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Abstract

Diffuse optical tomography (DOT) is a new emerging modality in the diagnosis of

soft tissue abnormalities. DOT image quality substantially depends on the recon-

struction stage. In the literature, there are many reconstruction algorithms used in

DOT systems. However, some algorithms were improved for solving specific cases

but still need to be improved. The bi-conjugate gradient (BiCG) enhanced is one

of the conjugate gradient (CG)-based reconstruction techniques for non-Hermitian

systems. The BiCG provides a solution to a non-Hermitian system. However, it

has erratic convergence in some cases. Therefore, DOT images reconstructed by

BiCG can be at the wrong location and is inaccurate in some cases. In this study,

we used continuous-wave diffuse optical tomography (CW-DOT) to acquire mea-

surements from breast tissue phantoms with single or double inclusion at different

depths and center-to-center separations and we have used the transpose free quasi

minimal residual (TFQMR) reconstruction algorithm, improved as an alternative

to BiCG for the first time in the CW-DOT system. Moreover, we have experimen-

tally proved that TFQMR is superior to BiCG in some specific cases for the first

time in CW-DOT. Therefore, we concluded that TFQMR has the potential to be

able to be used in the reconstruction stage in CW-DOT.
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1 | INTRODUCTION

Breast cancer is one of the most common diseases world-
wide, and its early diagnosis could increase the effective-
ness of treatment and reduce mortality significantly.
Currently, the used diagnostic techniques for breast can-
cer detection are mammography, ultrasonography, and
magnetic resonance tomography; however, all these tech-
niques have limitations.1,2 Therefore, developing a nonin-
vasive breast imaging technique to detect breast cancer is
a necessity. One of those techniques is diffuse optical

tomography (DOT), used for imaging biological tissues
such as the brain and breast.3-15 Unlike others, DOT is
inexpensive and harmless for patients because of using
near-infrared light.

The optical properties of biological tissues can be
characterized by in terms of absorption (μa) coefficient,
scattering (μs) coefficient, anisotropy, and refractive
indexes of tissues.11 DOT uses the optical properties of
blood distribution of tissue to create an image. DOT sys-
tems use many reconstruction algorithms to image tissue,
and also the reconstructed images are processed to
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increase the image quality. Although there are many
reconstruction algorithms, the Krylov subspace recon-
struction algorithms are proven to be better to solve large
systems of equations than other algorithms.16-18 The Con-
jugate Gradient (CG) algorithm19,20 is one of the most
preferred Krylov subspace algorithms used to solve non-
Hermitian, positive definite matrix systems. However, it
fails to satisfy to solve non-Hermitian matrix systems.

The bi-conjugate gradient method (BiCG) is another
CG-based algorithm developed21 to solve non-Hermitian
linear systems. The BiCG algorithm may not work for an
approximate solution in some cases.22,23 Two significant
properties of CG-based reconstruction methods are
required to produce an approximate solution for non-
Hermitian systems. The first property is a minimization
over Krylov subspace. The second one is that low and con-
stant storage requirements and work per iteration can be
enough to solve the system.22,23 A CG-based reconstruc-
tion algorithm should have these two properties to solve
non-Hermitian systems. However, the BiCG developed for
solving non-Hermitian systems has only the second one
because BiCG iterates based on a Galerkin condition,21

but not a minimization property. Therefore, the BiCG
algorithm shows wild oscillations resulting in irregular
convergence behavior and numerical instabilities.22-25

Freund and Nachtigal proposed quasi minimal residual
(QMR) algorithm to overcome the drawback of the BiCG.23

The QMR algorithm solves the irregular convergence prob-
lem; however, like the BiCG, the QMR algorithm needs the
matrix-vector multiplications of coefficient matrix (A) and
its transpose (AT) to solve a linear equation.23 It is a disad-
vantage. Therefore, the transpose free implementation
quasi minimal residual (TFQMR), which does not need any
matrix–vector multiplication, was developed by Freund.22

BiCG and TFQMR reconstruction algorithms have never
been used as reconstruction algorithms in continuous-wave
diffuse optical tomography (CW-DOT) systems and never
compared with each other.

In the study, CW-DOT experiments were performed
on the breast tissue phantoms, including inclusions at
different depths and center-to-center separations and
reconstructed by TFQMR and BiCG algorithms to be
compared based on the correctly locating the depths of
the inclusion and spatial resolution in case of having
double inclusion in the tissue phantoms.

2 | MATERIAL AND METHODS

2.1 | Light transport in tissue and
solution of diffusion equation

The distribution of light within a tissue depends on the
light wavelength, absorption coefficient, scattering

coefficient, scattering anisotropy, and refractive indexes
and is expressed mathematically and physically by the
Radiative transfer equation (RTE) (Equation (1))11.
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refers to radiance. Since there is no analytical solution of
the RTE, it is approximated diffusion equation
(DE) (Equation (2)).11,26,27 DOT systems have three
approaches: time-domain, frequency-domain, and
continuous-wave.28 Since our system has been designed
as CW-DOT,29 the DE can be expressed as Equation (2).

Dr2Φ rð Þ� cμa rð ÞΦ rð Þ¼�cS rð Þ ð2Þ

Φ(r) (W/m2) is the light flux at the r point. In a DOT sys-
tem, the DE must be a resolvable form to create a tomo-
graphic image. The Born and Rytov approaches, the most
basic approaches used in the solution of the DE, should
be used to do this.4,8,30 The Rytov approximation assumes
that the light flux is written exponentially as
Equation (3).31,32

Φ rð Þ¼Φ0 rð Þexp Φscat rð Þð Þ, Φ0 rð Þ�Φscat rð Þ ð3Þ

μa rð Þ¼ μa,0 rð Þþμa,1 rð Þ μa,0 rð Þ� μa,1 rð Þ ð4Þ

Φ0 refers to the measurement obtained from a homoge-
neous medium. Φscat refers to the change in the light flux.
μa,0 is the absorption coefficient of the homogeneous
medium, and μa,1 is the difference in the absorption coef-
ficient between the inclusion and the homogeneous
medium. Then, Equation (5) is obtained by arranging
Equation (3).

Φscat ¼ ln
Φ
Φ0

� �
ð5Þ

The DE with Rytov approximation can be again
expressed as Equation (6).32

Φscat rd,rsð Þ¼� 1
Φ0 rd,rsð Þ

ð
G r� rdð Þ

D
cΔμa rð ÞΦ0 r,rsð Þd3r ð6Þ

G(r� rd) refers to the Green function of the detector and
the voxel, Φ0(rd, rs) refers to the light flux from the source
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to the detector, and Φ0(r, rs) refers to the light flux
between the source and the voxel. rs indicates the posi-
tion of the source and rd indicates the position of the
detector. Equation (6) can be expressed in a discrete form
as Equation (7) to create images based on the attenuation
over voxels.

�ln
Φ
Φ0

� �
¼ cVv

D

X
jϵvoxel

Φ0 rs,rj
� �

Φ0 rj,rd
� �

Δμa rj
� � ð7Þ

Vv indicates the volume of the voxel and rj indicates the
position of the voxels. Φ0(rs, rj) refers to the light flux
from a source to a jth voxel, and Φ0(rj, rd) refers to the
light flux from jth voxel to a detector. Then, Φ0(rs, rj) and
Φ0(rj, rd) are arranged as the following:

Ai,j ¼Φsource rsi ,rj
� �

Φdedector rj,rdi
� �

: ð8Þ

Ai,j defines the weight function between ith source and
jth detector over all the voxels. rsi is ith source position,
rdi is ith detector position and rj is jth voxel position.
Combining Equation (8) and Equation (7) provides
Equation (9).
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y1, y2,…, yM is perturbation data (ln Φ
Φ0

� �
) obtained from

the homogenous and non-homogeneous medium.
[Δμa(r1), Δμa(r2), …, Δμa(rn)] refers to a change in the
absorption coefficients from the background for each
voxel. M is the measurement number, N is the total num-
ber of voxels. Since c, D, and Vv are not variables, this
part is defined as below.
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Then, Equation (9) can be expressed as a linear equation
(Equation (11)) using Equation (10).8,30 The equation is
defined mathematically as a forward problem.

y¼Ax ð11Þ

It is necessary to solve the inverse problem
(Equation 12) to reconstruct an image in our DOT.

x¼A�1y ð12Þ

y is a measurement data called perturbation data, A is a
coefficients matrix obtained using Monte Carlo
simulations,29 and x is a matrix of unknowns rep-
resenting a distribution of the absorption coefficients in
Equation (12).

2.2 | Reconstruction algorithms

In obtaining tomographic images in the CW-DOT sys-
tems, many reconstruction algorithms solve the inverse
problem. However, Krylov subspace reconstruction algo-
rithms provide a better solution to large, sparse scale sys-
tems of equations.16-18 We have used two subspace
algorithms to solve the inverse problem with non-
Hermitian data in the study. One of them is BiCG, devel-
oped for solving non-hermitian systems. Another one is
TFQMR, an improved version of QMR.

2.2.1 | Bi-conjugate gradient

The CG algorithm19,20 provides a smooth convergence for
large, sparse, and non-Hermitian matrix systems. It pro-
duces residual (r) (Equations (14) and (16)), search (p)
(Equations (13) and (15)), and unknowns (x) vectors per
each iteration to solve the system. It uses search vectors
(p) obtained by using residuals (r) (Equation (16)),
namely that the working principle of the CG is to use the
subspace (Equations (13) and (14)) to reach the solution.
For the CG algorithm, see the Ref. 19.

Pi ¼ span p0,Ap0,A
2p0,…,Ai�1p0

� � ð13Þ

¼ span r0,Ar0,A2r0,…,Ai�1r0
� � ð14Þ

piþ1 :¼ riþ1þβiþ1pi ð15Þ

riþ1 :¼ ri�αiApi ð16Þ

α is a constant of orthogonality relation, and β is Gram-
Schmidt constant. Although the CG provides the solution
for such a system, it is not satisfied with the non-
Hermitian system because A must be symmetric and
positive-definite. Therefore, the BiCG was improved to
solve the non-Hermitian system.33 The BiCG uses the
same subspaces with CG but another subspace defined in
Equation (17), which is orthogonal to the Pi subspace.
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Li ¼ span w0,ATw0, AT
� �2

w0,…, AT
� �i�1

w0

� �
ð17Þ

Therefore, the BiCG does not need a symmetric coef-
ficient matrix while solving a system. The BiCG uses
additional two vectors (Equations (18) and (19)) being
intrinsic to Li subspace, in addition to others in CG
(Equations (15) and (16)).

r�i ¼ r�i�1�αiA
Tp�i ð18Þ

p�i ¼ r�i�1�βip
�
i�1 ð19Þ

In reaching the solution, the BiCG continues iteration
until it finds a suitable vector fulfilling the following
conditions;

r�i ,rj
� �¼ 0, i≠ j ð20Þ

p�i ,Apj
� �

¼ 0, i≠ j ð21Þ

Although the BiCG algorithm was created for non-
Hermitian systems, it is numerically unstable due to wild
oscillation results in irregular convergence behavior.22,23

For the detailed BiCG algorithm, see the Ref. 21,34 or
Supporting Information.

2.2.2 | Transpose free quasi minimal
residual

Freund and Nachtigal have proposed the QMR23-25 for
solving the irregular convergence behavior problem sys-
tems of linear equations. The QMR method based on the
non-symmetric Lanczos process requires matrix–vector
multiplications with the A and AT to obtain a
solution.22-25

v1,w1 � ∁N,with v1k k¼ w1k k¼ 1 ð22Þ

span v1,v2,…,vnf g¼Kn v1,Að Þ n¼ 1,2,… ð23Þ

span w1,w2,…,wnf g¼Kn w1,A
T

� �
n¼ 1,2,… ð24Þ

The non-symmetric Lanczos algorithm generates two
sequences of vectors v1, v2, … (Equation (23)) and w1, w2, …
(Equation (24)) by starting with initial vectors
(Equation (22)) for n = 1, 2, …; hence, it requires transpose
of the coefficient matrix. Thus, Freund proposed the
TFQMR method to overcome the problem by modifying

the QMR algorithm.22 A non-singular matrix satisfying the
following condition (Equation (25)) is used to choose the
second initial vector arbitrarily w1 (Equation (26)). Also,
the non-singular matrix is used for computing the
sequence of vectors w1, w2, … (Equation (27)); hence, AT

can be omitted. For the detailed TFQMR algorithm, see
the Ref. 22 or Supporting Information.

ATS¼ SA, S� ∁NxN ð25Þ

w1 :¼ 1
Sv1k k Sv1 ð26Þ

wn ¼ γn
Sv1k k Svn ¼ 1

Svnk k Svn ð27Þ

2.3 | CW-DOT system

In the CW-DOT system, a diode laser with a wavelength
of 808 nm was used. The CW-DOT system consists of
49 detectors and 49 source fibers embedded in the matrix
of 10� 10. The light is delivered to the tissue phantom
with the source fibers sequentially, and back-reflected
light is detected at the same time by all detector fibers.5

In Figure 1, the system is shown schematically.

2.4 | In-vitro experiments

In-vitro measurements acquired from a tissue phantom
consists of a mixture of pure water, Intralipid, and
Indocyanine Green (ICG). For the tissue phantom, a
30� 15� 20 cm intralipid-water tank was designed using
black Delrin to avoid reflection light from the surfaces
(Figure 2).

Scattering and absorption coefficients of the tissue
phantom were 10 cm�1 and 0.004 cm�1 at 808 nm. In the
literature, the absorption coefficient of the breast tissue
at 635 nm is smaller than 0.2 cm�135; however, we deter-
mined 0.004 cm�1 at 808 nm to model breast tissue
because a breast generally consists of fat tissues and the
absorption coefficient of fat tissue at approximately
800 nm is 0.004 cm�1. We utilized from Oregon Medical
Laser Center (OMLC) for this (https://omlc.org/spectra/
fat/, Date Accessed: January 20, 2021).

ICG was used to enable the phantom and inclusions
to show the optical properties of the breast tissue and
tumors, respectively. First, a mixture of ICG and pure
water was prepared using the following calculations
(Equations (28)–(30)). It is known that the absorption
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coefficient of a 10 μM ICG solution for a light at 808 nm
wavelength is 3.419 cm�1 and its molecular weight is
775 g. With this information, the molarity formula was
utilized to calculate the ICG mass used for preparing the
phantom and inclusions model of tumors.

M¼ n
V

ð28Þ

M is molarity, n is moles, and V is volume.

n¼ m
Ma

ð29Þ

m is mass, Ma is molecular weight.
Equation (30) is obtained using Equations (28)

and (29).

m¼MVMa ð30Þ

The amount of pure water required to be added per 1 mg
of ICG to form the ICG–water solution was determined
using Equation (30). In this way, 10 μM solution was pre-
pared with 1 mg ICG and 129 mL pure water. Then,
5000 mL of intralipid and ICG–water mixture was

FIGURE 1 Diffuse optic

tomography system [Color figure

can be viewed at

wileyonlinelibrary.com]

FIGURE 2 Water–intralipid tank [Color figure can be viewed

at wileyonlinelibrary.com]

FIGURE 3 Inclusion made by a mixture of 1% Intralipid, pure

water, and ICG
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prepared within the intralipid tank. The required molar-
ity was calculated firstly for the absorption coefficient of
this mixture to be 0.004 cm�1. Then, it was decided at
what ratio the ICG–water mixture to be added according
to this molarity.

After preparing the breast phantom similar to breast
tissue, inclusions were created. That the angiogenesis
around the tumorous structures is more intense than
the normal tissue causes the absorption coefficient of
tumors to be higher than the normal breast tissue.
Based on this, we utilized hemoglobin data of OMLC
(https://omlc.org/spectra/, Date Accessed: January
20, 2021). Thus, we determined the absorption coeffi-
cient of inclusions to be 0.016 cm�1. The same proce-
dures applied when creating the phantom were also
followed to create inclusions.

The absorption coefficient of the phantom and inclu-
sions were measured using a UV–VIS spectrometer. The
average absorption coefficients of the phantom and inclu-
sions were approximately 0.004 and 0.016 cm�1, respec-
tively. The inclusions were prepared by filling a
transparent balloon with the intralipid–ICG–water mix-
ture (Figure 3).

The inclusion was placed at a depth of 0.7 cm and
then 1.5 cm in the breast phantom. Then, the data was
obtained using the DOT system, and it was used in the
reconstruction stage to compare the depth-dependent res-
olutions of both algorithms. In both depths, the inclusion
was at the center of the x–y plane of the optical fiber
probe. Then, two inclusions with center-to-center dis-
tances of 2 cm were placed at a depth of 0.9 cm to investi-
gate the algorithms' ability in imaging the two inclusions.

FIGURE 4 Reconstructed images of the tissue phantom with the inclusion at a depth of approximately 0.7 cm. (A) and (C) are the

presentation of the inclusion in the X–Z plane and the X–Y plane reconstructed by BiCG. (B) and (D) are the presentation of the inclusion in

the X–Z plane and X–Y plane reconstructed by TFQMR. The dashed line circles indicate the actual size and location of the inclusion. Color

bars represent the change of absorption coefficient [Color figure can be viewed at wileyonlinelibrary.com]
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3 | RESULTS

The source and detector fibers cannot transmit light at
the same level intensity. Namely, the distance between
the different source-detector pairs with the same neigh-
borhood is different from each other even if it is tiny;
thus, all source and detector fibers cannot carry the light
with the same intensity. Therefore, calibration measure-
ments were taken on the phantom without any inclusion
at first. After taking these measurements, inclusions were
placed carefully into this at the desired locations in the
phantom. After taking the measurements, the system was
calibrated. At this stage, before being entered into any
reconstruction process, the measurements taken with the

DOT system were divided into the calibration data taken
without inclusion in the intralipid (Equation (31)).

R¼Mmeasurement

Mcalibration
ð31Þ

Mmeasurement is the measurement with inclusion, and
Mcalibration is the data taken on a homogeneous mixture
without inclusion. In this way, the calibrated data (R) is
made independent of the light-emitting and light-
collecting efficiency of the fibers.

The inclusions were placed at different depths and
locations within the phantom after the calibration mea-
surements were performed. Then, data acquired from the

FIGURE 5 Reconstructed images of the tissue phantom with the inclusion at a depth of approximately 1.5 cm. (A) and (C) are of

presentation of the inclusion in the X–Z plane and X–Y plane reconstructed by BiCG. (B) and (D) are the presentation of the inclusion in the

X–Z plane and X–Y plane reconstructed by TFQMR. The dashed line circles indicate the actual size and location of inclusion. Color bars

represent the change of absorption coefficient [Color figure can be viewed at wileyonlinelibrary.com]
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phantom by CW-DOT. Data acquired from the tissue
phantoms, including one or two inclusions, were used in
the reconstruction process by TFQMR and BiCG.

In the first experiment, the inclusion was placed at a
depth of approximately 0.7 cm. Then, the tissue phantom
was reconstructed by both algorithms. As seen in
Figure 4, the depth of the inclusion is 0.68 and 0.70 cm at
the images reconstructed by BiCG and TFQMR, respec-
tively. The difference between the depth of the images is
0.02 cm and negligible.

In the second experiment, the inclusion was placed at
a depth of approximately 1.5 cm. As seen in Figure 5(A),
the inclusion is not at its actual depth, nearly 4 mm
above its actual location in the image reconstructed by
BiCG. However, the image produced by BiCG is the more

similar shape of the inclusion. Even though the TFQMR
algorithm reconstructs a dispersed image (Figure 5(B,D)),
the inclusion is at its actual depth.

In the third experiment, two inclusions were placed
at a depth of approximately 0.9 cm with a center-to-
center separation of approximately 2 cm to test the accu-
racy of both reconstruction algorithms. The TFQMR was
observed to reconstruct a more accurate image than
BiCG. In the TFQMR-reconstructed image, the two inclu-
sions are at correct locations, and they seem to separate
from each other (Figure 6(B,D)). In the BiCG-
reconstructed images, one of the inclusions is unclear,
although one is accurately seen (Figure 6(A,C)).

In the fourth experiment, two inclusions were placed
at a depth of approximately 0.7 cm with center-to-center

FIGURE 6 Reconstructed images of the tissue phantom with two inclusion inclusions at a depth of approximately 0.9 cm and center-to-

center distance of approximately 2 cm. (A) and (C) are of presentation of the inclusions in the X–Z plane and X–Y plane reconstructed by

BiCG. (B) and (D) are the presentation of the inclusions in the X–Z plane and X–Y plane reconstructed by TFQMR. The dashed line circles

indicate the actual size and location of inclusion. Color bars represent the change of absorption coefficient [Color figure can be viewed at

wileyonlinelibrary.com]
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separation of approximately 1.4 cm which is 0.6 cm
smaller than the separation of the third experiment. As
seen in Figure 7, TFQMR created a more accurate image
again than BiCG. BiCG created an unclear image (Figure 7
(A,C)).

In the fifth experiments, the inclusion was placed at a
depth of approximately 0.9 cm. As seen in Figures 4, 5,
and 8, depth is a significant parameter affecting to be
reconstructed an image correctly. Like the second experi-
ment, TFQMR created an image with the correct location
again (Figure 8), although it is a dispersed image.

In all the experiments, the single inclusion was placed
to three different depths, and double inclusions were
placed to two different depths with two different center-
to-center separations. Then, CW-DOT data, acquired
from the tissue phantoms, were reconstructed by TFQMR
and BiCG. These experiments confirm the superiority of

the TFQMR algorithm over BiCG in determining the
actual depth of inclusion. Although the TFQMR requires
a higher number of iterations than the BiCG, it has pro-
vided better solutions in cases where the matrix structure
is inconvenient to solve.

4 | DISCUSSION

There are three approaches for accomplishing DOT;
time-domain, frequency-domain, and continuous-wave.
Each approach has disadvantages and advantages. CW-
DOT systems are less expensive, but their image quality
is lower than the others. It is the most significant disad-
vantage of it and needed to be solved. Therefore, we
focused on reconstruction, one of the most critical pro-
cesses affecting image quality.

FIGURE 7 Reconstructed images of the tissue phantom with two inclusion inclusions at a depth of approximately 0.7 cm and center-to-

center distance of approximately 1.4 cm. (A) and (C) are of presentation of the inclusions in the X–Z plane and X–Y plane reconstructed by

BiCG. (B) and (D) are the presentation of the inclusions in the X–Z plane and X–Y plane reconstructed by TFQMR. The dashed line circles

indicate the actual size and location of inclusion. Color bars represent the change of absorption coefficient [Color figure can be viewed at

wileyonlinelibrary.com]
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CW-DOT systems use many reconstruction methods
to solve large systems. However, CG-typed reconstruction
methods are proven to be the most effective iterative
method to find a solution of large, sparse, non-Hermitian,
positive definite linear systems in CW-DOT sys-
tems.16-19,36 In our previous study, we used Algebraic
Reconstruction (ART), Simultaneous Iterative Recon-
struction (SIRT), Truncated Singular Value Decomposi-
tion (TSVD), and Truncated Conjugate Gradient (TCG)
techniques and compared them with each other.17,18 In
the study, we inferred that the TCG technique provides
better images for our CW-DOT systems in line with the
literature. However, obtaining the correct depth of
the inclusions and low spatial resolution were still
needed to be improved.

Although the CG technique is one the most powerful
technique to solve large sparse linear systems with Her-
mitian positive definite coefficient matrices, it does not
provide a better solution to systems with non-Hermitian,

non-singular matrices.22-25 The BiCG technique was
improved to solve systems with non-Hermitian, non-
singular matrices. However, it was proved mathemati-
cally to have irregular convergence behavior and may
result in breakdowns. In solving non-Hermitian systems,
a CG-based reconstruction algorithm must possess two
significant properties. These properties are the generating
iterations defined by minimization over Krylov-subspace,
and the computing with low and constant storage
requirements and less work per iteration.23-25 However,
the BiCG algorithm provides only the second one because
the iteration step of the BiCG is defined as a Galerkin
condition but not minimization.21,23,34 Therefore, the
BiCG can exhibit wild oscillatory residual behavior being
irregular converged. Freund and Nachtigal put forward
the QMR technique providing smooth convergence
behavior to overcome the problem.23 Unlike the BiCG,
the iteration of the QMR is defined as a minimization
property, called a quasi-minimal residual property.

FIGURE 8 Reconstructed images of the tissue phantom with the inclusion at a depth of approximately 0.9 cm. (A) and (C) are the

presentations of the inclusion in the X–Z plane and X–Y plane reconstructed by BiCG. (B) and (D) are the presentations of the inclusion in

the X–Z plane and X–Y plane reconstructed by TFQMR. The dashed line circles indicate the actual size and location of inclusion. Color bars

represent the change of absorption coefficient [Color figure can be viewed at wileyonlinelibrary.com]

10 SEVIM ET AL.

http://wileyonlinelibrary.com


Therefore, the QMR converges smoother than the BiCG.
However, like the BiCG, the QMR needs multiplications
of the coefficient matrix and its transpose to generate a
solution.22,23 Although the QMR exhibits smooth conver-
gence, the multiplications put it at a disadvantage in
some cases. For this disadvantage, the Conjugate Gradi-
ent Squared (CGS) technique was proposed by
Sonneveld.37 The CGS does not need a matrix–vector
multiplication of a coefficient matrix with its transpose.
However, like the BiCG, the CGS iterates are also charac-
terized by a Galerkin condition; thus, it exhibits irregular
convergence behavior. Freund proposed the TFQMR
technique for solving these problems and disadvan-
tages.22 The TFQMR is different from the QMR technique
mathematically. The TFQMR was derived by changing
two vector sequences used in the CGS. Although TFQMR
needs more iterates than BiCG, it provides smooth con-
vergence. Therefore, we integrated it into our CW-DOT
system and tested it.

BiCG and TFQMR have been used in the CW-DOT sys-
tem for the first time, and it has been first time experimen-
tally proved that the TFQMR algorithm is better than
BiCG for difficult situations in this study. For the test, we
performed some experiments in which the CG-based algo-
rithm is insufficient to reconstruct. Although TFQMR pro-
vides images with similar quality in some cases, it offers
images with better quality in difficult conditions. Because
the breast has more complex and heterogeneous than one
modeling breast tissue in the intralipid experiments, it has
shown which is more convenient to be used as the recon-
struction algorithm of clinical CW-DOT systems.

5 | CONCLUSION

We have compared TFQMR and BiCG reconstruction
algorithms with each other in a CW-DOT system. Both
algorithms have been used to reconstruct CW-DOT data
acquired from the tissue phantoms at different depths
and with multiple inclusions (Figures 4–8). It has been
shown that TFQMR provides images in the correct loca-
tion, but BiCG not. We have also observed that TFQMR
can create more accurate images of multiple inclusions
with a better spatial resolution than BiCG. We have
experimentally shown at the first time that TFQMR has
the potential to be used in CW-DOT systems.

6 | FUTURE WORK

In this article, the TFQMR algorithm has been shown to
provide a better solution to low accuracy problems in
DOTs images. However, data were obtained from a breast

phantom with inclusions modeling tumor. We are plan-
ning to reconstruct ex-vivo breast phantom imaging and
clinical breast imaging using the TFQMR algorithm.
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