
International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 11 – Issue 3, June 2022

www.ijcit.com 79

Comparison of A* Algorithm and Greedy Best Search

in Searching Fifteen Puzzle Solution

Charisma Tubagus Setyobudhi

Department of Computer Science, Faculty of Technology and Engineering, Diponegoro University,

Jl. Prof. Soedharto SH, Tembalang, Semarang-Indonesia

Email: charismatubagus [AT] lecturer.undip.ac.id

Abstract— Artificial Intelligence is an exciting field to research.

Artificial Intelligence itself is a broad subject. The application of

artificial intelligence in daily routine is various. One of the usages

of artificial intelligence is finding the shortest route on a map. In

general, the algorithm which can be used for finding the shortest

route is A*. A* is often used in finding the shortest route in a

graph or map. Generally speaking, A* is used to make a game,

especially for finding the shortest route of an intelligent agent

inside it. In this paper, the finding solution of puzzle game using

A* and Greedy Best First Search is to be discussed. The puzzle

game which is discussed is the Fifteen Puzzle. This research

compares the two algorithms used, A* and Greedy Best First

Search. This research shows that Greedy Best First Search gives

a slightly faster solution than A*.

Keywords- A*, Artificial Intelligence, Fifteen Puzzle, Greedy

Best First Search

I. INTRODUCTION

Artificial Intelligence and Searching algorithms are needed
in computer programming [1]. Searching algorithms can solve
many cases. The searching algorithm can be classified into two
types which are BFS(Breadth-First Search) and DFS(Depth
First Search). Theoretically, those two searching algorithms are
very different in finding mechanisms. Generally, these two
algorithms can be used for uninformed searches to find the
solution. However, some algorithms can be used if the problem
has cost information. For example, in the case of finding the
shortest path from one place to another place, we can use the
Dijkstra algorithm and A*. A* algorithm is rapid in finding the
shortest route [2].

Dijkstra Algorithm and A* are very different in calculating
the cost of searching. In the Dijkstra algorithm, there is no
heuristic calculation, and on the other hand, A* uses heuristic
cost information. The heuristic cost value in A* is used for
effectiveness and efficiency in searching solutions. A* is often
used to find the shortest path in the graph or the available map.
Other than finding the shortest route, A* is usually used in
scheduling[3], ship path planning[4], mobile robot[5], robotic
fish[6], parking guidance system[7], UAV path planning[8],
road network path planning[9], autonomous land vehicle[10].

A* is a searching algorithm for the graph which contains
cost information known to the user. A* has the intention to
search the shortest route from one place to another place. In

each looping iteration, A* has to decide which path has the
least cost to explore. A* tries to minimize the searching cost
which is written in the formula: f(n) = g(n) + h(n) [11,12]. F(n)
is the total cost that has to be considered for every node or
place being explored. G(n) is the cost calculated from the
origin to the current place (n). H(n) is the heuristic cost
calculated from the current place to the destination. The usage
of the heuristic cost function makes A* and Dijkstra different
[13].

Typically, the implementation of A* is using Priority
Queue for its data structure. Priority Queue is a data structure
that maintains that that queue's head node is always at a
minimum. A* Algorithm uses two kinds of the data structure
for its storage purpose. These two data structures are the Open
Set and Closed Set. Open Set can use a priority queue which
has already been explained before, and open Set has the Set of
nodes that the algorithm has not explored.

Meanwhile, Closed Set is the data structure in which has
the Set of nodes has been explored. In general, the calculation
of the heuristic of A* is various. However, the one method
used frequently in calculating heuristic is the Euclidean
Distance or Manhattan Distance. The pre-requisite of the
heuristic function being used in calculating f(n) cost is
admissible. The admissible heuristic means that the heuristic
cost function never overestimates the actual cost. Some of the
development of the A* algorithm is TPA*(Turning Point
A*)[14], D*[15], Time-Efficient A*[16], IDA*[17]. Typically,
A* can be implemented using a grid system, navigational
mesh[18], or maze[19].

On the other hand, the greedy algorithm uses a similar
method compared to A*. It is slightly different from A*
because the greedy algorithm only uses a heuristic cost
function. So the cost function can be formulated : f(n) =
h(n)document is a template

II. RESEARCH METHOD

The application for solving Puzzles is made to find the

solution to that puzzle problem. In the more extensive view of

this problem, this program is made by using several steps. The

steps are (1) generating the problem by reading input from text

file, (2) the usage of A* and Greedy Best First Search for

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 11 – Issue 3, June 2022

www.ijcit.com 80

finding the solution, (3) the visualization of step by step

solution by using OpenGL library.

To read the initial state of the problem in Fifteen Puzzle,

there is a need for a text file that can be modified easily by a

text editor. One instance of that text file for Puzzle's problem

can be depicted below::

1 2 4 8

6 9 3 12

5 11 7 0

13 10 14 15

We can easily read the text file using the file input/output

library, which C++ already provides.

Below is the pseudocode for finding a solution using

the A* algorithm or Greedy Best First Search (Table 1).

Table 1. Solution Finder Pseudocode

void FindSolution(Pstate *initial, Pstate *goal){

 if (!mInitStartGoal){

 clearOpenList();

 clearClosedList();

 clearPathToGoal();

 }

 SetStartAndGoal(initial, goal);

 else{

 ContinueFindPath();

 }

}

The searching algorithm which is being used uses

iteration as the primary process. This continuously checks the

state of the puzzle whether it has reached the goal state or not

yet. If the goal state has not been reached, the search for a

solution must continue. Both A* and Greedy Best First Search

start the search process by setting the initial and goal states.

This can be depicted by looking at the below pseudocode.

Table 2. Main Program Pseudocode

PState *initial = new PState(true);

 PState *goal = new PState(false);

 for (int i = 0 ; i < BOARD_W; i++)

 for(int j = 0 ; j < BOARD_H; j++)

 goal->m_CurrentState[i][j] =

g_GoalState[i][j];

 astar->FindSolution(initial, goal);

 //Run AStar

 while (astar->m_foundGoal == false && astar-

>getOpenListSize() >0){

 if (astar->iteration > MAXITERATION)

 break;

 astar->ContinueFind();

 }

Below is the pseudocode for calculating the heuristic cost for

the A* algorithm and Greedy Best First Search (Table 2).

Table 3. Heuristic Computation Pseudocode

void ComputeHeuristic(){

 //calculate Heuristic based on the wrong position

 H = 0;

 for(int I = 0 ; I < BOARD_W; i++)

 for (int j = 0 ; j < BOARD_H; j++)

 if (m_CurrentState[i][j] != g_GoalState[i][j])

 H++;

 F = G + H;

}

To calculate the heuristic value, we use the computation

method of using its positions that are different from the goal

state. If the position of the puzzle piece is not the same as the

goal state, the heuristic value will be incremented.

 In implementing A* and Greedy Best First Search,

there are several components whithatcome the central core of

that algorithm. These components are described in the form

below classes:

 PState(Puzzle State)

PState is one component that has a function to store

the puzzle state data. This PState stores the states by

using a 2D array of matrices for storing the number

in the puzzle pieces.

 AStar

AStar is one component acting as the main motor

engine for the A* algorithm and Greedy Best First

Search. In the AStar component, several functions or

methods have the task of running the algorithm.

 OGL

OGL component is the component for drawing the

PState using the OpenGL library.

 Main

The Main class is the main component for the

program in which the program is run the first time.

This class is the entry point for the program to run

these components can be illustrated by looking at the

below diagram.

Figure 1. Program Component Classes

PState AStar OGL

Main

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 11 – Issue 3, June 2022

www.ijcit.com 81

III. RESULT AND DISCUSSION

Below is the result of the testing of A*/Greedy Fifteen Puzzle:

Figure 2. Initial State of Fifteen Puzzle

Figure 3. Goal State of Fifteen Puzzle

In figure 1, the initial state is the puzzle state which

has been scrambled by reading the txt input file as described in

the research method. Meanwhile, in figure 2, the goal state is

the state of the puzzle having the number is in place (ordered)

Below is the result of the searching solution step by step by

using the A* algorithm(Table 4)

Table 4. A* Algorithm Step By Step Solution Result

Step Puzzle State Cost

1 1 2 4 8

6 9 3 12

5 11 7 0

13 10 14 15

F = 13 G = 0 H =

13

2 1 2 4 8

6 9 3 0

5 11 7 12

13 10 14 15

F = 13 G = 1 H =

12

3 1 2 4 0

6 9 3 8

5 11 7 12

13 10 14 15

F = 13 G = 2 H =

11

4 1 2 0 4

6 9 3 8

5 11 7 12

13 10 14 15

F = 13 G = 3 H =

10

5 1 2 3 4

6 9 0 8

5 11 7 12

13 10 14 15

F = 13 G = 4 H =

9

6 1 2 3 4

6 9 7 8

5 11 0 12

13 10 14 15

F = 13 G = 5 H =

8

7 1 2 3 4 F = 13 G = 6 H =

6 9 7 8

5 0 11 12

13 10 14 15

7

8 1 2 3 4

6 0 7 8

5 9 11 12

13 10 14 15

F = 14 G = 7 H =

7

9 1 2 3 4

0 6 7 8

5 9 11 12

13 10 14 15

F = 14 G = 8 H =

6

10 1 2 3 4

5 6 7 8

0 9 11 12

13 10 14 15

F = 14 G = 9 H =

5

11 1 2 3 4

5 6 7 8

9 0 11 12

13 10 14 15

F = 14 G = 10 H =

4

12 1 2 3 4

5 6 7 8

9 10 11 12

13 0 14 15

F = 14 G = 11 H =

3

13 1 2 3 4

5 6 7 8

9 10 11 12

13 14 0 15

F = 14 G = 12 H =

2

14 1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 0

F = 13 G = 13 H =

0

In the second column of the above table, is the position or

state of the puzzle pieces. The third colum has the calculation

of the F, G and H cost. By looking at the table, we can

conclude that the algorithm can find the solution which we

want.

Below is the result of the searching solution step by step by

using the Greedy Best First Search algorithm (Table 5)

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 11 – Issue 3, June 2022

www.ijcit.com 82

TABLE 5. Greedy Best- Search Algorithm Step by Step

Solution Result

Step Puzzle State Cost

1 1 2 4 8

6 9 3 12

5 11 7 0

13 10 14 15

F = 13 G = 0 H =

13

2 1 2 4 8

6 9 3 0

5 11 7 12

13 10 14 15

F = 12 G = 0 H =

12

3 1 2 4 0

6 9 3 8

5 11 7 12

13 10 14 15

F = 11 G = 0 H =

11

4 1 2 0 4

6 9 3 8

5 11 7 12

13 10 14 15

F = 10 G = 0 H =

10

5 1 2 3 4

6 9 0 8

5 11 7 12

13 10 14 15

F = 9 G = 0 H = 9

6 1 2 3 4

6 9 7 8

5 11 0 12

13 10 14 15

F = 8 G = 0 H = 8

7 1 2 3 4

6 9 7 8

5 0 11 12

13 10 14 15

F = 7 G = 0 H = 7

8 1 2 3 4

6 0 7 8

5 9 11 12

13 10 14 15

F = 7 G = 0 H = 7

9 1 2 3 4

0 6 7 8

5 9 11 12

13 10 14 15

F = 6 G = 0 H = 6

10 1 2 3 4

5 6 7 8

0 9 11 12

13 10 14 15

F = 5 G = 0 H = 5

11 1 2 3 4

5 6 7 8

9 0 11 12

F = 4 G = 0 H = 4

13 10 14 15

12 1 2 3 4

5 6 7 8

9 10 11 12

13 0 14 15

F = 3 G = 0 H = 3

13 1 2 3 4

5 6 7 8

9 10 11 12

13 14 0 15

F = 2 G = 0 H = 2

14 1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 0

F = 0 G = 0 H = 0

In the second column of the above table, is the position or

state of the puzzle pieces. The third colum has the calculation

of the F, G and H cost. By looking at the table, we can

conclude that the algorithm can find the solution which we

want.

Here we have the comparison table of the number iteration

being used for both A* and Greedy Best First Search

algorithms (Table 6)

TABLE 6. NUMBER OF ITERATIONS USED

Algorithm Used Number of Iterations

A* 35

Greedy Best First Search 22

CONCLUSION

From the result of this research, we can make some
conclusions that both A* Algorithm and Greedy Best First
Search can solve or find the solution for Fifteen Puzzle. In
finding a solution, the A* algorithm has a different approach or
method for finding a solution. A* uses g(n) and h(n).
Meanwhile, Greedy Best First Search uses only h(n). In terms
of performance, these two algorithms perform differently.
Greedy Best First Search can find the solution much faster than
A* because of neglecting the g(n) cost. Greedy Best First
Search can outperform A* by ~37% faster (number of
iterations of Greedy is 22. Meanwhile, A* is 36). This might
happen because A* has search space more significant than the
Greedy Best First Search because of including the g(n) cost.

REFERENCES

[1] [1]. Li xiao min, Wang Jian Ping, Ning Xin. “A*
Algorithm based Robot Planning”. Applied Mechanics and
Materials Vols 63-64(2011) pp 686-689.2011

[2] [2]. Kuang Ping, Luo Shuai. “A Brief Introduction of an
Improved A* Search Algorithm”.2013

[3] [3]. Yang Zhong Xiu, Ren Xiao Bao, Song Jia-tao, Wang
Wan-liang. “Schedule Study and Simulation Experiment.
of Lift sliding Stereo Garage Based on A*”. Applied
Mechanics and Materials Vol 109(2012) pp 523-527.
2011

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 11 – Issue 3, June 2022

www.ijcit.com 83

[4] [4]. Yuanliang Zhang. “A Method of Ship’s Path Planning
at Sea”. Applied Mechanics and Materials Vols 321-324
(2013) pp 2038-2041. 2013.

[5] [5]. Frantisek Duchon, Dominik Hunady, Martin Dekan,
Andrej Babinec. “Optimal Navigation for Mobile Robot in
Known Environment”. Applied Mechanics and Materials
Vol 282(2013) pp 33-38. 2013

[6] [6]. Huan Wang, Yulian Jiang. “Robotic Fish Path
Planning based on Improved A* Algorithm”. Applied
Mechanics and Materials Vols 336-338(2013) pp 968-
972.2013

[7] [7]. Liping Cheng, Bo Yan, Yonghai Tan. “Application of
CAN bus and the Layered A* Algorithm in the Parking
Guidance System”. Applied Mechanics and Materials Vols
602-605 (2014) pp 887-890.2014

[8] [8]. Xia Chen, Xiangmin Chen, Jing Zhang. “The
Dynamic Path Planning of UAV based on A* Algorithm”.
Applied Mechanics and Materials Vols 494-495 (2014) pp
1094-1097.2014

[9] [9]. Shrawan Kr Sharma, B.L. Pal. “Shortest Path
Searching for Road Network Using A* Algorithm”.
International Journal of Computer Science and Mobile
Computing Vol 4 Issue 7, July 2015, pg 513-522.2015

[10] [10]. Shang Erke, Dai Bin, Nie Yiming, Zhu Qi, Xiao
Liang, Zhao Dawe. “An improved A Star based Path
Planning algorithm for Autonomous Land Vehicles”.
International Journal of Advanced Robotic Systems
September-October 2020: 1-13.2020

[11] [11]. Zhao Zhiqiang, Liu Zhihua, Hao Jiaxin. “Path
Planning for Ground Simulation Object Based on A*
Algorithm”. Applied Mechanics and Materials Vols 229-
231(2012) pp 2019-2024. 2012

[12] [12]. Xiangguang He, Yaya Wang. “Researching on AI
Path Finding Algorithm in Game Development”. 2012

International Symposium on Instrumentation and
Measurement, Sensor Network and Automation. 2012

[13] [13]. Zhanying Zhang, Ziping Zhao. “A Multiple Mobile
Robots Path Planning Algorithm Based on A* and
Dijkstra”.International Journal of Smart Home Vol.8 No.3
(2014) pp 75-86. 2014

[14] [14]. Han Wang, Yan Piao. “Research on Optimal Path
Finding Algorithm”. Applied Mechanics and Materials
Vols. 427-429(2013) pp 1883-1887. 2013

[15] [15]. Dr.K. Sudhagar, M.Bala Subramanian,
G.Rajarajeswari. “Path planning of Mobile Robot Agent
using Heuristic Based Integrated Hybrid Algorithm”.
Advanced Materials Research Vols 984-985 (2014) pp
1229-1234. 2014

[16] [16]. Akshay Kumar Guruji, Himansh Agarwal, D.K.
Prasediya. “Time Efficient A* Algorithm for Robot Path
Planning”. 3rd International Conference on Innovations in
Automation and Mechatronics Engineering ICIAME 2016.
2016

[17] [17]. Anggina Primanita, Rusdi Effendi, Wahyu Hidayat.
“Comparison of A* and IDA* for Non Player Character in
Role Playing Game”. International Conference on
Electrical Engineering and Computer Science (ICECOS)
2017. 2017

[18] [18]. Yan-yan Zhang, Yan chun Shen, Li Ni Ma.
“Pathfinding Algorithm of 3D Scene Based on
Navigational Mesh”. Advanced Materials Research Vols
1030-1032 (2014) pp 1745-1750. 2014.

[19] [19]. Milena Karova, Ivaylo Penev, Neli
Kalcheva.”Comparative analysis of Algorithms to search
the Shortest Path in a Maze”. 2016 IEEE International
Black Sea Conference on Communications and
Networking (BlackSeaCom). 2016

http://www.ijcit.com/

