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Preface 
 
This Dissertation consists of abstract, introduction and 5 distinct chapters which each 

of those chapters are published (1, 2 and 4) or (3 and 5) will be published. The citations 
of published chapters are given in the below. 

Chapter 1:  Etesami, S.A. and Asadi, E., 2018. Molecular dynamics for near melting 
temperatures simulations of metals using modified embedded-atom method. Journal of 
Physics and Chemistry of Solids, 112, pp.61-72. 

Chapter 2: Etesami, S.A., Laradji, M. and Asadi, E., 2019. Transferability of 
interatomic potentials in predicting the temperature dependency of elastic constants for 
titanium, zirconium and magnesium. Modelling Simul. Mater. Sci. Eng., 27(2). 

Chapter 4: Etesami, S.A., Baskes, M.I., Laradji, M. and Asadi, E., 2018. 
Thermodynamics of solid Sn and PbSn liquid mixtures using molecular dynamics 
simulations. Acta Materialia, 161, pp.320-330. 

i 



Abstract 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Design of novel materials requires understanding thermos-physical properties of 
materials during their manufacturing process and working conditions. Microstructure of 
materials determines the overall physical and mechanical properties of materials. 
Specifically in metals, the formation of solid crystal from liquid is considered as one of the 
most important factors during the solidification, which can elucidate the final formation of 
microstructure of materials. The experimental study of the phenomena related to the 
coexistence of solid–liquid phases is generally arduous. Thanks to the recent improvements 
in computational power, many industrial institutions have started to employ computational 
materials modeling as a suitable alternative to costly and/or impractical experiments. 
Molecular dynamic (MD) is a powerful computational approach that can be used for 
tracking individual atoms with great accuracy in length scales of tens to hundreds 
nanometers and timescales of picoseconds to nanoseconds. However, the reliability of the 
MD simulations for each alloy system is based on the reliability of how the atoms “talk” 
or interact with each other, through the interatomic potential energy. Interatomic potentials, 
which are mathematical functions of the coordinates of all atoms in the system, are essential 
for determining both equilibrium and non-equilibrium properties of materials. The 
objective of this dissertation is to develop advanced interatomic potentials in the concept 
of modified embedded-atom method (MEAM) for alloy system that are capable of 
predictive modeling of alloys in solid-liquid transitions. Interatomic potentials including 
the MEAM contain parameters that are determined by fitting model predictions to specific 
experimental or first principle data, which are mostly to the 0-K properties. In order to 
study the liquid and solid properties at the high and the near melting point, the potential 
has to be fitted to the not only 0-K properties but also to the high temperature properties 
such as melting point and elastic constants at the high temperatures. Therefore, our goal in 
this dissertation, is calculating the thermodynamics and kinetics properties of solid and 
liquid in metallic system at high temperatures by the MD simulation through developing 
the reliable interatomic potential for studying pure Fe, Cu, Ni, Ti, Pb, and Sn and binary 
system (Pb-Sn). 
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1. INTRODUCTION 
 

Human civilization shows a considerable demand for designing new materials and studying the 

behavior of them in different metallurgical processes. Therefore, there is always a need to 

incorporate materials scientists and engineers into the manufacturing and production of any 

industrial parts. The main goal of materials science is to investigate the relationship among the 

property, processing, performance of materials and their structures at different scales (electron, 

crystalline, mico and macro) [1].  

In today’s world, there are challenging problems in manufacturing of metals and their behavior 

and properties, which have not been clarified yet. For instance, auto companies are constantly 

looking for the steels with high strength and lower weight to increase the performance of their 

produces [2], [3]. In this example, the strategy should be in the way that illustrates clearly 

relationship among the composition of employed steel, the processing and manufacturing of it and 

its microstructure in order to achieve the desirable performance in the car [4].   

Generally, there are two approaches to deal with the all questions in the materials science and 

engineering, namely, experimental and computational methods. Recent improvements in the 

theoretical methods, accompanied with a dramatic increase in the performance of supercomputers, 

have resulted into a way that scientists can couple the experimental approach to the computational 

method with the advanced large-scale simulation and modeling in the field of materials to optimum 

the performance of their products for specific composition, process, and microstructure. Fig. 1 

shows the data extracted form ISI Web of Knowledge that reflects the significantly increasing 

trend in publications of employed computational methods in materials engineering [5]. 
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Fig. 1 (a). Papers with the “Coupling Experiments and Modeling” as topic area and with 

“Multiscale Modeling” in the title. The circle symbols denote the introduction of specific 

experimental technologies and (b) Papers focused on the modeling and various experimental 

techniques [5]. 

Because almost all problems in the materials science and engineering are physically explained in 

the multi-scale in the nature where physical mechanisms at the atomistic length scale and 

femtosecond time scale result in a profound influence on how materials perform at the larger 

spatial and time scale [5]. For example, tensile test as a method for evolution of mechanical 

property of material, can be investigated on the macroscopic lever where we only study the 

ultimate tensile strength, the maximum elongation and the reduction in area of materials. However, 

these results significantly have been influenced by the microstructure of materials and phases, 

which are observable by optical microscopy. In fact, it is right to say that those mechanical 

properties have strongly connected with the interaction of atoms with each other at nanoscale. In 

this example, some atomistic defects such as dislocation and twins can change profoundly the 

origin of plastic deformation and result in the crack formation at nanoscale and finally lead in the 
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failure of materials at the macroscopic level. Therefore, computational techniques same as the 

experimental methods are involved in characterization and studying materials in different ranges 

of scale from small size (1-100 Angstroms) to the large scale (1-10 millimeters). Fig 2 shows the 

different computational approaches suitable in different ranges of time and length for simulation 

in materials science and engineering [6]. In the next paragraph, the general explanation about four 

major computational methods, namely density functional theory, molecular dynamics, phase field 

and phase filed crystal, are given to elucidate the pros and cons of each simulation methods. 

 

  

Fig. 2. Computational and experimental methods in different ranges of length and time [6]. 

 

Starting from smallest scale in length and time, density functional theory (DFT) is considered as a 

computational quantum mechanical model to simulate the behavior of condensed phase (mostly 

solid) at the nanoscale and time scale of femtosecend [7]. DFT is based on the defining the 

Hamiltonian of the system based on the electron density (can be found from the solution of 
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Schrödinger’s equation). This method is very accurate for reproducing the physical properties of 

solid system including defect formation energy [8], enthalpy of mixing for alloy system [9] and 

calculation of surface energies of various crystallographic planes of crystals at low temperatures 

[10]. Due to the high computational cost of DFT because of incorporating the electrons in the 

energy of the system and the solution of the many-body Schrodinger equation of the system, only 

several hundreds of atoms can be simulated by the DFT and mostly it is accompanied with 

challenges in calculations of materials properties at high temperature.  

Molecular dynamic (MD) is a powerful computational approach that can be used for tracking 

individual atoms with great accuracy which is the higher scale modeling in length scales (tens to 

hundreds nanometers) and timescales (picoseconds to nanoseconds) camped with the DFT. In MD, 

in comparison with the DFT, due to non-consideration of explicit interactions between electrons, 

the number of atoms in a simulation can easily be increased. In this simulation, the trajectories of 

atoms are determined by numerically solving the Newton’s equations of motion. Today’s computer 

power easily allows MD simulations of large systems containing up to one million and, in some 

situations, up to a billion atoms [11], [12], consequently enabling simulations of system sizes 

relevant to many metallurgical processes. For instance, MD simulations have been employed to 

study plastic deformation of metallic systems [13], grain boundaries properties [14], phase 

transformation [15], solidification, and segregation-induced structural transition at grain 

boundaries [16].  

For higher scale modeling, phase-field (PF) simulations are among the most computationally 

effective phenomenological techniques for modeling evolution of microstructure at experimentally 

verifiable length and time scales, i.e., the mesoscale length and diffusive time scales [17]. The PF 

method has been employed for simulation of many systems including microstructural evolution 



5 
 

during the solidification and formation of dendrites [18]. The PF approach is based on a free energy 

function in terms of one of few order parameters, from which a Langevin equation (diffusion 

equation) is derived and solved numerically. For example, in the case of liquid-solid kinetics or 

spinodal decomposition, a value of zero for the order parameter represents the liquid phase 

(precipitate) and a value of one for the order parameter represents the solid phase (matrix) and a 

value between zero and one represents the interfacial regions. Therefore, this order parameter 

determines the state of phase in the microstructure. Although the PF approach has been extended 

to model different microstructural phenomena by introducing auxiliary phase-field order 

parameters [19] the phenomenological nature of the PF and undetermined PF model parameters 

are still major challenges in accurately predicting microstructures.   

The phase-field crystal (PFC) approach is considered as a modeling approach bridging small 

atomistic length scales with longer length scales. It is a generalization of PF modeling, but acting 

on atomistic length scale and over diffusive time scales [20]. Either the density field in PFC model 

is a constant (liquid) or periodic (solid) function. Therefore, it naturally incorporates elasticity, 

plasticity, and many solid–liquid properties such as surface energies and anisotropy, grain 

boundary, and dislocations. In addition, it was shown [21]  that the PFC can be derived from 

classical DFT by some approximations for both pure metals and binary alloys. Therefore, the PFC 

approach provides many atomistic properties of materials while requiring the fewer model 

parameters than the PF models. The parameters of PFC models can be easily obtained from MD 

simulations [17]. To sum up, there are different computational methods for simulations of 

materials behavior and each of those methods have their advantages and disadvantages. DFT is 

perfect method for simulating solid phase in the small scale. The PF and even the PFC are generally 

phonological modeling, which are hardly quantified and the MD simulation can be used to 
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calculate physical and mechanical properties of materials with desirable accuracy and acts as a 

bridge to connect higher scale to the lower scale.  

Controlling microstructure of metals during the high temperature metallurgical processes such as 

solidification plays a vital role in the final properties of as-cast materials and subsequently the heat 

treatment [22]. Because the solidification process consists of many aspects of physics, such as 

convection, heat transfer and solute diffusion, it is arduous to control precisely the solidified 

structure [23]. Additionally, it is not yet generally straightforward to observe the dynamics of 

solidification, although several in situ observations have been carried out [24], [25]. In fact, the 

solidification starts from nucleus at nano-scale and therefore studying the behavior of materials at 

high temperatures near to the melting point is considerably important. In this dissertation, we 

employed the MD simulation for investigation of properties of materials (solid-liquid) for high-

temperature metallurgical processing.   

MD simulations considerably can help scientists in better understanding the initial evolution of 

solidification through homogenous [26] and heterogeneous nucleation [27] where employing the 

experimental method is really challenging. In addition, by using the MD simulation, we can 

calculate the solid-liquid interfacial free energy. Determining the quantitative value of solid-liquid 

interfacial free energy defined as the needed reversible work to generate a unit area of the solid-

liquid interface at a specific temperature, volume and chemical potential is one of the most 

important thermodynamic properties of materials, which can give scientists and engineers the 

better understanding of behavior of materials during the different metallurgical processes 

involving solid and liquid phases [28]. Additionally, the effect of orientation of crystal on the 

interfacial free energy (anisotropy) is getting more attention recently because it can show the 

preference direction of dendrite growth during the directional solidification [29]. Generally, 
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determination of solid-liquid interfacial free energy is a considerable challenge for experimental 

researchers, which accompanies with approximation which is usually carried out by grain 

boundary groove method where the solid and liquid are equilibrated at grain boundary with groove 

shapes [30]. The difficulty of the process is increased if the measurement of solid-liquid interfacial 

energy in the binary system is demanded. This thermodynamic quantity can be measured by the 

MD simulation [31]. However, the reliability of the MD simulation for each system is based on 

the reliability of how the atoms “talk” or interact with each other, through the interatomic potential 

energy. 

Interatomic potentials, which are mathematical functions of the coordinates of all atoms in the 

system, are essential for determining both equilibrium and non-equilibrium properties of materials. 

In the MD simulation, the configurational trajectories of the system are obtained from the 

numerical integration of the equations of motion that are derived from the interatomic potential. 

Therefore, the required computational resource for determination of the trajectories of the atoms 

in phase space depends the complexity of the interatomic potential. Embedded-atom method 

(EAM) [32] and modified embedded-atom method (MEAM) [33], [34] are among those frequently 

used interatomic potentials for metallic systems. The MEAM formulation is similar to the EAM 

formulation, but with the additional account of the directionality of the bonds. As a result, the 

MEAM has the higher computational cost than the EAM. The MEAM is extensively employed in 

the computational materials science and engineering to simulate metallic systems; e.g. the MEAM 

formalism can successfully regenerate the properties of wide range of elements such as body-

centered cubic (bcc), and face-centered cubic (fcc) structure [35]–[37] and more complex 

crystalline structures such as hexagonally close packed (hcp) [38], diamond, and tetragonal  
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structures [39] using the same formulation. In this work, we employed the MEAM potential for 

our atomistic simulation due to the higher accuracy and less needed fitting parameters. 

The total energy of a unary system is calculated according to the MEAM equation [40] by 

𝐸𝐸 = ∑ �𝐹𝐹(𝜌𝜌𝚤𝚤�) + 1
2
∑ 𝑆𝑆𝑖𝑖𝑖𝑖𝜙𝜙𝑖𝑖𝑖𝑖(𝑅𝑅𝑖𝑖𝑖𝑖)𝑖𝑖(≠𝑖𝑖) �𝑖𝑖                                                                   (1)                                                                                   

where 𝐹𝐹𝑖𝑖, 𝑆𝑆𝑖𝑖𝑖𝑖 and 𝜙𝜙 is the energy required to embed an atom in the background electron density �̅�𝜌𝑖𝑖 

at site 𝑖𝑖 named as embedding energy, the screening factor between atoms at sites 𝑖𝑖 and 𝑗𝑗 [40], [41] 

and the pair interaction between atoms at sites 𝑖𝑖 and 𝑗𝑗  with a separation distance of 𝑅𝑅𝑖𝑖𝑖𝑖 , 

respectively.  

The embedding function is calculated by 

𝐹𝐹(𝜌𝜌𝚤𝚤�) = �
𝐴𝐴𝐸𝐸0 𝜌𝜌𝑖𝑖

𝜌𝜌�0
�ln 𝜌𝜌𝑖𝑖

𝜌𝜌�0
�       𝑖𝑖𝑖𝑖 𝜌𝜌𝑖𝑖 ≥ 0 

−𝐴𝐴𝐸𝐸0 𝜌𝜌𝑖𝑖
𝜌𝜌�0

                𝑖𝑖𝑖𝑖  𝜌𝜌𝑖𝑖 < 0    
,                                                                        (2)                                                                                        

where 𝐴𝐴, 𝐸𝐸0, 𝜌𝜌𝑖𝑖 is an arbitrary scaling factor, the cohesive energy and the background density for 

atom at site 𝑖𝑖 in its reference (typically equilibrium) structure, respectively.  To guarantee that a 

system does not enter an unphysical regime, negative electron density is also considered in the 

embedding function. The background electron density �̅�𝜌𝑖𝑖 is composed of spherically symmetric 

(𝜌𝜌𝑖𝑖
(0)) and angular (𝜌𝜌𝑖𝑖

(1), 𝜌𝜌𝑖𝑖
(2), and 𝜌𝜌𝑖𝑖

(3)) partial electron densities: 

 𝜌𝜌𝑖𝑖
(0) = ∑ 𝑆𝑆𝑖𝑖𝑖𝑖 𝜌𝜌𝑖𝑖

𝑎𝑎(0)(𝑅𝑅𝑖𝑖𝑖𝑖)𝑖𝑖(≠𝑖𝑖) ,                                                                                       (3) 

( 𝜌𝜌𝑖𝑖
(1))2 = ∑ �∑

𝑅𝑅𝑖𝑖𝑖𝑖
𝛼𝛼

𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖≠𝑖𝑖 𝑆𝑆𝑖𝑖𝑖𝑖 𝑡𝑡(1)𝜌𝜌𝑖𝑖
𝑎𝑎(1)(𝑅𝑅𝑖𝑖𝑖𝑖)�

2 𝜌𝜌𝑖𝑖
(0)

𝑄𝑄𝑘𝑘𝛼𝛼  , 

( 𝜌𝜌𝑖𝑖
(2))2 = �∑ �∑

𝑅𝑅𝑖𝑖𝑖𝑖
𝛼𝛼𝑅𝑅𝑖𝑖𝑖𝑖

𝛽𝛽

𝑅𝑅𝑖𝑖𝑖𝑖
2𝑖𝑖≠𝑖𝑖 𝑆𝑆𝑖𝑖𝑖𝑖 𝑡𝑡(2)𝜌𝜌𝑖𝑖

𝑎𝑎(2)(𝑅𝑅𝑖𝑖𝑖𝑖)�
2

𝛼𝛼,𝛽𝛽 − 1
3
�∑ 𝑆𝑆𝑖𝑖𝑖𝑖 𝑡𝑡(2)𝜌𝜌𝑖𝑖

𝑎𝑎(2)(𝑅𝑅𝑖𝑖𝑖𝑖)𝑖𝑖≠𝑖𝑖 �
2
� 𝜌𝜌𝑖𝑖

(0)

𝑄𝑄𝑘𝑘
 , 

( 𝜌𝜌𝑖𝑖
(3))2 = �∑ �∑

𝑅𝑅𝑖𝑖𝑖𝑖
𝛼𝛼𝑅𝑅𝑖𝑖𝑖𝑖

𝛽𝛽𝑅𝑅𝑖𝑖𝑖𝑖
𝛾𝛾

𝑅𝑅𝑖𝑖𝑖𝑖
3𝑖𝑖≠𝑖𝑖 𝑆𝑆𝑖𝑖𝑖𝑖 𝑡𝑡(3)𝜌𝜌𝑖𝑖

𝑎𝑎(3)�𝑅𝑅𝑖𝑖𝑖𝑖��
2

𝛼𝛼,𝛽𝛽,𝛾𝛾 − 3
5
∑ �∑

𝑅𝑅𝑖𝑖𝑖𝑖
𝛼𝛼

𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖≠𝑖𝑖 𝑆𝑆𝑖𝑖𝑖𝑖 𝑡𝑡(3)𝜌𝜌𝑖𝑖
𝑎𝑎(3)�𝑅𝑅𝑖𝑖𝑖𝑖��

2

𝛼𝛼 �
𝜌𝜌𝑖𝑖

(0)

𝑄𝑄𝑘𝑘
, ,                                         
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 where 𝑄𝑄𝑘𝑘 = ∑ 𝑆𝑆𝑖𝑖𝑖𝑖 �𝑡𝑡(𝑘𝑘)�
2
𝜌𝜌𝑖𝑖
𝑎𝑎(0)�𝑅𝑅𝑖𝑖𝑖𝑖�,𝐾𝐾 = 1, 2, 3𝑖𝑖≠𝑖𝑖  and 𝜌𝜌𝑖𝑖

𝑎𝑎(ℎ)(ℎ = 0, 1, 2 𝑎𝑎𝑎𝑎𝑎𝑎 3) are the atomic 

electron densities at site 𝑗𝑗  at distance 𝑅𝑅𝑖𝑖𝑖𝑖  from site 𝑖𝑖 . 𝑅𝑅𝑖𝑖𝑖𝑖𝛼𝛼 , 𝑅𝑅𝑖𝑖𝑖𝑖
𝛽𝛽 , and 𝑅𝑅𝑖𝑖𝑖𝑖

𝛾𝛾  are the α, β, and γ 

components of the distance vector between atoms at sites 𝑖𝑖  and 𝑗𝑗 , respectively, and 𝑡𝑡(ℎ)(ℎ =

1, 2 𝑎𝑎𝑎𝑎𝑎𝑎 3)  are adjustable element-dependent parameters. The MEAM potential utilizes two 

formalisms for the calculation of many-body interactions: the first nearest-neighbor (1NN) [40] 

and the (2NN) [42]. In the 2NN formalism, the summary in Eq. (3) for the computation of partial 

electron densities are combined using an arbitrary expression involving adjustable element-

dependent parameters 𝑡𝑡(ℎ)(ℎ = 1, 2 𝑎𝑎𝑎𝑎𝑎𝑎 3): 

𝜌𝜌𝚤𝚤� = 2𝜌𝜌𝑖𝑖
(0)

1+𝑒𝑒−𝛤𝛤𝑖𝑖
,𝛤𝛤𝑖𝑖 = ∑ 𝑡𝑡𝚤𝚤�

(ℎ) �𝜌𝜌𝑖𝑖
(ℎ)

𝜌𝜌𝑖𝑖
(0)�

2

,3
ℎ=1 𝑡𝑡𝚤𝚤�

(ℎ) = 1

𝜌𝜌𝑖𝑖
(0)∑ 𝑡𝑡(ℎ)

𝑖𝑖≠𝑖𝑖 𝜌𝜌𝑖𝑖
𝑎𝑎(0)𝑆𝑆𝑖𝑖𝑖𝑖 ,                             (4)                                                       

where the atomic electron density is 𝜌𝜌𝑖𝑖
𝑎𝑎(ℎ)(𝑅𝑅) = 𝜌𝜌0𝑒𝑒−𝛽𝛽

(ℎ)( 𝑅𝑅
𝑅𝑅0
−1),  𝛽𝛽(ℎ)(ℎ = 0, 1, 2 and 3)  are 

adjustable parameters and 𝑅𝑅0  is the nearest neighbor distance in the equilibrium reference 

structure. 

According to the 2NN formalism, the pair interaction is given by 

𝜙𝜙(𝑅𝑅) = 2
𝑍𝑍0

{𝐸𝐸𝑢𝑢(𝑅𝑅)− 𝐹𝐹[�̅�𝜌𝑟𝑟𝑒𝑒𝑟𝑟(𝑅𝑅)]}.                                                                               (5)                                                                                                              

In this equation, �̅�𝜌𝑟𝑟𝑒𝑒𝑟𝑟(𝑅𝑅) and 𝐸𝐸𝑢𝑢(𝑅𝑅) is the background electron density in the reference structure 

calculated from Eq. (4) at a nearest-neighbor distance of the R, and the energy per atom taken from 

the universal equation of state (UEOS) of Rose et al. [43], respectively.  The UEOS is evaluated 

by  

𝐸𝐸𝑢𝑢(𝑅𝑅) = −𝐸𝐸0 �1 + 𝑎𝑎∗ + 𝛿𝛿 𝑅𝑅0

𝑅𝑅
(𝑎𝑎∗)3� 𝑒𝑒−𝑎𝑎∗,                                                                     (6)                                                                                       

where  

𝑎𝑎∗ = 𝛼𝛼0 � 𝑅𝑅
𝑅𝑅0
− 1� ,               𝛿𝛿 = �𝛿𝛿

𝑟𝑟  𝑖𝑖𝑖𝑖 𝑎𝑎∗ < 0
𝛿𝛿𝑎𝑎  𝑖𝑖𝑖𝑖 𝑎𝑎∗ ≥ 0 , 
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𝛼𝛼0 = �9𝐾𝐾0𝛺𝛺0

𝐸𝐸0
 , for three-dimensional (3D) crystal, 

 𝛼𝛼0 = �𝐾𝐾0

𝐸𝐸0
𝑅𝑅0, for diatomic.                                                                                          (7)                                                                                                              

In the above equations, 𝐾𝐾0(𝑘𝑘0) and 𝛺𝛺0 are the bulk modulus (spring constant) and the atomic 

volume of the reference structure, respectively, and δ is an adjustable element-dependent 

parameter that has two components repulsive 𝛿𝛿𝑟𝑟 and attractive 𝛿𝛿𝑎𝑎. The UEOS based on 2NN is 

𝑅𝑅𝑢𝑢(𝑅𝑅) = 𝐹𝐹[�̅�𝜌𝑟𝑟𝑒𝑒𝑟𝑟(𝑅𝑅)] + 𝑍𝑍1
2
𝜙𝜙(𝑅𝑅) + 𝑍𝑍2𝑆𝑆

2
𝜙𝜙(𝑎𝑎𝑅𝑅),                                                              (8)                                                                                 

where 𝑍𝑍1 and 𝑍𝑍2 are the number of 1NN and 2NN atoms, respectively, and 𝑎𝑎 is the ratio between 

the 2NN and 1NN distances. 𝑆𝑆 and 𝑎𝑎 are constants for a given value of 𝐶𝐶𝑚𝑚𝑖𝑖𝑚𝑚. Now, the background 

electron density in the reference structure �̅�𝜌𝑟𝑟𝑒𝑒𝑟𝑟(𝑅𝑅) is presented as a function of 1NN distance 𝑅𝑅 

by  

 �̅�𝜌𝑟𝑟𝑒𝑒𝑟𝑟(𝑅𝑅) = 𝑍𝑍1𝜌𝜌𝑎𝑎(0)(𝑅𝑅) + 𝑍𝑍2𝑆𝑆𝜌𝜌𝑎𝑎(0)(𝑎𝑎𝑅𝑅),                                                                      (9)                                                                                                

where 𝜌𝜌𝑎𝑎(0)(𝑅𝑅) is the atomic electron density. Eq. (8) can be written as  

𝐸𝐸𝑢𝑢(𝑅𝑅) = 𝐹𝐹[�̅�𝜌𝑟𝑟𝑒𝑒𝑟𝑟(𝑅𝑅)] + 𝑍𝑍1
2

ϕ(𝑅𝑅) + 𝑍𝑍1
2
𝜓𝜓(𝑅𝑅),                                                                      (10)                                                                                              

where 𝜓𝜓(𝑅𝑅) = ϕ(𝑅𝑅) + (𝑍𝑍2𝑆𝑆
𝑍𝑍1

)ϕ(𝑎𝑎𝑅𝑅). Thus, the pair potential ϕ(𝑅𝑅) is given by 

ϕ(𝑅𝑅) = 𝜓𝜓(𝑅𝑅) + ∑ (−1)𝑚𝑚𝑁𝑁
𝑚𝑚=1 (𝑍𝑍2𝑆𝑆

𝑍𝑍1
)𝑚𝑚ψ(𝑎𝑎𝑚𝑚𝑅𝑅).                                                            (11)                                                                                                     

 In the above equation, the summation is performed until the correct value of the energy is obtained 

for the equilibrium reference structure.  

The screening function is presented as ∏ 𝑆𝑆𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘≠𝑖𝑖,𝑖𝑖 , where the interaction between atoms at sites 𝑖𝑖 

and 𝑗𝑗 are screened by neighboring atoms at site 𝑘𝑘. If all three sites 𝑖𝑖 , 𝑗𝑗 and 𝑘𝑘 lie on an ellipse in 

the 𝑥𝑥𝑥𝑥 plane with sites 𝑖𝑖 and 𝑗𝑗 on the 𝑥𝑥-axis, the following equation results: 
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𝑥𝑥2 + 1
𝐶𝐶
𝑥𝑥2 = �1

2
𝑅𝑅𝑖𝑖𝑖𝑖�

2
.                                                                                                       (12)                                                                                                                          

where 𝐶𝐶𝑖𝑖𝑘𝑘𝑖𝑖 =
�2�𝑋𝑋𝑖𝑖𝑘𝑘+𝑋𝑋𝑘𝑘𝑖𝑖�−�𝑋𝑋𝑖𝑖𝑘𝑘+𝑋𝑋𝑘𝑘𝑖𝑖�

2
−1�

�1−�𝑋𝑋𝑖𝑖𝑘𝑘+𝑋𝑋𝑘𝑘𝑖𝑖�
2
�

,𝑋𝑋𝑖𝑖𝑘𝑘 = �𝑅𝑅𝑖𝑖𝑘𝑘
𝑅𝑅𝑖𝑖𝑖𝑖
�
2

 and 𝑋𝑋𝑘𝑘𝑖𝑖 = �𝑅𝑅𝑘𝑘𝑖𝑖
𝑅𝑅𝑖𝑖𝑖𝑖
�
2
. The seeing factor 𝑆𝑆𝑖𝑖𝑖𝑖𝑘𝑘 for 

the atoms is defined as  

𝑆𝑆𝑖𝑖𝑖𝑖𝑘𝑘 = 𝑖𝑖𝑐𝑐
𝐶𝐶𝑖𝑖𝑘𝑘𝑖𝑖−𝐶𝐶min (𝑖𝑖,𝑘𝑘,𝑖𝑖)

𝐶𝐶max (𝑖𝑖,𝑘𝑘,𝑖𝑖)−𝐶𝐶min (𝑖𝑖,𝑘𝑘,𝑖𝑖)
 ,                                                                                      (13)  

where 𝐶𝐶min (𝑖𝑖,𝑘𝑘,𝑖𝑖) and 𝐶𝐶max (𝑖𝑖,𝑘𝑘,𝑖𝑖) determine the extent of screening of atoms at sites 𝑖𝑖 and 𝑗𝑗 by an 

atom at site 𝑘𝑘. The smooth cutoff function 𝑖𝑖𝑐𝑐 is calculated by 

𝑖𝑖𝑐𝑐(𝑥𝑥) = �
1                              𝑥𝑥 ≥ 1

[1 − (1 − 𝑥𝑥)4]2       0 < 𝑥𝑥 < 1 
0                              𝑥𝑥 ≤ 0

,                                                                  (14) 

The interaction between atoms at site 𝑖𝑖 and 𝑗𝑗 is completely screened and not screened, if 𝑆𝑆𝑖𝑖𝑖𝑖𝑘𝑘 = 1 

and. 𝑆𝑆𝑖𝑖𝑖𝑖𝑘𝑘 = 0, respectviely. 

All interatomic potentials including the MEAM are based on parameters that are determined by 

fitting them to the specific experimental or first principle data [42]; hence, these interatomic 

potentials are called empirical or semi-empirical potentials. In another word, the reliability of each 

potential is based on the chosen target properties in the fitting procedure. For instance, the potential 

is suitable for studying the plastic deformation when the parameters of potential are fitted to the 

stacking fault energy of the material [44]. The potential is suitable for studying phase segregation 

if the parameters of the model can reproduce a correct phase diagram of the material in the region 

of interest [45]. In order to study the liquid and solid properties at high and the near melting point, 

the potential has to be fitted to the not only 0-K properties but also to the high temperature 

properties such as melting point (MP) and elastic constants at high temperatures.  

Elastic constants as one of the fundamental mechanical and thermodynamic properties of materials 

provide a connection between the atomistic and macroscopic nature of materials. Also, studying 
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the effect of temperature on the elastic constants provides insights into the interatomic interactions, 

strength, and mechanical stability of materials [46]. Additionally, mesoscale models such as the 

PF [47]–[49] and the PFC [50]–[53] require the elastic constants at high temperature in order to 

quantitatively simulate solidification and other solid-state phase transformation phenomena at the 

higher length and time scales. Various experimental techniques have been utilized for measuring 

elastic constants of materials at the high temperature including Brillouin scattering [54], acoustic 

wave propagation [55]–[61], and neutron scattering [62]. Although these methods are useful in 

measuring the elastic constants at low temperatures but they face significant challenges in 

measuring elastic properties of metals at the near melting temperatures. In this circumstance, a 

reliable computational technique for calculating the high temperature elastic properties of metals 

is very beneficial. However, the predictive capability of the interatomic potential at those high 

temperatures still needs to be tested because almost all of the previous semi-empirical interatomic 

potentials were developed by considering the elastic constants of materials at the 0-K or room 

temperature [63]. In fact, the deviation of MD-calculated elastic constants using developed 

potentials based on low temperature properties was shown to increase by increasing temperature 

[64]. Therefore, it is imperative to consider the high temperature elastic constants in addition to 

the MP in order to gain high fidelity in the calculation of these properties near the melting 

temperatures. Additionally, we hypothesize that developing potential by this approach should also 

result in better prediction of other high temperature material properties.  

According to the MEAM formalism, we have generally thirteen fitting parameters for developing 

pure element which are presented in the Table 1. In addition, other interaction parameters are added 

when the binary alloy system is being considered (Table 1). We note that having accurate binary 
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potential is based on the accurate pure MEAM potential. Therefore, a great deal of effort have to 

be expended on developing the pure metallic system.  

 

Table 1. (2NN) MEAM parameters for determination of pure element. E0 (eV) is the cohesive 

energy; R0 (Å ) is the nearest-neighbor distance in the equilibrium reference structure; α0 is the 

exponential decay factor for the universal equation of state; A is the electron density scaling 

factor for the embedding function; δa and δr are the attraction (a∗>0) and repulsion (a∗ ≤  0) cubic 

terms for the universal equation of state; β(0−3) are the exponential decay factors for the atomic 

electron densities; t (1−3) are the weighting parameters for the atomic electron densities; and Cmin 

and Cmax are the screening parameters.  

Pure A             

E(A) R(A) α(A) A(A) β(A)
(0) β(A)

(1) β(A)
(2) β(A)

(3) t(A)
(1) t(A)

(2) t(A)
(3) Cmin (A) Cmax (A) 

Pure B             

E(B) R(B) α(B) A(B) β(B)
(0) β(B)

(1) β(B)
(2) β(B)

(3) t(B)
(1) t(B)

(2) t(B)
(3) Cmin (B) Cmax (B) 

A-B             

E(A-B) R 

(A-B) 

Α 

(A-B) 

δa 

(A-B) 

δr 

(A-B) 

ρ0
(A)/ 

ρ0
(B) 

Cmin 

(A-B-A) 

Cmin 

(B-A-B) 

Cmin 

(A-A-B) 

Cmin 

(B-B-A) 

Cmax 

(B-A-B) 

Cmax 

(A-A-B) 

Cmax 

(B-B-A) 

 

Therefore, our goal is calculating the solid and liquid properties of metallic system at high 

temperatures by the MD simulation through developing reliable interatomic potential for studying 

pure Fe, Cu, Ni, Ti, Pb, and Sn and binary system (Pb-Sn). The reason of developing the 

interatomic potentials for each system is explained in the proceeding section. 

Pure System (Fe, Cu, and Ni) 

In this work, we have a plan to develop new interatomic potentials for pure Fe, Cu, Ni and study 

the existing potentials for Ti. These works not only can be useful to investigate those pure elements 
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in detail, but also each of those potentials can be later employed in developing the binary or ternary 

system. However, due to the time limit of the PhD program, we only can do the pure and these 

findings will help scientists and engineers to develop potentials for the binary or the ternary system. 

Kindly note that the accuracy of binary or higher elemental systems are based on having precise 

and accurate pure elemental potential. In the next section, we provide the reasons of studying the 

Fe, Cu, Ni and Ti system by the MD simulation in different industries.  

Fe and Cu 

Powder metallurgy (PM) is one of the powerful manufacturing techniques, which results in 

reduction of removal process and consequently increases efficiency and low cost for production 

of high quality, complex parts to close tolerances [88]. Compacted powders during the process of 

the PM are needed to be sintered at the high temperature in order to generate the metallurgical 

bonds and increases the strength of materials. Sintering as one of the oldest human technologies 

consolidates compacted powders. There is an increasing demand in discovering alloyed sintered 

steels and also optimization of them to increase mechanical and corrosion resistant [89]. The 

porosities during the PM are eliminated by in the infiltration process where pores are filled with 

the liquid alloy. However, this liquid has to have the lower melting point compared with Fe which 

in most case, liquid Cu is employed in infiltration process. During infiltration, the liquid metal or 

alloy wets or spreads over the surface of the porous solid. The reduction of total surface free energy 

of the system is a prerequisite during the infiltration and determines whether a particular solid-

liquid phase system is suitable for the PM process [90]. Therefore, the interaction of solid Fe-

liquid Cu during the infiltration at the atomistic scale is very important and can be very informative 

for properties of contact surface and how atoms diffuse at the high temperature. 

Ti and Ni   
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Due to the excellent biocompatibility with the human body and high strength ration to weight, 

titanium and its alloys, such as titanium-aluminum-vanadium and titanium-nickel, are extensively 

employed in many medical, aerospace, and automobile applications. Metal additive manufacturing 

(MAM) is an advanced manufacturing technique that is being increasingly adopted for Ti  alloys 

to produce parts for implants and some critical parts of airplane [82], [83]. The MAM is based on 

layer-by-layer scanning of the part geometry using a localized heat source such as laser or electron 

beam [84]. During the MAM, the material experiences cooling and heating with slow to rapid rates 

involving cyclic melting, solidification, vaporization, and possibly solid-state phase 

transformations [85], [86]. Among the major obstacles for widespread utilization of the MAM is 

the lack of understanding materials behavior during the MAM process [87]. Due to the complexity 

and starting the solidification at really short time in the MAM, the MD simulation of Ti and its 

alloy can be considered as a powerful tool in better understanding of this new technology.  

 

Binary system (Pb-Sn) 

In this work, our goal is to provide an accurate binary potential Pb-Sn. The reason of doing this 

work can be related to study the particle coarsening by this system and its huge application in 

soldering in electrical industry. Particle coarsening or Ostwald ripening is a good example of such 

solid-liquid coexisting phenomenon wherein larger solid particles in liquid mixtures grow at the 

expense of smaller particles to minimize the total free energy of the system by decreasing the 

excess energy due to interfacial area. There has been extensive efforts to understand the kinetics 

of particle coarsening [65], [66] and spinodal decomposition [67], [68] in a wide range of materials. 

One particular study is the experimental investigation of coarsening in solid-liquid mixtures in 

microgravity which aimed at better understating of the Ostwald ripening of Sn-rich solid particles 
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in the eutectic Pb-Sn liquid mixtures [69]–[71]. There are several main reasons for choosing the 

Pb-Sn alloys for studying the kinetics of the coarsening [72]. First, this system allows the 

dispersion of spherical solid particle in the liquid due to its interfacial energy [73]. Second, the Pb-

Sn system at the eutectic concentration and temperature satisfies the stress free matrix condition 

without significant change in the morphology of the solid Sn-rich particles and kinetics of the 

process.  Third, the coarsening of the particles can be observed in a reasonable amount of time. 

Finally, the relatively low eutectic temperature of the system eases the technical challenges of 

performing experiments. The Pb-Sn mixtures are also ideal alloying systems for soldering joints 

in electronic devices because of their excellent properties such as the low melting point at the 

eutectic concentration and good wetting properties with the substrate (determining the mechanical 

properties of joints [74])  along with the lack of whiskers growth [75]. The growth of whiskers is 

suppressed in the Sn by adding small amounts of the Pb. The prevention of formation of whiskers 

is significantly important in the microelectronic industries, since they usually result in numerous 

device failures [76]. Although the mechanism of formation of whiskers is reported as a stress-

driven diffusion-controlled phenomenon [77], very few studies have been carried out to investigate 

the effect of different grain boundaries on the formation of whiskers [78]. In addition, due to the 

toxicity of the Pb, the Pb-free solders are gradually substituted with the Pb-Sn solders [79]–[81]. 

Without a deep understanding of whisker formation and the effects of the Pb at the grain 

boundaries of the Sn in suppression of whiskers, new alloy systems cannot be properly designed 

for this purpose. The MD simulation can be utilized not only to achieve a full thorough 

understanding of metallurgical behavior of the Pb-Sn system at the atomistic scale, but also to be 

coupled with higher scale models for larger time and length scale studies.  
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Therefore, we present all of our works in next chapters where each represents the publication for 

each pure and binary Pb-Sn case for different systems. 
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Abstract 

Availability of a reliable interatomic potential is one of the major challenges in utilizing molecular 

dynamics (MD) for simulations of metals at near the melting temperatures and melting point (MP). 

Here, we propose a novel approach to address this challenge in the concept of modified-embedded-

atom (MEAM) interatomic potential; also, we apply the approach on iron, nickel, copper, and 

aluminum as case studies.  We propose adding experimentally available high temperature elastic 

constants and MP of the element to the list of typical low temperature properties used for the 

development of MD interatomic potential parameters. We show that the proposed approach results 

in a reasonable agreement between the MD calculations of melting properties such as latent heat, 

expansion in melting, liquid structure factor, and solid-liquid interface stiffness and their 

experimental/computational counterparts. Then, we present the physical properties of mentioned 

elements near melting temperatures using the new MEAM parameters. We observe that the 

behavior of elastic constants, heat capacity and thermal linear expansion coefficient from room 

temperature to MP follows an empirical linear relation (α±β×MP) for transition metals. 

Furthermore, a linear relation between the tetragonal shear modulus and the enthalpy change from 

room temperature to MP is observed for face-centered cubic materials. 
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I. INTRODUCTION 

Studying solidification and other high temperature material processes of metals involving with the 

coexistence of solid and liquid phases is critically important in materials and physics sciences 

because there is a close relationship between the crystallization at the early stage of solidification 

process and the microstructural properties of solidified material 1–4. One of the main avenues in 

these research efforts is developing and utilizing advanced and predictive computational models 

at different scales for better understanding of the physical and thermoelastic properties of metals 

at high temperatures. The use of these computational models attracts more interests as the working 

temperature in a manufacturing process approaches to the melting point (MP) because conducting 

experiments at these high temperatures are more challenging 5. Molecular dynamic (MD) is one 

of such computational modeling approaches that can be used for tracking of individual atoms and 

their energies with great accuracy at nanoscale. The accuracy and reliability of MD simulations 

are based on the interatomic potential, which should have an ability to successfully demonstrate 

the basic physical properties of the materials. There are many available semi-empirical interatomic 

potentials in literature such as embedded-atom method (EAM) 6,7 and Tersoff 8,9 that can be used 

in MD simulations of metals. Typically, there is a compromise between the computational cost 

and the predictive capabilities of an MD interatomic potential for the considered system. Over the 

past years, we have shown that the modified embedded-atom method (MEAM) 10,11 have an 

outstanding capability in modeling metals at their MPs with a reasonable computational cost; thus, 

we will use it in the current study. 

MEAM as a semi-empirical interatomic potential was proposed to address the directionality of 

bonding in covalent materials in EAM formalism. MEAM is extensively employed in the 

computational materials science and engineering to simulate metallic systems; e.g. the MEAM 
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formalism can successfully regenerate the properties of wide range of elements such as body-

centered cubic (bcc), and face-centered cubic (fcc) structure using the same formulation 12–14. In 

addition, melting properties such as MP, latent heat, structure factor, expansion in melting, and 

solid-liquid interface stiffens that have been calculated by MD using MEAM potentials reasonably 

agree with experiments 11,15. The main approach in determining MEAM parameters is to improve 

the MEAM-MD calculation of a wider range of low temperature and 0K properties, which is vital 

for an acceptable performance of the potential. By far, MP has been the most commonly considered 

high temperature material property in determining MEAM (and other MD potentials) parameters 

for pure metals 11,14,16–18. Mendelev et al.19 employed two novel approaches to generate an EAM 

interatomic potential parameters suitable for the high temperature applications. In one approach, 

they fitted their potential to the first-principle forces in a liquid-like structure. In the other 

approach, the potential was directly fitted to the experimental liquid structure factor data. Their 

results showed that applying these fitting procedures resulted in better agreements of the calculated 

high temperature properties such as MP or liquid density with their experimental counterparts.  

Elastic constants as one of the fundamental mechanical and thermodynamic properties of materials 

provide a connection between the atomistic and macroscopic nature of materials. Also, studying 

the effect of temperature on the elastic constants provides insights into the interatomic interactions, 

strength, and mechanical stability of materials20. Beside, mesoscale models such as phase-field 

model (PFM) 21–23 and phase-field crystal (PFC) 24–27 require the elastic constants at high 

temperature in order to quantitatively simulate solidification and other solid-state phase 

transformation phenomena at higher length and time scales than MD’s. Various experimental 

techniques have been utilized for measuring elastic constants of materials at the high temperature 

including Brillouin scattering 28, acoustic wave propagation 29–35, and neutron scattering 36. 
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Although these methods are useful in measuring the elastic constants at low temperatures but they 

face significant challenges in measuring elastic properties of metals at near melting temperatures. 

In this circumstance, a reliable computational technique with capacity for calculating the high 

temperature elastic properties of metals is very beneficial. Generally, there are two methods for 

computing the elastic constants by MD, which are direct (deformation) and indirect (atom 

fluctuation based) methods. The former is based on the linear relation between the computing 

stress and applied small strain on the atomistic cell box 37. Although the application of this method 

is straight forward, multiple strains must be imposed at several times to obtain all the elastic 

constants 38. Therefore, the latter is usually used to compute elastic constants at high temperature, 

which only requires one round of calculation for all the elastic constants. There are three methods 

for calculation of elastic constants by indirect method including strain fluctuation 39, stress-strain 

fluctuation 40 and stress fluctuation 41.  The stress fluctuation approach is proven to be much more 

efficient in the convergence of the elastic constants than the other two mentioned indirect methods 

42. Therefore, utilizing the stress fluctuation approach in MD simulations results in 

computationally reliable calculations of high temperature elastic constants. However, the 

predictive capability of the interatomic potential at those high temperatures still needs to be tested 

because almost all of the previous semi-empirical interatomic potentials were developed by 

considering the elastic constants of materials at 0 K or room temperature 43. In fact, the deviation 

of MD-calculated elastic constants using developed potentials based on low temperature properties 

was shown to increase by increasing temperature. For instance, the calculation of the elastic 

constants for Cu using MEAM 42 from 0-800 K shows that the calculated values of C11, C12 and 

C44 elastic constants deviate more from experimental data by increasing temperature. Therefore, it 

is imperative to consider the high temperature elastic constants in order to gain high fidelity in the 
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calculation of these properties near melting temperatures. Besides, we hypothesize that developing 

potential by this approach should also result in better prediction of other high temperature material 

properties.  

In this paper, we present MEAM parameters for Fe, Ni, Cu, and Al, by considering all the typical 

low temperature properties as well as the high temperature elastic constants and MP in  procedure 

of developing potential. A stress fluctuation method is used to calculate the high temperature 

elastic constants with high fidelity that also enables computationally efficient trials and errors. 

Then, we verify the developed MEAM parameters by calculating latent heat, expansion in melting, 

solid-liquid interface stiffness and liquid structure factor and comparing these predictions against 

their experimental/computational counterparts from literature. Finally, the validated MEAM 

parameters are used in series of simulations to present the elastic constants, specific heat and 

thermal expansion coefficient at/near melting temperatures of the considered materials. 

Furthermore, we provide empirical relations for thermoelastic properties of metals at/near melting 

temperatures. 

 

II. MD Interatomic Potential 

MEAM formalism 44  for a unary system consists of thirteen parameters listed at the first row of 

Table 1. Since the details of MEAM formalism have been extensively presented in related 

literature, we do not present them here for brevity; e.g. see Ref. 44. In the present study, second-

nearest neighbor atom (2NN) MEAM parameters sets for Fe, Ni, and Cu developed at Refs. 10,11 

used as the starting parameter sets and modification of parameters were carried out in order to 

obtain the better fit to the high temperature elastic constants and MP. Although we considered the 

MEAM parameters modifications for Al 45, modification of those parameters was not found 
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necessary through the present process. However, we present the high temperature physical 

properties for this element that might be interesting for the scientific community. All the MD 

simulations and calculations in this study were carried out using LAMMPS package 46.  The 

developed MEAM parameters in this work are given at Table I in which the modified parameters 

are bold. The cut off distance for all the considered elements in this study is 4.0 Å. 

 

Table 1. (2NN) MEAM parameters for Fe, Ni, Cu, and Al. E0 (eV) is the cohesive energy; R0 (Å 

) is the nearest-neighbor distance in the equilibrium reference structure; α0 is the exponential 

decay factor for the universal equation of state 47; A is the electron density scaling factor for the 

embedding function; δa and δr are the attraction (a∗>0) and repulsion (a∗ ≤  0) cubic terms for the 

universal equation of state; β(0−3) are the exponential decay factors for the atomic electron 

densities; t (1−3) are the weighting parameters for the atomic electron densities; and Cmin and Cmax 

are the screening parameters. 

 0E  
0R  

0α  A  
(0)β  

(1)β  
(2)β  

(3)β  
(1)t  

(2)t  
(3)t  minC

 maxC
 

Fe 4.29 2.47 5.13a 0.555b 4.01c 1 1 1 2.77d 1 -10.81e 0.533f 2.8 

Ni 4.45 2.49 5.1g 1.0593h 3.65i 1.5 6.0 1.5 3.1 4.39j 3.0k 0.13l 2.8 

Cu 3.54 2.56 5.20 0.96m 4.25n 2.2 6.0 2.2 2.72 4.24o 2.50p 0.52q 2.8 

Al 3.36 2.86 4.61 1.16 3.2 2.6 6.0 2.6 3.05 0.51 7.75 0.49 2.80 

a,b,c,d,e,f Previous values from Asadi et al. 10 were 5.03, 0.57, 3.67, 2.9, -8.7, 0.16, respectively. 
g,h,i,j,k,l Previous values from Asadi et al. 11 were 5.08, 0.99, 2.56, 1.8, 2.20, 0.81, respectively. 
m,n,o,p,q,r Previous values from Asadi et al. 11 were 0.99, 3.83, 3.04, 0.85, 1.21, respectively. 

 

During the determination process of MEAM parameters, it is necessary to monitor all the 

considered material properties collectively as the variation of one parameter might result in the 

variation of more than one material property. Thus, we have conducted a series of trial and error 
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to determine the MEAM parameters for each element. The effect of MEAM parameters on the low 

temperature properties have been extensively discussed in literature 12,14. Here, we discuss the 

extra parameter modification that is necessary to adjust the high temperature elastic constants and 

MP. In this paper, the high temperature elastic constants of Fe were controlled by (0), , ,Aα β  and 

minC  while target MP was achieved using (1)t  and (3)t modifications. For Ni, the high temperature 

elastic constants were controlled similar to the case of Fe while (1)t and (2)t   parameters were used 

for the MP adjustment. For Cu, the MP adjustment parameters were similar to the case of Ni while 

only (0)
min, , ,A Cα β  parameters were modified for the adjustments of high temperature elastic 

constants. Parameters (1) (2), ,A t t  and (3)t have significant effects on MP while minC parameter has 

the biggest influence on the slop of C11, C12 and C44 curves versus temperature. Decreasing the 

value of minC results in increasing of the slop of C12 and decreasing of the slop of C11 and C44 

curves versus temperatures. 

A.  High Temperature Physical Properties  

In stress fluctuation method, temperature correction ( T
ijklC ), fluctuation term ( F

ijklC ), and Born term 

( B
ijklC ) are the three terms forming the elastic constants as 40 

,T F B
ijkl ijkl ijkl ijklC C C C= − +                 (1) 

where 

( )2 / ,T
ijkl ik jl il jk BC Nk T Vδ δ δ δ= +  

( ) / .F
mn ij kl ij kl BC V k Tσ σ σ σ= 〈 〉 − 〈 〉〈 〉               (2) 

In Eq. (2), ijδ  is the identity tensor, and ijσ  denotes the microscopic stress tensor which can be 

written as a function of the symmetric virial tensor ( v
ijσ )48 
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/ .v
ij ij B ijNK Vσ σ δ= +                  (3) 

The Born term in Eq. (1) can be written as <sup>41,42,49</sup>  

( )
0

0

|
lim ,
ij

v v
ij i dis ijB v v

mn il jk ik jl e
ij

C
e

σ σ
δ σ δ σ −

→

−
= + −               (4) 

where |v
ij i disσ −   and 0v

ijσ  is the virial stress tensor after and before displacement in i  direction. To 

calculate the elastic constants, a simulation box consisting of 10×10×10 supercells with periodic 

boundary conditions in all directions was used; this box size results in 2000 and 4000 atoms for 

bcc and fcc structures, respectively. First, the temperatures were set by Maxwell-Boltzmann 

distribution. Then, pressure equilibrated to zero and temperature to the desired value by performing 

a set of constant number of atoms, volume and energy (NVE) and isothermal-isobaric (NPT) 

ensembles.  The temperate was controlled through a Nose-Hoover chain thermostat 50 while 

Parrinello-Rahman barostat 51 was used for controlling pressure. Then, the simulation box was 

equilibrated in an NVE ensemble for 100,000 time steps and six small deformations (three uniaxial 

tensions and three in-plane shears) were simultaneously applied on the simulation box; the time 

step in simulations was 1 fs. Finally, the resultant stress tensor was used in Eqs. (1-4) to determine 

the elastic constants. The simulation length and size were such that the convergence of the 

calculated elastic constants was observed. Fig. 1(a-d) depicts the calculated elastic constants using 

the present MEAM parameters and previous MEAM parameters along with the available 

experimental data 29–35; MD calculations were performed for the increments of 25 K temperatures. 

The MEAM-MD calculations and experimental values for C11 and C44  for Fe show an elastic 

softening with increasing temperature. The calculated values of C11 and C44 by the present MEAM 

potential parameters are similar to the experimental results of Dever 29 and they are improved in 

comparison with the results of previous MEAM parameters (calculated in this work based on those 
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parameters). On the other hand, the calculated C12 by the present MEAM parameters 

monotonically increased with increasing temperature; this trend  is similar to the reported 

experimental values by Tarumi et al. 30. The previously reported MEAM parameters result in 

approximately constant C12 with temperature increments. For the case of Ni, our MEAM-MD 

calculations result in similar values of the elastic constants to the experimental counterparts. The 

values of calculated elastic constants for Ni also show the softening behavior of C11 and C44 by 

increasing the temperatures.  The calculated elastic constants for Cu at low and high temperatures 

along with two sets of experiments 32,33 are given in Fig. 1(c). The present potential parameters 

calculate the C11 and C44 in an excellent agreement to the experimental results. The results of 

elastic constants calculation for Al along with the experimental results are shown in Fig. 1(d) 

presenting a reasonable agreement between MEAM-MD calculated elastic constants and 

experiment. It is worthy to note that MEAM parameters for Al were not modified here; still, these 

parameters are able to predict the elastic constant from room temperatures to near melting 

temperatures in reasonable agreement with experimental data. 
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FIG. 1. Comparison of the calculated elastic constants versus temperature for (a) Fe with 

Experiment 1 29 and Experiment 2 30, (b) Ni with Experiment 31, (c) Cu with Experiment 1 32 and 

Experiment 2 33, (d) and Al with Experiment 1 34 and Experiment 2 35. 

 

We used solid-liquid coexisting method to calculate MP for the considered elements. That is  fully-

explained for bcc 15 and fcc  11 metals. The calculated MP for Fe, Ni, Cu, and Al are given in Table 

2. The calculated MPs by the present potential parameters for all the elements are close to their 

experimental counterparts. It is worth mentioning that all the present MP calculations are 

orientation and size independent as we have conducted the convergence study explained in 11,15. 
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Table 2. Comparison of the calculated MP (K) with the previous MEAM calculations and 

experiments. 

 Present MEAM Exp. 

Fe 1812 1807a 1811b 

Ni 1705 1742c 1728d 

Cu 1347 1320c 1357d 

a Ref.10 b Ref. 19 c Ref. 11  d Ref. 52–55 

 

B.  Low Temperature Physical Properties 

Low temperature physical properties of Fe, Ni, and Cu are presented in this section. Table 3 

presents the comparison between the calculated bulk modulus B and elastic constants (C11, C12, 

and C44) with the experimental data. B, C11, C12, and C44 for Fe have changed from their values as 

calculated by the starting MEAM parameters by 3.92%, 15.5%, 5.6%, 7.7%, respectively. 

However, the error of the calculated values of B, C11, C12, and C44 for materials with fcc structure 

with the new MEAM parameters are within 3% and 2% with respect to the experimental data for 

Ni and Cu, respectively. Since this work amended the high temperature elastic constants to the 

MEAM parameters determination procedure, we accept these small deviations of 0K elastic 

constants from their target values as a reasonable compromise. 
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Table 3. Comparison of the calculated bulk modulus B and elastic constants (GPA) at 0K with 

the previous MEAM calculations and experiments. 

 B C11 C12 C44  B C11 C12 C44  B C11 
 Present MEAM Exp. Present  Present MEAM Exp. Present  Present MEAM 
Fe 173.6 166.8a 167.0b 265.7 Fe 173.6 166.8a 167.0b 265.7 Fe 173.6 166.8a 

Ni 189.1    187.1c 187.6d 255.4       Ni 189.1    187.1c 187.6d 255.4       Ni 189.1    187.1c 

Cu 143.7 143.5c 142.0d 176.6 Cu 143.7 143.5c 142.0d 176.6 Cu 143.7 143.5c 

a Ref.10              b Ref. 12                cRef. 11               d Ref. 14            eRef. 56 
 

Table 4 shows the calculated relaxed vacancy formation energies along with their 

experimental/MEAM-MD counterparts. The comparison between the results of the present and 

previous MEAM parameters depicts that the present MEAM parameters significantly improve the 

vacancy formation energy of Ni while the results are slightly deteriorated for the case of Fe. The 

error of the calculated vacancy formation energy of Cu remain approximately unchanged by our 

MEAM parameters modification. Table IV also shows the structural energy differences ( bcc fccE →∆

and fcc hcpE →∆ ). bcc fccE →∆  for Fe is lower than the experimental and previous MEAM results. 

However, fcc hcpE →∆ of Fe for both MEAM parameters is higher than the experimental value. The 

calculated bcc fccE →∆ and fcc hcpE →∆  for both Ni and Cu have been considerably improved relative to 

the previous MEAM calculations when they are compared with the experimental results. 

Table 4. Comparison of the calculated relaxed vacancy formation energy Ef
v (eV) and structural 

energy differences E∆ (eV) at 0K with the previous MEAM calculations and experiments. 

 Ef
v 

bcc fccE →∆
 fcc hcpE →∆

 
 Ef

v 
bcc fccE →∆

 fcc hcpE →∆
 

 Ef
v 

 Present MEAM Exp.  Present MEAM Exp.  Present 

Fe 1.43 1.59a 1.6b Fe 1.43 1.59a 1.6b Fe 1.43 
Ni 1.34 1.19c 1.6d Ni 1.34 1.19c 1.6d Ni 1.34 
Cu 1.18 0.91c 1.03f Cu 1.18 0.91c 1.03f Cu 1.18 

a Ref. 10   b Ref. 12     c Ref. 11     d Ref. 57    d Ref. 58    f Ref. 59 
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Table 5 presents the calculated stacking fault energies using the present MEAM parameters 

in comparison with the MEAM, EAM and DFT calculations available in literature. The calculated 

unstable and stable stacking fault energies using the present MEAM parameters agree to their 

counterparts. Stacking fault direction is [11 2
−

] (1 1 1) for fcc structures and 1
2

[1 11
− −

] (1 1 0) for 

bcc structures. 

Table 5. Comparison of the calculated unstable (Eus) and stable (Esf) stacking fault energies (mJ 

m-2) at 0K with the previous MEAM, DFT, and calculations and experiments. 

 
usE  

  
sfE  

  

 Present MEAM DFT/EAM Present MEAM DFT/EAM 
Fe 784 682a 470-742b-c --- --- --- 
Ni 290 461d 261-405e 51 67d 13-183e 
Cu 206 211d 158-210e 53 20d 27-49e 

a Ref. 10   b Ref. 60  c Ref. 61  d Ref. 11  e Ref. 62 

Surface energies for Fe, Ni, and Cu in different directions (100), (110) and (111) are shown at 

Table 6 which are in good agreement with the calculations of previous MEAM parameters. The 

calculated surface energies in these planes, (100), (110) and (111) are compared with the surface 

energies of polycrystalline solids, which are extrapolated from high temperature experimental data.  

Table 6. Comparison of the calculated surface energies (mJ m-2) at 0K with the previous MEAM 

calculations and experiments. 

 
(100)E

 
 

(110)E
 

 
(111)E

 
 exp t

polyE
 

 Present MEAM Present MEAM Present MEAM  
Fe 2453 2526a 2320 2369a 2481 2685a 2360b 
Ni 1672 1821c 1728 1885c 1456 1493c 2240d 
Cu 1292 1299c 1343 1323c 1140 1051c 1770d 

a Ref. 10  b Ref. 12  c Ref. 11    d Ref. 63 
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The MEAM-MD calculated linear thermal expansion coefficient and heat capacity in the range of 

0-100 oC using the present and previous MEAM parameters along with the experimental results 

are given in Table 7. The calculated heat capacity for Fe by the present and previous MEAM 

potential parameters are still higher than the experimental data. The calculated heat capacity by 

the present MEAM parameters is within 3.9% and 3.5% error for Ni and Cu, respectively. The 

calculated linear thermal expansion coefficient by the present MEAM parameters for Fe is 

relatively similar to the calculated value by the previous MEAM potential parameters, while both 

of them are lower than the experimental value. The calculations of linear thermal expansion 

coefficient with the present MEAM parameters for Ni and Cu are within 0.38% and 1.5% error 

relative to the experimental counterparts, respectively, while these errors were 16% and 11% for 

the previous MEAM potential parameters.  

 

Table 7. Comparison of the calculated thermal linear expansion coefficient ɛ (×106 K-1), and heat 

capacity Cp (J mol-1 K-1) with the previous MEAM calculations and experiments. 

 ɛ (0-100oC)  Cp (0-100oC)  

 MEAMa MEAM Exp. MEAMa 

Fe 11.04 11.18b 12.10c 26.37 
Ni 13.35 11.18d 13.30e 25.49 
Cu 16.75 14.76d 17.00e 25.39 

a Present study  b Ref. 10   c Ref. 12   d Ref. 11   e Ref. 52 
 

Overall, comparison between the calculated low temperature properties based on the present and 

previous MEAM parameters points out that fitting MEAM parameters to the elastic constants at 

high temperature and MP are also in accompany with acceptable errors in physical properties at 

low temperatures.  
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III. MEAM-MD Predictions at near/at Melting Temperatures  

In this section, we calculate near/at melting temperature physical properties of the considered 

elements using MEAM parameters presented at Table I. Since these properties were not considered 

in the MEAM parameter determination procedure, they can be considered as predictions of the 

model. Wherever there are available experimental/computational counterparts in literature, we 

make a comparison in order to test the capability of MEAM formalism and the developed 

parameters in predicting high temperature properties. 

 

A. Solid-Liquid Properties 

The MEAM-MD calculated latent heat and expansion in melting meltingV∆  along with the related 

experimental data are listed in Table 8. The calculated latent heat for Fe by the present MEAM is 

lower than the previous MEAM parameters calculation. However, the latent heat of Ni and Cu are 

in better agreement with their experimental counterparts in comparison with the previous MEAM 

calculations. The calculated meltingV∆  by the present MEAM parameters is lower than the previous 

MEAM parameters predictions for all the elements. For instance, the present MEAM parameters 

improves the prediction of meltingV∆ by 46% and 18% for Ni and Cu, respectively. 

Table 8. Comparison of the predicted latent heat (kJ mol-1), and expansion in melting meltingV∆  (Å 

/atom-1) with the previous MEAM predictions and experiments. 

 L   meltingV∆    
 Present MEAM Exp. Present MEAM Exp. 
Fe 11.1 13.0a 11.5-15.0b 0.41 0.44a 0.38-0.45b 

Ni 18.3 22.2c 17.5d 0.81 1.01c 0.54d 

Cu 13.2 14.2c 13.3d 0.66 0.76c 0.53d 

a Ref. 10   b Ref.19   c Ref. 11   d Ref. 52–55 
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The liquid structure factor ( )S k can be determined by applying Fourier transform on the MD-

calculated radial distribution function of the liquid phase ( )g r at the MEAM-MD calculated MP 

for all the elements 64. The procedure we followed to calculate the radial distribution function and 

the structure factor were explained in our previous work in detail 11. MEAM-MD calculated 

structure factors of Fe, Ni, and Cu along with the experimental measurements are given in Fig. 

2(a-c). There is a reasonable agreement between the calculated structure factor using the present 

MEAM parameters and the previous MEAM parameters with the experimental results.  

 

 

                                       

FIG. 2. Comparison of the predicted S(K) at MP for (a) Fe with Experiment at 1820 K 65, (b) Ni 

with Experiment at 1773 K 65, and (c) Cu with Experiment at 1423 K 66. 
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We used the present MEAM parameters in MD simulations based on the capillary fluctuation 

method (CFM) 11 to calculate solid-liquid interface stiffness for the considered elements. We 

followed the CFM procedure that was fully-explained in Ref. 10 for bcc structures and in Ref. 11 

for fcc structures. In this technique, two-phase solid-liquid coexisting slabs at the exact MP for a 

specific orientation are constructed. Here, the orientation of the solid-liquid interface plane is 

{ }100 001  which is schematically shown at Fig. 3(a). In CFM, an order parameter is defined to 

identify the location of the solid-liquid interface. For illustration, the solid-liquid interface location 

for Ni in our MD simulation is shown at Fig. 3(b) by solid black line; standard deviation of the 

interface over 0.25 ns of the solid-liquid coexistence time (total of 1251 snapshots) is also shown.       

 

 

FIG. 3. A snapshot of the two-phase coexisting solid-liquid structure for Ni. The black line are 

the solid-liquid interface with standard deviation and h=0 Å is the location of the interface. 
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The mean-square Fourier amplitude of the solid-liquid interface height, 2( )A k is related to the 

solid-liquid interface stiffness, through 

2 2
.

( )
B Mk TStiff

bw A k k
=

                                                                                (11) 

The solid-liquid interface stiffness calculations for all the considered elements are listed at Table 

9 and compared against the same calculations using the previous MEAM-MD and EAM-MD 

simulations. In order to make a fair comparison, we used the same number of Fourier modes and 

order parameter smoothing distance that were used in previous MEAM-MD calculations to 

calculate the solid-liquid interface stiffness; see Refs. 11 for more details. The decrement in the 

calculations of the interface stiffness using the present MEAM parameters is evident. This is also 

in-line with the decrement of the latent heat calculations (Table VIII) as a direct relation between 

the latent heat and interface stiffness for metals has been also demonstrated in all the listed previous 

MD studies. 

 

Table 9. Comparison of the predicted solid-Liquid interface stiffness using different interatomic 
potentials along with experimental results. 

 
 Box Size Atoms Present MEAM EAM Exp. 
Fe 80 4 214× ×  136960 115.5 159.4a 162.9b --- 
Ni 75 2 210× ×  126000 218.0 265.6c 248.8-251.0d 291.4e 

Cu 75 2 210× ×  126000 176.0 203.5c 161.0d 188.7e 

a Ref. 10 bRef. 67 c Ref. 11  dRef. 68    
e Calculated using the experimental solid-liquid interface free energies 69–71 and MEAM-MD 
calculated anisotropy parameters 10,11.   
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B.  Physical Properties near Melting Temperatures 

The predicted thermal expansion coefficients and heat capacity for all the considered elements are 

depicted in Fig. 4 and Fig. 5, respectively. These data are presented from low temperatures up to 

MP as there are some experimental and first principle counterpart data available in literature for 

comparison at this wide range of temperatures. The MEAM-MD predictions using previous 

potential parameters are also shown on the figures. Since the MEAM potential parameters for Fe 

are developed for bcc crystal structure (the stable crystal structure near melting temperatures and 

low temperatures for Fe), neither the present nor the previous MEAM parameters show the stable 

fcc crystal structure for temperatures between ~950 K  and ~1400 K; thus, all the calculations 

shown on Figs. 4(a) and 5(a) are for bcc crystal structure while the available experimental data are 

for fcc crystal structure at those temperatures. If the main interest of a study is the austenite phase 

(fcc), MEAM potential parameters must be developed to produce the ferrite to austenite phase 

transformation properly; however, the interest of this research is studying the behavior of material 

near melting temperatures where the stable structure is still bcc for Fe.  

As illustrated at Fig. 4, all the calculations of thermal expansion coefficients by the present MEAM 

parameters result in significant improvement as opposed to the MD calculations using the previous 

MEAM parameters. Specifically for the case of Ni and Cu shown at Fig. 4(b) and Fig. 4(c), 

respectively, the amount of improvements are significant such that the MD predictions of thermal 

expansion coefficients using the present potential parameters match the experimental data for all 

the considered temperatures. For the case of Al shown at Fig. 4(d), there is a considerable 

difference between the experimental data and MD-calculated data using the existing parameters; 

the amount of error is about 40% at high temperatures. The error in predicting the thermal 

expansion coefficients of Fe is also considerable (about 13%); however, both MEAM parameters 
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predictions are in better agreement with the experiment than the first principles calculations. In 

addition, the present MEAM calculations change the curve of thermal expansion coefficient versus 

temperature from almost linear to a curve similar to the experimental data for the case of Fe. As 

explained before, the present and previous MEAM parameters have been developed based on the 

bcc structure so it is reasonable that our potential cannot be able to calculate the thermal expansion 

coefficient in the fcc region. The sharp increasing the thermal expansion coefficient is due to the 

increasing the mean lattice parameter of the fcc structure than bcc one.   

 

 

FIG. 4. The MEAM-MD calculated linear thermal expansion coefficient  along with the 

experimental counterparts 72 , Calphad approach {Formatting Citation}, and results of first 
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principle calculation for Fe 73. 

 

Heat capacity predictions for all the considered elements from low temperatures to near melting 

temperatures are shown at Fig. 5.  Except for Cu, the heat capacity predictions using the present 

and the previous MEAM parameters are more or less similar to each other. For the case of Cu, the 

present MEAM parameters result in a significant improvement of the predictions, the average 

improvement toward the experimental data is ~20%.  For the case of Al, MEAM-MD calculations 

using the existing potential parameters are in a reasonable agreement with the experimental data. 

MEAM-MD calculations of heat capacity of Fe and Ni near their melting temperatures show ~20% 

error as compared to the experimental data. Generally, these predictions are in better agreement 

with the experimental data at the lower temperatures; i.e. even in better agreement as compared to 

the first principles calculations for Fe. However, the MEAM-MD calculations significantly deviate 

from their experimental counterparts around 1000K and 600K for Fe, and Ni, respectively. This is 

most likely due to the magnetic fluctuations near the Curie temperatures of these elements that 

MD modeling cannot capture it fundamentally as the electron charges are typically omitted in MD 

models for large-scale simulations; i.e. the Curie temperature of Fe and Ni are ~1043K 73 and 

~631K 74, respectively. In the other words, the large difference between the calculated heat 

capacity of Fe and Ni near the Curie temperature for Fe and Ni is due the fact that the MEAM does 

not account the magnetic consideration in its formulation. 
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FIG. 5. The MEAM-MD predicted heat capacity for (a) Fe; Experiment 1 75 and Experiment 2 76, 

(b) Ni; Experiment 1 74, Experiment 2 77, and Experiment 3 76 (c) Cu; Experiment 1 78 and 

Experiment 2 76, and (d) Al; Experiment 1 79 and Experiment 2 76. 

 

Fig. 6 shows the MEAM-MD predicted elastic constants of Fe, Ni, Cu, and Al near melting 

temperatures by solid circles. The solid black lines are the lines fitted to these data where the 

equations for the fitted lines are also shown on the figures. These equations can be used to find 

high temperature elastic constants of these materials at any given near melting temperatures. The 

negative slopes of all the elastic constant relations simply imply that all the elastic constants 

decrease as the temperature goes near MP of the element.  
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FIG. 6.  The MEAM-MD predicted elastic constants near MP temperatures for a) Fe, b) Ni, c) 

Cu, and d) Al. The solid circles are the calculated data and the solid lines are the best-fit lines to 

those data. 

 

An interesting point regarding the predictions of high temperature elastic constants for the 

considered fcc materials was a linear relation between tetragonal shear modulus 

11 12( ) ( ) / 2C T C C′ = −  and the enthalpy change with respect to room temperature enthalpy

H(T) H(T) H(298.15)∆ = − . Solid circles on Fig. 7 shows the present MEAM-MD calculated 

( )C T′  versus H(T)∆  for all the considered fcc materials; also shown on Fig. 7 is the best-fit line 

to these data along with their linear relation. The best-fit lines can be used to calculated the latent 
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heat of the material considering the fact that ( 0)C′ =  is zero at the molten state; thus,

L S2L=ΔH (MP)-ΔH (MP) . The latent heat calculations from the best-fit lines for Ni, Cu, and Al 

are 17.6 kJ/mol, 15.24 kJ/mol, and 11.0 kJ/mol, respectively. The errors of the calculated latent 

heat by this method compared to the experimental counterparts are 0.6%, 14.6% and 2.8% for Ni, 

Cu, and Al, respectively. Alternatively, the latent heat of the material along with room temperature 

tetragonal shear modulus and enthalpy can be used to determine the linear relation between ( )C T′  

and H(T)∆ for fcc materials.  It should be noted that the obsereved linear relation between ( )C T′  

and  H(T)∆ is also in agreement with the thermal potential model descriptions 80. 

 

FIG. 7.  The calculated shear modulus versus enthalpy change for fcc materials. The solid circles 

are the MEAM-MD calculated data and the solid lines are the best-fit lines to those data. 
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C.  Physical Properties of Solid at MP 

MEAM-MD predicted thermal linear expansion coefficient, heat capacity, and elastic constants of 

the considered elements at MP are tabulated at Table 10. The ratios of these MP properties versus 

their low temperature values (0K for elastic constants and 0-100°C for thermal linear expansion 

coefficient and heat capacity) are also given in Table 10.  

 

Table 10. MEAM-MD predicted thermal linear expansion coefficient ɛ (×106 K-1), heat capacity 

Cp (J mol-1 K-1) and elastic constants (GPa) at MP along with /0 0 100( / )MP MP Cε ε ε −=


, 

/0 0 100( / )MP MP C
P P PC C C −=



, /0 0
11 11 11/MP MP KC C C= , /0 0

12 12 12( / )MP MP KC C C= , and /0 0
44 44 44( / )MP MP KC C C=  ratios. 

 ε   /0MPε  PC   /0MP
PC   11C   /0

11
MPC   12C   /0

12
MPC  44C   /0

44
MPC  

Fe 20.5 1.86 35.5 1.35 141.0 0.53 129.2 1.01 68.1 0.54 
Ni 22.1 1.66 32.9 1.29 169.4 0.66 125.4 0.81 69.5 0.54 
Cu 26.9 1.61 32.5 1.28 124.6 0.70 101.3 0.79 49.0 0.60 
Al 26.7 1.54 35.0 1.34 80.1 0.72 54.1 0.92 20.4 0.69 

 

It is interesting to note that all the transition metals (Fe, Ni, and Cu) follow a similar pattern 

regarding the change in their thermoelastic properties from low temperatures to their MPs; the 

order of Fe>Ni>Cu for /0 0 100( / )MP MP Cε ε ε −=


, /0 0 100( / )MP MP C
P P PC C C −=



, and /0 0
12 12 12/MP MP KC C C= , 

ratios and the order of Fe<Ni<Cu for /0 0
11 11 11( / )MP MP KC C C=  and /0 0

44 44 44( / )MP MP KC C C=  ratios are 

notable. Considering the order of MPs for these transition metals (Fe>Ni>Cu), an empirical 

relation for these ratios can be derived. Therefore, we recommend the following empirical relation 

for the MP to the low temperature ratio for the presented physical properties of transition metals 

[ ( )]( ) ( 1) ( ) ,
( )

i i
i i k i
j j j i

MP AVE MPR AVE R STD R
STD MP

−
= + − × ×          (5) 
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where , , ,i Fe Ni Cu= or any other transition metal, averages ( AVE ) and standard deviations ( STD

) are with respect to i , 0k =  for 0 0 12, ,MP MPj C Cε=  and 1k =  for 11 44,j C C= . Implementing Eq. 

(5) using the data presented at Table X results in the following empirical relations for the MP to 

the low temperature properties of transition metals 

/0 3( 1621)1.710 0.108 0.830 0.543 10
199

MP MP MPε −−
= + × = + × ×  

/0 3( 1621)1.307 0.031 1.055 0.156 10
199

MP
P

MPC MP −−
= + × = + × ×  

/0 3
11

( 1621)0.630 0.073 1.225 0.367 10
199

MP MPC MP −−
= − × = − × ×  

/0 3
12

( 1621)0.870 0.099 0.064 0.498 10
199

MP MPC MP −−
= + × = + × ×  

/0 3
44

( 1621)0.560 0.028 0.788 0.141 10
199

MP MPC MP −−
= − × = − × ×       (6) 

 

The calculated ratios using Eq. (6) are listed at Table 11 along with their error compared to their 

MEAM-MD calculated counterparts. The calculated ratios show that the recommended empirical 

model results in maximum error of 6.0%, 2.3%, 9.1%, 12.4%, and 1.9% in predicting /0MPε , /0MP
PC

, /0
11
MPC , /0

12
MPC  and /0

44
MPC  , respectively. The maximum error is related to the predictions of all the 

physical properties of Ni. Although we expect that adding more transition metals data in the 

calculations of the averages and standard deviations at Eq. (5) will increase the accuracy of the 

empirical relations presented at Eq. (5-6), the presented relations can be used to predict these MP 

properties for transition metals with the consideration of the mentioned maximum error. 
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Table 11. The ratio of MP to low temperature thermoelastic properties as calculated by empirical 

relation presented at Eq. (13); the values in parentheses show the errors in comparison to 

MEAM-MD calculated data (Table X). 

 /0MPε  
/0MP

PC  
/0

11
MPC  

/0
12
MPC  

/0
44
MPC  

Fe  
1.82 (2.2%) 

 
1.34 (0.7%) 

 
0.56 (5.6%) 

 
0.97 (4.0%) 

 
0.53 (1.9%) 

Ni  
1.76 (6.0%) 

 
1.32 (2.3%) 0.60 (9.1%) 0.91 (12.4%) 0.55 (1.9%) 

Cu  
1.56 (3.1%) 

 
1.27 (0.8%) 0.73 (4.6%) 0.74 (6.3%) 0.60 (0.0%) 

 

IV. Conclusion 

In this study, we presented a new approach to modify MEAM potential parameters for simulating 

metals at temperatures near melting and solid-liquid transitions. The approach is based on 

amending high temperature elastic constants and melting point to the typical low temperature 

material properties, which can be used in the development of MEAM parameters. We applied the 

proposed approach to Fe, Ni, Cu, and Al as example materials.  The elastic constants at high 

temperatures were calculated by a fast fluctuation approach. The present MEAM potential 

parameters significantly decreased the deviation of MEAM-MD calculated C11, C12 and C44 from 

experimental counterparts in comparison with the previous MEAM potential parameters. The 

calculated elastic constants for Al by the previous MEAM potential parameters were in good 

agreement with experiment. The calculated melting points by the modified potential parameters 

for Fe, Ni, and Cu were within 0.06%, 1.3%, and 0.7% error with experimental data. Calculations 

of latent heat, expansion in melting, liquid structure factor and solid-liquid interface stiffness using 

the present MEAM parameters were also in reasonable agreement with experiments. Finally, the 

modified MEAM parameters were used in series of MD simulations to predict elastic constants, 

linear thermal expansion coefficient, and heat capacity of the considered elements at melting point 

and temperatures near melting. In addition, we presented empirical relations for the MP to low 
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temperature ratios of these thermoelastic properties that could provide these quantities for other 

transition metals.  The present study also showed a linear relation between the tetragonal shear 

modulus and enthalpy change for fcc materials. 
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Abstract: 

We present our investigation of the current state of the art for the transferability of molecular 

dynamics (MD) interatomic potentials for high temperature simulations of material processes in 

terms of elastic constants. With the current advancement of computer power, nanoscale 

computational models such as MD have the potential to accelerate optimization and development 

of high temperature material processes provided a robust and transferable interatomic potential. 

Temperature dependency of elastic constants, despite the low temperature elastic constants, is not 

commonly used as target material properties to develop interatomic potentials for metals; thus, it 

is a reliable index to determine the transferability of the potential for high temperature simulations. 

We consider all five independent elastic constants and their temperature dependency as an index 

for our evaluations for available interatomic potentials of Titanium (Ti), Zirconium (Zr), and 

Magnesium (Mg) as representative metals with a relatively complex crystal structure (hcp). The 

calculated elastic constants and their deviation from their corresponding experimental values are 

presented. We provide a through discussion on the transferability of each potential and summarize 
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with the most suitable potentials for high temperature material process simulations for each 

considered material. 

 

Keywords: Titanium; Zirconium; Magnesium; Elastic constants; Interatomic potential; Molecular 

Dynamics   

 

1. Introduction: 

Many metal manufacturing and joining processes involve cyclical variations of temperature 

between the melting point (MP) of the material and room temperature. Such processes include 

casting, additive manufacturing, sintering, welding, and liquid infiltration. One of the major factors 

in controlling and optimizing these metallurgical processes is a better understanding of atoms 

interactions and their movements, which can elucidate the behavior of materials in different 

circumstances. As a result of advances in computer power during recent decades, computational 

materials modeling has emerged as an alternative approach to experiments for understanding 

materials behavior in a shorter time and substantially less cost [1], [2].  Molecular dynamics (MD) 

and Monte Carlo (MC) simulations are among those frequently and efficiently used computational 

materials approaches at the nanoscale.  Today’s computer power easily allows MD or MC 

simulations of large systems containing up to one million and, in some situations, up to a billion 

atoms [3], [4], consequently enabling simulations of system sizes relevant to many metallurgical 

processes. For instance, MD simulations have been used to study plastic deformation of metallic 

systems [5], grain boundaries properties [6], phase transformation [7], solidification, and 

segregation-induced structural transition at grain boundaries [8].  The reliability of these 

simulations is based on the reliability of how the atoms “talk” or interact with each other, through 
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the interatomic potential energy, at different temperatures. The aim of the present study is to 

investigate the current state of progress of MD simulations’ predictive capability and 

transferability for high temperature applications.   

Interatomic potentials, which are mathematical functions of the coordinates of all atoms in the 

system, are essential for determining both equilibrium and non-equilibrium properties of materials. 

In MD simulations, the configurational trajectory of the system is obtained from the numerical 

integration of the equations of motion that are derived from the interatomic potential. In MC 

simulations, the interatomic potential is used to determine the probability of the system to evolve 

from one microstate to another one. Therefore, the computational resources required to 

determining the trajectory of the system in phase space depend on the complexity of the 

interatomic potential. Among those frequently used interatomic potentials for metallic systems are 

the embedded-atom method (EAM) [9] and modified embedded-atom method (MEAM) [10], [11]. 

The MEAM formulation is similar to the EAM formulation, but with the additional account of the 

directionality of the bonds. As a result, MEAM has higher computational cost than EAM.  

Nevertheless, all interatomic potentials are based on parameters that are determined by fitting 

model calculations to specific experimental or first principle data; hence, these interatomic 

potentials are called empirical or semi-empirical potentials. In another word, the reliability of each 

potential is based on the chosen and/or possible target properties in the fitting procedure. For 

instance, the potential is considered suitable for studying the plastic deformation when it is fitted 

to the stacking fault energy of the material [12]. The potential is suitable for studying phase 

segregation if it can reproduce a correct phase diagram of the material in the region of interest 

[13].  
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The most commonly used material properties for fitting interatomic potentials are materials 

properties at the absolute zero (0 K) such as cohesive energies, lattice parameters, and elastic 

constants. However, depending on the potential and the material system, fitting to only 0 K 

properties does not always result in a reliable potential at higher temperatures. The remedy to this 

problem, commonly adopted in the scientific community, is the addition of one or more key high 

temperature properties to the fitting procedure; e.g. the MP [14], [15] and/or liquid structure factor 

[12], [16]–[18]. We recently added high temperature elastic constants and MP in the fitting 

procedure of body-centered-cubic (bcc) and face-centered-cubic (fcc) metals [19]. The results 

showed that the prediction of other high temperature properties such as thermal expansion 

coefficient, specific heat, and latent heat are significantly improved. Therefore, high temperature 

elastic constants prediction of an interatomic potential can be used as an indicator to determine the 

transferability of an interatomic potential for high temperature simulations. Rassoulinejad-

Mousavi et al. [20] investigated the capability of some of the available EAM potentials of copper, 

nickel and aluminum in predicting the elastic constants at room temperature. Recently, they 

extended their study to include the calculation of the elastic constants of platinum, gold and silver 

for  100 K < T < 1000 K [21]. It should be noted that they focused on EAM potentials of metals 

with fcc structure only.  

In the present article, we present an investigation of the transferability of many interatomic 

potentials of three metallic materials with hexagonally close-packed (hcp) structure, corresponding 

to Titanium (Ti), Zirconium (Zr), and Magnesium (Mg). Ti, Zr and Mg are central to many 

applications in aerospace technology, biodevices, and automobile industry. We particularly 

consider all interatomic potentials, for these materials, that are available at the National Institute 

of Standard and Technology (NIST) Interatomic Potential Repository 
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(www.ctcms.nist.gov/potentials) [22]. This repository website also has several fitted properties of 

each developed potential including lattice parameter, cohesive energy and 0 K elastic constants 

[23]. In the present study, we make a significant effort in distinguishing between the calculated 0 

K elastic constants and temperature dependency of the elastic constants; the former is a property 

usually targeted in the fitting procedure of interatomic potentials while the latter is a prediction of 

the potential.  

 

2. Simulation Method 

In MD simulations, the elastic constants can be calculated using the direct method [24] through 

the stress-strain curve, or the fluctuations method based on ensemble averages of the strains or 

stresses. The elastic constants are related to stress and strain through the constitutive relation,   

                                                                                                                           (1)                                                                        

          

where  and  are the stress tensor and strain tensor, respectively, and  is the fourth rank 

stiffness tensor. Symmetry requirement of the strain and stress ( and ) implies that 

there are 21 elastic constants.  Customarily, the elasticity tensor is converted to an elasticity matrix, 

, where  or , , , ,  and 

. In this work, the elastic constants are calculated using the stress-fluctuations 

method, in which the element, , is the sum of the Born term , the fluctuations term , 

and the correction (or kinetic) term , i.e.,  

𝐶𝐶𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖𝑇𝑇 − 𝐶𝐶𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖𝐹𝐹 + 𝐶𝐶𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖𝐵𝐵 ,                                                                                                    (2)                                                                          
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𝐶𝐶𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖𝑇𝑇 = 2𝑁𝑁𝑘𝑘𝐵𝐵𝑇𝑇
𝑉𝑉

(𝛿𝛿𝑖𝑖𝑘𝑘𝛿𝛿𝑖𝑖𝑖𝑖 + 𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑖𝑖𝑘𝑘)                                                                                                      (3) 

𝐶𝐶𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖𝐹𝐹 = 𝑉𝑉
𝑘𝑘𝐵𝐵𝑇𝑇

(〈𝜎𝜎𝑖𝑖𝑖𝑖𝜎𝜎𝑘𝑘𝑖𝑖〉 − 〈𝜎𝜎𝑖𝑖𝑖𝑖〉〈𝜎𝜎𝑘𝑘𝑖𝑖〉)                                                                                                 (4) 

𝐶𝐶𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖𝐵𝐵 = 1
𝑉𝑉

𝜕𝜕2𝑈𝑈
𝜕𝜕𝜖𝜖𝑖𝑖𝑖𝑖𝜕𝜕𝜖𝜖𝑘𝑘𝑘𝑘

                                                                                                                             (5) 

The Born term has the main contribution to the elastic constants, and converges faster than the 

fluctuations term. However, the Born term is determined from the second derivative of the 

potential energy function with respect to the strain; a numerically challenging calculation for most 

modern many-body interatomic potentials. Zhen and Chu [25] proposed a universal and fast hybrid 

deformation-fluctuation method, in which the Born term is calculated from simultaneous 

perturbation of all atoms positions in a total of six special modes, using the following equation 

𝐶𝐶𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖𝐵𝐵 = �𝛿𝛿𝑖𝑖𝑖𝑖𝜎𝜎𝑖𝑖𝑘𝑘𝑣𝑣 + 𝛿𝛿𝑖𝑖𝑘𝑘𝜎𝜎𝑖𝑖𝑖𝑖𝑣𝑣� − lim
𝑒𝑒𝑖𝑖𝑖𝑖→0

𝜎𝜎𝑘𝑘𝑘𝑘
𝑣𝑣 −𝜎𝜎𝑘𝑘𝑘𝑘

𝑣𝑣0

𝑒𝑒𝑖𝑖𝑖𝑖
                                                                                     (6) 

where 𝜎𝜎𝑘𝑘𝑖𝑖𝑣𝑣   and 𝜎𝜎𝑘𝑘𝑖𝑖𝑣𝑣0  are the virial stress tensors after and before perturbation in one direction, 

respectively. In this method, we only need to calculate the initial value of the viral stress tensor 

before and after perturbation. Due to the hexagonal symmetry of hcp lattice structure, there are 

only five independent elastic constants, corresponding to C11, C12, C13, C33 and C44. 

Our MD simulations are performed on systems consisting of 10×10×10 supercells with periodic 

boundary conditions along the x-, y- and z- axes for the calculation of all elastic constants by the 

hybrid deformation-fluctuation method [23], using Eqs (2-6). The systems are first equilibrated at 

the desired temperature and zero-pressure for each interatomic potential. The temperature and 

pressure were controlled by the Nosé-Hoover chain thermostat [26] and the Parrinello-Rahman 

barostat [27], respectively. In all simulations, we monitored the crystal structures of the systems 

to ensure that they remain hcp. We did not perform simulations at higher temperatures at which 

the systems are either in the bcc phase or liquid state. Once a system has reached an equilibrium, 
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six small deformations (three uniaxial tensions and three in-plane shears) were simultaneously 

applied on the simulation box in the NVE ensemble (i.e., constant number of atoms, volume and 

energy). Convergence of all fluctuation terms for Ti, Mg, and Zr were reached within 10 ns.  

Besides the EAM and MEAM potentials at NIST Interatomic Potential Repository website [23], 

we also considered the MEAM potentials developed by Kim and Lee for Ti, Mg, and Zr [28]. The 

list of all the interatomic potentials evaluated in the present study, their nomenclature and 

corresponding references are given in Table 1. Since the 0 K elastic constants are typically 

considered in the interatomic potential development procedures, we also calculated these 

properties using the same potentials and listed them in Table 1. Note that for Ti, there is no 

potential, which produces all five elastic constants within a 10% margin error from experiments 

even at 0 K. However, the potentials NiTi.meam, Ti.Kim.meam and Zope-Ti-Al-2003.eam.alloy 

result in only one elastic constant which is different from its experimental counterpart by more 

than 10%.  Zr.Kim.meam potential is the only potential that produces all elastic constants of Zr 

within a 10% margin error from experiments. mg_al_set.alloy, Jelinek_2012.meamf, and 

Mg.Kim.meam are the only three potentials for Mg which produce all elastic constants within a 

10% margin error from experiments.  

 

3. Results and Discussion 

3.1. Titanium 

Fig. 1a shows our numerically calculated elastic constant, C11, using the eight available interatomic 

potentials for Ti. Except for Ti1.eam.fs and to a lesser extend Ti2.eam.fs, all potentials show a 

softening behavior (monotonic decrease with temperature) of C11, in agreement with experiment 

[12]. Ti1.eam.fs predicts elastic constants within 10% of experiments where the calculated C11 
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increases at low temperatures then decreases with further increase of temperature, reaching a 

maximum around 200 K.  

Table 1: Summary of calculated 0 K elastic constants along with their error in percent with 

experiments. All elastic constants are given in GPa.  

Material Name Ref. C11 C12 C13 C33 C44 

0 K %a 0 K % 0 K % 0 K % 0 K % 

 

 

 

Ti 

Ti1.eam.fs [12] 160.8 -8.7 80.4 -7.5 85.8 25.6 169.5 -11.0 52.6 3.5 

Ti2.eam.fs [12] 160.2 -9.0 70.0 -19.4 69.9 2.3 164.8 -13.5 54.3 6.9 

Ti3.eam.fs [12] 164.8 -6.4 87.8 1.0 82.6 20.9 165.2 -13.3 57.7 13.6 

Ti.set [29] 148.1 -15.9 89.6 3.1 68.6 0.4 200.6 5.3 35.8 -29.5 

Ti_v2.eam.fs [30] 179.7 2.0 86.8 -0.1 76.1 11.4 217.1 14.0 51.4 1.2 

Zope-Ti-Al-2003.eam.alloyb [31] 171.7 2.5 84.3 -3.0 77.1 12.9 190 -0.3 52.6 3.5 

NiTi.meam [32] 170.1 3.4 95.1 9.4 72.4 6.0 190.4 -0.1 40.4 -20.5 

Ti.Kim.meam [33] 170.2 3.4 80.7 -7.1 74.8 9.5 187.1 -1.8 42.1 -17.1 

Experiment [34] 176.1 - 86.9 - 68.3 - 190.5 - 50.8 - 

 

 

Zr 

Zr_1.eam.fs [18] 174.3 12.2 109.9 63.5 80.6 24.8 211.4 22.6 46.5 28.1 

Zr_2.eam.fs [18] 148.3 -4.6 81.6 21.4 63.3 -2.0 180.1 4.4 48.2 32.8 

Zr_3.eam.fs [18] 141.5 -8.9 74.3 10.6 74.1 14.7 167.7 -2.8 43.9 20.9 

Zr_Zhou04.eam.alloy [29] 131.3 -15.5 83.8 24.7 67.5 4.5 181.1 5.0 30.2 -16.8 

Zr.eam.fs [35] 151.2 -2.70 83.9 24.9 67.4 4.3 167.6 -2.8 34.6 -4.7 

Zr.Kim.meam [33] 151.6 -2.4 72.0 7.1 66 2.2 160.6 -6.9 34.1 -6.1 

Experiment [34] 155.4  67.2 - 64.6 - 172.5 - 36.3 - 

 

 

Mg 

Mg1.eam.fs [16] 69.1 8.8 26.7 3.1 15.4 -29.0 69.0 3.8 12.3 -33.2 

Mg.eam.fs [17] 68.8 8.3 26.1 0.8 16.0 -26.3 69.8 5.0 12.7 -31.0 

Mg_Zhou04.eam.alloys [29] 56.1 -11.7 28.7 10.8 20.2 -6.9 69.4 4.4 13.7 -25.5 

mg_al_set.alloy [36] 62.3 -1.9 26.2 1.2 22.1 1.8 67.8 2.0 18.3 -0.5 

Jelinek_2012.meamf [37] 59.4 -6.5 23.3 -10.0 23.6 8.8 60.5 -9.0 17.2 -6.5 

Mg.Kim.meam  [38] 62.9 -0.9 26.1 0.8 21.2 -2.30 69.6 4.7 17.1 -7.1 

Experiment [34] 63.5 - 25.9 - 21.7 - 66.5 - 18.4 - 

a Percentile error in comparison to experiment. 

b Shaded rows are the best matching interatomic potentials to experimental counterparts. 
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The calculated C11 by Ti2.eam.fs is in closer agreement with experiments compared to Ti1.eam.fs 

for all considered temperatures. The deviation of C11 from the experimental value, as calculated 

using Ti3.eam.fs, monotonically increases from more than 10%  at low temperatures to about 27% 

at 800 K. It is interesting to note that this is despite the fact that Ti3.eam.fs predicts a more accurate 

value of C11 at 0 K than Ti1.eam.fs and Ti2.eam.fs (see Table 1). These results clearly show that 

accurate prediction of the elastic constants at 0 K does not guarantee obtaining accurate values at 

high temperatures. It is worth mentioning that all of these three potentials were fitted to various 

properties including energy of different structures, lattice parameter, elastic constants, and defect 

energies at 0 K, as well as high temperature properties such as the MP and hcp-bcc transition 

temperature. More weight was given to the hcp-bcc transition temperature and the MP in the 

development of Ti1.eam.fs, whereas defect properties (such as point defect formation energies in 

the hcp crystal) was considered in the development of Ti2.eam.fs and Ti3.eam.fs.  

Ti.set results in more than a 10% error in C11 at temperatures below 400 K, but then approaches 

the experimental values at higher temperatures.  This potential was generally designed for alloy 

system (fitting to the enthalpy of mixing is also involved), where a multilayer of elements 

(CoFe/NiFe) have been deposited on the Cu substrate at room temperature. Ti_v2.eam.fs 

underestimates C11, but the error is reduced as temperature is increased, though this error is more 

than 10% for all considered temperatures. Ti_v2.eam.fs was developed based on the Finnis-

Sinclair-type many-body potential [39], [40] by fitting to an ideal fcc structure with three 

independent elastic constants, lattice parameter, binding energy, vacancy formation energy and 

stacking fault energy at 0 K. Zope-Ti-Al-2003.eam.alloy results in less than 5% error in C11 for all 

considered temperatures. This EAM potential was fitted to the ratio of lattice parameters, c/a, 
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cohesive energy, and elastic constants at 0 K, as well as vacancy formation energy and the thermal-

expansion coefficient at temperatures ranging between 293 K and 1000 K.  NiTi.meam [32] 

predicts a value of C11 well at relatively low temperatures. However, at high temperatures, this 

potential leads to an error in C11 that increases with increasing temperature, and is about 11% at 

1100 K. We note that the pure Ti potential in TiNi.meam is a MEAM potential fitted to the density-

functional theory (DFT) database for energies. However, the linear thermal expansion is not fitted 

for this potential and in fact, its error is ~13% at 300 K. Therefore, we may conclude that fitting 

the potential to the temperature dependence of the lattice parameters a and c plays a significant 

role in accurately predicting the elastic properties at high temperatures. Similar behavior is also 

predicted by Ti.Kim.meam, for which while the error in C11 is lower than 10% at low temperatures, 

it increases to about 19% at 1100 K. This potential also produces an error of ~14% for the linear 

thermal expansion coefficient over the range of 273 -373 K. We note that Ti.Kim.meam parameters 

were mainly determined based on the elastic constants, structural energy difference, surface 

energy, stacking fault and vacancy formation energy at 0 K.  

The elastic constant C12 for all the potentials for Ti along with its experimental counterparts are 

shown in Fig. 1b. In contrast to C11, the deviation of the predicted C12 from experiments by all 

potentials, except NiTi.meam, is larger than 10% for most temperatures. Furthermore, while the 

experimental value of C12 is a monotonically increasing function of temperature, all potentials, 

except NiTi.meam, predict C12 that is either non-monotonic or monotonically decreases with 

temperature. Ti1.eam.fs and Ti2.eam.fs are in close agreement with experiments for temperatures 

lower than 200 K and 450 K, respectively. However the errors of these two potentials exceed 10% 

at higher temperatures. Interestingly, as for C11, Ti.set and Ti_v2_eam.fs have worse predictions 

when it comes to C12. 
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The calculated C13, along with experiments, is shown in Fig. 1c. While Ti2.eam.fs predicts values 

of C11 and C12 that are in good agreement with experiments for temperatures less than about 450 

K, the error of the predicted C13 by this potential is large, varying between 27% at 100 K and 42% 

at 450 K. Likewise, Ti2.eam.fs also predicts large errors in C13 for all temperatures. The error of 

C13 predicted by NiTi.meam is within 10% for all temperatures, in line with this potential’s 

prediction for C11 and C12. Interestingly, although the experimental values of C13 increase with 

temperature slightly, all potentials, except for NiTi.meam, predict C13 that either monotonically 

decreases with temperature or is non-monotonic. 

The calculated C33 versus temperature, from all considered potentials, along with experiments [41], 

is  shown in Fig. 1d. The qualitative softening behavior of C33 from all potentials, except for 

Ti1.eam.fs and Ti2.eam.fs agree with experiments. However, Ti1.eam.fs, Ti2.eam.fs and 

Ti3.eam.fs predict deviations of C33, from experiments that is higher than 10% for most 

temperatures. Again, NiTi.meam predicts values of C33 that are within 10% from experiments, as 

it does for C11, C12, and C13. 

The calculated C44 versus temperature, from all considered potentials, along with experiments [41], 

is  shown in Fig. 1e.  Here, again Ti1.eam.fs along with Ti.Kim.meam, predict a hardening at low 

temperatures followed by softening, in contrast to all other potentials and experiments. 

Ti_v2.eam.fs predicts a C44 that decreases more rapidly with temperature than experiments and 

other potentials, while remaining within a 10% error. Despite to all other elastic constants, 

NiTi.meam potential predicts C44 out of 10% margin error for all the temperatures. However, it 

appears that the majority of this error is due to the error in fitting to experimental C44 at 0 K not 

the capability of the potential in predicting the temperature dependency of C44. 
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Fig.1. Calculated elastic constant C11, C12, C13, C33, C44 of Ti by different potentials along with 

experimental counterparts [41]. 

 

3.2. Zirconium 

The calculated C11 versus temperature from the six available potentials for Zr, are compared with 

experiments in Fig. 2a. This figure demonstrates that only Zr_1.eam.fs and Zr_3.eam.fs produce 
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values of C11 within 10% from experiments at all temperatures. The errors in C11 calculations using  

Zr_2.eam.fs and Zr.Kim.meam potentials are below 10% only for temperatures less than ~600 K. 

These two potentials predict C11 that is in excellent agreement with the experiments for 

temperatures lower than 200 K. Zr_Zhou04.eam.alloy and Zr.eam.fs calculate C11 with more than 

10% error for temperatures less than 400 K and 550K, respectively. However, their predictions 

improve at higher temperatures. In contrast, increasing temperature for Zr_2.eam.fs  and 

Zr.Kim.meam  results in an increasing error.   

We note that Zr.eam.fs was developed using the same approach as Ti_v2.eam.fs. Namely, these 

EAM/FS potentials were fitted only with 0 K properties including three independent elastic 

constants, lattice parameters, binding energy, vacancy formation energy and stacking fault energy. 

Zr_1.eam.fs was developed by refitting Zr.eam.fs to the pair-correlation function at 2290 K. 

Interestingly, while Zr_1.eam.fs produces a 12.2% error in C11 at 0 K, its accuracy in predicting 

this elastic constant improves at high temperatures, with 4% error for temperatures higher than 

400 K. Zr_2.eam.fs and Zr_3.eam.fs were also developed by the same authors who refitted 

Zr_1.eam.fs to mostly the hcp-bcc transition temperature and first-principle stacking fault energy 

calculations, respectively. We note that due to the difficulty in simultaneously fitting the hcp-bcc 

transition temperature, liquid structure factor, and interstitial and stacking fault formation energies, 

these authors opted to exclude the transition temperature from their fitting procedure in the 

development of Zr_3.eam.fs.  Zr_3.eam.fs reproduces a liquid structure factor that is in excellent 

agreement with experiments, as opposed to Zr_2.eam.fs. As a result, the high temperature 

prediction of C11 by Zr_3.eam.fs is in better agreement with experiments than either Zr_1.eam.fs 

or Zr_2.eam.fs. It is also interesting to note that although the calculated C11 at 0 K using 

Zr_2.eam.fs is smaller than 5% (Table 1), the error increases to about 12% at high temperatures. 
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Similar procedure was followed in the developments of Zr.Kim.meam and Ti.Kim.meam, which 

is heavily based on 0 K properties. While the error in the calculated C11 at 0 K using Zr.Kim.meam 

is 3%, it steadily increases with temperature to about 25% at 1100 K. This again emphasizes that 

the capability of an interatomic potential to predict the temperature dependency of elastic constant 

is independent from its capability to calculate the 0 K elastic constant.  

Fig. 2b shows the calculated C12 using all the considered potentials for Zr along experiments [41]. 

The experimental value of C12 increases with temperature while all of the considered potentials, 

except Zr_3.eam.fs and to some extend Zr_2.eam.fs at low temperatures, predict the opposite 

trend. Zr_1.eam.fs predicts that C12 sharply decreases with increasing temperature with an error 

about 63% at 0 K. Zr_Zhou04.eam.alloy, Zr.eam.fs and Zr.Kim.meam predict C12 that weakly 

depends on temperature variation. Except for temperatures below 100 K, Zr_3.eam.fs predicts the 

closest to experiments overall. 

Although Zr_3.eam.fs shows better agreement with experiments, for C11 and C12, than other 

interatomic EAM and MEAM potentials, it paradoxically results in the highest error for C13, as 

shown by Fig. 2c; however, this interatomic potential captures the temperature dependency of this 

elastic constant correctly. The best potentials in predicting C13 are Zr_Zhou04.eam.alloy, Zr.eam.fs 

and Zr.Kim.meam. Zr_2.eam.fs predicts C13 within 10% error for temperatures lower than 500 K. 

Opposite behavior is observed for calculations using Zr_1.eam.fs. 

The predictions of C33, shown in Fig. 2d, are relatively similar to that of C13. Again, 

Zr_Zhou04.eam.alloy, Zr.eam.fs and Zr.Kim.meam predict values of C33 in close agreement with 

experiments. However, Zr_3.eam.fs predicts the highest deviation from experiments.  

The calculated lattice constant, C44, versus temperature for Zr along with experiments are shown 

in Fig. 2e. Zr_Zhou04.eam.alloy and Zr.eam.fs predict the most accurate values of C44, particularly 
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at temperatures above 350 K. Zr_1.eam.fs, Zr_2.eam.fs and Zr_3.eam.fs predict the least accurate 

values of C44 for all the temperatures, with errors higher than 10%. Zr.Kim.meam also 

overestimates C44 by more than 10% for temperatures above 200 K.  

 

 

 

200 400 600 800 1000 1200

Temperature (K)

80

100

120

140

160

180

C
11

 (G
P

a)

Zr_1.eam.fs

Zr_2.eam.fs

Zr_3.eam.fs

Zr_Zhou04.eam.alloy
Zr.eam.fs

Zr.Kim.meam

Experiment

10% Error Margins

(a)

200 400 600 800 1000 1200

Temperature (K)

60

70

80

90

100

110

C
12

 (G
P

a)

Zr_1.eam.fs

Zr_2.eam.fs

Zr_3.eam.fs

Zr_Zhou04.eam.alloy
Zr.eam.fs

Zr.Kim.meam

Experiment

10% Error Margins

(b)

200 400 600 800 1000 1200

Temperature (K)

50

55

60

65

70

75

80

85

90

C
13

 (G
P

a)

Zr_1.eam.fs

Zr_2.eam.fs

Zr_3.eam.fs

Zr_Zhou04.eam.alloy
Zr.eam.fs

Zr.Kim.meam

Experiment

10% Error Margins

(c)

200 400 600 800 1000 1200

Temperature (K)

120

130

140

150

160

170

180

190

200

210

C
33

 (G
P

a)

Zr_1.eam.fs

Zr_2.eam.fs

Zr_3.eam.fs

Zr_Zhou04.eam.alloy
Zr.eam.fs

Zr.Kim.meam

Experiment

10% Error Margins

(d)

200 400 600 800 1000 1200

Temperature (K)

15

20

25

30

35

40

45

50

C
44

 (G
Pa

)

Zr_1.eam.fs

Zr_2.eam.fs

Zr_3.eam.fs

Zr_Zhou04.eam.alloy
Zr.eam.fs

Zr.Kim.meam

Experiment

10% Error Margins

(e)



74 
 

Fig. 2. Calculated elastic constant C11, C12, C13, C33, C44 of Zr from different potentials along 

with experimental counterparts [41]. 

 

3.3. Magnesium 

Fig. 3a shows our numerically calculated C11 elastic constant, using the eight available interatomic 

potentials for Mg along with experimental values. This figure shows that Mg_1.eam.fs, Mg.eam.fs 

and Mg.Kim.meam results in errors in C11 predictions that are less than 10% for all temperatures. 

The error in C11 calculation using Jelinek_2012.meamf is less than 10% for temperatures below 

400 K, while increasing temperature to 500 K slightly increases the error above 10%. The error in 

C11 calculation using mg-al_set.eam.alloy is under 10% only for temperatures below 170 K. The 

error in C11 calculation using Mg_Zhou04.eam.alloy varies between 15% and 27% for all the 

temperatures. 

The Mg.eam.fs interatomic potential was developed using the force-matching method in the fitting 

procedure. They also considered 0 K properties corresponding to c/a ratio, unrelaxed vacancy 

formation energy, universal binding energy-relation [42] and 0 K elastic constants. This potential 

is also re-parameterized to give optimal values of the MP and liquid density. However, this 

potential predicts a value of the solid-liquid interfacial tension that is lower than its experimental 

counterpart. This was improved in Mg1.eam.fs development through re-optimization of the 

pairwise potential and embedding function. As a result, these two potentials predict similar values 

of the elastic constants.   

mg_al_set.eam.alloy was developed for Al-Mg alloys based on Mg.eam.fs. This potential was only 

fitted to the 0 K properties of the binary system and to the liquid solution mixing energy. This 

potential results in more than a 10% error for C11 calculate for temperatures above 150 K. 
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Mg_Zhou04.eam.alloy, which was developed in the same way as Ti_Zhou04.eam.alloy and 

Zr_Zhou04.eam.alloy, predicts a large error for C11, except for temperatures below ~150 K. 

Mg.Kim.meam was fitted to 0 K properties, including c/a, all five independent elastic constants, 

structural energy differences, the activation energy of vacancy formation, and self-diffusion, 

surface energy and stacking fault energies. This potential fairly well predicts C11. 

Jelinek_2012.meamf was optimized to reproduce generalized stacking fault energy in agreement 

with DFT calculations.  

Fig. 3b shows that Jelinek_2012.meam is the only potential that results in more than a 10% error 

in C12 calculation for all temperatures. mg_al_set.eam.alloy and Mg.Kim.meam predict errors 

slightly above 10% at temperatures higher than 350 K and 450 K, respectively. Interestingly and 

in contrast to the cases of Ti and Zr, all Mg potentials predict softening in C12, in qualitative 

agreement with experiments. 

Fig. 3c shows the calculated C13 versus temperatures along with experiments. Mg_al_set.eam.alloy 

and Jelinek_2012.meam are the only potentials predicting C13 within a 10% margin error for all 

temperatures. Mg1.eam.fs and Mg.eam.fs predict large errors in C13 for low temperatures. 

However, these errors decrease to 1.2% and 3.4% at 600 K, respectively. Mg_Zhou04.eam.alloy 

and Mg.Kim.meam predict values of C13 within a 10% error from experiments at temperatures 

lower than 400 K and 500 K, respectively.  

The elastic softening of C33 for all temperatures is predicted by Mg_Zhoul04.eam.alloy, Jelinek-

2012.mem and Mg.Kim.meam, as shown by Fig. 3d. However, Mg1.eam.fs and Mg.eam.fs predict 

a non-monotonic behavior of C33 with an elastic softening only for temperatures above 400 K. 

mg_al_set.eam.alloy shows a weak non-monotonic behavior of C33. Mg.Kim.meam is the most 

accurate potential in producing C33 compared to all other potentials. Mg_Zhou04.eam.alloy also 
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produces accurate values of C33 for temperatures less than 350 K. mg_al_set.eam.alloy and 

Jelinek_2012.meam overestimates and underestimates C33 by about 10% for all temperatures, 

respectively.    

Fig. 3e shows that the potentials mg_al_set.eam.alloy, Jelinek_2012.meam and Mg.Kim.meam 

predict accurate C44 elastic constant (error less than 10%) for all temperatures. In particular 

mg_al_set.eam.alloy is in an excellent agreement with experiments for temperatures between 100 

K and 400 K. While both Mg1.eam.fs and Mg.eam.fs predict reasonable C44 for high temperatures 

in comparison to experiment, both potentials predict an error in C44 larger than 10% at low 

temperatures. Mg_Zhou04.eam.alloy underestimates C44 by more than 29% at all temperatures 

while correctly predicting the temperature dependency of this elastic constant.  
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Fig. 3. Calculated elastic constant C11, C12, C13, C33, C44 of Mg from different potentials along 

with experimental counterparts [43]. 

4. Conclusions 

In this paper, we surveyed the available interatomic potentials in terms of their capability in 

prediction of temperature dependency of elastic constants for hcp metals; i.e. Ti, Zr and Mg. We 
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employed the fluctuation method for the calculation of the elastic constants, noting that this method 

results in minimal uncertainty in the calculated elastic constants. Since different potentials have 

different predictive accuracies of the various elastic constants which are discussed in details, we 

conclude by calculating cumulative errors in comparison to experimental counterparts as indexes 

to evaluate the overall performance of the interatomic potentials. We namely define a tensile 

cumulative error 
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a shear cumulative error which is identical to  the calculated C44 error 
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and an overall cumulative error defined as,  
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The results of the three cumulative errors for Ti for all the considered interatomic potentials are 

shown in Fig. 4 (a-c). These results clearly show that there are four interatomic potentials for Ti 

predicting the temperature dependency of elastic constants overall in agreement with experiments; 

i.e. NiTi.meam, Ti.set, Ti.Kim.meam, and Zope-Ti-Al-2003.eam.alloy. The overall error of 

NiTi.meam and Ti.set are about 12% and 15% at low temperatures, respectively, while both predict 

elastic constants closer to experiments at higher temperatures where the error reaches to about 8% 

and 12%, respectively. The Ti.Kim.meam, and Zope-Ti-Al-2003.eam.alloy potentials exhibit an 

opposite trend which is increment of overall error from ~8% and 6% at low temperatures to ~15% 

at high temperatures.  Both NiTi.meam and Ti.set potentials predict the tensile elastic constants 

(less than 7% and 9% cumulative error, respectively) better than shear elastic constants (less than 

24% and 30% error, respectively). Zope-Ti-Al-2003.eam.alloy potential exhibit an opposite trend; 



79 
 

i.e. the cumulative error of tensile elastic constants is less than 17%  while the error in shear elastic 

constant is less than 4%.   

 

 

Fig. 4. Calculated cumulative error for tensile, shear and overall elastic constants for Ti. 

 

The calculated tensile, shear and overall cumulative error for tensile, shear and overall elastic 

constants of Zr are given in Fig 5 (a-c), respectively. Among all studied Zr potentials, only 

Zr_1.eam.fs, Zr_Zhou04.eam.alloy, Zr.eam.fs, and Zr.Kim.meam are in close agreement with 

experimental counterparts. Overall error for Zr_Zhou04.eam.alloy, Zr.eam.fs are less than 14% 

and 10%, respectively at all temperatures. Increasing temperature increases and decreases the 

overall error for Zr.Kim.meam and Zr_1.eam.fs, respectively where the better prediction can be 

seen at lower and higher temperature, respectively. The same behavior is shown for tensile error 
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where the error of tensile elastic constants is less than ~%14 and 10% for Zr_Zhou04.eam.alloy 

and Zr.eam.fs, respectively. The error for shear elastic constant for Zr_Zhou04.eam.alloy and 

Zr.eam.fs are less than 15% and 10%, respectively. On the other hand, the error for Zr.Kim.meam 

increases with temperature where it reaches from ~ 0% to 50% while the error for Zr_1.eam.fs is 

changing from 27% to 23% from low to high temperatures. 

 

 

Fig. 5. Calculated cumulative error for tensile, shear and overall elastic constants of Zr. 

 

The calculated error of overall, tensile and shear are given in Fig 6(a-c). It is clear that 

mg_al_set.eam.alloy, Jelinek_2012.meamf and Mg.Kim.meam potential reproduce overall elastic 

constants better than the remains of Mg potentials. However, in all cases, increasing temperature 

increases the error of overall error of elastic constants where the best behavior in all temperature 

200 400 600 800 1000 1200

Temperature (K)

0

5

10

15

20

25

30

35

40

Te
ns

ile
 E

rr
or

 (%
)

Zr_1.eam.fs

Zr_2.eam.fs

Zr_1.eam.fs

Zr_Zhou04.eam.alloy
Zr.eam.fs

Zr.Kim.meam

(a)

200 400 600 800 1000 1200

Temperatrue (K)

0

10

20

30

40

50

60

70

S
he

ar
 E

rr
or

 (%
)

Zr_1.eam.fs

Zr_2.eam.fs

Zr_1.eam.fs

Zr_Zhou04.eam.alloy
Zr.eam.fs

Zr.Kim.meam

(b)

200 400 600 800 1000 1200

Temperature (K)

0

5

10

15

20

25

30

35

O
ve

ra
ll 

Er
ro

r (
%

)

Zr_1.eam.fs

Zr_2.eam.fs

Zr_1.eam.fs

Zr_Zhou04.eam.alloy
Zr.eam.fs

Zr.Kim.meam

(c)



81 
 

belongs to Mg_Kim.meam potential. Similar trends can be found for tensile error where the error 

increases from ~10, 6 and 4% at low temperature to 13, 16 and 11% at high temperature for 

mg_al_set.eam.alloy, Jelinek_2012.meamf and Mg.Kim.meam, respectively. Calculated the shear 

errors for these potentials show that the error is less than 7% and 6% for mg_al_set.eam.alloy and 

Jelinek_2012.meamf, respectively. the error of shear elastic constants for Mg.Kim.meam potential 

shows decreasing with increasing temperature where it reaches from ~%9 at low temperature to 

1% at high temperature.  

 

Fig. 6. Calculated cumulative error for tensile, shear and overall elastic constants of Mg. 
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All simulations were performed using computers of University of Memphis High Performance 

Computing Center. 
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Abstract 

We present an approach to study the transferability of molecular dynamics (MD) interatomic 

potentials (IPs) for materials modeling during metal additive manufacturing (MAM) processes, 

which involves rapid and cyclic melting, solidification, vaporization, and solid phase 

transformations. We apply the approach to the ten available IPs of titanium (Ti) as an example, 

which resembles the MAM process modeling of commercially pure Ti and Ti-base alloys. We 

consider the capability to produce solid phase change behavior of the alloy in equilibrium and 

nonequilibrium thermodynamics as the primary required characteristics of an IP for the MAM 

process modeling. Two-phase α-β, β-liquid, and liquid-vapor coexistence properties are used as 

the secondary criteria. Finally, we use other relevant single-phase properties as the tertiary criteria, 

such as the elastic constants at high temperatures and liquid structure factor, self-diffusivity, and 

shear viscosity. We show there are only two IPs that demonstrate reasonable characteristics for 

MAM process modeling. 
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Metal additive manufacturing (MAM) is an advanced manufacturing technique that has been 

increasingly adopted in many industries, including the biodevice, aerospace, and automobile 

industries, to manufacture consolidated, complex, and customized parts [1,2]. Most MAM 

techniques are based on the layer-by-layer scanning of the part geometry using a localized heat 

source, such as a laser or an electron beam [3]. Among the major obstacles to the widespread 

utilization of MAM is the lack of understanding of the material behavior during the MAM 

processes [4]. Recent advances in computational materials science, such as integrated 

computational materials engineering (ICME), can be leveraged to understand the materials 

behavior during MAM at the microscopic level [5–7]. Molecular dynamics (MD) using empirical 

and semiempirical interatomic potentials (IPs) is among those frequently and efficiently used 

computational techniques within the ICME concept. Today’s computer power easily allows the 

MD simulation of large systems with up to millions of atoms and, in some instances, up to billions 

of atoms [8,9]. Hybrid techniques combining MD with Monte Carlo methods further extend the 

simulation time scales, thereby allowing simulations of systems relevant to MAM processes. The 

aim of the present study is to propose an approach for gauging the reliability of IPs for MD 

modeling of materials during MAM processes and a roadmap for the development/verification of 

novel IPs  for this purpose. As an application of our approach, we choose titanium (Ti), which is a 

widely used metal, to demonstrate the generality in the material’s behavior, including solid-state 

phase transformations. 

MD simulations can be employed as a tool to elucidate the physical processes at the microscopic 

level, which are involved during the MAM, thereby reducing the amount of trial and error 

experiments that are needed to determine the process variables [10]. However, most MD 

simulations of additive manufacturing processes have been carried out on nonmetallic materials. 
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For instance, Qiu et al. [11] used MD simulations to investigate the melting behavior of nanosized 

α–Al2O3 and used the results to appropriately select the wavelength of the laser or electron beam 

in the process. In another study, Wang et al. [12] employed MD simulations to study the binder 

spraying volume and its mechanics in bone scaffolds during a three-dimensional (3D) printing 

process. Qin et al. [13] used MD simulations to investigate the mechanics of porous graphene-

based materials used in 3D printing. 

MD IPs are typically developed based on accurate predictions of 0 K and low temperature 

properties, such as the cohesive energy, lattice parameters and elastic constants. Such an approach 

is commonly used to develop the embedded-atom method (EAM) [14] and modified embedded-

atom method (MEAM) IPs [15,16], which are commonly used IPs for metals. In addition to the 0 

K and low temperature properties, one or more key high temperature properties are usually added 

to the optimization procedure to increase the reliability of the IPs for high-temperature simulations. 

Such properties include the melting point (TM) [17,18], liquid structure factor [19–22], high 

temperature elastic constants [23–25], and liquid self-diffusion coefficients [26]. However, there 

are no IPs in the literature that are either fully verified or developed for materials modeling during 

the MAM process. This important consideration is mandated due to the unique thermal history of 

material during the MAM process, which is briefly reviewed next. 

Powder bed fusion (PBF) and directed energy deposition (DED) are the two MAM techniques that 

are most commonly used for the fabrication and repair of 3D components, respectively [27]. In 

PBF, the moving heat source creates a moving melt-pool by selectively scanning a thin layer of 

powders (powder bed), while the metal feedstock, in the form of powder or wire, is added to the 

moving heat source spot in the DED. Therefore, MAM can be considered a “microwelding” 

material joining process that lays single tracks of weldments adjacent to each other to scan the 
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component area within the layers and repeats this process layer-by-layer to fabricate the 3D 

component [28]. The scan strategy is the path of single tracks to scan the component area within 

the layers. The stripe scan method is one of the most commonly used scan strategies in PBF. Fig. 

1 depicts the simplified version of the stripe scan strategy to provide illustrations for the following 

MAM material thermal history discussion. 

 

Fig. 1. Stripe scan strategy illustration in the PBF-MAM process: the stripe width (s), hatch 

spacing (h), stripe gap (g), and layer-to-layer rotation of stripes (θ). 

 

Although quantifying the thermal history of alloys during a complex MAM process, as illustrated 

in Fig. 1, is a very challenging task both numerically and experimentally, due to the multiphysics 

nature of the process [29–31], there have been significant advances in recent years [28,32–35]. 

The real-time thermography of the PBF process at the National Institute of Standard and 

Technology (NIST) [36] confirms the qualitative expected thermal history (schematically shown 

in Fig. 2 for the stripe scan strategy) and validates several successful numerical predictions of the 

thermal history [37–39]. In summary, the thermal history of materials in the MAM, as depicted in 

Fig. 2, involves 
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Fig. 2. Schematic of the thermal history of alloys during MAM: the build platform temperature 

(TB), the melting point (TM), and the solid-state phase transformation temperature (TS). 

 

1) Heating from TB to a Tmax higher than TM of the alloy to melt the metal feedstock and form 

the melt-pool with the possibility of vaporization. Therefore, the MD IP for the MAM should 

consider temperature-dependent liquid and solid properties, such as the liquid structure factor, 

solid and liquid densities and enthalpies, liquid self-diffusion, and liquid shear viscosity, and 

liquid-vapor properties, such as the liquid-vapor interfacial tension. 

2) Cooling down until the adjacent welding track reaches the spot, typically resulting in 

solidification given the proper selection of scanning parameters, such as the laser power and 

scanning speed; furthermore, it is possible to observe a solid-state phase transformation at Ts 

depending on the thermodynamics of the alloy. Therefore, the MD IP should consider two-phase 

coexistence properties, such as TM, αβ transition temperature (Tαβ), energy differences and 

volume expansion coefficients at TM and Tαβ. 
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3) Cyclic heating to descending temperatures smaller than Tmax and cooling due to the heat 

conduction and overlapping of single tracks and repeating of the whole cycle due to scanning of 

the adjacent stripes and the next layers. While the cooling rates for the first track vary in the order 

of 104 C°/s and 106 C°/s depending on the selected laser power and scanning speed [40,41], the 

cooling rates descend and the bounding temperatures vary for each subsequent cycle of the thermal 

history. Therefore, the time-dependent properties of solidification and solid-state phase 

transformation, such as temperature-time-transformation (TTT) diagram, must be considered for 

the IP development/verification for the MAM process. 

Clearly, the MD IP for the MAM process modeling must exhibit various solid states as well as 

liquid and vapor forms of the material as a precondition to the above requirements. Developing 

classical IPs, such as EAM and MEAM, to exhibit all the above listed characteristics is very 

challenging, especially for alloy systems. Therefore, these characteristics must be prioritized, and 

a roadmap or approach should be developed that considers the targeted phenomena to study. 

Providing the first attempt to design such a roadmap for MD IP development/verification for MAM 

process modeling is the main goal of the present study. Furthermore, such a roadmap can be 

implemented in the development of recently emerged machine learning IPs [42–46] to capture all 

of the characteristics for MAM process modeling. 

In the present study, which is based on a large set of systematic MD simulations, we first determine 

the solid-state phase change behavior of the available ten IPs for Ti, which can be found at the 

NIST IP Repository (www.ctcms.nist.gov/potentials), from the free energies of the body-centered-

cubic (bcc), face-centered-cubic (fcc), and hexagonal-close-packed (hcp) phases as a function of 

temperature. Second, we determine the TTT diagrams using these IPs to determine their predictive 

capability of the solid-state phase transformation under nonequilibrium thermodynamics 

http://www.ctcms.nist.gov/potentials
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conditions. Third, we assessed these IP predictions of the two-phase coexistence properties, 

including the α-β, β-liquid, and liquid-vapor properties. These two-phase coexistence properties 

correspond to the melting point (TM), αβ transition temperature (Tαβ), energy differences and 

volume expansion coefficients at the TM and Tαβ, and liquid-vapor surface tension. Fourth, we 

determine the IP predictions of various single-phase structural properties. These predictions 

correspond to the elastic constants of the solid phase in the temperature range [Tαβ, TM], the 

structure factor of the liquid phase, the temperature dependence of the liquid and solid densities 

and enthalpies, the liquid self-diffusivity, and the liquid shear viscosity. Comparison between the 

numerically obtained results from the available IPs with their available experimental counterparts 

are then used to discuss the transferability of these IPs, their capabilities and limitations for 

modeling the MAM processes of Ti and its alloys. 

 

1. Results 

1.1.  Solid-State αβ Phase Transformation 

The thermodynamic stability of the hcp, bcc and fcc phases is determined from their Gibbs free 

energies as calculated using each of the ten EAM and MEAM IPs in the MD simulations. Fig. 3(a) 

and (b) depict the calculated Gibbs free energy differences (in eV/atom) between the bcc and hcp 

phases and fcc and hcp phases, respectively. The data for each IP is reported until the melting point 

of the hcp phase, which is calculated based on the solid-liquid coexisting method [18]. The vertical 

and horizontal gray dashed lines in Fig. 3(a and b) mark the experimental Tαβ for Ti (1155 K) and 

Gibbs free energy difference corresponding to a phase transition (0 eV/atom), respectively. The 

black dashed curves in Fig. 3(a and b) are the Calphad data based on the Scientific Group 

Thermodata Europe (SGTE) unary database [47]. Since stabilizing the fcc phase for the Ti2.eam.fs 
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and Ti3.eam.fs IPs between 900 K and 1200 K was not possible, we only present the free energy 

difference between the hcp and bcc phases for them. Additionally, the bcc phase is unstable in the 

same range of temperatures for Ti-v2.eam.fs and is unstable for T<1100 K for Ti.meam.spline; 

thus, Fig. 3 excludes the corresponding free energy differences. 

 

Fig. 3. Calculated Gibbs free energy differences for all the considered Ti IPs along with the 

SGTE unary database [47]: (a) bcc and hcp phases and (b) fcc and hcp phases. 

1.2.  Temperature-Time-Transformation Diagram 
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Fig. 4 depicts the TTT diagrams for each of the six IPs considered hereafter that demonstrated 

α→β solid-state transition. Three independent runs are performed for each temperature to show 

the influence of the initial velocities and positions of individual atoms on the obtained TTT 

diagrams. The structure of the crystallized solid following the quench at each temperature and for 

each independent run is characterized next. Fig. 5 shows the percentages of the different solid 

phases versus temperature for each of the six IPs. The standard deviation of the percentages is 

determined using the results obtained from the independent runs at each temperature.  

 

Fig. 4. MD-calculated TTT diagrams using various Ti IPs. 
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Fig. 5. Volume fractions of the hcp, bcc, fcc and other structures as a function of the quench 

temperature for various Ti IPs. 
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1.3.  Two-Phase α-β, β-Liquid, and Liquid-Vapor Coexistence Characteristics 

MD calculations of the α-β transition temperature (Tα→β), melting point (TM,) change in enthalpy 

(ΔHα→β), change in volume (ΔVα→β), latent heat (ΔHβ→M), and expansion in melting (ΔVβ→M) using 

all six IPs are listed in Table 1. The calculated liquid-vapor interfacial tensions using all six IPs 

over a range of temperatures relevant to MAM are depicted in Fig. 6.  

 

Fig. 6. MD calculations of the vapor-liquid interfacial tension using six IPs, along with two 

experimental data sets corresponding to Experiment 1 (solid circles) [48] and Experiment 2 

(open circles) [49]. 

 

1.4.  High-temperature Elastic Constants of the Solid Phases 

We recently calculated the elastic constants using the fluctuation technique in MD simulations for 

the α phase in the range 100-1150 K [25]. Here, we use the same method to calculate the  
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Fig. 7. MD-calculated elastic constants for Ti in the α and β phases, along with the experimental 

results corresponding to Experiment 1 [50] and Experiment 2 [51]. 

elastic constants of the α and β phases using all six IPs considered for temperatures ranging from 

900 K until the TM. The MD calculations for the five independent elastic constants, C11, C12, C13, 
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C33 and C44, of the α phase and the three independent elastic constants, C11, C12, and C44, of the β 

phase are shown in Fig. 7(a-e). Also shown in the figure are the experimental results for the α 

phase by Fisher et al. [50] and by Ogi et al. [51] and for the β phase by Ogi et al. [51]. We note 

that the results from Fisher et al. for C11 C13, C33 and C44 (experiment 1) were obtained using pulse-

echo measurements up to 1156, 923, 1083 and 1156 K, respectively. The experimental data in Ref. 

[50] near the Tα→β were obtained from extrapolation, and the researcher’s accuracy was questioned 

by Ogi et al. [51]. 

1.5.  Density and Enthalpy Variations by Temperature 

The MD calculations of density and excess enthalpy (ΔH=H(T)-H(299)) of the α and β solid phases 

are shown in Fig. 8(a) and (b), respectively. Fig. 8(c) and (d) depicts the MD calculations of the 

density and excess enthalpy (ΔH=H(T)-H(293)) for liquid phase from 1800 to 2250 K, 

respectively, along with the two experimental values [48,49].  

 

Fig. 8. MD calculations, using six Ti IPs, of (a) density of the α and the β phases, along with the 
experimental results: Experiment 1 [52], Experiment 2 [53], Experiment 3 [54], and the Calphad 

calculations [55], (b) excess enthalpy of the α and the β phases, along with the experimental 
results [56], (c) liquid density along with Experiment 1 [48] and Experiment 2 [49] and (d) 

excess enthalpy along with Experiment 1 [48] and Experiment 2 [49]. 
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3.4. Liquid Phase Characteristics 

Fig. 9(a) depicts MD calculations of the liquid structure factor, S(k), using all six IPs along with 

experiments, using the procedure explained in our previous publication [57]. Fig. 9(b) depicts the 

self-diffusion coefficient in the liquid phase as a function of temperature for all six IPs, along with 

available experimental data [26]. Fig. 9(c) depicts the calculated shear viscosity along with its 

experimental counterparts [48]. It is worth mentioning that D and η are interrelated through the 

Stokes-Einstein relationship, D~kBT/η. Fig. 9(d) depicts Dη/T as calculated from the six IPs as a 

function of temperature. All IPs predict an almost independent Dη/T from the temperature in the 

liquid phase, in agreement with the Stokes-Einstein relation. 

 

2. Discussions 

2.1.  Primary Properties: Equilibrium and Nonequilibrium Phase Stabilities 

During the MAM process, materials undergo cyclic transformations between various phases with 

variable cooling/heating rates, as explained in Fig. 2. Thus, the MD modeling of the MAM process 

requires the use of IPs that reliably predict these phase transitions in equilibrium and 

nonequilibrium thermodynamics. We consider the exhibition of the different solid phases of the 

material in equilibrium thermodynamics through MD-calculated free energies as the first primary 

property. The MD-calculated TTT diagram, as a representative nonequilibrium thermodynamic 

characteristic of the material, is considered as the second primary property 
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Fig. 9. MD calculations, using six Ti IPs, of  (a) liquid structure factor along with the 

experimental results at 1973 K [58], (b) self-diffusivity along with the experimental results [26], 

(c) the shear viscosity along with the experimental results [48], and (d) Dη/T. 

 

The α-β solid-state phase transformation is the basis for the design of the MAM and post-MAM 

heat treatment processes for Ti alloys that have a significant influence on the performance of the 

alloy [59,60]. Therefore, we consider the capability of the IP to simply exhibit such a transition as 

the primary requirement for use of the IP for MAM process modeling. Notably, the Ti3.eam.fs IP 

almost exactly matches the Calphad calculations of phase stabilities in Fig. 3(a), and Ti1.eam.fs is 



102 
 

the closest IP to the Calphad calculations of phase stabilities in Fig. 3(b). In addition, Ti.set and 

Ti.Kim.meam IPs show that the hcp phase is the only stable phase in the temperature range of 900 

K to the TM. Therefore, there are seven IPs, corresponding to Ti1.eam.fs, Ti2.eam.fs, Ti3.eam.fs, 

NiTi.meam, Zope-Ti-Al-2003.eam, Ti.Dickel.meam and Ti.meam.spline, that exhibit a phase 

transition between the hcp (α) and bcc (β) phases. The Zope-Ti-Al-2003.eam IP results are used 

in the calculated TM for the α phase of 1535 K and the calculated Tα→β of 1520 K. Due to the very 

short range of temperatures between the Tα→β and the TM for this IP, we exclude this IP from the 

list of the IPs that exhibit the α→β solid-state transition. This primary consideration leaves out 

four of the ten IPs for Ti from further evaluations. These four IPs are not able to demonstrate 

experimentally expected solid-state transformation from α phase at low temperatures to β phase at 

high temperatures. These IPs have been developed for modeling different phenomena and 

processes, and the conclusions here are specifically regarding the MAM process modeling 

capability. 

All six IPs predict typical expected TTT diagrams (Fig. 4), characterized by long crystallization 

onset times at both low and high temperatures and relatively short crystallization times at 

intermediate temperatures. These MD-calculated TTT diagrams are representative nonequilibrium 

properties of materials related to homogenous nucleation, which can be compared to their 

experimental counterparts in the development/verification process of IPs for the MAM process 

modeling. Given the availability of experimental TTT diagrams, the influence of the system size 

on the MD-calculated TTT diagrams should also be investigated for robust comparisons. 

The solid phases percentage calculations depicted at Fig. 5 shows that Ti1.eam.fs results in the 

crystallization of the liquid into the bcc phase only, regardless of the temperature. Likewise, the 

Ti3.eam.fs results in the crystallization of the liquid into the hcp phase only. In contrast, 
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Ti2.eam.fs, NiTi.meam, Ti.Dickle.meam and Ti.meam.spline yield to the crystallization of the 

liquid into the hcp or the bcc phases at low or high temperatures, respectively. Since the MAM 

process modeling of Ti requires an IP that correctly predicts stable hcp and bcc phases at low and 

high temperatures, respectively, both Ti1.eam.fs and Ti3.eam.fs may not be suitable for MAM 

modeling of Ti. The fact that free energy calculations based on these two IPs predicted the 

thermodynamically stable bcc phase at high temperatures, as shown by Fig. 3(a and b), implies the 

existence of a relatively high energy barrier, preventing the spontaneous transformation of the hcp 

phase to the bcc phase at high temperatures. It should be noted here that the above conclusions are 

drawn without studying the influence of the system size on the MD-calculated volume fractions 

and in the absence of experimental counterpart for these quantities. 

 

2.2.  Secondary Properties: Two-phase Coexistence Properties 

The cyclic two-phase coexistence of various states of metals during the MAM process secures the 

consideration of the related quantitative indexes as the secondary consideration for the 

development/verification of MD IPs. For the Ti alloy, the α-β, β-liquid, and liquid-vapor 

coexistences cyclically occur during the MAM process, and the related secondary properties 

include the transition temperature, change in enthalpy, change in volume, and liquid-vapor tension. 

Clearly, additional coexistence properties may be added to this list to enhance the confidence in 

the MD IPs. 

The calculated Tα→β values (Table 1) for all three EAM IPs are very close to the experimental 

value (1155 K). The MEAM IP Ti.Dickel.meam also predicts Tα→β within a 1% error from the 

experiment. In contrast, the margins from the two other MEAM IPs, NiTi.meam and 

Ti.meam.spline, are 31% and 10%, respectively. This result is expected since Tα→β was included 
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in the IP development process for the three EAM and Ti.Dickel.meam IPs. Furthermore, 

Ti3.eam.fs and Ti.meam.spline are closest to the experimental ΔHα→β values, with errors 

corresponding to 4.5% and 15.9%, respectively. Ti1.eam.fs predicts the closest values to the 

experimental values for TM and ΔHβ→M corresponding to 1% and 10% errors, respectively. 

Ti.Dickel.meam shows a reasonable agreement with the experiments with errors of 11% and 35% 

in calculations of the TM and ΔHβ→M, respectively. Here, we note that Ti1.eam.fs is unable to show 

the spontaneous transformation of a liquid to the solid α at lower temperatures, as shown in Fig. 

3(a). Furthermore, the MD-calculated expansion in melting using Ti1.eam.fs is approximately 

twice that of the MD calculation using Ti.Dickel.meam. 

Table 1. MD calculations of the α-β and β-M transition temperatures, change in enthalpies, and 

change in volumes using six IPs, along with the experimental results [61]. 

Property Ti1.eam.fs Ti2.eam.fs Ti3.eam.fs NiTi.meam Ti.Dickel.meam Ti.meam.spline Exp.  

Tα→β [K] 1155 1153 1152 1510 1163 1271 1155 

TM [K] 1921 1322 1210 1719 1904 1881 1941 

ΔHα→β [eV/atom] 0.022 0.032 0.042 0.032 0.028 0.037 0.044 

ΔHβ→M[eV/atom] 0.128 0.097 0.083 0.093 0.102 0.093 0.157 

ΔVα→β / Vα [%] -0.664 -0.009 0.713 0.520 0.873 0.314 --- 

ΔVβ→M/ V β [%] 2.198 2.211 2.0987 1.132 1.079 0.734 --- 

 

Ti2.eam.fs and Ti.Dickel.meam are the only IPs that predict a liquid-vapor interfacial tension 

within a 5% deviation from the experimental values (Figure 6). The other four IPs overestimate 

(Ti3.eam.fs and NiTi.meam) and underestimate (Ti1.eam.fs and Ti.meam.spline) the experimental 

values by more than 5%. Notably, the liquid-vapor interfacial tension is not included as one of the 

fitting properties for the parameterization of any of the considered Ti IPs. 
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2.3.  Tertiary Properties: Single-phase Properties 

The variation in several single-phase properties as a function of temperature plays an important 

role in the predictive modeling of the MAM process. For instance, in the liquid state, the shear 

viscosity influences the dynamics of the flow within the melt-pool, and self-diffusivity influences 

the anisotropy in the distribution of the alloying elements. In the solid-state, elastic constant 

variations with temperature influence the development of residual stresses during the MAM 

process. Therefore, the development/verification of MD IPs for MAM process modeling should 

include a range of these properties as the tertiary consideration. 

Fig. 7 (a) shows Ti1.eam.fs, Ti2.eam.fs and Ti.meam.spline calculated the C11 for the α phase, 

which are in good agreement with the experimental results in the range of 900-1150 K. Experiment 

2 shows the elastic hardening of C11 near Tαβ, where Ti2.eam.fs depicts the same behavior. 

Experiment 2 also shows an increase in the value of C11 during Tαβ. This trend can be correctly 

observed using Ti1.eam.fs, Ti2.eam.fs and Ti3.eam.fs IPs. However, only Ti.Dickel.meam can 

accurately reproduce the C11 of the β phase from Tαβ to TM. The calculated C12 for the α phase by 

Ti2.eam.fs and Ti.meam.spline are in good agreement with Experiment 2, while NiTi.meam and 

Ti.Dickel.meam produce C12 as in Experiment 1. For the C12 of the β phase, the best results are 

obtained by Ti3.eam.fs from Tαβ to 1250 K and Ti.meam.spline from 1300 K to 1850 K. We note 

that all the IPs except Ti1.eam.fs show approximately no variation in C12 for the β phase with 

respect to the temperature in accordance with the experimental results. The calculated values of 

C13 using NiTi.meam, Ti.Dickel.meam and Ti1.eam.fs (at high temperature) for the α phase are 

the closest to the experimental values. NiTi.meam and Ti.Dickel.meam predict steadily an 

increasing C13 with a temperature variation without a steeper increase near Tαβ, while Experiment 

2 shows considerable hardening near Tαβ. NiTi.meam and Ti.Dickel.meam predict C33 values that 
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are close to the experimental values, while Ti1.eam.fs and Ti2.eam.fs overestimate the 

experimental values and Ti3.eam.fs and Ti.meam.spline underestimate the experimental values. 

C44 elastic softening is predicted for the α phase by all the IPs, whereas NiTi.meam and 

Ti.meam.spline predict values that are closest to the experimental values and the predictions from 

Ti2.eam.fs and Ti3.eam.fs outperform other EAM IPs. All the IPs overestimate the value of C44 of 

the β phase. Notably, crossing Tαβ accompanies a decreasing value of C44 that is only predicted 

by the EAM IPs. 

In regard to the density of the α and β solid phases shown in Fig. 8, all the considered IPs predict 

a decreasing density with increasing temperature, in qualitative agreement with the experimental 

results. The slope of the density of the α phase is found to be practically the same for all IPs, except 

for Ti2.eam.fs and Ti3.eam.fs, in agreement with both experiments and the Calphad calculations 

[55]. Note that all the IP predictions of the density of the α phase are within approximately 1% of 

the experiments. The deviation of the calculated density of the β phase is also small, i.e., within 

approximately 2% of the experimental values. However, the slope of the density of the β phase 

versus temperature, as predicted by all three MEAM IPs, is lower than the experimental slope. For 

MD calculations of the excess enthalpy for the α and β phases, two EAM IPs, Ti3.eam.fs and 

Ti2.eam.fs, and two MEAM IPs, NiTi.meam and Ti.Dickel.meam, predict results that are within 

10% margins from the experimental results. However, all IPs predict a slope of the enthalpy versus 

temperature of the α phase that is practically equal to the experimental slope. All IPs, except 

Ti2.eam.fs, predict a deviation of the enthalpy of the β phase that is higher than 10%. For the liquid 

phase, all six IPs predict a liquid density of Ti that is within a 5% error margin from the 

experimental values while all six IPs underestimate the experimental enthalpy by more than 10% 

for all temperatures. 
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Fig. 9(a) shows almost all six Ti IPs exhibit a shift in the location of the first three peaks compared 

to the experimental results. Ti1.eam.fs predicts the location of the peaks closest to the experimental 

value. However, the values of the calculated S(k) for the first peak by Ti2.eam.fs and Ti3.eam.fs 

are closest to the experimental values. We note that there is a considerable deviation of the S(k) of 

the second peak, as predicted by all the IPs. The MD calculations of self-diffusion coefficient in 

the liquid phase at Fig. 9(b) follows the expected Arrhenius form, D=D0exp(-Ea/kBT), where Ea is 

the activation energy. NiTi.meam is the only IP that can reproduce the experimental values of D 

within a 5% error margin. Ti1.eam.fs is the only EAM IP that can reproduce the experimental 

values of D within a 10% error margin. In regard to liquid shear viscosity calculations shown at 

Fig. 9(c), the NiTi.meam IP predicts the lowest error margin ranging between 10% at low 

temperatures and 5% at high temperatures. Increasing the temperature results in a significant 

decrease in the error margin of the shear viscosity determined using Ti1.eam.fs, ranging from 39% 

at 1800 K to approximately 10% at 2200 K. 

 

3. Conclusion 

We presented an approach for the development and/or verification of the IPs for the MD modeling 

of MAM processes and applied the procedure for the ten available Ti IPs, which were mostly 

developed considering 0-K properties and limited high temperature properties. The approach 

considered the thermal history of the material during the MAM process, which included the cyclic 

variable-rate thermal processing of metal alloys between room temperature and temperatures 

higher than their melting points. The MAM thermal process resulted in the cyclic transformation 

of the alloy among the various solid phases, liquid phase, and vapor phase. Thus, we considered 

the ability of the IP to demonstrate the equilibrium and nonequilibrium phase stability of the alloy 
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as the primary consideration. Of the ten Ti IPs, only six demonstrated the βα solid-state phase 

transition under equilibrium conditions and were used for the remainder of the study. Temperature-

time-transformation diagrams were considered representative of the nonequilibrium phase stability 

properties and were calculated for the six Ti IPs. In the absence of an experimental counterpart, no 

conclusion was drawn in this regard. However, Ti2eam.fs, NiTi.meam, Ti.Dickel.meam, and 

Ti.meam.spline were the IPs that exhibit a spontaneous βα transition in these simulations. 

We considered the two-phase coexistence properties as the secondary consideration for the 

development/verification of IPs for MAM process modeling. These properties included the 

melting point, the βα transition temperature, and the energy/volume differences associated with 

these transitions as well as the liquid-vapor surface tension. Finally, we considered other relevant 

single-phase properties as the tertiary properties. These properties include the elastic constants, 

density, and enthalpy variations with temperature at the solid phase and the structure factor, density 

and enthalpy, self-diffusion, and shear viscosity variations with temperature at the liquid phase. 

Overall, the comparison of these MD-calculated secondary and tertiary properties to experiments 

showed that Ti1eam.fs and Ti.Dickel.meam are the best performing IPs for Ti; however, they may 

fall short in predicting one or more of these properties in reasonable agreement with the 

experiments. 

In summary, we determined the Ti1eam.fs and Ti.Dickel.meam IPs are suitable for the MD 

simulations of MAM process modeling considering their rare deficiencies in predicting some of 

the secondary and tertiary properties in agreement with the experimental results. Furthermore, 

there is a lack of experimental data for the nonequilibrium thermodynamics of metal alloys, as this 

data relate to the MAM process, e.g., the phase stability and kinetics at high cooling rates. Using 
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such experimental data in the proposed approach will increase the confidence in the capability of 

MD IPs for MAM process modeling.  

Given the significant added complexity for the development/verification of IPs for the metal alloy 

systems, more deviations with the experimental results are more likely to be observed in the 

development/verification of classical IPs, such as the EAM and MEAM for MAM process 

modeling. Although such classical IPs will still be effective in the quantitative and qualitative 

modeling of metal alloys during the MAM process considering their limitations, there is a need to 

develop sophisticated IPs, such as machine learning-based IPs, for higher accuracy in the MD 

modeling of the MAM process for alloy systems. 

 

4. Methods 

The present study includes the investigation of six EAM IPs for Ti, corresponding to Ti1.eam.fs 

[21], Ti2.eam.fs [21], Ti3.eam.fs [21], Ti.set [62], Ti-v2.eam.fs [63], and Zope-Ti-Al-

2003.eam.alloy [64]. According to the general EAM formalism, the total energy of a unary system 

(𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡) is defined by [14] 

 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡 = ∑ �𝐹𝐹(𝜌𝜌𝑖𝑖) + 1
2
∑ ∅(𝑟𝑟𝑖𝑖𝑖𝑖)𝑖𝑖(≠𝑖𝑖) �𝑖𝑖         (1) 

where 𝐹𝐹(𝜌𝜌𝑖𝑖) and ∅(𝑟𝑟𝑖𝑖𝑖𝑖) are the embedding energy and pair interaction, respectively [14]. The 

embedding energy is the required energy to add one atom into the background electron density. 

The total energy of a specific system can be calculated based on fitting EAM parameters to the 

experimental and/or ab initio calculations. 

In addition, we investigate all the available MEAM IPs for Ti, corresponding to NiTi.meam [65], 

Ti.Kim.meam [66], Ti.Dickel.meam [67], and Ti.meam.spline [68]. MEAM is a semiempirical IP 
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formulation similar to the EAM formulation, with the additional contribution of angular 

momentum into the electron density. 

All the MD simulations in this study are carried out with the large-scale atomic/molecular 

massively parallel simulator (LAMMPS) molecular dynamics simulator [69]. Post-processing 

analysis and visualization were performed with the open visualization tool OVITO [70,71]. 

The Helmholtz free energy is calculated using the Gibbs-Duhem thermodynamic integration 

method (TI) [72], approximating the enthalpy with a quadratic polynomial of temperature, 

𝐹𝐹(𝑁𝑁,𝑉𝑉,𝑇𝑇) = �3𝑁𝑁𝑘𝑘𝐵𝐵𝑇𝑇0ln � ℎ�𝜔𝜔
𝑘𝑘𝐵𝐵𝑇𝑇0

�+ 𝛥𝛥𝐹𝐹𝑖𝑖𝑟𝑟𝑟𝑟𝑒𝑒𝑣𝑣𝑒𝑒𝑟𝑟𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒 + 𝑘𝑘𝐵𝐵𝑇𝑇0ln �𝑁𝑁
𝑉𝑉

 �2𝜋𝜋𝑘𝑘𝐵𝐵𝑇𝑇0
𝑁𝑁𝑚𝑚𝜔𝜔2 �

1.5
�� 𝑇𝑇

𝑇𝑇0
− 𝑇𝑇 �𝑎𝑎 � 1

𝑇𝑇0
− 1

𝑇𝑇
� +

𝑏𝑏 �ln 𝑇𝑇
𝑇𝑇0
� + 𝑐𝑐(𝑇𝑇 − 𝑇𝑇0)�.       (2) 

where N is number of atoms, V is the volume, T is the temperature, T0 is an arbitrary reference 

temperature, kB is the Boltzmann constant, ℎ� is Planck’s constant and 𝜔𝜔 is the frequency of the 

oscillations of the reference ideal Einstein model. Parameters a, b and c are determined from a fit 

of the enthalpy with a quadratic order polynomial of temperature, i.e., ℎ(𝑇𝑇) = 𝑎𝑎 + 𝑏𝑏𝑇𝑇 + 𝑐𝑐𝑇𝑇2. The 

parameter 𝛥𝛥𝐹𝐹𝑖𝑖𝑟𝑟𝑟𝑟𝑒𝑒𝑣𝑣𝑒𝑒𝑟𝑟𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒  is calculated using a hybrid Hamiltonian that allows for gradually 

switching between the system Hamiltonian from the used IP’s Hamiltonian and the ideal Einstein 

crystal Hamiltonian [73]. Here, we chose T0 = 900 K. The enthalpy polynomial parameters a, b 

and c are determined from MD simulations using the Nosé-Hoover chain thermostat and the 

Parrinello-Rahman barostat [74] at zero pressure and at temperatures ranging between 900 and 

1200 K at intervals of 25 K. In each simulation, the system is run for 0.15 ns for relaxation followed 

by 0.015 ns for statistical averaging. The lattice constant is determined at T0 from MD simulations 

of the used IPs in the isothermal–isobaric (NPT) ensemble. The hybrid switching (EAM or 

MEAM)-Einstein crystal simulations are performed in the canonical (NVT) ensemble. The number 



111 
 

of atoms in the switching simulations is 23 328, 31 250, and 8 788 for the hcp, bcc and fcc phases, 

respectively. The systems are first equilibrated for 0.1 ns before switching, and the duration of 

each switching simulation is 2 ns. 

To numerically obtain the TTT diagram for an IP, a system of atoms is first equilibrated in the 

liquid state at 1.1TM. Then, the system is thermally quenched to various temperatures below the 

TM, ranging between 200 and 1250 K, where the equilibrium state is either the α or β phase. We 

extracted TTT diagrams from MD simulations in the NPT ensemble at 0 pressure for 15 ns of 

systems consisting of 5 324 atoms. The time dependence of the internal energy, following a 

quench, is used to monitor the kinetics of crystallization to obtain the crystallization onset time. 

The percentage of the hcp, bcc, fcc and other structures are characterized using the polyhedral 

template matching method [75] at the end of each run. 

Tα→β are determined from the free energy calculations in Section 1.1. TM of Ti from the β phase is 

determined using the solid-liquid coexistence method described in reference [18]. In this method, 

a slab with a bcc structure coexists at an initial guess of the TM between two liquid slabs where the 

simulation slab is allowed to relax in the normal to interface direction while monitoring the total 

energy of the system. The guess of TM is updated until no change in the total energy of the system 

is observed. In other words, the number of atoms in the β and liquid phases are constant. ΔHα→β 

and ΔVα→β are determined by performing NPT ensemble simulations in the α phase (with 8 788 

atoms) and the β phase (with 4 394 atoms) at Tα→β of the IP. In each simulation, the system is 

equilibrated for 1.5 ns, followed by 0.75 ns for data collection. Likewise, the calculations of the 

volume expansion (ΔVβ→M) and latent heat (ΔHβ→M) are carried out through MD simulations in 

the NPT ensemble on systems composed of 6 750 atoms at TM of the IP. The density and excess 
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enthalpy as a function of temperature are determined from similar MD simulations in the NPT 

ensembles at various temperatures in intervals of 25 K.   

The liquid-vapor interfacial tension is calculated through the simulation of coexisting liquid and 

vapor phases of Ti in the NVT ensemble. In this method, a system of 3 840 atoms is first 

equilibrated in the NPT ensemble for 0.4 ns. The simulation box is then extended by a factor of 

2.5 along the z-axis, with the additional volume corresponding to the vapor phase. The system is 

then equilibrated in the NVT ensemble for 2 ns. The diagonal components of the pressure tensor, 

Pxx, Pyy and Pzz, are then calculated over an additional 1 ns using the Irving-Kirkwood formalism 

[76]. The liquid-vapor interfacial tension is calculated according to 

𝛾𝛾 = 𝐿𝐿𝑧𝑧
2
�〈𝑃𝑃𝑧𝑧𝑧𝑧〉 − 0.5�〈𝑃𝑃𝑥𝑥𝑥𝑥〉 + 〈𝑃𝑃𝑦𝑦𝑦𝑦〉��,        (3) 

where Lz is the length of the simulation box in the z-direction. 

The self-diffusion coefficient, D, of Ti in the liquid phase is calculated using the Einstein relation, 

𝐷𝐷 =
1
6

lim
𝑡𝑡→∞

𝑎𝑎
𝑎𝑎𝑡𝑡
〈𝛥𝛥𝑟𝑟(𝑡𝑡)2〉 ,                                                                                                                         (3) 

where 〈𝛥𝛥𝑟𝑟(𝑡𝑡)2〉 is the mean-square displacement of the atoms at time t and the average is over 

initial time t0 at equilibrium. The systems of atoms are first equilibrated for 0.5 ns in the NPT 

ensemble. The systems are further equilibrated for another 1 ns in the NVT ensemble. Then, 

additional simulations in the NVT ensemble over 9 ns are used for the extraction of D. All the 

simulations to calculate D are performed on three systems consisting of 7 200, 3 840 and 1 584 

atoms, and negligible size effects were observed. 

The shear viscosity of the liquid phase is calculated using the Green-Kubo relation [77,78] 

𝜂𝜂 = 𝑉𝑉
𝑘𝑘𝐵𝐵𝑇𝑇

∫ 〈𝑃𝑃𝑥𝑥𝑦𝑦(0)𝑃𝑃𝑥𝑥𝑦𝑦(𝑡𝑡)〉𝑎𝑎𝑡𝑡,∞
0          (4) 
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where Pαβ (t). α, β = x, y, z are the off-diagonal components of the stress tensor at time t. In Eq. (4), 

the average is over the initial times at equilibrium. 
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Abstract: 

We present a new set of modified embedded-atom method parameters for the Pb-Sn system that 

describes many 0K and high temperature properties including melting point, elastic constants, and 

enthalpy of mixing for solid and liquid Pb-Sn alloys in agreement with experiments. Then, we 

calculate the phase diagram of the Sn-rich side of Pb-Sn alloys utilizing a hybrid Molecular 

Dynamics/Monte Carlo simulation that agrees with experimental solidus and liquidus curves as 

well as stability of α-Sn and β-Sn. In addition, we present structure factors of Pb-Sn liquid alloys 

as well as temperature-dependent thermal expansion coefficients and heat capacity.  Our 
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simulations show that the ratios of the heights of the second and third peaks over the first peak for 

Pb-Sn liquid mixtures are maximum at Pb-0.6Sn concentration. 

Keywords Pb-Sn; Solid-liquid; Phase diagram; Liquid structure factor; MEAM   
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1. Introduction 

During the last decades, there has been a growing interest in atomistic and continuum material 

models to better understand materials performance and processes and to enable the design of novel 

materials with tailored mechanical and thermal properties. Atomistic molecular dynamics (MD) 

and Monte Carlo (MC) simulations are among those extensively used computational methods in 

studies of many materials characteristics, including phase diagrams, thermodynamics, kinetics of 

phase transformations, diffusion, defects, and segregation at grain boundaries [1]–[4]. 

Additionally, computational methods such as MD, can also be employed as an alternative approach 

to study processes dealing with solid-liquid coexistence and to predict properties that are 

challenging to measure experimentally. For example, we can readily calculate the solid-liquid 

interfacial tension, which is a critical parameter in determining microstructural morphology during 

solidification, employing MD simulations and use it as an input parameter for larger scale models 

such as phase field models [5] and phase field crystal models [6], [7].  

Particle coarsening or Ostwald ripening is a good example of such solid-liquid coexisting 

phenomena wherein larger solid particles in liquid mixtures grow at the expense of smaller 

particles to minimize the total free energy of the system by decreasing the excess energy due to 

interfacial area. There has been extensive efforts to understand the kinetics of particle coarsening 

[8], [9] and spinodal decomposition [10], [11] in a wide range of materials. One particular study 

is the experimental investigation of coarsening in solid-liquid mixtures in microgravity which 

aimed at better understating of Ostwald ripening of Sn-rich solid particles in the eutectic Pb-Sn 

liquid mixtures [12]–[14]. There are several main reasons for choosing Pb-Sn alloys for studying 

the kinetics of coarsening [15]. First, this system allows the dispersion of spherical solid particle 

in the liquid due to its interfacial energy [16]. Second, the Pb-Sn system at the eutectic 
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concentration and temperature satisfies the stress free matrix condition without significant change 

in the morphology of the solid Sn-rich particles and kinetics of the process.  Third, the coarsening 

of the particles can be observed in a reasonable amount of time. Finally, the relatively low eutectic 

temperature of the system eases the technical challenges of performing experiments.  

Pb-Sn mixtures are also ideal alloying systems for soldering joints in electronic devices because 

of their excellent properties such as low melting point (MP) at the eutectic concentration and good 

wetting properties with the substrate (determining the mechanical properties of joints [17])  along 

with the lack of whiskers growth [18]. The growth of whiskers is suppressed in Sn by adding small 

amounts of Pb. The prevention of formation of whiskers is significantly important in the 

microelectronic industries, since they usually result in numerous device failures [19]. Although 

the mechanism of formation of whiskers is reported as a stress-driven diffusion-controlled 

phenomenon [20], very few studies have been carried out to investigate the effect of different grain 

boundaries on the formation of whiskers [21]. In addition, due to the toxicity of Pb, Pb-free solders 

are gradually substituted with Pb-Sn solders [22]–[24]. Without a deep understanding of whisker 

formation and the effects of Pb at the grain boundaries of Sn in suppression of whiskers, new alloy 

systems cannot be properly designed for this purpose. MD and/or MC simulation can be utilized 

not only to achieve a full thorough understanding of metallurgical phenomena of Pb-Sn system at 

the atomistic scale, but also to couple with higher scale models for larger time and length scale 

studies. However, MD and/or MC needs a reliable interatomic potential, which is not currently 

available, to simulate these material processes for Pb-Sn system at or near the MP, which is one 

of the main objectives of this article.  

Among the existing interatomic potential formulations, the embedded atom method (EAM) has 

been shown to provide accurate properties of metals [22]–[24]. The modified embedded atom 
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method (MEAM) is an extension of the EAM formulation, with  an addition to account for the 

directionality of the bonds [25], [26]. The MEAM potential has been extensively employed in 

studies of atomic scale properties of unary, binary, ternary and multi-components materials with 

various crystalline structures, such as face-centered cubic (fcc) [27], body-centered cubic (bcc) 

[28] and more complex crystalline structures such as hexagonally-close packed (hcp) [29], 

diamond, and tetragonal [30] structures. Recently, we have successfully used the MEAM to 

investigate the solid-liquid coexistence of metallic systems [31]–[34] and we utilize the same 

method in the current study. Available MEAM potentials for Pb and Sn elements include the 

second nearest-neighbor (2NN) MEAM potential for Pb developed by Lee et al. [27] and first 

nearest-neighbor (1NN) MEAM potential for Sn by Ravelo and Baskes [30] and Vella et al. [35]. 

Vella et al. modified the Ravelo-Baskes MEAM potential for Sn with the aim to accurately 

describe liquid phase properties. While their potential does not capture a stable β-Sn (body-

centered tetragonal structure) phase below the MP, it predicts a MP of Sn that is very close to that 

predicted by the Ravelo-Baskes MEAM potential, though significantly lower than the 

experimental MP. A MEAM potential for Sn based on Ravelo-Baskes potential was also developed 

by Li et al. [36] in their work to develop a MEAM potential for binary Ni-Sn alloys.  

 In this article, we first present a set of 2NN MEAM and 1NN MEAM interatomic potential 

parameters for Pb and Sn systems, respectively. Then, we use these MEAM potentials to extract 

thermodynamic properties of the pure systems, which are shown to agree well with their 

experimental counterparts. All the MD and MC simulations are performed using the LAMMPS 

package [37], while OVITO software [38], [39] is used for visualization. A rationale for the 

development of the 2NN MEAM parameters for binary Pb-Sn system is explained next. Then, we 

present thermodynamics and structural properties of the Pb-Sn mixtures such as their liquid 
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structure factor using a hybrid MD/MC simulation method, with a particular focus on the 

transferability of the potential in predicting the Sn-rich portion of the phase diagram.   

  

2. MEAM Interatomic Potential for Elemental Pb and Sn 

The first step in developing a MEAM interatomic potential for the binary Pb-Sn system is to verify 

the potential parameters for elemental Pb and Sn. For brevity, the MEAM formalism is not 

explained in this article; the readers can find the relevant information in Ref [25]. We begin with 

the MEAM potential parameters developed earlier by Lee et al. [27] and Ravelo and Baskes [30], 

for Pb and Sn, respectively. For simplicity, we use “LC MEAM” to refer to the Pb potential 

developed by Lee and coworkers [27] and “RB MEAM” to refer to the Sn potential developed by 

Ravelo and Baskes [30] throughout the present article. Our aim is to modify the LC MEAM and 

RB MEAM parameters to obtain a better prediction of the MPs along with acceptable high 

temperature elastic constants, which we have previously shown [31], [40] as appropriate targets in 

determining the reliability of a potential for simulations of solid-liquid coexistence at high 

temperatures. Both of these properties can be well fitted to the MEAM parameters for fcc and bcc 

structures. However, we observe that the accurate predictions of the MP and elastic constants 

cannot be fully achieved simultaneously for complex structures such as β-Sn. Therefore, for this 

case (β-Sn), we put more weight on accurate prediction of MP rather than the elastic constants. It 

is worth mentioning that this objective must be achieved without compromising predictions of 

other 0K and low-temperature properties considered in the development of these potentials. For 

Sn, in particular, the solid state phase transformation from the α-phase (diamond crystal structure) 

to the β-phase must be considered as well.    
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The MEAM parameters developed in this work are given in Table 1 wherein the modified 

parameters are bold. The cutoff distance of the Pb-Pb, Sn-Sn and Pb-Sn interactions is set to 5.5Å.  

There are 13 parameters, in the MEAM model of each element. Different parameters have different 

effects on specific properties. The MEAM parameters-properties relationships have been 

extensively explained in prior publications [27], [31], [41] and used here as a guideline for trial-

and-error approach to obtain the best possible set of parameters. Nevertheless, the process of 

determining potential parameters is a trade-off wherein the accuracy in predicting certain 

properties is lost at the expense of others. As it will be noted in the following sections, our goal is 

to find a potential that is able to predict accurate high temperature properties while maintaining 

reasonable agreement in the calculation of 0K properties.  

 

Table 1. MEAM parameters for Pb and Sn. Ec(eV) is the cohesive energy; re(Å) is the nearest-

neighbor distance in the equilibrium reference structure; α is the exponential decay factor for the 

universal equation of state [42]; A is the electron density scaling factor for the embedding function; 

δa and δr are the attraction (a∗>0) and repulsion (a∗≤  0) cubic terms for the universal equation of 

state; β(0−3) are the exponential decay factors for the atomic electron densities; t(1−3) are the 

weighting parameters for the atomic electron densities; and Cmin and Cmax are the screening 

parameters. The reference structure for both elements is fcc. 

 Ec re α A β(0) β(1) β(2) β(3) t(1) t(2) t(3) Cmin Cmax δa δr 

Pb 2.04 3.5 6.38 1.01 5.42 2.2 6 2.2 1.7 a 3.4b 1.1 c 0.81 2.8 0 0 

Sn 3.08 3.437 6.2 1.0 6.2 6.0 6.0 6.0 12.5d 8.0e -0.38f  0.8 2.8 0 0 

a,b, and c Previous values form LC-MEAM were 3.1, 3.91, and 1.25, respectively. 

d,e, and f Previous values form RB-MEAM were 4.5, 6.5, and –0.183, respectively 
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2.1. 0K Properties 

The calculated 0K properties, corresponding to the lattice constants, bulk modulus, and elastic 

constants, of Pb and Sn elements are given at Table 2. The lattice parameter and cohesive energy 

are approximately the same as those obtained using LC MEAM potential for Pb [27]. The elastic 

constants are calculated by a direct method employing negative and positive deformations on a 

periodic simulation box. The bulk modulus is calculated using B=(C11+2C12)/3 for Pb and α-Sn 

and B=(C11+C22+C33+2C12+2C13+2C23)/9 for β-Sn [43]. The calculated elastic constants and bulk 

modulus of Sn employing the present MEAM potential are in close agreement with those from the 

RB MEAM potential and experiments. However, the calculated elastic constants of Sn are 

worsened when we fitted the MEAM potential to the MP of Sn. It is worth mentioning that the RB 

MEAM potential [30], which was designed to produce accurate 0K properties, is also not 

successful in predicting accurate elastic properties of β-Sn. 

 

2.2. Melting Point 

The MPs of elemental Pb and Sn are determined using the solid-liquid coexistence approach 

explained in details in our previous work [31]. The method is based on finding a temperature where 

the solid and liquid phases coexist with each other in a stress-free simulation box for a long time. 

For illustration, snapshots of coexisting solid and liquid phases at the MPs for Sn and Pb are shown 

in Fig. 1. We found that the MPs of Sn and Pb as 511K and 608K, respectively, which are very 

close to their experimental counterparts of 505K [49] and 601K [50], respectively. Additionally, 

we have also performed similar simulations, using the same method on the RB MEAM potential 

for Sn and the LC MEAM potential for Pb and obtained MPs of 354K for Sn and 705K for Pb.  
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Table 2. 0K properties (cohesive energy Eo(eV/atom), lattice constants a and c(Å), bulk modulus 

B and elastic constants C11, C12, C13, C44, C66(GPa)) of Pb and Sn based on the present MEAM 

potentials and LC MEAM and RB MEAM, for Pb and Sn, respectively along with experiment. 

  Pb   α-Sn   β-Sn   

 Present  LC MEAM Exp. Present  RB MEAM Exp. Present  RB MEAM Exp. 

Eo -2.04 -2.04 -2.04a -3.209 -3.14 -3.14a -3.09 -3.09 -3.10e 

a 4.95 4.95 4.95a 6.43 6.48 6.483c 5.92 5.92 5.831c 

c/a --- --- --- --- --- --- 0.547 0.546 0.546c 

B 48.8 48.8 48.8b 43.6 42 42.62d 64.9 48.0 57.9d 

C11 55.5 55.6 55.5b 82.0 70.4 69d 131.6 108.2 73.4d 

C12 45.4 45.4 45.4b 24.4 28.1 21.3d 48.7 63.8 91.1d 

C13 --- --- --- --- --- --- 16.6 24.4 59.9d 

C33 --- --- --- --- --- --- 157.1 139.6 39.1d 

C44 18.2 19.4 19.4b --- --- --- 2.4 1.5 23.9d 

C66 --- --- --- 93.6 36.7 42.6d 28.0 22.4 21.9d 

aRef. [44], bRef. [45], cRef.[46], dRef.[47], eRef. [48]. 

Thus, the new sets of MEAM parameters substantially improve the values of MPs for both Sn and 

Pb. 

 

Fig. 1. Snapshots of equilibrium solid-liquid coexistence for β-Sn at 511K (top) and Pb at 608 K 

(bottom). Note that only portions of the simulation boxes are shown to better illustrate the 

coexisting solid and liquid phases. 
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2.3.  High Temperature Elastic Constants 

MD simulations can be used to calculate high temperature elastic constants through a direct 

method using stress/strain relations and/or indirect methods using atoms fluctuations. Here, we use 

the fluctuations method due to its faster convergence compared to the stress/strain method. The 

details of the simulations and relations used to implement this method are explained in our previous 

work [31]. The numerically extracted elastic constants of Pb using the present MEAM parameters 

and LC MEAM parameters along with the available experimental data are shown in Fig. 2. It is 

noted that the calculated C11, C12 and C44 for Pb based on the present MEAM potential and the LC 

MEAM potential show elastic softening with increasing temperature, in agreement with 

experiments. The calculated C11 and C44 using the present and the LC MEAM potential parameters 

are almost equal and in excellent agreement (<2.5%) with experiments. However, both present and 

previous MEAM potentials underestimate C12 by ~6%. It can be concluded then that the present 

MEAM potential not only accurately predicts the MP, but also produces elastic constants very 

close to those of the LC MEAM potential. 

 

Fig. 2. MEAM MD-calculated elastic constants for Pb in a wide range of temperatures in 

comparison to the available experiments [51].  
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The calculated C11, C’=(C11-C12)/2 ,  C33, C44 and C66  for β-Sn are depicted in Fig. 3. Both the 

present and the RB MEAM potentials overestimate the experimental values of C11, C’ and C33. By 

changing the MEAM parameters of Sn in order to improve the calculated MP, the errors of our 

computed C11, C’ and C33 in comparison with the predicted values based on the RB MEAM 

potential are increased. Both our parameterization of the MEAM potential and that of the RB 

potential predict values of C44 that are in poor agreement with experiments. In contrast, our 

calculation of C66 is in better agreement with experiments than that calculated by the RB MEAM. 

Our previous [31] and present works clearly show that while the MEAM parameters can be tuned 

to produce both accurate elastic constants and MP for bcc and fcc structures, it is very difficult to 

find parameters that work satisfactorily for more complex structures such as the tetragonal 

structure. 

 

 

  

Fig. 3. MEAM MD-calculated elastic constants of Sn for a wide range of temperatures along 

with available experiments [52]. 
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3. Thermodynamics of Pb and Sn  

3.1. Helmholtz Free Energy of Solid Sn and α-β Phase Transition Temperature 

Since Sn has two allotropies, α-Sn and β-Sn, the calculation of the free energy of each structure 

from 0K to the MP is necessary in order to determine the thermodynamically stable structure at 

different temperatures.  The Helmholtz free energy of the system, F, at a given temperature, T, can 

be calculated using the Gibbs-Duhem equation,  

𝐹𝐹(𝑁𝑁,𝑉𝑉,𝑇𝑇) = 𝐹𝐹(𝑁𝑁,𝑉𝑉,𝑇𝑇0) 𝑇𝑇
𝑇𝑇0
− 𝑇𝑇 ∫ ℎ

𝑇𝑇2
𝑎𝑎𝑇𝑇𝑇𝑇

𝑇𝑇0
,                                                                            (1) 

where N is number of atoms, V is volume, T is temperature, T0 is a reference temperature, and h is 

the enthalpy of the system. In order to use this equation, we need to calculate the enthalpy of the 

system as a function of temperature. Approximating the calculated enthalpy using a second order 

polynomial in T, 

ℎ(𝑇𝑇) = 𝑎𝑎 + 𝑏𝑏𝑇𝑇 + 𝑐𝑐𝑇𝑇2,                                                                                                      (2) 

and rewriting Eq.  (1) by substituting Eq. (2), leads to  

𝐹𝐹(𝑁𝑁,𝑉𝑉,𝑇𝑇) = 𝐹𝐹(𝑁𝑁,𝑉𝑉,𝑇𝑇0) 𝑇𝑇
𝑇𝑇0
− 𝑇𝑇 �𝑎𝑎 � 1

𝑇𝑇0
− 1

𝑇𝑇
� + 𝑏𝑏 �ln 𝑇𝑇

𝑇𝑇0
�+ 𝑐𝑐(𝑇𝑇 − 𝑇𝑇0)�.                             (3) 

The free energy, F(N,V,T0), of the reference state is calculated using the thermodynamic 

integration method (TI) [53], based on a switching from the Hamiltonian of the MEAM model to 

that of an Einstein crystal [54], for which the free energy is known exactly, and is given by 

𝐹𝐹𝐸𝐸𝑖𝑖𝑚𝑚𝑇𝑇(𝑁𝑁,𝑉𝑉,𝑇𝑇0) = 3𝑁𝑁𝑘𝑘𝐵𝐵𝑇𝑇0ln � ℎ�𝜔𝜔
𝑘𝑘𝐵𝐵𝑇𝑇0

�,                                                                                     (4) 

where kB is the Boltzmann constant, ℎ� is Planck’s constant and 𝜔𝜔 is the frequency of oscillations.  

The free energy difference (ΔF) between the reference state (Einstein model in our case) and the 

system of interest (described by the MEAM model in our case) can be calculated using a reversible 

pathway that employs a continuous Hamiltonian to connect the two systems. This can be done by 



136 
 

defining a coupling parameter, 𝜆𝜆, that smoothly changes the Hamiltonian of the system, 𝐻𝐻1, for 

the MEAM model to the Hamiltonian of Einstein crystal, namely 

𝐻𝐻 = 𝜆𝜆𝐻𝐻0 + (1 − 𝜆𝜆)𝐻𝐻1,                                                                                                      (5) 

where 

 

0 ≤ λ ≤1. Therefore, the difference between the Helmholtz free energies of our system of 

interest and the reference (Einstein crystal) is obtained from the following integral,  

𝛥𝛥𝐹𝐹𝑟𝑟𝑒𝑒𝑣𝑣𝑒𝑒𝑟𝑟𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒 = ∫ 〈𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
〉  𝑎𝑎𝜆𝜆.1

0                                                                                                  (6) 

The numerical integration of Eq. (6) requires the calculation of an ensemble average of the 

Hamiltonian, i.e., internal energy of the system described by Eq. (5) for each value of 𝜆𝜆, this 

method is called standard equilibrium free-energy calculation which has been frequently applied 

for free energy calculations of EAM potentials [55]–[57].  In particular, we use a non-equilibrium 

free energy calculation method, in which 𝜆𝜆 is defined as a time-dependent function to utilize the 

instantaneous values of  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 at each 𝜆𝜆. Therefore, Eq. (4) can be evaluated in terms of the sum 

𝛥𝛥𝐹𝐹𝑖𝑖𝑟𝑟𝑟𝑟𝑒𝑒𝑣𝑣𝑒𝑒𝑟𝑟𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒,1→2 = ∑ �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�  𝛥𝛥𝜆𝜆𝑖𝑖,𝑀𝑀−1

𝑖𝑖=0                                                                                   (7) 

where 1 refers to the system of interest (MEAM model), 2 refers to the Einstein crystal, i is the 

time step, M is the total number of time steps and 𝛥𝛥𝜆𝜆𝑖𝑖 = 𝜆𝜆𝑖𝑖+1 − 𝜆𝜆𝑖𝑖 is the step in λ. The calculated 

free energy difference by this method has some statistical and systematic errors due to the 

irreversible nature of the path from the system of interest to the Einstein crystal model [58]. The 

statistical error, however, can be reduced by increasing the total simulation time, which amounts 

to decreasing 𝛥𝛥𝜆𝜆𝑖𝑖 . The systematic error, which arises from the dissipation entropy production 

inherent to irreversible processes, is eliminated by averaging the free energy differences of both 

direct paths, in which the system is gradually changed from the system of interest to the Einstein 

crystal (i.e. 1→2) and the reverse path (i.e. 2→1), that is  



137 
 

𝛥𝛥𝐹𝐹𝑖𝑖𝑟𝑟𝑟𝑟𝑒𝑒𝑣𝑣𝑒𝑒𝑟𝑟𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒 = 1
2

(𝛥𝛥𝐹𝐹𝑖𝑖𝑟𝑟𝑟𝑟𝑒𝑒𝑣𝑣𝑒𝑒𝑟𝑟𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒,1→2 + 𝛥𝛥𝐹𝐹𝑖𝑖𝑟𝑟𝑟𝑟𝑒𝑒𝑣𝑣𝑒𝑒𝑟𝑟𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒,2→1).                                              (8) 

Due to the constraint of fixed center of mass, the following correction has to be added to the 

calculated free energy 

𝛿𝛿𝐹𝐹𝐶𝐶𝑀𝑀 = 𝑘𝑘𝐵𝐵𝑇𝑇0ln �𝑁𝑁
𝑉𝑉

 �2𝜋𝜋𝑘𝑘𝐵𝐵𝑇𝑇0
𝑁𝑁𝑚𝑚𝜔𝜔2 �

1.5
�.                                                                                      (9) 

Therefore, the free energy of the system at each temperature can be calculated by substituting Eqs. 

(4, 8 and 9) in Eq. (3), leading to 

𝐹𝐹(𝑁𝑁,𝑉𝑉,𝑇𝑇) = �3𝑁𝑁𝑘𝑘𝐵𝐵𝑇𝑇0ln � ℎ�𝜔𝜔
𝑘𝑘𝐵𝐵𝑇𝑇0

� + 𝛥𝛥𝐹𝐹𝑖𝑖𝑟𝑟𝑟𝑟𝑒𝑒𝑣𝑣𝑒𝑒𝑟𝑟𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒 + 𝑘𝑘𝐵𝐵𝑇𝑇0ln �𝑁𝑁
𝑉𝑉

 �2𝜋𝜋𝑘𝑘𝐵𝐵𝑇𝑇0
𝑁𝑁𝑚𝑚𝜔𝜔2 �

1.5
�� 𝑇𝑇

𝑇𝑇0
− 𝑇𝑇 �𝑎𝑎 � 1

𝑇𝑇0
− 1

𝑇𝑇
� + 𝑏𝑏 �ln 𝑇𝑇

𝑇𝑇0
� + 𝑐𝑐(𝑇𝑇 − 𝑇𝑇0)�.          (10)                                                              

 

In our case, we choose T0 = 100 K. The enthalpy polynomial parameters, a, b and c in Eq. (2) are 

determined from MD simulations using the Nose-Hoover thermostat and Nose-Hoover barostat 

[59] at zero pressure and at temperatures ranging between 100 and 400 K with intervals of 100 K. 

In each simulation, the system is run for 30000 time steps for relaxation followed by 15000 time 

steps for statistical averaging, with a time step of 1 fs. The lattice constant is determined at T0 from 

MD simulations of the MEAM model in the NPT ensemble. The switching MEAM-Einstein 

crystal simulations using the Hamiltonian described in Eq. (8), slowly scanning back and forth 

with respect to the parameter λ, are performed using the LAMMPS [60] in the NVT ensemble. 

The Number of atoms in the switching simulations is 17576 and 13500 for α-Sn and β-Sn, 

respectively. The calculations of free energy for both allotropies of Sn are repeated for different 

system sizes to detect finite size effects, but no significant differences are observed. The number 

of time steps for equilibration before switching is 105. For each switching simulations (𝜆𝜆 from 1 

to 0 and vice versa), the system is run for 2×106 time steps.  We use the following time-dependency 

for the coupling function [61] with 2×106 time step for switching.   
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 𝜆𝜆(𝜏𝜏) = 𝜏𝜏5(70𝜏𝜏4 − 315𝜏𝜏3 + 540𝜏𝜏2 − 420𝜏𝜏 + 126)                                                    (11) 

where 𝜏𝜏 = 𝑡𝑡
𝑡𝑡(𝑡𝑡𝑖𝑖𝑚𝑚𝑒𝑒 𝑇𝑇𝑡𝑡𝑒𝑒𝑠𝑠 𝑟𝑟𝑡𝑡𝑟𝑟 𝑇𝑇𝑠𝑠𝑖𝑖𝑡𝑡𝑐𝑐ℎ𝑖𝑖𝑚𝑚𝑖𝑖)

. This choice allows for less fluctuations in the calculation of 

the Hamiltonian due to vanishing slope of 𝜆𝜆(𝜏𝜏) as it approaches 0 or 1. To achieve accurate free 

energy calculations, we use a spring constant k, in the Einstein crystal, that leads to vibrational 

frequencies near to the characteristic vibrational frequencies of the solid (α-Sn and β-Sn) described 

by the MEAM potential [60] and calculated from the mean square displacement Δr,  of the solid 

at T0, through the following equation 

𝑘𝑘 = 3𝑘𝑘𝐵𝐵𝑇𝑇
〈(𝛥𝛥𝑟𝑟)2〉

.                                                                                                                       (12) 

Fig. 4 depicts the calculated difference between the free energies (eV/atom) of the α-Sn and β-Sn 

phases along with previously reported calculations based on different MEAM parameterizations. 

A negative value of ΔF (Fα –Fβ) means that the α-Sn phase is more stable than β-Sn. Both our 

calculations and those based on the RB MEAM potential lead to a stable α-Sn phase at low 

temperatures and a stable β-Sn phase at higher temperatures. However, the Vella et al. [35] MEAM 

potential shows that the α-Sn phase is the only stable phase for all temperatures below the MP. We 

note that while the MEAM parameterization of Vella et al. [35] leads to better liquid properties, it 

results in the instability of β-Sn phase.  Motivated by this discrepancy, we chose to start our 

parameter determination process using the RB MEAM potential rather than that of Vella et al. 

[35].   

Fig. 4 shows that the α-Sn to β-Sn transition temperature of the present and RB MEAM potentials 

are 158 K and 266 K, respectively. The experimental counterpart is 286 K. The present MEAM 

potential therefore underestimates this transition temperature when compared to the RB MEAM 

potential. However, we note that the transition temperature is not considered in the fitting of the 

MEAM parameters in the present study. The results of free energy clearly show that, due to the 
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stability of β-Sn along with the accurate prediction of MP by present MEAM potential, we can 

reliably use this potential for the calculation of high temperature properties.  

 

 

Fig. 4. Difference between free energies (eV/atom) of α and β phases of Sn, using present and 

previous MEAM potentials. 

 

3.2. Thermal Properties of Pure Pb and Sn in Solid Phases 

Constant-pressure specific heat and linear thermal expansion coefficients are calculated using the 

following equations,  

𝐶𝐶𝑠𝑠 = �𝜕𝜕𝜕𝜕
𝜕𝜕𝑇𝑇
�
𝑃𝑃,𝑁𝑁

 ,                                                                                                                       (13) 

𝛼𝛼𝑖𝑖 = 1
𝐿𝐿
�𝜕𝜕𝐿𝐿
𝜕𝜕𝑇𝑇
�
𝑃𝑃,𝑁𝑁

 ,                                                                                                                      (14) 

and 𝛼𝛼𝑣𝑣 = 1
𝑉𝑉
�𝜕𝜕𝑉𝑉
𝜕𝜕𝑇𝑇
�
𝑃𝑃,𝑁𝑁

 .                                                                                                               (15) 

We namely fit second-order polynomials, of temperature, to the enthalpy, equilibrium lattice 

constant and volume of the simulation box obtained from NPT ensemble, then use Eqs. (13-15) to 

determine their derivatives. Eq. (14) is used for the calculation of the linear thermal expansion 
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coefficients for Pb. For β-Sn, the linear thermal expansion is calculated as one third of the volume 

thermal expansion coefficient Eq. (15). For all temperatures, the simulation box size was 

10×10×10 unit cells. 30000 time steps and 15000 additional time steps were used for equilibration 

and statistical average, respectively. The results are shown in Fig. (5). The calculated specific heat 

of Pb by the present MEAM potential is in better agreement with experiments in comparison with 

that based on the LC MEAM potential. The linear thermal expansion as predicted by the RB 

MEAM for β-Sn is in better agreement with experiment than ours at low temperatures while the 

present MEAM potential produces better agreement with experiments near the MP. 

 

Fig. 5. The present MEAM MD-computed linear thermal expansion coefficient and constant-

pressure specific heat for pure Pb and Sn along with their experimental counterparts [62]–[64]. 

 

3.3. Melting Properties  

The calculated latent heat and expansion at the MP are shown in Table 3. Improvement in the 

latent heat and expansion at melting of both Pb and Sn are observed using the present MEAM 

parameterization.  
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Table 3. MEAM MD-calculated latent heat (kJ mol-1), and expansion in melting ΔVMelting/VSolid (%). 

  Pb   β-Sn  

 Present  LC MEAM Exp. Present  RB MEAM Exp. 

L 6.39 7.0 4.8a 4.14 2.69 7.04b 

ΔVMelting/VSolid 5.6 5.7 3.5a 2.5 2.0 2.3c 

aRef. [65], bRef. [66], cRef. [67] 

3.4. Structure Factors of Pure Pb and Sn in the Liquid Phase 

Fig. 6 depicts the calculated structure factors, S(k), of the liquid phase of Pb at 573 K and Sn at 

613 K, using the present MEAM parameters, the LC MEAM for Pb, and the RB MEAM for Sn 

along with their experimental counterparts. The computational structure factors are obtained from 

MD simulations in the NVT ensemble on systems containing 7200 atoms, and averaged over 1000 

snapshots [34]. The error between the calculated ratio of S(k2)/S(k1) from the present potential and 

experiment is 0.3%, while the error from the LC MEAM is 3.4%. Fig. 6 also shows that both 

present and RB MEAM potentials underestimate the ratio of S(k2)/S(k1) by 15.1% and 15.3%, 

respectively, when compared to experiments.  

 

Fig. 6. MEAM MD-calculated liquid structure factor of Pb and Sn, S(k), along with experimental 

counterparts [68], [69]. Note that the data for Sn has been shifted upward by 2.5 units. 
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4.  Interatomic MEAM Potential for the Binary Pb-Sn System 

We recall that there are 14 MEAM interatomic potential parameters, which we developed, for the 

Pb-Sn binary systems. These include three parameters, Ec, re, and α, which correspond to the 

cohesive energy, equilibrium nearest-neighbor distance and bulk modulus of the binary reference 

structure, respectively. For Pb-Sn system, we use B2 as the reference structure. We emphasize that 

the choice of the reference structure for the binary is arbitrary as long as each type of atom has 

only the same type of atoms as second-nearest-neighbors [70]. In table 4, δa and δr are adjustable 

parameters related to the (𝜕𝜕𝐵𝐵
𝜕𝜕𝑃𝑃

) value, where B and P are the bulk modulus and pressure of the B2 

reference structure, respectively. The parameter ρ0 is the ratio between the electron densities of the 

individual elements. We note that  while ρ0 is arbitrary for the pure elements, its value has a 

considerable influence on the interatomic potential of the binary system [71]. The degree of many-

body screening is determined by the parameters Cmin and Cmax.  

We fitted re to the experimental values of the lattice parameter of Pb and β-Sn rich solid solutions 

and Ec was fitted to the enthalpy of mixing of the solid solution at 456 K and liquid solution at 

623K. B, δa and δr are given a value of weight average of the bulk moduli, δa and δr of Pb and Sn 

elements, respectively. We emphasis that we do not have the experimental value for bulk modulus 

of binary Pb-Sn.  We used ρ0=1 here. The value of Cmin for the binary mixture is varied such that 

the curve of the enthalpy of mixing is closest to its experimental counterpart. The remaining 

determined coupling parameters of the MEAM potential for Pb-Sn are shown in Table 4.  Results 

obtained from the Pb-Sn MEAM potential are discussed in the following paragraphs. 
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Table 4. Parameters set of the MEAM potential of binary Pb-Sn system. The parameters are 

given in the LAMMPS format. The potential files are available on the NIST Interatomic 

Potentials Repository (www.ctcms.nist.gov/potentials) 

 Present MEAM 

  Reference structure 𝐵𝐵2 

  Ec (eV) 2.56 

  re (Å) 3.3 

  α 6.2913 

  δa 0 

  δr 0 

  𝜌𝜌0𝑃𝑃𝑖𝑖:𝜌𝜌0𝑆𝑆𝑚𝑚 1:1 

𝐶𝐶𝑚𝑚𝑖𝑖𝑚𝑚(𝑃𝑃𝑏𝑏 − 𝑆𝑆𝑎𝑎 − 𝑃𝑃𝑏𝑏) 0.3 

𝐶𝐶𝑚𝑚𝑖𝑖𝑚𝑚(𝑆𝑆𝑎𝑎 − 𝑃𝑃𝑏𝑏 − 𝑆𝑆𝑎𝑎) 0.51 

𝐶𝐶𝑚𝑚𝑖𝑖𝑚𝑚(𝑃𝑃𝑏𝑏 − 𝑃𝑃𝑏𝑏 − 𝑆𝑆𝑎𝑎) 1.3 

𝐶𝐶𝑚𝑚𝑖𝑖𝑚𝑚(𝑆𝑆𝑎𝑎 − 𝑆𝑆𝑎𝑎 − 𝑃𝑃𝑏𝑏) 0.5 

𝐶𝐶𝑚𝑚𝑎𝑎𝑥𝑥(𝑃𝑃𝑏𝑏 − 𝑆𝑆𝑎𝑎 − 𝑃𝑃𝑏𝑏) 2.8 

𝐶𝐶𝑚𝑚𝑎𝑎𝑥𝑥(𝑆𝑆𝑎𝑎 − 𝑃𝑃𝑏𝑏 − 𝑆𝑆𝑎𝑎) 2.8 

𝐶𝐶𝑚𝑚𝑎𝑎𝑥𝑥(𝑃𝑃𝑏𝑏 − 𝑃𝑃𝑏𝑏 − 𝑆𝑆𝑎𝑎) 2.8 

𝐶𝐶𝑚𝑚𝑎𝑎𝑥𝑥(𝑆𝑆𝑎𝑎 − 𝑆𝑆𝑎𝑎 − 𝑃𝑃𝑏𝑏) 2.8 

 

Our calculations of the lattice parameter of Pb-rich fcc solid solution at 483K and β-Sn-rich (which 

is metastable) at 298K are compared to experimental counterparts, for Pb [72] and for Sn [73] in 

Fig. 7. The deviation between the calculated and experimental values of the lattice constant of Pb-

rich solid solution decreases with increasing Sn concentration; this error corresponds to 1.6% and 

%1 at 5% and 20% Sn concentrations, respectively. The deviation between the calculated and 

experimental values of the lattice parameters a and c of β-Sn are within 2.5% and 3.4%, 

respectively. In all cases, the trends of predicted lattice parameters versus concertation agree very 

well with experiments wherein the lattice parameter of Pb decreases whereas the lattice parameters 

http://www.ctcms.nist.gov/potentials
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a and c of β-Sn increase with increasing concentration alloying element.  

 

Figure 7. Computed lattice parameter of (a) Pb-rich fcc at 483K and (b) β-Sn-rich solution at 

298K along with experimental counterparts at the same temperatures, for Pb [72] and for Sn 

[73]. 

The calculated enthalpy of mixing in Pb-rich Pb-Sn fcc solid solution at 456K and liquid solution 

at 623K are presented in Fig. 8(a) and 8(b), respectively. These figures clearly show the present 

binary Pb-Sn MEAM potential can successfully reproduce the enthalpy of mixing in both solid 

and liquid phases over a significant range of Sn concentrations. The enthalpy of mixing of solid 

and liquid Pb-Sn system is calculated using a Nose-Hoover thermostat and Nose-Hoover barostat 

[59] at zero pressure; equilibrium time and data sampling time are respectively 0.2 ns and 0.1ns 

for the solid solution and 0.8 ns and 0.4 ns for the liquid solution, respectively. Since the diffusion 

of atoms in MD is very slow, particularly in the solid phase, we used hybrid MD/MC simulations 

to calculate the enthalpy of mixing of solid solution, where MC is used to swap Pb and Sn atoms. 

Although the enthalpy of mixing can be calculated solely from MD simulation in the liquid phase 

(diffusion in the liquid phase is much higher than in the solid phase), for consistency, we also used 

MD/MC method for the liquid phase. Namely 4000 attempts to swap Sn and Pb atoms are made 

every 500 MD step for solid and liquid. See supplemental materials S1 and S2 for the 
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corresponding videos of the liquid at 623K and solid at 456K, respectively.    

 

 

Figure 8. Calculated enthalpy of mixing for (a) Pb-rich fcc solution at 456K along with 

experiment 1 [74] at 450K and experiment 2 [75] at 523K and (b) for liquid at 623K along with 

experiment 1 [74] and experiment 2 [76] at 623K. 

 

5. Thermodynamics of Pb-Sn Liquid Mixtures 

5.1. Phase Diagram 

We used hybrid MD/MC simulations in the semi-grand canonical ensemble (SGC-MC) [77] at 

zero pressure as discussed in [78] to determine the solidus and liquidus lines of the phase diagram 

for Pb-Sn system in the Sn-rich region. In this method, the total number of atoms is fixed, and the 

time evolution of their positions and velocities are obtained through MD simulations. However, 

the relative numbers of Sn and Pb atoms are not fixed. During every MC step, an attempt is made 

to change the type of each atom from Sn to Pb or vice versa using the Metropolis rejection method. 

    More specifically, we first performed hybrid MD/MC simulations in the semi-grand canonical 

NPT ensemble (with zero pressure) of the binary mixture of solid and liquid at a given temperature, 

T (463 K, 473 K and 500K), below the calculated MP of pure Sn (511K). This allows us to 
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approximately find the chemical potential, ∆µ*(T)=µSn-µPb where a stable coexistence between the 

solid and liquid phases is observed. Snapshots of solid-liquid coexistence at different temperatures 

are shown at Fig. 9.  

 

Fig. 9. Snapshots of the equilibrium solid-liquid interface model of the Pb-Sn calculated by 

hybrid MD/MC simulation. The red and blue atoms are Pb and Sn, respectively. 

 

Many simulations are then performed at chemical potentials around ∆µ*(T), of a system consisting 

of a solid phase coexisting with the liquid phase, with a (100) interface plane. Here, a run is 

typically performed over 2×106 MD time steps, with every 500 MD steps followed by 4000 MC 

steps with 2fs as the time step. Using this approach, a more precise value of ∆µ*(T) is obtained by 

monitoring the stability of the solid-liquid interface.  The coexistence chemical potential at a given 

temperature is defined where a change in chemical potential (±0.0025 eV/atom) causes a 

transformation, of the liquid-solid coexisting system, to a completely solid or liquid phase, 

respectively. To obtain accurate values of the solidus or liquidus concentration of Sn, we 

performed again hybrid MD/MC simulations of the system at these chemical potentials but where 

the system is either in the solid or liquid phase. We choose ∆µ* corresponding for the solid-liquid 
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coexistence; ∆µ*(T=500) = 0.9000 eV/atom in this example; only at 0.8950 eV<∆µ*s<0.9050 

eV/atom, we can have a coexistence of solid-liquid interface, where at 0.9050 eV and 0.8950 eV, 

complete liquid and solid are observed, respectively. The videos of hybrid MD/MC simulations 

for these three ∆µ* at 500K are presented in supplementary files S3, S4, and S5.   

The obtained Sn-rich phase diagram using the method above is shown in Fig. 10. This phase 

diagram is in good agreement with available experimental data for the solidus and liquidus lines 

in the Sn-rich region of the phase diagram. Note that we did not fit our binary Pb-Sn potential to 

the phase diagram, except for the location of the MP of pure Sn. This result clearly shows that 

fitting to the enthalpy of mixing and MP lead to an accurate phase diagram. The calculated liquidus 

concentrations in the range of 463K and 500K are within a 1.5% error with available experiments. 

We also note that there is a 0.9% error in the solidus concentrations by the present binary MEAM 

potential. The present MEAM predicts a negligibly small solubility of Pb in the β-Sn, as indicated 

by Fig. 9. It is worth mentioning that we also attempted to determine the Pb-rich side of the phase 

diagram. However, the calculations of Pb-rich side of the phase diagram by the present MEAM 

potential parameters showed that there is no value of ∆µ* at which a stable solid-liquid coexistence 

is observed. The authors believe that this issue can be overcome by re-parametrizing the binary 

MEAM potential (with 𝜌𝜌0𝑃𝑃𝑖𝑖:𝜌𝜌0𝑆𝑆𝑚𝑚 being to be the most influential parameter). However, this re-

parametrization influences the Sn-rich side of the phase diagram.  
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Fig. 10. Calculated phase diagram by the present MEAM potential along with experiment 1 [79], 

experiment 2 [80], experiment 3[81], and ab-initio-aided CALPHAD calculations [82]. 

 

 

5.2. Structure Factor of Liquid Binary Pb-Sn Mixtures 

The structure factor of Pb-Sn system, in the liquid phase, is calculated using the same approach as 

for the pure systems, except we used systems composed of more atoms (8000) and longer time (6 

ns) for obtaining the atomic configurations. Fig. 11 shows the calculated S(k) at the eutectic 

composition, 0.261Pb-0.739Sn, at T= 570K using the present binary MEAM potential along with 

experimental results. We note that this structure factor is calculated from the radial distribution 

function, regardless of the type of atoms. This figure shows that the present binary MEAM 

potential underestimates the ratio of S(k2)/S(k1) and S(k3)/S(k1) by %0.2 and 2.3, respectively.  
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Fig. 11. Calculated liquid structure factor S(k) by present binary Pb-Sn MEAM potential 

compared with experimental counterpart [54] at 570K and eutectic concentration 0.261Pb-

0.739Sn. 

Experimental measurement of the structure factor for binary alloys is still considered a challenging 

task [83]. Since the present MEAM reproduces rather nicely the structure factor of the liquid binary 

mixture, it would be interesting to infer the effect of composition on the wave vectors of the first 

and second peaks and their ratio. These data can be used, for instance, in the study of the effect of 

cooling rate on the solidification of the alloy system [84]. We therefore carried MD simulations to 

extract S(k) at concentrations of Sn corresponding to 0, 20, 40, 60, 80 and 100 percent at 570K. 

The results of these simulations are summarized in Table 5. This Table shows that increasing the 

concentration of Sn results in increased values of the wave vectors of the first and second peaks.  

The effect of Sn concentration on the ratio S(k2)/S(k1) and S(k3)/S(k1) is non-monotonous. Namely 

it firstly increases with increasing Sn concentration, then decreases with further increase of Sn 

concentration, while becoming maximum at Pb-0.6Sn.  
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Table 5. Calculated positon and heights of first, second and third peak of S(k) and ratio of 

S(k2)/S(k1) and S(k3)/S(k1) by present Pb-Sn MEAM potential in liquid alloys. 

 𝑘𝑘1(1/𝐴𝐴) 𝑆𝑆(𝑘𝑘1) 𝑘𝑘2(𝐴𝐴) 𝑆𝑆(𝑘𝑘2) 𝑘𝑘3(1/𝐴𝐴) 𝑆𝑆(𝑘𝑘3) S(k2)/S(k1) S(k3)/S(k1) 

Pb 2.23 1.841 4.07 1.357 5.95 1.129 0.737 0.613 

Pb-0.2Sn 2.25 1.803 4.14 1.346 6.04 1.116 0.747 0.619 

Pb-0.4Sn 2.26 1.76 4.18 1.34 6.15 1.114 0.761 0.633 

Pb-0.6Sn 2.26 1.641 4.19 1.291 6.16 1.101 0.787 0.671 

Pb-0.8Sn 2.26 1.859 4.19 1.382 6.16 1.138 0.743 0.612 

Sn 2.28 1.926 4.2 1.386 6.17 1.144 0.72 0.594 

 

6. Summary and Conclusions 

We presented new unary Pb and Sn as well as binary Pb-Sn interatomic potentials based on the 

MEAM formulation. The present MEAM potential for Pb improves the MP calculation by 17%, 

without any considerable compromise in other calculated properties. Furthermore, our results 

indicated that the reparametrized MEAM potential for Pb also predicts improved thermodynamic 

properties such as the latent heat and expansion in melting and higher accuracy in the values of 

the elastic constants at high temperatures.  

     The scenario for Sn is more complex. In this case we needed not only to achieve an accurate 

MP, but also a stable β-Sn structure near the MP. We noted that the Ravelo-Baskes MEAM 

potential [30] indeed predicts a stable β-Sn phase, but it predicts that the MP is around 31% lower 

than the experimental value. We also showed that the previously developed MEAM potential for 

Sn, by Vella et al. [35] cannot be used for simulations of coexisting solid and liquid phases, 

because it predicts an unstable β-Sn phase at high temperatures. We therefore, considered the 

MEAM parameters of Sn, rendered earlier by Ravelo and Baskes [30], and adjusted few parameters 

such that an accurate MP is predicted along with a stable β-Sn at high temperatures. The newly 
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parameterized MEAM potential for Sn results in relatively good agreement of elastic constants at 

0 K and high temperatures with their experimental counterparts. However, we showed that the 

elastic constants in the solid phase are sacrificed at the expense of better accuracy of the model 

around the MP.  

   Based on the new MEAM parameterization of elemental Pb and Sn, we developed MEAM 

parameters for binary Pb-Sn alloys fitted to the available experimental data, namely the enthalpy 

of mixing and lattice parameters of Pb-rich solid solution at low temperatures and β-Sn as well as 

the enthalpy of mixing of Pb-Sn liquid solutions at high temperatures. Finally, to test the 

transferability of the present binary MEAM potential for high temperature applications, we used 

hybrid MD/MC simulations in the semi-grand canonical ensemble for the calculation of the solidus 

and liquidus lines in the Sn-rich portion of the phase diagram, and showed close agreement with 

experiments and CALPHAD data. In addition, we presented the liquid structure factor of Pb-Sn 

mixtures at different concentrations showing that S(k2)/S(k1) and S(k3)/S(k1) ratio was maximum at 

Pb-0.6Sn. 
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Abstract 

In this paper, we calculate the solid-liquid interface free energy at different concentrations and 

orientation. The recent published interatomic potential for binary system Pb-Sn developed by 

Etesami et. al [1] has been employed in this investigation. Then the solid-liquid interfaces during 

the simulation time are determined by order parameter. Then, capillary fluctuation method (CFM) 

has been used for calculation of sold-liquid stiffness at the interface. The results shows that the 

orientation of solid crystal does not have influence on the value of stiffness. The calculated solid-

liquid interfacial energy for pure is in good agreement with experimental counterpart. 

1. Introduction 

Determining the quantitative value of solid-liquid interfacial free energy, defined as the needed 

reversible work to generate a unit area of the solid-liquid interface at a specific temperature, 

volume and chemical potentials [2], is one of the most important thermodynamic properties of 

materials, which can give scientists and engineers the better understanding of behavior of materials 
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during the different metallurgical processes involving solid and liquid such as coarsening, sintering 

and solidification [3], [4]. Additionally, the effect of orientation of crystal on the interfacial free 

energy (anisotropy) is getting more attention recently because it can show the preference direction 

of dendrite growth during the directional solidification [5], [6]. Experimentally determination of 

solid-liquid interfacial free energy is accompanying with considerable challenging and 

approximation [7]. This value is generally measured by grain boundary groove method where the 

solid and liquid are equilibrated at grain boundary with groove shapes [8], [9]. Additionally, the 

difficulty of the processes is increased if the measurement of solid-liquid interfacial energy of 

solid-liquid in the binary system is demanded.  

Alternatively, molecular dynamic (MD) simulation can be considered as one of the most reliable 

and accurate method in calculation of the solid-liquid interfacial free energy and the influence of 

crystal orientation on it [10]–[13]. Broadly, there are two approaches in using the atomistic 

simulation such as MD in the calculation of solid-liquid interfacial free energy, namely the 

thermodynamic integration [14] and capillary fluctuation method (CFM) [10], [15]. The former is 

based on the calculation of needed work for preparing separate solid and liquid bring them in the 

contact of each other along a continuous path divided by the contact area. The later is the approach 

we employed in this paper is explained based on measurement of the fluctuation of at the solid-

liquid coexistence [16]. The results of precious finding clearly show the successful implementation 

of CFM method in extraction of solid liquid interfacial free energy for pure materials with different 

crystal structure such as fcc [17], [18], bcc [19], [20], and hcp [13], [21]. In addition, it has been 

shown that this method can be employed for alloy system such as Ni-Cu [11], Cu-Ag [22] and Cu-

Ag-Au [23]. However, there are small amount of researches dedicated into the calculation of solid-
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liquid interfacial free energy of alloy systems. The reason of that can be due to the needed 

additional step for finding the equilibrium solidus and liquidus for each temperature. 

Particle coarsening or Ostwald ripening is a metallurgical phenomenon where small solid particles 

are diminished while the larger ones are grown in the liquid mixture. Understanding the kinetics 

of particle coarsening experimentally has been the subject of several research [24], [25]. As an 

example, the particle coarsening has been experimentally studied in the near zero gravity in the 

solid Sn in liquid mixture of Pb-Sn [26]–[28]. The reason of decreasing gravity in this case is 

preparing the situation similar to the theory where the solid particles are randomly distributed and 

there was no contacting between them. Although, the theory has been verified by those 

experiments however, there is a need to study this process by computational methods in order to 

elucidate the behavior of materials during the process [29]. The Pb-Sn system was chosen due to 

the fact that this system results in the dispersion of spherical solid particles in the liquid because 

of its solid-liquid interfacial energy. Therefore, studying the properties of solid-liquid interface for 

Pb-Sn from atomistic view by MD is significantly important. In addition, the MD model can be 

coupled to the higher scale modeling such as phase field or phase field crystal to give the scientists 

the clear picture of kinetics of particle coursing. In this study, the solid-liquid interfacial energy of 

Pb-Sn is investigated at the atomistic scale by MD simulation. The potential has been successfully 

developed in our previous publication [1]. The melting point and phase diagram of Sn rich region 

have been correctly reproduced by the potential. In this work, we employ that potential (binary Pb-

Sn) to calculate the solid-liquid interfacial free energy in different orientation and additionally we 

study the shrinkage of one Nano-solid Sn particle in liquid mixture of Pb-Sn.  

 

2. Methods and Procedures 
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According to the general embedded-atom method (MEAM) formalism, the total energy of a unary 

system (𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡) is defined by [30] 

 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡 = ∑ �𝐹𝐹(𝜌𝜌𝑖𝑖) + 1
2
∑ ∅(𝑟𝑟𝑖𝑖𝑖𝑖)𝑖𝑖(≠𝑖𝑖) �𝑖𝑖                                                                                                                                           

where 𝐹𝐹(𝜌𝜌𝑖𝑖) and ∅(𝑟𝑟𝑖𝑖𝑖𝑖) are the embedding energy and pair interaction, respectively [30]. The 

developed MEAM parameters for pure ones and binary developed are given in Table 1, and 2, 

respectively (the parameters of potential can be found in the 

(https://www.ctcms.nist.gov/potentials). The cutoff distance of the Pb-Pb, Sn-Sn and Pb-Sn 

interactions is set to 5.5Å. All the MD simulations in this study are carried out with the LAMMPS 

molecular dynamics simulator [31]. Post processing analysis and visualization was done with 

OVITO [32], [33].  

 

Table 1. MEAM parameters for Pb and Sn. Ec(eV) is the cohesive energy; re(Å) is the nearest-

neighbor distance in the equilibrium reference structure; α is the exponential decay factor for the 

universal equation of state [34]; A is the electron density scaling factor for the embedding 

function; δa and δr are the attraction (a∗>0) and repulsion (a∗ ≤  0) cubic terms for the universal 

equation of state; β(0−3) are the exponential decay factors for the atomic electron densities; t(1−3) 

are the weighting parameters for the atomic electron densities; and Cmin and Cmax are the 

screening parameters. The reference structure for both elements is fcc. 

 Ec re α A β(0) β(1) β(2) β(3) t(1) t(2) t(3) Cmin Cmax δa δr 

Pb 2.04 3.5 6.38 1.01 5.42 2.2 6 2.2 1.7 a 3.4b 1.1 c 0.81 2.8 0 0 

Sn 3.08 3.437 6.2 1.0 6.2 6.0 6.0 6.0 12.5d 8.0e -0.38f  0.8 2.8 0 0 

 

  

https://www.ctcms.nist.gov/potentials/
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Table 2. Parameters set of the MEAM potential of binary Pb-Sn system. The parameters are 

given in the LAMMPS format. 

 Present MEAM 

  Reference structure 𝐵𝐵2 

  Ec (eV) 2.56 

  re (Å) 3.3 

  α 6.2913 

  δa 0 

  δr 0 

  𝜌𝜌0𝑃𝑃𝑖𝑖:𝜌𝜌0𝑆𝑆𝑚𝑚 1:1 

𝐶𝐶𝑚𝑚𝑖𝑖𝑚𝑚(𝑃𝑃𝑏𝑏 − 𝑆𝑆𝑎𝑎 − 𝑃𝑃𝑏𝑏) 0.3 

𝐶𝐶𝑚𝑚𝑖𝑖𝑚𝑚(𝑆𝑆𝑎𝑎 − 𝑃𝑃𝑏𝑏 − 𝑆𝑆𝑎𝑎) 0.51 

𝐶𝐶𝑚𝑚𝑖𝑖𝑚𝑚(𝑃𝑃𝑏𝑏 − 𝑃𝑃𝑏𝑏 − 𝑆𝑆𝑎𝑎) 1.3 

𝐶𝐶𝑚𝑚𝑖𝑖𝑚𝑚(𝑆𝑆𝑎𝑎 − 𝑆𝑆𝑎𝑎 − 𝑃𝑃𝑏𝑏) 0.5 

𝐶𝐶𝑚𝑚𝑎𝑎𝑥𝑥(𝑃𝑃𝑏𝑏 − 𝑆𝑆𝑎𝑎 − 𝑃𝑃𝑏𝑏) 2.8 

𝐶𝐶𝑚𝑚𝑎𝑎𝑥𝑥(𝑆𝑆𝑎𝑎 − 𝑃𝑃𝑏𝑏 − 𝑆𝑆𝑎𝑎) 2.8 

𝐶𝐶𝑚𝑚𝑎𝑎𝑥𝑥(𝑃𝑃𝑏𝑏 − 𝑃𝑃𝑏𝑏 − 𝑆𝑆𝑎𝑎) 2.8 

𝐶𝐶𝑚𝑚𝑎𝑎𝑥𝑥(𝑆𝑆𝑎𝑎 − 𝑆𝑆𝑎𝑎 − 𝑃𝑃𝑏𝑏) 2.8 

 

 

3. Results and Discussion 

3.1. Order parameter 

The atom in solid and liquid is identified by an below equation for calculation of order 

parameter, ψ for each atom 

𝜓𝜓 =
∑ 𝑤𝑤𝑑𝑑𝑟𝑟𝑖𝑖𝜙𝜙𝑖𝑖𝑖𝑖
∑ 𝑤𝑤𝑑𝑑𝑟𝑟𝑖𝑖𝑖𝑖

, 
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where 𝑤𝑤𝑑𝑑 = �1 − �𝑟𝑟𝑖𝑖
𝑑𝑑
�
2
�
2

, 𝑟𝑟𝑖𝑖 = �(𝑥𝑥𝑖𝑖 − 𝑥𝑥)2 + (𝑧𝑧𝑖𝑖 − 𝑧𝑧)2,𝜙𝜙 = 1
2
∑|𝑟𝑟𝚤𝚤��⃗ − 𝑟𝑟𝑖𝑖𝑐𝑐𝑡𝑡������⃗ |2and  𝑎𝑎 is the radius of 

the smoothing cylinder for ψ and the summation is over all the atoms in the smoothing distance 

𝑟𝑟𝑖𝑖 < 𝑎𝑎  [18]. Fig. 1 shows the calculated order parameter ψ for only one side of solid-liquid 

interface. The value is low and high for liquid and solid, respectively. Therefore, the interface of 

solid-liquid is defined a location in the average of ψ in the solid and liquid. 

 

Fig. 1. The plot of order parameter in the z direction 

3.2. Solid-liquid interfacial free energy 

Here, the stiffness of solid Sn in coexistence with liquid Sn-Pb interface has been calculated 

by construction of a slab of two phases. The thicknesses, widths and lengths of slabs for three 

different orientation are given in Table 3. The concentration of solid and liquid phase at each 
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temperature is obtained by using hybrid MD/MC simulations in the semi-grand canonical 

ensemble (SGC-MC). The simulation procedure to calculate the phase diagram of Pb-Sn are 

explained in detail in [1]. For brevity, at each temperature, many simulations at different chemical 

potentials were performed and equilibrium chemical potential at each temperature were found 

where there is a stable solid-liquid interface. Then, the concertation of solid and liquid has been 

calculated and reported as a solidus and liquidus, respectively. According to the calculated phase 

diagram, there is a great match with the experimental and calculated ones with our Pb-Sn MEAM 

potential. We note that the concertation of solid is almost zero and we only change the concertation 

of liquid at each temperature. However, before this simulation, the lattice parameter of solid Sn is 

calculated by equilibrating the solid Sn with 13500 atoms at each temperature for 105 time-step 

and 5×104 time-step at NPT ensemble where the time-step was 0.002 ps. Then, the solid and liquid 

interface is model by equilibrating the slab at the desired temperature for 3 ns at NPT ensemble. 

The relaxation time for NPT ensemble is around more than double in the case of alloying system 

compared with the pure one [35] which is due to achieving desirable fluctuation for interface [11]. 

The liquid part is constructed by increasing temperature of some part of sable to make it liquid and 

then bring back to the required temperature. Here we calculate the stiffness for four cases at four 

temperatures, namely, 511, 500, 473 and 463 K. finally the NPH simulation has been performed 

at each case for 240 ps. A snapshot of the atoms’ positions was obtained every 0.2 ps. The 

simulations snapshot of real system and its structure for (110) [001] orientation at four 

temperatures, 463 K, 473 K, 500 K and 511 K, is presented in Fig. 2 and 3, respectively. The 

structure of solid and liquid can be seen where is distinguishable. 

The stiffness of solid-liquid interface is calculated according to the below equation 

𝛾𝛾 + 𝑎𝑎2𝛾𝛾/𝑎𝑎𝜃𝜃2 = 𝑘𝑘𝐵𝐵𝑇𝑇𝑀𝑀
𝑖𝑖𝑏𝑏〈|𝐴𝐴(𝑘𝑘)|2〉𝑘𝑘2

 , 
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where 𝛾𝛾 is the solid-liquid interface free energy, θ is the angle between the normal to the interface 

and the 𝑥𝑥  direction, and 〈|𝐴𝐴(𝑘𝑘)|2〉  is the mean square amplitude of the Fourier modes (𝑘𝑘 ). 

Therefore, to calculate the solid-liquid interface stiffness, 𝛾𝛾 + 𝑎𝑎2𝛾𝛾/𝑎𝑎𝜃𝜃2, we only need to obtain 

the location of interfaces to get the heights of them according to the ψ and then calculate the Fourier 

modes of heights and average them over all fame. Then by plotting 𝑘𝑘𝐵𝐵𝑇𝑇𝑀𝑀
𝑖𝑖𝑏𝑏〈|𝐴𝐴(𝑘𝑘)|2〉 versus 𝑘𝑘−2, the 

stiffness can be calculated. The behavior of 𝑘𝑘𝐵𝐵𝑇𝑇𝑀𝑀
𝑖𝑖𝑏𝑏〈|𝐴𝐴(𝑘𝑘)|2〉 for each mode (𝑘𝑘−2) starts from linear to 

the non-linear (Fig. 4); this can be due to the effect of other terms which added in the higher modes. 

To get the optimum numbers of 𝑘𝑘−2 for each smoothing distance, 𝑎𝑎, we propose a new method for 

fining the accurate value of stiffness for each orientation. Firstly, for each 𝑎𝑎 including 1.45, 1.5, 

1.55 and to the higher value at each orientation, we fit a linear function to 𝑘𝑘𝐵𝐵𝑇𝑇𝑀𝑀
𝑖𝑖𝑏𝑏〈|𝐴𝐴(𝑘𝑘)|2〉 versus 𝑘𝑘−2 at 

different numbers of modes (𝑥𝑥 = 𝑎𝑎𝑥𝑥 + 𝑏𝑏). We started the fitting from 22 points (where the linear 

behavior is clear) and decreasing the number of modes until we get the lowest value for the 𝑏𝑏. This 

procedure is carried out for different 𝑎𝑎 and then the 𝑎𝑎 which gives us the lower value of the 𝑏𝑏 is 

going to be our candidate for calculation of stiffness in the next step. Finally, according to the 

specified 𝑎𝑎 and number of modes, we calculate the 𝑘𝑘𝐵𝐵𝑇𝑇𝑀𝑀
𝑖𝑖𝑏𝑏〈|𝐴𝐴(𝑘𝑘)|2〉𝑘𝑘−2 

 for each modes (Fig. 5). The first 

modes has a statistical error. Therefore we exclude the first modes and finally we can measure the 

average and standard deviation of the 𝑘𝑘𝐵𝐵𝑇𝑇𝑀𝑀
𝑖𝑖𝑏𝑏〈|𝐴𝐴(𝑘𝑘)|2〉𝑘𝑘−2 

 and reported as the mean and standard 

deviation of stiffness (Fig. 6).   

Based on the Fig. 6, we can say that the stiffness is independent of orientation in the Pb-Sn 

system for pure or even the binary case. Therefore, the stiffness value can be seen here as the solid-

liquid free energy. The average values of stiffness at different orientations for pure Sn is 44.93±9.9 

mJ/m2 where the experimental values reported 54.5 [36], 59 [37], and 65 mJ/m2 [38]. It can be 
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seen that the calculated value is in good agreement with experiment. Adding Pb into Sn results in 

the increasing the solid-liquid interfacial energy where the experimental value is 132.42±19.94 

mJ/m2  [39] at 26.1 % Pb which the our calculations show slightly increasing of interfacial free 

energy by adding Pb. However, Fig. 6 shows the value of solid-liquid interfacial free energy is 

54.79±6.4 mJ/m2 at 22.5 % Pb. 

1. Conclusions 

Due to the importance of solid-liquid interfacial free energy in different alloying system, in this 

work, we calculated this important thermodynamic quantity and investigate the effect of 

concentrations of Pb and orientation of it in Pb-Sn system. The results shows that the interfacial 

free energy is independent of orientations. The calculated value for pure is in good agreement with 

experimental counterpart. However, the interfacial free energy binary Pb-Sn shows considerable 

margin with experiment. The results of this work can be incorporated in to the higher scale 

simulation method such as phase field or phase field crystal. 
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Fig. 2. Snapshots of the equilibrium solid-liquid interface model of the Pb-Sn at different 

temperatures and concentrations for (110) [001] orientation. The red and blue atoms are Pb and 

Sn, respectively. 
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Fig. 3. Snapshots of the structure of equilibrium solid-liquid interface model of the Pb-Sn at 

different temperatures and concentrations for (110) [001] orientation.  

 

 

 

Fig. 4. Plot of 𝑘𝑘𝐵𝐵𝑇𝑇𝑀𝑀
𝑖𝑖𝑏𝑏〈|𝐴𝐴(𝑘𝑘)|2〉 vs. 𝑘𝑘−2 for (110) [001] orientation at 463K. 
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Fig. 5. Plot of 𝑘𝑘𝐵𝐵𝑇𝑇𝑀𝑀
𝑖𝑖𝑏𝑏〈|𝐴𝐴(𝑘𝑘)|2〉𝑘𝑘2

 vs. number of modes for (110) [001] at 463 K. 

 

Fig. 6. The stiffness values calculated for solid-liquid of Pb-Sn system at 463 K, 473 K, 500 K 

and 511 K each at 3 different orientations. 
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7. CONCLUSIONS 
 

Due to the importance of studying the thermodynamics and kinetics of solid and liquid of metallic 

system by molecular dynamic (MD) simulation, we need to have a reliable interatomic potential 

for that system. In this work, we employed the modified embedded-atom method (MEAM) for 

simulation of solid and liquid systems. The reliability of each potential is based on the chosen 

and/or possible target properties in the fitting procedure. The most commonly used material 

properties for fitting interatomic potentials are those at the 0-K such as cohesive energies, lattice 

parameters, and elastic constants. However, depending on the potential and the material, fitting to 

only 0-K properties does not always result in a reliable potential at higher temperatures. The 

remedy to this problem, commonly adopted in the scientific community, is the addition of one or 

more key high temperature properties to the fitting procedure. In this dissertation, we tried to fit 

the MEAM potential to the high temperature properties such as melting point properties and high 

temperature elastic constants. Therefore, we set our goal to study the existing potentials and 

develop new parameters based on the MEAM formalism for pure (Fe, Cu, Ni, Pb, Sn and Ti) and 

binary (Pb-Sn) systems. 

In the case of Fe, Ni and Cu, high temperature elastic constants and melting point are added to the 

typical material properties at low temperature, which are currently used in the development of 

MEAM parameters. The elastic constants at high temperatures were calculated by a fast fluctuation 

approach. The present MEAM potential parameters for those elements significantly decreased the 

deviation of MEAM-MD calculated C11, C12 and C44 from experimental counterparts in 

comparison with the previous MEAM potentials parameters. The calculated melting points by the 

modified potential parameters for Fe, Ni, and Cu were within 0.06%, 1.3%, and 0.7% error with 
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experimental data. Calculations of latent heat, expansion in melting, liquid structure factor and 

solid-liquid interface stiffness using the present MEAM parameters were also in reasonable 

agreement with experiments.  

In the case of Ti, we surveyed ten interatomic potentials in terms of their capability in predicting 

the temperature dependency of the elastic constants for hcp metals. We employed the same 

approach, fluctuation method, for the calculation of the elastic constants (five independent 

components) for all the range of temperatures with stable hcp phase. We compared the calculated 

elastic constants to their experimental counterparts and used 10% error as the acceptable prediction 

of the individual elastic constant as well as cumulative tensile (C11, C12, C23, and C33), shear (C44 

and C66), and overall elastic constants. While there is a number of available MD potentials with 

acceptable prediction for temperature dependency of one or more elastic constants, there are no 

available interatomic potential capable of predicting all the elastic constants at all considered 

temperatures within 10% from experiments. Ti.set, NiTi.meam, and Ti.Dickel.meam predict 

acceptable tensile elastic constants for all temperatures while Ti3.eam.fs predicts the least 

deviation from experiments for shear elastic constants. Although NiTi.meam and Ti.Dickel.meam 

do not predict satisfactory shear elastic constants, they predict a temperature dependency of shear 

elastic constants in agreement with experiments. 

Then, based on the importance of application of Ti in the metal additive manufacturing (MAM), 

we presented an approach for the development and/or verification of the interatomic potentials for 

the MD modeling of MAM processes and applied the procedure for the ten Ti interatomic potential. 

The approach considered the thermal history of the material during the MAM process, which 

included the cyclic variable-rate thermal processing of metal alloys between room temperature and 

temperatures higher than their melting points. The MAM thermal process results in the cyclic 
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transformation of the alloy among the various solid phases, liquid phase, and vapor phase. Briefly, 

we determined Ti.Dickel.meam and Ti.meam.spline as suitable potentials for the MD simulations 

of MAM process considering their rare deficiencies in predicting some of the secondary and 

tertiary properties in agreement with the experimental results.  

In the case of interatomic potential for binary system, we used the Pb-Sn system as an example 

because of its application in studying particle coarsening. The new binary Pb-Sn MEAM potential 

fitted to the available experimental data, namely the enthalpy of mixing and lattice parameters of 

Pb-rich solid solution at the low temperatures and β-Sn as well as the enthalpy of mixing of Pb-Sn 

liquid solutions at the high temperatures. Finally, to test the transferability of the present binary 

MEAM potential for high temperature applications, we used hybrid MD/Monte Carlo (MC) 

simulations in the semi-grand canonical ensemble for the calculation of the solidus and liquidus 

lines in the Sn-rich portion of the phase diagram, and showed close agreement with experiments 

and CALPHAD data. Finally, we calculate the solid-liquid interface free energy at different 

concentrations and orientations with our new MEAM parameters. The solid-liquid interfaces 

during the simulation time are determined by order parameter. Then, capillary fluctuation method 

(CFM) has been used for calculation of sold-liquid stiffness. The results shows that the orientation 

of solid crystal does not have influence on the value of stiffness. The calculated solid-liquid 

interfacial energy for pure is in good agreement with experimental counterpart. To sum up, all 

calculate properties from the low and high temperatures are presented in the below Table. The 

novelty of this work is adding melting point, enthalpy of mixing and elastic constants at high 

temperature along with calculations of phase diagram, linear thermal expansion coefficient, heat 

capacity, free energy of different structures from the low to the high temperatures, time-

temperature-transformation (TTT) diagram, vapor-liquid interfacial tension, liquid structure 
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factor, self-diffusivity and viscosity as validation properties for screening and developing the 

interatomic potentials.  

Although, such classical interatomic potentials (such as MEAM) will still be effective in the 

quantitative and qualitative modeling of metal alloys, for having more reliable and accurate 

prediction for the MD simulation, there is still need of modification of the existing models. Overall, 

the process of determining potential parameters is a trade-off wherein the accuracy in predicting 

certain properties is lost at the expense of others. The ideal case is having a potential, which can 

work at any given condition with the high accuracy. The new trend shows that using the new 

computational approach such as machine learning in developing interatomic potential may results 

in solving the unsettled problem. Another obstacle in this area is related to the some experimental 

results for fitting the potential. As an example for Ti in the case of MAM process, there is a lack 

of experimental data for the non-equilibrium thermodynamics properties of metal alloys such as 

the phase stability and kinetics at high cooling rates. Fitting such experimental data into the 

potential will increase the confidence in the capability of MD interatomic potential for the MAM 

process modeling. 

 

Table 1. MD-Calculations of 0-K and low temperature properties along with all calculated high 

temperature properties in this dissertation 

0-K and Low Temperate Properties 

Lattice parameter (0-K), Cohesive energy (0-K), Elastic constant (0-K), Bulk modulus (0-K), 

Surface energy at different directions (0-K), stable and unstable stacking fault energy (0-K), 

vacancy formation energy (0-K), structural energy different (0-K), linear thermal expansion (0-

100 oC), specific heat ((0-100 oC) 
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High Temperate Properties 

thermal expansion (200 oC-melting point), specific heat (200 oC-melting point), Latent heat, 

expansion in melting, elastic constants (from 300-melting point), phase diagram, viscosity of 

liquid, diffusivity of liquid, liquid structure factor, vapor-liquid interfacial tension, TTT 

diagram, free energy of system (200 oC-melting point), enthalpy of mixing of liquid 
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