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ABSTRACT

Unique maximal ideal in the algebra L ((∑`q)c0) with 1 < q < ∞. (May 2020)
Diego Calle Cadavid, Master of Science.

Chair of Advisory Committee: Dr. Bentuo Zheng

An important problem in Banach space theory since the 1950’s has been the study of

the structure of closed algebraic ideals in the algebra L (X) where X is a Banach space.

The Banach spaces X for which that structure is well-known are very few. It is known

that every non-zero ideal in L (X) contains the ideal of all finite-rank operators on X and

that if X has a Schauder basis every non-zero closed ideal in L (X) contains the ideal of all

compact operators on X.

In this dissertation I study the structure of the space (∑`q)c0 , for 1 < q < ∞ and I find

the unique proper maximal ideal in the algebra L ((∑`q)c0).

Let T be a bounded linear operator on X =
(
∑`q

)
c0

with 1 < q < ∞. The operator T is

said to be X-strictly singular if the restriction of T on any subspace of X that is isomorphic

to X is not an isomorphism. In this dissertation I prove that the unique proper maximal

ideal in L (X) is the set of all X-strictly singular operators on X.
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Chapter 1

Introduction

Banach space theory, as a branch of functional analysis, has been extensively studied since

the first half of the 20th century. The work of Stefan Banach and published in his book

“Theory of Linear Operations” was the foundation of functional analysis. The research

work in this field grew very fast after the publication of his book. Many important problems

in functional analysis were solved and a variety of subdisciplines were developed. In this

dissertation, I study the structure of the space X = (∑`q)c0 , with 1 < q < ∞ and I find the

unique maximal ideal in the algebra L (X).

1.1 Description of the Research Problem

First, recall that (∑`q)c0 is the space of all sequences x = (xn)
∞
n=1, with xn ∈ `q for each

n ∈ N and with (‖xn‖)∞
n=1 ∈ c0, under the norm given by the formula: ‖x‖= sup

n

{
‖xn‖`q

}
.

The main result in this dissertation is that the unique maximal ideal in L ((∑`q)c0) is

the set of all (∑`q)c0-strictly singular operators on (∑`q)c0 .

The largest obstacle to prove the main result of this dissertation is to show structural

results for (∑`q)c0 . Unfortunately, some of the key lemmas used in [10] and in [53] for

proving the structural results in Zp,q and (∑`q)`1 respectively, fail in the space (∑`q)c0 .

I begin with a discussion of how isomorphic copies of `q in (∑`q)c0 with 1 < q < ∞ are

situated in (∑`q)c0 .

We have that if X is a subspace of (∑`q)c0 isomorphic to `q, then for all ε > 0 there is

a subspace Y of X that is (1+ ε)-isomorphic to `q. This follows from a general result of

Krivine and Maurey [30] about stable Banach spaces, but can be proved in an elementary

way using James’s proof of the non-distortability of the norm on `1.

We also need that copies of `q in (∑`q)c0 contain almost isometric copies of `q which

are almost norm one complemented in (∑`q)c0 . This result follows by Schechtman’s and
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Johnson’s lemmas 2.5 and 2.6 [10].

The strategy for proving the main theorem will consist in showing that for each ε > 0,

every subspace of (∑`q)c0 containing a copy of (∑`q)c0 must contain a copy of (∑`q)c0 that

is C+ ε-isomorphic to (∑`q)c0 and C+ ε complemented in (∑`q)c0 . Since this is enough

for our purposes, we will not attempt to find the best complementation constant. Thus, we

will conclude that the space (∑`q)c0 is complementably homogeneous.

To prove the above mentioned result, we will use lemmas 2.5 and 2.6 [10] proved by

Johnson and Schechtman.

Continuing with the strategy, we will show that if T is (∑`q)c0- strictly singular operator

on (∑`q)c0 , then for each ε > 0 we can find a copy X of (∑`q)c0 in (∑`q)c0 such that T

restricted to X has a small norm. Consequently, the set of all (∑`q)c0- strictly singular

operators on (∑`q)c0 is a linear subspace of L ((∑`q)c0). Thus, it is an ideal.

Since (∑`q)c0 is complementably homogeneous, then every element in MX with

X = (∑`q)c0 is (∑`q)c0- strictly singular. The other inclusion is easy to prove. Hence,

we will have MX is equal to the set of all X-strictly singular operators.

From [13] we know that if MX is closed under addition, then MX is the unique maximal

ideal of L (X). In fact, since MX is equal to the set of all X-strictly singular operators on

X, then MX is closed under addition and so the main theorem will follow.

1.2 Historical Results

An important problem that arises when studying derivations on a general Banach algebra

A is to classify the commutators in the algebra A , i.e., elements that can be expressed as

AB−BA with A,B ∈A .

In 1947, Wintner [52] proved that the identity is not a commutator and this implies that

no non-zero scalar is a commutator.

In 1949, Wielandt [51] proved the same result that Wintner proved but in a different

way and pointed out that this much at least is still valid in an arbitrary normed ring with
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unit.

In 1963, Halmos [22] showed that the theorem of Wintner-Wielandt when applied to the

residue class ring of the ring of bounded operators modulo the ideal of compact operators,

produce the result that no element of the form λ +K, where λ 6= 0 and K is compact, is a

commutator.

There seem to be no general conditions for checking whether an element of a Banach

algebra is a commutator. The situation changes if we consider L (X), the algebra of

all bounded linear operators on a Banach space X . Different authors have classified the

commutators in L (X) for several classical Banach spaces X.

The first complete classification of the commutators in the algebra L (H ) was given in

1965 by Brown and Pearcy [8] when H is an arbitrary infinite dimensional Hilbert space.

In their paper they first considered the case when H is a separable infinite dimensional

Hilbert space and then generalized the result to an arbitrary infinite dimensional Hilbert

space. They proved that the only operators in L (H ) that are not commutators have the

form λ +K, where K is compact and λ 6= 0. In their paper (J) denotes the ideal of the

compact operators, (S) denotes the class of all operators that are congruent mod (J) to

non-zero scalars and (F) denotes the complement in L (H ) of the disjoint union of (J)

and (S). Thus, the set (S) consists entirely of non-commutators so to prove the main result

they proved that the union of (J) and (F) consists entirely of commutators. Since in 1965

Brown, Halmos and Pearcy proved [7] that every compact operator is a commutator, they

only had to prove that the family (F) consists entirely of commutators. To prove that, they

gave a characterization of operators of type (F) and then applied it to give a standard form

of such operators in a matricial fashion, thus the proof of the main result relies, to a large

extent, on matricial calculations. Hence, they proved that an operator on a separable Hilbert

space is a commutator if and only if it is not of type (S).

In 1972, Apostol [3] generalized the results of Schneeberger [48] concerning compact

operators to the case of a sequence space `p(X), where X is a Banach space over the
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complex field. Schneeberger had showed that some of the techniques used for describing

the structure of commutators in a Hilbert space hold in an `p-space too. Apostol also

proved that operators having a compact restriction to a suitable subspace are commutators.

In the case X is finite dimensional, Apostol proved that if T ∈L (`p(X)), 1≤ p < ∞, and

λ belongs to the left essential spectrum of T, then T −λ is a commutator, and if T −λ is

not compact for any λ in the complex field, then T is a commutator. Both proofs reduce

to the case X is the complex field. In particular, Apostol proved that the only operators

in L (`p(C)) for 1 < p < ∞ that are not commutators have the form λ +K where K is

compact and λ 6= 0.

In 1973, Apostol [4] proved that if X denotes a Banach space and T ∈ L (c0(X)) is

compact, then T is a commutator. He obtained for operators acting on c0(C) the same

results that he obtained in [3] making minor modifications to the proofs. Thus, he proved

that if T ∈ L (c0(C)) and if T − λ is not compact for any λ ∈ C, then T must be a

commutator. Hence, using both results described above he concluded that any operator

in L (c0(C)), which is not of the form T = λ +K, with λ ∈ C, λ 6= 0, K compact, is a

commutator. He also proved that any compact operator T ∈L (C([0,1])) is a commutator,

where C([0,1]) is the set of the functions in C((0,1]) whose limit exists.

While Apostol [3] gave some information about the commutators in L (`1), he was

unable to give a complete characterization. He used in his proofs the fact that the unit

vector basis of `p for 1 < p < ∞ is shrinking, but as we know for `1 this is not hold.

In 2009, Dosev [15] proved that the commutators on `1 are the operators not of the form

λ I+K with λ 6= 0 and K is compact. He overcame the obstacle that the unit vector basis of

`1 is not shrinking by using instead the structure of the infinite dimensional subspaces of `1.

Dosev also studied spaces X such that X is isomorphic to (∑X)p for 1 ≤ p < ∞ or p = 0

and defined the concept of a decomposition of X and used this concept to obtain partial

results about commutators on these spaces. He also showed that the compact operators on

X, where X is isomorphic to (∑X)p for 1 ≤ p < ∞ or p = 0, are in fact commutators. In
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particular, for p = 1, he proved that every compact operator on L1 or `1 is a commutator.

He also showed that the ideal of strictly singular operators is the largest ideal in L (`∞) by

proving that if T is not strictly singular operator, then I`∞
factor through T and hence any

ideal that contains T must be L (`∞). He also proved that if T ∈L (`∞) and T is strictly

singular operator, then T is a commutator.

A common feature of all these spaces is that X is isomorphic to (∑X)p for 1≤ p < ∞ or

p = 0 and that the ideal of compact operators on X is the largest nontrivial ideal in L (X).

Thus, the classification of the commutators on `p, 1 ≤ p < ∞ and c0, suggests that if a

Banach space X is isomorphic to (∑X)p for 1≤ p < ∞ or c0 and L (X) has a largest ideal

M , then every noncommutator on X has the form λ I +K, where K ∈M and λ 6= 0.

It seems that a largest ideal in L (X) plays an important role in the classification of the

commutators in the algebra.

In 1958, Tosio Kato [29] introduced the concept of a strictly singular operator and

proved some properties of those operators. First, he showed that if B is a strictly singular

operator, the same is true for AB and BC whenever the products are significant and A and

C are closed, bounded linear operators. Then, he showed that the set of all strictly singular

operators is a subspace of the algebra of all bounded linear operators. Last, he showed that

if Bn is a sequence of strictly singular operators with common domain which converges in

norm to some bounded linear operator B with the same domain of those of the Bns, then B

is strictly singular. Thus, he proved that the set of all strictly singular operators on a Banach

space X is a closed two-sided ideal of the algebra L (X) of all bounded linear operators on

X. From this and the fact that the identity operator of X is not strictly singular if dimension

of X is infinity, he concluded that strict singularity implies complete continuity if X is a

Hilbert space. In general, he showed that if X and Y are Hilbert spaces and T : X → Y is

strictly singular, then T is completely continuous, in other words T is compact.

In 1960, I.A. Feldman, I.C. Gohberg, A.S. Markus [18] proved that the compact

operators form the only closed proper ideal in L (X) for X = `p, 1≤ p < ∞, or X = c0.
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In 1964, Whitley [50] defined an h-space as an infinite dimensional Banach space X

where each closed infinite-dimensional subspace of X contains a complemented subspace

isomorphic to X. He showed that each h-space is separable, that c0 and `p, for 1≤ p < ∞,

are h-spaces and that any Banach space isomorphic to an h-space is an h-space; in

particular, c is an h-space. Whitley also proved that if X is an h-space, then the set of all

strictly singular operators is the greatest ideal in L (X). He proved this theorem showing

that any ideal which contains elements not in the set of all strictly singular operators must

contain the identity map so it must coincide with L (X). As c0 and `p, for 1≤ p < ∞, are

h-spaces, then the set of all strictly singular operators is the greatest ideal in L (c0) and in

L (`p). However, Whitley pointed out that in [18] it was shown that the compact operators

are the only closed two-sided ideal in L (X) for X = c0 and X = `p, for 1≤ p < ∞. Thus,

in these spaces the set of all strictly singular operators coincide with the set of all compact

operators. He also proved that if X is an h-space and Y is a Banach space and all the maps

from X to Y are strictly singular, then so are all the maps from Y to X.

In 2009, D. Dosev and W. B. Johnson [13] followed the ideas in [15] but in this paper

they presented them from a different point of view, in a more general setting, and they

included the case p = ∞. They proved that the non-commutators on `∞ have the form

λ I +S where S is a strictly singular operator on `∞.

They considered the set MX = {T ∈L (X) : IX does not factor through T} which

comes naturally from the work of the commutators on `p, 1 < p < ∞, done by Dosev,

Apostol [15], [3], [4]. In this paper they also showed that MX equals the ideal of the

strictly singular operators on `∞.

In [24], W. B. Johnson, B. Maurey, G. Schechtman and L. Tzafriri showed that MX is

the largest ideal in L (X) if X = Lp(0,1) and 1 < p < ∞. The same can be said for the case

p = 1 from [16] by P. Enflo and T. W. Starbird.

A natural question can be posed. For which Banach spaces X is the set MX the largest

ideal in L (X)?
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It is clear that the set MX is closed under left and right multiplication with operators

from L (X), so MX is an ideal if and only if MX is closed under addition. It is also clear

that if MX is an ideal then is the largest ideal in L (X).

Dosev and Johnson in proposition 5.1 [13] gave a sufficient condition that a Banach

space X must satisfy in order to have MX is an ideal in L (X).

Theorem 1.1 (Proposition 5.1 in [13]). Let X be a Banach space such that for every

T ∈L (X) we have T /∈MX or I−T /∈MX . Then MX is the largest ideal in L (X).

The following is an example of theorem 1.1:

Example 1.2. X =C ([0,1]) satisfies the conditions in the theorem, hence MX is the largest

ideal in L (C ([0,1])). This result was proved by J. Lindenstrauss, A. Pelczynski, in [38].

In 2011 in [14], D. Dosev, W. B. Johnson and G. Schechtman considered operators

T : Lp→ Lp, 1 ≤ p < ∞, that preserve a complemented copy of Lp; that is, there exists a

complemented subspace X ⊆ Lp, X ' Lp such that T|X is an isomorphism. They proved also

from the definition of MLp that T /∈MLp if and only if T maps a copy of Lp isomorphically

onto a complemented copy of Lp. Thus, they proved that the class of operators from Lp to

Lp that do not preserve a complemented copy of Lp coincides with the class of Lp-strictly

singular operators; hence, the class of Lp-strictly singular operators is the largest ideal in

L (Lp).

In 2012, in [10], D. Chen, W. B. Johnson and B. Zheng proved structural results for Zp,q.

For instance in proposition 2.8, they proved that for every ε > 0, there exists a subspace

X of Zp,q, isometric to Zp,q so that the restriction to X of an operator that is Zp,q-strictly

singular on Zp,q has small norm. This lemma actually says that the set of all Zp,q-strictly

singular operators on Zp,q is an ideal. They proved also in lemma 2.7 that for each ε > 0,

every subspace of Zp,q isomorphic to Zp,q contains a subspace that is (1+ ε)-isomorphic

to Zp,q and (1+ ε)-complemented in Zp,q. This lemma actually says that the ideal of all

Zp,q-strictly singular operators on Zp,q is maximal. As an immediate consequence of these
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two results they showed that the set of all Zp,q-strictly singular on Zp,q coincide with the

set MZp,q and forms the unique maximal ideal in L (Zp,q).

In 2014 in [53], B. Zheng obtained structural results about the space (∑`q)`1 . Since

some of the key lemmas for proving the structural results for Zp,q fail in the space (∑`q)`1 ,

he had to develop some new techniques to prove in lemma 2.8 that for every ε > 0, there

exists a subspace X of (∑`q)`1 , isometric to (∑`q)`1 so that the restriction to X of an

operator that is (∑`q)`1-strictly singular on (∑`q)`1 has small norm. This lemma actually

says that the set of all (∑`q)`1-strictly singular operators on (∑`q)`1 is an ideal. He proved

also in lemma 2.5 that for each ε > 0, every subspace of (∑`q)`1 isomorphic to (∑`q)`1

contains a subspace that is (1+ ε)-isomorphic to (∑`q)`1 and (1+ ε)-complemented in

(∑`q)`1 . This lemma actually says that the ideal of all (∑`q)`1-strictly singular operators

on (∑`q)`1 is maximal. As an immediate consequence of these two results he showed that

the set of all (∑`q)`1-strictly singular on (∑`q)`1 coincide with the set M(∑`q)`1
and forms

the unique maximal ideal in L ((∑`q)`1).

Even though there are a few Banach spaces X for which the lattice of closed ideals in

L (X) is totally determined, there are quite a few partial results described. Some of them

are the following.

Calkin [9] classified all the ideals in L (`2). In particular, he proved that the only

non-trivial closed ideal in the algebra L (`2) is the ideal of compact operators.

For each non-separable Hilbert space H, Gramsch [21] and Luft [41] described

independently all the closed ideals in L (H) and showed that they are well-ordered by

inclusion.

Daws [11] extended the results obtained by Gramsch [21] and Luft [41] to the non-

separable versions of `p and c0. They defined for an infinite set I, the set I<∞ =

{A⊆ I : |A|< ∞}. Thus, c0(I) = {(xi)i∈I : ∀ε > 0,{i ∈ I : |xi| ≥ ε} ∈ I<∞} is a Banach
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space with the supremum norm. Similarly, for 1≤ p < ∞ and

`p(I) =

(xi)i∈I : ‖(xi)‖p =

(
∑
i∈I
|xi|p

)1/p

< ∞

 . (1.1)

The main result in this paper is that for an infinite set I and for E = `p(I) or E = c0,

L (E) has perfect compact ideal structure, that is, the closed ideals in L (E) form an

ordered chain:

{0}( K (E)( Kℵ1(E)( ....( K|I|(E)( K|I|+(E) = L (E) (1.2)

Volkmann [49] proved that there are exactly two maximal ideals in L (`p⊕ `q) for

1 ≤ p,q < ∞, p 6= q. These two ideals are generated by the operators that factor through

`p and `q, respectively. Their intersection is the ideal of the strictly singular operators. He

also proved that a similar result holds if either one of the spaces is replaced by c0.

Diestel, Jarchow and Pietsch [12] proved that there are infinitely many closed ideals

in L (Lp[0,1]) for 1 < p < ∞, p 6= 2. They also proved that there are uncountably many

closed ideals in L (C[0,1]).

Edelstein and Mityagin [43] showed that the ideal of weakly compact operators is a

maximal ideal of codimension one in L (J), where J is the James’s quasi-reflexive Banach

space defined in [23]. In [31], Laustsen proved that this ideal is the only maximal ideal in

L (J) and constructed Banach spaces X so that L (X) has any specified finite number of

maximal ideals of any specified codimensions.

In [19], Gowers and Maurey constructed a hereditarily indecomposable Banach space

and proved that the ideal of the strictly singular operators is a maximal ideal of codimension

one in L (X) for each subspace X. This maximal ideal is unique (see [31]).

Androulakis and Schlumprecht showed in [2] that the non-compact, strictly singular

operators exist in the space constructed by Gowers and Maurey, so the ideal of the strictly
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singular operators in this space is not the only non-trivial closed ideal in the algebra of the

linear bounded operators on that space.

In 2018, Leung [36] identified a number of Banach spaces X for which MX is the

unique maximal ideal in the the algebra L (X). In particular, he proved that when X

is a subsymmetric direct sum of `p, 1 ≤ p < ∞, c0 or the Schlumprecht space S, then

MX is closed under addition and hence is the unique maximal ideal in L (X). In this

paper, the set of all operators T ∈ L (X) that factor through Y is denoted by ζY (X). If

Y is isomorphic to Y ⊕Y , then ζY (X) is an ideal in L (X) and hence, it is its closure.

The space of weakly compact operators on Jp is denoted W (Jp), also Gp = (⊕`∞)`p

and J(∞)
p = (⊕Jp(n))`p

. He proved that both W (Jp) and the closure of ζGp(Jp) have a

unique maximal ideal, namely, I1 ={T ∈ W (Jp) : I ∈L (J(∞)
p ) doesn’t factor through T}

and I2 = {T ∈ ζGp(Jp) : I ∈L (Gp) does not factor through T}, respectively.

Gowers constructed a Banach space G so that the space `∞/c0 is a quotient of L (G),

(see [20]). In [31], Laustsen classified the maximal ideals in L (G) and proved that each

such ideal is the preimage of a maximal ideal in `∞/c0.

Anna Kaminska, Popov, Spinu, Tcaciuc and Troitsky studied in [26] the structure of

closed algebraic ideals in the algebra of operators acting on a Lorentz sequence space.

Kania and Laustsen investigated in [27] the structure of the lattice of all closed ideals

of L (C([0,ω1])) where ω1 is the first uncountable ordinal.

For the space X =
(
⊕∞

n=1`
n
2
)

c0
, it has been shown in [32] that there are exactly four

closed ideals in L (X), and they are totally ordered by inclusion. They are {0}, the closure

of the finite-rank operators, the closure of the set of operators that factor through c0 and

L (X) itself.

In [34], it was shown that there are exactly four closed ideals in L (X) for the space

X =
(
⊕∞

n=1`
n
2
)
`1

, namely, {0}, the compact operators, the closure of the set of operators

factoring through `1, and L (X) itself.

In [33], Laustsen, Odell, Schlumprecht and Zsák proved results that provide
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information on the closed ideal structure of the Banach algebra of all operators on the space

X =
(
⊕∞

n=1`
n
1
)

c0
. The closed ideals in L (X) are {0}, the compact operators, the norm

closure of the ideal of operators factoring through c0, the norm closure of the surjective

hull of the ideal of operators factoring through c0 and L (X) itself. They said that if there is

another closed ideal, then it must lie between the third and fourth ideal described above. In

particular the norm closure of the surjective hull of the ideal of operators factoring through

c0 is the unique maximal ideal of L (X).

In [37], Lin, Sari and Bentuo Zheng considered for 1 < p < ∞, a class of p-regular

Orlicz sequence spaces `M that are close to `p and studied the structure of the norm closed

ideals in L (`M). They showed that the unique maximal ideal in that algebra is the set

of all `M-strictly singular operators and the immediate successor of the ideal of compact

operators in that algebra is the closed ideal generated by the formal identity from `M into

`p.

More results toward the description of maximal ideals on different Banach spaces can

be found in [28], [5], [35], [47], [45].
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Chapter 2

Preliminaries

In this chapter, we record some well known facts that will be used in the sequel. In this

dissertation, any Banach space is built on a real vector space.

2.1 Notation and Basic Definitions

If X is a Banach space, then the space of all bounded linear operators on X will be denoted

by L (X).

If (xn)
∞
n=1 is a sequence in a Banach space X, then the closed linear span of (xn)

∞
n=1 will

be denoted by [xn].

Definition 2.1 (Block Subspace of `q). We say that Z is a block subspace of `q if Z is the

closed linear span of a block basis of the unit vector basis for `q.

Definition 2.2 (Strictly Singular Operator). A bounded linear operator T from a Banach

space X into a Banach space Y is strictly singular if there is no infinite-dimensional

subspace E ⊂ X such that T |E is an isomorphism onto its range.

Definition 2.3 (f(T, Z)). If T : X → Y is an operator between Banach spaces and Z is a

subspace of X, then:

f (T,Z) = in f {‖T z‖ : z ∈ Z,‖z‖= 1} (2.1)

Definition 2.4 ((∑Xn)p space). Given a sequence (Xn)
∞
n=1 of Banach spaces and p ∈

[1,∞]∪ {0}, (∑Xn)p is the space of all sequences (xn)
∞
n=1 with xn ∈ Xn for each n and

‖(xn)
∞
n=1‖= ‖(‖xn‖)∞

n=1‖p < ∞, and the formula ‖(xn)
∞
n=1‖= ‖(‖xn‖)∞

n=1‖p < ∞ for p = 0

is used in the sense (‖xn‖)∞
n=1 ∈ c0.

The projection from (∑`q)c0 onto the direct sum from the m-th `q to the n-th `q is

denoted P[m,n].

When X = (∑`q)c0 , we use `
(n)
q to denote the n-th `q in the corresponding direct sum.
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Definition 2.5 (Z-strictly Singular Operator). Let X, Y and Z be Banach spaces. An

operator from X to Y is said to be Z-strictly singular provided that there is no subspace

Z0 of X which is isomorphic to Z for which T|Z0
is an isomorphism.

Definition 2.6 ( Factor Through). We say that S∈L (X) factors through T ∈L (X) if there

are A,B ∈L (X) such that S = AT B.

Definition 2.7 (Complementably Homogeneous). Let X be a Banach space. The space X

is said to be complementably homogeneous if for any subspace Y of X that is isomorphic to

X, there is a subspace Z of Y such that Z is isomorphic to X and Z is complemented in X.

Definition 2.8 (C-isomorphism). A bounded linear operator T : X → Y between two

Banach spaces X and Y is a C-isomorphism if T is an isomorphism on X and ‖T‖‖T−1
|T X
‖ ≤

C.

2.2 Banach Spaces and Examples

We say that a nonnegative real-valued function ‖ · ‖ : X → R, where X is a vector space, is

a norm on X, if ‖ · ‖ satisfies:

1. ‖x‖ ≥ 0 for all x in X

2. ‖x‖= 0 if and only if x = 0

3. ‖αx‖= |α|‖x‖ for all x ∈ X and for all scalar α ∈ F

4. ‖x+ y‖6 ‖x‖+‖y‖ for all x and for all y in X.

A vector space X with a norm ‖·‖ defined on it, is called a normed space and is denoted

as (X ,‖ · ‖). The balls centered in the origin and with radius one play an important role in

the normed spaces theory so we define the following balls:

1. The open unit ball of X, denoted BX and defined as BX = {x ∈ X : ‖x‖< 1}.
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2. The closed unit ball of X, denoted BX and defined as BX = {x ∈ X : ‖x‖ ≤ 1}.

3. The unit sphere of X, denoted SX and defined as SX = {x ∈ X : ‖x‖= 1}.

Let X be a linear space with a norm ‖·‖ defined on it. We define the metric in X induced

by this norm as d(x,y) = ‖x− y‖ for all x,y ∈ X . If the metric d is a complete metric, then

X is called a Banach space and if Y is a subspace of a Banach space X, then Y is a Banach

space if and only if Y is closed in X.

The following lemma gives a necessary and sufficient condition for X, a normed space,

be a Banach space.

Lemma 2.9 (Lemma 1.15 in [17]). A normed space X is a Banach space if and only if

every absolutely convergent series in X is convergent.

We have some very well known spaces that are Banach spaces. Here we have a few

examples.

1. C[0,1] : The space of all scalar-valued continuous functions on [0,1], endowed with

the norm defined as ‖ f‖∞ = sup{| f (x)| : x ∈ [0,1]}, which is called the supremum

norm. In general the space C(K) is a Banach space when K is a compact Hausdorff

space.

2. `n
∞: The space of all n-tuples of scalars, endowed with a norm called the supremum

norm and defined as ‖x‖∞ = max{|xi| : i = 1,2....n}, where x = (x1, ....,xn) ∈ `n
∞.

3. `n
p : The space of all n-tuples of scalars, endowed with the norm defined as ‖x‖p =(

n
∑

i=1
|xi|p

)1/p

, where x = (x1, ....,xn) ∈ `n
p and 1 6 p < ∞.

4. `p : The space of all infinite scalar-valued sequences x = (xi)
∞
i=1 such that

∞

∑
i=1
|xi|p <

∞, endowed with the norm ‖x‖`p =

(
∞

∑
i=1
|xi|p

)1/p

, where 1 6 p < ∞.

5. `∞ : The space of all infinite bounded scalar-valued sequences x = (xi)
∞
i=1, endowed

with the norm ‖x‖`∞
= sup{|xi| : i ∈ N}.
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6. c : The subspace of `∞ of all sequences such that its limit exists and is finite.

7. c0 : The subspace of `∞ of all sequences that converges to zero.

8. Lp(X ,µ), 1 6 p < ∞ : Let (X ,S,µ) be a measure space. Let F be the collection of

all measurable extended real-valued functions on X that are finite almost everywhere

on X. We say that two functions f and g in F are equivalent if f = g a.e

on X. This relation is an equivalence relation so it induces a partition of F in

disjoint equivalence classes. The collection of these equivalence classes has a linear

structure and the equivalence classes are independent of the choice of representatives

of each one. Lp(X ,µ), 1 6 p < ∞ is the space of all equivalence classes of

functions satisfying
∫

X
| f (x)|p < ∞, endowed with the norm defined as ‖ f‖Lp =(∫

X
| f (x)|p

)1/p

.

9. L∞(X ,µ) : The space L∞(X ,µ) is the space of all equivalence classes of functions

for which f is essentially bounded, that is, there is some M ≥ 0, called an essential

upper bound for [ f ] for which | f | 6 M almost everywhere on X, endowed with the

norm ‖ f‖L∞
defined as the infimum of the essential upper bounds for f .

2.3 Linear Bounded Operators

We have that a subset B of a normed space X is called bounded if and only if there exists

a non-negative number C such that ‖x‖ ≤C for all x ∈ B, and a linear operator T between

normed spaces X and Y is called bounded if the image of a bounded subset of X is a

bounded subset of Y. We also say that T is a bounded operator if the image of the closed

unit ball of X is a bounded subset of Y.

The following proposition gives several different ways of saying that a linear mapping

between normed spaces is continuous.
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Proposition 2.10 (Proposition 1.17 in [17]). Let (X ,‖ · ‖X) and (Y,‖ · ‖Y ) be normed

spaces, and let T be a linear mapping from X into Y. The following are equivalent:

1. T is continuous on X.

2. T is continuous at the origin.

3. There is C > 0 such that:

‖T (x)‖Y 6C‖x‖X (2.2)

for every x ∈ X.

4. T is Lipschitz.

5. T (BX) is a bounded set in Y.

The proposition 2.10 says that the collection of all continuous linear operators between

normed spaces coincides with the collection of all bounded linear operators between

normed spaces.

The set L (X ,Y ) is a vector space and if we endow this space with a norm called the

operator norm and defined as

‖T‖= sup{‖T (x)‖Y : x ∈ BX} , (2.3)

then the space becomes a normed space.

Notice that the norm of T, denoted ‖T‖, is the smallest number that satisfies the

inequality in (2.2) of 2.10. The norm of a bounded linear operator is also defined taking

the supreme in (2.3) over all vectors x ∈ SX .

The following proposition gives a sufficient condition for L (X ,Y ) be a Banach space.

Proposition 2.11 (Proposition 1.19 in [17]). Let X, Y be normed linear spaces. If Y is a

Banach space, then L (X ,Y ) is also a Banach space

16



If we consider L (X ,F), the operators in this space are called continuous linear

functionals and in this case we define its norm as:

‖ f‖= sup{| f (x)| : x ∈ BX} (2.4)

2.4 Isomorphisms and Isometries

Basically an isomorphism between normed spaces is a map that identifies the linear space

structure and the topology of the domain with those of the range and a linear isometry does

the same but also identifies the norm of the domain with the norm of the range.

Let X,Y be two normed spaces and let T be a linear operator from X into Y. We say

that T is an isomorphism into Y if it is one to one, continuous and T−1 is continuous on the

range of T. Moreover, X and Y are said isomorphic spaces if there is an isomorphism from

X onto Y. The operator T is called an isometric isomorphism or linear isometry if:

‖T x‖Y = ‖x‖X ,∀x ∈ X (2.5)

The following proposition gives a sufficient condition for a bounded linear operator

between two Banach spaces have a closed range and be an into isomorphism.

Proposition 2.12 (See Chapter 1 in [17]). Let X, Y be Banach spaces and T ∈L (X ,Y ).

If there is a δ > 0 such that ‖T (x)‖ ≥ δ‖x‖ for all x ∈ X, then T (X) is closed in Y, and

moreover, T is an isomorphism from X into Y.

We also say that an operator T between normed spaces X, Y is an isomorphism if and

only if T is onto and there exist positive constants c,C so that

c‖x‖X ≤ ‖T x‖Y ≤C‖x‖X (2.6)

for all x ∈ X .
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2.5 Fundamental Theorems of Functional Analysis

There are several results in the Banach space theory that are called the Hahn-Banach

theorem. All of them tell us that under particular conditions a linear space always has

a large enough number of linear functionals. Here we give the linear space version of this

theorem.

Before we state the linear version of the Hahn-Banach theorem we need to define a

positively homogeneous sublinear functional. Let X be a vector space and f a real-valued

function, f is called a positively homogeneous sublinear functional if:

1. f (δx) = δ f (x) for all x ∈ X and δ ≥ 0

2. f (x+ y)≤ f (x)+ f (y) for all x,y ∈ X

if, moreover, f (δx) = |δ | f (x) for all x ∈ X and scalars δ , then f is called a seminorm on

X.

The linear space version of the Hahn-Banach theorem says that a linear functional on

a subspace, which is dominated by a sublinear functional, can be extended to a linear

functional on all of the space, which is still dominated by the same sublinear functional.

Theorem 2.13 (Theorem 2.1 in [17]). Let Y be a subspace of a real linear space X, and

let f be a positively homogeneous sublinear functional on X. If g is a linear functional on

Y such that g(x)≤ f (x) for every x ∈ Y , then there is a linear functional G on X such that

G = g on Y and G(x)≤ f (x) for every x ∈ X.

Let X be a normed space. The space of all continuous linear functionals on X endowed

with the norm defined in (2.4) is called the dual of X and is denoted X∗. We have that X∗

is a Banach space when X is a normed space.

The following theorem is the normed space version of the Hahn-Banach and says that

every functional on a subspace of a normed space can be extended on all of the space with
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the same norm. Notice that this theorem do not say anything about the uniqueness of the

extension.

Theorem 2.14 (Theorem 2.4 in [17]). Let Y be a subspace of a normed space X. If f ∈Y ∗,

then there exists F ∈ X∗ such that F |Y = f and ‖F‖X∗ = ‖ f‖Y ∗

If we consider the span of a nonzero element in X and we apply theorem 2.14, we get

the following corollary.

Corollary 2.15 (Corollary 2.5 in [17]). Let X be a normed space. For every x 6= 0, there is

f ∈ SX∗ such that f (x) = ‖x‖. In particular, ‖x‖= max{| f (x)| : f ∈ BX∗} for every x ∈ X.

A lot of the Banach space theory is based in three theorems which are mutually related,

they are the Open Mapping Theorem, Uniform Boundedness Principle and the Closed

Graph Theorem.

Now we turn our attention to the Open Mapping Theorem. Before we state the theorem

we need to define an open map. Let X and Y be topological spaces and let f be a map from

X into Y. If f maps open sets in X onto open sets in Y, then f is called an open map.

We have that when X and Y are normed spaces and T is a linear operator from X into

Y, if T is open, then T is onto. The open mapping principle tell us that when T is a bounded

linear operator the converse is true.

Theorem 2.16 (Theorem 2.24 in [17]). Let X, Y be Banach spaces and T ∈L (X ,Y ). If T

is onto Y, then T is an open mapping.

The following corollary says that every one to one bounded linear operator between

Banach spaces which is also onto, is an isomorphism.

Corollary 2.17 (Corollary 2.25 in [17]). Let X, Y be Banach spaces, and let T ∈L (X ,Y )

be onto Y.

1. If T is one-to-one, then T−1 is a bounded linear operator.
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2. There is a constant M > 0 such that for every y ∈ Y there is x ∈ T−1(y) satisfying

‖x‖X ≤M‖y‖Y .

3. Y is isomorphic to X/Ker(T ).

Now we turn our attention to the Closed Graph Theorem. Before we state this theorem

we need to define the direct sum of normed spaces and the graph of a linear operator. Let

X and Y be normed spaces. The space of all ordered pairs (x,y) with x ∈ X and y ∈ Y

endowed with the norm ‖(x,y)‖ = ‖x‖X + ‖y‖Y is called a direct sum of X and Y and is

denoted X
⊕

Y .

For a linear operator T from X into Y, the set G = {(x,T (x)) : x ∈ X} is called the graph

of T and moreover, G is a subspace of X
⊕

Y .

Theorem 2.18 (Theorem 2.26 in [17]). Let X, Y be Banach spaces, and let T be a linear

operator from X into Y. T is a bounded operator if and only if its graph is closed in X
⊕

Y .

Now we turn our attention to the Uniform Boundedness Principle. Before we state the

principle we need to define a bounded and a pointwise bounded family of bounded linear

operators. Let X, Y be normed spaces and F a family of operators such that F ⊂L (X ,Y ).

We say that F is pointwise bounded if sup{‖T (x)‖Y ;T ∈F} < ∞ for all x ∈ X . We say

that F is bounded in L (X ,Y ) if there is C > 0 so that ‖T‖ ≤C for all T ∈F .

We know that the norm of each operator in a family of bounded operators must be

finite by the definition of the norm, but we do not know if those norms form an increasing

sequence of numbers. The Uniform Boundedness Principle give us a sufficient condition

to determine whether the norms of a given family of bounded linear operators have a finite

least upper bound.

Theorem 2.19 (Theorem 3.12 in [17]). Let X, Y be Banach spaces and F ⊂L (X ,Y ). If

F is pointwise bounded, then F is bounded in L (X ,Y ).
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2.6 Weak Topology and Weak Star Topology

Let X be a normed space. The dual of X∗ is denoted by X∗∗ and the norm of this space

is given by ‖F‖ = sup
f∈BX∗

|F( f )|. The canonical embedding π of X into X∗∗ is defined for

x ∈ X by π(x)( f ) = f (x).

From the Hahn-Banach theorem we get that the canonical embedding π is a linear

into isometry and when the map π is onto, we say that the space X is reflexive. In

particular a reflexive space X is isometric to X∗∗. The converse is not true since there

are nonreflexive spaces which are isometric to its double dual but the isometry is not the

canonical embedding.

As examples of spaces that are reflexive we have the spaces `p for 1 < p < ∞. As

examples of spaces that are not reflexive we have the spaces c0 and `1.

Now we turn our attention to topologies for normed spaces that are weaker than the

norm topology, that is, they have fewer open sets but they still have enough open sets in

order to have useful properties. We have two important topologies called the weak topology

and the weak star topology.

The weak topology is the weakest topology in a normed space X such that the linear

funcionals in the dual of X are still continuos and the weak star topology is the weakest

topology in the dual of X such that the elements in the range of the canonical embedding

are still continuous.

Definition 2.20 (Definition 3.3 in [17]). Let X be a normed space. The weak topology on

X is the topology generated by a basis consisting of the sets:

O = {x ∈ X : | fi(x− x0)|< ε, for i = 1, .....,n} (2.7)

for all choices of x0 ∈ X, f1, ..... fn ∈ X∗ and ε > 0

Similarly, the weak star topology on the dual X∗ of X is generated by a basis consisting
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of the sets:

O∗ = { f ∈ X∗ : |( f − f0)(xi)|< ε, for i = 1, ....,n} (2.8)

for all choices of f0 ∈ X∗, x1, ....,xn ∈ X and ε > 0.

Now we characterize the weak convergence and the weak star convergence for

sequences in a normed space and in its dual.

Proposition 2.21 (Proposition 3.7 in [17]). Let X be a normed space.

1. Let f , f1, f2, .....∈X∗. Then fn
ω∗→ f if and only if lim

n→∞
( fn(x)) = f (x) for every x∈X.

2. Let x,x1,x2, .....∈ X. Then xn
ω→ x if and only if lim

n→∞
( f (xn)) = f (x) for every f ∈ X∗.

For finite-dimensional spaces the weak topology of X and the norm topology are the

same and the same happens in the dual of X with the weak star topology and the norm

topology, instead for infinite-dimensional spaces this is not the case.

We say that a subset M of a normed space X is weakly bounded provided x∗(M) is a

bounded set of numbers for each x∗ ∈ X∗ and we say that a subset M of the dual of X is

ω∗-bounded provided sup{| f (x)| : f ∈M}< ∞ for every x ∈ X . The following theorem is

due to Banach and Steinhaus.

Theorem 2.22 (Theorem 3.15 in [17]). Let X be a Banach space. If M⊂X∗ is ω∗-bounded,

then M is bounded. If M ⊂ X is ω-bounded, then M is bounded.

We have that every weakly closed subset of a set X is strongly closed, but in general

the converse is not true. The following theorem due to Mazur establishes the equivalence

between these concepts for convex subsets of a normed space X.

Theorem 2.23 (Theorem 3.19 in [17]). The closure and the weak closure of a convex subset

of a normed space are the same. In particular, a convex subset of a normed space is closed

if and only if it is weakly closed.
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The following theorem due to Alaoglu is one of the most important results in the normed

spaces theory. This theorem reinforce us the concept that the weak star topology is different

from both the norm and the weak topology. When we try to extend properties from finite-

dimensional normed spaces to infinite-dimensional spaces we face the problem that the

closed unit ball of a normed space is compact only when the space is finite-dimensional.

When the space is infinite-dimensional, since the weak topology is included in the norm

topology, then it is easier for the closed unit ball to be weakly compact than compact.

Alaoglu tell us that the closed unit ball of the dual is always compact.

Theorem 2.24 (Theorem 3.21 in [17]). Let X be a Banach space. Then BX∗ is compact in

the ω∗-topology.

When X is a reflexive Banach space we always have that BX is compact in the weak

topology of X.

The following proposition will be very useful in some key lemmas of our research

problem and it says that if a operator T is bounded and (xn)
∞
n=1 converges weakly to x then

(T xn)
∞
n=1 converges weakly to T x.

Proposition 2.25 (See Chapter 3 [17]). Let X and Y be Banach spaces. If a linear operator

T from X into Y is ω−ω-continuous, then T ∈L (X ,Y ). On the other hand, every bounded

linear operator is ω−ω-continuous.

2.7 Projections

We know that if Y and Z are subspaces of a vector space X so that X = Y + Z and

Y ∩Z = {0}, then we say that X is the direct sum of Y and Z and we denote it by X =Y
⊕

Z.

We also have that if X is a vector space and Y is a subspace of X, then a linear map

P : X → X is called a projection onto Y if P(X) = Y and P(y) = y for every y ∈ Y . We say

that Y is a complemented subspace of X if there is a bounded linear projection P of X onto

Y. It is easy to show that if Y is a complemented subspace of a Banach space X, then Y is
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closed, however the converse is not true. But when Y is a closed finite-dimensional space

or a closed finite-codimensional space we have that Y is complemented.

We also have that if Y1 is a closed subspace of a Banach space X, then Y2 is called

a (topological) complement of Y1 if X is the direct sum of Y1 and Y2 and Y2 is a closed

subspace of X.

Proposition 2.26 (Fact 5.4 in [17]). Let X, Y be Banach spaces, let T be an isomorphism

of X onto Y. if X1 is a complemented subspace of X with topological complement X2, then

T (X1) is a complemented subspace of Y with topological complement T (X2).

This proposition says that an isomorphism sends complemented subspaces of X onto

complemented subspaces of Y.

Using proposition 2.26 one can show that if P : X→X1 is an onto projection with kernel

X2, then T PT−1 : Y → T (X1) is an onto projection with kernel T (X2), (see [17]).

Proposition 2.27 (Proposition 5.5 in [17]). Let Y be a closed subspace of a Banach space

X.

1. If Y is complemented and Z is a complement of Y in X, then X/Y is isomorphic to Z.

2. The dual X∗ is then isomorphic to Y ∗
⊕

Z∗.

3. If Y is a closed subspace of a Hilbert space H and Z is the orthogonal complement of

Y in H, then H/Y is isometric to Z.

This proposition says that the dual of the direct sum of Y and Z is the direct sum of the

duals of Y and Z and that in the case of a Hilbert space H, the orthogonal complement of

Y is a quotient of H.

The next theorem is due to Lindenstrauss and Tzafriri and characterizes the Banach

spaces that are isomorphic to a Hilbert space.

Theorem 2.28 (Theorem 5.7 in [17]). Let X be a Banach space. Every closed subspace of

X is complemented in X if and only if X is isomorphic to a Hilbert space.
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The next proposition and the way it is proved are called the Pelczyński’s decomposition

method. This proposition gives necessary conditions for two Banach spaces be isomorphic.

Proposition 2.29 (Proposition 5.8 in [17]). Let X and Y be Banach spaces. Assume that

X is isomorphic to X
⊕

X, Y is isomorphic to Y
⊕

Y , X is isomorphic to a complemented

subspace of Y, and Y is isomorphic to a complemented subspace of X. Then X is isomorphic

to Y.

2.8 Schauder Bases

Now we turn our attention to the concepts of bases and basic sequences which are essential

in the study of the isomorphic theory of Banach spaces.

Definition 2.30 (Definition 1.a.1 in [39]). A sequence (xn)
∞
n=1 in a Banach space X is called

a Schauder basis of X if for each x ∈ X, there is a unique sequence of scalars (an)
∞
n=1 so

that x =
∞

∑
n=1

anxn

Notice that in the definition it is required that the sequence of partial sums converges to

x in norm. We also have that the vectors in the basis are nonzero and linearly independent.

We have that if (xn)
∞
n=1 is a basis of X, then the closed linear span of (xn)

∞
n=1 equal X and X

will be separable since the set of the rational finite linear combinations of (xn)
∞
n=1 is dense

in X. We must point out that the order of the elements in the basis is important. If we

permute the elements in a basis, it is possible that the new sequence won’t be a basis. We

also define the canonical projections Pn associated to a Schauder basis as Pn(x) =
n
∑

i=1
aixi

for each n ∈ N and for x =
∞

∑
i=1

aixi ∈ X .

Lemma 2.31 (Lemma 6.2 in [17]). Let (ei)
∞
i=1 be a Schauder basis of a normed space X,

then the canonical projections Pn satisfy:

1. dim(Pn(X)) = n;

2. PnPm = PmPn = Pmin(m,n);
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3. Pn(x)→ x in X for every x ∈ X.

conversely, if bounded linear projections {Pn}∞

n=1 in a normed space X satisfy the items in

2.31, then Pn are canonical projections associated with some Schauder basis of X.

The last lemma give us the conditions that the canonical projections associated to

a Schauder basis satisfy and also a way of constructing a Schauder basis for a Banach

space X when we have a family of projections that satisfy the conditions of the canonical

projections.

The following proposition says that the canonical projections are uniformly bounded.

Proposition 2.32 (Proposition 1.1.4 in [1]). Let (en)
∞
n=1 be a Schauder basis for a Banach

space X and (Sn)
∞
n=1 the natural projections associated with it. Then sup

n
‖Sn‖< ∞.

The number K = sup
n
‖Sn‖ is called the basis constant. If K = 1, the basis is called

monotone.

Now we turn our attention to basic sequences in Banach spaces.

Definition 2.33 (Definition 1.1.8 in [1]). Let X be a Banach space and let (ek)
∞
k=1 be a

sequence in X. If (ek)
∞
k=1 is a basis for [ek] then (ek)

∞
k=1 is called a basic sequence.

The following proposition will give us a test to find out when a sequence in X is a basic

sequence. This test is called the Grunblum’s criterion.

Proposition 2.34 (Proposition 1.1.9 in [1]). A sequence (ek)
∞
k=1 of nonzero elements of a

Banach space is basic if and only if there is a positive constant K such that

∥∥∥∥∥ m

∑
k=1

akek

∥∥∥∥∥≤ K

∥∥∥∥∥ n

∑
k=1

akek

∥∥∥∥∥ (2.9)

for any sequences of scalars (ak)
∞
k=1 and any integers m,n such that m≤ n

In the Banach space theory is often useful to know if a Banach space Y contains an

isomorphic copy of another Banach space X with basis (xn)
∞
n=1. The natural way to find
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out this is looking for a basic sequence in Y such that its closed linear span is isomorphic

to X. This idea take us to the concept of equivalent bases.

Definition 2.35 (Definition 1.3.1 in [1]). Let X and Y be two Banach spaces. Let (xn)
∞
n=1 be

a basis (basic sequence) of X and (yn)
∞
n=1 be a basis (basic sequence) of Y, then (xn)

∞
n=1 and

(yn)
∞
n=1 are called equivalent provided

∞

∑
n=1

anxn converges if and only if
∞

∑
n=1

anyn converges,

whenever (an)
∞
n=1 is a sequence of scalars. In this case we write (xn)

∞
n=1 ∼ (yn)

∞
n=1.

As a consequence of the Closed Graph Theorem we have the following theorem.

Theorem 2.36 (Theorem 1.3.2 in [1]). Two bases (or basic sequences) (xn)
∞
n=1 and (yn)

∞
n=1

are equivalent if and only if there is an isomorphism T : [xn]→ [yn] such that T xn = yn for

each n.

A corollary of this theorem will be very useful in this dissertation.

Corollary 2.37 (Corollary 1.3.3 in [1]). Let (xn)
∞
n=1 and (yn)

∞
n=1 be two bases for the

Banach spaces X and Y respectively. Then (xn)
∞
n=1 ∼ (yn)

∞
n=1 if and only if there exists

a constant C > 0 such that for all finitely nonzero sequences of scalars (ai)
∞
i=1 we have:

C−1

∥∥∥∥∥ ∞

∑
i=1

aiyi

∥∥∥∥∥≤
∥∥∥∥∥ ∞

∑
i=1

aixi

∥∥∥∥∥≤C

∥∥∥∥∥ ∞

∑
i=1

aiyi

∥∥∥∥∥ (2.10)

in the case C = 1, the bases are called isometrically equivalent.

A very useful way of getting new basic sequences from a basis or a basic sequence is

constructing block bases. The following definition and the lemma that come after it express

this idea.

Definition 2.38 (Definition 1.3.4 in [1]). Let X be a Banach space, (en)
∞
n=1 be a basis of X,

(pn)
∞
n=1 be a strictly increasing sequence of integers with p0 = 0 and (an)

∞
n=1 a sequence

of scalars. Let µn =
pn

∑
j=pn−1+1

a je j be a nonzero sequence of vectors in X. Then (µn)
∞
n=1 is

called a block basic sequence of (en)
∞
n=1.
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Lemma 2.39 (Lemma 1.3.5 in [1]). Suppose (en)
∞
n=1 is a basis for the Banach space X

with basis constant K. Let (µk)
∞
k=1 be a block basic sequence of (en)

∞
n=1. Then (µk)

∞
k=1 is a

basic sequence with basis constant less than or equal to K.

Definition 2.40 (Definition 1.3.8 in [1]). Let X and Y be two Banach spaces and let (xn)
∞
n=1

and (yn)
∞
n=1 be two sequences in X and Y respectively. Suppose there is an invertible

operator T : X → Y such that T (xn) = yn for all n ∈ N, then (xn)
∞
n=1 and (yn)

∞
n=1 are

called congruent.

The following Theorem says that Schauder bases have stability properties, that is, if we

perturb each element of a basis by a sufficiently small vector then we get again a basis and

the new basis is equivalent to the original one. this theorem is called the principle of small

perturbations.

Theorem 2.41 (Theorem 1.3.9 in [1]). Let (xn)
∞
n=1 be a basic sequence in a Banach space

X with basis constant K. If (yn)
∞
n=1 is a sequence in X such that

2K
∞

∑
n=1

‖xn− yn‖
‖xn‖

= θ < 1, (2.11)

then (xn)
∞
n=1 and (yn)

∞
n=1 are congruent. In particular:

1. If (xn)
∞
n=1 is a basis, so is (yn)

∞
n=1 (in which case the basis constant of (yn)

∞
n=1 is at

most K(1+θ)(1−θ)−1)

2. (yn)
∞
n=1 is a basic sequence (with basis constant at most K(1+θ)(1−θ)−1)

3. If [xn] is complemented, then [yn] is complemented.

The following proposition is an application of the principle of small perturbation and

is known as the Bessaga-Pelczyński selection principle and the technique used in the proof

which consists in finding vectors with almost successive supports is known as the gliding

hump argument.
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Proposition 2.42 (Proposition 1.3.10 in [1]). Let (en)
∞
n=1 be a basis for a Banach space X

with basis constant K and dual functionals (e∗n)
∞
n=1. Suppose (xn)

∞
n=1 is a sequence in X

such that:

1. inf
n
‖xn‖> 0, but

2. lim
n→∞

e∗k(xn) = 0 for all k ∈ N,

then (xn)
∞
n=1 contains a subsequence (xnk)

∞
k=1 which is congruent to some block basic

sequence (yk)
∞
k=1 of (en)

∞
n=1. Furthermore, for every ε > 0 it is possible to choose (nk)

∞
k=1

so that (xnk)
∞
k=1 has a basis constant at most K + ε . In particular, the same result holds if

(xn)
∞
n=1 converges to 0 weakly but not in the norm topology.

2.9 The isomorphic structure of the spaces `p for 1≤ p < ∞ and c0

The techniques developed using bases are very useful to understand the structure of the

spaces `p for 1 ≤ p < ∞ and c0. These spaces are equipped with a canonical monotone

Schauder basis (en)
∞
n=1 given by en(k) = 1 if k = n and 0 otherwise.

The following lemma will say that the closed linear span of a normalized block basic

sequence of the canonical basis of X = `p or X = c0 is isometric to X and complemented

in X.

Lemma 2.43 (Lemma 2.1.1 in [1]). Let (µn)
∞
n=1 be a normalized block basic sequence in

c0 or in `p for some 1≤ p < ∞. Then (µn)
∞
n=1 is isometrically equivalent to the canonical

basis of the space and [µn] is the range of a contractive projection.

We say that (µn)
∞
n=1 is seminormalized if for some constants a and b we have:

0 < a≤ ‖µn‖ ≤ b < ∞, n ∈ N (2.12)

if this is the case, lemma 2.43 can be used for
(

µn

‖µn‖

)∞

n=1
, but then (µn)

∞
n=1 is only

equivalent to (en)
∞
n=1, not isometrically.
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Using lemma 2.43 and the gliding hump technique we can prove the following

important proposition.

Proposition 2.44 (Proposition 2.1.3 in [1]). Let (xn)
∞
n=1 be a normalized sequence in `p for

1≤ p < ∞ such that for each j ∈ N we have lim
n→∞

xn( j) = 0, (for example suppose (xn)
∞
n=1

is weakly null). Then there is a subsequence (xnk)
∞
k=1 which is a basic sequence equivalent

to the canonical basis of `p and such that [xnk ] is complemented in `p. The proposition is

also true in c0.

We know that for any spaces X and Y, every compact operator T : X → Y is strictly

singular. Also, if r > p, the formal identity I : `p→ `r is an operator that is strictly singular

but not compact. The following theorem is due to Pitt and give a sufficient condition for a

bounded operator from `r to `p be compact.

Theorem 2.45 ( Proposition 2.c.3 in [39]). Let 1≤ p < r < ∞. Then every bounded linear

operator from `r into `p is compact. The same is true for every linear operator from c0 into

`p.

The proof of the last theorem shows also that if T ∈L (`p, `p) is strictly singular, then

is compact.

2.10 Complemented subspaces of `p for 1≤ p < ∞ and c0

The results in this section are due to Pelczyński and they show the power of the basic

sequences techniques.

The next proposition follows from lemma 2.43 by using the principle of small

perturbation and says that every infinite-dimensional closed subspace of `p for 1 ≤ p < ∞

contains a complemented copy of `p.

Proposition 2.46 (Proposition 2.2.1 in [1]). Every infinite-dimensional closed subspace

Y of `p for p ∈ [1,∞) contains a closed subspace Z such that Z is isomorphic to `p and

complemented in `p. The proposition works for c0 too.
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By using the last proposition, Pelczyński in the next theorem gave a complete

characterization of the complemented subspaces of `p for 1≤ p < ∞ and c0.

Theorem 2.47 (Theorem 2.2.4 in [1]). Suppose Y is a complemented infinite-dimensional

subspace of `p where p ∈ [1,∞). Then Y is isomorphic to `p. This theorem also is satisfied

when Y is a complemented infinite-dimensional subspace of c0.

The method used by Pelczyński to prove the last theorem is called the Pelczyński

decomposition method. In the proof is used that X = `p or X = c0 and Y are each

isomorphic to a complemented subspace of the other space and that X is isomorphic to

an infinite direct sum of itself with respect to a suitable norm. As a consequence of this we

have that X⊕X is also isomorphic to X.

Definition 2.48 (Definition 2.2.5 in [1]). A Banach space X is called prime if every

complemented infinite-dimensional subspace of X is isomorphic to X.

Thus the `p-spaces and c0 are prime. In fact `∞ is also a prime space.

2.11 Unconditional Bases

Before we give the definition of an unconditional basis we need to recall that if X is

a Banach space, (xn)
∞
n=1 a sequence in X, and

∞

∑
n=1

xn a formal series in X and if the

series
∞

∑
n=1

xπ(n) converges for every permutation π of N, then we say that the series is

unconditionally convergent.

The next lemma give us different ways of saying that a series is unconditionally

convergent.

Lemma 2.49 (Lemma 2.4.2 in [1]). Given a series
∞

∑
n=1

xn in a Banach space X, the following

are equivalent:

1.
∞

∑
n=1

xn is unconditionally convergent;
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2. The series
∞

∑
k=1

xnk converges for every increasing sequence of integers (nk)
∞
k=1;

3. The series
∞

∑
n=1

εnxn converges for every choice of signs (εn)
∞
n=1;

4. For every ε > 0, there exists an n, so that, if F is any finite subset of {n+1,n+2, ....},

then

∥∥∥∥∥ ∑
j∈F

x j

∥∥∥∥∥< ε .

A basis (en)
∞
n=1 of a Banach space X is called unconditional provided for each x ∈ X

the series
∞

∑
n=1

e∗n(x)en converges unconditionally.

Some examples of unconditional bases and conditional bases are the following:

1. The canonical basis of c0 and of `p for p ∈ [1,∞) is unconditional.

2. The summing basis ( fn)
∞
n=1 of c0 defined as fn = e1 + e2 + ......+ en for all n ∈ N, is

not unconditional.

The following proposition give us a criterion to determine when a basis of a Banach

space is unconditional.

Proposition 2.50 (Proposition 3.1.3 in [1]). A basis (en)
∞
n=1 of a Banach space X is

unconditional if and only if there is a constant K ≥ 1 such that for all N ∈ N, whenever

a1, .....,aN ,b1, .....,bN are scalars satisfying |an| ≤ |bn| for n= 1, ......,N, then the following

inequality holds: ∥∥∥∥∥ N

∑
n=1

anen

∥∥∥∥∥≤ K

∥∥∥∥∥ N

∑
n=1

bnen

∥∥∥∥∥ (2.13)

We have also that if (en)
∞
n=1 is an unconditional basic sequence and σ is a subset of

integers, then the bounded linear projections Pσ defined by Pσ

(
∞

∑
n=1

anen

)
= ∑

n∈σ

anen are

called the natural projections associated to the unconditional basic sequence. Similarly,

for every choice of signs θ = (θn)
∞
n=1, we have a bounded linear operator Mθ defined by

Mθ

(
∞

∑
n=1

anen

)
=

∞

∑
n=1

anθnen. The Uniform Boundedness Principle implies that sup
σ

‖Pσ‖

and sup
θ

‖Mθ‖ are finite. The number sup
θ

‖Mθ‖ is called the unconditional constant of
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(en)
∞
n=1 and we have the following inequalities:

sup
σ

‖Pσ‖ ≤ sup
θ

‖Mθ‖ ≤ 2sup
σ

‖Pσ‖ (2.14)

The last expression shows that the unconditional constant of a basis is always greater

or equal to the basis constant. We can always make the unconditional constant equal one

by renorming the space with a new norm defined as |||x|||= sup
θ

‖Mθ x‖.

Every block basic sequence of an unconditional basis is again unconditional with

unconditional constant less or equal than the unconditional constant of the basis. Also, the

sequence of biorthogonal functionals of an unconditional basis is an unconditional basis of

the dual with unconditional constant equal to the unconditional constant of the basis of the

space.

2.12 Boundedly-complete and shrinking bases

In this section we will present under which conditions the sequence of biorthogonal

functionals of a basis of a Banach space is a basis for the dual space. In general that is

not true, however, the next proposition says that the sequence of biorthogonal functionals

is a basic sequence.

Proposition 2.51 (Proposition 3.2.1 in [1]). Suppose that (e∗n)
∞
n=1 is the sequence of

biorthogonal functionals associated to a basis (en)
∞
n=1 of a Banach space X. Then (e∗n)

∞
n=1

is a basic sequence in X∗ with basis constant no bigger than that of (en)
∞
n=1.

When the closed linear span of the biorthogonal functionals associated to a basis in a

Banach space X equals X∗, we say that the basis is shrinking.

The following two propositions give us necessary and sufficient conditions for a basis

be shrinking.

Proposition 2.52 (Proposition 3.2.6 in [1]). A basis (en)
∞
n=1 of a Banach space X is
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shrinking if and only if whenever x∗ ∈ X∗

lim
N→∞

∥∥x∗|[en]n>N

∥∥= 0 (2.15)

where ∥∥x∗|[en]n>N

∥∥= sup{|x∗(y)| : y ∈ [en]n>N} . (2.16)

Proposition 2.53 (Proposition 3.2.7 in [1]). A basis (en)
∞
n=1 of a Banach space X is

shrinking if and only if every bounded block basic sequence of (en)
∞
n=1 is weakly null.

Now we turn our attention to boundedly-complete bases. We say that a basis (en)
∞
n=1 of

a Banach space X is boundedly-complete if the series
∞

∑
n=1

anen converges whenever (an)
∞
n=1

is a sequence of scalars such that sup
m

∥∥∥∥ m
∑

n=1
anen

∥∥∥∥< ∞.

Now we give some examples of shrinking and boundedly-complete bases:

1. The canonical basis of `p is both shrinking and boundedly-complete for 1 < p < ∞.

2. The canonical basis of `1 is boundedly-complete but not shrinking.

3. The canonical basis of c0 is shrinking but not boundedly complete.

4. The summing basis of c0 is neither shrinking or boundedly-complete.

The following theorem give us equivalent statements to the statement that a basis for a

Banach space is boundedly complete.

Theorem 2.54 (Theorem 3.2.10 in [1]). Let (en)
∞
n=1 be a basis for a Banach space X with

biorthogonal functionals (e∗n)
∞
n=1. Then the following are equivalent:

1. (en)
∞
n=1 is a boundedly-complete basis for X,

2. (e∗n)
∞
n=1 is a shrinking basis for H = {x∗ ∈ X∗ : ‖S∗N(x∗)− x∗‖→ 0}, where (S∗N)

∞
N=1

is the sequence of adjoint operators of the partial sum projections associated to

(en)
∞
n=1.
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3. The canonical map j : X →H∗ defined by j(x)(h) = h(x), for all x ∈ X and h ∈H, is

an isomorphism.

The following theorem give us equivalent statements to the statement that a basis for a

Banach space is shrinking.

Theorem 2.55 (Theorem 3.2.12 in [1]). Let (en)
∞
n=1 be a basis for a Banach space X with

biorthogonal functionals (e∗n)
∞
n=1. Then the following are equivalent:

1. (en)
∞
n=1 is a shrinking basis for X,

2. (e∗n)
∞
n=1 is a boundedly-complete basis for H,

3. H = X∗

2.13 Banach Algebras

Definition 2.56 (Definition 3.3.1 in [42]). Suppose that X is a set, that + and ∗ are binary

operations from X × X into X, and that · is a binary operation from F × X into X such that:

1. (X ,+, .) is a vector space.

2. x∗ (y∗ z) = (x∗ y)∗ z.

3. x∗ (y+ z) = x∗ y+ x∗ z and (x+ y)∗ z = x∗ z+ y∗ z.

4. α.(x∗ y) = (α.x)∗ y = x∗ (α.y),

then (X ,+,∗, .) is an algebra. This algebra is an algebra with identity if X 6= {0} and there

exists e ∈ X such that e∗ x = x∗ e = x for all x ∈ X.

If ‖ · ‖ is a norm on (X ,+, .) such that ‖x ∗ y‖ ≤ ‖x‖‖y‖ for all x,y ∈ X, then X is a

normed algebra, and is a Banach algebra if the norm is a Banach norm.

As examples, we have: the space `∞ is a Banach algebra with identity the sequence

(1,1,1,1, ...) and the multiplication of elements in this algebra is done termwise. The
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space c0 is a closed subalgebra of `∞ and therefore is itself a Banach algebra but with no

multiplicative identity.

In an algebra X with identity e we say that x ∈ X is invertible if there is a y ∈ X such

that xy = yx = e, y is called the inverse of x and is denoted x−1. Moreover, xn is defined

inductively by saying x1 = x and xn = xn−1x for n≥ 2, also x0 = e and x−n = (x−1)n.

The next proposition gives some important facts about algebras.

Proposition 2.57 (Proposition 3.3.10 in [42]). Suppose that X is an algebra.

1. If x ∈ X and 0 is the zero element of X, then 0x = 0x = 0.

2. The element 0 of X is not a multiplicative identity for X.

3. The algebra X has at most one multiplicative identity.

now suppose that X is an algebra with identity e.

4. The element 0 of X is not invertible.

5. Each element of X has at most one inverse.

6. If x,y,z are elements of X such that yx = xz = e, then y = z and x is invertible with

inverse y. That is, every element of X that is both left-invertible and right-invertible

is invertible and each of its left inverses and right inverses equals its inverse.

7. If x and y are invertible elements of X and α is a nonzero scalar, then xy, αx, x−1 are

invertible and have respective inverses y−1x−1, α−1x−1, x.

8. If x is an invertible element of X and n ∈ N, then xn is invertible, and (xn)−1 =

(x−1)n = x−n.

suppose next that X is a normed algebra, possibly without identity.

9. If x ∈ X and n ∈ N, then ‖xn‖ ≤ ‖x‖n.
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finally, suppose that X is a normed algebra with identity e.

10. ‖e‖ ≥ 1.

11. If x is an invertible element of X, then ‖x−1‖ ≥ ‖x‖−1.

We know that the addition of vectors and the multiplication of a scalar by a vector are

continuous operations in a normed space, thus , they are also continuous operations in a

normed algebra. The following theorem says that the same is true for multiplication of

vectors in a normed algebra.

Proposition 2.58 (Proposition 3.3.11 in [42]). The multiplication of members of a normed

algebra X is a continuous operation from X × X into X.

As a consequence of this proposition we have that the multiplication in a normed

algebra distributes over infinite sums and an application of this gives origin to the next

definition and theorem.

Definition 2.59 (Definition 3.3.12 in [42]). Suppose that x is an element of an algebra X

with identity e. Then the resolvent set ρ(x) of x is the set of all scalars α such that αe−x is

invertible. The spectrum σ(x) of x is the complement in F of ρ(x). The resolvent function or

resolvent Rx of x is the function from ρ(x) into X defined by the formula Rx(α)= (αe−x)−1.

Theorem 2.60 (Theorem 3.3.13 in [42]). Suppose that x is an element of a Banach

algebra with identity and that α is a scalar such that |α| > ‖x‖. Then α ∈ ρ(x) and

Rx(α) =
∞

∑
n=0

α−(n+1)xn.

This theorem yields to two important corollaries.

Corollary 2.61 (Corollary 3.3.14 in [42]). If x is an element of a Banach algebra with

identity and α ∈ σ(x), then |α| ≤ ‖x‖.

Corollary 2.62 (Corollary 3.3.15 in [42]). If x is an element of a Banach algebra with

identity e and ‖x− e‖< 1, then x is invertible and x−1 =
∞

∑
n=0

(e− x)n.
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The following proposition sets that the map x→ x−1 is also continuous.

Proposition 2.63 (Proposition 3.3.16 in [42]). Suppose that X is a Banach algebra with

identity e. Let G(X) be the set of invertible elements of X. Then G(X) is an open subset of

X that is a group with identity e under the restriction of the multiplication operation of X

to G × G. Furthermore, the map x→ x−1 is a topological homeomorphism of G(X) onto

itself.

As a consequence of the continuity of the map α → αe− x we get the following

proposition.

Proposition 2.64 (Proposition 3.3.17 in [42]). If x is an element of a Banach algebra with

identity, then ρ(x) is open.

Now we have that σ(x) is closed and bounded, so we have the following theorem.

Theorem 2.65 (Theorem 3.3.18 in [42]). If x is an element of a Banach algebra with

identity, then σ(x) is compact.

Now we present the fact whether or not the spectrum of an element in a Banach algebra

with identity is empty. If the scalar field is R this can happen, however , this cannot happen

when the scalar field is C.

Theorem 2.66 (Theorem 3.3.24 in [42]). If x is an element of a complex Banach algebra

with identity, then σ(x) is nonempty.

So far we have that the spectrum σ(x) of an element x of a Banach algebra with identity

is compact and that σ(x) is included in a closed disk centered at zero and with radius ‖x‖.

In general one is interested in finding the smallest such a disk. The radius of that smallest

disk is called the spectral radius of x, is denoted by rσ (x) and is defined as:

rσ (x) = max{|α| : α ∈ σ(x)} (2.17)
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We have the following important formula to find the spectral radius of x:

rσ (x) = lim
n
‖xn‖1/n (2.18)

In this dissertation we are mostly interested in the particular Banach algebra L (X)

whose elements are the linear bounded operators on a nontrivial Banach space X. The

multiplication of two operators in this algebra is given by composition and since X is

nontrivial then the identity operator on X is the multiplicative identity and we say that

an operator T ∈L (X) is invertible if and only if is an isomorphism from X onto itself.

Now we turn our attention to the concept of an ideal of a Banach algebra X with identity

e such that ‖e‖= 1, which is one of the the main topics in this dissertation.

A nonempty subset I of X is called an ideal if:

1. I is a subspace of X;

2. for any x ∈ X and y ∈ I, xy ∈ I and yx ∈ I

Any algebra X has two trivial ideals, the ideal {0} and the ideal X itself. Any other

ideal different from X is called a proper ideal. A proper ideal M of X is called a maximal

ideal if it is not properly contained in any proper ideal of X.

We have that the closure of any proper ideal is also a proper ideal, thus any maximal

ideal must be closed.

2.14 Banach Lattices

Now we turn our attention to Banach spaces which are partially ordered and whose order

and norm are related by some axioms.

Definition 2.67 (See Definition 1.a.1 in [40]). If X is a Banach space over the real numbers

with an order relation defined in it and if X satisfies the following axioms, then X is called

a Banach lattice:
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1. x≤ y implies x+ z≤ y+ z for all x,y,z ∈ X,

2. αx≥ 0 for all x≥ 0 and for all real number α ≥ 0,

3. For all x,y ∈ X there exists a l.u.b denoted x∨ y and a g.l.b denoted x∧ y,

4. Define |x|= x∨ (−x) for all x ∈ X.

I f |x| ≤ |y|, then ‖x‖ ≤ ‖y‖ (2.19)

By these four axioms we get that the lattice operations are norm continuous, and this

fact implies that the set C = {x ∈ X : x≥ 0} is norm closed. This set is called the positive

cone of X.

For all x,y ∈ X we define the positive part of x as x+ = x∨ 0, the negative part of x as

x− = −(x∧ 0), the absolute value of x as |x| = x++ x− and we say that x,y are disjoint

provided |x|∧ |y|= 0.

Let X be a space with an unconditional basis (en)
∞
n=1 whose unconditional constant is

one. Define in X an order by:

∞

∑
n=1

αnen ≥ 0 i f and only i f αn ≥ 0 f or all n (2.20)

we say that X with this order is a Banach lattice and the order is called the order induced

by the unconditional basis.

In any space with an unconditional basis and with the order defined as in (2.20), the

Axiom (2.19) in the definition 2.67 of a Banach lattice is not satisfied. The new axiom says

that if |x| ≤ |y|, then there exists a constant M such that ‖x‖ ≤M‖y‖.

If a linear space X only satisfies the first three axioms in the definition 2.67, then X is

called a vector lattice. If X and Y are vector lattices and T : X →Y is a linear operator that

satisfies T x≥ 0 for all x≥ 0 in X, then T is called a positive operator. If moreover, T is one
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to one, onto and T−1 is also positive, then we have:

T (x1∨ x2) = T x1∨T x2 and T (x1∧ x2) = T x1∧T x2 f or all x1,x2 ∈ X (2.21)

In this case we say that T preserves the lattice structure. A linear operator as this one

is called an order isomorphism and we say that two vector lattices are order isomorphic

if there exists an order isomorphism between them. We also have that when X and Y are

Banach lattices, any positive linear operator T from X to Y is continuous. Now, if there

exists a linear isometry T from X onto Y, with X and Y two Banach lattices, which is also

an order isomorphism, then X and Y are called order isometric Banach lattices.

If X is a Banach lattice and Y is a linear subspace of X, then Y is called a sublattice of

X if x,y ∈ Y implies x∨ y ∈ Y and x∧ y ∈ Y . Notice that it is enough that x∨ y ∈ Y in order

to say that Y is a sublattice because of x∧y = x+y−x∨y. It is assumed that any sublattice

is also norm closed.

An ideal Y in a Banach lattice X is a sublattice that satisfies the condition that if |y| ≤ |x|

for some x ∈ Y , then y ∈ Y . It is assumed also that an ideal is norm closed.

Let X be a Banach lattice and Y be an ideal in X. If we take the positive cone of X/Y

as the image of the positive cone of X under the quotient map, then X/Y is also a Banach

lattice.

If X is a Banach lattice then X∗, the dual of X, is also a Banach lattice when the positive

cone of X∗ is defined by x∗ ≥ 0 if and only if x∗(x)≥ 0 for all x≥ 0 ∈ X .

Definition 2.68 (Definition 1.b.1 in [40]). Let X be a Banach Lattice and let 1≤ p < ∞. If

for all x,y ∈ X with x∧y = 0 we have ‖x+y‖p = ‖x‖p +‖y‖p, then X is called an abstract

Lp space. If we have ‖x+ y‖= max(‖x‖,‖y‖), then X is called an abstract M space.

We record the following theorem since it was used in the proof of a lemma proved in

[10] and we use that lemma in this dissertation.
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Theorem 2.69 (Theorem 1.b.2 in [40]). An abstract Lp space X, 1 ≤ p < ∞, is order

isometric to an Lp(µ) space over some measure space (Ω,Σ,µ). If X has a weak unit,

then µ can be chosen to be a finite measure.

Now we give the definitions for p-convex and p-concave linear operators.

Definition 2.70 (Definition 1.d.3 in [40]). Let X be a Banach lattice, V an arbitrary Banach

space and let 1 ≤ p ≤ ∞. A linear operator T : V → X is called p-convex if there exists a

constant M < ∞ so that:∥∥∥∥∥∥
(

n

∑
i=1
|T vi|p

)1/p
∥∥∥∥∥∥≤M

(
n

∑
i=1
‖vi‖p

)1/p

, i f 1≤ p < ∞ (2.22)

or

‖∨n
i=1|T vi|‖ ≤M max

1≤i≤n
‖vi‖, i f p = ∞ (2.23)

for every choice of vectors {vi}n
i=1 in V.

We say that X is p-convex if the identity operator on X is p-convex and the smallest

value of M is called the p-convexity.

Definition 2.71 (Definition 1.d.3 in [40]). Let X be a Banach lattice, V an arbitrary Banach

space and let 1≤ p≤ ∞. A linear operator T : X →V is called p-concave if there exists a

constant M < ∞ so that:

M

∥∥∥∥∥∥
(

n

∑
i=1
|xi|p

)1/p
∥∥∥∥∥∥≥

(
n

∑
i=1
‖T xi‖p

)1/p

, i f 1≤ p < ∞ (2.24)

or

M ‖∨n
i=1|xi|‖ ≥ max

1≤i≤n
‖T xi‖, i f p = ∞ (2.25)

for every choice of vectors {xi}n
i=1 in X.

We say that X is p-concave if the identity operator on X is p-concave and the smallest

value of M is called the p-concavity.
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Now we give the definitions for the p-convexification and the p-concavification of a

Banach lattice X in which the algebraic operations and the norm are +, ·, ‖ · ‖.

Let p > 1, for x,y ∈ X and for a scalar α define:

x⊕ y =
(

x1/p + y1/p
)p

, α� x = α
p . x, (2.26)

define in the set X with these operations a new order equivalent to the original order and

a new norm as |||x||| = ‖x‖1/p. We denote X (p) to the new Banach lattice obtained in this

way from X and we call it the p-covexification of X and as its name indicates it is p-convex

and its p-convexity constant is 1.

Let X be a Banach lattice which is known in advance that is p-convex and in which the

algebraic operations and the norm are +, ·, ‖ · ‖.

For x,y ∈ X and for a scalar α define:

x⊕ y = (xp + yp)1/p , α� x = α
1/p . x, (2.27)

define in the set X with these operations a new order equivalent to the original order and

provided that the p-convexity of X is 1, we define a new norm as |||x||| = ‖x‖p. We

denote X(p) to the new Banach lattice obtained in this way from X and we call it the p-

concavification of X.

2.15 Compact Operators

Definition 2.72 (Definition 3.4.1 in[42]). Suppose that X and Y are Banach spaces. A

linear operator T from X into Y is compact if T (B) is a relatively compact subset of Y

whenever B is a bounded subset of X.

It is known that every compact operator from a Banach space X into a Banach space Y

is bounded and that a finite-rank linear operator from X into Y is compact if and only if it

43



is bounded.

The following proposition give us statements equivalent to the statement that T is

compact.

Proposition 2.73 (Proposition 3.4.4 in [42]). Suppose that T is a linear operator from a

Banach space X into a Banach space Y. Then the following are equivalent:

1. The operator T is compact.

2. The set T (BX) is a relatively compact subset of Y.

3. The set T (B) is a totally bounded subset of Y whenever B is bounded subset of X.

4. Every bounded sequence (xn)
∞
n=1 in X has a subsequence (xn j)

∞
j=1 such that the

sequence (T xn j)
∞
j=1 converges.

The following proposition says that compact operators not having finite rank cannot

have closed range.

Proposition 2.74 (Proposition 3.4.6 in [42]). The range of a compact linear operator from

a Banach space into a Banach space is closed if and only if the operator has finite rank.

It is known that the range of a bounded finite-rank operator from a Banach space X

into a Banach space Y is separable. The following proposition tells us that the range of the

compact operators has also this property.

Proposition 2.75 (Proposition 3.4.7 in[42]). Every compact linear operator from a Banach

space into a Banach space has a separable range.

The set of all compact linear operators from a Banach space X into a Banach space Y

is denoted by K (X ,Y ). The following proposition establishes that this set is closed in the

algebraic sense and in the topological sense.
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Proposition 2.76 (Proposition 3.4.8 in [42]). Suppose that X and Y are Banach spaces,

that S and R are compact linear operators from X into Y, that α ∈ F, and that (Tn)
∞
n=1 is a

sequence of compact linear operators from X into Y that converges to some T ∈L (X ,Y ).

Then R+S, αR, and T are all compact.

Since the zero operator is compact, then the set of the compact operators is not empty.

Thus, the last proposition says that K (X ,Y ) is a closed subspace of L (X ,Y ).

It is clear that the product of two operators, where one of them is compact and the other

is bounded, is compact. Thus we have that K (X) is a closed ideal in L (X).

2.16 Weakly Compact Operators

Now we turn our attention to other type of linear operators between Banach spaces called

weakly compact operators. In order to define these operators the definition of compact

operators is weakened as follows.

Definition 2.77 (Definition 3.5.1 in [42]). Suppose that X and Y are Banach spaces. A

linear operator T from X into Y is weakly compact if T (B) is a relatively weakly compact

subset of Y whenever B is a bounded subset of X.

The set of all weakly compact operators is denoted by K ω(X ,Y ). Clearly we have that

every compact operator between Banach spaces is weakly compact. Since every relatively

weakly compact subset of a Banach space is bounded, then we also have that every weakly

compact operator between Banach spaces is bounded.

We know that a subset of a finite-dimensional subspace of a normed space is relatively

weakly compact if and only if it is relatively compact. Thus, a finite rank operator between

Banach spaces is weakly compact if and only if it is compact and then we have the following

proposition.

Proposition 2.78 (see [42]). A finite-rank linear operator between Banach spaces is weakly

compact if and only if it is bounded.
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The following proposition tell us that the property of boundedness implies the property

of weakly compactness when one of the Banach spaces is reflexive.

Proposition 2.79 (Proposition 3.5.4 in [42]). If X and Y are Banach spaces and either X or

Y is reflexive, then every bounded linear operator from X into Y is weakly compact.

The following proposition give equivalent statements for the statement that T is a linear

weakly compact operator.

Proposition 2.80 (Proposition 3.5.5 in [42]). Suppose that T is a linear operator from a

Banach space X into a Banach space Y. Then the following are equivalent:

1. The operator T is weakly compact.

2. The set T (BX) is a relatively weakly compact subset of Y.

3. Every bounded sequence (xn)
∞
n=1 in X has a subsequence (xn j)

∞
j=1 such that the

sequence (T xn j)
∞
j=1 converges weakly.

The following proposition gives a necessary and sufficient condition for the range of a

weakly compact operator between Banach spaces be closed.

Proposition 2.81 (proposition 3.5.6 in [42]). The range of a weakly compact linear

operator from a Banach space into a Banach space is closed if and only if the range of

the operator is reflexive.

The following proposition says that the closure of the range of a weakly compact

operator between Banach spaces is the closed linear hull of the closure of the image of

the unit ball of the domain, which is, a weakly compact set.

Proposition 2.82 (Proposition 3.5.7 in [42]). Suppose that T is a weakly compact linear

operator from a Banach space X into a Banach space Y. Then The closure of T (X) is weakly

compactly generated.
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The following proposition establishes that if X and Y are Banach spaces, then the set

K ω(X ,Y ) is closed in the algebraic sense and in the topological sense.

Proposition 2.83 (Proposition 3.5.9 in [42]). Suppose that X and Y are Banach spaces, that

R and S are weakly compact linear operators from X into Y, that α ∈ F, and that (Tn)
∞
n=1

is a sequence of weakly compact linear operators from X into Y that converges to some

T ∈L (X ,Y ). Then R+S, αR, and T are all weakly compact.

Since the operator zero is weakly compact, then the set of all weakly compact operators

is not empty and thus the set of all weakly compact operators is a closed subspace of the

space of all linear bounded operators.

Since norm to norm continuous implies weak to weak continuous we have that if

S ∈ L (X ,Y ) and T ∈ L (Y,Z), where X, Y, Z are Banach spaces, and either S or T is

weakly compact, then TS is weakly compact.

By these two last facts exposed, we can conclude that if X is a Banach space, then

K ω(X) is a closed ideal in L (X).
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Chapter 3

Unique maximal ideal in the algebra L ((∑`q)c0) with 1 < q < ∞

In this dissertation I prove that for 1 < q < ∞, the set of all (∑`q)c0-strictly singular

operators on (∑`q)c0 forms the unique maximal ideal in L ((∑`q)c0).

3.1 Prerequisites

In order to prove the main result we will need that if X is a subspace of (∑`q)c0 that is

isomorphic to `q, then for all ε > 0 there is a subspace Y of X that is (1+ε)-isomorphic to

`q, see [30].

We also need that copies of `q in (∑`q)c0 contain almost isometric copies of `q. This

follows from the general results of lemmas 2.5 and 2.6 in [10] proved by W. B. Johnson

and G. Schechtman. We present the proofs of these two lemmas but we have written them

in more detail.

Lemma 3.1 (Lemma 2.5 in [10]). Suppose that X has an unconditionally monotone basis

with p-convexity constant one, and (xk)
n
k=1, with n ∈ N∪{∞}, is a disjoint sequence in X

such that for some 0 < θ < 1 and all scalars (αk)
∞
k=1 we have:

θ
(
∑ |αk|p

)1/p ≤
∥∥∑αkxk

∥∥≤ (∑ |αk|p
)1/p

. (3.1)

Then there is an unconditionally monotone norm !·! on X with p-convexity constant one

such that for all scalars (αk)
∞
k=1 we have:

θ !x!≤ ‖x‖ ≤!x! (3.2)

for all x ∈ X, and

(∑ |αk|p)1/p =!Σαkxk! (3.3)
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Proof. Without loss of generality we assume that xk ≥ 0 for all k, so that [xk] is a sublattice

of X.

We first prove the lemma for the case p = 1. Assume that we have:

θ
(
∑ |αk|

)
≤
∥∥∑αkxk

∥∥≤ (∑ |αk|
)

(3.4)

hence, by the lattice version of the Hahn-Banach theorem and the hypothesis on (xk)
∞
k=1,

for all xk ≥ 0 there exists x∗k ≥ 0 such that x∗k(xk) = 1. Each x∗k is supported where xk is

supported.

Define x∗ = ∑x∗k with ‖x∗‖ ≤ θ−1. Since x∗k ≥ 0 for all k, we have x∗ ≥ 0. We also have

for a fixed j:

< x∗,x j >=
〈
∑x∗k ,x j

〉
= ∑ < x∗k ,x j >= 1 (3.5)

Notice that (xk)
∞
k=1 is equivalent to the canonical basis of `1, thus ∑αkxk is an `1- vector

so x∗ = ∑x∗k is an `∞- sum.

Define !·! on X by:

!x! := ‖x‖∨〈x∗, |x|〉 (3.6)

We claim !·! is a norm on X:

1. Suppose x = 0, then !0! = ‖0‖∨< x∗,0 >= 0∨0 = 0. On the other hand, if !x! = 0,

then ‖x‖∨〈x∗, |x|〉= 0 so ‖x‖= 0 and, then x = 0.

2. !αx! = ‖αx‖∨〈x∗, |αx|〉= |α|‖x‖∨ |α| 〈x∗, |x|〉= |α|!x!

3. Now we show the triangle inequality.

!x+ y! = ‖x+ y‖∨〈x∗, |x+ y|〉

6 (‖x‖+‖y‖)∨ (〈x∗, |x|+ |y|〉)

6 (‖x‖∨〈x∗, |x|〉)+(‖y‖∨〈x∗, |y|〉)

= !x!+!y!

(3.7)
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Notice that:

‖x‖6 ‖x‖∨〈x∗, |x|〉 (3.8)

and

‖y‖6 ||y||∨ 〈x∗, |y|〉 , (3.9)

then

‖x‖+‖y‖6 (‖x‖∨〈x∗, |x|〉)+(‖y‖∨〈x∗, |y|〉) (3.10)

and also we have:

〈x∗, |x|〉+ 〈x∗, |y|〉6 (‖x‖∨〈x∗, |x|〉)+(‖y‖∨〈x∗, |y|〉) (3.11)

Now we claim that !·! satisfies the expressions (3.2) and (3.3) in lemma 3.1. For (3.2),

we have:
θ !x! = θ [‖x‖∨〈x∗, |x|〉]6 θ [‖x‖∨ |〈x∗, |x|〉 |]

6 θ [‖x‖∨θ−1‖x‖] = θ‖x‖∨‖x‖

6 ‖x‖∨‖x‖= ‖x‖

(3.12)

On the other hand, by the definition of !·!, we have !x!≥ ‖x‖

For (3.3), we have:

!Σαkxk! = ‖∑αkxk‖∨〈x∗, |Σαkxk|〉

= ‖∑αkxk‖∨

〈
x∗, ∑

αk≥0
αkxk + ∑

αk<0
(−αk)xk

〉
= ‖∑αkxk‖∨∑ |αk|

6 ∑ |αk|∨∑ |αk|

= ∑ |αk|

(3.13)

On the other hand, we have !Σαkxk! = ‖∑αkxk‖∨∑ |αk| ≥ ∑ |αk|.

In the general case we apply the case p = 1 to the p-concavification of X and take the

p-convexification of the resulting norm.
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Notice that if x and y are disjoint, the vectors xp and yp are disjoint too, and xp + yp is

a vector whose components are powers of p. Taking 1/p power in each component we get

x+ y.

Let (e j) be the unconditional monotone basis of X. For each k, let Ik be the support of

xk. We have Ik∩ Im = /0 for k 6= m.

Taking p-power in (3.1) and letting βk = α
p
k and because we also have:

‖∑αkxk‖p = |||∑
⊕

α
p
k � xk||| (3.14)

we get:

θ
p
∑ |βk|6 |||∑

⊕
βk� xk|||6 ∑ |βk| (3.15)

Thus, using the p-concavification of X, we have reduced the problem to the case p = 1.

Then there exists x∗ ∈ X∗(p), x∗ ≥ 0, with norm less than or equal to θ−p such that:

< x∗,xk >= 1 (3.16)

for all k.

Define !·! on X(p) by:

!x! = |||x|||∨ 〈x∗, |x|〉 (3.17)

which satisfies:

θ
p!x! 6 |||x|||6!x! (3.18)

for all x ∈ X(p), and

∑ |βk|=!∑
⊕

βk� xk! (3.19)

Now we take the p-convexification of the norm !·!. Define ||||x|||| =!x!1/p then we
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have:
||||x|||| = !x!1/p = (|||x|||∨ 〈x∗, |x|〉)1/p

= (‖x‖p∨〈x∗, |x|〉)1/p 6 (||x||p∨θ−p|||x|||)1/p

= (‖x‖p∨θ−p‖x‖p)1/p = (θ−p‖x‖p)1/p = θ−1‖x‖

(3.20)

On the other hand, we have:

||||x|||| = !x!1/p = (|||x|||∨ 〈x∗, |x|〉)1/p

≥ (|||x|||)1/p = (‖x‖p)1/p = ‖x‖
(3.21)

thus, we have proved (3.2) in lemma 3.1.

Now, to prove (3.3) in lemma 3.1, we have:

||||∑
⊕

αk� xk|||| = !∑
⊕

αk� xk!1/p

= !Σα
p
k � xk!1/p

= (∑ |αk|p)1/p

(3.22)

Lemma 3.2 (Lemma 2.6 in [10]). Suppose that X has an unconditionally monotone basis

with p-convexity constant one (1 6 p < ∞) and (xk)
n
k=1, with n ∈ N∪{∞}, is a disjoint

sequence of unit vectors in X which is isometrically equivalent to the unit vector basis for

`p. Then spanxk is norm one complemented in X .

Proof. Since the unit ball of `p is weak-star compact, the case n = ∞ follows from the case

n < ∞, so we assume n < ∞. We can also assume that xk ≥ 0 for all k and that the union of

the supports of the xk is the entire unconditional basis for X.

We claim that in the p-concavification of X, the sequence (xp
k )

∞
k=1 is a disjoint sequence

that is 1-equivalent to the unit vector basis of `(n)1 . In fact, because in the concavification of
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X, xp
k is the same as xk in X, we have:

|||∑
⊕

ak� xp
k ||| =

∥∥∥∑a1/p
k xk

∥∥∥p
=
∥∥∥∑a1/p

k ek

∥∥∥p

=

[(
∑ |a1/p

k |
p
)1/p

]p

= ∑ |a1/p
k |

p

= ∑ |ak|= ‖∑akek‖`1

(3.23)

Then there is a norm one functional x∗ ≥ 0 in the dual of the concavification of X with〈
x∗,xp

k

〉
= 1, for all k.

Since x∧ y = 0, then the greatest lower bound of x and y is zero, so x ≥ 0 and y ≥ 0,

thus x and y belong to X+, so x+ y ∈ X+. Define ‖x‖p = 〈x∗, |x|p〉1/p and we claim that

this norm turns X into an abstract Lp space.

In fact, suppose that x and y are in X. As x and y are greater than or equal to zero then

|x|∧ |y|= 0 so x and y are disjoint. Thus, we have:

‖x+ y‖p
p = [〈x∗, |x+ y|p〉1/p]p = 〈x∗,(x+ y)p〉

= 〈x∗,xp + yp〉= 〈x∗,xp〉+ 〈x∗,yp〉

= 〈x∗, |x|p〉+ 〈x∗, |y|p〉= ‖x‖p
p +‖y‖p

p

(3.24)

Notice that (xk)
∞
k=1 are disjoint unit vectors in this abstract Lp space. In fact, we have:

‖xk‖p
p = 〈x∗, |xk|p〉=

〈
x∗,xp

k

〉
= 1 (3.25)

We claim that in this abstract Lp space, (xk)
∞
k=1 is 1-equivalent to the unit vector basis

for `n
p. In fact, we have:

‖∑akxk‖p = 〈x∗, |∑akxk|p〉1/p

=

〈
x∗, ∑

ak≥0
ap

k xp
k + ∑

ak<0
(−ak)

pxp
k

〉1/p

= (∑ |ak|p)1/p = ‖∑akek‖`p

(3.26)
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Using the Theorem 1.b.2 [40], we have that [xk] is norm one complemented in that

abstract Lp space.

We claim that ‖ · ‖p 6 ‖ · ‖X . In fact, we have:

‖x‖p
p = 〈x∗, |x|p〉6 | 〈x∗, |x|p〉 |

6 |||x∗|||(X(p))
∗||||x|p|||X(p)

= |||x∗|||(X(p))
∗|||x|||pX

= |||x|||pX = ‖x‖p
X

(3.27)

Since in X the sequence (xk)
∞
k=1 is 1-equivalent to the unit vector basis for `n

p, we

conclude that the closed linear span of (xk)
∞
k=1 is also norm one complemented in X.

Recall that if T : X → Y is an operator between Banach spaces and Z is a subspace of

X, we define:

f (T,Z) = in f {‖T z‖ : z ∈ Z,‖z‖= 1} (3.28)

We have that the number f (T,Z) satisfies the following properties:

1. f (T,Z)> 0 if and only if T |Z is an isomorphism

2. f (T,Z) = ‖T‖> 0 if and only if T |Z is a multiple of an isometry

3. ‖T‖ ≥ f (T,Z1)≥ f (T,Z2) if Z1 ⊂ Z2 ⊂ X

3.2 Essential Lemmas

Now I present the lemmas that will carry us to the main result of this dissertation. The

first lemma will give us an important inequality which will be used later in the proofs of

other lemmas. This lemma tell us that given a bounded linear operator on `q and a positive

number ε , it is possible to find a block subspace Z of `q so that the operator restricted to Z

has a norm which is at most f (T,Z)+ ε . In the proof we will consider the case when T is

a strictly singular operator and when T is not so.
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Lemma 3.3. Let 1 < q < ∞ and let T: `q→
(
∑`q

)
c0

be a bounded linear operator. Then

for all ε > 0, there exists a block subspace Z of `q so that:

‖T |Z‖ ≤ f (T,Z)+ ε (3.29)

Proof. Case 1: T is a strictly singular operator.

Let ε > 0 be given. Since T is strictly singular, then for all infinite-dimensional

subspace Z of `q we have T |Z is not an isomorphism onto its range and hence, f (T,Z) = 0.

Let εi > 0 be chosen so that
∞

∑
i=1

εi < ε . Let (ei)
∞

i=1 be the unit vector basis of `q.

Since f (T,Z) = 0 for all infinite-dimensional subspaces Z of `q, in particular we have

f
(
T, `q

)
= 0.

Select a vector x1 =
∞

∑
i=1

a(1)i ei ∈ `q, with ‖x1‖ = 1 so that ‖T x1‖ < ε1. Notice that it is

possible to select a vector satisfying these conditions because f
(
T, `q

)
= 0. We can find

N1 ∈ N such that x1 =
N1
∑

i=1
a(1)i ei.

Now, let Z1 be the closed linear span of (ei)
∞
i=N1+1. Since Z1 is an infinite-dimensional

subspace of `q, then f (T,Z1) = 0.

Select a vector x2 =
∞

∑
i=N1+1

a(2)i ei ∈ Z1 with ‖x2‖ = 1, so that ‖T x2‖ < ε2. As before,

we can find N2 ∈ N, N2 > N1, such that x2 =
N2
∑

i=N1+1
a(2)i ei. Let Z2 be the closed linear span

of (ei)
∞
i=N2+1.

We continue in an obvious manner. The sequence (xi)
∞
i=1 obtained in this way is a block

basic sequence of the canonical basis of `q; therefore, it is a basic sequence.

Consider the space Z = [xi]. Thus, Z is a block subspace of `q. Now, let z ∈ SZ , then:

‖T z‖ ≤
∞

∑
i=1
‖T (bixi)‖=

∞

∑
i=1
|bi|‖T (xi)‖

≤
∞

∑
i=1
‖T (xi)‖<

∞

∑
i=1

εi < ε,
(3.30)

then ‖T |Z‖< ε and since f (T,Z) = 0, we have (3.29) is satisfied.
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Case 2: T is not a strictly singular operator.

If T is not strictly singular, then there is an infinite-dimensional subspace Z of `q, such

that T |Z is an isomorphism onto its range. Since Z is an infinite-dimensional subspace of

`q, then Z contains a subspace Z1 which is isomorphic to `q.

Let (zi)
∞

i=1 be a unit vector basis of Z1. Then (zi)
∞
i=1 is equivalent to the canonical basis

of `q; therefore, it converges weakly to zero. By passing to a subsequence of (zi)
∞
i=1 and

doing a small perturbation we may assume that [zi] is isometric to `q, moreover, T |Z1 is an

isomorphism.

Then by passing to a suitable block subspace spanned by a block basic sequence of the

unit vector basis (ei)
∞
i=1 of `q, we may assume that T is an isomorphism. Thus, we have `q

is isomorphic to T (`q).

Using the fact that subspaces of
(
Σ`q
)

c0
which are isomorphic to `q contain smaller

subspaces almost isometric to `q, and keeping in mind that ε > 0 gives wiggle room, the

lemma reduces to the case where T maps `q into an isometric copy Y of `q.

Since T is bounded (Ten)
∞

n=1 converges weakly to zero. By passing to a subsequence of

(en)
∞

n=1 and doing a small perturbation, we may assume that (Ten)
∞
n=1 is disjoint supported

in Y.

Let δ > 0 be equal to liminf
n→∞

‖Ten‖. Then by passing to a further subsequence of (en)
∞
n=1

we may assume that lim
n→∞
‖Ten‖= δ . Again, by passing to a further subsequence of (en)

∞
n=1

and relabelling we may assume that δ − ε/2 < ‖Ten‖< δ + ε/2 for all n.

Let Z = [en], which is a block subspace of `q and let x ∈ Z with
∞

∑
n=1
|an|q = 1, then we

have: ∥∥∥∥∥T

(
∞

∑
n=1

anen

)∥∥∥∥∥=
(

∞

∑
n=1
|an|q‖Ten‖q

)1/q

> δ − ε/2 (3.31)

thus, f (T,Z)≥ δ − ε/2 and this implies that:

δ ≤ f (T,Z)+ ε/2 (3.32)
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On the other hand we have:

∥∥∥∥∥T

(
∞

∑
n=1

anen

)∥∥∥∥∥=
(

∞

∑
n=1
|an|q‖Ten‖q

)1/q

< δ + ε/2 (3.33)

Then by (3.32) and (3.33) we get:

‖T |Z‖ ≤ δ + ε/2

≤ f (T,Z)+ ε/2+ ε/2

= f (T,Z)+ ε

(3.34)

which proves (3.29).

The following two lemmas provide structural results of the space (∑`q)c0 .

The next lemma says that if T is a bounded linear operator from (∑`q)c0 into (∑`q)c0 ,

then for every ε > 0 and each m ∈N we can find an n ∈N sufficiently large (in other words

we go far away in the direct sum) so that the norm of the restriction of the operator P[1,m]T

to the range of P[n,∞] is less than ε .

Lemma 3.4. Let 1 < q < ∞ and T : (∑`q)c0→ (∑`q)c0 be a bounded linear operator. Then

∀m ∈ N:

lim
n→∞

∥∥P[1,m]T P[n,∞)

∥∥= 0 (3.35)

Proof. Suppose this is not the case. Then there is an δ > 0 and m0 ∈ N such that for any

k ∈ N there exists nk ∈ N such that nk ≥ k and
∥∥P[1,m0]T P[nk,∞)

∥∥ ≥ δ . Since this norm is

decreasing we can assume that:

∥∥P[1,m0]T P[n,∞)

∥∥≥ δ (3.36)

for all n ∈ N.
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Thus, we get a normalized vector sequence (xn)
∞
n=1 ⊂ (Σ`q)c0 such that:

∥∥P[1,m0]T P[n,∞)xn
∥∥≥ δ (3.37)

for all n ∈ N.

Consider the sequence
(
P[n,∞)xn

)∞

n=1. By passing to a subsequence of
(
P[n,∞)xn

)∞

n=1 and

doing a small perturbation we get a block basic sequence (P[nk,∞)xnk)
∞
k=1 of the natural basis

of (Σ`q)c0 .

We claim that this block basic sequence does not converge to zero in norm.

Indeed, since
∥∥P[1,m0]

∥∥= 1, then by (3.37) we have:

∥∥T P[nk,∞)xnk

∥∥ =
∥∥P[1,m0]

∥∥∥∥T P[nk,∞)xnk

∥∥
≥

∥∥P[1,m0]T P[nk,∞)xnk

∥∥≥ δ

(3.38)

Thus, we get that δ 6
∥∥T P[nk,∞)xnk

∥∥ 6 ‖T‖
∥∥P[nk,∞)xnk

∥∥ and this implies that∥∥P[nk,∞)xnk

∥∥≥ δ

‖T‖
> 0 for all k ∈ N.

Let (yk)
∞
k=1 =

(
P[nk,∞)xnk

)∞

k=1. Since this sequence is a block basic sequence of the

canonical basis of (∑`q)c0 and does not converge to zero in norm, then is equivalent to the

canonical basis of c0.

Since (yk)
∞
k=1 converges weakly to zero and T is bounded, then (Tyk)

∞
k=1 converges

weakly to zero and then (P[1,m0]Tyk)
∞
k=1 converges weakly to zero in `q.

By passing to a further subsequence of (yk)
∞
k=1 and doing a small perturbation we may

assume that (P[1,m0]Tyk)
∞
k=1 is a block basic sequence of the canonical basis of `q.

Moreover, by (3.37), (P[1,m0]Tyk)
∞
k=1 does not converges to zero in norm, then it is

equivalent to the canonical basis of `q.

Since (yk)
∞
k=1 is equivalent to the canonical basis of c0, then there exists a constant C1

such that for all n ∈ N: ∥∥∥∥∥ n

∑
k=1

yk

∥∥∥∥∥≤C1

∥∥∥∥∥ n

∑
k=1

ek

∥∥∥∥∥
c0

=C1 (3.39)
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Since
(
P[1,m0]Tyk

)∞

k=1 is equivalent to the canonical basis of `q, then there exists a

constant C2 such that for all n ∈ N:

∥∥∥∥∥ n

∑
k=1

P[1,m0]Tyk

∥∥∥∥∥≥C2

∥∥∥∥∥ n

∑
k=1

ek

∥∥∥∥∥
`q

=C2n1/q (3.40)

Then by(3.39) and (3.40) we have:

C2n1/q ≤
∥∥∥∥ n

∑
k=1

P[1,m0]Tyk

∥∥∥∥= ‖P[1,m0]T (
n
∑

k=1
yk)‖

≤
∥∥P[1,m0]T

∥∥∥∥∥∥ n
∑

k=1
yk

∥∥∥∥≤ ∥∥P[1,m0]T
∥∥C1

(3.41)

Thus,
∥∥P[1,m0]T

∥∥ ≥ C2n1/q

C1
for all n ∈ N, which contradicts the boundedness of

P[1,m0]T .

The next lemma says that if T is a bounded linear operator from (∑`q)c0 into `q, then

for each positive number ε , we can find a subspace isometric to (∑`q)c0 so that T restricted

to that subspace has small norm. We will prove the lemma in two cases. First, when

the restriction of T to each `n
q is compact for all natural number n in a infinite subset of

the natural numbers. Second, when T restricted to all of the `n
q is not compact except for

natural numbers n in a finite set of the natural numbers.

Lemma 3.5. Let 1 < q < ∞ and let T: (∑`q)c0→ `q be a bounded linear operator. Then for

all ε > 0, there is a subspace X of (∑`q)c0 so that X is isometric to (∑`q)c0 and ||T|X ||< ε .

Proof. Case 1: There is an infinite subset M of the Natural numbers so that T|
`
(n)
q

is

compact for all n ∈M.

Let ε > 0, let (δn)
∞
n=1 be a sequence of positive real numbers decreasing to zero fast

such that:

∑
n∈M

δn < ε (3.42)

Since T|
`
(n)
q

is compact for all n ∈M, then T|
`
(n)
q

is strictly singular for all n ∈M. Thus,
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for all infinite-dimensional subspaces Z of `
(n)
q with n ∈ M we have that T|Z is not an

isomorphism. Then f (T,Z) = 0. In particular, f (T, `(n)q ) = 0 for n ∈M.

Fix n0 ∈M. Choose (εi)
∞
i=1 converging to zero fast so that

∞

∑
i=1

εi < δn0 . Pick x1 ∈ `
(n0)
q

with norm one so that ‖T x1‖< ε1.

Let (ei)
∞
i=1 be the canonical basis of `

(n0)
q , then x1 =

∞

∑
i=1

a(1)i ei. Hence, we can find

N1 ∈ N so that x1 =
N1
∑

i=1
a(1)i ei.

Let Z1 be the closed linear span of (ei)
∞
i=N1+1. Since Z1 is an infinite-dimensional

subspace of `(n0)
q , then f (T,Z1) = 0.

Now, pick x2 ∈ Z1 with norm one so that ‖T x2‖< ε2. Since x2 =
∞

∑
i=N1+1

a(2)i ei, then we

can find N2 ∈N with N2 > N1 so that x2 =
N2
∑

i=N1+1
a(2)i ei. Let Z2 be the closed linear span of

(ei)
∞
i=N2+1.

We continue in an obvious manner. The sequence (xi)
∞
i=1 obtained in this way is a block

basic sequence of the canonical basis of `(n0)
q . Let Xn0 = [xi], then Xn0 is a block subspace

of `(n0)
q which is isometric to `

(n0)
q .

We can do the same process as we did above for each n ∈M so that we can find a block

basic sequence (xi)
∞
i=1 of the canonical basis of `(n)q such that Xn = [xi] is a block subspace

of `(n)q isometric to `
(n)
q .

Let z ∈ SXn , then:

‖T z‖ ≤
∞

∑
i=1
|bi‖T xi‖ ≤

∞

∑
i=1
‖T xi‖

<
∞

∑
i=1

εi < δn

(3.43)

Thus, we get:

‖T |Xn‖< δn (3.44)

for all n ∈M.

Let X = ∑
n∈M

Xn, then X is isometric to (∑`q)c0 .
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By (3.42) and (3.44) we have:

‖T|X‖ =

∥∥∥∥ ∑
n∈M

T|Xn

∥∥∥∥≤ ∑
n∈M

∥∥∥T|Xn

∥∥∥
< ∑

n∈M
δn < ε

(3.45)

Case 2: For all but finitely many n ∈ N, T |
`
(n)
q

is not compact.

Discard finitely many n ∈ N. Fix n0 ∈ N. Since T|
`
(n0)
q

is not compact, then T|
`
(n0)
q

is not

strictly singular. Then there exists an infinite-dimensional subspace Z1 of `(n0)
q such that

T|Z1
is an isomorphism onto its range.

Since Z1 is an infinite-dimensional subspace of `(n0)
q , then Z1 contains another subspace

Z2 which is isomorphic to `
(n0)
q .

Let (xi)
∞
i=1 be a unit vector basis of Z2. Then (xi)

∞
i=1 is equivalent to the canonical basis

of `(n0)
q ; therefore, it converges weakly to zero. By passing to a subsequence of (xi)

∞
i=1 and

doing a small perturbation we get that Zn0 = [xik ] is isometric to `
(n0)
q . Moreover, T|Zn0

is an

isomorphism.

We can do the same process as we did above for each n ∈N so that we can find a block

basic sequence (xi)
∞
i=1 of the canonical basis of `(n)q such that Zn = [xi] is a block subspace

of `(n)q isometric to `
(n)
q and T|Zn0

is an isomorphism.

Hence, by discarding finitely many n ∈ N and passing to block subspaces of each `
(n)
q

without loss of generality we may assume that T|
`
(n)
q

is an isomorphism for all n ∈ N.

By passing to block subspaces of each Zn and using lemma 3.3 we may assume that:

‖T|Zn
‖< f (T,Zn)+2−n(ε/2) (3.46)

Now, we claim that lim
n→∞

f (T,Zn) = 0.

Suppose this is not the case. Then there exists a δ > 0 and a sequence of numbers

(nk)
∞
k=1 such that f (T,Znk)≥ δ > 0. Thus, for each k ∈ N there exists xnk ∈ Znk with norm

one such that ‖T xnk‖ ≥ δ > 0.
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Consider (xnk)
∞
k=1 ∈ ∑Znk in the sense of a c0 direct sum.. Then for all m ∈ N we have:

∥∥∥∥ m
∑

k=1
ankxnk

∥∥∥∥ = sup
k
{‖ankxnk‖}

= sup
k
{|ank |}=

∥∥∥∥ m
∑

k=1
ankek

∥∥∥∥
c0

(3.47)

Then (xnk)
∞
k=1 is isometrically equivalent to the canonical basis of c0. Hence, (xnk)

∞
k=1 is

weakly null and since T is bounded, then (T xnk)
∞
k=1 is weakly null. By passing to a further

subsequence of (xnk)
∞
k=1 and doing a small perturbation we may assume that (T xnk)

∞
k=1 is

a block basic sequence of the canonical basis of `q. We know also this sequence does not

converges to zero in norm. Then this sequence is equivalent to the canonical basis of `q.

Since (xnk)
∞
k=1 is isometrically equivalent to the canonical basis of c0, then for all m∈N

we have: ∥∥∥∥∥ m

∑
k=1

xnk

∥∥∥∥∥=
∥∥∥∥∥ m

∑
k=1

ek

∥∥∥∥∥
c0

= 1 (3.48)

Since (T xnk)
∞
k=1 is equivalent to the canonical basis of `q, then there exists a constant

C > 0 such that for all m ∈ N we have:

∥∥∥∥∥ m

∑
k=1

T xnk

∥∥∥∥∥≥C

∥∥∥∥∥ m

∑
k=1

ek

∥∥∥∥∥
`q

=Cm1/q (3.49)

Then for all m ∈ N, using (3.48) and (3.49), we have:

Cm1/q ≤
∥∥∥∥ m

∑
k=1

T xnk

∥∥∥∥= ∥∥∥∥T
(

m
∑

k=1
xnk

)∥∥∥∥
≤ ‖T‖

∥∥∥∥ m
∑

k=1
xnk

∥∥∥∥= ‖T‖ (3.50)

which contradicts the boundedness of T.

Since f (T,Zn) converges to zero as n goes to infinity, by passing to a subsequence of

(Zn)
∞
n=1 and relabelling we may assume that f (T,Zn) < 2−n(ε/2) for all n. Thus, using

62



(3.46) we get:

‖T|Zn
‖< 2−n(ε/2)+2−n(ε/2) = 2−n

ε (3.51)

Let X = (∑Zn), then X is isometric to (∑`q)c0 and using (3.51) we get:

‖T|X‖ =
∥∥∥T|∑Zn

∥∥∥= ∥∥∥∑T|Zn

∥∥∥
≤ ∑‖T|Zn

‖< ∑2−nε = ε

(3.52)

The next four lemmas show that the set of all (∑`q)c0-strictly singular operators on

(∑`q)c0 forms an ideal in L ((∑`q)c0), with 1 < q < ∞.

The next lemma show that every subspace of (∑`q)c0 which contains a copy of (∑`q)c0

must contain a complemented copy of (∑`q)c0 , in other words, the lemma prove that the

space (∑`q)c0 is complementably homogeneous for 1 < q < ∞.

Lemma 3.6. Let X be a subspace of (∑`q)c0 which is C-isomorphic to (∑`q)c0 . Then

for all ε > 0, there is a subspace Y of X which is C+ε-isomorphic to (∑`q)c0 and C+ε-

complemented in (∑`q)c0 .

Proof. Let (εi)
∞
i=1 be a sequence of positive real numbers decreasing to zero fast. Write

X = ∑
i

Xi where each Xi is isomorphic to `q and the sum is C-isomorphic to (∑`q)c0 .

By the stability of the `q we may assume by passing to subspaces of each Xi that Xi is

1+ εi isomorphic to `q.

Let (xi,k)
∞
k=1 be a unit vector sequence in Xi so that (xi,k)

∞
k=1 is equivalent to the

canonical basis of `q; therefore, it converges weakly to zero. Hence, by passing to a further

subsequence of (xi,k)
∞
k=1 and doing a small perturbation we can assume that Xi is a block

subspace of (∑`q)c0 .

By passing to a further subsequence of each (xi,k)
∞
k=1 and doing a small perturbation

and by a process of diagonalization we can assume that all of the spaces Xi are disjoint
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supported. Hence, their respective basis are disjoint supported with respect to the canonical

basis of (∑`q)c0

Now let Ji = ∪∞
k=1supp(xi,k). For any x = ∑

k, j
ak, jek, j ∈ (∑`q)c0 define PJi : (∑`q)c0 →

(∑`q)c0 by PJi(x) = ∑
(k, j)∈ Ji

ak, jek, j.

Since P2
Ji
= PJi for all x ∈ (∑`q)c0 , then PJi is a projection. We also have that PJi has

norm one.

Let (ek, j)k, j be the canonical basis of (∑`q)c0 and consider the space Ai = [(ek, j)(k, j)∈ Ji]

which is a subspace of (∑`q)c0; therefore, it has an unconditionally monotone basis with

q-convexity constant one. Since the support of Xi ∈ Ji, then Xi is a subspace of Ai.

By lemma 2.5 in [10] we have a new norm !·! so that under this new norm the sequence

(xi,k)
∞
k=1 is isometrically equivalent to the canonical basis of `q. This implies that Xi is

isometric to `q under the new norm.

By lemma 2.6 in [10] there is a projection Qi : Ai → Xi such that !Qi! = 1. We also

have by the lemma 2.5 in [10] that ‖ · ‖ and !·! are equivalent norms. Moreover, the formal

identity I : (Ai, !·!)→ (Ai,‖ · ‖) is an onto isomorphism.

Thus, by the principle of small perturbations we have that (Xi,‖ · ‖) is also

complemented and ‖Qi‖6 1+ εi.

Now consider the operator ∑QiPJi : (Σ`q)c0 → ΣXi. We claim that
∥∥∑QiPji

∥∥<C+ ε .

Indeed, we have:

∥∥∑QiPji

∥∥ = sup
{∥∥∑QiPjix

∥∥ : ‖x‖= 1
}

= sup
{

C supi ‖QiPjix‖ : ‖x‖= 1
}

< C+ ε

(3.53)

The next lemma actually says that the set of all (∑`q)c0-strictly singular operators on

(∑`q)c0 is an ideal.
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Lemma 3.7. Let 1 < q < ∞ and let T be a bounded linear operator on (∑`q)c0 which is

(∑`q)c0-strictly singular. Then for all ε > 0, there is a subspace X of (∑`q)c0 which is

isometrically isomorphic to (∑`q)c0 and such that ‖T|X‖< ε .

Proof. case 1: There is an infinite subset M of the Natural numbers so that T|
`
(n)
q

is

compact for all n ∈M.

Let ε > 0 and let (δn)
∞
n=1 be a sequence of positive real numbers decreasing to zero fast

such that:

∑
n∈M

δn < ε (3.54)

Since T|
`
(n)
q

is compact for all n ∈M, then T|
`
(n)
q

is strictly singular for all n ∈M. Then

for all infinite-dimensional subspaces Z of `
(n)
q with n ∈ M we have that T|Z is not an

isomorphism. Thus, f (T,Z) = 0. In particular f (T, `(n)q ) = 0.

Fix n0 ∈M. Let (εi)
∞
i=1 be a sequence of positive real numbers decreasing to zero fast

so that
∞

∑
i=1

εi < δn0 .

Pick x1 ∈ `
(n0)
q with norm one so that ‖T x1‖< ε1. Let (ei)

∞
i=1 be the canonical basis of

`
(n0)
q , then x1 =

∞

∑
i=1

a(1)i ei. Thus, we can find N1 ∈ N so that x1 =
N1
∑

i=1
a(1)i ei.

Let Z1 be the closed linear span of (ei)
∞
i=N1+1. Since Z1 is an infinite-dimensional

subspace of `(n0)
q , then f (T,Z1) = 0.

Now pick x2 ∈ Z1 with norm one such that ‖T x2‖ < ε2. Since x2 =
∞

∑
i=N1+1

a(2)i ei, then

we can find N2 ∈ N, N2 > N1, such that x2 =
N2
∑

i=N1+1
a(2)i ei. Let Z2 be the closed linear span

of (ei)
∞
i=N2+1.

We continue in an obvious manner. The sequence (xi)
∞
i=1 obtained in this way is a block

basic sequence of the canonical basis of `(n0)
q . Thus, (xi)

∞
i=1 is isometrically equivalent to

(ei)
∞
i=1 and Xn0 = [xi] is a block subspace which is isometric to `

(n0)
q .

For each n ∈M we can do the same process as we did above and we will get a block

basic sequence (xi)
∞
i=1 of the canonical basis of `(n)q and a subspace Xn = [xi] which is a

block subspace of `(n)q isometric to `
(n)
q .
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Let z ∈ SXn , then we have:

‖T z‖ ≤
∞

∑
i=1
|bi|‖T (xi)‖ ≤

∞

∑
i=1
‖T (xi)‖

<
∞

∑
i=1

εi < δn

(3.55)

Then:

‖T|Xn
‖< δn (3.56)

for all n ∈M.

Let X = ∑
n∈M

Xn, then X is an isometric subspace of (∑`q)c0 and using (3.54) and (3.56)

we have:

‖T|X‖ = ‖T| ∑

n∈M
Xn
‖=

∥∥∥∥ ∑
n∈M

T|Xn

∥∥∥∥
≤ ∑

n∈M

∥∥∥T|Xn

∥∥∥< ∑
n∈M

δn < ε

(3.57)

case 2: For all but finitely many n ∈ N, T|
`
(n)
q

is not compact.

Discard finitely many n ∈ N and fix n0 ∈ N. Since T|
`
(n0)
q

is not compact, then T|
`
(n0)
q

is

not strictly singular. Thus, there exists an infinite-dimensional subspace Z1 of `(n0)
q such

that T|Z1
is an isomorphism.

Since Z1 is an infinite-dimensional subspace of `(n0)
q , then Z1 contains a subspace Z2

which is isomorphic to `
(n0)
q .

Let (xi)
∞
i=1 be a unit basis of Z2, then (xi)

∞
i=1 is equivalent to the canonical basis of `(n0)

q ;

thus, it converges weakly to zero. By passing to a subsequence (xik)
∞
k=1 of (xi)

∞
i=1 and doing

a small perturbation we get a block basic sequence of the canonical basis of `(n0)
q .

Let Zn0 = [xik ] which is an isometric block subspace of `(n0)
q . Moreover, T |Zn0

is an

isomorphism.

We can do the same process as we did above for each n∈N and we will get a block basic

sequence (xik)
∞
k=1 of the canonical basis of `(n)q and an isometric block subspace Zn = [xik ]

of `(n)q such that T|Zn
is an isomorphism.

Hence, by discarding finitely many n ∈ N and passing to block subspaces of each `
(n)
q
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without loss of generality we may assume that T|
`
(n)
q

is an isomorphism for all n ∈ N.

By passing to block subspaces of each Zn and using 3.3 we may assume that:

||T |Zn ||< f (T,Zn)+2−n
ε (3.58)

for each n ∈ N.

We claim that lim
n→∞

f (T,Zn) = 0.

Suppose that is not the case. Then there exists a δ > 0 and a sequence of numbers

(nk)
∞
k=1 such that f (T,Znk)≥ δ > 0. Then T|Znk

is an isomorphism.

Consider the operator T : (∑Znk)c0
→
(
∑`q

)
c0

.

By passing to further subspaces of each Znk and doing a small perturbation we may

assume T x1 and T x2 are disjoint supported in (∑`q)c0 if x1 ∈ Znk1
, x2 ∈ Znk2

and k1 6= k2.

Let x ∈ (∑Znk)c0 , then x = ∑
k

xk with xk ∈ Znk . Let k0 ∈ N be such that:

∥∥xk0

∥∥≥ 1
2
‖x‖ (3.59)

Then using (3.59) we have:

‖T x‖ =

∥∥∥∥∑
k

T xk

∥∥∥∥≥ ∥∥T xk0

∥∥
≥ α

∥∥xk0

∥∥≥ α

2
‖x‖

(3.60)

Thus, we have that T |(∑Znk)c0

is an isomorphism. This contradicts that T is
(
∑`q

)
c0

-

strictly singular on
(
∑`q

)
c0

.

Since f (T,Zn) converges to zero, by passing to a subsequence of (Zn)
∞
n=1, and

relabelling, we can assume that:

f (T,Zn)< 2−n
ε (3.61)
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for all n ∈ N.

Thus, using (3.58) and (3.61) we have:

‖T|Zn
‖< 2−n

ε +2−n
ε (3.62)

Let X = (∑Zn), then using (3.62) we have:

∥∥T|X
∥∥ =

∥∥∥∑T|Zn

∥∥∥≤ ∑

∥∥∥T|Zn

∥∥∥
< ∑(2−nε +2−nε) = 2ε

(3.63)

In the next lemma we use the last lemma to prove that the set of all (∑`q)c0-strictly

singular operators on (∑`q)c0 is closed under addition and under scalar multiplication.

Lemma 3.8. The set of all (∑`q)c0-strictly singular operators on (∑`q)c0 is a linear

subspace of L ((∑`q)c0).

Proof. Let T and Q be two (∑`q)c0- strictly singular operators on (∑`q)c0 . We want to

prove that T+Q is a (∑`q)c0-strictly singular operator on (∑`q)c0 .

Suppose this is not the case. Then there exists a subspace X of (∑`q)c0 , isomorphic to

(∑`q)c0 , such that (T +Q)|X is an isomorphism. Thus, there exists a δ > 0 such that:

‖(T +Q)(x)‖ ≥ δ‖x‖ (3.64)

for all x ∈ X .

Since T is (∑`q)c0- strictly singular on (∑`q)c0 , then there exists a subspace Y of X

which is isomorphic to (∑`q)c0 such that ‖T|Y ‖< δ/2.

Since Q is (∑`q)c0-strictly singular on (∑`q)c0 , then there exists a subspace Z of Y

which is isomorphic to (∑`q)c0 such that ‖Q|Z‖< δ/2.
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Then we have:

‖(T +Q)(z)‖ ≤ ‖T (z)‖+‖Q(z)‖

< δ/2‖z‖+δ/2‖z‖= δ‖z‖
(3.65)

which contradicts the inequality (3.64).

Then T +Q is a (∑`q)c0-strictly singular operator on (∑`q)c0 .

Let α be a scalar. We want to prove αT is (∑`q)c0- strictly singular on (∑`q)c0 . By

the way of contradiction suppose this is not the case. Then there exists a subspace X of

(∑`q)c0 which is isomorphic to (∑`q)c0 such that (αT )|X is an isomorphism. Thus, there

exists δ > 0 such that:

‖(αT )(x)‖ ≥ δ‖x‖ (3.66)

for all x ∈ X .

Since T is (∑`q)c0-strictly singular operator on (∑`q)c0 , then there exists a subspace Y

of X which is isomorphic to (∑`q)c0 such that ‖T|Y ‖< δ/|α|.

Then we have:
‖(αT )(y)‖ = |α|‖T (y)‖

< |α| δ

|α|
‖y‖

= δ‖y‖

(3.67)

which contradicts the inequality (3.66). Then αT is a (∑`q)c0-strictly singular operator on

(∑`q)c0 .

Hence, the set of all (∑`q)c0-strictly singular operators on (∑`q)c0 is a linear subspace

of L ((∑`q)c0).

The next lemma shows that the set of all (∑`q)c0-strictly singular operators on (∑`q)c0

absorbs products (compositions) in L ((∑`q)c0).

Lemma 3.9. Let 1 < q < ∞. Then the set of all (∑`q)c0-strictly singular operators on

(∑`q)c0 forms an ideal in L ((Σ`q)c0).
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Proof. Let B be a (∑`q)c0-strictly singular operator on (∑`q)c0 and let A be an operator in

L ((Σ`q)c0).

We claim that AB is a (∑`q)c0-strictly singular operator on (∑`q)c0 .

Suppose this is not the case. Then there exists a subspace Z of (∑`q)c0 which is

isomorphic to (∑`q)c0 such that AB|Z is an isomorphism. Thus, there exists δ > 0 such

that ‖ABx‖ ≥ δ‖x‖ for all x in Z. Then ‖Bx‖ ≥ ‖A‖−1δ‖x‖ for all x in Z. Thus, B|Z is an

isomorphism and this is a contradiction.

Now, we claim that BA is a (∑`q)c0-strictly singular operator on (∑`q)c0 .

Suppose this is not the case. Then there exists a subspace Z of (∑`q)c0 which is

isomorphic to (∑`q)c0 such that BA|Z is an isomorphism. Then there exists δ > 0 such

that ‖BAx‖ ≥ δ‖x‖ for all x in Z. Then ‖Ax‖ ≥ ‖B‖−1δ‖x‖ for all x in Z. Thus, A|Z is an

isomorphism.

We have also that:

‖BAx‖ ≥ δ

∥∥∥∥ A
‖A‖

∥∥∥∥‖x‖
≥ δ‖A‖−1‖Ax‖,

(3.68)

then B|AZ is an isomorphism.

Since A|Z is an isomorphism and Z is isomorphic to (Σ`q)c0 , then AZ is isomorphic to

(Σ`q)c0 and since B|AZ is an isomorphism, then we get a contradiction.

Then AB and BA are (∑`q)c0-strictly singular operator on (∑`q)c0 . This result and the

lemma 3.8 prove that the set of all (∑`q)c0- strictly singular operators on (∑`q)c0 form an

ideal in L ((Σ`q)c0).

3.3 Main Result

Now we are ready to prove the main result. In order to prove the next theorem we will use

the lemma 3.6 which actually says that the ideal of all (∑`q)c0-strictly singular operators

on (∑`q)c0 is maximal in L ((∑`q)c0). We will use also the result of Dosev and Johnson

in [13] about the set MX to conclude the uniqueness of the ideal of all (∑`q)c0-strictly
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singular operators on (∑`q)c0 .

Theorem 3.10. Let 1< q<∞. The set of all (∑`q)c0-strictly singular operators on (∑`q)c0

is the unique maximal ideal in L ((∑`q)c0).

Proof. We will show that any ideal which contains elements not in the ideal of the (∑`q)c0-

strictly singular operators on (∑`q)c0 must coincide with L ((∑`q)c0).

Let T be an operator in L ((∑`q)c0) but not in the ideal of the (∑`q)c0-strictly singular

operators on (∑`q)c0 . Then there exists a subspace X of (∑`q)c0 which is isomorphic to

(∑`q)c0 and such that T|X is an isomorphism. Since X is isomorphic to (∑`q)c0 , then T X

is isomorphic to (∑`q)c0 . Hence, by lemma 3.6 the subspace T X contains a subspace Z

which is isomorphic to (∑`q)c0 and complemented in (∑`q)c0 .

Let B: Z → (∑`q)c0 be an onto isomorphism and let P: (∑`q)c0 → Z be a continuous

projection onto Z. Notice that T−1(Z) ⊆ X and since T|X is an isomorphism, then T|T−1(Z)

is also an isomorphism. Since Z is isomorphic to (∑`q)c0 , then T−1(Z) is isomorphic to

(Σ`q)c0 . Let A: (Σ`q)c0 → T−1(Z) be an onto isomorphism.

Notice that A and B◦P are in L ((∑`q)c0). Thus, any ideal containing T must contain

(B ◦ P) ◦ T ◦ A which is a one to one map of (∑`q)c0 onto (∑`q)c0 which by the Open

Mapping Theorem has a bounded inverse. Thus, any ideal containing T contains the

identity map, therefore, it must coincide with L ((Σ`q)c0). Thus, every proper ideal in

L ((Σ`q)c0) is contained in the ideal of (∑`q)c0-strictly singular operators on (∑`q)c0 , in

other words, the ideal of (∑`q)c0-strictly singular operators on (∑`q)c0 is maximal.

This proof shows that for X = (∑`q)c0 , if T is not X-strictly singular on X, then IX factor

through T, that is, the set MX = {T ∈L (X) : IX does not f actor through T} is included

in the set {T ∈L (X) : T is X− strictly singular on X}.

Now we claim that the set {T ∈L (X) : T is X− strictly singular on X} is included in

the set MX = {T ∈L (X) : IX does not f actor through T}.

Indeed, suppose T /∈MX , then IX factors through T. Thus, there exists A,B ∈L (X) so

that IX = AT B.
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Thus, for all x ∈ X we have that ‖x‖ = ‖AT Bx‖ ≤ ‖A‖‖T Bx‖ and this implies that

‖T Bx‖ ≥ ‖A‖−1‖x‖ for all x ∈ X . Then TB is an isomorphism. Thus, B is an isomorphism.

Since B is an isomorphism, then X is isomorphic to BX and since TB is an isomorphism,

then T|BX is an isomorphism. This implies that T is not X-strictly singular on X. This prove

the claim.

Hence, MX = {T ∈L (X) : T is X− strictly singular on X}.

Since the set of all X-strictly singular operators on X is closed under addition, then the

set MX is also closed under addition.

Thus, by the result of Dosev and Johnson in [13], the set MX is the unique maximal

ideal in L (X).

Then the set of all (∑`q)c0-strictly singular operators on (∑`q)c0 is the unique maximal

ideal in L ((∑`q)c0).
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Chapter 4

Final remarks and Open Problems

In this dissertation we have found that the unique maximal ideal in L (X) for X = (∑`q)c0

and 1 < q < ∞ is the set of all X-strictly singular operators on X but we have not described

the commutators in this space. In my future research I would like to be able of describing

the commutators on L (X). For now that description is still an open problem.

In [10] the authors defined a Wintner space X as a space where every non-commutator

in L (X) is of the form λ I+K, where λ 6= 0 and K lies in a proper ideal. They established

that the conjecture which says every infinite-dimensional Banach space is a Wintner space

is not true since there may be an infinite-dimensional Banach space such that every finite

rank commutator on X has zero trace. However, the conjecture that every Banach space that

admits a Pelczyński decomposition is a Wintner space is much tamer. This is still an open

problem. The authors also asked what happen if X is complementably homogeneous?.

The authors in [10] also asked questions about special cases:

1. Is every C(K) space a Wintner space when K is a compact space?

2. What if also K is metrizable?

3. Is C[0,1] a Wintner space?. The authors believes that a affirmative answer to

the question when X is complementably homogeneous solves this open problem,

however, they believe that is easier to solve the question about C[0,1] than the one

about X when X is complementably homogeneous.

4. Is every complemented subspace of Lp(0,1), 1 ≤ p < ∞, a Wintner space?. It

is even open whether every infinite-dimensional complemented subspace of L1 is

isomorphic to either L1 or to `1. In [6] was shown that there are many different (up

to isomorphisms) complemented subspaces of Lp for 1 < p 6= 2 < ∞. In this spaces

are included the Wintner spaces Lp, `p, `p⊕ `2, and Zp,2 as was shown in [14], [3],
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[15]. All of these spaces are complementably homogeneous and MX is an ideal of

L (X). We must remark that while `p and `2 admit a Pelczyński decomposition, its

direct sum does not.

5. Is the Rosenthal’s Xp space a Wintner space? (see [44]). In [10] the authors remarked

that the space Xp for 2 < p < ∞ was the first non-obvious complemented subspace of

Lp and it has played an important role in the development of the structure theory of

Lp. They say that this space is small in the sense that it embeds isomorphically

into `p ⊕ `2 but not as a complemented subspace.They remark that the space Xp

does not admit a Pelczyński decomposition but it does admit something called a

p,2 decomposition which serve as a substitute. They also remark that not every

operator in MXp is Xp-strictly singular because you can map Xp isomorphically into

a subspace of Xp that is isomorphic to `p⊕`2 and no isomorphic copy of Xp in `p⊕`2

can be complemented. They say that the ideas in [25] are useful to show that MXp is

an ideal in L (Xp), but this is still open.

Another important open problem is due to Brown and Pearcy and establish wheather

every compact operator on `2 is a commutator of compact operators. In fact for any Banach

space X the same question is open.

The authors in [10] asked the questions: for what Banach spaces X is every compact

operator a commutator of compact operators? . Is this true for every infinite dimensional

space X? . Is it true for some infinite dimensional space X?.

Also in [10] the authors asked the following question. Assume that X is a

complementably homogeneous Wintner space that it has a Pelczyński decomposition and

that MX is an ideal in L (X). If T is not in MX and T is a commutator does there exist a

complemented subspace X1 of X that is isomorphic to X and such that (I−PX1)T |X1 is an

isomorphism?.

The answer to the last question is affirmative for X = `p, 1≤ p≤ ∞, c0, Lp, 1≤ p≤ ∞

and Zp,q.
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In [53] the author believes there are positive solutions to the problems of classifying all

commutators on (∑`q)`∞ and (∑`∞)`p .

In [32] the authors stated that there is a major open problem which asks whether or

not there exists a Banach space X so that the ideal of the compact operators is a maximal

ideal of codimension one in L (X). Schlumprecht in [46] have developed a new method of

attacking this problem.
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