows the explanation for the sentiment prediction. 43
4.3 Comparison of LIME and our approach using explanation scores as rated by the

users. (a) shows this for the spam prediction application and (b) for the sentiment
prediction. In each case, we show the % of users who have given a specific score
for an explanation, averaged across all the explanations. 45

4.4 Comparison for the average scores given by users for 3 key dimensions related
to the explanations. Q6 measures understanding of the classifier, Q7 the trust in
the classifier and Q8 if they can replicate the classifier based on the explanation.
Higher scores are better. (a) shows results for spam prediction and (b) shows re-
sults for sentiment prediction 47

4.5 Comparison of user responses for .the question that summarizes the effectiveness
of explanations. (a) and (b) show this for spam prediction and sentiment predic-
tion using our approach, and (c), (d) show the responses for LIME. 48

5.1 (a) Original MLN Graph. (b) Simplification by random sampling. (c) Simplifica-
tion that preserves relational structure. 61

5.2 Comparing explanation accuracy for varying values of C ans S. The mean values for 10
runs are plotted along with error bars that indicate Std-Dev. 66

5.3 Explanation Dashboard and survey questions. 70
5.4 (a) - (c) The y-axis shows the % of participants who rated the explanation feature with the

rating specified in the x-axis where the % is normalized by the number of features in the
explanation. (d) - (f) User ratings for relational and non-relational features for I-Explain. 70

viii

6.1 A schematic illustration of our approach. 73
6.2 An example showing the graphical representation of an MLN, where the same

colored nodes mean that the features in those instances are similar to each other.
An active relational formula is shown by a solid line. The embeddings are similar
if two nodes are connected to similar nodes in their active formulas. Thus, {X4,
X6} and {X1, X3, X7, X9} form two groups of similar embeddings. 80

6.3 Accuracy scores for different datasets using the LIME explainer. WEx refers to
word explanations and REx to relational explanations. (a), (b) are results for the
reviews data, (c), (d) for Covid and (e), (f) for Topics. For RFBLIME, the results
are shown for varying number of clusters (specified in brackets). 89

6.4 Accuracy scores for different datasets using the SHAP explainer. WEx refers to
word explanations and REx to relational explanations. (a), (b) are results for the
reviews data, (c), (d) for Covid and (e), (f) for Topics. For RFBSHAP, the results
are shown for varying number of clusters (specified in brackets). 90

6.5 Survey questions with (a) assessing if a user can obtain the class using just the
word explanations and (b) assessing if relational explanations are important to a
user. 93

6.6 Results from the user study. 94

ix

Chapter 1

Introduction

Machine Learning (ML) has contributed to significant advances in several AI domains including

natural language understanding, computer vision and game playing. However, with the growing

use of ML in virtually every conceivable domain, ML-based methods can no longer remain“black-

boxes”, i.e., methods that yield highly accurate results on tasks without revealing the reasoning

behind their results. Indeed, for ML-methods to be truly useful in critical domains such as health

care, it is important to be able to explain underlying logic behind an ML method. Methods such

as Deep Neural Networks (DNNs) have achieved unprecedented, state-of-the-art results in sev-

eral challenging domains such as natural language processing, computer vision, game playing,

etc. However, DNNs are known to be extremely hard to interpret which is problematic in sev-

eral domains. At the same time, Statistical Relational Models [21] are models that are based on

symbolic AI (e.g. first-order logic based models) and are therefore much more interpretable in

general. In this dissertation, we have developed explainable methods for Markov Logic Networks

(MLNs) [15], arguably the most popular Statistical Relational Model.

Markov Logic Networks (MLNs) [15] are popular Statistical Relational Models that com-

bine first-order logic with probabilistic graphical models [39]. The power of MLNs comes from the

fact that they can represent relational structure as well as uncertainty in a highly compact manner.

Specifically, an MLN represents real-world knowledge in the form of weighted first-order logic

formulas. Unlike traditional first-order logic based representations, MLNs allow uncertainty in the

represented knowledge, where weights attached to the formulas encode this uncertainty. Larger

weights indicate more belief in a formula as compared to smaller weights.

1

Further, an MLN acts as a template from which we can generate large and varied proba-

bility distributions that encode the uncertainty inherent in most real-world applications. Specif-

ically, the formulas in an MLN can be instantiated with objects from a real-world domains, and

then converted into potential functions in a Markov network (an undirected probabilistic graphical

model). The Markov network represents a joint distribution over various possible worlds of the

MLN. Note that based on the structure of the formulas in the MLN, several types of well-known

models can be represented using this approach including Hidden-Markov Models, Logistic Re-

gression models, etc. Also, the underlying Markov network could be extremely large while the

MLN representation is highly compact. In other words, by writing a few formulas in the MLN, we

could represent a probabilistic graphical model with thousands of nodes and potential functions

by instantiating the MLN with large number of domain objects. At the same time, the MLN rep-

resentation allows parameter sharing between the vast number of potential functions since these

functions are obtained by instantiating the same template (first-order formula) with different types

of objects. Thus, MLNs have been applied successfully in varied practical problems such as coref-

erence resolution [62], information extraction [61, 96], question answering [36], event-detection

in videos [89], etc.

One of the key advantages of MLNs is their interpetability. Specifically, since MLN mod-

els are first-order logic based models, it is quite easy for a human user to understand and inter-

pret what the learned model represents. For example, we can represent some real-world concepts

such as smoking causes cancer by relating predicate-symbols the denote smoking and cancer, i.e.,

Smokes(x) ⇒ Cancer(x). This is in contrast to methods such as deep learning where we learn

a sub-symbolic model that stores pieces of information distributed in different nodes of the neu-

ral network and the resulting encoding of variables is generally a numerical vector that combines

this information. However, even though the structure of MLNs are interpretable, there are several

challenges in explaining MLNs to humans. Specifically,

1. The parameters of the MLN which are weights attached to the formulas are not probabili-

ties. Quantifying the exact influence of formulas to the results obtained when we perform

2

probabilistic inference using the MLN is a computationally hard problem.

2. In many cases, the MLN may contain a large number of formulas which makes it hard to

learn the parameters of the model efficiently and complex model make it harder to generate

explainable inference results.

3. When the MLN distribution has a large number of variables, it becomes harder to generate

explanations that are human-interpretable.

Guidotti et al. [25] provide a detailed survey of explanations in ML methods in which they

categorize explanations as model explanations and outcome explanations. The former provides

explanations for the model (interpretability of the model) while the latter provides explanations for

predictions. Of late, there has been a lot of interest in outcome explanations [26]. For instance,

in healthcare applications, a doctor would require a system that explains why it is recommending

a particular action based on the observations from the patient, rather than just provide results as

a “black-box”. Some ML methods such as decision trees are both interpretable and explainable,

while some are neither (e.g. deep networks). Popular outcome explanation approaches such as

LIME [67] try to explain the results of any classifier whose results are typically hard-to-understand.

However, the key limitation of such approaches is that they are specific to non-relational data. That

is, we assume that each instance in the dataset is predicted independent of other instances in the

dataset. Thus, we can generate an explanation for each prediction independently. However, in

many cases, real-world data is relational and thus, making the independence assumption is a poor

approximation for such data. For example, continuing our health care example, suppose a patient

visits a doctor several times, then each visit cannot be considered independently from other visits.

Thus, the data has some inherent relational structure and typical machine learning methods ignore

this relational structure. In contrast, MLNs explicitly model relational structure in the data. There-

fore, instead of classifying instances independently, we perform probabilistic inference jointly over

all instances. Thus, the explanations for the inference results take into account the relationships

across the instances in the MLN. This leads to much richer explanations as compared to approaches

3

Figure 1.1: Schematic illustration of the our research.

such as LIME.

1.1 Contributions

Our contributions are illustrated schematically in Fig. 1.1. Specifically, similar to methods such

as LIME that explain classifiers for standard black-box ML algorithms, our work aims to explain

probabilistic inference made from the MLN’s distribution. Note that a key distinction between

the standard explanations and our approach is that our explanations are based on the relationships

across the dataset and therefore the explanations are richer than explanations that ignore this struc-

ture.

1.2 Dissertation Work

The specific contributions of this dissertation include the following.

• An approach that learn a simplified approximate model for a high-dimensional MLN using

tied parameters.

4

• An explanation algorithm for marginal inference in MLNs that quantifies the effect of for-

mulas on the marginal probabilities based on Gibbs sampling.

• A novel approach for more reliable explanations in large MLNs that explains simpler MLN

distributions assuming symmetries in the model and then combines importance weights from

several simpler explanations together into a unified explanation.

• A framework for using feedback for relational explanations applied to both model agnos-

tic explainers such as LIME and SHAP [48] as well as model intrinsic explanations using

attention mechanisms in deep networks [91].

In chapter 3, we develop an approach to learn a simpler MLN model when the MLN con-

tains high-dimensional, untied formulas. Specifically, in MLNs, a single weight is shared across

all possible ground formulas. However, in real-world applications, we need to encode high-

dimensional features as MLN formulas into an MLN [96]. Such features are encoded using a

large number of ground formulas and sharing a single weight across all these features is not ex-

pressive enough for real-world applications. Therefore, we use untied formulas to add a different

weight for each grounding of a first-order formula. However, now the model becomes extremely

large (due to the large number of weights) and infeasible to learn. To simplify the model, we a)

reduce the parameter search-space by tying together groundings of untied formulas that are likely

to have similar weights, and b) perform better initialization for the weights for tied formulas such

that discriminative learning (that maximizes the conditional log-likelihood) is likely to converge

faster.

In chapter 4, we develop an approach to explain marginal inference by ranking formulas in

the MLN. Obtaining such a ranking is computationally hard since we need to estimate the influence

of a formula on the marginal probabilities in all possible worlds of the MLN (which is exponential

in the number of variables). Therefore, we develop an approach where we compute the importance

of the formulas in the transition probabilities of a Gibbs sampler. The importance scores for a

formula are then used to select the most important formulas related to a marginal inference query.

5

We perform a user-study to evaluate the explainability of our results.

When the size of the MLN grows, it becomes increasingly difficult to focus on the correct

explanations. Specifically, several formulas may appear to have similar importance weights for a

marginal probability since we are approximating this based on samples from the distribution, and

for large distributions, we require an infeasible number of samples to obtain reliable explanations.

Specifically, the complex MLN increases the mixing time of the sampler that leads to unreliable ex-

planations. Therefore, in chapter 5, we develop an approach that constructs simplified models from

large and complex MLN to generate more interpretable explanations. Our approach represents a

unified explanation by combining importance weights computed from simplified explanations. We

evaluate the quality and interpretability of our explanations using annotated datasets as well as a

user study.

In chapter 6, we present a general approach incorporating human-in-the-loop to improve

explanations in relational data. Specifically, since explanations are inherently subjective, incorpo-

rating a human perspective in explanations can yield more interpretable explanations. We develop

and evaluate a framework where we add relational information using MLNs to both model agnos-

tic explanation methods such as LIME and SHAP, and explanations using the attention mechanism

in BERT [14], arguably the one of the most well-known deep architectures for language process-

ing. We then propagate feedback for explanations based on symmetries in the relational data and

generate more usable explanations. We performed a comprehensive evaluation based on accuracy,

information content and usability of the explanation to show the benefits of this approach.

6

Chapter 2

Background

In this chapter, we present a brief background of Markov Logic Networks (MLNs). Specifically,

we describe representation, inference and weight learning in MLNs. For more details on first-order

logic, refer to [73, 20], for Markov networks and probabilistic graphical models, refer to [39, 9]

and for Markov logic, refer to [15].

2.1 Markov Logic Networks

2.1.1 Propositional Logic

Propositional Logic is a declarative sentence that can be either True or False. There are two types of

declarative sentences. One is atomic sentence and the second one is compound sentence. Atomic

sentences are only atoms and the compund sentences are the integration of more than one atom

through connectives such as ∧ (conjunction), ∨ (disjunction), ¬ (negation), =⇒ (implication),

and ⇐⇒ (equivalence) . These connectives are used to represent the logical relations among the

atoms in a compound sentence. For instance,P, Q and R are propositional atoms and f = P ∨ Q

∧ ¬ R is a propositional formula. A knowledge base (KB) is a set of formulas while a world is a

truth assignment to all possible atoms in the KB.

2.1.2 First-Order Logic

A first-order logic can be represented as knowledge base (KB). KB is a set of formulas in first-order

logic form [69]. Four types of symbols: constants, logical variables,predicates and logical connec-

7

tives (∨, ∧, etc.) are used to construct formulas. Variables in first-order-logic are random variables

which are substituted by the constants of the domain. The domain of a logical variables refers to

all the possible constant values that can be substituted for a variable. We denote the domain of a

variable z by ∆z. Since we assume finite Herbrand semantics [20] the domain-size is finite. Con-

stants are objects in real-world domains and denoted by strings that begin with an uppercase letter

(e.g., Alice, Bob, etc.). We have considered only a finite subset of first-order logic called finite

Herbrand logic that has many object constants but no function constants. Logical variables that

are denoted by lower case letters (e.g., x, y, z, etc.). A predicate represents relationships between

one or more objects. Each predicate has a fixed arity and is represented by a predicate name and

a fixed argument-list of variables (e.g., Smokes(x), Friends(x, y), etc.). An atom is an instance

of a predicate. A ground atom is an atom where each variable has been substituted by a constant

from its domain (e.g. Smokes(Bob), Friends(Bob,Alice), etc.). A formula is a combination of

one or more atoms connected by binary connectives (e.g., ∧, ∨,⇒⇔), where each variable in the

formula is either universally or existentially quantified. In our case, we assume only universally

quantified variables and therefore drop the quantifiers for ease of notation. Thus, an example first-

order-logic formula is Smokes(x) ∧ Friends(x, y)⇒ Smokes(y). A ground formula is a specific

instantiation of a first-order-logicL formula. For example, Smokes(Bob) ∧ Friends(Bob,Alice)

⇒ Smokes(Alice). A world is an assignment (either true/false or 0/1) to all ground atoms in the

first-order-logic KB. This is typically denoted by ω.

2.1.3 Markov Logic Network

Markov logic networks (MLNs) consist of first-order logic formulas with real-valued weights at-

tached to them. The weight encodes uncertainty in the truth value of the formula. Larger the

weight of a formula, more likely is that formula to be true. ∞ weight formulas are treated as hard

constraints which should always be true. Similarly formulas with −∞ weights are always false.

Thus, MLNs offer a flexible framework to mix hard and soft rules. A predicate is a relation speci-

fied in the MLN (e.g., Friends). An MLN formula combines predicates using logical connectives.

8

A predicate has multiple arguments and the number of arguments define the arity of the relation it

defines. In MLNs, we assume Herbrand semantics [20] of first-order logic, where each variable

representing an argument in a predicate has a specific type and can substituted by a finite domain

of objects (e.g. a set of people in a social-network). We use the symbol ∆x to denote the domain

of variable x. A ground atom is a predicate where all its variables have been substituted by objects

from their corresponding domains. We instantiate/ground a first-order formula by replacing each

variable in the formula with an object from its corresponding domain. Thus, a ground formula

only consists of ground atoms. The ground MLN consists of all possible ground formulas that can

be generated given the MLN domains.

An MLN can be seen as a template for generating large Markov networks, the undirected

probabilistic graphical model [9, 39], that represents a joint probability distribution over a large

number of random variables. We define the Markov network on the ground MLN where each

ground formula represents a potential function in the Markov network and each ground atom is a

binary random variable (either True or False). The probability distribution is defined over the

assignments to the ground atoms of the MLN and is given by

Pr(x̄) =
1

Z
exp

(∑
i

wiNi(x̄)

)
(2.1)

where wi is the weight of formula fi, where x̄ is an assignment (of either True or False) to every

ground atom in the MLN which is also called a possible world, Ni(x̄) is the number of groundings

of formula fi that evaluate to True given world x̄, and Z is the normalization constant.

As a simple example of an MLN, suppose we want to encode the fact that smokers and can-

cer are friends. We would design an MLN with formulas such as a)Smokes(x) ⇒ Cancer(x),

and b)Smokes(x) ∧ Friends(x, y) ⇒ Cancer(y) with weights w1, and w2 respectively. Here

weights,w1 and w2 encode the uncertainty of the formulas as we have discussed ealier and it

is represented as real number. Suppose ∆x = ∆y = {John,Keli}. An example ground for-

9

Figure 2.1: Ground Markov Network of formula Smokes(John) ∧ Friends(John,Keli)⇒
Smokes(Keli). Each node in the graph is ground atom and the formula represents a factor in the
Markov network.

mula of the MLN is, a) 0.5 Smokes(John) ⇒ Cancer(John), and b) 0.6 Smokes(John) ∧

Friends(John,Keli) ⇒ Smokes(Keli). The ground atoms in the formula are Smokes(John),

Friends(John,Keli), Smokes(Keli), and Cancer(John). Friends predicate defines the relation

between John and Keli. Therefore, if Jonh smokes then Keli also smokes. Here, 0.5 and 0.6 are

the weights of the formulas that encode uncertainty.

We have constructed the resulting ground Markov network (Fig. 2.1) of the above men-

tioned ground first-order logic formula where each node in the undirected graph represents a

ground atom and the ground formula is denoted by a clique in the Markov network. The neighbors

of a node in the ground Markov network is known as the Markov blanket for that node. That is a

node is conditionally independent of all other nodes given its Markov blanket.

The two key tasks in MLNs are weight learning, which is the task of learning the weights

attached to the formulas from a relational database, and inference (prediction), which is the task

of answering queries posed over the learned model given observations (evidence). Weights are

learned by maximizing the likelihood of an observed possible world. The marginal inference task

which involves finding the marginal probability distribution of a ground atom in the ground Markov

network given an evidence database. For example computing the probability that Smokes(Ana)

is True given Smokes(Bob) is True and Friends(Ana,Bob) is True,and Asthma(Bob) is false.

10

This problem is known to be #P-complete and therefore approximate algorithms are used to com-

pute the marginal probability. One of the most widely used inference approach is to approximate

the marginals from samples drawn from the MLN’s distribution. Among sampling based approx-

imations, Gibbs sampling [19] is arguably one of the most popular approaches for approximate

inference.We have discussed details on inference, Gibbs sampling , and learning in the next sec-

tions.

2.2 Inference

Inference is one of the major tasks of MLNs. However, to explain the inference in human-

understandable form is a challenging issue. In this dissertation, our main focus is to explain the

inference in human-interpretable form. In this section, we will become familiar with basic termi-

nologies of inference. We will discuss on propositional inference and lifted inference.The typical

inference tasks in MLNs are briefly presented in the following:

• Probability of a query given evidence i.e., P (Q|E) which is known as Marginal infer-

ence. For example, given an MLN (Smoke(x) =⇒ Cancer(x)) and evidence telling

Ana smokes, i.e., (Smoke(Ana),∞), we might be interested in knowing posterior proba-

bility of Ana has cancer. Computing partition function is equivalent to computing marginal

probabilities since marginal probabilities can be expressed as ratio of partition functions.

• Finding a complete assignment to all (non-evidence) ground atoms that maximizes the joint

probability distribution over the non-evidence atoms. This is also referred to as finding the

most probable state or Maximum a Posteriori (MAP) inference. Formally,

arg max
ω

1

Z
exp(

∑
i

win(fi, ω)) ≡ arg max
ω

∑
i

win(fi, ω) (2.2)

11

• Computing the partition function:

Z =
∑
ω

exp

(∑
i

winfi(ω)

)
(2.3)

2.2.1 Propositional Inference

The marginal inference problem and partition function computation problems are known as #P -

complete and the MAP inference problem is NP-hard [71]. Inference problems in MLNs are

computationally hard. Therefore, exact inference methods are infeasible in practice. One ap-

proach to solving inference problems in MLNs is to reduce it to inference in the Ground Markov

network. This means that we could potentially apply any known inference technique from Proba-

bilistic Graphics Models (PGMs) to MLNs. For instance, we could apply exact inference methods

using dynamic programming such as Variable Elimination [13] or junction trees [41] to solve

the inference problems exactly. However, these are feasible only for very simple Markov net-

work structures, namely structures with very low treewidth. In most practical cases, approximate

inference methods are used. Popular approximate inference methods include sampling-based ap-

proximations or belief propagation (BP). For sampling-based inference, MCMC methods are the

most popular methods and among these Gibbs Sampling [19] is perhaps the most widely used ap-

proach. A specialized sampler such as MCSAT [63] have been developed for MLNs. Loopy BP

methods [99] are an alternative approach based on message-passing in a factor-graph constructed

from the Markov network. In the case of MAP, stochastic local search methods such as MaxWalk-

SAT [35] can be used to obtain an approximate MAP assignment. However, all the approaches

assume access to the Ground Markov Network which is infeasible in practice.

2.2.2 Lifted Inference

In previous section we have seen that, propositional inference methods don’t scale up to Ground

Markov Networks represented by MLNs. Therefore, we need more specialized methods that con-

sider relational structure in the MLNs. Specifically, note that the weight in an MLN is shared across

12

all ground formulas (or potentials in the Markov network). Thus, even though the Ground Markov

Network can be extremely large, it is parameterized by much fewer weights. Therefore, the MLN

distribution encodes plenty of symmetries. Lifted inference refers broadly to algorithms that ex-

ploit these symmetries in the MLNs. For example, consider a very simple MLN, Smoke(x);w.

Note that, in this case the marginal probability of any ground atom is same. Thus, computing this

probability for a ground atom is enough to determine all the marginal probabilities of the objects

within the domain of x. Anand et al. [2] identified a sophisticated symmetry in Markov networks

and developed MCMC samplers based on these symmetries. The key problem with lifted infer-

ence is that symmetries can be efficiently identified only when the MLNs structure is simple. For

example, Niepert and Broeck [57] showed that only two variable MLN formulas are liftable. Fur-

ther, even more importantly evidence breaks symmetries in the MLN [3]. Therefore, performing

lifted inference in conditional distributions is hard. Thus, several approaches focus on identifying

approximate symmetries in the MLN. To do this, approaches such as smoothing evidence based on

binary matrix factorization [3] and clustering-based methods [93, 94] have been developed. Lifted

inference which was initially proposed by Poole [60] discovers groups of exchangeable variables

in the distribution and performs inference over groups rather than individual variable. Exact infer-

ence methods include FOVE [12], WFOMC [90], PTP [23], etc. These methods try to identify

symmetries without constructing the Markov network and perform efficient inference using these

symmetries. Similarly, approximate inference methods include lifted Gibbs Sampling [92], lifted

belief propagation [85], lifted MAP [76], lifted importance sampling [24], etc. In these methods,

we identify exchangeable variables and develop approximate inference methods that take advan-

tage of exchangeability. For example, we can reduce the effective sampling-space in sampling-

based methods, search-space in MAP methods, etc.

However, MLNs with untied formulas (untied formulas are discussed in the next chapter)

make lifted inference infeasible. Further, the accuracy of methods that use approximate symmetries

are not very high indicating that, we need richer models to solve more complex problems.

13

2.3 Gibbs Sampling

Gibbs sampling [19] is one of the most widely used MCMC algorithms to date. Gibbs sampling is

used to perform approximate marginal inference in MLNs. In Gibbs sampling, we sample one atom

in the distribution at a time given assignments to all other atoms in the MLN. Specifically, given

a set of n non-evidence atoms X1 . . . Xn, the Gibbs sampling algorithm begins with a random

assignment x(0) to all non-evidence atoms. Then, for t = 1, . . . , T , it performs the following

step (each step is called a Gibbs iteration). We sample a randomly selected atom say Xi from the

conditional distribution of Xi given assignments to all other atoms. This is given by

P (Xi|x(t)
−Xi

) =
1

ZXi

exp

(∑
f

wfNf (x
(t)
−Xi
∪Xi)

)

where x
(t)
−Xi

represents an assignment to all atoms except Xi, ZXi
is the normalization

constant. The sample at iteration t+ 1 is x(t)
−Xi

combined with the sampled assignment to atom Xi.

Gibbs sampling is typically used to estimate the marginal probabilities in the MLN. Typi-

cally, the sampler is allowed to run for some time (called the burnin time) to allow it to mix which

ensures that it forgets its initialization and starts to collect samples from the target distribution.

After T samples from a mixed Gibbs sampler are generated, the marginal probability of an atom

Xi (shorthand for Xi = True) can be estimated using the following equation.

P̂T (Xi) =
1

T

T∑
t=1

P (Xi|x(t)
−Xi

) (2.4)

We can show that as T → ∞, P̂T (Xi) → PT (Xi), i.e., as we collect more samples the

marginal probabilities converge towards the true marginal probabilities.

2.4 Learning

Learning is an important aspect of MLNs. There are two types of learning for MLNs, a) weight

learning and b) structure learning. In weight learning, we are given a MLNs structure with formulas

14

and evidence and we learn the weights for formulas. In structure learning, we learn the structure

of first-order-logic formulas. In this dissertation, we develop a novel approach to make efficient

weight learning in MLNs. Therefore, we have briefly represented the basics of weight learning in

MLNs.

2.4.1 Weight Learning

Weight learning is a major task of MLNs. We typically use Max-likelihood estimation (MLE) to

learn the weights of MLN formulas given MLNs structure and evidence. In general, weight learn-

ing we maximize the log-likelihood of the data given a training world, ω. Note that, unlike typical

machine learning methods, we have a single instance here from which we need to generalize.

Specifically, the log-likelihood is given by,

`(θ : ω) = logPθ(ω) =
∑
i

θiNi(ω)− logZθ (2.5)

=
∑
i

θiNi(ω)− log

(∑
ω′

exp

(∑
i

θiNi(ω
′)

))

where θi is the weight for the ith formula andNi(ω) denotes the number of ground formulas

in the ith formula that are satisfied by world, ω.

Weights that optimize the log-likelihood (a convex function) can be learned using a stan-

dard gradient ascent procedure. However, computing the gradient requires inference in each step

which makes learning the optimal weights intractable. Specifically, the gradient is given by (for

details, please refer to [15]),

∂

∂wi
Pw(ω) = Ni(ω)−

∑
ω′

Pw(ω′)Ni(ω
′) (2.6)

The ith component of the gradient is the difference between the number of true groundings

15

of the ith formula in the training database (ω) and its expectation according to the current weights

(w). We initialize the weights randomly. In each iteration, we update each weight according to its

gradient. However, it is infeasible to compute the expected number of satisfied grounding of a for-

mula. That is, we need to perform marginal inference (i.e., sum over all possible worlds) which is

infeasible. Therefore, a standard approach is to approximate the gradient. In voted perceptron [83],

we use the MAP assignment to compute the gradient and in contrastive divergence [28, 46], we ap-

proximate the gradient using samples. In discriminative learning, we condition over atoms that are

guaranteed to be evidence atoms. Thus, we learn optimal weights for the conditional log-likelihood

function. Recently, Venugopal et al. [95] proposed a new approach where they approximated the

gradient using approximate counting oracles. Specifically, the idea of the gradient direction is

enough for weight learning. Therefore, during weight updates they proposed to compute a fast

approximation of the samples (or MAP assignment) to scale up learning. Pseudo-likelihood is

another approximation which does not require inference and we decompose the likelihood as a

product of conditional distributions. However, this typically yields poorer solutions as compared

to the other approaches.

Thus, weight learning is computationally hard since each step of gradient ascent requires

inference. Moreover, the weight learning in MLNs becomes infeasible when MLNs contained

untied formulas. We need a separate weight for each ground formula of an untied formula, and

this makes weights learning infeasible. Therefore, in this dissertation we present a novel approach

to address this problem.

2.5 LIME Explanations

Locally Interpretable Model Agnostic Explanations (LIME) [67] extracts explanations for a spe-

cific prediction made by any black-box supervised learning algorithm. Thus, it is a model agnostic

approach that can be applied in general to any black-box classifier. That is, even though the clas-

sifier as a whole is complex and cannot easily be explained, LIME can explain predictions made

by the classifier. The high-level idea in LIME is as follows. Assume that we are given a non-linear

16

binary classifier C (this can be extended to multiclass classification as well) and a test instance X

to be classified. We want to know which features of X best explain its classification by C. To

do this, we perturb X to generate a set of instances X̄. X̄ ∈ X̄ is similar to X but may lie on

either side of the decision boundary of C. Thus, X̄ represents the local neighborhood of X and

each X̄ ∈ X̄ is weighted based on its distance from X . We now learn a simple linear classifier

fX that classifies X ∪ X̄ such that the classification best matches the one made by the original

classifier. fX therefore represents an approximation of the original classifier C around the local

neighborhood of X . The prediction of fX(X) = W>X , where W is a vector of coefficients of the

linear classifier. The i-th coefficient is associated with the i-th feature of the classifier. To explain

the prediction of X , we rank the coefficients in W where larger values of the coefficients indicate

that they are more important to the classification of X as compared to smaller values. To obtain a

global overview of all predictions made by the model, LIME also implements a submodular pick

that picks a diverse sample of instances and explains all these instances such that the user is able

to get a unified explanation for the classifier.

2.6 SHAP Explanations

The SHAP explainer [48] is based on Shapely values that are used to assign optimal credit alloca-

tion for features in making a prediction. Like LIME, SHAP is also model-agnostic and generates

explanations for any black-box model. The main idea in SHAP is to form coalitions, i.e., try to

include a feature with subsets of other features and measure the influence of a feature based on

all these coalitions. To compute the exact Shapely value is infeasible since the number of sub-

sets of features can be very large. Instead, a popular approach is to use KernelSHAP [48] that

approximates the Shapley value. The main idea is to sample coalitons and weight then based on

the size of the coalitions. That is, coalitions for a feature with a small number of other features or

a large number of other features receives larger weight. This is to ensure that a feature’s individual

influence as well as its influence in the full classifier are both considered in the explanation. The

feature’s Shapley estimates in KernelShap can then be derived using a linear regression procedure.

17

Chapter 3

Efficient Weight Learning in High-Dimensional Untied MLNs

The weight learning is the major task of Markov Logic Networks (MLNs) which is introduced

in previous chapter. However, the MLNs with untied formulas (which is discussed later in this

chapter) contain large number of ground formulas and each formula has unique weight. Thus, it

is infeasible to learn MLNs efficiently and lifted inference becomes very hard due to a) lack of

symmetries, b) large number of parameters computation.

Our main contribution in this chapter is an approach to perform efficient and accurate learn-

ing in MLNs containing high-dimensional, untied formulas. Specifically, as has been seen in prior

applications [96], encoding high-dimensional features as MLN formulas makes learning infea-

sible, since relational learning tries to learn jointly from the entire training data. Our approach

efficiently handles this problem by tying the untied formulas and initializing the formula weights

generated by non-relational learner. Naturally, to begin with, we do not know which groundings

of untied formulas will turn out to have the same weights. Therefore, we utilize a non-relational

learner to determine the effect of each grounding on the classification problem that we are trying

to solve. Specifically, we encode an untied formula as a classification problem, extracting i.i.d

instances from the relational training database. From this, we derive initialization weights for the

groundings of the untied formula, and tie together those groundings that have similar weights. Our

underlying assumption is that groundings that exhibit similarity in the non-relational learner will

also exhibit similarity in the relational learner. Once we learn the groundings that we want to tie

together, we use a relational learner to re-learn the MLN using existing weight learning methods.

We perform experiments on three different real-world problems, namely collective classi-

18

fication of web-page topics, entity resolution, and information extraction using datasets available

in Alchemy [38]. For our experiments, we integrate SVMs with relational learning, and show that

our approach yields much more scalable and accurate results, as compared to using state-of-the-art

relational learning systems such as Tuffy [58].

3.1 Related Work

In many practical applications of MLNs, researchers have used various strategies to reduce the

complexity of learning and inference. Especially when the MLN contains formulas that are hard

to learn, alternate techinques have been used to set the weights of such formulas. For example,

Venugopal et al. [96] learn high-dimensional linguistic features using SVMs, Khot et al. [36] set

some weights manually for hard-to-learn formulas in question answering, etc. Previously, Craven

and Slattery [8] proposed an approach to utilize Naive Bayes within propositional rule-based learn-

ing through FOIL. Our approach can be seen as an analogous approach but for learning first-order

relational models.

On the other hand, there have been a few approaches to perform weight learning in a more

efficient manner. Haaren et al. [27] used lifted inference in generative learning where symme-

tries are better preserved. Recently, Mittal et al. [53] proposed a new approach to learn more

fine-grained weights. This approach is similar to ours, but they learn the grouping through hidden

variables, and therefore, they need to sum it out using the EM algorithm which is expensive. Par-

ticularly, in the presence of high-dimensional, untied formulas, which is our main focus here, their

approach is computationally much more expensive, and less scalable as compared to our method.

Chou et al [7]proposed a similar idea, where they quantized Bayesian network parameters based

on similar values in the CPT. However, in the case of MLNs, learning the original parameters is

infeasible, which makes the quantization hard. Sarkhel et al. [77] proposed an efficient discrim-

inative learning approach to learn more efficiently by using approximate counting oracles. But

in this case, they assume that the weights of all groundings of a formula are shared. Ahmadi et

al. [1] proposed an approach to perform learning in an online manner by using mini-batches of

19

data. Specifically, they partially ground the MLN using a part of the dataset each time, and update

the weights incrementally. However, even with these advancements, applying MLNs to practi-

cal applications remains challenging, where we need to encode features that may possibly result

in hundreds and thousands of ground formulas, and we would need to perform relational weight

learning in an extremely large parameter space. The approach that we have developed in this chap-

ter is an approach to make relational learning applicable to large problems, by integrating it with

scalable non-relational learners.

3.2 Weight Learning for Untied MLNs

Given a relational, closed-world training databaseD, MLN structureM that encodes high-dimensional

untied formulas, and query predicates Q, our task is to learn weights w for M that maximizes

the conditional log-likelihood (CLL) PM(D|Q). Instead of learning a separate weight for each

grounding of the untied formulas, we learn weights for a smaller set of formulas by tying together

groups of untied formulas. To tie the untied formulas together optimally, we learn which of the

untied formulas are likely to have similar weights, using a supervised non-relational learner. We

then use weights derived from the non-relational learner as initialization weights when we re-learn

the model using a relational learner.

3.2.1 Encoding Untied Formulas

We make the following assumptions about the structure of the untied formulas. All the assumptions

are reasonable assumptions, and are typically satisfied when we consider the design of MLNs with

untied formulas.

• Each formula is a universally quantified clause.

• + variables are a part of the predicate definition. That is, if an argument of a predicate

is defined with the + symbol, then all atoms that occur in the MLN corresponding to that

predicate are assumed to have + variables in that argument position.

20

• Each untied formula contains at least one query atom, and each atom in an untied formula

contains at least one + variable. The + variables in query predicates define classes that the

MLN is designed to predict. Note that for a binary classification problem + variables are

strictly not needed, however for ease of explanation, we add a + variable with domains-

size of 2. For the query predicates, there is a mutual exclusion constraint imposed on the

arguments defined with the + symbol. Specifically, for every grounding to the remaining

variables, one and only one ground atom is true among all the ground atoms obtained by

grounding the + variables.

• If an untied formula contains multiple query atoms, one of query atoms is designated as the

target atom that we are trying to predict. Each query atom must be the target of exactly one

untied formula.

Note that with the last two assumptions mean that, we assume untied formulas ti typically

model “features” for a classification task. Note that, if none of the variables in the untied formula

are query variables, then, learning separate weights will not make sense, since we assume that the

training database contains an assignment to all non-query variables (closed world assumption).

Let f be an untied formula. Let X− denote the lifted variables in f , i.e., variables that are

not associated will have a + symbol. We divide f into two parts, the target atom of f whose class

value we are trying to predict, and the rest of the formula in f denoted by f Q̄. Let X+ be the +

variables in f Q̄.

Case 1. f Q̄ has no query atoms. In this case, all atoms in f Q̄ are observable, therefore we

can use them directly to learn to classify the target atom. To do this, we consider each grounding

to X− as an i.i.d instance for our non-relational learner. The features are defined by projecting D

on f Q̄ independently for every instance. Specifically, let x̄j− be the j-th grounding to X−, x̄k+ be

the k-th grounding to X+, and f̄ Q̄jk be the formula obtained by grounding f Q̄ with x̄j− and x̄k+, we

derive the feature vector for the j-th instance, Xj as,

21

Xjk =

1 if f̄ Q̄jk is true in D

0 Otherwise
(3.1)

Case 2. f Q̄ has one or more query atoms. In this case, since query atoms are considered

unknown, we cannot use the query atoms inD directly to learn to classify the target of f . Therefore,

we define a pipeline processing order for query atoms. That is, we will have predictions for all

query atoms in f Q̄ before we can classify the target atom of f . Thus, we compute an ordering over

the untied formulas f1 . . . fn such that, the predictions for all query atoms in fk (other than the

target of fk) are available from f1 . . . fk−1. In the event that such an ordering is impossible for

a formula fi, we drop the query atoms that cannot be predicted from formulas f1 . . . fi−1, when

computing the features for fi. The feature matrix is computed as in case 1, except that, we do not

use the query atoms in D but instead use the predicted values for the query atoms when computing

the feature vector from Eq. (3.1).

Given the feature vector for all instances of f note that we can use any classifier to learn

to classify the target of f . The only requirement from the classifier is that it needs to assign a

weight for each dimension of the feature vector which can be used to interpret the contribution of a

dimension w.r.t the classification of the target. In our experiments, we used multiclass SVMs as our

non-relational classifier. However, our approach can plug-in several other classifiers, and is thus

a general method to integrate relational and non-relational classifiers. We utilize the scalability

of non-relational classifiers for handling high-dimensional formulas, and relational learning for

learning dependencies across instances, thus yielding the best of both worlds.

In the case of SVMs, we use the (normalized) coefficients of the learned hyper-planes of

the SVM as the initialization weights for our formulas. Specifically, if the target of f hasm classes,

for i-th feature dimension, we have a vector of weights Θi, where the j-th component of the vector,

θij , is the j-th coefficient of the hyper-plane that distinguishes class i from the rest of the classes

of the target. Thus, the i-th grounding to X+, and the grounding corresponding to the k-th class of

the target atom will get the initialization weight θij .

22

Figure 3.1: Clustering a + variable formula. The first clustering is inconsistent since the atoms
of a specific predicate will be clustered with distinct atoms of that predicate for two different
clusters. The second clustering is consistent. The θ values specify the initialization weights for
the formulas. in the clustered formula, the weight is the average over all weights in that cluster.
e.g. θ1 = θ11+θ12+θ21+θ22

4
.

3.2.2 Clustering

Once we obtain the initialization weights for each grounding of the untied formulas, we reduce

the number of formulas by clustering those with similar weights together. Specifically, for every

cluster, we replace all the formulas in that cluster with a single formula, with initialization weight

equal to the average weight of all formulas in that cluster. However, the clustering must be chosen

carefully such that the grouping of formulas is consistent.

For example, consider the formula Feature1(x,+y1)∧ Feature2(x,+y2)⇒ Class(x,+c).

Let us assume that the domain of y1 denoted as ∆y1 is equal to {F11, F12, F13, F14} and ∆y2 =

{F21, F22, F23, F24}. Thus, we have 16×|∆C| formulas. Two different clusterings for this formula

are shown in Fig. 3.1. The first clustering is inconsistent, since atoms in two different clustered for-

mulas will overlap. For example, Feature1(x, F21) will be clustered along with Feature1(x, F22),

Feature1(x, F23) and Feature1(x, F24) in one cluster, and with only Feature1(x, F22) in a sep-

arate cluster. In contrast, the second clustering is consistent. Specifically, along every dimension,

the clustered atoms can mapped to a unique cluster.

To achieve a consistent clustering, we model the problem of learning a consistent clustering

as a joint clustering problem over all the + variables in the untied formula. Note that we do not

consider clustering the + variables corresponding to query predicates. This is because, the +

23

variables in query predicates correspond to classes, and we want our final model to be able to

discriminate between all classes, which is not possible if we cluster the classes.

The joint clustering problem is modeled as follows. Given formula f , let X+ be the +

variables to be jointly clustered. Let x̄+ be a specific assignment to X+, and let θx̄+ be the average

initialization weight of groundings of f consistent with x̄+. We arrange θx̄+ as a tensor, where

each of the + variables represent a single order or dimension of the tensor. Our task is to now find

a quantizer that reduces the order of this tensor across all dimensions. Specifically, the quantizer

partitions or clusters each dimension of the tensor, to obtain a lower-order tensor. Thus, given

the desired number of clusters for each domain corresponding to the + variables, k1, . . . km, the

quantizer will jointly partition the domains in X+.

Formally, let A be a m-order tensor Rn1×n2×...×nm that represents the weights to each

possible grounding of X+. We want to find a quantizer Q that maps A to a reduced tensor B,

Rk1×k2×...×km , that minimizes the Euclidean distance between the cluster-centers in B, and the

weights of their corresponding cluster elements. Specifically,

min
Q

∑
a∈A

||a−MQ(a)||22 (3.2)

where MQ(a) is the cluster center of a under the mappingQ. Note that directly optimizing

Eq. (3.2) is a hard problem. Therefore, we use approximate methods that use a co-ordinate descent

like procedure and perform dimension-wise clustering as described in [75, 31].

From the reduced tensor for an untied formula f , we reduce the number of possible ground-

ings of f , by utilizing the clusters along each dimension of the tensor. Specifically, given the orig-

inal tensor Rn1×n2×...×nm and the reduced tensor Rk1×k2×...×km induced by the quantizer Q, note

that we have two choices. We can generate ki variables for each dimension, such that the domain

of each variable is equal to the objects in the partition specified by Q, and the weight is given by

the cluster center. However, though this reduces the number of weights from n1 × n2 × . . . × nm

to k1 × k2 × . . . × km, the total number of possible groundings of f on the + variables remains

n1 × n2 × . . . × nm. This is problematic especially, since we are considering high-dimensional

24

formulas, the large number of possible groundings makes relational learning infeasible. Therefore,

we reduce the number of weights and number of ground formulas at the same time. Specifically,

we replace each partition along a dimension with a constant instead of a variable. It then follows

that the total number of weights and the number of possible groundings of the + variables, reduces

from n1 × n2 × . . .× nm to k1 × k2 × . . .× km.

Once we obtain the modified MLN, we perform discriminative relational learning using

existing approaches such as voted perceptron and contrastive divergence on the modified MLN to

re-learn the weights of all the formulas in the MLN. We can think of this re-learning process as

jointly optimizing the weights learned for i.i.d instances. For example, assume that for a given

dataset, our non-relational learner gives us ideal weights for p% of the instances, and imperfect

weights for the remaining (n − p)% instances. Joint learning will now relate the i.i.d instances

through the MLN formulas, and jointly optimize their weights to maximize to CLL. Naturally,

as p increases, the non-relational learner will influence the relational learner to correct the n − p

remaining weights, and as p reduces, the relational learner will use dependencies to correct the

weights given by the non-relational learner. Note that in our final learned model, clusters of objects

in the domain of + variables will be replaced by constants. Therefore, at testing time, i.e., when

we perform inference on this MLN using a test database as evidence, we replace + domain objects

in the evidence atoms with symbols that represent their clusters.

3.2.3 Tying Related Formulas

So far, we considered untied formulas independently. However, when atoms are shared across

untied formulas, the clustering over one formula affects the other. Specifically, let f and f ′ be

two untied formulas with shared atoms. Clustering the groundings of f affects the formulas in f ′.

This is similar to the shattering process seen frequently in lifted inference [60, 23]. In shattering,

grounding the domain of a variable in one formula needs to be propagated to other formulas with

a shared domain. In our case, the tying of formulas needs to be propagated to other formulas

with one or more shared atoms. Thus, once we cluster a formula, we propagate the clustering

25

throughout the MLN before clustering the next formula. Propagating the tied formulas means that

we replace partitions of the + variable domains with constants. Note that in doing so we remove

+ variables from an untied formula and replace it with constant symbols.

Algorithm 1 summarizes our approach. The first step is to train a classifier for each un-

tied formula using a non-relational model, using features corresponding to groundings of the +-

variables in the untied formula. For this, we create independent instances corresponding to each

grounding of the non-+ variables to create the training data, and learn the parameters of the non-

relational model. We then initialize the weights for an untied formula from the learned parameters,

and perform clustering to obtain clusters of ground formulas corresponding to the untied formula

that have similar weights in the non-relational model. We replace each of these clusters by a single

ground formula with weight initialized to be the mean weight of the cluster. We also change the

dataset to reflect by replacing objects with their corresponding cluster symbols. We then propa-

gate the changes (from objects to cluster symbols) to other formulas in the MLN that have shared

atoms.

3.2.4 Semi-Formal Analysis

Let w be the weight vector that we would learn if we used the original MLN with untied weights,

i.e., we learn a separate weight for every untied formula. Let w′ be the weight vector that we will

learn, if we tie the weights of untied formulas with a quantizerQ. We assume that for all the untied

formulas grouped together by Q, the difference between the weights that would be learned before

formula tying and after formula tying are bounded by ε. Specifically, |w − Q(w)| ≤ ε, where

w ∈ w and Q(w) ∈ w′ represents the weight of the group to which w belongs as given by Q. Let

`(w,D) represent the likelihood when we learn w and `(w′,D), the likelihood when we learn w′

from D. We can show the following result, similar to the result shown in Chou et al. [7].

Theorem 1. `(w : D)− ˆ̀(w′ : D) ≤ 2εM , where M is the number of groundings in the MLN.

26

Proof.

`(w : D) =
∑
i

wiNi(D)− log(
∑
D′

exp(
∑
i

wiNi(D′)))

≤
∑
i

(Q(wi) + ε)(Ni(D))

− log(
∑
D′

exp(
∑
i

(Q(wi)− ε)

(Ni(D′))))

=
∑
i

Q(wi)Ni(D) +
∑
i

εNi(D)

− log(
∑
D′

exp(
∑
i

Q(wi)Ni(D′)

exp(−
∑
i

εNi(D′))))

≤
∑
i

Q(wi)Ni(D) + εM

− log(
∑
D′

exp(
∑
i

Q(wi)Ni(D′)

exp(−εM)))

= 2εM +
∑
i

Q(wi)Ni(D)

− log(
∑
D′

exp(
∑
i

Q(wi)Ni(D′)

= ˆ̀(w′ : D) + 2εM

Thus, from Theorem 1’s result, reducing ε will reduce the likelihood difference between

the two models. Intuitively, to reduce ε, we need to predict which of the united formulas will end

up with the same weights. Our approach of using a non-relational classifier performs exactly this

27

prediction by considering instances independently. Essentially, we are decomposing the relational

databaseD into a set of i.i.d instances D, and our non-relational model learns similarity of weights

using D. Our assumption is that these similarities in weights will continue to hold when we relate

the i.i.d instances in D through D, thus reducing ε. Similarly, having smaller number of formulas

will reduce the difference in likelihood, but at the same time, it can increase the error ε.
Algorithm 1: Formula Tying

Input: MLN structureM, Training data D, Query Q, Non-relational learnerR
Output:M′, D′

1 Let f1 . . . fn be the untied formulas inM
2 for each fi do

// Construct a classifier for fi
3 Encode each grounding of non-query +-variables in fi as a feature forR
4 for each grounding of non-+ variables in fi do
5 Xi = i-th grounding of non-+ variables in fi
6 yi = Class of query corresponding to Xi

7 X = X ∪ Xi

8 y = y ∪ Xi

// Perform non-relational learning
9 Θ = Parameters ofR learned from (X, y)

// Weight initialization for relational learner
10 Initialize fi with Θ
11 X+ = + variables in fi
12 P(1) . . .P(m) = Partitions of domains of X+

13 for e ∈ P(1) × . . .× P(m) do
14 θ = Cluster center for e
15 C = Map each partition in e to a constant

// Replace clustered formulas with a single formula
16 (f ′,θ) = Replace + variables in fi with C
17 Add (f ′,θ) toM′

// Propagate changes to training data and the other
formulas

18 D′ = Replace objects in e with C in D
19 M′ = Propagate C to fi+1 . . . fn

20 Copy remaining formulas fromM toM′

21 return (M′,D′)
Weight Initialization. Due to convexity of the CLL function, irrespective of the starting

states, in theory, max-likelihood learning will converge to a globally optimal solution given enough

iterations. However, the main problem is that performing exact max-likelihood learning is a hard

problem. Specifically, the gradient is given by,

∂

∂wi
`(w : D) = Ni(D)− Ew[Ni(D)]

28

Computing Ew[Ni(D)], is typically infeasible since it requires exact inference on the MLN. There-

fore, relational weight learners approximate the gradient by computing Ew[Ni(D)] approximately.

This approximation means that we cannot guarantee convergence to the globally optimal w, and

depending on the initialization, the weights may converge to different local minima. Good weight

initialization is well-known to be effective in avoiding local minima [97], especially when dealing

with a large number of parameters, therefore, our weight initialization will typically be effective in

high-dimensional untied formulas.

3.3 Experiments

3.3.1 Setup

We evaluated our approach on three real-world applications modeled using MLNs, namely, collec-

tive classification of web-page topics [45] (WebKb), entity resolution [84] (ER), and information

extraction [61] (IE). For ER and IE, we used the Cora dataset, that consists of 1295 citations of

132 different papers. For WebKb, the dataset consists of 4165 web-pages from 4 different uni-

versities. The MLN structure and the data for each of these applications are publicly available in

Alchemy [38]. Note that, we chose these MLNs since they are some of the most popular bench-

marks for evaluating MLN inference and learning algorithms.

We conducted our experiments on 8GB quad-core machines. We evaluated the perfor-

mance of our approach regarding accuracy and running time. As our non-relational learner, we

used the multiclass SVM implementation in scikit-sklearn. For the relational learner, we used

the contrastive divergence implementation in Tuffy [58]. Tuffy is arguably the leading general-

purpose learning and inference system for MLNs. We compared our approach (SVMTied) with

three other approaches, SVM classifier (SVM), Tuffy with the original MLN with untied weights as

is (OrigTuffy), using tied weights with random initial weights (RandomizedTuffy), and evaluated

accuracy using cross-validated F1-score.

29

SVM OrigTuffy RandomizedTuffy SVMTied
0.42 X 0.31 0.84

Table 3.1: F1-Score comparison for WebKB.

3.3.2 Results

Our first application predicts topics in web-pages using the WebKB MLN. The untied formula

relates words in the document to topics. There is only one query predicate in this MLN, which

encodes the seven classes/topics of web-pages. We tried to use Tuffy to learn the MLN with untied

formulas, but Tuffy did not work on the original MLN that contains + variable formulas, and

timed out after 24 hours. The results for the remaining systems are shown in Table 3.1. As shown

here, the weight initialization plays an essential role in improving performance. When we cluster

the untied formulas based on random weights, we obtain performance that is worse than using

SVMs, which of course ignores relational dependencies. We used the same number of clusters

(80 clusters) in both RandomizedTuffy and our approach. Our approach significantly outperforms

the other approaches on this application. Lowd and Domingos [45] obtained an AUC score of

around 0.8 for this dataset learning a separate weight for each formula. This illustrates that tying

could help improve generalization in some cases, where learning too many weights could overfit

the model.

The second application performs entity resolution (ER) using the CORA dataset. Specif-

ically, the idea is to predict if fields belong to the same author, venue, title, and finally if two

citations match. Thus, there are multiple query predicates in the MLN for this case. The untied

formulas use word-based features to predict the queries. Once again, OrigTuffy failed to run on

this problem, and we timed out after 24 hours. For both RandomizedTuffy and SVMTied, we used

40 clusters. Our approach once again significantly outperformed the other methods on all queries

for this application as shown in Table 3.2. SVMs outperformed using random weight tying, with

random weight initialization. Singla and Domingos [84] obtained an AUC score of around 0.91

for SameAuthor, 0.90 for same venue and 0.99 for SameBib. However, Singla and Domingos use

domain-specific methods to make the approach more scalable. For example, they apply McCallum

30

Query SVM OrigTuffy RandomizedTuffy SVMTied
SameAuthor 0.71 X 0.33 0.92
SameTitle 0.63 X 0.54 0.85

SameVenue 0.68 X 0.32 0.79
SameBib 0.51 X 0.29 0.78

Table 3.2: F1-Score comparison for ER.

Query SVM OrigTuffy RandomizedTuffy SVMTied
InfieldAuthor 0.65 X 0.36 0.79
InfieldTitle 0.45 X 0.4 0.68

InfieldVenue 0.52 X 0.42 0.71
SameCitation 0.48 X 0.28 0.72

Table 3.3: F1-Score comparison for IE.

et al.’s [49] canopy approach with TF-IDF to reduce the number of plausible pairs. It is sometime

hard to generalize these methods to other problems, and therefore, in our approach, we did not ap-

ply these methods. In future, we will explore systematic ways to incorporate such domain-specific

knowledge into MLN weight learning in order to improve accuracy.

Our final application performs joint segmentation and citation matching. We use the In-

formation Extraction (IE) MLN and the citeseer dataset for this application. The untied formu-

las relate word based features with predicting segments of text, and the segmented text is used

in predicting if two citations are the same. The segmented fields can be of type author, tile or

venue. As shown in Table 3.3, on all the query variables, our method using 35 clusters signifi-

cantly outperforms the other approaches. The best published result on this dataset is by Poon and

Domingos [61]. Specifically, using the joint segmentation (without incorporating entity resolution

feedback), Poon and Domingos obtained an F1-score of nearly 94%. However, the MLN we used

is a simpler version (also specified in the Alchemy website), since existential quantification that is

needed by the Poon and Domingos MLN is not well-supported in current relational learners. Note

that, Poon and Domingos mention in their work that they have modified the Alchemy system to

run their MLN, which was not publicly available to us.

Varying Number of Clusters. Increasing the number of clusters reduces the quantization

error. We verify whether reducing the quantization error results in improved performance in terms

of classification accuracy. Specifically, we learn our models with a varying number of clusters.

31

0 20 40 60 80 100 120 140

Number of Clusters

0.70

0.75

0.80

0.85

0.90

F
1

 S
co

re

ER

WebKB

IE

Figure 3.2: Performance of our approach as we vary number of clusters

Application SVM OrigTuffy RandomizedTuffy SVMTied
WebKB 26 X 200 127

ER 18 X 324 199
IE 20 X 303 145

Table 3.4: Running time (in minutes) comparison.

Fig. 3.2 shows our results where the average F1 score over all queries is plotted against the number

of clusters for each of our applications. As can be seen by our results, increasing the number of

clusters typically improves performance over all datasets. However, it should also be noted that

learning becomes harder as we increase the number of clusters, and the weights learned may not be

optimal. Thus, in some cases, we see the performance not improving with an increase in clusters,

or in some cases, even degrading by a little. Choosing the optimal number of clusters is something

we will consider in future work.

Running Time. We compare the running times of the various learning methods in Ta-

ble 3.4. As expected, SVMs take very little time to train as compared to relational learners. Note

that SVMTied is significantly faster than RandomizedTuffy in terms of training times. This illus-

trates that proper weight initialization can significantly help speed up convergence of the relational

learner.

3.4 Summary

MLNs have potential applications in a number of different domains. However, since MLNs are

template models and their representation is quite flexible, it is quite easy to write simple looking

32

MLN formulas that result in a huge probabilistic graphical model on which learning and inference

are infeasible. Particularly, encoding non-relational features as untied MLN formulas typically

tends to blow up the size of the MLN, especially if the features have high-dimensionality. In this

chapter, we have developed an approach to learn efficiently from such MLNs. Specifically, we tied

together MLN formulas that are likely to have similar weights. To predict which of these formulas

may have similar weights, we used a non-relational classifier and encoded the learned model as

initialization weights for the grounding of untied formulas. We then tied together formulas with

similar weights by modeling this as a multi-dimensional clustering problem over variables in the

untied formulas and set their initialization weights from the cluster centers. We then re-learned

the entire MLN using existing relational weight learning methods. Our experiments on multiple

applications showed that our approach significantly improves accuracy and scalability of learning.

However, human users are completely unaware of the internal operation of MLNs model

to generate the inference results and as a result, there is a trust issue regarding inference results

among human users. In order to address this problem, we have developed an approach to generate

human-interpretable explanations of inference in MLNs which is discussed in the next chapter.

33

Chapter 4

Fine-Grained Explanations using Markov Logic

One of the key advantages of MLNs is their interpetability. Specifically, since MLN models are

first-order logic based models, it is quite easy for a human user to understand and interpret what the

learned model represents. In contrast, methods such as deep learning can achieve state-of-the-art

results in language processing, computer vision, etc., but their lack of interpretability is problem-

atic in many domains. However, interpretability of learned models is not the same as explainability

of results generated by the model [25]. Recently proposed approaches such as LIME [67] try to

explain the results generated by a model, where the decision boundary of the model is typically

complex. Specifically, such approaches approximate the decision boundary by a simpler boundary

to explain the classification. However, these approaches are specific to non-relational data, and

cannot be applied when the instances are related to each other. Our focus in this chapter is to

generate explanations for probabilistic inference in relational data.

It turns out that though MLNs are interpretable, probabilsitic inference in MLNs cannot

be easily explained since the distribution is typically large and complex. Our focus in this chap-

ter is to explain relational inference in MLNs in a human-understandable form. Our main idea is

to generate explanations for queries in terms of a ranking of formulas based on their importance.

Specifically, MLN formulas have weights attached to them that intuitively signifies their impor-

tance, i.e., for a formula f with weight w, a world where f is true is ew more likely than a world

in which it is false [15]. Note that the formula weights do not have a well-defined probabilistic

interpretation if they are dependent on each other, i.e., if atoms in one formula also occur in other

formulas [15]. More importantly, the weights are tied, which means that any instantiation of a for-

34

mula has the same weight. Thus, a naive explanation for a query that can be obtained by ranking

formulas purely on their weights is not likely to be useful since it is generic across all possible

worlds. That is, the explanation will remain unchanged even when the query or evidence variables

change. For example, consider the task of classifying if an email is spam or not. An MLN could

encode a formula such as Word(e,+w) ⇒ Spam(e). The + symbol in this type formula has been

explained in previous chapter. Recalling from previous chapter,this + symbol preceding a variable

is a short-hand representation to denote that the MLN stores a different weight for every distinct

grounding of the w variable (which represents the domain of words). Suppose the query predi-

cate is Spam, we would want different explanations for different groundings of the query predicate

based on the specific evidence on the Word predicate. Further, suppose the evidence is incom-

plete, meaning that there are some atoms that are not query atoms and whose truth value is not

known. For formulas containing such atoms, it becomes even harder to determine their influence

on a query since we need to consider all possible worlds where the unknown atoms are true as well

as the cases where the atoms may be false. We have developed a systematic approach for explana-

tions where we learn importance weights for formulas based on samples generated from the MLN.

Specifically, we perform inference using Gibbs sampling, and learn the importance of formulas for

a specific query based on their influence in computing the Gibbs transition probability. Thus, as the

sampler samples possible worlds consistent with the observed evidence, the importance weights

capture the influence of formulas on the query variable in these worlds.

We evaluate our approach using two MLN applications we designed for performing in-

ference in real-world review data from Yelp. In the first application, we predict if a review is a

spam review and provide explanations for this prediction. In the second application, we predict

the sentiment of a review that has missing words. For both cases, we develop MLNs that encode

common knowledge and use our approach to extract explanations from the MLNs. We set up a

comprehensive user-study consisting of around 60 participants and compare our explanations with

explanations given by LIME for the same tasks. We clearly demonstrate through these studies that

our explanations are richer and more human-understandable than the explanations given by LIME.

35

R
(X

1
)(

N
o
E
v
id

s)

R
(X

1
)(

E
v
id

s)

R
(X

2
)(

E
v
id

s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

f1

f2

(a)

R
(X

1
)(

N
o
E
v
id

s)

R
(X

1
)(

E
v
id

s)

R
(X

1
)(

E
v
id

s1
)0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

f1

f2

f3

(b)

Figure 4.1: Illustrating the influence of a formula w.r.t a query atom for varying evidences.

4.1 Related Work

Explaining the results of Machine learning models has been recognized as a critical area.LIME

developed by Ribeiro et. al. which can provide an explanation of any classifier.Most recently,

they developed "Anchors” [66], a model-agnostic explainer with if-then rules. Ross et al. [70]

developed a regularizer to obtain simpler explanations of a classifier’s decision boundary. Koh and

Liang [37] addressed the explainability problem by perturbing the importance of training examples

and observing their influence on prediction. Similarly, Fong and Veladi [18] also use perturbations

to explain predictions. Teso and Kersting [88] recently developed explanations for interactive

learners. Though neural networks suffer from lack of interpretability in general, there have been

attempts to explain the model through visual analytics, such as Grad-CAM [78] and the more recent

work by Zhang and Zhu [100]. However, none of these techniques are applicable to relational data

which is the focus of this chapter. Specifically, in relational data there is a single example that

is interconnected, and is therefore fundamentally different from the type of data addressed in the

aforementioned methods. Related to propositional probabilistic graphical models, more recently,

Shih et al. [82] compiled Bayesian networks into a more interpretable decision tree model.

4.2 Query Explanation

Our approach is to extract explanations for a query as a ranked list of MLN formulas, where the

ranking encodes the influence of the formula on that query. Before we formally describe our

36

approach, we motivate it with an illustrative example. Consider a simple MLN with 2 formulas, f1

= R(x) ∧ S1(x) with weight equal to 0.5 and f2 = R(x) ∧ S2(x) with weight equal to 0.6. Let R

be the query predicate, and let the domain of x, ∆x = {X1, X2, X3}. Let us assume that we want

to explain the results of marginal inference, meaning that we compute the marginal probabilities

of R(X1) . . . R(X3). Given no evidence, in every possible world, f2 has a larger influence than

f1 in computing the probability of that world. Therefore, the marginal probabilities of the atoms

R(X1) . . . R(X3), are influenced more by f2 as compared to f1. We illustrate this in Fig. 4.1. Here,

we show the exponentiated sum of weights for all satisfied groundings in the first-order formula

summed over all possible worlds where the query is satisfied. The values obtained for the formulas

f1 and f2 are normalized and shown in Fig. 4.1 (a).

However, now consider a second case, where we add evidence S1(X1) and set all other

atoms of S1 and S2 to false. We now analyze the influence of the formulas in a subset of possible

worlds that are consistent with the observed evidence. Here, f1 now has greater significance than

f2 for the query R(X1), since the observed evidence makes the formula f1 grounded with X1 true

and the formula f2 grounded with X1 false. However, when we consider a different query R(X2),

the influence of f1 and f2 changes. Specifically, the influence of f1 and f2 on R(X2) is equivalent

to the case where we had no evidence. This is because case f1 and f2 grounded with X2 have

the same truth assignment due to the evidence. Thus, the same set of formulas can have different

influences on different queries.

Now, suppose, we add a third formula, f3 = S1(x) ∧ S2(x) with weight 0.7. Since, f3 has

the highest weight, we may be tempted to say that f3 has maximum influence on the probabili-

ties. However, if we quantify the influence of the formulas as before, we get the results shown in

Fig. 4.1 (b). Note that adding the formula changes the influence that the other formulas have on

the marginal probability. Further, even though f3 has a higher weight, its influence on the query

R(X1) is in fact smaller than that of f2, even in the case where we have no evidence. Thus, we

cannot analyze weights of the formulas independently of each other when the atoms are shared

among different formulas, since the weights on one formulas can affect the other formulas.

37

On adding evidence as specified before, the influence of all three formulas are modified as

shown. Further, if we assume that the evidence specifies that S1(X1) is true and the other atoms

of S1 and S2 are unknown (they can be either true or false), then f3 has a larger influence than the

other formulas. Thus, depending upon the evidence as well as the specific query we are looking

at, each formula has a different influence on the overall marginal probability. For small examples

such as the aforementioned one, we can go over each possible world that is consistent with the

evidence and the query, and compute the influence of each formula on the marginal probability of

the query. However, this is not practically feasible for large problems. Therefore, we develop a

practically feasible solution where we compute the importance based on samples drawn from the

distribution over the possible worlds.

To formalize the above example, we first start with some notation. Let f1 . . . fk be the k

formulas in the input MLNM. Let w1 . . . wk be weights associated with each of these formulas

respectively. Let Q represent the query predicate, and let E represent the set of evidence atoms

(atoms whose truth assignment is known). Let q1 . . . qm denote the instantiations or ground atoms

corresponding to the query predicate. Note that, for the sake of of clarity, we assume that we have

a single query predicate, however, it is straightforward to include multiple query predicates.

4.2.1 Sampling

In standard Gibbs sampling for MLNs, we start with a random assignment to all atoms ω(0) in the

MLN except the evidence atoms whose assignments are fixed as given in E. In each iteration of

Gibbs sampling, we choose a non-evidence atom based on a proposal distribution α, and compute

an assignment to this atom by sampling the assignment based on its conditional distribution. In our

case, we assume that α is a uniform distribution, which means that we sample non-evidence atoms

randomly in each iteration. From the generated samples, we estimate the marginal probabilities of

P (q1) . . . P (qm) as,

P (q̄i) =
1

T

T∑
t=1

I(ω(t) ∼ q̄i) (4.1)

38

where T is the total number of samples, ω(t) ∼ q̄i denotes that the assignment to atom qi

in ω(t) is consistent with q̄i. Without loss of generality, we assume that q̄i refers to the true (or 1)

assignment to qi. Thus, to compute the marginal probability for qi, we need to compute the ratio

of the number of samples where the qi was equal to true (or 1) and the total number of samples

collected.

Suppose we choose to sample a query atom, qi in an iteration of Gibbs sampling, the main

task is to compute the conditional distribution P (qi|ω(t−1) \ qi), where ω(t−1) \ qi is the set of

assignments to all atoms except qi in the sample at iteration t−1. Once we compute the conditional

distribution, we sample the assignment for qi, say qi from the distribution, and the subsequent

sample ω(t) = ω(t−1) ∪ qi. The conditional distribution to be computed in an iteration is given by,

P (q̄i|ω(t−1) \ qi) = exp
∑
j

wjNj(ω
(t−1) \ qi ∪ q̄i) (4.2)

where Nj(ω
(t−1) \ qi∪ q̄i) is the number of of satisfied groundings in the j-th formula given

the assignment ω(t−1) \ qi ∪ q̄i.

We now define the importance distribution for a query atom qi, Q(qi) as follows. In each

step of Gibbs sampling, where qi is satisfied, we measure the contribution of each formula to

the Gibbs transition probability. Specifically, for a formula fk, its contribution to the transition

probability is proportional to exp(wjNj(ω
(t−1) \qi∪ q̄i), if qi is the atom being sampled in iteration

t. However, since we consider both cases in the conditional probability, namely, the assignment

1 (or true) to q̄i as well as the assignment 0 (or false) to q̄i, we would like to encode both these

into our importance function. To do this, we compute the log odds of a query atom, and score the

influence of a formula on the query based on its contribution in computing its log-odds.

Formally, let ω(t−1) be the Gibbs sample in iteration t − 1. Suppose we are sampling the

query atom qi, we compute the log-odds ratio between the Gibbs transition probability for qi = 0

and qi = 1. This is given by the following equation,

39

log
P (qi = 1|ω(t−1) \ qi)
P (qi = 0|ω(t−1) \ qi)

=∑
j

wjNj(ω
(t−1) \ qi ∪ {qi = 1})

−
∑
j

wjNj(ω
(t−1) \ qi ∪ {qi = 0}) (4.3)

log
P (qi = 1|ω(t−1) \ qi)
P (qi = 0|ω(t−1) \ qi)

=∑
j

wj(Nj(ω
(t−1) \ qi ∪ {qi = 1})

−Nj(ω
(t−1) \ qi ∪ {qi = 0}) (4.4)

We then update the importance weight of the j-th formula w.r.t query qi as

Q(t)
j (qi) ∝ wjNj(ω

(t−1) \ qi ∪ {qi = 1})− wjNj(ω
(t−1) \ qi ∪ {qi = 0}) (4.5)

We update all the importance weights for qi denoted by Q(t)(qi) = Q(t)
1 (qi), . . . Q(t)

k (qi)

corresponding to the formulas 1 through k in every iteration where qi is sampled. The importance

weight for Q(t)
j (qi) after sampling qi T times is given by,

Qj(qi) =
1

T

T∑
t=1

Q(t)
j (qi) (4.6)

Theorem 4.2.1. As T →∞,

log
P (qi = 1)

P (qi = 0)
∝
∑
j

Qj(qi) (4.7)

40

Proof.

log
P (qi = 1)

P (qi = 0)
=∑
ω

log
P (ω ∼ qi = 1)

P (ω ∼ qi = 0)

∝
∑
ω

∑
j

wj(Nj(ω ∼ qi = 1)

−Nj(ω ∼ qi = 0))

∝
∑
ω

∑
j

wj(Nj(ω ∼ qi = 1)

−
∑
j

Nj(ω ∼ qi = 0)) (4.8)

where ω ∼ qi = 1 are worlds consistent with the known evidence as well as qi = 1, and ω ∼ qi = 0

are worlds consistent with the known evidence qi = 0. Further

E[Qj(qi)] =
∑
ω

wj(Nj(ω ∼ qi = 1)− wjNj(ω ∼ qi = 0)) (4.9)

as T →∞, Q(t)
j (qi)→ E[Qj(qi)], since we are estimating the expectation from worlds consistent

with the MLN distribution. Therefore, as T →∞,
∑

j Q
(t)
j (qi)

∑
j E[Qj(qi)] which is equal to the

log-odds ratio log P (qi=1)
P (qi=0)

Interestingly, it turns out that in some cases, the importance weights can be obtained with-

out sampling multiple worlds. Specifically, we can show that,

Proposition 1. If the evidence is complete, i.e., every non-query atom is known to be either true

or false, and if every ground formula in the MLN contains exactly one query atom, then E[Qj(qi)]

= wj(Nj(ω ∼ qi = 1) − wjNj(ω ∼ qi = 0)), where ω is any world consistent with the known

evidence.

The above proposition implies that, in MLNs where the evidence is fully specified over the

41

Algorithm 2: Explaining Inference
Input: MLNM, Evidence E, Query atoms Q
Output: Ranking of formulas inM for each qi ∈Q

1 Initialize the non-evidence atoms in ω(0) randomly
2 for t = 1 to T do
3 X = Choose a non-evidence atom in ω(t) uniformly at random
4 Flip X in ω(t) to compute the conditional distribution P (X|ω(t) \X)

5 Sample X from P (X|ω(t) \X)
6 if X ∈Q then
7 for each fj inM do
8 Update the importance weight Q(t)

j (X)

9 for each qi ∈Q do
10 Explain qi as a ranked list of formulas f1 . . . fk based on importance weights in

Q(qi)

non-query atoms, and every query atom occurs in an independent subset of ground formulas in

the MLN, we can derive the importance weights directly from the specified evidence. However,

in cases where the evidence does not cover all the ground atoms, or more than one query atom

occurs in a ground formula, we cannot infer its importance without sampling the possible worlds.

Note that in general, instead of using Gibbs sampling to generate the possible worlds, we can use

Marginal-MAP inference to sum-out the unknown atoms, and then derive the explanations using

the evidence. However, marginal-MAP is considerably more expensive [81]. Another strategy is to

use the MAP assignment for the unknown atoms. However, this is problematic when we have a sig-

nificant number of unknown atoms, and if the distribution is multi-modal since, we are essentially

considering a single world. A third strategy is to use belief propagation. However, the unknown

atoms is again problematic in this case since we need to sum out those atoms to derive the belief

propagation messages, and for large number of unknown atoms, this can be extremely expensive.

Thus, our sampling strategy allows us to estimate the importance weights in a computationally

feasible manner.

Algorithm 2 summarizes our approach. First, we initialize all non-evidence atoms in the

MLN randomly. In each iteration, we select a non-evidence atom uniformly at random, and com-

42

(a) Spam (b) Sentiment

Figure 4.2: Explanations generated by our approach. (a) shows the explanations for the spam
prediction application and (b) shows the explanation for the sentiment prediction.

pute the conditional distribution for that atom given the state of all other atoms. Based on this

conditional probability, we sample a new assignment for the sampled atom. If the sampled atom

is a query atom, for each formula, we compute its importance weight for that query in the cur-

rent word using Eq. (4.5). We update the importance weight using Eq. (4.5). Once the marginal

probabilities in the Gibbs sampler converge, we finally compute a explanation for the marginal

probability obtained for each query atom by ranking the formulas in descending order of the im-

portance weights specific to that query.

4.3 Experiments

Our main goal is to evaluate if the explanations output by our approach helps a user understand

the “black-box” that is giving this particular explanation. To do this, we designed a comprehensive

user study consisting of bout 60 participants. We compared our approach with the explanations

given by LIME, an open-source state-of-the-art explanation system. We perform our evaluation

using two real-world tasks on a Yelp dataset [64]. We sampled 1000 reviews from this dataset for

our experiments. In the first task, we design an MLN that performs joint inference to predict if a

review is filtered as a spam review or not by Yelp. In the second task, we predict if a review has

positive or negative sentiment based on the review content. We first describe our user study setup

and then present the details of our applications along with the results.

43

4.3.1 User Study Setup

Our user study group consisted of students who have varying backgrounds in Machine learning.

The participants were either enrolled in the Machine learning course at University of Memphis

or part of the Machine learning club. The participants included undergraduate students, Master’s

students as well as Ph.D. students. All of them understand classification algorithms and the basics

of Machine learning. A few participants were advanced researchers in related areas including

Natural Language Processing, computer vision, etc. We divided the participants into two groups,

and sent the survey that had the explanations generated by LIME to one group and the explanations

generated using our approach to the other group. There were 10 questions in each survey. The first

5 questions asked the participants to rank the explanations on a scale of 1 - 5. The next three

questions were used to measure three dimensions of the explanation as follows.

1. Q6: Did the explanations increase your understanding of how the classifier is detecting

ratings of reviews?

2. Q7: Did the explanations increase your trust in the classifier?

3. Q8: Based on the above explanations, will you be able to apply this knowledge to predict

spam (or sentiment) given a set of new reviews?

Each of the above questions had a response scale of 1 - 5, with 5 being the best score.

Finally, we summarized the overall explanation quality by asking participants if they would have

liked the classifier to give them more explanations, less explanations or if they felt the explanations

provided by the classifier was just right. We also allowed users to enter other comments in free

text format.

4.3.2 Application 1: Review Spam Filter

Detecting filtered reviews is a challenging problem. Specifically, unlike say email spam, spam re-

views look a lot more authentic since it is designed to influence a user for/against a product/service

44

1 2 3 4 5

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

LIME

Our Approach

(a)

1 2 3 4 5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

LIME

Our Approach

(b)

Figure 4.3: Comparison of LIME and our approach using explanation scores as rated by the
users. (a) shows this for the spam prediction application and (b) for the sentiment prediction. In
each case, we show the % of users who have given a specific score for an explanation, averaged
across all the explanations.

in an open forum. This task more generally called opinion spam has a large body of prior work

starting with work by Jindal and Liu [33]. In this case, we develop an MLN that encodes knowledge

for detecting spam, and then perform inference on the MLN while generating the explanations.

Our MLN contains formulas that connect words to predicate that indicates whether they

are spam Word(+w, r)⇒ Spam(r). We then add relational information into the MLN. Specifically,

given two reviews about the same restaurant, the spammer and non-spammer provide ratings that

are opposite of each other. For e.g., a spammer provides a positive or high rating, while a non-

spammer provides a negative or low rating. Naturally, this is not always true and is therefore a soft

formula in the MLN. Finally, we add knowledge that if given two reviews by the same person, if

one of them is predicted spam, the other one is likely to be spam as well. In this MLN, note that

the evidence variables are the words, we consider the ratings as unknown variables and the query

variables are the atoms of predicate Spam. Since ratings are unknown, this is a joint inference

problem where we infer the rating of a review jointly with inferring if the review is spam or not.

We therefore add formulas connecting words with the rating. We learn the MLN by initializing

it with weights that we obtain from an SVM [17]. Specifically, we learn an SVM for predicting

ratings from the review text, as well as one for predicting if a review is spam/not. Using the

coefficients of the MLN, we set initial weights to formulas [17] such as Word(+w, r)⇒ Spam(r),

and then use Tuffy [58] to learn the weights of the MLN. The five fold cross validation F1-score

45

using MLNs for this task was around 0.7. We perform inference and generate explanations for the

queries. We picked a small sample of query explanations to conduct the user survey.

Once we perform inference and obtain the importance weights of the formulas, we ranked

them, and converted the formula into English to generate the human-readable explanation. We

presented the user with this explanation as well as the importance weights (normalized) for the

5 most important formulas. An example of the explanation generated is shown in Fig. 4.2 (a).

The users could look at the original review and rate the explanation for that review. For LIME,

we provided the input which is the review content and since LIME does not explain relational

information, it uses the non-relational features (words/phrases) to come up with its explanation

using SVMs as the base classifier.

The comparison of the user response scores for the explanations is shown in Fig. 4.3. As

seen here, on average, across the reviews in the survey, a larger percentage of users gave our expla-

nations higher scores as compared to the explanation generated by LIME. On the other hand, a large

percentage of users rated LIME explanations around the halfway mark (score 3). Further, when we

analyze the responses over the three explanation dimensions as shown in Fig. 4.4 (a), we see that

our approach was favored by participants in all three dimensions. Particularly, the dimensions of

understanding the classifier and being able to use the knowledge in the explanation scored much

higher. This shows that including higher-level relational knowledge in the explanations makes the

explanations richer and more appealing to humans.

4.3.3 Application 2: Review Sentiment Prediction

In this application, we predict if a review has has a positive or negative sentiment based on the

words in that review. Specifically, we have MLN formulas that connect words in the review to the

sentiment. However, we assume incomplete evidence. That is, we remove a small set of words

from the review and therefore, their state is unknown. The inference task is to jointly infer the state

of the hidden words along with predicting if it is a positive or negative sentiment review. To do

this, we add relational knowledge to the MLN. Specifically, we encode MLN formulas that a user

46

Q
6

Q
7

Q
8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

LIME

Our Approach

(a) Spam

Q
6

Q
7

Q
8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

LIME

Our Approach

(b) Sentiment

Figure 4.4: Comparison for the average scores given by users for 3 key dimensions related to the
explanations. Q6 measures understanding of the classifier, Q7 the trust in the classifier and Q8
if they can replicate the classifier based on the explanation. Higher scores are better. (a) shows
results for spam prediction and (b) shows results for sentiment prediction

is likely to use the same words to describe a positive or negative rating. Thus, we can use words

from other reviews written by the same user to predict the sentiment of a review. We learn the

MLN using a similar procedure as described in the previous section. Our five-fold cross validation

accuracy here was around 0.9.

In this case, we generate explanations in terms of word formulas only. Specifically, for each

review, we explain its predicted sentiment as a set of words (and their corresponding importance

weights). Note that these words can contain missing words (inferred to be true) as well as words

known to be true (due to evidence). Thus, LIME and our approach generates the same form of

explanations (words and weights) as shown in Fig 4.2 (b). However, since we can infer the states

of hidden words, our explanation is richer than that generated by LIME. Fig. 4.3 (b) shows the

comparison of the explanation scores for LIME and our approach. Here, we see a very similar trend

to the results for the spam prediction application. Specifically, most users though that our approach

yields very good applications, while LIME explanations was considered average. Further, Fig. 4.4

(b) illustrates that our approach was significantly better in terms of helping users understand, trust

and apply the prediction method. This shows that using relational knowledge can yield a more

comprehensive explanation (in the presence of noisy/unknown variables).

47

(a) Our Approach (Spam) (b) Our Approach (Sentiment)

(c) LIME (Spam) (d) LIME (Sentiment)

Figure 4.5: Comparison of user responses for .the question that summarizes the effectiveness of
explanations. (a) and (b) show this for spam prediction and sentiment prediction using our ap-
proach, and (c), (d) show the responses for LIME.

4.3.4 T-Test

We use the T-Test to compare the means of the two user groups (those who evaluated LIME and

our approach). The null hypothesis for the t-test is that there is no difference between the means

of the two groups. In our case, it will mean that our explanation is no better or worse than the

lime explanation. The alternate hypothesis is that the means of the two groups are not the same,

in which case it will mean that our explanation is either better or worse than the lime explanation.

We performed the t-test on the responses to the summary question regarding the quality of the

explanations. We coded these as follows. i) rating for lime explanation (coded as group 1) ii)

rating for our explanation (coded as group 2). The response options are, i) would like to see more

explanation (coded as 1) ii) would like to see less explanation (coded as 2) and iii) Right amount

of explanation (coded as 3). The coding is based on the desirability of the response. We assumed

48

the best case is the right amount of explanation and therefore coded this as the highest. Then, we

assumed that requiring less amount of information is worse than right amount of information, and

is therefore coded as 2. Finally, we assumed that a user requiring more amount of information

is the worst case (coded as 1) because our main motivation is to make the explanation human-

interpretable. Thus, according to our coding, the higher mean will be considered better because we

coded the right amount of information as the highest. We obtained p = 0.03 (< 0.05). Therefore,

the difference in explanations provided by our approach is statistically significant. Thus, we can

reject the null hypothesis and our explanation is at least better or worse than LIME explanation.

The mean and standard deviations of the two approaches (based on the coding) is as fol-

lows. LIME explanation has a mean of 1.63 and a standard deviation of 0.95. The explanations

based on our approach has a mean of 2.22 and a standard deviation of 0.87. Therefore, our ex-

planations are clearly preferred by the users as compared to the explanations given by LIME. The

full breakdown of the responses is shown in Fig. 4.5. As seen here, in each of the two tasks, users

considered our explanations to be better than LIME. Interestingly, even in the case where the type

of explanations was identical (words explaining the ratings), LIME produced worse results than

our approach (see Fig. 4.5 (b) and (d)) which takes advantage of relational dependencies across

different reviews.

4.4 Summary

Explanations of predictions made by machine learning algorithms is critical in several application

domains. In general, MLNs are interpretable models models but it is challenging to explain re-

sults obtained from inference over MLNs. In this chapter, we presented an approach where we

explain the results of relational inference in MLNs as a ranked list of formulas that encode their

influence on the inference results. Specifically, we compute the importance weights of the MLN

formulas based on how much they influence the transition probabilities of a Gibbs sampler that

performs inference in the MLN. The importance function is specific to the query and changes as

we vary the evidence. We conducted a comprehensive user study to evaluate the effectiveness of

49

our explanations and compared our explanations with LIME, a state-of-the-art explanation method

for non-relational data. We explained the results of two real-world prediction problems, namely,

predicting spam reviews and predicting sentiment of a review from text. On both these problems,

we showed that the explanations generated by our approach was much more human-interpretable

as compared to the explanations generated by LIME.

Never-the-less, still it is challenging issue to extract the reliable explanations from MLNs

when its size increases significantly. Further, it is required to make the explanations rich and more

comprehensive to users. We have developed a novel approach to address these issues in the next

chapter.

50

Chapter 5

Interpretable Explanations for Probabilistic Inference in Markov Logic

In this chapter, we develop an approach for human-interpretable explanations in statistical rela-

tional models (SRMs). Specifically, we explain probabilistic inference in Markov Logic Networks

(MLNs) [15], a widely used SRM.

MLNs are a symbolic AI model that represent uncertain relational knowledge using weighted

first-order logic formulas. The MLN represents a joint distribution as a probabilistic graphical

model, where each potential in the graphical model corresponds to a symbolic formula in the

MLN. Thus, a natural approach to explain inference in MLNs is to quantify the influence of for-

mulas in the overall joint distribution. However, weights attached to the formulas do not have

a direct probabilistic interpretation. Therefore, explaining the influence of individual formulas

in probabilistic inference is not straightforward. To do this exactly, it turns out that we need to

compute the partition function of the distribution which is computationally infeasible in practice.

To explain inference in MLNs, we formalize explanations as expected values of formula

states. We can then estimate these expectations from samples drawn from the distribution of the

MLN using approaches such as Markov Chain Monte Carlo. However, while this approach yields

sound explanations, in practice, explaining large MLNs is a hard problem. Specifically, the un-

derlying probabilistic model becomes very large and well-known sampling methods such as Gibbs

sampling have poor mixing properties in such large MLNs [74]. Consequently, explanations de-

rived from a poorly mixed sampler tend to produce results that have poor interpretability. Note

that this is analogous to explanations in non-relational classifiers as well, where complex deci-

sion boundaries are less explainable. Therefore, well-known approaches such as LIME [66] and

51

SHAP [48] provide explanations by approximating complex decision boundaries with simpler,

surrogate models. In a similar spirit, here, we derive explanations from an approximate MLN that

improves the interpretability of the explanation. Specifically, we construct coalitions of formu-

las where a coalition tries to maintain the relational structure present in the original MLN. To do

this, we leverage symmetries in the MLN, i.e., variables that have similar relational structure to

other variables in the MLN. We derive coalitions with a reduced number of variables by sampling

from groups of (approximately) symmetric variables in the MLN. We then explain probabilistic

inference outcomes in the coalitions.

However, once we have multiple explanations from different coalitions, it turns out that

combining these explanations is challenging in our case since it is hard to weight the explanations.

Ideally, the weights should encode the distance between the coalition to the true distribution, i.e.,

give closer approximations of the MLN a larger weight in the overall explanation. However, com-

puting the true distribution in our case is intractable. Therefore, we develop a weighting method

that penalizes explanations where the influence of formulas significantly deviates from the MLN

parameterization. That is, if the ranking of formulas in the explanation tend to match the rankings

based on the MLN weights, then the explanation is more consistent with the MLN parameteri-

zation and therefore is given a larger weight. We integrate the explanations by combining the

weighted ranking orders in each explanation. Specifically, the optimal global explanation is one

that maintains the weighted ranking order in explanations over all coalitions. We use a sampling

based approach [42] to solve this hard combinatorial problem that converges to the optimal ranking

asymptotically.

We show through experiments using annotated explanations that our approach can focus on

relevant explanations better than other approaches such as LIME, SHAP or relational explainers

that generate explanations using the full MLN distribution [16]. Further, we also conduct a user

study to evaluate the effectiveness of our explanations from a human user perspective.

52

5.1 Related Work

Guidotti et al. [25] survey different explanation approaches in Machine learning and organize them

as outcome explanation methods or model explanation methods. Outcome explanations are used

for “black-box” classifiers that are complex to explain. A common theme here is to explain the

black-box classifier with a simpler model. LIME [68] explains an instance by perturbing it and

learning a local, simple decision boundary to classify the perturbed instances. SHAP [47] generates

coalitions of features and quantifies the influence of a feature by minimizing the loss between

a simple classifier on the coalitions and the original model. Koh and Liang [37] use influence

functions from robust statistics to measure the change in training parameters due to a small change

in the data. Fong and Veladi [18] use interpretable image perturbations to recognize salient image

features. Suderrajan et al. [87] developed integrated gradients as an approach to explain deep

networks more generally. More recently, Shao et al. [80] developed an approach using influence

functions to correct the model during training such that it gives better quality explanations.

In symbolic AI models, Darwiche and Hirth [10] developed a formal framework for ex-

plaining classifier decisions using ordered binary decision diagrams compiled from a Bayesian

network. Shih et al. [82] explained Bayesian networks by compiling them into decision trees. Roy

et al. [72] developed explanations for activity recognition in videos using tractable probabilistic

models with inputs from deep learning methods. Farabi et al. [16] explained MLN formulas but

unlike our approach they generate explanations using the full MLN which can be non-interpretable

if the MLNs represent large, complex distributions. More recently, Broeck et al. [4] analyzed the

complexity of SHAP and showed that it is intractable even for simple distributions.

5.2 Interpretable Explanations

We motivate our approach with a simple example. Consider an MLN with three formulas, Smokes(x)

⇒ Asthma(x); Smokes(y) ∧ Friends(x, y)⇒ Asthma(x) and Smokes(x)⇒ Smokes(x). Gener-

ally speaking, the first formula is a good explanation for an individual having asthma. However,

53

for an individual, say Alice who does not smoke, Asthma(Alice) is explainable if a lot of Alice’s

friends are smokers. Thus, the relational dependencies between Alice and other individuals is an

effective explainer for Alice having asthma. However, suppose Alice is friends with a large num-

ber of individuals, it becomes harder to quantify the influence of each of these individuals since

their smoking habits depend upon other individuals who are friends with them. In general, as the

domain (number of individuals or objects) become larger, the probabilistic graphical model under-

lying the MLN becomes complex and extracting the important dependencies for a specific query

becomes harder.

A common strategy that is used in well-known explanation methods for black-box classi-

fiers is to estimate the hard-to-interpret black-box classifier boundary using simpler surrogate func-

tions. For instance, SHAP creates feature coalitions that combines subsets of features and learns

a surrogate model from these coalitions from which the explanation is derived. Similarly, LIME

perturbs instances in the neighborhood of the predicted instance and learns a surrogate model for

explaining the classification of the perturbed instances in the local-neighborhood. Following the

same principle, here, we simplify the MLN creating smaller coalitions of formulas. We rank the

importance of formulas within each coalition and then combine these explanations together. Since

each of the explanations are extracted from a simpler MLN, the inference results on the model are

more reliable and the explanations for the inference results are likely to be more interpretable.

5.2.1 Explanation Framework

To formalize our explanation framework, we begin with some notation. LetM represent the MLN

and PM represent the distribution of the MLN. Let f(Q) represent the set of ground formulas

containing the query atom Q and let E represent the set of evidence atoms. Note that here, we

assume that each atom is either an evidence or a query atom. Let wf represent the weight of a

ground formula f (note that all groundings of a first-order formula share the same weight in the

regular MLN semantics).

Definition 1. The explanation for query Q inM with evidence E is denoted by σ(Q) is a permu-

54

tation π over f(Q).

Given an importance weighting function I(), where I(f,Q) indicates the importance of

ground formula f on determining the probability of the query P (Q), a sound explanation is defined

as follows.

Definition 2. σ(Q) is a sound explanation if π orders fi ∈ f(Q) such that I(fπi , Q)≥ I(fπi+1
, Q).

In the remainder of the chapter, when we refer to an explanation given an importance

function, we assume that it is a sound explanation. To define I(), an intuitive approach is to directly

use the MLN parameters. Specifically, I(f,Q) = wf , where wf is the weight of f . However, this

simple approach is problematic since the importance of a formula changes dynamically based on

the observed variables E. For example, let Fever(x) ⇒ Flu(x) have a larger weight compared

to Cough(x)⇒ Flu(x). However, given evidence that an individual has cough and not fever, we

can explain that the individual has flu using the second formula. Similarly for a different query,

the first formula may be more important than the second. Thus, the underlying problem with

assuming that the MLN weights determine the importance of a formula is that the parameters do

not correspond to probabilities. For the explanation to be meaningful, given evidence E, I() should

encode the influence of a formula on the conditional probability P (Q1, . . . Qn|E), (note that we

drop the subscriptM from the distribution to make it more readable) where Q1, . . . Qn represent

the query atoms. We define this as follows.

Definition 3. Let E[nf] be the expected truth value of formula f w.r.t the joint conditional distri-

bution P (Q1, . . . Qn|E) and EQ[nf] be the expected truth value of f w.r.t the marginal distribution

of Q, i.e., P (Q|E), we define the importance weight of formula f for a query Q as

I(f,Q) = EQ[nf]− E[nf] (5.1)

Intuitively, using the above definition, I(f,Q) has a larger value if f is true in more worlds

where Q is also true and false in more worlds where Q is false. More specifically, we relate the

importance I(f,Q) to the partial derivative of the marginal probability w.r.t to the weight of f .

55

Proposition 2. I(f,Q) = ∂ log(P (Q|E))
∂wf

|.

Proof. Let Q−Q represent all the query atoms other than Q. The log marginal probability is com-

puted by summing out all the query atoms in Q−Q. Therefore we have,

P (Q|E) =
∑

Q′∈Q−Q

1

Z
exp(

∑
f

wfnf) (5.2)

logP (Q|E) = log
∑

Q′∈Q−Q

exp(
∑
f

wfnf)− log(Z) (5.3)

(5.4)

Z is the normalization constant given by

∑
Q,Q′∈Q−Q

exp(
∑
f

wfnf)

.

Let,

Z ′ =
∑

Q′∈Q−Q

exp(
∑
f

wfnf)

Taking partial derivatives, we have,

∂logP (Q|E)

∂wf
=

1

Z ′
∂Z ′

∂wf
− 1

Z

∂Z

∂wf

Simplifying the terms, we get,

∑
Q′∈Q−Q

P (Q,Q′|E)nf −
∑

Q̄,Q′∈Q−Q

P (Q̄, Q′|E)nf

where Q̄ denotes a possible assignment to Q. Thus, we have,

∂logP (Q|E)

∂wf
= EQ[nf]− E[nf]

56

Thus, from the above theorem, the importance I(f,Q) is proportional to the influence of f

on P (Q|E). Note that the importance of a formula is dynamic (as compared to the MLN weight)

since it depends on the query as well as the evidence.

5.2.2 Sampling-based Importance Estimation

From Eq. (5.1), to compute I(f,Q), we need to compute expectations w.r.t P (Q|E) and P (Q1, . . . Qn|E).

Therefore, computing I(f,Q) is computationally infeasible since computing the expectations is

equivalent to solving the marginal inference problem which is well-known to be in #P . There-

fore, we use a sampling-based approach to approximate I(f,Q).

Specifically, we use Gibbs sampling (though in theory other samplers can be utilized) due

to its efficiency to estimate I(f,Q). Specifically, we generate samples from the distribution and

approximate the expected values EQ[nf] and E[nf]. To implement this, we start with a random

configuration of Q. In each iteration, we sample a random queryQ from its conditional distribution

P (Q|Q−Q). If the sampled value is Q = 1 (or True), then for all True formulas that contain Q,

we update the estimate for EQ[nf] and for all True formulas, we update the estimate for E[nf].

Algorithm 1 summarizes our sampling-based approach for explanations. Based on the

convergence of the probabilities for the Gibbs sampler in Algorithm 1, clearly, the expected values

in Eq. (5.1) converge to the true expected values. Therefore, as T →∞, Ī(f,Q)→ I(f,Q).

5.2.3 Influence of Domain-Size

The mixing time of the Gibbs sampler in Algorithm 1 is the time that the sampler takes to reach

the stationary distribution, namely, the distribution PM. I(f,Q) is estimated from samples after

the sampler reaches its stationary distribution, i.e., after a period called its burn-in time. If I(f,Q)

is estimated from samples before burn-in, the explanations will be unreliable since they are not

consistent with the distribution represented by the MLN. However, the main issue is that for large

57

Algorithm 3: Explanations
Input: MLNM, evidence E, queries Q
Output: Explanations for Q
//

1 Q̄ = random assignment to Q
2 for t = 1 to T do
3 for Each atom Q ∈Q do
4 Sample Q from P (Q|Q−Q,E) and update Q̄
5 for each f containing Q do

// update sufficient statistics for E[nf]
6 Update the count n1(f,Q) if f is true

// update sufficient statistics for EQ[nf]
7 if Q is sampled as true then
8 Update the count for n2(f,Q) if f is true

9 for each Q in Q do
10 for each f containing Q do
11 Ī(f,Q) = 1

t n2(f,Q) − n1(f,Q)

MLNs, the mixing time can be extremely large and consequently, the explanations generated from

the samples are likely to be of non-interpretable.

Intuitively, when the MLN structure is more complex, the distribution becomes harder to

sample and explain. This can be formalized by results in Sa et al. [74]. Specifically, the mixing

time depends upon the total influence in the MLN distribution. To define this, let Bj denote the

set of all pairs of states (X̄ , Ȳ). Each each state is an assignment to all atoms, and each pair (X̄ ,

Ȳ) ∈ Bj differ in an assignment to a single variable j. The total influence is the maximum total

variational distance between distributions obtained by conditioning an atom on the assignments in

the pairs defined in Bj . Formally,

α = max
V ∈M

∑
j

max
(X̄,Ȳ)∈Bj

||P (V |X̄−V)− P (V |Ȳ−V)||TV (5.5)

where P (V |X̄−V) is the conditional distribution of an atom V ∈M given assignments to

all the other atoms.

For larger values of α in Eq.(5.5), in [74] it is shown that the Gibbs sampler takes longer

58

to mix. Thus, using Algorithm 1, it becomes harder to generate meaningful explanations. Specifi-

cally, in our case, the difference between P (V |X̄−V) and P (V |Ȳ−V) is dependent upon the influ-

ence of a single atom. Specifically, if the change to an atom’s assignment modifies the truth values

of several ground formulas, then the total variational distance in Eq. (5.5) increases.

Formally, let C(f,R) represent the variables in formula f that are part of predicate R. Let

C(f,R)− represent variables in formula f that are not part of predicate R. Let (X̄ , Ȳ) ∈ Bj and j

denote an atom of predicate type R. For any atom V , the variational distance between P (V |X̄−V)

and P (V |Ȳ−V) is proportional to the number of groundings of f whose truth value (either 0/1)

differ in the two distributions. The atom j occurs in
∏

v′∈C(f,R)− |∆v′| ground formulas, where ∆v′

is the domain of variable v′. Therefore, a change to the state of j can potentially change the truth

value of all these ground formulas. Thus, as the domains of the variables increase, the variational

distance between the state pairs in Bj increases and the total influence becomes larger. Algorithm

1 therefore generates non-interpretable explanations in MLNs with large domains. To generate

interpretable explanations, we simplify the MLN such that the total influence in the simplified

MLN is smaller than that in the original MLN.

5.2.4 Relational Coalitions

To reduce the total influence, we create coalitions of ground formulas that are much smaller than

the full MLN. On such coalitions, the sampler in Algorithm 1 mixes faster and is more likely

to generate interpretable explanations. In principle, this approach is similar to LIME and SHAP

where the original classifier is approximated by a simpler, more explainable classifier. One way

to generate coalitions is to sample ground formulas in f(Q) randomly for each query Q. However,

since the MLN is a relational model a randomly sampled coalition may not preserve the relational

dependencies present in the original MLN. To illustrate this, consider the graph underlying an MLN

shown in Fig. 5.1.Suppose we randomly sample this graph, we may end up with coalitions shown

in Fig. 5.1 (b). However, this does not truly capture all dependencies in the original graph. Instead,

if we sample the graph to obtain coalitions shown in Fig. 5.1 (c), though this model is simpler,

59

we still retain the dependencies specified in the original graph. More generally, by exploiting

symmetries in the MLN, we create coalitions that preserve relational dependencies.

Definition 4. Given evidence E, X1 and X2 are exchangeable objects if X1 and X2 can be ex-

changed in the ground formulas such that the formulas which were satisfied (or unsatisfied) by E

before the exchange remain satisfied (or unsatisfied) after the exchange.

Two coalitions L1 and L2 are symmetric if for every formula in L1 can be uniquely mapped

to a formula in L2 such that the objects in L1 are exchangeable with objects in L2. For example,

the coalition, R(X1) ∧ S(X1, Y1); R(X1) ∧ S(X1, Y 2) is symmetric to R(X2) ∧ S(X2, Y1); R(X2)

∧ S(X2, Y 2) if X1 is exchangeable with X2. Suppose we are given equivalent coalitions, L1 and

L2, where a ground formula where f ∈ L1 is mapped to f ′ ∈ L2, then, if f is an explanation to a

query w.r.t L1, we project f ′ as the explanation to Q w.r.t L2.

While truly exchangeable objects may be rare in practice, we can soften the constraints in

our definition to allow for approximately exchangeable objects. Specifically, we define a continu-

ous approximation for the exchangeability between X1 and X2, δ(X1, X2) based on the number of

ground formulas whose assignments differ before and after the exchange of X1 and X2. However,

computing this for large MLNs is hard and it is shown in prior work [95] that counting the satisfied

groundings of a formula given evidence is a computationally hard problem. Therefore, it is infea-

sible to exactly compute δ(X1, X2). However, we instead leverage scalable learning methods to

learn a dense vector representation that approximately encodes how similar X1 is to X2. Specifi-

cally, as in [29], we learn embeddings over objects in the MLN using an approach commonly used

in word embedding methods. Specifically, suppose a ground formula f that is satisfied by the evi-

dence contains objects (X1 . . . Xk), we predict Xi from X1 . . . Xi−1, Xi+1 . . . Xk. Thus, if X and

X ′ are predicted from similar objects (or have the same context), this means that X and X ′ can be

exchanged without significantly altering the truth values of the formulas in which they occur. To

learn the embedding, we use existing implementations of skip-gram models [51]. Note that several

other graph-based methods such such as those computing automorphisms in the MLN graphs to

recognize symmetries [5, 56], locality-sensitive hashing [55], etc. can be used as well. However, it

60

S1 P1

K1 K2 K3

S2 P2

(a)

S1 P1

K1 K3

S2 P2

(b)

K1 K2 K3

S2 P2

(c)

Figure 5.1: (a) Original MLN Graph. (b) Simplification by random sampling. (c) Simplification
that preserves relational structure.

is easy to see that, to compute the embedding in our case, we do not explicitly construct the MLN

graph which can be very large, and therefore we can scale up even to large MLNs.

Given the embeddings, we cluster the objects to generate coalitions such that for a query,

we choose formulas in the coalition that can effectively substitute for formulas that are not chosen

in the coalition.

Definition 5. Given a clustering of objects based on their embeddings, if f is a formula with

objects (O1 . . . Ok), θ(f) is an approximately symmetric formula where each Oi is substituted by

O′i that is in the same cluster as Oi.

We construct a coalition by selecting formulas based on a clustering of objects. Specifically,

we sample objects from each cluster such that the number of objects sampled is proportional to

the cluster size. Let O = O1 . . . Om be the sampled objects. For every query atom that can be

formed from the sampled objects, say Q, we construct the coalition f ′(Q) as follows. Initially, we

start with an empty f ′(Q). For each ground formula f that contains Q, we include f in f ′(Q) if we

cannot find θ(f) ∈ f ′(Q). Thus, we reduce the original set of formulas f(Q) to f ′(Q) such that for

f ∈ f(Q) \ f ′(Q), there exists a θ(f) ∈ f ′(Q). This means that, suppose the optimal explanation

forQ is a ground formula f , then the coalition can potentially generate f or θ(f) as its explanation.

5.2.5 Integrating Multiple Explanations

By combining coalitions across all sampled queries, we generate an MLN and jointly explain all

the sampled queries using Algorithm 1. However, note that since the embeddings and the clustering

61

is approximate, using a single coalition, we may not obtain the formulas needed to explain a query

effectively. Therefore, we generate multiple coalitions and explain each independently. We then

integrate the explanations generated across all the coalitions.

Let σi(Q) represent the explanation obtained for query Q using Mi which is the MLN

generated in the i-th iteration of sampling the clusters. Note that since we are sampling the clusters,

not every query will be a part of each of the generated MLNs. Therefore, if a queryQ 6∈Mi we can

generate an explanation for Q using Q′ ∈ Mi that is in the neighborhood of Q in the embedding

assuming that the two explanations are symmetric. Specifically, if f is a formula in the explanation

for Q′, we explain Q with a substitution θ(f) that contains Q.

Given explanations σ1(Q) . . . σm(Q), where each explanation is from a coalition that tries

to cover the full relational structure of the MLN, we now generate a unified explanation for Q.

Specifically, we want to know the influence of a formula f on a query across the coalitions. In

the case of non-relational models, note that predictions are typically easy to perform. Therefore,

for each coalition, it is relatively simple to optimize the loss between the prediction by the original

model for that coalition instance with the predication made by the approximate, simpler model (e.g.

a linear model) to derive the final explanation across coalitions. However, in the case of relational

models, inference is hard and therefore, we cannot assume that we can perform inference in the

original model in the first place. That is, generating results based on the full MLN is a hard

problem when the MLN is large even using approximate inference methods.Therefore, instead

of optimizing the loss between inference results from the original MLN with inference results

from the coalitions, we derive weighted explanations, where the weight approximately encodes the

difference between the original MLN and the simpler MLN. The weighted explanations are then

combined into a unified global explanation for the model.

Coalition Weighting

Let βi denote the weight for the explanations derived from Mi. Note that, ideally, we want to

weight σi(Q) based on the distance betweenMi andM. However, this is infeasible since the exact

62

distribution ofM is intractable to compute. Therefore, we instead weight each coalition based on

how the importance weights computed from the coalition match with the MLN parameterization.

Influence functions proposed in [37] use a similar approach where the change in model parameters

relative to perturbed parameters is used as a way to quantify the effect of the perturbation.

Formally, let M be the original MLN and Mi be the MLN that was generated from the

coalitions. Let w be the weights (or parameters) ofM and let w∗i be the optimal parameterization

forMi. This means, if w∗i was used to parameterizeMi, then the importance weights for expla-

nations from the MLN would ideally match with its formula weights. Suppose we are explaining

query Qj usingMi, we compute the importance weights according to Eq. (5.1). In Proposition 1,

we show that the importance weights computed for Qj is equivalent to the gradient vector for the

likelihood function ofQj . Suppose this gradient has a large norm, this means that to the importance

weights are significantly different from the weights w. That is a large gradient norm implies that w

must be significantly changed to reach w∗i . Thus, the explanations generated byMi have a larger

bias and should therefore be weighted down relative to the other generated simple MLNs. On the

other hand, if the importance weights imply a small gradient norm, then the difference between w

and w∗i is small.

In general, we can now weight the coalitions based on the importance weights of the for-

mulas generated while explaining the queries in the coalition. That is, if the importance weights of

the formulas show a large variation over all the queries, then those coalitions will have a smaller

weight compared to coalitions where the importance weights have small variation over all the

queries. Specifically, let Ii represent the matrix of importance weights obtained fromMi, where

the j-th row corresponds to weights for query Qj . Let zi = ||Ii||F , where ||Ii||F denotes the Frobe-

nius norm for the weight matrix. Let Z̄ =
∑

i zi. We weight the explanations fromMi with βi =

1− zi
Z̄

.

63

Unified Explanation Ranking

Let S(Q) = ∪i σi(Q), i.e., the union of explanations from all MLNs. To make equations more

readable, we drop the Q since it is implicit that explanations are specific to a query. Let τ represent

an ordered (or ranked) subset of k explanations, i.e., τ ⊂ S. We now define a distance function

between τ and each of the explanations, where the explanation forMi is weighted by βi as,

Φ(τ) =
∑
i

βid(τ, σi) (5.6)

d(τ, σi) =
∑
t∈τ∪σi

|Ri(t)−Rτ (t)|

where Ri(t) is t’s ranking in σi and Rτ (t) is its ranking in τ . Note that if t is not in τ , we

set Rτ (t) to the maximum value k + 1, and similarly if t is not in σi, we set Ri(t) to k + 1. We

formulate the optimal explanation as,

τ ∗ = arg min
τ

Φ(τ)

Solving the optimization problem for τ ∗ exactly is computationally hard since we need to

enumerate all possible subsets of size k. Therefore, we use an approximate approach to combine

the weighted explanations using the Cross-Entropy Monte Carlo (CEMC) [42] algorithm. Specif-

ically, let v be a n × k probability matrix, where n is the total number of formulas in the union

of all explanations and k is the size of the global explanation that we seek to find. Each column

in v represents a multinomial distribution over the formulas. To obtain a global explanation, we

can draw a sample from the distribution Pv to generate x such that each column in x has exactly a

single 1 and each row sums to at most 1. Given that v is the current set of parameters, in [42], it is

shown that new parameters v′ that minimizes the KL-divergence between the current probability

distribution and the ideal distribution is given by maximizing,

64

Ev[I(Φ(f(x,v)) ≤ y)logPv′(x)]

where I is an indicator function and f(x,v) denotes a τ that has been drawn from Pv. To

do this, we draw samples from Pv and count the proportion of samples for which the objective

function value is smaller than a given y. Specifically,

vnew =

∑N
i=1 I(Φ(τi) ≤ y)xi∑N
i=1 I(Φ(τi) ≤ y)

(5.7)

CEMC learns an approximation for the optimal global explanation as follows. We initialize

the probability matrix vo as a uniform distribution for each column. In each iteration, we consider

N samples, where each sample is a possible explanation. Half the samples are drawn from vi

and we augment it with half of the best samples (best objective function values) from vi−1. We

then order the explanations in ascending order of their objective values computed using Eq. (5.6).

Suppose Φ1 . . . ΦN are the ordered objective values for the explanations, we choose y to be the ρ-

quantile (for a suitable rho) objective value. Using this, we obtain the updated vi+1 from Eq. (5.7).

After the parameters in the probability matrix converge, we output the final explanation as the one

that corresponds to the best objective function value, i.e., y = Φ1. CEMC produces explanations

that are asymptotically unbiased. That is, suppose the values of Φ1 is the sequence y1, y2 . . ., this

converges to the optimal objective value y∗ at y∞.

5.3 Experiments

We evaluate our approach along three dimensions, i) we evaluate accuracy of explanations based on

manual annotations, ii) we evaluate the importance of information present within the explanations

and iii) we evaluate the usability of explanations through a user-study.

65

0.01 0.02 0.03 0.04 0.05
C

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ex
pl

an
at

io
n

Ac
cu

ra
cy

(a) Review

0.05 0.1 0.15 0.20 0.25
C

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ex
pl

an
at

io
n

Ac
cu

ra
cy

(b) Twitter

0.02 0.04 0.06 0.08 0.1
C

0.2

0.4

0.6

0.8

Ex
pl

an
at

io
n

Ac
cu

ra
cy

(c) Topic

0.03 0.07 0.15 0.30 0.40
S

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ex
pl

an
at

io
n

Ac
cu

ra
cy

(d) Review

0.06 0.13 0.20 0.27 0.33
S

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ex
pl

an
at

io
n

Ac
cu

ra
cy

(e) Twitter

0.06 0.12 0.18 0.25 0.37
S

0.2

0.4

0.6

0.8

Ex
pl

an
at

io
n

Ac
cu

ra
cy

(f) Topic

Figure 5.2: Comparing explanation accuracy for varying values of C ans S. The mean values for 10 runs
are plotted along with error bars that indicate Std-Dev.

5.3.1 Data and Tasks

We use three datasets in our evaluation. The first dataset is a dataset sampled from Yelp [64] for

review sentiment classification that contains 1544 reviews. Our second dataset consists of 650

COVID tweets from Kaggle. We classify whether a COVID-19 tweet contains useful information

or not. We manually annotated tweets based on whether they contain facts that can be considered

as useful information (e.g. scientific details, policies, etc.) or if the tweets are non-informative.

Our third dataset uses a portion of the well-known 20newsgroups dataset from the UCI repository.

Here, we classify articles as automative related articles or otherwise. We had a balanced dataset of

1000 articles. The MLNs in each case consist of word formulas, i.e., connecting words with the

query and relational formulas that encode homophily. That is, if two queries are linked then they

share the same class. In reviews, the links are defined by reviews written by same user and those

about the same restaurant. In the twitter and topics data, the links are defined by tweets (or topics)

written by the same user.

66

5.3.2 Implementation

We refer to our approach as I-Explain. To learn the embeddings for MLN objects, we use open

source code from [29]. We learn the MLN weights using a hybrid approach since the word formula

weights are hard to learn directly. Specifically, we initialize the word formula weights using SVM

coefficients and then learn the relational formula weights conditioned on the SVM weights as

described in [17]. We used an open source R package for CEMC (with default parameters) to

combine the coalition explanations. We applied LIME and SHAP to our tasks using the word

features. We also developed a baseline where we created coalitions by randomly sampling formulas

(denoted by R-Explain. Finally, we also compared our approach with explanations from the

complete MLN as described in [16] which we refer to as M-Explain.

We manually annotated the ground truth for the explanations. Specifically, since all our

tasks are text based, for each instance, we pick words that best explain the class. To avoid bias,

these were annotated by two people independently and the final annotation was the common ex-

planations chosen by both. Annotating relational formulas manually is hard, i.e., it is hard to judge

which relational formulas are good explanations to a query. Therefore, we use a different annota-

tion method here. Specifically, note that in all our MLNs, every relational formula connects exactly

two query atoms. Therefore, for a query Q, for each true grounding of the relational formula f

where Q occurs, we compare the similarity of Q with Q′, where Q′ is the other query that occurs

in f . We compute the document vectors for Q and Q′ (using Gensim Doc2Vec) and measure the

similarity between these vectors. If queries Q, Q′ have similar content and the relational formula

where Q and Q′ occurs is true, then, the formula is annotated as an explanation for both Q and Q′.

5.3.3 Explanation Accuracy

We compared the explanation accuracy of I-Explainwith LIME, SHAP, R-Explain and M-Explain.

We computed the accuracy as the % of matches of the generated explanations with the annotated

explanations for each dataset. For I-Explain, R-Explain and M-Explain, we used the top

5 ranked word formulas and the top 5 ranked relational formulas as the explanation. Note that for

67

Dataset Method Top-Exp-Acc (F1) Peak-Acc (F1) Std-Dev

Review Classification

I-Explain 0.82 0.84 0.01
R-Explain 0.54 0.58 0.04
M-Explain 0.6 0.68 0.01

SHAP 0.53 0.58 0.01
LIME 0.55 0.61 0.02

Tweet Classification

I-Explain 0.79 0.83 0.01
R-Explain 0.61 0.77 0.08
M-Explain 0.6 0.69 0.01

SHAP 0.33 0.44 0.01
LIME 0.46 0.54 0.01

Topic Classification

I-Explain 0.7 0.75 0.008
R-Explain 0.58 0.66 0.04
M-Explain 0.62 0.67 0.01

SHAP 0.39 0.54 0.02
LIME 0.53 0.56 0.01

Table 5.1: Prediction Accuracy (F1-score) using only the explanation (Top-Exp-Acc) and the peak accu-
racy obtained when we add the formulas (or features) in ranked order according to explanation importance
(Peak-Acc). The values shown are mean values for 10 runs and Std-Dev is the average Std-Dev of the Top-
Exp-Acc and Peak-Acc.

LIME, SHAP, we only obtain word explanations and therefore only measure accuracy on these. We

evaluated our approach by varying two parameters C and S, C controls the number of clusters and

S controls the number of samples drawn from each cluster to create the coalitions. For a domain-

size of |∆x|, we use C ∗ |∆x| clusters and if a cluster contains N instances, we use S ∗N samples

from that cluster. For R-Explain, we pick random formulas to create coalitions such that it

matches the number of formulas in I− Explain for a fair comparison. We ran the experiments 10

times and report the mean and variance of the accuracy. Our results are shown in Fig. 5.2, where we

independently show the accuracy on word explanations and relational formula explanations. For

M-Explain, LIME and SHAP, clusters don’t play any role, so their accuracy is constant. Fig. 5.2

(a), (c), (e) keeps S constant at 5%, while (b), (d), (f) keeps C constant at 2% for the review and

topic data, and 5% for twitter (since it is around half the size) and varies S. From the results, we

see that I-Explain consistently shows better accuracy than other methods. As C increases, we

have larger coalitions and the performance is fairly stable with slightly increasing accuracy but can

also dip in some cases (see Fig. 5.2 (c)). This indicates that with larger coalitions, we may have

more uncertainty (since the expected values are estimates), therefore explaining smaller coalitions

is an advantage in relational models.

68

5.3.4 Explanation Information Content

Next, we evaluate the importance of explanations based on the information that they provide to

the prediction model. This is similar to the idea in Performance Information Curves [34] that has

been recently proposed for XAI in computer vision tasks. Here, we determine the accuracy of the

model when it only uses the explanations. If explanations contain content that is more important

in the model, then, they should be able to make accurate predictions using only the explanations.

Table 1 summarizes the accuracy in terms of F1-score when we only add the explanations for

each query and use them to make predictions. Further, we also show the peak accuracy that is

achieved by the model as we add formulas (or features in the case of LIME or SHAP) in order of

explanation importance. We show the results in Table 5.1 where we indicate the mean F1-score

for the predicted queries for 10 runs as well as the standard deviation. As seen here, I-Explain

has better accuracy when we only use the explanation for the prediction. Also, the peak accuracy

is close to the accuracy using explanations in most cases which validates that explanations indeed

represent highly informative content.

5.3.5 Usability

We evaluate the usability of explanations through a user study. Our goal here is to understand

if users find the explanations useful. We recruited 50 graduate students in this study who were

currently (or formerly) enrolled in a Machine Learning course. Note that this demographic is

likely to constitute most likely XAI users since one of the key applications of XAI is to help

experts debug Machine learning methods. We divided the overall group into 3 sub-groups and a

student was given explanations from just one of the methods (which was not named) to avoid bias.

Specifically, a user given explanations from two different methods may be biased towards one that

simply shows him/her more information. To ensure sufficient responses for each method, we used

I-Explain, M-Explain and LIME (since SHAP explanations are similar in format to LIME)

in this study.

Explanation Dashboard. We present our explanations in the form of dashboard shown in Fig. 5.3.

69

(a) (b)

Figure 5.3: Explanation Dashboard and survey questions.

Extremely Useful Very Useful Somewhat Useful Not So Useful Not At All Useful
0

10

20

30

40

50

%
 o

f P
ar

tic
ip

an
ts

Review Sentiment Classification
M-Explain
I-Explain
LIME

(a) Review

Extremely Useful Very Useful Somewhat Useful Not So Useful Not At All Useful
0

5

10

15

20

25

30

35

40

%
 o

f P
ar

tic
ip

an
t

Covid-19 Tweet Classification
M-Explain
I-Explain
LIME

(b) Twitter

Extremely Useful Very Useful Somewhat Useful Not So Useful Not At All Useful
0

10

20

30

40

50

60

%
 o

f P
ar

tic
ip

an
ts

Topic Classification
M-Explain
I-Explain
LIME

(c) Topic

Extremely Useful Very Useful Somewhat Useful Not So Useful Not At All Useful
0

10

20

30

40

50

%
 o

f P
ar

tic
ip

an
ts

Review Sentiment Classification
Non-Relational Formulas
Relational Formulas-1
Relational Formulas-2

(d) Review

Extremely Useful Very Useful Somewhat Useful Not So Useful Not At All Useful
0

10

20

30

40

50

60

70

%
 o

f P
ar

tic
ip

an
ts

Covid-19 Tweet Classification
Non-Relational Formulas
Relational Formulas

(e) Twitter

Extremely Useful Very Useful Somewhat Useful Not So Useful Not At All Useful
0

10

20

30

40

50

60

70

%
 o

f P
ar

tc
ip

an
ts

Topic Classification
Non-Relational Formulas
Relational Formulas

(f) Topic

Figure 5.4: (a) - (c) The y-axis shows the % of participants who rated the explanation feature with the
rating specified in the x-axis where the % is normalized by the number of features in the explanation. (d) -
(f) User ratings for relational and non-relational features for I-Explain.

70

The first feature presents the word formulas marked in the data. The remaining features correspond

to relational formulas. Visualizing relational formula explanations is not as straightforward since

relationships are not explicitly seen in the data (as opposed to words). To visualize this, we average

the importance weights of the relational formulas in the explanation and display this as a graph

(normalized between 0 and 1) indicating support of the relational formulas in the prediction. Our

survey consisted of 12 randomly chosen explanations where we used 4 explanations for each task (2

of them corresponding to each class). For every explanation, we asked users to rate the usefulness

of each feature in the dashboard as shown in Fig. 5.3 (b) on a Likert scale.

Results. The results of the survey are shown in Fig. 5.4. Fig. 5.4 (a) - (c) show the % of user

responses for each value in the Likert scale normalized by the number of features in the dashboard.

We see here that I-Explain and M-Explain had better scores than LIME. This shows that

overall, users preferred to see explanations with both relational and non-relational formulas. Fur-

ther, users also preferred I-Explain to M-Explain since the explanation quality was better due

to the use of simplified models. That is, M-Explain tends to provide poor explanations when the

MLN is large. Fig. 5.4 (d) - (f) further shows the breakdown of scores for I-Explain. Interest-

ingly, across all datasets while users felt both types of features are important, a larger percentage

found relational features to be extremely useful in the explanations compared to non-relational

features. The mean user score for the relational features in the explanation was 4.42 while for the

non-relational features, it was 3.84. A two-sided t-test showed that the difference in user responses

for relational and non-relational features was statistically significant.

5.4 Summary

Explaining the results of marginal probabilistic inference in an interpretable manner is hard when

MLNs have large domains. We presented an approach that constructs simplified models from the

MLN to generate more interpretable explanations. The simplified explanations are then weighted

and combined into a unified explanation. Our results on several problems illustrated that our

approach generates high quality explanations for relational data.

71

Chapter 6

Improving Explanations using Feedback

AI and Machine learning (ML) has had unprecedented successes over the last decade in almost all

application domains. The use of AI/ML for decision making in critical areas such as healthcare,

criminal justice and defense has accelerated the need for explainable AI (XAI) [26]. Over the last

few years, tremendous progress has been made in XAI with the development of several different

methods that perform model explanations and/or outcome explanations [25] for machine learning

methods. Specifically, model explanations explain the behavior of the model as a whole in an

human-interpretable format (e.g. decision trees). However, several powerful machine learning

models may simply be too complex to explain and are thus “black-boxes” to a user. Fortunately

though, even in such complex models, we can explain individual predictions made by these models.

Specifically, outcome explanations explain reasons for individual predictions made by a “black-

box” model. Arguably, two of the most well-known general-purpose outcome explanation methods

include Locally Interpretable Model-Agnostic Explanations (LIME) [67] and SHAP [48] based

on Shapley values. Both of these approaches rank the importance of features by using a simpler

interpretable model that approximates the original black-box classifier. However, these approaches

explain instances independently, i.e., they do not consider relationships that can exist between

instances which are ubiquitous in the real-world. For example, reviews written by the same user

are related to each other, people with similar social circles can have shared interests, etc. Therefore,

in this chapter, we develop an approach to generate richer outcome explanations using relationships

in the data.

We represent relational knowledge using the semantics of Markov Logic Networks (MLNs).

72

Figure 6.1: A schematic illustration of our approach.

In MLNs, relationships are described in the form of first-order logic (FOL) formulas. MLN for-

mulas represent soft constraints since they are not always true (active) or false (inactive). Thus, the

formulas have a degree of uncertainty as opposed to pure FOL formulas. We then add relationships

specified in the MLN into outcome explainers in the form of embeddings. Specifically, similar

embeddings for instances imply that the MLN specifies similar relationships for these instances.

Using these embeddings, we generate explanations from LIME and SHAP for classification tasks.

Next, since explanations are inherently subjective, it is sometimes hard to arrive at the “optimal”

explanation without the perspective of a human. Therefore, we add a human-in-the-loop to provide

feedback to explanations. We obtain feedback for a small set explanations and then propagate this

feedback to instances based on the symmetries between their respective embeddings. That is, we

assume that for similar/symmetrical instances using similar feedback will help improve their ex-

planations. Using this feedback, we modify the MLN formulas by sampling active formulas based

on how likely they are to generate explanations that are consistent with the feedback. We then

re-learn the embeddings from on the modified MLN to generate more interpretable explanations.

73

An illustration of this framework is shown in Fig. 6.1.

We evaluate the performance of our approach in three text classification problems. Specifi-

cally, we compare the performance of LIME and SHAP using several standard classifiers. Further,

we also develop a comparative approach using BERT which is an attention-based mechanism in

deep networks [91]. We evaluate the approaches on i) the quality of explanations generated when

compared to human annotated explanations, ii) the relevance of the content in the explanation to

the classifier and iii) the usability of relational knowledge in explanations based on a user study.

6.1 Related Work

There has been significant progress in XAI over the last few years. Guidotti et al. [25] survey a

number of explanation methods and come up with a taxonomy of XAI methods. They broadly

classify XAI methods as model explanations and outcome or prediction explanations. In model

explanations, the goal is to explain the behavior of the model as a whole. In outcome explanations,

the goal is to explain individual predictions even though the model itself may be too complex

as a whole. In [6], the authors provide an overview of the reasons, domains and the foundational

definitions for explanations in supervised Machine learning algorithms. In [43], the author suggests

that explanations are required whenever the AI model cannot explain what the user of the model

needs to know. Explainability has also been extensively studied in various other disciplines such as

psychology and cognitive sciences. In [54], the authors provide an overview of these perspectives.

The influence of social sciences on explainablility in AI is studied in [52].

More specific to prediction explanations which are also called post-hoc explanations, the

goal is to explain predictions even though the full model may be very complex to explain. For

example, some models are naturally transparent such as decision trees while others such as neu-

ral networks are not. Explanations for predictions made by black-box classifiers typically take

a similar general approach where the hard to explain classifier is approximated by a more in-

terpretable model [54]. According to [43], post-hoc explanations are natural language based,

visualizations, interactive in nature or based on approximations or case-based reasoning. LIME

74

developed by Ribeiro et. al. [68] is one of the most popular outcome explainers. LIME is based on

approximating the local decision boundary of a classifier with an interpretable boundary. Lundberg

and Lee [47] developed another popular outcome explainer called Shapely Additive Explanations.

Here, the attributionsto features towards the prediction made by the classifier is quantified based

on Shapley values that was originally used in economics. Ross et al. [70] developed an expla-

nation approach as a regularizer to simplify a classifier’s decision boundary. Koh and Liang [37]

developed perutbation-based models where we perturb the data to observe changes to the classifier.

Fong and Veladi [18] also use a similar perturbation-based approach to explain predictions. Due to

the popularity of deep neural networks, several approaches have specifically focused on explain-

ing deep network prediction. For instance, there have been attempts to explain neural networks

through visual analytics, such as Grad-CAM [78] and Zhang and Zhu’s approach [100]. Suderra-

jan et al. [87] developed a popular approach called integrated gradients to explain deep network

predictions more generally based on the gradient values. For the case of relational models, there

have been relatively fewer general explanation methods. In particular, Farabi et al. [16] proposed

an approach using Markov Logic Networks (MLNs) that provide explanations in relational data.

6.1.1 Feedback-based Models

Feedback has also been used to correct or modify features particularly under the umbrella of active

learning. For example, DUALIST [79] is a tool that was developed for incorporating feedback in

an active learning framework. DUALIST incoporates feedback on the instances (the user labels

the specific class of an instance) or at the feature-level to reduce dimensionality (selecting features

appropriate for a class). Several other approaches based on active learning [101, 44] also use

feedback to improve the learning model.

There have also been previous explainable AI approaches that try to interact with users and

take their feedback. Teso and Kersting [88] developed explanations for interactive learning meth-

ods. Recently, Ghai et al. [22] developed an explanation interface for active learning. The idea is

to develop explanations for interactive learning where the model can selectively query a machine

75

teacher who explains decisions taken by the model. Smith et al. [86] performed an analysis of

explanations. In particular, they studied whether revealing explanations for the ML method moti-

vated users to fix the ML method. Further, they showed that ability to provide feedback impacted

perceptions of the user regarding the ML method. Importantly, they also showed that generating

explanations without the ability to give feedback caused frustrations to the users of the ML model.

This validates our approach here to provide users the ability to provide feedback and take corrective

actions for the explanations based on the feedback. Kulesza [40] et al. proposed an explanation

debugging interface. Just like debugging a program, the machine learning model could be modified

by users through interactions. Their results showed that by simply interacting with such a system,

participants could gain a deeper understanding of the model. Thus, in general, it has been shown in

multiple studies that feedback combined with explanations significantly contributes to an increase

of user’s trust in the ML algorithm. Our approach is similar in this regard since we use feedback

to generate more meaningful explanations for a classifier making the classifier’s predictions more

interpretable.

6.2 Relational Explanations

Typically ML classifiers assume non-relational data. That is, the instances in the data are assumed

to be independent and identically distributed (i.i.d). Therefore, explainers for these classifiers

explain the prediction of an instance in the data independently from the others. Specifically, they

rank the relative importance of features for a particular instance in the data. However, in many

real-world cases, we have relationships among different instances in the data. For example, in the

case of twitter data, the tweets written by the same user are related to each other. Here, we assume

that there are relationships in the data and these relationships are defined in a symbolic language.

Specifically, we assume that the relationships in the data are defined using Markov Logic Networks

(MLNs). Note that it is certainly possible to define the relationships using other languages such as

knowledge graphs [32] or probabilistic logic programs [11]. Here, we use MLNs as our language

of choice since it has intuitive semantics and is rich enough to represent complex knowledge since

76

it is based on first-order logic. We use MLNs to define formulas based on our understanding of

the domain and then inject knowledge from these formulas into outcome explainers. Thus, the

explanation generated by the explainer is augmented with relational information from the domain.

6.2.1 Representing Relational Knowledge

An MLN consists of first-order logic (FOL) formulas, where the formulas have a symbolic and

graphical meaning. Specifically, we can ground the formulas with objects/constants to obtain a

ground formula and this represents a relationships among all atoms in that formula. For example,

the FOL formula, FakeNews(x) ∧ SameUser(x, y)⇒ FakeNews(y) represents a FOL formula that

connects two articles written by the same user. Specifically, it encodes our prior knowledge that if

two articles are written by the same user, if one them is a fake article, then the other one is fake as

well. A specific instantiation of the formula grounds the formula with specific objects, i.e., articles

in this case, such as FakeNews(X1) ∧ SameUser(X1, Y1) ⇒ FakeNews(Y1). Thus, we have a

relationship defined over the articles X1 and Y1. This relationship is a logical connection between

atoms FakeNews(X1), SameUser(X1, Y1) and FakeNews(Y1). The same logical relationship can

also be represented in a graph where the nodes are the three atoms and a clique between the nodes

represents the relationship specified by the symbolic formula. Thus, given a domain with a large

number of objects, we have a large implicit graph that encodes several relationships among the

objects in that domain. We define two types of formulas, relational and non-relational formulas.

The non-relational formulas represent features for a specific instance and the relational formulas

represent logical connections between instances. For example, a formula such as Word(W,X1)

⇒ FakeNews(X1) is a formula that encodes that the object (or feature) W (word in this case) is

present in instanceX1. An example of a relational formula is FakeNews(X1), ∧ SameUser(X1, Y1)

⇒ FakeNews(Y1) encodes the logical relationship between the instances X1 and Y1. For ease of

exposition, we assume that a relational formula connects exactly two instances, though in general

a formula can logically connect any number of instances. The overall end goal is to classify all

instances. We use the term query objects interchangeably with instances since these are the objects

77

that need to be classified and are distinct from objects that represent features (e.g. words in the

above example). We begin with some definitions to formalize our representation.

Definition 6. An active ground formula is one that is logically satisfied by the data.

Based on the above definition, it is easy to see that active formulas represent the possible

relationships between objects as defined in the data. Note that the same objects can be involved

in many ground formulas, some of which may be active and some inactive depending upon the

data. For example, if a dataset asserts that FakeNews(X1), SameUser(X1, Y1) and FakeNews(Y1)

are true, then from the FOL formula defined in our previous example, f1 = FakeNews(X1), ∧

SameUser(X1, Y1)⇒ FakeNews(Y1) is an active formula, but f2 = FakeNews(X1), ∧ SameUser(X1, Y2)

⇒ FakeNews(Y2) is not active.

Definition 7. The context of an object X for an active formula f denoted by C(X, f) is the set of

all objects that X occurs with in f .

C(X, f) denotes the set of all objects that X is related to in f . From our running example,

since f1 is active, X1 and Y1 are in each other’s context w.r.t f1 but not w.r.t f2.

Definition 8. X1 is symmetric to X2 in formula f denoted by S(X1, X2, f) if X1 occurs in f and

there is a formula f ′ where X2 occurs and C(f,X1) = C(f ′, X2).

Definition 9. X1 is symmetric to X2 denoted by S(X1, X2) if S(X1, X2, f) ∀ f that X1 occurs in.

The definition of symmetry between objects can also be softened to allow for approximate

symmetries. Specifically, if instead of all formulas, suppose for a large number of formulas, f1

. . . fk, we have S(X1, X2, fi), then, we can be reasonably confident that X1 and X2 share similar

relationships based on the data. Thus, Ŝ(X1, X2) denotes the approximate symmetry between X1

and X2 where in a reasonably large number of formulas, the two objects are symmetric. Now,

given these definitions, we need to learn a representation for the objects such that approximately

symmetric objects share a similar representation. To do this, we use an approach previously devel-

oped [29] that learns object representations using word embedding approaches.

78

6.2.2 Embeddings

Consider a graphical representation of an MLN shown in Fig. 6.2. The similar colors indicate

instances which have the same features, i.e., the non-relational formulas are equivalent across

these instances. The connections indicate the relational formulas where active formulas are shown

by a solid line and inactive ones are shown by a dashed line. Our goal is to learn embeddings

for instances such that if they have similar neighborhoods (only considering active formulas), their

embeddings are close to each other. Thus, in the example, we will have two clusters of embeddings

{X4, X6} and {X1, X3, X7, X9}. Note that for the objects that represent features we also learn

embeddings in an analogous manner, where if a feature occurs with similar features in several

instances, they have the same embedding. For example, in the case of text features, words have

similar embeddings when they appear in similar contexts (i.e., their neighboring words are similar)

across several instances.

Let X represent the set of objects. Given the training data, for every active formula f , we

predict all objects in C(X, f) from X . To do this, we use existing skip-gram embedding architec-

tures such as Word2Vec [51]. Specifically, the objective is as follows.

max
∑
X∈X

∑
f

logP (C(X, f)|X)

From [51], we maximize the above objective using a neural network. Specifically, the train-

ing data consists of a one-hot encoded input object X and we predict the one-hot representation of

X ′ ∈ C(X, f). The hidden layer in the neural network encodes the representation for the objects.

Specifically, recall that if Ŝ(X, X̂), over a large number of formulas, the context of X and X̂ will

be similar to each other. Therefore, X and X̂ will predict similar objects and to do this, the hidden

layer will learn to assign similar representations for X and X̂ . Specifically, if vX is the vector rep-

resentation forX and vX′ is the vector forX ′, then, the probability P (X ′|X)∝ exp(v>XvX′). Thus,

the probability of predicting one object from another is proportional to the similarity between their

vectors. Therefore, we have the following result.

79

X1 X2 X3

X4 X5 X6

X7 X8 X9

Figure 6.2: An example showing the graphical representation of an MLN, where the same col-
ored nodes mean that the features in those instances are similar to each other. An active relational
formula is shown by a solid line. The embeddings are similar if two nodes are connected to sim-
ilar nodes in their active formulas. Thus, {X4, X6} and {X1, X3, X7, X9} form two groups of
similar embeddings.

Proposition 3. Given objects Xi, Xj if S(Xi, Xj), then vXi
= vXj

.

Proof. S(X1, X2) indicates that the contexts of Xi and Xj are identical over all formulas. Thus, in

training the model, for both Xi and Xj , we make predictions over the same set of objects. Let Y1

. . . Yk be this set of objects. The objective of the skip-gram model is to maximize the log-likelihood

of predicting a context object, i.e.,

∑
k

logP (Yk|Xi) + logP (Yk|Xj)

Based on the vectors assigned to the objects, to maximize the above log-likelihood we

need to maximize the term v>Xi

∑
k vYk + v>Xj

∑
k vYk = (vXi

+ vXj
)>
∑

k vYk . Let
∑

k vYk =

vs. The maximization term can then be written as (vXi
+ vXj

)> vs. The optimal solution to this

maximization is when vXi
= vXj

.

In computing the embeddings, a subtle detail is that we assumed the active formulas to be

known apriori. However, this may not always be the case. For example, if we have a formula such

as FakeNews(X1), ∧ SameUser(X1, Y1) ∧ FakeNews(Y1). To know if this formula is active, we

need to know if the objects X1 and Y1 are classified as fake news. Thus, in general, if the query

80

is part of a formula, then we cannot assume that we know the truth value of the formula. One

common assumption is the closed world assumption, where unknown truth values are assumed to

be false. In our case, we use a modified approach where we fill in the missing labels of the queries.

Specifically, we train a separate classifier to classify the query objects and assign a label to all the

query objects before computing the embeddings. These labels therefore act as a prior to compute

the embeddings. Thus, the truth values for each formula is completely known since all the queries

have an assigned label, and we then construct the embeddings from the active formulas.

6.2.3 Explanations

Note that if Xi and Xj are approximately similar, i.e., Ŝ(Xi, Xj), we obtain a continuous approx-

imation of this similarity based on the distance between the vectors vXi
and vXj

. We use this

similarity to explain predictions on the query objects.

Let X represent the set of query objects. We explain the prediction f(X) for X ∈ X

made by a classifier f() as a ranked list of relational and non-relational formulas signifying their

importance in the prediction. We next describe generating these explanations using LIME and

SHAP.

LIME Explanation

Let X be the query object for which we generate explanations. Let x̄ represent the set of formulas

containing X . If a formula can influence the prediction of X , i.e., if it is an active formula, we

assign a 1 corresponding to that formula in the binary vector. We now sample set of binary vectors

Z in the neighborhood of the binary vector x̄. Thus, Z ∈ Z corresponds to a subset of formulas that

can potentially influence X . Note that for each Z ∈ Z, we recover the influencing formula that Z

corresponds to. We now compute an average vector for Z as follows. Let v1 . . . vk be vectors cor-

responding to each active formula in Z. That is, for a non-relational formula vi corresponds to the

embedding that was learned for the feature object within that formula and for a relational formula,

vi corresponds to the embedding learned for the object that X is connected to within that formula.

81

For example, the formula embedding for a non-relational formula Word(W,X)⇒ FakeNews(X)

is the embedding learned for W and for a relational formula FakeNews(X), ∧ SameUser(X,X ′)

∧ FakeNews(X ′), it is the embedding learned for X ′. We compute the average embedding corre-

sponding to the binary vector Z as T (Z) = 1
|Z|
∑k

i vi. We now learn importance weights for the

formulas using T (Z). Specifically, let g() be a linear function. We learn the coefficients for g()

using f(T (Z)) as a label for g(Z). That is, we want to know how the presence or absence of a

formula encoded within Z influences f(). A larger coefficient value in g() denotes that the formula

corresponding to that coefficient is more important to the prediction f(X). Specifically, We learn

the coefficients by minimizing the following loss function.

L(f, g, πx) =
∑
Z∈Z

πx(T (Z))(f(T (Z)− g(Z))2 (6.1)

where πx(T (Z)) quantifies the distance between the object to be explainedX and the vector

T (Z). Specifically, πx(T (Z)) is an exponential kernel defined on the distance v>XT (Z),where vX

is the embedding for X . The learned coefficients for g() quantify the importance of formulas in

the prediction f(X).

SHAP

SHAP [48] is yet another popular outcome explainer. The main difference here is that a SHAP

explanation quantifies importance based on Shapley values. Specifically, let S denote all possible

subsets of formulas that contain X which is the query object whose prediction needs to be ex-

plained. Given a classifier f(), we compute f(X) with a specific formula included and excluded

from S and measure its difference. The exact Shapley value which quantifies the contribution of

X ′ is computed by aggregating this difference over all S ∈ S. Clearly, this is infeasible in practice

since the number of possible subsets of is exponential in the number of formulas containing X .

Therefore, we use the approach called KernelSHAP [48] to efficiently approximate Shapley values.

Similar to LIME, we approximate the classifier with a simpler model based on Eq. (6.1).

Note that the explanation depends upon the choice of g() and πx. It is shown in [48] that the

82

Shapley values can be obtained through weighted linear regression similar to LIME, where we

learn the coefficients for g(), assuming that g is a linear model. However, in LIME, the weight

πx(T (Z)) that indicates the distance between the object to be explained X and the sampled binary

vector (Z) that denotes the formulas that influence X is computed based on the similarity between

them. That is, we use the vector distance between vX and T (Z). In KernelSHAP, we use a special

kernel to determine the weights for solving the weighted linear regression problem from which the

coefficients of g() are determined. Specifically, this is given by the following equation.

πx(C(X)) =
|x̄| − 1(|x̄|

|C(X)|

)
(|x̄| − |C(X)|)

(6.2)

where x̄ denotes all the formulas that X participates in and C(X) ⊆ x̄ is called a coalition

of formulas, i.e., a subset of formulas containing X . The equation indicates that large or small

coalitions a have larger weights. This is because a small coalition highlights the individual influ-

ence of each formula and a large coalition highlights the influence of a formula in collaboration

with other formulas. Both are equally important in the explanation for f(X). Thus, we sample

coalitions of formulas and weight them according to the kernel. We then solve the weighted linear

regression problem to determine coefficients that quantify the influence of the formulas in x̄.

6.3 Explanation Feedback

Since explanations are designed for humans, it is hard to arrive at an “optimal” explanation without

a human’s perspective. This is particularly important since explainers such as LIME/SHAP are

approximate methods and the type of explanations depend upon the quality of the approximation.

Specifically, in LIME, the explanations depend upon the sampled binary vectors and in SHAP, they

depend upon the coalitions that are used in the explanation. Thus, using human knowledge within

these explainers can help generate more meaningful explanations.

To do this, based on a user’s opinion, we generate positive/negative labels for explana-

tions on a small subset of instances. Then, similar to the approach in unsupervised label propa-

83

gation [102], we propagate these labels to other instances. Specifically, we cluster the instances

into K clusters and from each cluster, we sample instances for feedback to cover a diverse set of

instances. Let {Ci}Ki=1 be K clusters learned using the embeddings for the instances. Thus, all

objects within the same cluster have similar embeddings which means these objects are approx-

imately symmetric to each other. We sample instances from each cluster, explain the sampled

instances and ask a user to label the explanation. Let bi be the label for the explanation on instance

i, where bi = 1 if the user liked the explanation or 0 otherwise. We now propagate the labels to

all instances based on the label propagation approach. Specifically, a label is propagated to its

neighbors in the embedding until we reach consensus. Thus, each neighborhood in the embedding

is labeled with similar labels (1/0). This indicates that for similar instances, based on the feedback

by the user, the explanations are likely to be either interpretable or not.

We next compute importance weights for MLN formulas based on the propagated feed-

back labels. Specifically, let f be a relational formula that connects Xi and Xj (analogously for

non-relational formulas, f is a formula that connects Xi with a feature object). We compute the

importance weight for f by predicting if Xj is likely to be a good explanation for Xi. Specifically,

let X∗i = arg maxX∗∈X∗ v
>
Xi
vX∗ , where X∗ is the set of instances for which the user has provided

feedback. Thus, X∗i represents the most similar instance (closest neighbor) to Xi for which we

have human feedback. Inspired by an approach that is commonly used in analogical reasoning

which is a well-known application in word embeddings [51], we predict explanation vectors for

Xi based on the explanations given to X∗i . Specifically, let the explanation to X∗i consist of X∗i1

. . . X∗iM . Let α1 . . . αM be real-values signifying the relative importance of each instance in the

explanation. The predicted vector that best explains Xi based on X∗ik is pik = vX∗i − vX∗ik + vXi
.

Thus, pik is the predicted explanation vector for Xi based on an explanation to X∗i .We compute the

similarity v>Xj
pik which denotes how close a potential explainer Xj is to the predicted explanation

vector. To take into account all predicted explanations forX∗i , we find the max-weighted similarity

over all the instances that explain X∗i . That is, sij = maxk αkv
>
Xj
pik. Thus, sij is an importance

weight for the formula connecting Xj and Xi that quantifies how likely is Xj to be a good (user-

84

Algorithm 4: Explanations in Relational Data
Input: Data X, MLNM
Output: Explanations
// Learn Embeddings

1 O = Contexts for X from active formulas inM
2 E = Learn embeddings from O using Word2Vec models
// Explain Instances

3 C = Cluster X into K clusters using E as features
4 for each cluster C do
5 Sample X from C
6 L(X) = LIME/SHAP explanation for X using E b = Human feedback label for

L(X)

// Propagate Feedback
7 Propagate the labels across X
8 for each X in X do
9 Activate formulas containing X based on Eq. (6.3)

10 O′ = Contexts for X from active formulas
11 E ′ = Learn embeddings from O′ using Word2Vec models
// Explanations

12 for each X in X do
13 L(X) = LIME/SHAP explanations for X using E ′

interpretable) explanation for Xi based on the current feedback. Given the importance weights for

all formulas where Xi occurs, we activate the formulas based on the following probability.

P (Xi, Xj) = bi ∗ sij + (1− bi) ∗ (1− sij) (6.3)

From the above equation, if Xi has a positive label from the label propagation, we activate

the relational formula connecting Xi and Xj with probability sij and if Xi has a negative label, we

activate it with a probability (1 − sij). That is, for positive labels, we focus attention on formulas

with larger importance scores while for negative labels, we tend to focus attention on formulas

with smaller importance weights. For the MLN with modified activations, we then regenerate

the embeddings and generate the final explanations using LIME and SHAP based on the new

embeddings. Algorithm 1 summarizes the main steps in our approach.

85

6.4 Experiments

Through our experiments, we try to answer the following questions. i) Does feedback help improve

the overall quality of explanations? and ii) Does relational knowledge help improve the overall

interpretability of explanations? To answer these questions, we perform experiments for three text

classification problems with annotated data as well as a user study.

6.4.1 Datasets

We used three datasets in our evaluation. All of them correspond to text classification. The first

dataset is a dataset sampled from Yelp [64] containing 1544 reviews. The task here is to classify

if a review is a positive (≥ 4 stars) or negative one (≤ 2 stars). We refer to this dataset as reviews

dataset. Our second dataset consists of 650 COVID tweets from Kaggle. We classify whether

a COVID-19 tweet contains useful information or not. We manually annotated tweets based on

whether they contain facts that can be considered as useful information (e.g. scientific details,

policies, etc.) or if the tweets are non-informative. We refer to this dataset as the Covid dataset.

Our third dataset uses a portion of the well-known 20newsgroups dataset from the UCI repository.

Specifically, we had 1000 articles and the task is to classify articles as those related to automative

topics or other topics. We refer to this as the topics dataset. Note that all our tasks are binary

classification tasks and we had a balanced dataset for all our tasks, i.e., roughly, there were an

equal number of instances corresponding to each of the 2 classes for each dataset.

6.4.2 Relational Knowledge

For each dataset, we have a corresponding MLN that encodes relational knowledge in the dataset.

The MLN encodes two types of formulas. Feature formulas that connect words to a query. Specif-

ically, this encodes the well known bag-of-words model, where for an object X (that corresponds

to a specific instance), we have formulas of the form Wordw(X)⇒ Positive(X), which is a re-

lationship between a specific word w and the query X . That is, presence of w in X asserts that

86

X belongs to the positive class (since our tasks are binary classification tasks). we can use object

X and query atom Positive(X) interchangeably here since Positive(X) is a singleton atom).

Thus, the feature formulas forX contain all the non-relational features used to classifyX . Further,

we have relational formulas that connect different query objects/instances. Specifically, we encode

the homophily relationship between pairs of queries. The general form for this relationship is X

∧ Linked(X, Y)⇒ Y . That is, if two instances X and Y are linked together then they are likely

to belong to the same class. The exact definition of Linked(X, Y) depends on the dataset. For the

reviews data, two reviews X and Y are linked if they are written by the same user or are written

about the same restaurant. Similarly for the COVID data, two tweets are linked if they are from

the same user and for the topics data, two articles are linked if they are from a common user.

6.4.3 Implementation

We implemented our approach using Gensim [65] to learn the embeddings [29]. We generated

explanations using the embeddings in LIME and SHAP. An explanation for an instanceX is a rank-

ing over words in the text as well as other instances related X . For feedback, we used K-Means

clustering to cluster the embeddings and for each cluster, we explained a positive and negative

instance closest to the center. We then obtained feedback from 5 graduate students for these ex-

planations and then used a simple majority vote toe decide the label for an explanation (good/bad

explanation). We then used this to re-sample features in the instances and then generated the final

explanations for all instances.

Further, to compare extrinsic explainers such as LIME/SHAP with explanations generated

as part of the model itself, we generated explanations using attention in deep neural networks [91].

Though attention is viewed as being distinct from explanations [30], recent work has shown that

in attention can provide meaningful explanations [98]. Therefore, we used BERT [14] which is

arguably the most popular attention models for text data. Note that in this case, the explanations

are limited to just words and no relational explanations are generated. We added feedback to BERT

using the same approach we used for the other methods. Specifically, once we active a subset of

87

non-relational formulas based on feedback, we masked words that are not a part of these active

formulas in our input to BERT.

In the rest of this section, we will use the following mnemonics to refer to different ap-

proaches. RLIME is the LIME model augmented with relational embeddings, RFBLIME is the LIME

model with relational embeddings and using feedback from users. Analogously, for the SHAP ex-

plainer, we have RSHAP and RFBSHAP explanation methods. We refer to attention-based explanation

method as BERT and the one where we use feedback as RFBBERT.

6.4.4 Annotated Explanations

To obtain ground truth for explanations, we annotated the 3 datasets. Specifically, we annotated

each instance with the 5 most important words that are representative of that instance’s class. The

annotation was performed by graduate students who were well-versed with XAI. To remove biases,

we asked 3 graduate students to independently annotate the the data. We then asked each of them to

look at the other 2 rankings and through a small group discussion arrive at a consensus on the final

explanations for each instance. To annotate relational explanations, we used Gensim’s Doc2Vec

to find 5 nearest neighbors to instances. Specifically, for each text instance, we vectorized the

instance through Doc2Vec. We then determined the explanation for an instance X as the 5 nearest

neighbors to X as determined by Doc2Vec.

6.4.5 Accuracy of Explanations

We computed the accuracy of explanations using the annotated explanations as ground truth.

Specifically, to explain an instance X , the explainers generate a list of most important words in

X and a ranking over other instances linked to X . We consider the top 5 words and the top 5

related instances as the overall explanation. We measured the % of matches in the generated ex-

planations given the annotated explanation of X to measure the accuracy in explaining X . We

average the accuracy over all test instances to obtain the accuracy score for the full dataset.

We evaluated the effectiveness of several classifiers within LIME and SHAP. Fig. 6.3 shows

88

RLIME RFBLIME(10) RFBLIME(15) RFBLIME(20) RFBLIME(25) RFBLIME(30)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ex
pl

an
at

io
n

Ac
cu

ra
cy

SVM
KNN
Extra_Tree
Random_Forest
Bagging

(a) WEx

RLIME RFBLIME(10) RFBLIME(15) RFBLIME(20) RFBLIME(25) RFBLIME(30)
0.0

0.2

0.4

0.6

0.8

Ex
pl

an
at

io
n

Ac
cu

ra
cy

SVM
KNN
Extra_Tree
Random_Forest
Bagging

(b) REx

RLIME RFBLIME(10) RFBLIME(15) RFBLIME(20) RFBLIME(25) RFBLIME(30)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ex
pl

an
at

io
n

Ac
cu

ra
cy

SVM
KNN
Extra_Tree
Random_Forest
Bagging

(c) WEx

RLIME RFBLIME(10) RFBLIME(15) RFBLIME(20) RFBLIME(25) RFBLIME(30)
0.0

0.2

0.4

0.6

0.8

Ex
pl

an
at

io
n

Ac
cu

ra
cy

SVM
KNN
Extra_Tree
Random_Forest
Bagging

(d) REx

RLIME RFBLIME(10) RFBLIME(15) RFBLIME(20) RFBLIME(25) RFBLIME(30)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ex
pl

an
at

io
n

Ac
cu

ra
cy

SVM
KNN
Extra_Tree
Random_Forest
Bagging

(e) WEx

RLIME RFBLIME(10) RFBLIME(15) RFBLIME(20) RFBLIME(25) RFBLIME(30)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ex
pl

an
at

io
n

Ac
cu

ra
cy

SVM
KNN
Extra_Tree
Random_Forest
Bagging

(f) REx

Figure 6.3: Accuracy scores for different datasets using the LIME explainer. WEx refers to word
explanations and REx to relational explanations. (a), (b) are results for the reviews data, (c), (d)
for Covid and (e), (f) for Topics. For RFBLIME, the results are shown for varying number of
clusters (specified in brackets).

the accuracy of explanations using 5 classifiers in LIME for all 3 datasets. The classifiers used were

Support Vector Machines (SVMs), Random Forests (RF), Extra Trees (ET), K-Nearest Neighbors

(KNNs) and Bagging (BG). As seen here RFBLIME significantly outperforms RLIME illustrating

that user feedback helps us generate more interpretable explanations. This is consistent as we

increase the number of clusters. Further, the RF classifier gave us the best explanations for both

RLIME and RFBLIME followed by SVMs. The accuracy of RFBLIME for the reviews dataset was

higher since sentiment words are typically retained (and non-sentiment words are removed) based

on the feedback resulting in better explanations. For the Covid data, since tweets have a smaller

number of words it is possible that we may remove important words as a result of the feedback

resulting in slightly decreased accuracy compared to reviews. The results shown in Fig. 6.4 are

similar to the LIME results and RFBSHAP was significantly better at expanations as compared to

RSHAP. We evaluated with 4 classifiers in SHAP including the linear model (Regression), Random

Forests (RF), SVMs and transformers. RF was generally the best classifier for explanations in

RSHAP and RFBSHAP.

89

RSHAP RFBSHAP(10) RFBSHAP(15) RFBSHAP(20) RFBSHAP(25) RFBSHAP(30)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ex
pl

an
at

io
n

Ac
cu

ra
cy

SVM
Regression
Random_Forest
Transform

(a) WEx

RSHAP RFBSHAP(10) RFBSHAP(15) RFBSHAP(20) RFBSHAP(25) RFBSHAP(30)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ex
pl

an
at

io
n

Ac
cu

ra
cy

SVM
Regression
Random_Forest
Transform

(b) REx

RSHAP RFBSHAP(10) RFBSHAP(15) RFBSHAP(20) RFBSHAP(25) RFBSHAP(30)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ex
pl

an
at

io
n

Ac
cu

ra
cy

SVM
Regression
Random_Forest
Transform

(c) WEx

RSHAP RFBSHAP(10) RFBSHAP(15) RFBSHAP(20) RFBSHAP(25) RFBSHAP(30)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ex
pl

an
at

io
n

Ac
cu

ra
cy

SVM
Regression
Random_Forest
Transform

(d) REx

RSHAP RFBSHAP(10) RFBSHAP(15) RFBSHAP(20) RFBSHAP(25) RFBSHAP(30)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ex
pl

an
at

io
n

Ac
cu

ra
cy

SVM
Regression
Random_Forest
Transform

(e) WEx

RSHAP RFBSHAP(10) RFBSHAP(15) RFBSHAP(20) RFBSHAP(25) RFBSHAP(30)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ex
pl

an
at

io
n

Ac
cu

ra
cy

SVM
Regression
Random_Forest
Transform

(f) REx

Figure 6.4: Accuracy scores for different datasets using the SHAP explainer. WEx refers to word
explanations and REx to relational explanations. (a), (b) are results for the reviews data, (c), (d)
for Covid and (e), (f) for Topics. For RFBSHAP, the results are shown for varying number of
clusters (specified in brackets).

6.4.6 Information in Explanations

Here, we evaluate if the explanations produce information that is useful for classification. Specifi-

cally, we measure the accuracy of classification as we incrementally add features in the explanation.

That is, if the explanation is generating informative features, then the accuracy of classification is

reasonably good even using only the features that constitute the explanation. This is similar to

the Explanation Information Curves (EIC) metric used in [34]. Table 6.1 shows the results where

we add 10% of the total features incrementally in ranked order of importance as given by the ex-

plainer. We then used the best performing classifier (Random Forests) to learn a classifier using

only these features. The table shows the peak average 5-fold cross validation F1-score achieved by

this classifier as we add the features incrementally. We also show the mean and standard deviation

of the F1-score. As a baseline, the average 5-fold cross validation accuracy of Random Forests

using all the features for the three datasets are as follows. Reviews (0.79), Covid (0.84) and Topics

(0.86). As shown by the results in Table 6.1, in all cases, RFBLIME and RFBSHAP perform better

than RLIME and RSHAP indicating that the explanations produced by RFBLIME and RFBSHAP

90

Dataset Method Top-Exp-Acc (F1) Peak-Acc (F1) Std-Dev

Reviews
RSHAP 0.45 0.52 0.03
RLIME 0.51 0.54 0.03
RFBSHAP 0.62 0.69 0.03
RFBLIME 0.61 0.63 0.02

Covid
RSHAP 0.45 0.57 0.03
RLIME 0.41 0.54 0.04
RFBSHAP 0.55 0.61 0.01
RFBLIME 0.57 0.60 0.03

Topics
RSHAP 0.43 0.54 0.02
RLIME 0.55 0.58 0.07
RFBSHAP 0.72 0.77 0.01
RFBLIME 0.70 0.72 0.04

Table 6.1: Average F1-scores for classification as we add only the explanations incrementally in
ranked order. The Peak score shows the best score obtained, and the average and standard devia-
tion are also shown for the scores.

are of more value to the classifier. We obtained the best results for the topics dataset, where the

explanation produced the best classification results.

6.4.7 Comparing Explanations and Attention

Table. 6.2shows the comparison between attention and explanations.Specifically, it only uses the

accuracy of word explanations since the attention-based methods do not generate relational expla-

nations. As shown in the table, the word explanations for BERT is lesser than RLIME and RSHAP

for reviews but much better for the other 2 datasets. However, the overall accuracy for all three

methods is low. RFBLIME, RFBSHAP and RFBBERT perform much better since the feedback

helps us focus on important words in the explanation. RFBBERT works best in the Covid dataset

compared to the other datasets.

91

Dataset BERT RLIME RSHAP RFBBERT RFBLIME RFBSHAP
Reviews 0.32 0.39 0.33 0.74 0.84 0.77
Covid 0.44 0.29 0.27 0.90 0.77 0.80
Topics 0.52 0.35 0.29 0.70 0.82 0.67

Table 6.2: Comparing the accuracy of attention and explanation methods.

6.4.8 User Study

We evaluate the efficacy of explanations through a user study. We recruited 100 paid participants

spread across all ages in our user study (participants paid through surveymonkey). We designed a

survey to measure if using relational dependencies and feedback improves the usability of explana-

tions. Specifically, we used the review dataset in the study and first asked the user to try to predict

the class for the review (positive or negative review) using only the top-5 words ranked by the

explanation. The user also had the option of choosing “cannot say” if they were unsure of whether

the review was positive or negative. Next, for the same review, we presented to the user the rela-

tional explanation, and asked them to rate if this was helpful in choosing the class for the review.

The rating was on 5-point Likert scale. To ensure that a non-expert user understood the relational

explanation, we translated it to English as follows. If you are given additional information that in

N other reviews written by this customer, he/she has rated K% as positive. Here N is the size

of the relational explanation, i.e., for any review X , we choose the top-8 other reviews as ranked

by the explainer in its relational explanation. To ensure tat we take into account the importance

weights assigned by the explainer, we computedK = W+

W++W−
, whereW+ is the sum of weights as-

signed by the explainer to the positive reviews among the N reviews and W− is the sum of weights

assigned by the explainer to the negative reviews among the N reviews. We randomly selected 4

positive and 4 negative reviews for the survey. We sent the RLIME and RFBLIME to one group

of users and the RSHAP and RFBSHAP to a second group. An example of the survey questions is

shown in Fig. 6.5. Here, we used the best configuration for the explainers using Random Forests

to generate the explanations.

The results from the user study are shown in Fig. 6.6. As seen from Fig. 6.6 (a) and (b)

92

(a) (b)

Figure 6.5: Survey questions with (a) assessing if a user can obtain the class using just the word
explanations and (b) assessing if relational explanations are important to a user.

show the percentage of participants who chose each value in the Likert scale indicating the use-

fulness of the relational explanation. As shown by the results, for RFBLIME and RFBSHAP, the

relational explanations had greater impact since the importance weights for the relational expla-

nations change when we re-sample based on the feedback. Thus, with feedback, for an instance

X , its relational explanation has other instances such that instances with the same class as X have

larger importance weights. In the comparison between RFBLIME and RFBSHAP, participants

found RFBSHAP to be either extremely useful or very useful. Next, we evaluate how likely a user

is to provide the right class based on the explanation words and the results are shown in Fig 6.6 (c)

and (d). As shown here, users are more likely to predict the class correctly when the explanations

are from RFBLIME and RFBSHAP. This is true both for predicting the positive class from the

explanation as well as predicting the negative class. The % of people who got the negative class

instances correct was slightly smaller than those for the positive class. Finally, Fig. 6.6 (e) and

(f) show the percentage of participants who were uncertain about the class(for both negative and

positive classes). The results show that the uncertainty is reduced when we use feedback since the

word explanations become more precise and it is easier for users to be certain of which class the

review belongs to based on the word explanations.

To test for statistical significance, we performed the two sided t-test for our survey results.

Specifically, we first tested how significant feedback is for the relational explanations. To do

this, we used the rating scores given by users on the Likert scale for RLIME and RFBLIME. The

average rating for RLIME was 3.04 and the average rating for RFBLIME was 3.46 and the p-value

93

Extremely Useful Very Useful Somewhat Useful Not So Useful Not At All Useful
0

10

20

30

40

50

%
 o

f P
eo

pl
e

RLIME
RFBLIME

(a)

Extremely Useful Very Useful Somewhat Useful Not So Useful Not At All Useful
0

5

10

15

20

25

30

%
 o

f P
eo

pl
e

RSHAP
RFBSHAP

(b)

Positive Negative
0

10

20

30

40

%
 o

f P
eo

pl
e

Co
rre

ct
ly

 P
re

di
ct

ed
 C

la
ss RLIME

RFBLIME

(c)

Positive Negative
0

10

20

30

40

50

%
 o

f P
eo

pl
e

Co
rre

ct
ly

 P
re

di
ct

ed
 C

la
ss RSHAP

RFBSHAP

(d)

Cannot Say(+ve class) Cannot Say(-ve class)
0

10

20

30

40

50

%
 o

f P
eo

pl
e

RLIME
RFBLIME

(e)

Cannot Say(+ve class) Cannot Say(-ve class)
0

10

20

30

40

50

%
 o

f P
eo

pl
e

RSHAP
RFBSHAP

(f)

Figure 6.6: Results from the user study.

was 0.001 showing that users did prefer RFBLIME to RLIME and the difference was statistically

significant. For RSHAP and RFBSHAP, the mean ratings were 3.06 and 3.63 with the p-value in

the t-test lesser than 10−5, which again shows that users preferred RFBSHAP and the difference

in ratings was statistically significant. Further, we also verified how well users could predict the

correct class using the explanations. For this, we coded the correct answer, i.e., the case where

the user could correctly guess the positive or negative class based on the explanation as 1, and the

wrong answer or if the option cannot-say was selected as 0. Thus a larger number of 1’s indicate

that the explanations were more helpful for the user in making the right prediction of the class. For

RLIME, the average for these scores was 0.17 while for RFBLIME, it was 0.72 and the p-value

for the t-test was less than 10−20 indicating that the explanations by RFBLIME was significantly

better than RLIME in terms of helping users make the correct prediction of the class. For RSHAP

and RFBSHAP, the results were similar with the averages being 0.3 and 0.76 respectively with the

p-value being less than 10−19, thus clearly illustrating the improvement made by RFBSHAP. In

summary, with our user study, we concluded that i) users prefer to have relational information as

part of the explanation and ii) feedback helps improve the usability of explanations.

94

6.5 Summary

Explaining the results of predictions made by an AI model is extremely important to build trust

in the model. A popular approach to do this is to try to approximate a hard-to-explain black-box

classifier with a simpler model which can be interpreted more easily. Well known explanation

methods such as LIME and SHAP use this approach. However, when the data has relationships

among its instances, we can exploit these relationships to generate richer explanations. In this

chapter, we modeled relationships using a symbolic AI language namely Markov Logic Networks

(MLNs), and used these relationships to generate explanations. Specifically, we learn embeddings

from the formulas in the MLN and use these embeddings within explainers such as LIME and

SHAP. Further, since explanations are subjective, there is an inherent human element in expla-

nations. Therefore, we used feedback from a sample of the explanations and then propagated this

feedback to other symmetrical instances. We showed through a comprehensive evaluation for three

text classification tasks that using both relationships and feedback significantly improves the qual-

ity of explanations. Further, through a user study, we showed that richer explanations that uses

relationships significantly enhances the perception of explanations among users.

95

Chapter 7

Future Work

The development of Explainable AI (XAI) is absolutely critical for the success of future AI-based

applications. In this dissertation, we explored XAI with the help of a symbolic AI model, namely

Markov Logic Networks (MLNs). In particular, we focused on explaining relational data where

the relationships are defined using the MLN. There are a number of possible future directions in

this space. We outline a few possibilities below.

7.0.1 Model Explanations for Relational Data

In this dissertation, we mainly focused on explaining individual outcomes. That is, given a query,

we explain why a particular prediction was made for that query. Such outcome explanations give

the user a sense of trust and understanding of the prediction as is seen by our results. Further, it is

possible to explain individual predictions even if the model is highly complex. Specifically, in so-

called black-box models, we can still try to explain individual predictions. However, in this case,

an explanation of the full model is still missing. That is, a user cannot understand how the model

behaves in general. For example, in a decision tree classifier, the model itself is easily explainable

regardless of the instance we are trying to classify. In general, for many complex models, it is

difficult if not infeasible to understand how the model would behave for different types of inputs.

In particular, such explanations can be causal explanations [59]. Here, we can identify specific

variables in the model that cause certain types of predictions. On the other hand, we could also

have contrastive explanations [43] to better explain the model. That is, humans in general prefer

explanations where we specify an alternate hypothesis. Specifically, why a prediction was made

96

instead of another prediction. For example, contrasting a healthy with a not healthy patient in terms

of specific attributes such as weight, blood-sugar level, etc. helps a humans establish a frame of

reference. Further, another type of related explanation is counterfactual explanations [43] where

we tend to think of how the output prediction would have been different if the input was modified.

For example, how many pixels should I have changed in this image to change the prediction of the

classifier.

We can extend our work for model explanations in relational data. Some possible directions

include, finding relationships that are contrastive or counterfactual in nature. That is, we can try to

explain a model as follows. We replace a subset of relationships with an alternate relationships in

the data and quantify the effect on the overall distribution. A major challenge here is to scale up

to large relational models. For instance an MLN can contain thousands of ground formulas where

each formula encodes a logical relationship. Finding counterfactual explanations in such a large

space may be challenging and we approximations may be required to do this.

7.0.2 Fairness in AI

A related aspect of AI that has received significant attention is fairness in AI [50]. Here, the

idea is identify if the model is fair from bias towards specific groups of individuals. For instance, a

commonly used example is that image classifiers are trained with more male subjects and therefore

they have better accuracy on images containing male subjects as compared to female subjects. The

techniques proposed in this dissertation can play a role towards achieving fairness in AI systems.

Specifically, one possible direction is to model fairness constraints as formulas in the MLN. We

can then verify if these constraints explain the inferences made by the model. Note that we could

potentially encode complex fairness criteria compared to simple features in this case. For example,

in non-relational classifiers, we could try to point to specific features and check for presence or

absence of the features in an explanation as a validation that the classifier is being fair or not.

However, a single feature may not be sufficient to encode complex criteria. Instead, we could use

first-order logic to specify the criteria for fairness. Of course, simply using the fairness constraints

97

could still lead to predictions that are not fair. However, it would still improve trust in the model

since the explanation would point out to the importance of the fairness constraints in decision

making.

7.0.3 Interactive Explanations

A third possible direction to extend this dissertation is to develop interfaces for explanations.

Specifically, we showed that using human feedback can significantly improve explanations. There-

fore, we can build an interface where a user can specify his/her preferences for explanations and

we can generate a unique model that suits these preferences. The user can then manually adjust

the model such that it generates explanations that the user can easily interpret. Thus, in general we

can dynamically construct the model starting from the type of explanations needed for a particular

user (or task).

98

Chapter 8

Conclusion

Explainable Artificial Intelligence (XAI) has rapidly grown to establish itself as one of the key

research areas in AI. In this dissertation, we focused on outcome explanations for relational data.

Specifically, outcome explanations explain predictions made by the model. We used the language

of Markov Logic to build XAI models. Specifically, Markov Logic Networks (MLNs) are a sym-

bolic AI model that encodes soft logical relationships among variables. However, even though

MLNs are symbolic, explaining their predictions is a hard problem since it involves performing in-

ference over very large models. Therefore, we developed techniques that can efficiently use MLNs

for XAI. Specifically, we first developed an approach that can simplify a large MLN using tied-

parameter learning, where we combined functions in the MLN distribution. Next, we developed

a new approach to explain the marginal probabilities in MLNs based on probabilities generated

from Gibbs sampling. The approach ranks the formulas in the MLN in order of importance in the

marginal probability inference task. However, it turns out that in large MLNs, this is problematic

since Gibbs samples are not as reliable. Specifically, the mixing time of the sampler for large MLNs

is infeasibly large and therefore, the explanations generated may not be as interpretable. There-

fore, we developed a novel approach where we use symmetries to simplify an MLN into a number

of smaller MLNs where the sampler is more reliable. We then generate explanations from these

simpler MLNs and unify them into a global explanation. Finally, we explored the utility of human

feedback in relational explanations. Specifically, since explanations are inherently subjective, it is

often hard for explainers to generate the explanations with the right information. Therefore, we

developed a novel approach where we use the relationships encoded in the MLN to identify sym-

99

metrical instances and then obtain human feedback for a small subset of explanations. We then

propagate the feedback based on the symmetry between instances. We applied our general idea

to generate relational explanations from several well-known model-agnostic explanation methods

such as LIME, SHAP and also a model-specific explanation using the attention mechanism in deep

networks. In all our approaches, we conducted comprehensive evaluations including quantitative

metrics as well as user studies. We showed that relationships in the data play an important role in

enhancing the quality of explanations. While there are a number of open challenges in XAI, we

hope that this dissertation is a step towards making progress in this all important topic.

100

References

[1] Babak Ahmadi et al. “Exploiting Symmetries for Scaling Loopy Belief Propagation and

Relational Training.” In: Machine Learning 92.1 (2013), pp. 91–132.

[2] Ankit Anand et al. “Contextual Symmetries in Probabilistic Graphical Models.” In: Inter-

national Joint Conference in Artificial intelligence. 2016, pp. 3560–3568.

[3] Guy van den Broeck and Adnan Darwiche. “On the Complexity and Approximation of

Binary Evidence in Lifted Inference.” In: Advances in Neural Information Processing Sys-

tems 26. 2013, pp. 2868–2876.

[4] Guy Van den Broeck et al. “On the Tractability of SHAP Explanations.” In: AAAI. 2021.

[5] Hung Hai Bui, Tuyen N. Huynh, and Sebastian Riedel. “Automorphism Groups of Graph-

ical Models and Lifted Variational Inference.” In: UAI. 2013.

[6] Nadia Burkart and Marco F. Huber. “A Survey on the Explainability of Supervised Ma-

chine Learning.” In: J. Artif. Intell. Res. 70 (2021), pp. 245–317.

[7] Li Chou et al. “On Parameter Tying by Quantization.” In: Proceedings of the Thirtieth AAAI

Conference on Artificial Intelligence. Phoenix, Arizona: AAAI Press, 2016, pp. 3241–

3247.

[8] Mark Craven and SeÃ¡n Slattery. “Relational Learning with Statistical Predicate Inven-

tion: Better Models for Hypertext.” In: Machine Learning 43.1/2 (2001), pp. 97–119. URL:

http://dblp.uni-trier.de/db/journals/ml/ml43.html#CravenS01.

[9] A. Darwiche. Modeling and Reasoning with Bayesian Networks. Cambridge University

Press, 2009.

101

[10] Adnan Darwiche and Auguste Hirth. “On The Reasons Behind Decisions.” In: CoRR

abs/2002.09284 (2020).

[11] L. De Raedt, A. Kimmig, and H. Toivonen. “ProbLog: A Probabilistic Prolog and Its Ap-

plication in Link Discovery.” In: Proceedings of the 20th International Joint Conference

on Artificial Intelligence. 2007, pp. 2462–2467.

[12] R. de Salvo Braz. “Lifted First-Order Probabilistic Inference.” PhD thesis. Urbana-Champaign,

IL: University of Illinois, 2007.

[13] R. Dechter. “Bucket elimination: A unifying framework for reasoning.” In: Artificial Intel-

ligence 113 (1999), pp. 41–85.

[14] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for Language

Understanding.” In: NAACL-HLT (1). Association for Computational Linguistics, 2019,

pp. 4171–4186.

[15] P. Domingos and D. Lowd. Markov Logic: An Interface Layer for Artificial Intelligence.

San Rafael, CA: Morgan & Claypool, 2009.

[16] Khan Mohammad Al Farabi et al. “Fine-Grained Explanations Using Markov Logic.” In:

Machine Learning and Knowledge Discovery in Databases - European Conference, ECML

PKDD. 2019.

[17] Mohammad Khan Al Farabi, Somdeb Sarkhel, and Deepak Venugopal. “Efficient Weight

Learning in High-Dimensional Untied MLNs.” In: AISTATS. 2018, pp. 1637–1645.

[18] Ruth C. Fong and Andrea Vedaldi. “Interpretable Explanations of Black Boxes by Mean-

ingful Perturbation.” In: ICCV. IEEE Computer Society, 2017, pp. 3449–3457.

[19] S. Geman and D. Geman. “Stochastic Relaxation, Gibbs Distributions, and the Bayesian

Restoration of Images.” In: IEEE Transactions on Pattern Analysis and Machine Intelli-

gence 6 (1984), pp. 721–741.

102

[20] Michael R. Genesereth and Eric Kao. Introduction to Logic, Second Edition. Morgan &

Claypool Publishers, 2013.

[21] L Getoor and B Tasker. Introduction to statistical relational learning MIT Press. 2007.

[22] Bhavya Ghai et al. “Explainable active learning (xal): An empirical study of how local

explanations impact annotator experience.” In: arXiv preprint arXiv:2001.09219 (2020).

[23] V. Gogate and P. Domingos. “Probabilistic Theorem Proving.” In: Proceedings of the 27th

Conference on Uncertainty in Artificial Intelligence. AUAI Press, 2011, pp. 256–265.

[24] V. Gogate, A. Jha, and D. Venugopal. “Advances in Lifted Importance Sampling.” In: Pro-

ceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence. 2012.

[25] Riccardo Guidotti et al. “A Survey of Methods for Explaining Black Box Models.” In:

ACM Comput. Surv. 51.5 (2018), 93:1–93:42.

[26] David Gunning. “DARPA’s explainable artificial intelligence (XAI) program.” In: IUI.

2019.

[27] Jan Van Haaren et al. “Lifted generative learning of Markov logic networks.” In: Machine

Learning 103.1 (2016), pp. 27–55.

[28] Geoffrey E. Hinton. “Training Products of Experts by Minimizing Contrastive Divergence.”

In: Neural Computation 14.8 (2002), pp. 1771–1800.

[29] Mohammad Maminur Islam, Somdeb Sarkhel, and Deepak Venugopal. “On Lifted Infer-

ence Using Neural Embeddings.” In: AAAI. 2019, pp. 7916–7923.

[30] Sarthak Jain and Byron C. Wallace. “Attention is not Explanation.” In: Proceedings of the

2019 Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, NAACL-HLT. Ed. by Jill Burstein, Christy

Doran, and Thamar Solorio. Association for Computational Linguistics, 2019, pp. 3543–

3556.

103

[31] Stefanie Jegelka, Suvrit Sra, and Arindam Banerjee. “Approximation Algorithms for Ten-

sor Clustering.” In: Algorithmic Learning Theory, 20th International Conference, ALT.

2009, pp. 368–383.

[32] Shaoxiong Ji et al. “A Survey on Knowledge Graphs: Representation, Acquisition and

Applications.” In: CoRR abs/2002.00388 (2020).

[33] Nitin Jindal and Bing Liu. “Opinion Spam and Analysis.” In: Proceedings of the 2008

International Conference on Web Search and Data Mining. 2008, pp. 219–230.

[34] A. Kapishnikov et al. “XRAI: Better Attributions Through Regions.” In: 2019 IEEE/CVF

International Conference on Computer Vision (ICCV). 2019, pp. 4947–4956.

[35] H. Kautz, B. Selman, and Y. Jiang. “A General Stochastic Approach to Solving Problems

with Hard and Soft Constraints.” In: The Satisfiability Problem: Theory and Applications.

Ed. by D. Gu, J. Du, and P. Pardalos. New York, NY: American Mathematical Society,

1997, pp. 573–586.

[36] Tushar Khot et al. “Exploring Markov Logic Networks for Question Answering.” In: Pro-

ceedings of the 2015 Conference on Empirical Methods in Natural Language Processing,

EMNLP 2015, Lisbon, Portugal, September 17-21, 2015. 2015, pp. 685–694.

[37] Pang Wei Koh and Percy Liang. “Understanding Black-box Predictions via Influence Func-

tions.” In: Proceedings of the 34th International Conference on Machine Learning, ICML

2017, Sydney, NSW, Australia, 6-11 August 2017. 2017, pp. 1885–1894. URL: http:

//proceedings.mlr.press/v70/koh17a.html.

[38] S. Kok et al. The Alchemy System for Statistical Relational AI. Tech. rep. http://alchemy.cs.washington.edu.

Seattle, WA: Department of Computer Science and Engineering, University of Washing-

ton, 2006.

[39] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques.

MIT Press, 2009.

104

[40] Todd Kulesza et al. “Principles of explanatory debugging to personalize interactive ma-

chine learning.” In: Proceedings of the 20th international conference on intelligent user

interfaces. 2015, pp. 126–137.

[41] S. L. Lauritzen and D. J. Spiegelhalter. “Local Computations with Probabilities on Graphi-

cal Structures and Their Application to Expert Systems.” In: Journal of the Royal Statistical

Society. Series B (Methodological) 50.2 (1988), pp. 157–224.

[42] Shili Lin and Jie Ding. “Integration of ranked lists via cross entropy Monte Carlo with

applications to mRNA and microRNA Studies.” In: Biometrics 65 (2009), pp. 9–18.

[43] Zachary Chase Lipton. “The Mythos of Model Interpretability.” In: CoRR abs/1606.03490

(2016).

[44] Rachel Lomasky et al. “Active class selection.” In: European Conference on Machine

Learning. Springer. 2007, pp. 640–647.

[45] D. Lowd and P. Domingos. “Efficient Weight Learning for Markov Logic Networks.” In:

Principles of Knowledge Discovery in Databases. Warsaw, Poland, 2007, pp. 200–211.

[46] D. Lowd and P. Domingos. “Recursive random fields.” In: Proceedings of the 20th Inter-

national Joint Conference on Artificial Intelligence. Hyderabad, India: AAAI Press, 2007,

pp. 950–955.

[47] Scott M Lundberg and Su-In Lee. “A Unified Approach to Interpreting Model Predictions.”

In: Advances in Neural Information Processing Systems. Vol. 30. 2017.

[48] Scott M. Lundberg et al. “From local explanations to global understanding with explainable

AI for trees.” In: Nature Machine Intelligence 2.1 (2020), pp. 56–67.

[49] A. McCallum, K. Nigam, and L. Ungar. “Efficient Clustering of High-Dimensional Data

Sets with Application to Reference Matching.” In: Proceedings of the Sixth ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining. 2000, pp. 169–178.

105

[50] Ninareh Mehrabi et al. “A Survey on Bias and Fairness in Machine Learning.” In: ACM

Comput. Surv. 54.6 (2021), 115:1–115:35.

[51] Tomas Mikolov et al. “Distributed Representations of Words and Phrases and their Com-

positionality.” In: NIPS. 2013, pp. 3111–3119.

[52] Tim Miller. “Explanation in artificial intelligence: Insights from the social sciences.” In:

Artif. Intell. 267 (2019), pp. 1–38.

[53] Happy Mittal et al. “Fine Grained Weight Learning in Markov Logic Networks.” In: Work-

shop on Statstical Relational AI. 2016.

[54] Brent Mittelstadt, Chris Russell, and Sandra Wachter. “Explaining Explanations in AI.”

In: Proceedings of the Conference on Fairness, Accountability, and Transparency. 2019,

279âC“288.

[55] M. Mladenov, A. Globerson, and K. Kersting. “Efficient Lifting of MAP LP Relaxations

Using k-Locality.” In: Proceedings of the 17th International Conference on Artificial In-

telligence and Statistics (2014).

[56] Mathias Niepert. “Markov Chains on Orbits of Permutation Groups.” In: UAI. AUAI Press,

2012, pp. 624–633.

[57] Mathias Niepert and Guy Van den Broeck. “Tractability through exchangeability: A new

perspective on efficient probabilistic inference.” In: Proceedings of the 28th AAAI Confer-

ence on Artificial Intelligence, AAAI Conference on Artificial Intelligence. 2014.

[58] Feng Niu et al. “Tuffy: Scaling up Statistical Inference in Markov Logic Networks using

an RDBMS.” In: PVLDB 4.6 (2011), pp. 373–384.

[59] J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge, UK: Cambridge Uni-

versity Press, 2000.

106

[60] D. Poole. “First-Order Probabilistic Inference.” In: Proceedings of the 18th International

Joint Conference on Artificial Intelligence. Acapulco, Mexico: Morgan Kaufmann, 2003,

pp. 985–991.

[61] H. Poon and P. Domingos. “Joint Inference in Information Extraction.” In: Proceedings of

the 22nd National Conference on Artificial Intelligence. Vancouver, Canada: AAAI Press,

2007, pp. 913–918.

[62] H. Poon and P. Domingos. “Joint Unsupervised Coreference Resolution with Markov

Logic.” In: Proceedings of the 2008 Conference on Empirical Methods in Natural Lan-

guage Processing. Honolulu, HI: ACL, 2008, pp. 649–658.

[63] H. Poon and P. Domingos. “Sound and Efficient Inference with Probabilistic and Determin-

istic Dependencies.” In: Proceedings of the Twenty-First National Conference on Artificial

Intelligence. This volume. Boston, MA: AAAI Press, 2006.

[64] Shebuti Rayana and Leman Akoglu. Yelp Dataset for Anomalous Reviews. Tech. rep. http://odds.cs.stonybrook.edu.

Stony Brook University, 2015.

[65] Radim Řehůřek and Petr Sojka. “Software Framework for Topic Modelling with Large

Corpora.” In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frame-

works. 2010, pp. 45–50.

[66] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “Anchors: High-Precision Model-

Agnostic Explanations.” In: AAAI Conference on Artificial Intelligence (AAAI). 2018.

[67] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “"Why Should I Trust You?":

Explaining the Predictions of Any Classifier.” In: Knowledge Discovery and Data Mining

(KDD). 2016.

[68] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “"Why Should I Trust You?":

Explaining the Predictions of Any Classifier.” In: Knowledge Discovery and Data Mining

(KDD). 2016.

107

[69] Matthew Richardson and Pedro Domingos. “Markov logic networks.” In: Machine learn-

ing 62.1-2 (2006), pp. 107–136.

[70] Andrew Slavin Ross, Michael C. Hughes, and Finale Doshi-Velez. “Right for the Right

Reasons: Training Differentiable Models by Constraining their Explanations.” In: IJCAI.

ijcai.org, 2017, pp. 2662–2670.

[71] D. Roth. “On the Hardness of Approximate Reasoning.” In: Artificial Intelligence 82 (1996),

pp. 273–302.

[72] Chiradeep Roy et al. “Explainable Activity Recognition in Videos.” In: Joint Proceedings

of the ACM IUI Workshops. 2019.

[73] Stuart J. Russell and Peter Norvig. “Artificial Intelligence : A Modern Approach.” In:

Malaysia; Pearson Education Limited, 2016.

[74] Christopher De Sa et al. “Rapidly Mixing Gibbs Sampling for a Class of Factor Graphs

Using Hierarchy Width.” In: Advances in Neural Information Processing Systems 28. 2015,

pp. 3097–3105.

[75] Somdeb Sarkhel et al. “Efficient Inference for Untied MLNs.” In: Proceedings of the

Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Mel-

bourne, Australia, August 19-25, 2017. 2017, pp. 4617–4624.

[76] Somdeb Sarkhel et al. “Lifted MAP inference for Markov Logic Networks.” In: Proceed-

ings of the 17th International Conference on Artificial Intelligence and Statistics (AISTATS-

14) (2014).

[77] Somdeb Sarkhel et al. “Scalable Training of Markov Logic Networks Using Approximate

Counting.” In: AAAI, 2016.

[78] R. R. Selvaraju et al. “Grad-CAM: Visual Explanations from Deep Networks via Gradient-

Based Localization.” In: 2017 IEEE International Conference on Computer Vision (ICCV).

2017, pp. 618–626.

108

[79] Burr Settles. “Closing the loop: Fast, interactive semi-supervised annotation with queries

on features and instances.” In: Proceedings of the 2011 Conference on Empirical Methods

in Natural Language Processing. 2011, pp. 1467–1478.

[80] Xiaoting Shao et al. “Right for Better Reasons: Training Differentiable Models by Con-

straining their Influence Functions.” In: AAAI. 2021, pp. 9533–9540.

[81] Vishal Sharma et al. “Lifted Marginal MAP Inference.” In: UAI. AUAI Press, 2018, pp. 917–

926.

[82] Andy Shih, Arthur Choi, and Adnan Darwiche. “A Symbolic Approach to Explaining

Bayesian Network Classifiers.” In: Proceedings of the Twenty-Seventh International Joint

Conference on Artificial Intelligence, IJCAI 2018. 2018, pp. 5103–5111.

[83] P. Singla and P. Domingos. “Discriminative Training of Markov Logic Networks.” In: Pro-

ceedings of the Twentieth National Conference on Artificial Intelligence. Pittsburgh, PA:

AAAI Press, 2005, pp. 868–873.

[84] P. Singla and P. Domingos. “Entity Resolution with Markov Logic.” In: Proceedings of

the Sixth IEEE International Conference on Data Mining. Hong Kong: IEEE Computer

Society Press, 2006, pp. 572–582.

[85] P. Singla and P. Domingos. “Lifted First-Order Belief Propagation.” In: Proceedings of the

Twenty-Third AAAI Conference on Artificial Intelligence. Chicago, IL: AAAI Press, 2008,

pp. 1094–1099.

[86] Alison Smith-Renner et al. “No explainability without accountability: An empirical study

of explanations and feedback in interactive ml.” In: Proceedings of the 2020 CHI Confer-

ence on Human Factors in Computing Systems. 2020, pp. 1–13.

[87] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. “Axiomatic Attribution for Deep Net-

works.” In: ICML. 2017, pp. 3319–3328.

[88] Stefano Teso and Kristian Kersting. “"Why Should I Trust Interactive Learners?" Explain-

ing Interactive Queries of Classifiers to Users.” In: CoRR abs/1805.08578 (2018).

109

[89] Son D. Tran and Larry S. Davis. “Event modeling and recognition using markov logic

networks.” In: ECCV. 2008.

[90] G. Van den Broeck et al. “Lifted Probabilistic Inference by First-Order Knowledge Com-

pilation.” In: Proceedings of the 22nd International Joint Conference on Artificial Intelli-

gence. 2011, pp. 2178–2185.

[91] Ashish Vaswani et al. “Attention is All you Need.” In: Neural Information Processing

Systems. 2017, pp. 5998–6008.

[92] D. Venugopal and V. Gogate. “On Lifting the Gibbs Sampling Algorithm.” In: Proceedings

of the 26th Annual Conference on Neural Information Processing Systems (NIPS). 2012,

pp. 1664–1672.

[93] Deepak Venugopal and Vibhav Gogate. “Evidence-based Clustering for Scalable Inference

in Markov Logic.” In: ECML PKDD. 2014.

[94] Deepak Venugopal, Somdeb Sarkhel, and Kyle Cherry. “Non-parametric Domain Approxi-

mation for Scalable Gibbs Sampling in MLNs.” In: Proceedings of the Thirty-Second Con-

ference on Uncertainty in Artificial Intelligence, UAI 2016, June 25-29, 2016, New York

City, NY, USA. 2016.

[95] Deepak Venugopal, Somdeb Sarkhel, and Vibhav Gogate. “Just Count the Satisfied Ground-

ings: Scalable Local-Search and Sampling Based Inference in MLNs.” In: Twenty-Ninth

AAAI Conference on Artificial Intelligence. 2015.

[96] Deepak Venugopal et al. “Relieving the Computational Bottleneck: Joint Inference for

Event Extraction with High-Dimensional Features.” In: Proceedings of the 2014 Con-

ference on Empirical Methods in Natural Language Processing (EMNLP). ACL, 2014,

pp. 831–843.

[97] Lodewyk F. A. Wessels and Etienne Barnard. “Avoiding false local minima by proper

initialization of connections.” In: IEEE Trans. Neural Networks 3.6 (1992), pp. 899–905.

110

[98] Sarah Wiegreffe and Yuval Pinter. “Attention is not not Explanation.” In: EMNLP/IJCNLP

(1). Association for Computational Linguistics, 2019, pp. 11–20.

[99] J. S. Yedidia, W. T. Freeman, and Y. Weiss. “Generalized Belief Propagation.” In: Advances

in Neural Information Processing Systems 13. Ed. by T. Leen, T. Dietterich, and V. Tresp.

Cambridge, MA: MIT Press, 2001, pp. 689–695.

[100] Quanshi Zhang and Song-Chun Zhu. “Visual Interpretability for Deep Learning: a Survey.”

In: Arxiv (2018). URL: http://arxiv.org/abs/1802.00614.

[101] Zhiqiang Zheng and Balaji Padmanabhan. “On active learning for data acquisition.” In:

2002 IEEE International Conference on Data Mining, 2002. Proceedings. IEEE. 2002,

pp. 562–569.

[102] Xiaojin Zhu and Zoubin Ghahramani. Learning from Labeled and Unlabeled Data with

Label Propagation. Tech. rep. 2002.

111

	Explanation Techniques using Markov Logic Networks
	Recommended Citation

	tmp.1665434523.pdf.PW6mL

